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Abstract. We develop a method to derive aerosol properties
over land surfaces using combined spectral and angular in-
formation, such as available from ESA Sentinel-3 mission,
to be launched in 2015. A method of estimating aerosol opti-
cal depth (AOD) using only angular retrieval has previously
been demonstrated on data from the ENVISAT and PROBA-
1 satellite instruments, and is extended here to the synergis-
tic spectral and angular sampling of Sentinel-3. The method
aims to improve the estimation of AOD, and to explore the
estimation of fine mode fraction (FMF) and single scatter-
ing albedo (SSA) over land surfaces by inversion of a cou-
pled surface/atmosphere radiative transfer model. The sur-
face model includes a general physical model of angular and
spectral surface reflectance. An iterative process is used to
determine the optimum value of the aerosol properties pro-
viding the best fit of the corrected reflectance values to the
physical model. The method is tested using hyperspectral,
multi-angle Compact High Resolution Imaging Spectrometer
(CHRIS) images. The values obtained from these CHRIS ob-
servations are validated using ground-based sun photometer
measurements. Results from 22 image sets using the syner-
gistic retrieval and improved aerosol models show an RMSE
of 0.06 in AOD, reduced to 0.03 over vegetated targets.

1 Introduction

Limited understanding of atmospheric aerosol composition,
distribution and function contributes the largest uncertainty
to current estimates of radiative forcing (RF) and thereby to
the uncertainty in future climate predictions (IPCC, 2013).
The World Meteorological Organization (WMO) established
the Global Climate Observing System (GCOS) in 1992 to fo-

cus on satellite observations in order to provide better aerosol
products leading to a reduction in climate uncertainty. GCOS
has a target accuracy of 0.01 for aerosol optical depth (AOD)
and 0.02 for single scattering albedo (SSA) (GCOS, 2006).
In this paper we aim to use recent improvements in the def-
inition of common aerosol components (Holzer-Popp et al.,
2013) to show that better atmospherically corrected surface
reflectance and AOD should be possible using synergistic re-
trieval from new satellite observations.

In summarising the drivers of climate change, the Inter-
governmental Panel on Climate Change (IPCC) found that
there is a negative RF from most aerosols with a total aerosol
effect of between —1.9 and —0.1 Wm~2 (IPCC, 2013). How-
ever, the effect of aerosols is highly variable — scattering from
aerosols with low absorption results in a cooling or negative
forcing, whereas absorbing aerosols give a net warming or
positive forcing effect (Bergstrom et al., 2002; Dubovik et al.,
2002). In addition to the direct effect, aerosol also impacts
cloud formation and duration. For example, the INDOEX
experiment demonstrated that solar absorption by aerosols
reduced day time cloud coverage over the Indian Ocean
(Ackerman et al., 2000). Estimation of surface reflectance
to enable determination of parameters such as albedo, also
requires correction of scattering and absorption by aerosol
and gases; the chief uncertainty for most shortwave chan-
nels is due to aerosol scattering (Vermote et al., 1997a).
Recent reviews of retrieval of aerosol properties from ex-
isting satellites are found in Kokhanovsky and Deleeuw
(2009), Kokhanovsky et al. (2010), de Leeuw et al. (2013)
and Holzer-Popp et al. (2013).

As part of the European Commission Copernicus pro-
gramme, the European Space Agency (ESA) is expected to
launch the first of two Sentinel-3 satellites before the end

Published by Copernicus Publications on behalf of the European Geosciences Union.



1720 W. H. Davies and P. R. J. North: Synergistic aerosol estimation from simulated Sentinel-3 data

Figure 1. True colour nadir CHRIS image of 1g3e35, Lake Argyle, Australia. 16.11° S, 128.75° E (© Surrey Satellite Technology Ltd).

of 2015 (ESA-Earth-Online, 2014). The Sea and Land Sur-
face Temperature Radiometer (SLSTR) and Ocean and Land
Colour Instrument (OLCI) on Sentinel-3 are an improve-
ment on the Advanced Along Track Scanning Radiometer
(AATSR) and the Medium Resolution Imaging Spectrometer
(MERIS) on the ENVISAT satellite with better spatial reso-
lution, wider swath coverage and more bands (Donlon et al.,
2012). A multi-angle method of retrieving surface reflectance
has previously been demonstrated on data from the CHRIS
and AATSR satellite instruments (North, 2002; Bevan et al.,
2012; Davies et al., 2010), and has been extended to use syn-
ergistic spectral and angular information from MERIS and
AATSR on ENVISAT (North et al., 2008, 2010), and OLCI
and SLSTR on Sentinel-3 (North and Heckel, 2012).

Here we develop and test an experimental method for im-
proving the estimation of AOD, and exploring the estima-
tion of fine mode fraction (FMF) and SSA from simulated
Sentinel-3 and real CHRIS data. The method explores the
synergistic use of both SLSTR and OLCI using the multi-
angle method and a spectral method respectively to provide
more constraints for the retrieval (North et al., 2008). The
method is tested using the 6S radiative transfer model (Ver-

Atmos. Meas. Tech., 8, 1719-1731, 2015

mote et al., 1997a) to generate simulated Sentinel-3 top-of-
atmosphere (TOA) radiances. Real CHRIS data are used to
simulate Sentinel-3 data, and ground-based sun photometer
measurements are used to validate the method. Unless stated
otherwise, all AOD values are at 0.55 pm and all SSA values
are at 0.87 ym.

2 Satellite instruments
2.1 SLSTR/Sentinel-3

Like AATSR, SLSTR is a dual-angle instrument with a nadir
view and an oblique view at an angle of approximately 55°
through the atmosphere. However, on SLSTR the oblique
view is to the rear to allow both SLSTR and OLCI to have
a clear view to the sun for calibration purposes. It has a nadir
swath of 1400 km and a dual view swath of 740 km. There
is an improved spatial resolution of 500 m in the visible and
short-wave infrared (SWIR) channels and an additional band
useful for aerosol retrieval centred at 2.25 pm. There is also
an additional channel centred at 1.375 um but this is excluded
in the aerosol retrieval because of atmospheric absorption by

www.atmos-meas-tech.net/8/1719/2015/
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Table 1. Wavelength bands used (um) (Donlon et al., 2012; Cutter, 2005).

SLSTR OLClI CHRIS Mode1  CHRIS Mode 5
0.3925 0.4075
0.4075 0.4175 0.406 0.415
0.4375 0.4475 0.438 0.447 0.438 0.447
0.485 0.495 0.486 0.495 0.486 0.495
0.495 0.505
0.505 0.515 0.505 0.515
0.526 0.534
0.5400.560  0.555 0.565 0.556 0.566 0.546 0.556
0.566 0.573
0.615 0.625 0.618 0.627
0.627 0.636
0.660 0.670 0.656 0.666 0.656 0.666
0.6550.675 0.6700.6775 0.666 0.677 0.666 0.677
0.6775 0.685 0.677 0.683 0.677 0.689
0.70375 0.71375 0.706 0.712 0.706 0.712
0.750 0.7575 0.752 0.759 0.752 0.759
0.760 0.7625 0.759 0.766 0.759 0.766
0.77125 0.78625 0.7730.781 0.7730.788
0.8550.875 0.8550.875 0.8630.872 0.863 0.881
0.880 0.890 0.881 0.891 0.881 0.891
0.895 0.905 0.9000.910 0.900 0.910
0.981 0.992 0.981 0.992
1.000 1.040 1.003 1.036
1.580 1.640
2.2252.275

water vapour. The five bands used are listed in Table 1. Scan-
ner calibration using black body cavities is performed every
second scan and visible channel gain calibration is performed
once per orbit (Donlon et al., 2012).

2.2 OLCI/Sentinel-3

OLCI is a push-broom instrument with 21 spectral channels
covering the same range as MERIS with a spatial resolution
of 300 m. Only 18 bands are used in the retrieval — the bands
centred at the following wavelengths are excluded because
of atmospheric absorption: 764.375, 767.5 and 940 nm. The
bands used are listed in Table 1. There is an improved global
coverage compared to MERIS of less than 4 days over ocean
and less than 3 days over land (assuming only 1 satellite).
The swath of 1270 km overlaps with SLSTR which facili-
tates synergistic retrieval and is tilted westwards to mitigate
contamination from sun-glint. Calibration is performed at the
southern terminator crossing with dark current calibration
and radiometric calibration in the first orbit in sequence and
then in the following orbit dark current calibration and spec-
tral calibration (Donlon et al., 2012).

2.3 CHRIS/PROBA-1

CHRIS is a multi-angle instrument which acquires images at
a high spatial resolution (17 or 34 m), and is a hyper-spectral

www.atmos-meas-tech.net/8/1719/2015/

instrument offering a subset of 18 to 62 spectral bands in the
optical region between 400 and 1050 nm. CHRIS acquires up
to five images of the target area with a swath width of 13 km.
The viewing zenith angles are nominally given as 55° and
36° in the backwards and forwards direction, and at nadir.
There are a range of modes of data that can be selected for
specific applications (Davies et al., 2010). In this data set,
only modes 1 and 5 are used — mode 5 for the Gilching site
and mode 1 for all the other target sites. The 18 bands used
are listed in Table 1.

Measurements from the CHRIS instrument have a number
of sources of uncertainty. One source of uncertainty is due
to incomplete knowledge of the pointing of CHRIS to the
target, which leads to the images being misaligned (David-
son and Vuilleumier, 2004). Radiometric uncertainties for
this push-broom instrument come from the response of the
charge coupled device (CCD), the telescope and the spec-
trometer, and are discussed in Gomez-Chova et al. (2008)
and Cutter and Lobb (2004). An example CHRIS image over
Lake Argyle, Australia is displayed in Fig. 1.

Atmos. Meas. Tech., 8, 1719-1731, 2015
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Table 2. Parameters describing the aerosol components (de Leeuw et al., 2013).

Aerosol Real index of  Imaginary  Effective = Geometric

component refraction index of radius standard
(0.55 um) refraction  (um) deviation

(0.55 pm)

Dust 1.56 0.0018 1.94 1.822

Sea salt 1.4 0 1.94 1.822

Weakly absorbing 1.4 0.003 0.14 1.7

Strongly absorbing 1.5 0.040 0.14 1.7

3 Retrieval method

3.1 Overview

The retrieval is an iterative process: (1) the TOA Radiance
measurements are transformed using 6S (Vermote et al.,
1997a), along with an estimated value for the aerosol prop-
erties, to estimate surface reflectance; (2) an error metric is
calculated based on fit of this surface reflectance set (Rsy) to
a model of idealised land surface angular and spectral vari-
ation; (3) the aerosol estimate is refined, and steps 1 and 2
repeated until convergence, based on minimisation of the er-
ror metric.

3.2 Multi-angle model

The model - Eq. (1) - calculates Rang, the surface reflectance
by the multi-angle method. This model is developed and jus-
tified in North et al. (1999) and a summary is provided here.
This model has been applied to the (A)ATSR series of dual-
angle instruments, giving accurate retrieval over a range of
surfaces (Bevan et al., 2012). The bidirectional reflectance
distribution function (BRDF) of the land surface varies with
wavelength and with viewing angle. Studies have shown that
there is a similarity in the angular variation of the BRDF
across wavelengths, that there is a change of brightness with
view angle, but the colour remains predominantly the same
(North et al., 1999). The BRDF is determined by the opti-
cal and geometric properties of the surface. Significant con-
tributors are multiple scattering and the variation in scatter-
ing with view direction. Thus we define an aggregated single
scattering phase function parameter P (6,) that is dependent
on view angle but independent of wavelength, and a Lam-
bertian scattering albedo parameter w (1) that is only depen-
dent on wavelength. In order to solve these unknown param-
eters the inversion requires a minimum of two view angles,
and a minimum of two wavelengths, but may be applied to
the full set of CHRIS viewing angles and any waveband set
(Davies et al., 2010). The model calculates the reflectance as
the sum of an anisotropic singly scattered component and an

Atmos. Meas. Tech., 8, 1719-1731, 2015

isotropic multiply scattered component:

Rang(X,0y) = (1= D(A)) P (6w (X)
yo(l)
l-g

(D) +g(1—DW)), @

where
g=1A-py)ol),

where A is the wavelength, 6, the view direction, w (1) the
Lambertian scattering albedo, P(6,) the aggregate single
scattering phase function, D()) is the fraction of down-
welling diffuse light and y represents the probability of es-
cape from the surface without further scattering. The set
of free parameters w(A) and P(6y) are found by inver-
sion. Comparison with a large data set of natural surface re-
flectances shows that a fixed value of y = 0.3 is adequate to
characterize land surface scattering for the inversion (North
et al., 1999). D()) is an output from the radiative transfer
(RT) calculations (Davies et al., 2010).

3.3 Spectral model

Here we extend the method to make use of spectral infor-
mation in addition to angular. For single angle viewing we
use a spectral signature to isolate the aerosol scattering from
the surface reflectance. We use the channels in the blue spec-
tral region for aerosol retrieval and the near-infrared (NIR)
channels to estimate the surface properties (von Hoyningen-
Huene et al., 2011). For this reason, in order to retrieve
AQOD, a higher weighting is given to the shortest wave-
length. We identify a set of surfaces with known reflectance
and assuming an atmospheric profile, we fit the atmospher-
ically corrected surface reflectance with the assumed target
reflectance. Similar approaches have been used in aerosol
retrieval for CHRIS (Guanter et al., 2005) and for MERIS
(North et al., 2008; von Hoyningen-Huene et al., 2011).

The limitation of using vegetation and soil spectra in this
approach is that it is only generally suitable for dark surfaces
with relatively low spectral variability and has been found to
produce high error with bright arid surfaces. However, here
we explore the use of a variety of vegetation and arid spectra
(see Tables 3 and 4) in order to improve the retrieval.

www.atmos-meas-tech.net/8/1719/2015/
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Table 3. OLCI values of end member spectra used for spectral mixing model (Baldridge et al., 2009; Vermote et al., 1997a).
Wavelength Ovg Pvd Pvo 0s Pa
(um)
0.400000 0.046470 0.157013 0.045815 0.036768 0.029020
0.412500 0.047242  0.170558 0.063035 0.049469 0.038720
0.442500 0.049020 0.199196 0.076099 0.073796 0.062344
0.490000 0.052483 0.241431 0.106535 0.107402 0.103530
0.510000 0.064435 0.259522 0.121465 0.122475 0.123760
0.560000 0.103197 0.313778 0.121022 0.182937 0.194380
0.620000 0.061505 0.372506 0.077998 0.254738 0.267570
0.665000 0.045183 0.419670 0.104285 0.283098 0.289420
0.673750 0.044693 0.430844 0.161134 0.287909 0.300673
0.681250 0.047156 0.440263 0.206083 0.294213 0.299675
0.708750 0.176344 0.471079 0.377132 0.310058 0.321040
0.753750 0.482001 0.510188 0.519670 0.334321 0.336595
0.761250 0.492245 0.515876 0.520708 0.336472 0.337490
0.778750 0.503628 0.525009 0.523003 0.345266 0.343143
0.865000 0.523376 0.575062 0.529749 0.361608 0.348803
0.885000 0.525212 0.585798 0.530996 0.365007 0.352213
0.900000 0.525729 0.594547 0.532001 0.367217 0.351690
1.020000 0.518955 0.637942 0.530199 0.397384 0.378390
The assumed surface reflectance of the target is repre- 5 ]
sented as a linear mixture of a set of spectra:
Rspec ) = CvgPvg (A) + cvdovd (A) + cvopvo (L)
+ ¢sps(A) + capa(r), @) <
where cyg is the fractional coverage of green vegetation and o ©
pvg is the corresponding surface reflectance of the input spec- 5 o
tra and is a function of wavelength. Similarly, cyg and pyq are
the fractional coverage and spectra for dry grass, cye and pyo 3 ‘
for other vegetation, ¢ and ps for soil and c4 and p4 for arid LT
soil (Baldridge et al., 2009; Vermote et al., 1997a). The OLCI Eh T | 3‘" g J
spectra are listed in Table 3, and CHRIS spectra in Table 4. o [ | T | :
The metric for the single-angle spectral retrieval is given T - w w w
0.05 0.10 0.15 0.20 0.25 0.30 0.35

by

18 2
R A)—R A
Espec= Zk:lwl[ surlfg( ) spec( )] ’ (3)

A=1Wa

where A is the wavelength and w;,_ is the per-band weighting
factor. The per-band weighting factor values are normalised
according to Eq. (4). By experiment, lowest error was found
with a weighting of 1.5/18 for the first wavelength, and
acompensating 0.5/18 for the last (infrared) wavelength, and
unity for all other wavelengths:

>uwi=1 @

www.atmos-meas-tech.net/8/1719/2015/

Photometer

Figure 2. AOD estimated using original method Davies et al.
(2010), compared with sun photometer data over 22 CHRIS image
sets.

3.4 Surface reflectance estimation

The estimated surface reflectance (Rsyrf) is calculated from
the TOA radiance measurements at each iteration using
a look-up table (LUT) of coefficients determined by 6S, and
using aerosol properties determined under the ESA Aerosol
CClI definitions (de Leeuw et al., 2013).

Atmos. Meas. Tech., 8, 1719-1731, 2015
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Table 4. Values of end member spectra used for spectral mixing model at CHRIS wavebands (Baldridge et al., 2009; Vermote et al., 1997a).

Wavelength Ovg Pvd Pvo 0s Pa
(Hm)

0.410500 0.047118 0.168391 0.062435 0.047437 0.035117
0.442000 0.048990 0.198719 0.075873 0.073391 0.062389
0.490000 0.052483 0.241431 0.106638 0.107402 0.103530
0.500000 0.058459 0.250477 0.114682 0.114938 0.115380
0.510000 0.064435 0.259522 0.121645 0.122475 0.123760
0.561000 0.102502 0.314757 0.120774 0.184134 0.194920
0.622000 0.060780 0.374602 0.077075 0.255998 0.265680
0.661000 0.046634 0.415478 0.083445 0.280577 0.290130
0.672000 0.044791 0.428609 0.143919 0.286947 0.294930
0.680000 0.046746 0.438693 0.198597 0.293162 0.298620
0.709000 0.178042 0.471296 0.371412 0.310193 0.318970
0.755500 0.484391 0.511515 0.520058 0.334823 0.336180
0.762500 0.493058 0.516031 0.521425 0.337100 0.338945
0.777000 0.502490 0.523939 0.521732 0.344387 0.344520
0.867500 0.523605 0.576404 0.530533 0.362033 0.348741
0.886000 0.525246 0.586381 0.531138 0.365154 0.352515
0.905000 0.525447 0.597530 0.531993 0.368474 0.353335
0.986500 0.518940 0.629763 0.536559 0.388962 0.367166

The atmospheric correction problem is solved by 6S using

PR O, 00, 9y — ) =TO%0,.0,) [om

i
+ (IOR+A - pR)Y—l!-'ZO(es, Gv, TUHZO)

+ THOIT 0D T T2 (00 6, Un0) 1.
— Sps

where the TOA reflectance (otoa) is dependent on the solar
zenith (65) and solar azimuth angles (¢,) and the view zenith
(6,) and view azimuth angles (¢,). i = 1 represents the mini-
mum absorption where the water vapour is under the aerosol
layer, i = 3 represents the maximum absorption where the
water vapour is above the aerosol layer and i = 2 represents
the case where half of the water vapour present absorbs the
aerosol path radiance. TéPG represents the gaseous transmis-
sion for gases other than water vapour. pr is the molecular
reflectance. pa is the aerosol reflectance. TgHZO refers to H,O
absorption. 7'V is the total transmission of the atmosphere on
the path to the surface from the sun. 71 is the total trans-
mission of the atmosphere on the path to the sensor from the
surface. py is the reflectance of a Lambertian homogeneous
target at sea level. S is the spherical albedo of the atmosphere
and Un,o is the water vapour content (Vermote et al., 1997Db).

The original method for CHRIS retrieval (Davies et al.,
2010) retrieved a single unknown, AOD. Here we develop the
method to retrieve four unknowns: AOD at a reference wave-
length (0.55um) and three components of aerosol mixture
(the fourth component is implicit since all four must sum to
100 %). The four components are non-spherical dust, sea salt,
weakly absorbing and strongly absorbing aerosol (de Leeuw
et al., 2013). A full grid of AOD and mixture values in steps

Atmos. Meas. Tech., 8, 1719-1731, 2015

Estimated AOD

0.0 0.1 0.2 0.3 0.4 0.5

True AOD

Figure 3. AOD comparison for synergistic retrieval from simulated
SLSTR and OLCI data.

of 20 % is used in a LUT-based approach giving a total of 560
points. The log-normal parameters and their associated mid-
visible indices of refraction are listed in Table 2. Ten values
of AOD are used from 0.01 to 0.46 in intervals of 0.05 — the
range has been chosen to enclose that from the CHRIS data
set. The retrieval process iterates through all the values in the
grid, and the AOD/mix with the best fit is the solution.

For the CHRIS multi-angle viewing, the least-squares
method is modified in order to take account of the need to
propagate the uncertainties through to the resulting estimates.
The approach of Diner et al. (2008) is adopted for the modi-
fied error metric which is given by Eq. (6).

www.atmos-meas-tech.net/8/1719/2015/



W. H. Davies and P. R. J. North: Synergistic aerosol estimation from simulated Sentinel-3 data

Table 5. CHRIS sites and image sets.

1725

Site Sets Land cover  Model Date range AOD range
Tinga Tingana (Aus) 8 Arid Desertic Dec 2003-Nov 2006  0.02-0.10
Lake Argyle (Aus) 8 Semi-arid Continental ~ Jun 2003-Apr 2007  0.02-0.35
Great Plains (USA) 2 Agricultural ~ Continental Oct 2003-May 2004  0.03-0.08
Mexico City (Mex) 2 Urban Urban Nov 2003-Dec 2003 0.26
Lanai (USA) 1 Shrublands ~ Maritime Nov 2003 0.06
Gilching (Ger) 1 Agricultural  Continental May 2004 0.16
Table 6. Results from simulated data. s
Property Fig. RMSE r2  Slope Offset
AOD 3 0.03 097 097 0.002 ° |
FMF 4 011 0.86 0.93 0.04
SSA 5 0.02 0.77 0.88 0.11 3 g -
S AOD * * R
° 001 x 011 - 021 031 o 041
006 4 0.16 0.26 036 + 0.46 =
3 . % : 2 © AOD
° 001 x 011 - 021 031 ° 041
ﬂf _ 006 4 0.16 0.26 036 + 0.46
E O.‘75 0.‘80 0.‘85 O,;O O,;S 1,1)0
E True SSA
Figure 5. Simulated SSA vs. estimated SSA categorised by AOD
from synergistic retrieval.
‘ ; ‘ ‘ ‘ ‘ where 1 is the wavelength and 6, the view direction, and o2, ;
00 02 0.4 056 08 10 is the uncertainty estimate for Rsyrf . The error in Rang is char-

True FMF

Figure 4. Simulated FMF vs. estimated FMF categorised by AOD
from synergistic retrieval.

3.5 Retrieval of surface reflectance and aerosol

An iterative search for the optimum aerosol model and opti-
cal depth is performed, by minimising the difference between
the modelled and measured surface reflectance using a metric
combining the angular and spectral constraints:

Emod = Eang + k Espec. )

For a given aerosol model, the Powell and Brent methods
(Press et al., 1992) are used to determine the parameters
which minimise the constraint (6) such that Enip is the min-
imised value of Egng:

5 18 _ 2
Eang _ Z Z [Rsurf (A, 6y) Rang (A, 600)] ’ (6)

2 2
oy=1r=1 Ogurf T Oang

www.atmos-meas-tech.net/8/1719/2015/

acterised by using simulated data from 36 sets of conditions
(Rsim)- The error variance at each view angle/wavelength
combination is given by

n

1
Oing =~ Z;‘[Rsim(x, Oy ) — Rang(%. b, 5)1°
§S=

)

where n = 36, giving estimates of aazng for each view an-
gle/wavelength combination. For synergistic retrieval, the
spectral and angular retrievals are run separately as a first
iteration in order to calculate a normalising scaling factor k
giving equal weighting to angular and spectral metrics.

3.6 Error estimate in AOD

Values of the error metric Eynog bounding the minimum value
are used to compute a parabolic fit, represented by the coef-
ficients in (Diner et al., 2008)

IN(Emod) = A + BT + C1? (8)

Atmos. Meas. Tech., 8, 1719-1731, 2015
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Table 7. Results from CHRIS data.
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2

Property  Source Method Fig. RMSE r Slope Offset CHRIS mean  Photometer mean

AOD All sites Angular 6 0.07  0.58 0.81 0.002 0.09 0.11

AOD All sites Spectral 8 0.16 0.00 0.001 0.13 0.13 0.11

AOD All sites Synergistic 10 0.06 0.65 090 —0.008 0.09 0.11

AOD Vegetated  Angular 7 0.04 0.86 13 -0.03 0.08 0.09

AOD Vegetated  Spectral 9 0.06 044 0.57 0.007 0.06 0.09

AOD Vegetated  Synergistic 14 0.03 0.89 1.2 —0.02 0.08 0.09

FMF All sites Synergistic 15 0.49 0.05 -0.30 0.82 0.65 0.59

SSA All sites Synergistic 16 0.24  0.00 0.001 0.97 0.97 0.80
[a] — [a]

c 7 l Rl ° J o 7

90 ° ‘ ° LRl 0979 °
s Il s Al

T
0.0

0.1 0.2 0.3 0.4

Photometer AOD

Figure 6. AOD estimated using angular constraint only, compared
with sun photometer data over 22 CHRIS image sets.

and the uncertainty (o) in tpest (the value of AOD that min-
imises Emoq) is given by (Diner et al., 2008)

In (1 + Eiin)

©)

The uncertainty in the retrieved mixture is calculated using
the associated SSA value. Equations (8) and (9) are used
again but substituting SSA for AOD. The uncertainty values
for SSA are also used for the FMF estimates calculated from
the same retrieved mixture.

4 Test data sets

4.1 Simulated data

Simulated data were generated to provide an initial test of
the inversion. Simulated SLSTR and OLCI TOA radiances
are generated by running 6S in forward mode using the 560
sets of AOD/mix, other parameters for the simulation are as
follows with the geometry taken from one of the CHRIS im-
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Figure 7. AOD for angular retrieval from CHRIS data for sites
where the mean NDVI > 0.4.

age sets: solar zenith angle (SZA), 15.1°; solar azimuth an-
gle (SAA), 95.3°; view zenith angle (VZA), 7.25° for nadir,
and 55° for the oblique view; view azimuth angle (VAA),
316.12°; month, 11; day, 9; atmosphere, tropical; altitude,
150 m and surface type, Lambertian vegetation. The bands
are listed in Table 1. The AOD, FMF and SSA values from
the retrieval (estimated AOD, FMF or SSA) are compared
with the values from the generation of each TOA set (true
AOD, FMF or SSA).

4.2 CHRIS data

Twenty-two image sets were used from six different sites
(ESA-Archive, 2014). These are listed in Table 5 together
with the number of image sets processed from that site, the
type of land cover, the aerosol model used in the original
method, the date range of the sets and the range of AOD
as measured by the photometers (Davies et al., 2010). For
analysis of results, the images are further divided into non-
vegetated vs. vegetated scenes, using a threshold of mean
NDVI > 0.4 to partition the set. A subset of 18 bands from

www.atmos-meas-tech.net/8/1719/2015/
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Figure 8. AOD retrieved using spectral constraint only, over 22
CHRIS image sets.

CHRIS were chosen to correspond with a subset of the bands
from OLCI and SLSTR, and are listed in Table 1.

This represents all available archived CHRIS data suitable
for testing. Further image sets were rejected for a variety of
reasons: (i) no AERONET time/space coincidence; (ii) no
acquisition of multi-angular data; (iii) no adequate meta-data
for view geometry; (iv) insufficient co-registered, cloud-free
pixels visible in all views; (v) the retrieval failed the Enin
threshold test; (vi) when evaluating FMF and SSA retrieval,
the AOD at 440 nm must be > 0.2.

5 Results
5.1 AOD from simulated data

The AOD values retrieved from each of the 560 TOA radi-
ance sets using the synergy method are compared with the
true values in Fig. 3. The red dotted line shows the 1: 1 re-
lationship, and the blue solid line represents the fitted trend
line. The RMSE between true and estimated values, the value
of r2, the regression coefficients for the slope and for the off-
set are listed in Table 6 together with the results for the FMF
and SSA properties.

An example of retrieved surface reflectance values from
one of the 560 sets is displayed in Fig. 11, following success-
ful aerosol retrieval. The simulated reflectances generated are
marked in red and the retrieved reflectances are marked in
blue, shown at all OLCI and SLSTR wavelengths.

5.2 AOD from CHRIS data

The results from the CHRIS images were analysed for image
sets where there are AOD, FMF and SSA values to validate
the retrieval (22 for AOD and FMF, 19 for SSA). However
since the spectral constraint does not provide information ex-
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Figure 9. AOD comparison for spectral retrieval from CHRIS data
where the mean NDVI > 0.4.
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Figure 10. AOD comparison for synergistic (combined spectral and
angular) retrieval from CHRIS data.

cept over at least partially vegetated surfaces, testing over
a reduced set was also performed, where image sets are re-
jected if the mean NDVI is less than 0.4. A second set of
results are displayed with nine image sets where the mean
NDVI is greater than 0.4. For comparison, the AOD esti-
mates from the original method Davies et al. (2010), which
uses a version of the angular constraint only, and a standard
6S model set (Vermote et al., 1997a) are also displayed in
Fig. 2.

5.2.1 Allsites
The AOD value for each of the CHRIS image sets using only
the angular method is compared with the ground-based pho-

tometer readings in Fig. 6. The RMSE between photometer
and CHRIS retrievals, the value of 2, the regression coeffi-
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Figure 11. Retrieved nadir surface reflectance from simulated
SLSTR and OLCI data, compared with spectrum used in forward
simulation (AOD = 0.46, 100 % dust).
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Figure 12. Retrieved multi-angle surface reflectance from CHRIS
image set 1g41c8 (Lake Argyle), at red (672nm) and NIR (868nm)
wavebands.

cients for the slope and for the offset, the mean AOD for the
CHRIS data set and the photometer mean are listed in Table 7
together with the AOD results for the spectral and synergistic
methods.

5.2.2 Vegetated sites

The AOD value for each of the screened CHRIS image sets
where the mean NDVI1 is greater than 0.4 using only the an-
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Figure 13. Retrieved spectral surface reflectance (solid line), and
corresponding best fit spectral model (dashed line), derived from
CHRIS image set In3a16 (Lanai).

gular method is compared with the ground-based photometer
readings in Fig. 7. Values for results from vegetated sites are
listed in Table 7.

An example of the retrieved multi-angle surface re-
flectance values (672 and 868 nm) from one of the image sets
that passes the NDVI threshold test is shown in Fig. 12. The
image set 1g41c8 was acquired over Lake Argyle, Australia
on 5 June 2004. The SZA is 44° and the Relative Azimuth
(RA) ranges from —153° to +9°. The retrieved spectral sur-
face reflectance values (nadir view) from a second image set
that passes the NDVI threshold test are displayed in Fig. 13,
along with the fitted reflectance from the mixture model. The
image set In3al6 was acquired over Lanai, Hawaii on 10
November 2003. The percentage of the various surface types
in the model that gave the best fit for this region of interest
(ROI) were as follows: 94 % green vegetation, 4 % soil and
2% dry grass. This ROI produced an overestimation of AOD
(0.21 compared to an estimate of 0.06 from Aeronet). The
spike visible at 760 nm is due to oxygen absorption, and this
band is not used in the retrieval.

5.3 FMF from CHRIS data

The FMF value for each of the CHRIS image sets, over the
full data set, calculated from the estimated mixture using the
synergistic method is compared with the AERONET esti-
mates in Fig. 15. Results for FMF retrieval are listed in Ta-
ble 7. Thresholding for high NDVI and optical depth yielded
only two image sets suitable for testing — the image set from
Gilching (gc) with the image id 415a resulted in an estimate
for the FMF as 1.0+ 0.13, compared to the Aeronet estimate
of 0.82+0.11. The image set from Mexico City (mc) with
id 3ae3 gave a retrieved estimate of 1.0 £ 0.49 compared to
Aeronet estimate of 0.85 £+ 0.13.

www.atmos-meas-tech.net/8/1719/2015/
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Figure 14. AOD comparison for synergistic retrieval from CHRIS
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Figure 15. FMF comparison for synergistic retrieval from CHRIS
data, over all data points.

5.4 SSA from CHRIS data

The SSA value for each of the CHRIS image sets, calculated
from the estimated mixture using the synergistic method, is
compared with the AERONET estimates in Fig. 16. The nu-
merical results are also listed in Table 7. Thresholding on
high NDVI and optical depth yielded only one suitable site
with Aeronet data, Mexico City (mc3ae3). Here the satellite
retrieval estimated the SSA as 0.95 4+ 0.63 compared to the
Aeronet estimate of 0.77 &+ 0.05.

6 Discussion

The results from the synergistic retrieval of AOD displayed
in Fig. 10 show that the method presented in this paper im-
proves over the original method demonstrated for CHRIS
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Figure 16. SSA comparison for synergistic retrieval from CHRIS
data, over all data points.

PROBA (Fig. 2) (Davies et al., 2010), with an RMSE (r2) of
0.06 (0.65) compared to 0.09 (0.60) for the original method.

The results from the spectral retrieval of AOD displayed in
Fig. 8 show that the addition of spectral constraint does not
provide useful information over all surface types. However,
when the surface types are filtered to only include vegetation
where the mean NDVI is greater than 0.4 the results are sig-
nificantly better as seen in Figs. 9 and 14. This leads to an
expectation that the real data will also benefit from filtering
out of low NDVI scenes, where the angular constraint alone
can provide a retrieval.

The poor results from the retrieval of FMF and SSA on the
full data set are consistent with the expectation that the filter-
ing out of both low AOD and low NDVI scenes is required
for retrieval of further aerosol properties than AOD. It should
also be noted that the lowest possible SSA within the LUT is
0.74, for 100 % strongly absorbing aerosol, whereas four of
the Aeronet estimates of SSA in this data set are below this
value, so could not be retrieved. According to Kazadzis et al.
(2010), SSA may be the most significant uncertainty in cur-
rent modelling of aerosol forcing, suggesting greater focus
on retrieving this property for future research. While simula-
tion results suggested retrieval of SSA was possible at higher
AOD levels, further research is recommended to identify and
test CHRIS image sets that have a higher AOD and NDVI
and to experiment with different values of refractive index
for strongly absorbing aerosols. Finally it should be noted
that only a subset of Sentinel-3 spectral bands were available
from CHRIS, and improved results are expected by including
wavebands beyond 1 pm.

Atmos. Meas. Tech., 8, 1719-1731, 2015
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7 Conclusions

A method for estimating AOD, FMF, and SSA from
CHRIS/PROBA-1 images using corresponding Sentinel-3
bands for the spectral retrieval has been developed and tested
on 22 image sets from six sites for AOD and FMF and 19
image sets from five sites for SSA. The method retrieves an
optimal mix of aerosol components using non-spherical dust,
sea salt, weakly absorbing and strongly absorbing aerosol
types as end members.

Estimates of AOD from this extended method were com-
pared to the AOD estimates from previous work, using the
standard 6S models with one unknown (Davies et al., 2010).
The results show an improvement to the previous estimates
with an RMSE of 0.06 and r? of 0.65 for the extended
method, compared to 0.09 and 0.60 respectively for the pre-
vious method. The RMSE is 0.03 for the screened image
sets where the mean NDVI is greater than 0.4 and the 2 is
0.89. Testing of the AOD retrieval on a synthetic data set also
shows RMSE of 0.03 and an 2 of 0.97, from 560 TOA radi-
ance sets.

For estimation of FMF and SSA, results from simulated
data show an RMSE of 0.11 and 2 is 0.86 for FMF and
an RMSE of 0.02 in SSA with an 2 of 0.77, with results
improving at higher optical depth. However, results from
CHRIS data over the full data set do not show correlation be-
tween retrieved FMF and SSA with Aeronet values. Screened
image data did not yield sufficient number of points to reli-
ably test the retrieval of aerosol properties. Further research
is therefore recommended to examine the retrieval of aerosol
properties over higher AOD values and over vegetated sur-
faces, and to explore the performance using different models
of aerosol properties and surface spectra.

The Supplement related to this article is available online
at doi:10.5194/amt-8-1719-2015-supplement.
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