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Abstract

Background: In many experimental pipelines, clustering of multidimensional biological datasets is used to detect
hidden structures in unlabelled input data. Taverna is a popular workflow management system that is used to design
and execute scientific workflows and aid in silico experimentation. The availability of fast unsupervised methods for
clustering and visualization in the Taverna platform is important to support a data-driven scientific discovery in
complex and explorative bioinformatics applications.

Results: This work presents a Taverna plugin, the Biological Data Interactive Clustering Explorer (BioDICE), that
performs clustering of high-dimensional biological data and provides a nonlinear, topology preserving projection for
the visualization of the input data and their similarities. The core algorithm in the BioDICE plugin is Fast Learning Self
Organizing Map (FLSOM), which is an improved variant of the Self Organizing Map (SOM) algorithm. The plugin
generates an interactive 2D map that allows the visual exploration of multidimensional data and the identification of
groups of similar objects. The effectiveness of the plugin is demonstrated on a case study related to chemical
compounds.

Conclusions: The number and variety of available tools and its extensibility have made Taverna a popular choice for
the development of scientific data workflows. This work presents a novel plugin, BioDICE, which adds a data-driven
knowledge discovery component to Taverna. BioDICE provides an effective and powerful clustering tool, which can
be adopted for the explorative analysis of biological datasets.
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Background
The increasingly large amount of data related to DNA,
proteins, molecular compounds, gene expressions and
other biological sciences, raises the need for advanced
analytical tools to support a data-driven scientific dis-
covery. Classification and clustering of high-dimensional
data, for example, are very popular techniques for the
analysis of large multidimensional biological datasets [1].
Classification methods are based on a supervised learn-
ing approach, where the patterns of the training set belong
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to pre-defined classes. Dissimilarly, clustering algorithms
use an unsupervised learning approach to find groups of
similar data objects with no pre-defined classes. Clus-
tering is typically used as an explorative tool. However,
the interpretation of the clustering outcomes is often
difficult and not intuitive, especially for large datasets
with complex topological structures. For this reason, a
suitable visualization method is a desirable tool to com-
plement clustering analysis. Several methods (e.g., [2,3])
have been proposed to generate a visualisation of the
outcomes of classification and clustering algorithms. The
Self-Organizing Map (SOM) [4] is one of the best known
unsupervised methods for data visualization and cluster-
ing [5,6]. SOM is an artificial neural network that gener-
ates a lattice of neurons, typically organized in a 2D grid,
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where high-dimensional data objects are projected to a
lower dimensionality space while preserving their topo-
logical relations. SOMs are often used to generate clusters
of similar data objects, but they can also be used to create
2D maps to facilitate the visual inspection of the relations
induced by the adopted similarity function. Moreover,
new data objects can be projected on a previously trained
map in order to unveil similarities with other input data
objects and performing a classification over the learned
clusters.
In many experimental pipelines and workflows related

to genomics, proteomics and other “omics” disciplines,
the clustering and visualization of large multidimensional
datasets is often used to identify and investigate similari-
ties among data elements before further tests and analysis
are carried out. The Taverna workbench [7] is one of the
most popular tools to manage scientific workflows, espe-
cially in the bioinformatics domain. Taverna provides a
broad range of components, which can be executed by
local processors or Web services. It includes components
to integrate remote resources, online databases and exter-
nal analysis tools into user-defined workflows and can
be extended with additional components by means of a
service plug-in architecture.
This work presents a novel Taverna plug-in, the Bio-

logical Data Interactive Clustering Explorer (BioDICE),
that performs clustering and provides visualization of
biological datasets. The core algorithm in BioDICE is
Fast Learning SOM (FLSOM) [8], an improved ver-
sion of the classic SOM algorithm. FLSOM belongs
to the category of the so-called Emergent Self Orga-
nizing Maps (ESOM) [9]. ESOMs have a number of
neurons much larger than the number of input pat-
terns to facilitate the discovery of emergent structures
in the data. These structures are used to visualize mul-
tidimensional data objects and to identify clusters of
similar objects by means of the U-Matrix visualization
technique [2].
While there are a few SOM implementations available

in Taverna, BioDICE fills a gap, as it is the first Taverna
component performing SOM clustering with U-Matrix
visualization.
RapidMiner is a data mining workflow execution engine

and the RapidMiner plug-in [10] integrates RapidMiner
operators into the Taverna environment. Although one of
these operators provides an implementation of the clas-
sic SOM algorithm for dimensionality reduction, it does
not generate a clustering model. There is another SOM
implementation in RapidMiner that generates projections
with U-Matrix and other visualization techniques. How-
ever, these visualization techniques generate static maps,
do not allow an interactive exploration and do not detect
clusters in the map automatically. Moreover, the Rapid-
Miner plug-in for Taverna was based on RapidAnalytics,

a server-based data mining workflow execution engine,
which is no longer supported.
Another Taverna plugin that provides some machine

learning services is the Chemistry Development Kit
(CDK) plugin [11]. It integrates five clustering algorithms
from the Weka machine learning library [12], which do
not include SOM clustering.
This work introduces the BioDICE plug-in for Tav-

erna: BioDICE is a pipeline of algorithms that performs
a fast SOM clustering and generates a visualization of
high-dimensional datasets. BioDICE supports an interac-
tive generation of data partitions that represent emerging
clusters.

Implementation
BioDICE is composed by six main components, that are
executed in cascade. Figure 1 shows the BioDICE block
diagram. Biological data are given as input file in a tab-
ular format as a list of objects with numerical features.
The first component (step 1) is a dimensionality reduc-
tion operation, which applies the truncated Singular Value
Decomposition (SVD) algorithm to the data vectors and
maps the input space into a projected space of lower
dimensionality. The most significant directions (singular
vectors) are selected and used for the fingerprint initial-
ization (step 2). In step 3, the FLSOM algorithm performs
a clustering of the fingerprints and generates a U-Matrix
visualization [2]. In step 4, an interactive view of themap is
generated, with which the user can select data objects and
investigate their similarities. A “Find Clusters” function-
ality allows the detection and refinement of data clusters
in a semi-automatic way. In step 5, a customized version
of the canny edge detection algorithm is applied to the
2D map. In step 6, a region growing algorithm generates a
segmentation of the 2D map into disjoint partitions (clus-
ters), using the boundaries provided by the edge detection
algorithm.
In the following sections, the initialization and learning

phases of FLSOM are discussed in more detail.

Map Initialization
The output generated by a SOM is influenced by the ini-
tialization of the neuron weights. In BioDICE, a linear
initialization technique [13] is adopted to improve the
clustering results and to reduce the execution time. In
general, linear initialization procedures are based on the
analogy between SOMs and principal curve analysis algo-
rithm, which is a non-linear generalization of the Principal
Component Analysis (PCA). In BioDICE, the singular
vectors obtained by SVD are used in place of the prin-
cipal components to imprint the initial SOM lattice with
fingerprints of the input objects. This initialization tech-
nique facilitates the learning process to converge towards
a better clustering and faster than a random initialization.
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Figure 1 BioDICE diagram block. This diagram shows the six components of the BioDICE plugin.

FLSOM learning
FLSOM provides an advanced SOM learning phase. A
simulated annealing heuristic is combined with a stan-
dard batch SOM learning algorithm to obtain an adaptive
learning rate [8]. This optimization technique improves
both the quality and the convergence rate of the learning
process. In FLSOM, the simulated annealing “tempera-
ture” is the Quantization Error (QE), which is defined
as the average Euclidean distance between data vectors
and their best matching units at the end of each learning
epoch. The variation of QE (�QE) between two consec-
utive epochs is used to adapt the learning factor and,
consequently, the convergence rate of the algorithm. The
learning process stops when the value of�QE is less than a
user-defined threshold value. FLSOMwas compared with
other SOM-based algorithms, using both artificial and
real biological datasets [8,14]. FLSOM provided a good
convergence time and, most importantly, better results
with respect to local distortion, topology preservation and
clustering quality.

User interface
The BioDICE user interface is composed by two panels:
the configuration panel and the interactive map.
The configuration panel is available in the design per-

spective of Taverna from the BioDICE pop-up menu. It
includes some user-defined parameters for setting the
reduced dimensionality of the vector space (truncated
SVD), the dimensionality of the lattice (map resolution)
and the FLSOM learning parameters. A screenshot of this
configuration panel is shown in Figure 2: the top panel
contains the reduced dimensionality of the vector space,
the centre panel contains the horizontal and vertical
dimensions of the lattice and the bottom panel contains
the FLSOM parameters (see [8] for further details).
The view of the interactive map is available in the result

perspective of Taverna, when the BioDICE plugin is run-
ning. It shows the progress of the learning process and
the outcome, which is the U-Matrix representation of
the SOM lattice. At the end of the learning process, the
map becomes interactive and allows the exploration of the
data objects and the detection of clusters of similar data
objects. A screenshot of this view is shown in Figure 3. The
interactive FLSOMU-Matrix map is on the left part of the
view. The right part of the view contains four sliders, one

for each parameter of the canny edge detection algorithm,
and a button for the execution of the segmentation (steps
5 and 6) and the generation of the partitions (clusters).

Results and discussion
In this Section, an application of the BioDICE plugin for
the analysis of molecular compounds is presented. The
analysis of similarities among chemical structures is an
important challenge in cheminformatics [15,16]: the main
goal is to gain understanding about the relationship of the
compounds with respect to their chemical or functional
activity. In previous works [6,8], the FLSOM algorithm
was shown to be very effective in the cluster analysis of
molecular compounds.
The BioDICE Taverna plugin requires an input file con-

taining a features × patterns data table, that is a matrix
with the feature identifiers as rows and the chemical

Figure 2 BioDICE configuration panel. This panel is used for setting
the BioDICE parameters.
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Figure 3 BioDICE view. This view shows the SOM lattice evolution during the learning process. At the end of the learning process, the view allows
the interactive exploration of the input data and the extraction of clusters.

compound identifiers as columns. The plugin also accepts
two optional inputs, which are used for enriching the
graphical representation of the chemical compounds: an
ordered list of input compounds and a list of their corre-
sponding representations in SMILES notation.
The whole Taverna workflow for this case study is

shown in Figure 4. A videotutorial for installation and
execution of this case study is available at https://www.
youtube.com/watch?v=eKpf-K2T8hw. At execution, the
workflow retrieves a set of molecular compounds in
SMILES format from the ChemSpider database [17], asso-
ciated to a list of compound names (or identifiers) as
input. The selected compounds are then processed using
MoSS [18], a frequent subgraph mining algorithm. MoSS
extracts a set of frequent molecular fragments contained
in the input set of molecular compounds. The extracted
fragments are used as features of the input compounds:
MoSS generates the features× patternsmatrix, which has
the fragment identifiers as rows and the compound iden-
tifiers as columns. BioDICE is then used to process the
features × patternsmatrix to detect and visualize clusters
of molecular compounds, where similarity is computed
with respect to the frequent fragments. If the data matrix
has too many features, BioDICE can reduce the dimen-
sionality of the features space using a truncated SVD, thus
mitigating the curse of dimensionality.
The workflow of Figure 4 contains two nested Taverna

workflows, which have been made publicly available
and can be retrieved from the repository myExperiment
[19] at http://www.myexperiment.org/workflows/1412.
html and http://www.myexperiment.org/workflows/1427.

html. The complete workflow of Figure 4 can be retrieved
at http://www.myexperiment.org/workflows/3611.html.
The workflow has been tested with a sample data set

obtained from the NCI DTP Discovery Service [20], a
set of 101 FDA-approved anticancer drugs. The resulting
BioDICE 2D map is shown in the left part of Figure 5
with a typical U-Matrix visualization. The user can inter-
act with the map, selecting an area and obtaining this way
the list of elements belonging to that part. The right part
of Figure 5 shows the detected boundaries of the clusters
as generated by the Canny filter and region segmentation.
A complete list of the compounds in each cluster is gener-
ated by means of the “Find Cluster” button and is stored
as a text file.

Conclusions
BioDICE is a new plugin for the Taverna workbench,
that can be adopted to perform fast clustering of mul-
tidimensional biological datasets and to generate their
interactive visualization. BioDICE is based on the FLSOM
algorithm, an improved version of SOM learning algo-
rithm. An application scenario in cheminformatics has
been discussed to demonstrate the use of the plu-
gin. A dataset of molecular compounds in SMILES
format has been first processed with a frequent sub-
graphmining algorithm (feature generation). BioDICE has
been applied to provide a cluster analysis of the com-
pounds with respect to the extracted features. BioDICE
has generated an interactive map of the input com-
pounds and a list of the compounds in each detected
cluster.

https://www.youtube.com/watch?v=eKpf-K2T8hw
https://www.youtube.com/watch?v=eKpf-K2T8hw
http://www.myexperiment.org/workflows/1412.html
http://www.myexperiment.org/workflows/1412.html
http://www.myexperiment.org/workflows/1427.html
http://www.myexperiment.org/workflows/1427.html
http://www.myexperiment.org/workflows/3611.html
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Figure 4 Taverna workflow for a cheminformatics scenario. The workflow downloads a list of chemical compounds from ChemSpider database
in SMILES format. A set of frequent fragments are generated as features of the compounds. The BioDICE plugin performs clustering and generates
an interactive map.

Figure 5 Trainedmap and cluster detection. The map (left) shows the input data objects within regions of similarity (light areas). Dark boundaries
divide regions with dissimilar data objects. The map is interactive: an area selection operation generates the list of compounds in the area. The
boundaries of the clusters (right) are obtained with a Canny filter and an image segmentation algorithm. The Canny filter can be tuned in order to
adjust the clusters detection interactively.
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The BioDICE plugin, the documentation, a tutorial
(covering installation, configuration and use), the work-
flow and the dataset used in this work are available at
http://biolab.pa.icar.cnr.it/biodice.html.

Availability and requirements
• Project name: BioDICE
• Project home page: http://biolab.pa.icar.cnr.it/

biodice.html
• Operating system(s): Platform independent
• Programming language: Java
• Other requirements: Java 1.6 or higher, Taverna

2.3.0. For compatibility issues between Java runtime
version and MoSS tool please refer to our project
home page.

• License: GNU GPL v3
• Any restrictions use by non-academics:Only

those imposed already by the license
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