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Analysis focusses on four models, where the underlying equations are known, and key
variables are available in the CMIP5 archive: HadGEM2-ES, CSIRO-Mk3.6.0, IPSL-
CMbBHA-LR, and NorESM1-M. In each of these models, the first indirect effect is repre-
sented by an equation for cloud droplet effective radius in terms of cloud droplet number

concentration. Cloud droplet number concentration (Ng) is a function of either aerosol
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X-2 WILCOX ET AL.: DIVERSITY IN THE CLOUD ALBEDO EFFECT

mass concentration, or aerosol number concentration. Both relationships introduce a
source of inter-model diversity. Analysis of the influence of the N, calculation has been
the topic of many previous studies, some of which analyse the underlying equations of
the models we consider here [Storelvmo et al., 2009]. We focus on the influence of the

relationship between Ny and cloud droplet effective radius.

1. Full-model and simple functional forms

We aim to create a simple functional form with which to test the sensitivity of the full
climate model to perturbations of various parameters. We assume that sulfate accounts
for most of the changes in effective radius over the industrial era, even though other
aerosol species can act as CCN. We find a linear correlation between global-mean annual-
mean vertically integrated sulfate load and Ng (r? > 0.98 for HadGEM2-ES, CSIRO-
Mk3.6.0, and NorESM1-M; data was not available for IPSL-CM5A-LR), which allows the

substitution of Ny for sulfate load in our analysis. Linear regression is then used to create a
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simple equation for effective radius in terms of sulfate load, where sulfate load and effective
radius have the same power relationship as the aerosol-dependent term and effective radius
in the full model. Constants from the regression analysis are regionally dependent due to
different regional trends in cloud liquid water path. Our simple equations underestimate
the interannual variability in effective radius relative to the full model output as they do
not account for inter-annual variability in liquid water path.

The four models, their underlying equations, and the simple equations based on these

are introduced below.

1.1. HadGEMZ2-ES

The Met Office Hadley Centre Global Environment Model 2 - Earth System, HadGEM2-
ES, is a coupled AOGCM with an atmospheric resolution of N96 (1.875°x1.875°), and 38
vertical levels. It includes an interactive tropospheric chemistry scheme, interactive land
and ocean carbon cycles, and dynamic vegetation [Jones et al., 2011]. Seven aerosol species
are represented in HadGEMZ2-ES: sulfate, fossil-fuel black and organic carbon, sea salt,
mineral dust, biomass burning and biogenic aerosols [Collins et al., 2008]. HadGEM2-ES
accounts for both anthropogenic sources of sulphur, and natural sulphur from DMS and
continuously degassing volcanoes.

Bellouin et al. [2007] give details of the updates to the aerosol scheme between
HadGEM1 and HadGEM2, and their effects. Key changes introduced in HadGEM2 in-
clude improvements to the sulfate and biomass burning schemes, and the representation

of new aerosol species: mineral dust and secondary organic aerosol.
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The number concentration of hydrophilic aerosols is given by:

A = Ago, + A + A, (1)
Aso, = 5.125 x 10'".m (2)
(3.856 x 10%(1 — e70-736u), Om s ! <u<2ms™!
A = 10(0-095u+6.283) om s~! < u < 17.5m s~} (3)
| 1.5 x 108(1 — 97.87¢~0313) 4 > 17.5m s~
(0.671 x 106(1 — ¢~ 1351w), Om s < u < 2m s
A; = 10(0:0422u-+5.7122) om s~ <u < 17.5m s~ (4)
3.6 x 106(1 — 103.926¢703%34) 4 > 17.5m s

where A is the aerosol number concentration, Agp, is the number concentration of am-
monium sulfate particles, Ay and A; are the number concentrations of sea salt aerosol
particles originating from film and jet droplets respectively, m is the total mass concen-
tration of aerosol sulfur, and w is the 10m wind speed [Jones et al., 2001].

The aerosol number concentration is used to find the cloud droplet number concentra-

tion, Ny:
Ny = max{3.75 x 103(1 — ¢ 25%107°4) N, .1 (5)

N 35 x 107  over ice-free land
™15 x 106 otherwise

Effective radius is then found from:

1
o 3qpo \°?
e = (47prk:Nd) (7)

where 7, is the cloud droplet effective radius, q. is the cloud liquid water content, py and
pw are the densities of air and water respectively, and £ is a constant whose values depend

on whether the clouds are over land or sea in the model [Jones et al., 2001].

B {0.67, continental

0.80, marine
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Following this, the HadGEM2-ES simple equation has the form:
re = a+ bload " 9)

where the global and regional values of constants a and b are found by linear least squares
regression of global- and regional-mean time series of load 3% onto global- and regional-
mean time series of r.. The global and regional values of the constants a and b are shown

in Table 2.

1.2. CSIRO-Mk3.6.0

The Commonwealth Scientific and Industrial Research Organisation model 3.6, CSIRO-
Mk3.6.0, is a coupled AOGCM with dynamical sea ice and soil canopy schemes. The
atmosphere has a horizontal resolution of T63 (~1.875°x1.875°), and 18 vertical levels.
The main difference between CSIRO-Mk3.6.0 and Mk3.5 is the inclusion of an interactive
aerosol scheme. This explicitly treats sulfate, carbonaceous aerosol, dust, and sea salt.
Mk3.6 also includes an updated radiation scheme, and other changes to the atmospheric
physics component [Syktus et al., 2011].

Prescribed anthropogenic and biomass burning sources of sulfur, black carbon, and
organic aerosol are based on Lamarque et al. [2010], but with emissions of black carbon
and organic aerosol uniformly increased by 25% and 50% respectively in order to improve
the agreement between modelled and observed carbonaceous aerosol. Natural sources of
sulfur are continuously degassing volcanoes, and biogenic emissions of DMS [Rotstayn
et al., 2012].

Rotstayn et al. [2012] note that CSIRO-Mk3.6.0 burdens of sulfate, organic aerosol, and

dust in 2000 are close to the top of their reference range. The relatively large sulfate
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burdens can be seen in Supplementary Figures 3 and 4. Rotstayn et al. [2012] find that
large DMS emissions are a contributing factor to the relatively large sulfate burden in the
model.

The number concentration of hydrophilic aerosol is given by:

A = As+ Ass + Ac (10)
Ag = 5.1 x 10" mg (11)
Ac = 3.0 x 10" mg (12)

where A is the number concentration of hydrophilic aerosols, Ag is the sulfate concentra-
tion, Agg is the sea salt concentration, Ac is the concentration of hydrophilic carbona-
ceous aerosol, and mg and mg are the mass concentrations of sulfate and hydrophilic
carbonaceous aerosol respectively. Agg is provided directly by the windspeed-dependent
diagnostic for sea salt [Rotstayn et al., 2012].

Cloud droplet number concentration, Ny, is given by:
Ny = maz{3.75 x 103(1 — ¢~25<107°4) N . (13)

Npin = 10 x 10° (14)

The calculation of cloud droplet effective radius includes a parameterization of increased

droplet dispersion with increased cloud droplet number concentration, such that:

7 L
= 0. = 1
Te 0.07r, (N) (15)

1
3Lpo \3

L= (2 16

' (47prNd) ( )

1
3 0 3 [ 0.19
Te 0.07 (4 w) (Nd) ( 7)
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where L is the cloud liquid water content, r, is the volume-averaged mean droplet radius,
and py and p,, are the densities of air and water respectively [Rotstayn et al., 2012].

Following this, the CSIRO-Mk3.6.0 simple equation has the form:
r. = a+ b.load " (18)

where the global and regional values of constants a and b are found by linear least squares
regression of global- and regional-mean time series of load~%!'Y onto global- and regional-
mean time series of r.. The global and regional values of the constants a and b are shown

in Table 2.

1.3. IPSL-CM5A-LR

The Institut Pierre Simon Laplace Climate Model 5A (low resolution), IPSL-CM5A-
LR, is an AOGCM with an interactive carbon cycle, representation of tropospheric and
stratospheric chemistry, and a comprehensive representation of aerosol processes [ Dufresne
et al., 2013]. It has a horizontal resolution of 3.75°x1.875°, and 39 vertical levels. TPSL-
CMbBA-LR treats sulfate, black carbon, particulate organic matter, sea salt, and dust. The
model represents a substantial improvement over its predecessor, which only considered
sulfate aerosol [Dufresne et al., 2013].

The total mass of soluble aerosol is given by:

Mesoluble = MS0, T MBC,soluble + M poM,soluble (19)

where mso,, MBC soluble, a0 Mponr soiubie are the masses of sulfate, soluble black carbon,

and soluble particulate organic matter respectively [Szopa et al., 2012].
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Cloud droplet number concentration, Ny, is given by:
Nd — 101-7+0-210g(msoluble) (20)

Effective radius is then found from:

1
Lo 3
re =1.1 (p—) (21)

%ﬂ_pwater‘Nd
where r, is the cloud droplet effective radius, L is the cloud liquid water content, and pg;,

and pyater are the densities of air and water respectively [Boucher and Lohmann, 1995].

The IPSL-CM5A-LR simple equation has the form:
r. = a+ b.load " (22)

where the global and regional values of constants a and b are found by linear least squares
regression of global- and regional-mean time series of load=%3% onto global- and regional-
mean time series of r.. The global and regional values of the constants a and b are shown

in Table 2.

1.4. NorESM1-M

The Norwegian Earth System Model, NorESM1-M, is based on CCSM4 (Community
Climate System Model version 4). It’s atmospheric component is CAM4-Oslo, a modified
version of CAM4 (Community Atmosphere Model 4), which includes advanced chemistry-
acrosol-cloud-radiation interactions [Bentsen et al., 2013]. It has a horizontal resolution
of 2.5°x1.9°, and 26 vertical levels.

NorESM1-M includes sea salt, mineral dust, particulate sulfate, black carbon, and
primary and secondary organic aerosols |[Kirkevag et al., 2013]. Key updates from the

previous version of the model include: modified prognostic sea salt emissions; updated
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treatment of precipitation scavenging and gravitational settling; increased abundance of
organic matter relative to black carbon; and the inclusion of biogenic primary organic and
methanesulfonic acid from the oceans [Kirkevag et al., 2013].

The activation of CCN in NorESM1-M follows the parameterization of Abdul-Razzak
and Ghan [2000] [Kirkevag et al., 2013]. In an update over the previous version, cloud

droplet spectral dispersion is represented, so that:

re = [, (23)
3Lpo 5
L= (2= 24
' (47prNd) ( )
14 2623
g L2 (25)
(1+¢€?)s
€ = 1—0.7¢ 003N (26)
3Lpwr \ 7 (14 2€2)3
= () T (21)
A7y Ny (1 + 62)5

Following this, the NorESM1-M simple equation is more complex than that for the

other models we consider:

(1 + 2(1 o 0‘76300010ad)2)0.66

B ~0.33
re = a+b.load (1 + (1 — 0.7¢300000ad)2)0.33

(28)

where the global and regional values of constants a and b are found by linear least squares

regression of global- and regional-mean time series of:

(1 + 2(1 _ 0_763000load)2>0.66

~0.33
load (1 + (1 — 0.7¢300000ad20.33

(29)

onto global- and regional-mean time series of r.. The global and regional values of the

constants a and b are shown in Table 2.
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Table 1. CMIP5 models used in this study.

Institute Model 15t ond Ant Reference
Indirect Indirect

CCCma CanESM2 Y N E1  won Salzen et al. [2013]
CNRM-CERFACS CNRM-CM5 Y N E1  Szopa et al. [2012]
Voldoire et al. [2012]
CSIRO-QCCCE  CSIRO-Mk3.6.0 Y Y Ela Rotstayn et al. [2012]
NOAA GFDL GFDL-CM3 Y Y E1  Donner et al. [2011]
Levy et al. [2013]
MOHC HadGEM2-CC Y Y E1  Bellouin et al. [2007]
Collins et al. [2011]
MOHC HadGEM2-ES Y Y E1  Bellouin et al. [2007]
Collins et al. [2011]
IPSL IPSL-CM5A-LR Y N E1  Dufresne et al. [2013]
IPSL IPSL-CM5A-MR Y N E1  Dufresne et al. [2013]
NCC NorESM1-M Y Y E1  Iversen et al. [2012]
MIROC MIROC5 Y Y El  Watanabe et al. [2010]
MIROC MIROC-ESM Y Y El  Watanabe et al. [2011]
MIROC MIROC-ESM-CHEM Y Y El  Watanabe et al. [2011]
MRI MRI-CGCM3 Y N E1  Yukimoto et al. [2012]

Pers. Comm., S. Yukimoto [2013]

Table 2. Values of the constants in the simple equations for cloud droplet effective radius in

terms of vertically integrated sulfate load.

HadGEM2-ES CSIRO-Mk3.6.0 IPSL-CMbHA-LR NorESM1-M

a(x107%) b(x1078) a(x107%) b(x1077) a(x1077) b(x107?) a(x1075) b(x107?)
Globe 9.24 2.73 8.11 2.32 21.6 4.70 10.1 1.12
Europe 5.15 5.70 6.96 2.62 7.86 2.28 9.01 3.48
N. Atlantic 7.66 4.14 7.96 2.00 28.8 10.1 10.4 1.24
China 6.28 3.85 6.68 3.15 8.80 4.41 8.62 3.82
Us 6.57 2.28 8.86 0.45 6.04 1.93 10.1 1.49
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Figure 1.
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1860-1900 column total sulfate load for (a): CanESM2, (b): CSIRO-Mk3.6.0,

(¢): GFDL-CM3, (d): HadGEM2-CC, (¢): HadGEM2-ES, (f): IPSL-CM5A-LR, (g): IPSL-

CM5A-MR, (i):

MIROC-ESM-CHEM, (j): MIROC-ESM, (k): MIROCS5, (I): MRI-CGCMS3,

(m): NorESM1-M.
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Figure 2. 1986-2005 mean column total sulfate load for (a): CanESM2, (b): CSIRO-Mk3.6.0,
(c): GFDL-CM3, (d): HadGEM2-CC, (e): HadGEM2-ES, (f): IPSL-CM5A-LR, (g): IPSL-
CM5A-MR, (i): MIROC-ESM-CHEM, (j): MIROC-ESM, (k): MIROC5, (I): MRI-CGCM3,

(m): NorESM1-M.

DRAFT February 20, 2015, 3:04pm DRAFT



WILCOX ET AL.: DIVERSITY IN THE CLOUD ALBEDO EFFECT

@) (b)
6 = HadGEM2-ES 125
=  CSIRO-Mk3.6.0
IPSL-CM5A-LR
5 NorESM1-M [ 12.0 4 -
i L E i L
— 4 E s
€ I
o 3
1=} el
= 34 & 11.0- +
8 2
= B
@ 24 F 2 105+ +
w
14 + 10.0 +
0.25
0 T T T T T T T T 95 T T T T T T T T
1840 1860 1880 1900 1920 1940 1960 1980 2000 1840 1860 1880 1900 1920 1940 1960 1980 2000

Year

Year

Figure 3. Annual-mean global-mean (a): sulfate load and (b): cloud-top effective radius for

CMIP5 models. Time series are adjusted to the 1860 CMIP5 median value. The box and whisker

shows median, interquartile range, and absolute range. Colours pick out the models focussed on

in this study. Crosses show the location of these models within the CMIP5 range.
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Figure 4. Annual-mean cloud-top effective radius output from CMIP5 models (solid lines),
and produced using simplified equations in terms of sulfate load (dotted lines) for (a): Global,
(b): China, (c): Europe, (d): North Atlantic, (e): continental United States mean. Note that all

results for IPSL-CM5A-LR are shown on a separate axis.
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Figure 5. Schematic showing the perturbations to sulfate load made in the sensitivity experi-
ments, and their impact on radiative forcing. Thin lines use the functional forms to show cloud
albedo for the whole CMIP5 range of global mean sulfate load. Thick lines highlight the sulfate
loads used in each model in each experiment. (a): Minimum pre-industrial load, (b): maximum
pre-industrial load, (c¢): minimum load change, (d): maximum load change, (e): IPSL-CM5A-LR
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