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ABSTRACT

With movement toward kilometer-scale ensembles, new techniques are needed for their characterization.
A new methodology is presented for detailed spatial ensemble characterization using the fractions skill score
(FSS). To evaluate spatial forecast differences, the average and standard deviation are taken of the FSS
calculated over all ensemble member—-member pairs at different scales and lead times. These methods were
found to give important information about the ensemble behavior allowing the identification of useful spatial
scales, spinup times for the model, and upscale growth of errors and forecast differences. The ensemble spread
was found to be highly dependent on the spatial scales considered and the threshold applied to the field. High
thresholds picked out localized and intense values that gave large temporal variability in ensemble spread:
local processes and undersampling dominate for these thresholds. For lower thresholds the ensemble spread
increases with time as differences between the ensemble members upscale. Two convective cases were in-
vestigated based on the Met Office United Model run at 2.2-km resolution. Different ensemble types were
considered: ensembles produced using the Met Office Global and Regional Ensemble Prediction System
(MOGREPS) and an ensemble produced using different model physics configurations. Comparison of the
MOGREPS and multiphysics ensembles demonstrated the utility of spatial ensemble evaluation techniques
for assessing the impact of different perturbation strategies and the need for assessing spread at different,
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believable, spatial scales.

1. Introduction

It has been long known that at small spatial scales
forecast errors grow more rapidly (Lorenz 1969;
Ehrendorfer 1997; Palmer 2000 and references therein)
possibly resulting in rapid upscale error growth in high-
resolution models. In recent years this subject has again
come under discussion as increases in computer power
allow models to be run at higher and higher resolutions
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(Mass et al. 2002 and references therein; Lean et al.
2008). Hohenegger and Schir (2007a) compared the
predictability at large (around 80km) and convection-
permitting (2.2km) scales and found error doubling
times around 10 times shorter for the higher-resolution
simulations. Further work has investigated the links
between mesoscale processes and error growth with
a focus on moist dynamics (Zhang 2005; Hohenegger
et al. 2006) and the separation of equilibrium and trig-
gered convection to distinguish different modes of pre-
dictability in convective events (Keil and Craig 2011;
Zimmer et al. 2011; Craig et al. 2012; Keil et al. 2014).
Ensemble prediction systems strive to represent the
meteorological uncertainty present in a particular fore-
cast and have been widely used to assess error growth in
a variety of high-resolution situations (Walser et al. 2004;
Walser and Schér 2004; Hohenegger and Schér 2007b;
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Hanley et al. 2011, 2013). Further investigations have been
conducted into different ensemble perturbation strategies
for high-resolution ensembles including initial condition
perturbations (Migliorini et al. 2011; Caron 2013; Kiihnlein
et al. 2014), physics perturbations (Stensrud et al. 2000;
Hacker et al. 2011; Gebhardt et al. 2011; Vié et al. 2012;
Baker et al. 2014), perturbation of boundary layer pa-
rameters (Martin and Xue 2006; Leoncini et al. 2010;
Done et al. 2012), and the use of different physics schemes
(Berner et al. 2011; Leoncini et al. 2013).

The aim of this paper is to provide a new methodology
for evaluating, thoroughly, the differences between
members of a convection permitting ensemble and the
dependence of these differences on spatial scale. These
methods are based on the fractions skill score (FSS;
Roberts and Lean 2008; Roberts 2008). Various consid-
erations are discussed including the forecast evolution
through different lead times, the effect of considering
different threshold values for the fields used to calculate
the FSS, and the comparison of different forecast vari-
ables. For the demonstrative purposes of this paper two
convective cases are considered using ensembles pro-
duced as part of the Met Office Global and Regional
Ensemble Prediction System (MOGREPS; Bowler et al.
2008, 2009). The spatial spread of the ensemble mem-
bers is characterized and the realism of the ensemble
spread is tested by comparing with the skill against
radar-derived precipitation accumulations. Radar data
are necessary as a verification source because of their
high spatial coverage.

The technique used to determine spatial differences
between members can also be used for the comparison
of different model formulations within the ensemble. To
demonstrate this, different model physics configurations
were considered in addition to the MOGREPS ensem-
ble members for the second case study. This specific
example is provided to demonstrate the utility of spatial
evaluation techniques in the comparison of different
ensemble formulations. Note, however, that a complete
systematic evaluation comparing different types of
physics configuration is outside the scope of this paper.
To do this it would be necessary to consider a large
number of cases with different convective forcing as
detailed by, for example, Stensrud et al. (2000) and Keil
et al. (2014). The spatial ensemble spread produced by
different physics configurations strategies is evaluated
and compared to that of the MOGREPS ensemble. In
operational frameworks, different physics configurations
are often considered in addition to initial and boundary
condition perturbations and so the spatial spread pro-
duced by an ensemble with different MOGREPS mem-
bers combined with different physics configurations is
also investigated.
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To evaluate convection permitting ensembles in a
sensible way it is necessary to choose a verification ap-
proach that considers multiple spatial scales and does
not suffer from the double penalty problem where spa-
tial errors are penalized twice: once for being a near
miss, and again for begin a false positive. Many possible
spatial verification approaches have been proposed in
recent years; for an overview the reader is referred to the
review papers of Ebert (2008), Gilleland et al. (2009),
and Johnson and Wang (2013). The spatial approach has
also been applied to ensembles (Clark et al. 2011,
Johnson et al. 2014; Surcel et al. 2014). Here we have
chosen to focus on the FSS of Roberts and Lean (2008)
and Roberts (2008). The FSS is a fuzzy verification
measure used to compare two fields within a given
square neighborhood.

Since its original formulation the FSS has been used
for different applications and several further de-
velopments have been proposed. Schwartz et al. (2010)
consider circular neighborhoods to calculate the field of
fractions at each grid point and then produce probabi-
listic guidance using the field of fractions as a neighbor-
hood probability. Duda and Gallus (2013) also use the
circular neighborhood approach, verifying the pre-
cipitation of mesoscale convective systems. In this paper
the FSS is considered over a square neighborhood as
detailed in Roberts and Lean (2008) and Roberts (2008).
Duc et al. (2013) extend the FSS to include temporal and
ensemble dimensions to give a single FSS value repre-
sentative of the ensemble. A single field of fractions
including spatial, temporal, and ensemble information is
then compared with observations. This is useful for
providing an overview of model performance but does
not provide information regarding the spread-skill re-
lationship of the ensemble or the spatial differences
between individual pairs of ensemble members.

Rezacova et al. (2009) use the FSS to calculate the
ensemble spread-skill relationship with the ensemble
skill calculated from the FSS between ensemble member—
radar comparisons and the ensemble spread from the FSS
between perturbed ensemble members and the ensem-
ble control. Following on from this, Zacharov and
Rezacova (2009) determine a relationship between the
FSS estimates of ensemble spread and skill and use this
to predict the ensemble skill given the spread. Zacharov
and Rezacova (2009) consider together FSS results from
differently sized neighborhoods. This method was cho-
sen because there is no fixed scale that can give an FSS
skill value over different cases. However, as different
physical behavior is apparent at different spatial scales
(e.g., as shown in Roberts 2008) it is informative also to
investigate how the ensemble spread varies with spatial
scale, which is the subject of this paper. Whereas



NOVEMBER 2014

DEY ET AL.

4093

(b)

FIG. 1. Met Office surface analysis valid at (a) 1800 UTC 23 Apr and (b) 0600 UTC 8 Jul 2011. Courtesy of the Met
Office.

Rezacova et al. (2009) and Zacharov and Rezacova
(2009) only consider comparisons between perturbed
ensemble members and the control, in this paper the
FSS between all independent member-member pairs is
considered. Considering all members in this manner is
the best representation of total spread as it includes fully
the intermember variability and does not rely on the
ensemble mean, which is known to lie outside the model
manifold (Ancell 2013). Further work by the authors
(G. Leoncini et al. 2014, unpublished manuscript) con-
siders other possible methods of member comparison.

Here we present the following: in section 2 we in-
troduce the two case studies that will provide examples
throughout the paper. The model configuration is also
discussed along with a justification for our method of
using the FSS. Section 3 provides examples of our results
for ensembles with different initial condition (IC) and
lateral boundary condition (LBC) perturbations and
results for different physics configurations are discussed
in section 4. Finally, in section 5 we summarize the
conclusions from this work and discuss areas of further
investigation.

2. Method
a. Cases

Two convective cases were chosen for the demon-
strative purposes of this paper. In these cases convection
occurs in different synoptic situations. The first case, 23
April 2011, was chosen as an example of organized
spring convection over England and will be referred to

as the “organized spring” case. This case has a low
pressure system centered to the northwest of the United
Kingdom and a high pressure system centered over
Scandinavia. A frontal structure stretches down across
the western United Kingdom. As the front moves east-
ward a convergence line forms across eastern England
ahead of the front. This convergence line is shown in the
Met Office analysis at 1800 UTC 23 April (Fig. 1a).
Convective storms developed in the vicinity of this
convergence line with precipitation first seen at 1400 UTC
23 April, and continuing until 0300 UTC 24 April. At
1800 UTC a band of frontal precipitation enters the
model domain from the northwest (NW) preceding an
occluded front which enters the domain at 0000 UTC 24
April.

The second case, 8 July 2011, features a number of
convective storms that formed over the United King-
dom in an area of instability within the circulation of
a decaying low pressure system. At 0600 UTC the low
center was situated over Ireland as shown in Fig. 1b.
Throughout the day the low center then moved toward
the northeast reaching the northeast of England by
1800 UTC. By 1400 UTC there were many heavy showers
over Scotland as indicated by the Nimrod radar system
(not shown). Convective clouds associated with these
showers were also seen from visible satellite observations
from the Meteosat Second Generation (MSG) geosta-
tionary satellite. For this case study we focus on one
particular storm that formed over the Edinburgh area of
eastern Scotland and remained stationary for around 4 h
producing large rainfall totals (0900-2100 UTC radar-
derived precipitation totals of over 64 mm) and flooding.
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In future discussion this will be referred to as the
“flooding” case. Previous analysis of this case by
Leoncini et al. (2011) showed that the Met Office 2.2-km
ensemble on this occasion gave a 30%-40% chance of
a flood-producing storm within 25km of Edinburgh;
a level of significant risk.

b. Model setup

The Met Office Unified Model (MetUM) runs with
a nonhydrostatic dynamical core with semi-Lagrangian
advection (Davies et al. 2005). A comprehensive set of
parameterizations are used including: surface exchange
(Essery et al. 2001), boundary layer mixing (Lock et al.
2000), radiation (Edwards and Slingo 1996), and mixed-
phase cloud microphysics based on Wilson and Ballard
(1999). Version 7.7 of the global ensemble prediction
system (MOGREPS-G) was run at a resolution of
around 60 km in the midlatitude regions with 70 vertical
levels. MOGREPS-G provided the ICs and LBCs for
the North Atlantic and European (NAE) regional
model run at 18-km resolution with 70 vertical levels.
Perturbations were generated using an ensemble trans-
form Kalman filter and then added to the Met Office
four-dimensional variational data assimilation (4D-Var)
analysis as described by Bowler et al. (2008, 2009). This
perturbation strategy includes a stochastic kinetic en-
ergy backscatter scheme and localization. Model error is
addressed using the “random parameters” scheme for
both ensembles to account for subgrid processes un-
certainty. Both the global and regional ensembles have
23 perturbed members and an unperturbed control.

For the case studies described here a high-resolution
ensemble, run over the Met Office variable-resolution
U.K. domain, was one way nested inside the NAE
model. This domain has a constant resolution 2.2-km
grid over the United Kingdom with the grid stretched up
to 4 km around the domain edges to reduce the jump in
resolution when downscaling from the NAE model. No
further data assimilation was included when downscal-
ing from the NAE to U.K. domain. The global and NAE
models were run with a convection scheme based on
Gregory and Rowntree (1990) but modified since
(Derbyshire et al. 2011). The 2.2-km model has explicit
convection only (no convection scheme). The 2.2-km
U.K. domain is shown in Fig. 2 in light gray and is ap-
proximately 920 km west—east by 1200 km north-south.

For the flooding case 11 perturbed members plus
a control were run over the 2.2-km domain using LBCs
and ICs taken from the first 11 members, and control, of
the NAE regional ensemble (MOGREPS-R). A total of
12 simulations were run because this was the ensemble
size being considered for an operational 2.2-km ensemble
system (MOGREPS-UK, operational since 2013; Mylne
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FIG. 2. Domains of the U.K. 2.2-km model (light gray), 100-km
subdomain for the summer flooding case (dark gray), and areas of
radar coverage (dotted).

2013). To allow the flood-producing storm over Edinburgh
to be investigated, analysis for this case was also com-
pleted over a small 100-km domain surrounding this
region. This subdomain is highlighted in Fig. 2 in dark
gray.

For the organized spring case an ensemble of eight
MOGREPS simulations were run (seven perturbed
members plus a control). This reduction in size allowed
5 different physics configurations to be considered for
each MOGREPS simulation (giving a total of 40 simu-
lations). The different model configurations were the
following;:

1) A control ensemble with the standard model settings
labeled ‘“‘standard.”

2) An ensemble with a restricted version of the convec-
tion scheme (Roberts 2003) as would be applied to
the Met Office 4-km deterministic model (labeled
“conv’’).

3) An ensemble with the time step increased from 25 to
50slabeled “time.” It is interesting to investigate the
effects of a longer time step as increasing the time
step reduces the computational cost of the simulation
but may increase model error.

4) An ensemble with increased time step and restricted
convection scheme labeled “‘conv+time.”

5) An ensemble with modifications to the graupel
labeled “grp.” The graupel modification allows the
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production of graupel through the capture of rain by
snow and results in an increased graupel mass. This
modification has become a standard option in Met
UM versions 8.0 onward (Wilkinson 2011).

It must be emphasized that these model configura-
tions were chosen to demonstrate the methodology
presented in this paper, not as possible implementations
to the Met Office ensemble prediction system. Note also
that the model variations are neither stochastic nor
designed to represent the model error, although they do,
nevertheless, represent plausible alternative formula-
tions. The U.K. model for the organized spring case was
started at 0600 UTC 23 April 2011, the flooding case at
1800 UTC 7 July 2011. MOGREPS-G and MOGREPS-R
were initiated 6 and 3 h, respectively, before the U.K.
model. For both cases the U.K. model was run up to lead
times of 36 h.

c. How the FSS is used

The FSS is described in Roberts and Lean (2008) and
summarized here for ease of reading. To calculate the
FSS a threshold is first selected, say for precipitation,
either as a fixed value (e.g., 4mmh ™) or as a percentile
(e.g., top 1% of precipitation field). The field is con-
verted to binary form with grid points set to 1 for values
above the threshold and 0 otherwise. A neighborhood
size is then selected and, for each neighborhood cen-
tered upon each grid point, the fraction of grid points
with the value ““1”” within this square is computed. Two
fields of fractions (denoted A and B), say from a model
and observations, are then compared using the mean
squared error (MSE). For a neighborhood size n and
domain size N, by N, grid points this is given by

. NN
=< [A ..— B ]2 (1)
(n) xNy =5 (n)ij ()i

MSE

~

The FSS is computed by comparing MSE,,y with a ref-
erence MSE, MSE, .

MSE
(n) (2)

MSE(n)ref '

FSS( = 1-
where MSE,,..; is the largest possible MSE that can be
obtained from fraction fields A and B:

N,

y

N
I 5 v 2
MSE et = N N ,Zi ,21 [AGwij + Bwijl- )
Xy = =

The FSS varies from zero (complete mismatch between
the fields) to one (perfect match between the fields).
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Different neighborhood sizes are considered in order
to evaluate the FSS at different spatial scales. Here we
define the neighborhood size to be the total length of the
square neighborhood in kilometers. The smallest pos-
sible neighborhood is 2.2km, set by the grid scale. No
bias exists between the binary fields created using per-
centile thresholds as, by definition, the same number of
points exceed the threshold for both fields. Hence, for
percentile thresholds, the maximum possible spatial
disagreement is found for two fields that place the points
of interest at opposite edges of the domain. A perfect
match is only obtained between fields with this maxi-
mum disagreement when they are compared over
a neighborhood of twice the smallest dimension of the
domain. In other words, the FSS will only equal 1 when
the neighborhood size is equal to twice the smallest di-
mension of the domain. This sets the maximum neigh-
borhood size for percentile thresholds. For value
thresholds the fields may be biased and this argument
does not hold. For the examples presented here only
percentile thresholds are considered and the maximum
neighborhood size is 1848 km for the U.K. domain and
200 km for the 100-km subdomain.

The FSS can be calculated at a particular time be-
tween two different forecasts, or between a forecast and
observation, the former giving a measure of spatial
spread, the latter giving a measure of spatial skill. The
ensemble spread is characterized by calculating the FSS
for all independent member-member pairs [N,(N), for
an ensemble of N members] resulting in

N,(N)=N X (N = 1)2 (4)

comparisons. Here, and for the remainder of this paper,
the control is treated as an additional ensemble member.
Hence, for the flooding case we have 12 MOGREPS
members (the 11 perturbed members and unperturbed
control) and for the organized spring case we have 8
MOGREPS members for each physics configuration
(the 7 perturbed members and unperturbed control).
Justification for this method comes from our interest in
the total spatial ensemble spread. In this situation the
spatial location of a feature in the control forecast is not
necessarily at the center of corresponding features in the
perturbed members and, therefore, we do not wish to
assign any special status to the control forecast. Figure 3
demonstrates the advantages of our method: when
considering the control as an additional ensemble
member one can distinguish the different spatial spread
in Figs. 3a,b, whereas when only comparing against the
control the spread in Figs. 3a,b is indistinguishable.
The ensemble skill is assessed by comparing the
model hourly precipitation accumulations with those
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F1G. 3. Two different idealized spatial distributions of pre-
cipitation. Individual ensemble members (shown in white) position
the precipitation in different spatial locations. The control simu-
lation (shown in filled black) may produce precipitation (a) in the
center of that produced by individual ensemble members or (b) at
the edge of the ensemble. Considering only the spatial separation
of member—control pairs (solid arrows) indicates that (a) and (b)
have the same spatial ensemble spread. Including both member—
control and member—-member pairs allows the differences in spread
between (a) and (b) to be detected.

derived from the Met Office Nimrod radar system. The
Nimrod system includes calibration against rain gauge
data and aims to remove the common sources of error
(Golding 1998; Harrison et al. 2000). For the summer
case 1-km Nimrod radar—derived hourly precipitation
accumulations are interpolated onto the 2.2-km model
grid. Nimrod data at 1-km resolution were not available
for analysis of the organized spring case so 5-km data
were used instead. The area of Nimrod coverage differs
slightly from the U.K. 2.2-km domain over which the
model is run and is indicated by the dotted region in
Fig. 2. All analysis involving radar data, or the com-
parison of model and radar data, only considers the area
with radar coverage. We assume the radar data are
representative of the precipitation that occurred and
ignore observational errors, which would have to be
considered within a routine verification framework.
Visual examination of the radar fields found no obvious
errors.

To assess ensemble skill each model simulation is
separately compared with radar observations, while to
assess ensemble spread we compare all possible pairings
of the model runs. Again consider Fig. 3, but this time
use the filled black circles to represent the location of
precipitation in the radar data. As a measure of en-
semble skill we are only considering the spatial differ-
ences associated with the solid arrows. These measures
of “spread” and “skill” consider different numbers of
member-member or member—radar pairs, raising questions
about a direct comparison of these metrics. However,
answering these questions is not the subject of this pa-
per, which focuses on the characterization of spatial
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ensemble spread, with spatial ensemble skill considered
only to put the spread into context. Further work by the
authors (G. Leoncini et al. 2014, unpublished manu-
script) focuses in more detail on these metrics in the
context of the spread—skill relationship.

Three different comparison strategies were used for
the organized spring case to characterize the differences
between spatial spread in the MOGREPS ensemble and
that produced through considering different physics
configurations. A total of eight MOGREPS ensemble
members (N = 8), and five different physics configura-
tions (N = 5), were considered. Additionally results
were produced using a subset of two physics configura-
tions (N = 2) to allow spatial differences resulting from
individual configurations to be investigated.

1) All independent comparisons were made between
the MOGREPS members for a given physics con-
figuration, with each physics configuration treated
separately. Considering all five physics configura-
tions in this manner gives N,(8) X 5 = 140
comparisons, a strategy denoted as MOGREPSS.
Considering two physics configurations in this man-
ner gives N,(8) X 2 = 56 comparisons, denoted as
MOGREPS2.

2) All independent comparisons between the different
physics configurations for a given MOGREPS
member, with each MOGREPS member treated
separately. Considering all five physics configurations
gives 8 X N,(5) = 80 comparisons for this strategy
denoted as Physics5. Considering two physics config-
urations gives 8 X N,(2) = 16 comparisons (Physics2).

3) Comparisons between different MOGREPS mem-
bers that additionally have different physics config-
urations. For example, MOGREPS member 2 with
the standard physics configuration might be com-
pared with MOGREPS members 1, 3, 4, ..., 12 with
the physics configurations conv, conv+time, time,
and grp. Considering all five physics configurations with
this comparison strategy, referred to as MOGREPSS +
Physics5, gives N,(8) X N,(5) = 280 comparisons. Con-
sidering two physics configurations (MOGREPS2 +
Physics2), gives N,(8) X N,(2) = 28 comparisons.

Given the large number of FSS values FSS; (one cal-
culated for each comparison) it is necessary to consoli-
date this information to provide an overview of spatial
ensemble behavior. In this paper the mean is taken over
the relevant set of FSS;. When calculated over member—
member pairs this is referred to as dFSSmean where “d”
indicates that this is a measure of ensemble dispersion.
When calculated over member-radar pairs this is re-
ferred to as eFSSmean where “‘e” indicates that this is
a measure of ensemble error. The dFSSmean gives an
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indication of the average spatial agreement within the
ensemble for a given neighborhood size. In other
words, we can select a level of spatial agreement for the
ensemble, represented by the value of dFSSmean,
and ask at what neighborhood size this agreement is
obtained.

As the ensemble members do not necessarily have an
even spatial distribution, a range of FSS; will be ob-
tained from the different ensemble member-member
pairs. For example, if the majority of ensemble mem-
bers place rain at the same spatial location but a small
number of members place the rain far away, this may
produce a similar value of dFSSmean as a situation in
which all ensemble members place the rain at slightly
different spatial locations. Hence, it is also important
to investigate the range of FSS values surrounding
dFSSmean. To do this the standard deviation of
FSS values, dFSSstdev, is used. The dFSSstdev is
closely linked to the standard error in dFSSmean,
dFSSstdev//Ngss where Nggg is the number of FSS;
samples used to calculate dFSSmean. As the purpose of
this paper is to focus on the spatial distribution of en-
semble members, we consider dFSSstdev and avoid the
1/4/Ngss dependence on ensemble size. This allows the
spatial distribution of differently sized ensembles to be
compared.

To make a spatial comparison between different en-
sembles it is necessary to find scales that are believable
and have a reasonable level of spatial agreement. For
the purposes of this paper, “‘believable’ scales for the
intercomparison of ensemble members are derived in
an equivalent manner to those scales that would be
considered skillful if the comparison was instead against
observations (assuming that the ensemble is well
spread). This scale is quantified using the methodol-
ogy of Roberts and Lean (2008) where a neighbor-
hood size is considered believable (“‘skillful’’) if a FSS
value of

FSS=0.5 —1—}% 5)
is obtained for that neighborhood; f; is equal to the
fraction of the field considered in the FSS calculation
(e.g., considering the top 99th percentile threshold
would give fy = 0.01) and Eq. (5) simplifies to an equality
when the neighborhood is twice the spatial difference
between two binary fields (Roberts and Lean 2008;
Roberts 2008). Because f is small Eq. (5) can be ap-
proximated as FSS = 0.5.

d. Thresholding

The FSS can be calculated using either fixed value
or percentile thresholds. Following on from the work
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of Roberts (2008) and Mittermaier and Roberts
(2010) this paper focuses on the use of percentile
thresholds to allow the spatial distribution of phe-
nomena to be investigated. Higher percentile thresh-
olds are associated with smaller, more extreme
forecast features, and lower percentile thresholds
are associated with larger-scale smoother features
(Roberts 2008). Note that here, and in all future dis-
cussion, the percentile threshold is applied over the
whole domain, including areas both with and without
precipitation.

To understand the effect of applying percentile
thresholds it is informative to investigate the values
corresponding to each threshold. Examples for hourly
precipitation values corresponding to the 90th and 99th
percentile thresholds are given in Fig. 4. These percen-
tile thresholds are used as examples throughout this
paper. All ensemble members (gray solid lines) and ra-
dar (black lines) are shown for the organized spring case
(top) and summer flooding case (bottom). From both
cases and thresholds it can be seen that the radar per-
centile thresholds generally correspond to lower pre-
cipitation values than the model. This bias in the model
compared to radar is an important consideration for
model evaluation. However, it is also important to in-
vestigate the spatial distribution of precipitation; using
percentile thresholds allows us to focus on this despite
the model bias.

For the spring case at the 90th percentile threshold
(Fig. 4a) the radar values drop to zero after 16 h. After
this time radar-derived precipitation covers less than
10% of the domain. This demonstrates that the 90th
percentile, and other percentile thresholds below the
90th, are not a suitable threshold for radar precip-
itation accumulations for this case. For all cases (apart
from the unlikely event of 100% coverage) there will be
a limited area covered by precipitation in both the
model and observations, and a corresponding mini-
mum suitable percentile threshold. In an operational
situation this minimum threshold could easily be cal-
culated from the fraction of precipitation coverage. All
FSS results presented in this paper have been cal-
culated using percentile thresholds above this mini-
mum value.

For the spring case the eight MOGREPS members
from the standard physics configuration are shown in
dark gray in Figs. 4a,b and, although differing by up to
2.5mm in accumulation values (for the 99th percentile
threshold), follow the same overall trend throughout the
day. This suggests that the ensemble members produce
precipitation features, such as that associated with
frontal passage, at similar times. The simulations for all
MOGREPS members and the other four physics
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configurations are shown in light gray with the different
physics configurations clustering around the corre-
sponding MOGREPS member. In these experiments
the different physics configurations have little effect on
the precipitation value corresponding to a given per-
centile threshold. Interestingly, Figs. 4a and 4b show
peaks in precipitation values at different times: Fig. 4a
(90th percentile) at a lead time of 20 h and Fig. 4b (99th
percentile) at a lead time of 12 h. The higher threshold
considers only the areas of convective precipitation,
giving a corresponding value that peaks when these
storms are strongest whereas the lower threshold in-
cludes frontal precipitation and peaks where this is
heaviest.

The 12 members for the summer flooding case are
shown for thresholds calculated over the full U.K.

domain (dark gray) and limited-area domain (light
gray). Beyond a lead time of 15h, when convection oc-
curred over Edinburgh, values for the limited domain
are up to 5 times larger than those over the U.K. domain.
Considering this area separately using percentile
thresholds allows the flood-producing storm to be in-
vestigated. It should be noted that using high value
thresholds over the U.K. domain would also select the
Edinburgh area. However, for this highly variable case
some ensemble members missed the convection over
Edinburgh, and do not produce sufficiently high pre-
cipitation values. It is not possible to choose a value
threshold that is high enough to select only the area of
convection, and yet low enough to include all the en-
semble members. Again, this demonstrates the utility of
percentile thresholds.
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3. Results for LBC and IC perturbations
a. dFSSmean and eFSSmean

First we consider the realism of the spatial ensemble
spread by comparing dFSSmean and eFSSmean for both
cases. Both dFSSmean and eFSSmean were calculated
over the section of the 2.2-km U.K. domain with radar
coverage (highlighted by the dotted region in Fig. 2).
Figure 5 shows dFSSmean (left) and eFSSmean (right)
for the organized spring case (top) and flooding case
(bottom) calculated for the 99th percentile threshold
over the whole U.K. domain. These results were com-
puted for the 12 members of the flooding cases and 8
MOGREPS members with standard physics for the or-
ganized spring case. To check the validity of comparing
these differently sized ensembles, results were also
produced for the flooding case when only considering
the first eight ensemble members (not shown). These
8-member results differed only in small details from
those calculated from 12 members, and lead to the same
conclusions, so it was decided to show the results from
the full 12-member comparisons.

Comparison of the dispersion measures (dFSSmean)
for the two cases (Figs. 5a and 5c) shows that, although
these cases are synoptically different, with different
convective forcing, the overall behavior is broadly sim-
ilar. At small scales ensemble members are very differ-
ent resulting in low values of FSS. FSS values increase as
the members become more similar when considered at
larger scales. The temporal variability present in the
ensemble spread, as measured by dFSSmean, is also
clear at this threshold with the scale at which FSS = 0.5
varying between 50 and 500 km for the organized spring
case and 100-250 km for the flooding case. These scales
are large because in both cases there is considerable
uncertainty in the locations of the showers and showery
areas. The temporal variability can be related to the
evolution of physical processes. For example, in Fig. 5a
the area of larger ensemble spread (decrease in
dFSSmean) at lead times 13-20 h can be linked to greater
convective activity and the highest rainfall instances (cf.
Fig. 4b) and the increase in dFSSmean (lower spread)
from 20 to 25h can be related to an area of spatially
predictable frontal precipitation moving into the domain.
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Overall there is less temporal variability in the FSS for
the flooding case. This can again be related to the me-
teorology of the cases: precipitation in the flooding case
was the result of one mechanism, instability associated
with a decaying low pressure system, whereas pre-
cipitation in the spring case was associated with both
convective showers and frontal passage. Coincidentally,
for both cases, the spatial ensemble spread increases
with a forecast lead time after 20 h. This upscaling of
forecast spatial differences should be expected from
a statistical evaluation of a large number of cases, but
not necessarily from individual case studies where
the physical processes of the day dominate. Using
dFSSmean for individual case studies allows these
processes, and their effect on the spatial ensemble
spread and upscale growth of forecast differences, to be
examined.

The error measures (eFSSmean; Figs. 5b,d) show
a similar structure to the dispersion measures with
a similar magnitude for ensemble spread and skill. There
are times, such as for the spring case at alead time of 20 h
(Fig. 5b) or the flooding case at lead times of 0-5h
(Fig. 5d), when the ensemble is clearly underspread. For
the spring case a timing error results from a front passing
into the domain in all members earlier than seen in the
radar; for the flooding case convective showers pres-
ent in the radar have yet to spin up in the model. In
both cases there is little evidence that the ensemble is
overspread.

For the flooding case dFSSmean and eFSSmean have
also been calculated over the 100-km limited-area do-
main containing the flooding event. Selecting a sub-
domain in this manner allows us to focus on the spatial
predictability of a specific event, which can be very dif-
ferent from the U.K. domain-averaged results. Differ-
ences between the domains can also be seen in the
values corresponding to each percentile threshold as

discussed in section 2d. The dFSSmean and eFSSmean,
calculated over the 100-km domain are shown in Figs. 6a
and 6b, respectively, at forecast lead times of 17-26h
when convection was seen over Edinburgh. Comparison
of Figs. 6a and 6b suggests that the ensemble spread and
skill are similar and that, over this area, the ensemble is
capturing the spatial variability of the precipitation well.
This gives confidence in the ensemble for a spatially
unpredictable flooding event. There are some differ-
ences between dFSSmean and eFSSmean, in particular
that eFSSmean is more variable with time. This may be
partly due to both the smaller number of comparisons in
the error calculation, and also reflects differences be-
tween the model and observations in the temporal
evolution of the storm. Note that, as the 99th percentile
threshold corresponds to different precipitation values
over the U.K. and Edinburgh domains, we cannot do
a direct comparison between Figs. 5 and 6. This also
suggests that we are indeed looking at different pro-
cesses or phenomena with the different domains and
confirms the need to use a suitable domain size to ex-
amine the spatial variability of particular features. The
domain must be large enough to give representative
results, but small enough to focus on the phenomena of
interest. Of course, the same remarks will be true of any
spatial measure.

b. dFSSstdev in addition to dFSSmean

In this section we discuss the benefits of considering
dFSSstdev in addition to dFSSmean. Figure 7 shows
dFSSmean and dFSSstdev calculated for the organized
springcase (top) and flooding case (bottom) when con-
sidering the 99th percentile threshold for hourly pre-
cipitation accumulations. The FSS was calculated over
the whole U.K. domain. The dFSSstdev is shown in
Figs. 7c,d and presents results consistent with those
from dFSSmean. For example, the largest values of
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dFSSstdev occur in areas where low dFSSmean values
extend to large scales. The greater spatial spread asso-
ciated with low values of dFSSmean results in a wider
range of possible values for FSS; and larger dFSSstdev.

However, there is also some further information given
by the standard deviation. In particular, for the flooding
case (Fig. 7d) there is an area of higher standard de-
viation seen in the first 2 h of the forecast at neighbor-
hood sizes up to 500 km, which is associated with the
spin up of the model. This effect is even more apparent
in results for the 99.9th percentile threshold (not
shown) and is the result of the convection permitting
model having to spin up showers during the first few
hours of the forecast. Because the ensemble members
spin up showers at different locations, lower values of
dFSSmean and a large range of values of FSS; (resulting
in a large dFSSstdev) are obtained. For the spring case
(Figs. 7a,b) convective showers are not present at the
forecast start time and do not need to be spun up from
the initial conditions. Hence, spinup effects are not seen
in the precipitation diagnostics. It is useful to examine
how the standard deviation behaves at different scales.
The smallest values are found at both the grid scale,

where differences are so large that similarly low values
of the FSS are expected for all member pairs, and also at
the largest scales, where all members are effectively the
same.

c. Other fields and thresholds

The use of different percentile thresholds allows more
information to be gained about the ensemble spread for
different ranges of forecast values; for example, a higher
threshold will select more extreme values compared to
a lower threshold, which will select values that are more
widespread. An example is given in Fig. 8 for the orga-
nized spring case where results for the top 99th (lhs) and
85th (rhs) percentiles are compared. This time we show
a different diagnostic field, the 10-m horizontal wind
speed. Like the hourly precipitation accumulations this
field was selected as a suitable candidate for calculation
of the FSS because of its high spatial variability. The
10-m wind speeds are also used by the Met Office for
routine forecast verification.

The 99th percentile threshold selects only the highest
wind speeds in the domain. At lead times of 0-10 h these
are found in areas to the north of the United Kingdom
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near the low pressure center. The exact placement of the
highest winds varied considerably between the ensem-
ble members, with some placing them to the northwest
and others to the northeast of the United Kingdom.
Hence, there were large spatial differences between the
members resulting in low dFSSmean values extending to
large neighborhoods at a lead time of 10h as shown in
Fig. 8a. At lead times greater than 10h there is high
spatial agreement among the ensemble members re-
sulting in high values of dFSSmean. All members place
the highest winds to the northwest of the United King-
dom associated with the frontal feature that enters the
domain at this time.

Comparing Figs. 8a and 8b we see the unusual result
that for a lead time of 12 h, and after 28 h, there is more
agreement (larger FSS values) for the 99th than for the
85th percentile for a given neighborhood size. This be-
havior suggests that care must be taken in the in-
terpretation the 99th percentile threshold for the wind
speed field. For the wind speed, local variability is su-
perimposed upon a background gradient from the large-
scale situation. The 99th percentile is likely to include
both local variability from points, where the background
field is moderate, and also larger-scale variability, where
the background field is high. Consequently, unlike for
precipitation, we cannot cleanly examine local features
in the wind speed field simply by selecting a high
threshold value. It is necessary to also consider a lower
threshold that includes features of the larger-scale flow
such as, for this case, the 85th percentile threshold.
Figure 8b shows that, at lead times of 12-20h, the FSS
values for the 85th percentile are particularly high.
These areas of small spatial spread can be related to the
synoptic situation: at a lead time of 12h a highly pre-
dictable frontal feature entered the domain from the
NW and the top 15% of wind speeds in the domain were

closely associated with the flow in the vicinity of this
front. Hence, there was very high spatial agreement
between the members at these times. Before the front
entered the domain the highest winds were associated
with a less predictable decaying cold front. Moreover,
after the front had progressed farther into the domain
greater differences between the members emerged at
larger scales for the winds to the south of the occluded
front.

The effect of different thresholds on the FSS for
hourly precipitation accumulations can be seen by
comparing Figs. 5a,c with 9a,b, respectively. The latter
show dFSSmean calculated for the 90th percentile
threshold. In particular, it can be seen that the large
temporal variability seen in Figs. 5a,c for the 99th
threshold has been replaced in the 90th percentile
results by a trend for ensemble spread to increase sys-
tematically with time. This trend is expected climato-
logically as forecast differences grow from small to
larger scales with increasing forecast lead time. The rate
of increase is different for the two cases. For the flooding
case (Fig. 9b) scales at which dFSSmean = 0.5 increase
gradually from 5 to 100 km over 36 h as forecast differ-
ences grow from small to larger scales. For the spring
case, dFSSmean values greater than 0.5 are seen even at
the grid scale for lead times up to 25 h. After this time
the scale at which dFSSmean = 0.5 increases rapidly to
225 km. This pattern is in agreement with the behavior
seen for the 99th threshold and has the same in-
terpretation: after 25h an area of precipitation moves
out of the domain but with timing differences between
the members. Overall, there is better spatial agreement
between the ensemble members at the 90th percentile
threshold than at the 99th: the broader-scale features
selected by the lower threshold are more predictable.
When considering a range of different thresholds from
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FIG. 9. The dFSSmean calculated using the 90th percentile threshold of hourly precipitation accumulations for
(a) the organized spring and (b) the summer flooding case. Results are calculated over the whole of the U.K. domain and
only the standard physics configuration is considered. The white dashed line at 0.5 represents the believable scale.

the 99th to 80th percentile (not shown) the transition
from large temporal variability to a trend of upscale
growth of forecast differences with increasing lead time
was found to be smooth: there is no sudden transition. It is
likely that the range of thresholds over which such a tran-
sition occurs will be highly case dependent as the relative
importance of local and large-scale features changes. The
FSS allows such a behavior to be investigated.

4. Results assessing different physics configurations

In this section we present an application of dFSSmean
to the comparison of the multiphysics and MOGREPS
ensembles for the organized spring case. Thus, we
compare the spatial ensemble spread associated with
LBC and IC perturbations to that generated through
different physics configurations as described in section
2c. The examples presented are for the 99th percentile
threshold of precipitation accumulation: lower thresh-
olds showed smaller spatial differences (larger dFSSmean
values) but lead to the same general conclusions. Note
that the purpose is not to evaluate the merits of partic-
ular physics configurations but to show a method that
can be used to examine the behavior of stochastic pro-
cesses or physics changes in ensembles.

Figure 10b shows dFSSmean comparing the configu-
ration with restricted convection scheme and increased
time step (conv+time) to that with the modified treat-
ment of graupel (grp) using the Physics2 comparison
strategy (comparison strategy 2 in section 2c). This
comparison strategy is shown because it gives larger
spatial differences than those found when comparing
any other physics configuration pairs, or considering all
physics configurations (the Physics5 comparison strat-
egy). In Fig. 10b FSS values of 0.5 are reached by

a neighborhood size of 5 km, and no spatial differences are
seen for neighborhoods greater than 100 km (where FSS = 1).
The lowest values of dFSSmean occur between lead times
of 12 and 16h when the heaviest convective showers
were present: it is during these events that modifications
to the treatment of graupel are most noticeable.

Results from comparing only the MOGREPS mem-
bers from conv+time and grp (comparison strategy
MOGREPS2, 1 in section 2¢) are shown in Fig. 10a.
These differ only in minor details from those shown in
Fig. 7a (dFSSmean calculated for the MOGREPS en-
semble with the standard physics configuration). The
MOGREPS?2 results show that FSS values of 0.5 are
reached on scales greater than 60 km, scales at which the
Physics2 members are almost identical. In other words,
the spatial variation introduced through different
physics configurations is only seen close to the grid scale.
If we consider FSS values lower than FSS = 0.5 to rep-
resent fields so different that the forecast is no longer
useful, then the different physics configurations applied
here, for this particular case, are simply moving around
features that are known to be unpredictable from the
MOGREPS ensemble. Of course, this is not to say that
physics changes in general are unimportant for improving
model performance, or that using different physics con-
figurations is not sometimes a valuable component of an
ensemble system, or that adding small-scale perturba-
tions is undesirable, or that, for another case or for other
physics perturbations, the effects might be very different.
Our purpose is simply to demonstrate a methodology that
allows the spatial effects of different ensemble configu-
rations to be thoroughly investigated and set into the
context of other aspects of forecast uncertainty.

It is possible that, although the evaluation of Physics2
only showed forecast differences at small spatial scales,
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combining the different physics configurations with
those from the MOGREPS2 ensemble may lead to large
changes in the growth of spatial differences. To assess
this, the comparison strategy MOGREPS2 + Physics2
(comparison strategy 3 in section 2c) is employed.
Again, examples are shown for the physics configura-
tions conv+time and grp that show the largest spatial
differences. The results of MOGREPS2 + Physics2 are
shown in Fig. 10c. Differences between Figs. 10c and 10a
are very small and hence, to aid interpretation, Fig. 10d
shows the difference between the MOGREPS2 and the
MOGREPS2 + Physics2 results. The differences are
over an order of magnitude smaller than the dFSSmean
values in Figs. 10a,c. It is interesting that both positive
and negative differences are seen: modifying the different
physics configuration both adds and removes spatial
spread. From Fig. 10d it can also be seen that differences
between MOGREPS2 and the MOGREPS2 + Physics2
extend, with similar magnitude, across all spatial scales.
However, in terms of the fractional difference relative to
dFSSmean, the differences at small neighborhoods have

more importance. At a lead time of 15h the fractional
difference in dFSSmean varies from 7% at 50 km to 3% at
250km. It should be noted that these differences are still
very small, especially at the larger more predictable scales
(as indicated by the point where FSS = 0.5 in the
MOGREDPS ensemble).

Analysis of the combined MOGREPS + Physics
comparisons supports the conclusions drawn pre-
viously that the introduction of these differences in the
physics only influences scales much smaller than the
predictable scales of the system (in this particular ex-
periment). In practical terms, the variability of those
scales could be addressed with spatial postprocessing
and without the need for additional ensemble mem-
bers. On the other hand, if the scales of the physics
changes were to upscale to scales greater than the
system’s predictable scales then the performance of the
ensemble might benefit from more perturbed-physics
members. Systematic application of the methods shown
here would provide a sound basis for making these
decisions.
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5. Discussion and conclusions

In this paper we have presented, with examples,
a new methodology for the detailed analysis of en-
semble spread for high-resolution forecasts focusing on
spatial variability. In particular we focused on two
different measures of ensemble spread: dFSSmean and
dFSSstdev, the mean and standard deviation of the FSS
calculated over all ensemble member—-member pairs.
The dFSSmean gives a measure of the FSS value for
the whole ensemble indicating the average spatial
agreement within the ensemble over a particular size
of neighborhood (i.e., at a given spatial scale), and
dFSSstdev provides some further useful information
about the range of FSS values used in the calculation of
dFSSmean. A large range of FSS values, corresponding
to a large value of dFSSstdev, indicates that the en-
semble members are unevenly distributed.

To demonstrate the utility of these measures, results
were presented from two case studies. It was shown that
dFSSmean and dFSSstdev allowed investigation of, for
example, the temporal evolution of ensemble spread,
model spinup, and saturation of forecast differences.
Considering different percentile thresholds allowed in-
formation to be gained about the spatial spread of the
ensemble for different physical regimes. In particular it
was found that, for hourly precipitation accumulations,
the dFSSmean for the 99th percentile threshold had
high temporal variability. This contrasted with the
dFSSmean for the 90th percentile threshold for which
spatial differences between the ensemble members in-
creased with time.

The realism of the ensemble spatial distribution was
also tested by comparison with another metric, the mean
FSS calculated over all member-radar pairs, denoted
eFSSmean. This error measure can be compared with
dFSSmean to investigate the spread—skill relationship of
the ensemble at different times and spatial scales. For
the two cases considered here these measures suggested
that ensemble spread was reasonable. On occasion the
ensemble was underspread; this was linked to timing
errors between the simulations and the observations,
and to the need for the spinup of showers in a convection
permitting model.

For one case study, results were presented for a com-
parison of spread between differently generated en-
sembles, including multiple physics configurations. This
application illustrates a methodology for identifying the
spatial scales that are influenced by modifications to
physical processes. Examining the FSS for different
spatial scales and over a range of times allowed a quan-
tification of the effects of using different physics con-
figurations compared to LBC and IC perturbations. For
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the case described here it was concluded that modifying
the physics for this case did not influence the ensemble
evolution at scales where the forecast has skill. These
results are not to be interpreted as general: well-chosen
physics modifications can and do improve forecasts as
demonstrated by, for example by Stensrud et al. (2000)
and Keil et al. (2014). The key point is that evaluation
techniques presented here allow clear statements about
the impacts of physics modifications to be made since
different ensemble configurations can be thoroughly
investigated and the spatial impact of the changes
quantified.

The work presented here provides a framework
through which spatial ensemble spread can be analyzed.
There are some limitations to this study: in particular the
consideration of two cases only and the limited consid-
eration of physics perturbations. It is left to future work
to apply these methods to a larger sample of cases, and
different, more realistic, multiphysics ensembles or
other model error inclusion schemes. Another limiting
factor is the methodology of calculating a single value of
the FSS that is representative of a comparison across
a whole domain. As discussed above this can mean that
different meteorological phenomena, such as convective
and frontal precipitation, are compared together, when
each individually may have an inherently different pre-
dictability and ensemble spread. It is possible to select
a smaller domain to consider events of interest, as
highlighted with respect to Fig. 6, although this is only
useful in hindsight once the event has occurred. Hence,
future work is intended to develop a spatially varying
and scale-dependent measure of ensemble spread that
does not suffer from this drawback.

Despite these limitations there are some important
conclusions from this work. In particular, we have
stressed how the ensemble spread is highly dependent
on the scales considered for evaluation. Consequently,
to investigate the ensemble behavior thoroughly it is
necessary to consider multiple scales, and be mindful of
the different expectations for skill at these scales.
Forecasts should be verified, and the benefits of fore-
cast model changes assessed, at scales that are believ-
able. This paper has provided a methodology for
determining such believable scales and their temporal
evolution. With future movement to higher and higher
resolution models the distinction between the grid
scale and the believable scales is becoming increasingly
important.
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