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Abstract. Future changes in runoff can have important impli- tended to produce larger increases and smaller decreases in
cations for water resources and flooding. In this study, runoffregionally averaged runoff than the hydrological models, al-
projections from ISI-MIP (Inter-sectoral Impact Model Inter- though there is large inter-model spread. The timing of runoff
comparison Project) simulations forced with HadGEM2-ES change was similar, but there were differences in magnitude,
bias-corrected climate data under the Representative Corparticularly at peak runoff. The impact of vegetation distri-
centration Pathway 8.5 have been analysed for differencebution change was much smaller than the projected change
between impact models. Projections of change from a baseaver time, while elevated CfOhad an effect as large as the
line period (1981-2010) to the future (2070-2099) from 12 magnitude of change over time projected by some models in
impacts models which contributed to the hydrological andsome regions. The effect of G@n runoff was not consis-
biomes sectors of ISI-MIP were studied. The biome mod-tent across the models, with two models showing increases
els differed from the hydrological models by the inclusion of and two decreases. There was also more spread in projec-
CO, impacts and most also included a dynamic vegetatiortions from the runs with elevated GQhan with constant
distribution. The biome and hydrological models agreed onCO,. The biome models which gave increased runoff from
the sign of runoff change for most regions of the world. How- elevated C@ were also those which differed most from the
ever, in West Africa, the hydrological models projected dry- hydrological models. Spatially, regions with most difference
ing, and the biome models a moistening. The biome modeldetween model types tended to be projected to have most
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effect from elevated C& and seasonal differences were also 1.1 Impact of vegetation change on runoff

similar, so elevated Cfcan partly explain the differences

between hydrological and biome model runoff change pro-Vegetation dynamics may alter the future response of runoff
jections. Therefore, this shows that a range of impact model§ince changing vegetation patterns (in response to future

should be considered to give the full range of uncertainty inclimate) may alter the fluxes of energy and water in sev-
impacts studies. eral ways. Firstly, plant structural changes, such as chang-

ing plant functional types (PFTs), or changes in leaf area
index (LAI) may alter evapotranspiration rates and albedo.
Secondly, changes in plant productivity and leaf area index
may result from the changing climate, which may similarly
Iter evapotranspiration rates and albedo. Thirdly, increased
O, concentrations will alter plant growth, photosynthesis,
and water use efficiency, which may also alter evapotranspi-
ration rates Falloon and Betts2006 Gedney et aJ.2006

1 Introduction

Assessments of future hydrological changes are importan
due to the effects that changes in water availability, flooding
and drought can have on socieiundzewicz et al.2007).

At the global scale, projections of future freshwater avail- ) )

ability may be provided by a number of different modelling Btetts et_ aI;_ZOOD, ang slbe?o.tSmce any ctha_nges n evag)(-)
approachesHates et al.2008, each of which may poten- ?1 ran?p|tr)a 'gnl causc(jab yp af? rﬁsponsgs 0 mfcf:reaswu; it

tially produce different results, even when driven by the same aé? VO i ed ggnice r)1/ rruTIO ' cnairég(:s(jlntru?lov mf\% result
forcing data. For example, the WaterMIP intercomparisonposir?gairipacts osn ?Sngﬁatr?r ocuoghs cr?aige: toae\?apotorazgai-
(Haddeland et al2011) studied two types of water models. ration. Firstly, CQ fertilisation of photosynthesis, may in-

They classified the models into global hydrological models . g

(GHMs, which tend to be focused on water resources and'€as€ _plant produgtmty and leaf ar_eallndex, thereby also
represent lateral transfers of water), and land surface modet crgasTgltgg Or;‘oisl,lblengv\?vp%traznosg wa‘uﬁg tfrr]om (;hercanopy
(LSMs, which typically calculate vertical exchanges of heat, . ets eﬁa,.s ,dl 0 g@ a gl . ah,'t?t ust ecreas-
carbon and water), although these categories are not excll%r—]g runoft. secondly, may also inhibit evapotranspira-
sive and some GHMs contain features of LSMs and vice- 2" by reducing stomatal conductance at the leaf legek;
versa. These two categories of model showed differences iney et al,. 2008 Betts et al. 2007 Cao et .al,. 2019. Re-
simulating aspects of the present-day water balaHegle- cent studies have generally found overall increases in runoff
land et al, 2011), linked both to the representation of snow r%souétggttfror? (lal%gted ﬁ?conﬁte;tratio?sQe.dne)?te; atl
processes in mid—high latitudes, and canopy evaporation ove2|' o€ sf? at" 9.2 ?(ug frle go“ie S'Zet(.) Ielwo
the Amazon. Similarly, a recent study comparing multiple opposing etiects may vanhfkama e a, <o 9. particularly
GHMs driven by an ensemble of GCMBiggemann et al. regionally and seasonally. The G€rtilisation of photosyn-
2013 found a large spread in future runoff responses withtheSiS and reduced stomatal conductance can also lead to in-

GHM choice being an important factor. The spread in fu- ::reg;edts?|l tr;:m;ture Contenﬁ'ﬁys 3ndt Flazllgi)nZCéOQ,
ture runoff projections was dominated by GHM choice over e€ading to furtherincreases in end etal,2013. Even

central Amazonia and the high latituddsagemann et al. within one impact modelz estimateg_of futur_e water stress
2013. This suggests that differences between models are Qave bee_n fqund to be highly sensitive to £impacts on
major source of uncertainty, and that climate change impac[uno]cf (Wiltshire et al, 2013.
stud@es r_1eed to consider both multiple climate models andi_2 Present study
multiple impact models.

The Inter-Sectoral Impact Model Intercomparison ProjectThe aims of this study are set out in the following questions:
(ISI-MIP) (Warszawski et a).2013 is a community-driven
modelling effort with the goal of providing cross-sectoral ~ — How do the runoff responses projected by biome and
global impact assessments, based on the newly developed  hydrological models, from the ISI-MIP ensemble, dif-
climate [representative concentration pathways (RCPs)] and ~ fer in terms of the direction, magnitude, spatial and
socio-economic [shared socio-economic pathways (SSPs)]  Seasonal patterns of change?
scenariosiloss et al.2010. Based on common background
scenarios (climate and socio-economic), a quantitative esti-
mate of impacts and uncertainties for different sectors and
from multiple impact models were derived. Within ISI-MIP,

— How does the inclusion of elevated g@nd its effects
in the biome models affect the runoff response in the
direction, magnitude and pattern of change?

future projections of runoff§chewe et a).2013 were pro- — How does the inclusion of a dynamic vegetation distri-
vided by both models Contributing to the hydrological sector bution affect the runoff response in direction, magni_
(which mostly do not include vegetation dynamics) and the tude and pattern of change?

biome sector (which do include vegetation dynamics).

Earth Syst. Dynam., 4, 359374, 2013 www.earth-syst-dynam.net/4/359/2013/
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— Can the effects on runoff of elevated gé@nd a Chang- Models contributing to the hydrological Models contributing to the biomes
. . . . . . - tor of ISI-IVITP tor of ISI-MIP
ing vegetation distribution explain the differences be- seelor @ sector o
tween hydrological and biome models’ runoff projec-
tions?
DBH,
HO8,
2 Methodology MacPDM.09,
MPI-HM, JULES, TeDi,
. VIC, LPTmL VISIT
2.1 Forcing data WEM,
WaterGAP
Runoff data was analysed from all impacts models, con- POR-GLOBWD
tributing to the hydrological or biomes sector, that provided

monthly output fields to the ISI-MIP archive from simula-

tions forced with HadGEM2-ESJpllins et al, 2011, Jones

et al, 2011 Martin et al, 2017 bias-corrected climate data Hydrological models Biome models

(Hempel et al.2013 for the historical period (1971-2004) ) ) .

and the RCP 8.5 future climate scenario (2005-2099). Wd 9- 1. Venn diagram to show the grouping of the impact models —

focussed only on simulations driven by the HadGEMZ-ESthe black_ circles show which modgls contributed to the_blomes and
. . - _hydrological sectors of ISI-MIP, with the overlap showing models

RCP8.5 experiments for several reasons. This setup provide

L. . hich contributed output for variables in both sectors. The boxes
the largest data set for analysis in ISI-MIP, and the largest im+i, coloured outlines show the classification of models into groups

pacts of vegetation change on runoff may be expected undefithin this study — the models within the blue box are included as
the stronger RCP8.5 forcing scenario. While the applicationhydrological models and the models listed within the green box are
of non-bias-corrected GCM data can result in large uncer-included as biome models.

tainty in impact simulationsGosling et al.201Q Ehret et al.

2012, the application of bias correction in the I1SI-MIP forc-

ing data set may largely have removed any impact of differ-2.3 Experimental setup

ences between GCMs in the present-day baseliwmpel

et al, 2013. Unrouted runoff, as opposed to (routed) dis- The model runs were set up according to the ISI-MIP simula-
charge was analysed in the present study since discharge ddign protocol Warszawski et a]2013 so they were run with
was not available from all of the biome models studied here comparable settings. As common forcing data was used in
For 2100 compared to the baseline period (1861-1990), irflll of the model runs, differences between their output came
the original HadGEM2-ES simulations, global mean temper-from differences in the impact models — and therefore show
atures increased by approximately 6 K and precipitation bythe uncertainty in projections based only on the model se-

around 6 % Caesar et 3/12012. lected or the setup of the model in the case of sensitivity ex-
periments. The main simulations analysed in this study were
2.2 Models the core ISI-MIP runs, provided by the largest set of impact

models Warszawski et al.2013. For hydrological models,
The models whose data was used are described in Talile  these were naturalised runs with no human impact, and for
this study, the models were assigned to two groups, namegliome models, these were runs with varying@ncentra-
biome and hydrological models. If a model contributed to thetjon, specified by the RCP scenario. Sensitivity experiment
biome sector or both the biome and hydrological sectors ofuns using the biome models were further analysed to in-
ISI-MIP, it was classified as a biome model. If a model only vestigate the importance of including individual processes.
contributed to the hydrological sector, then it was a hydro-These included model runs with either constant,&cbn-
logical model for the purposes of this study (FID. This  centration kept constant from 2000), static vegetation distri-
method of grouping the impact models was used to sepabution or both. Tabl@ gives an overview of the experiments
rate the models including vegetation effects on runoff from analysed in this study and shows which models carried out
those which do not. VISIT did not include vegetation dy- sensitivity experiments. The aim of this study is to show that
namics, but did include C&impacts, hence its inclusion as impact models including carbon dioxide impacts and/or veg-
a biome model. Due to this, JULES and LPJmL were classi-etation dynamics may give differing projections to models

fied as biome models because their inclusion ob@apacts  not considering these, and therefore they should be included
and dynamic vegetation distributions, although they are alsqn hydrological impact assessments.

full hydrology models. The data used here were global grid-

ded data sets mainly on a 0.&titude-longitude grid, with 2.4  Evaluation of simulated present-day runoff

JULES and JeDion a 1.25 1.875 latitude-longitude grid.
Simple validation of the modelled runoff was carried out,
firstly by comparing averaged historical runoff from the

www.earth-syst-dynam.net/4/359/2013/ Earth Syst. Dynam., 4, 35944, 2013
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Table 1. Models used in the present study and their main characteristics (in part,Hetiteland et al(2011) — (a) R =rainfall

rate; S =snowfall rate; P = precipitation (rain or snow distinguished in the moddl);=air temperature; Tmax=maximum daily air
temperature; Tmin=minimum daily air temperatui®;=windspeed;Q = specific humidity; LW =longwave radiation flux (downward);
LWnet =longwave radiation flux (net); SW = shortwave radiation flux (downward); and SP = surface pressure; (b) Bulk formula: Bulk trans-
fer coefficients are used when calculating the turbulent heat fluxes; (c) Beta function: runoff is a nonlinear function of soil moisture.

Model Name  Model Meteorological Energy ET Runoff Snow Vegetation COy References
time forcing ba- scheme  scheme (c) scheme dyna- impacts
step variables (a) lance (b) mics

Hydrological models

DBH 1lh P, T,W,Q, Yes Energy Infiltration Energy No No Tang et al(2006 2007
LW, Sw, sP balance  excess balance
VIC Daily/3h P, Tmax, No Penman- Saturation Energy No No Liang et al.(1999
Tmin, W, Q, Monteith excess/beta  balance
LW, Sw, sP function
WBM Daily P, T No Hamon Saturation Empirical No No Vorosmarty et al(1998
excess T and
P based
formula
Mac- Daily P, T, LWnet, No Penman- Saturation Degree- No No Gosling et al(2010;
PDM.09 SW Monteith  excess/beta  day Gosling and Arnel(2017)
function
MPI-HM Daily P, T,W,Q, No Penman- Saturation Degree- No No Hagemann and Gates
LW, SW, SP Monteith  excess/beta  day (2003; Stacke and
function Hagemanr{2012
WaterGAP Daily P, T, LWnet, No Priestley— Beta function = Degree- No No Alcamo et al(2003; Déll
SW Taylor day et al.(2003 2012); Florke
etal.(2013
HO08 Daily R,S, T,W,Q, Yes Bulk Saturation Energy No No Hanasaki et al(2008a b)
LW, SW, SP formula  excess/beta  balance
function/
subsurface
flow
PCR- Daily P, T No Hamon Saturation ex- Degree- No No Wada et al.2011, 20133
GLOBWB cesslinfiltration day van Beek et a).2011
excess

Biome models

LPJImL Daily P, T, LWnet, No Priestley— Saturation Degree Yes Yes Bondeau et al.(2007%);
SW Taylor excess day Rost et al (2008

JULES 1h R, S, T,W,0, Yes Penman- Infiltration Energy Yes Yes Clark et al.(2011); Best
LW, SW, SP Monteith  excess/Darcy balance etal.(201)

VISIT Monthly P, T, O, SW Yes Penman— Bucket (sim- Ambient No Yes Ito and Inatomi(2011)

Monteith  plified satura- tempera-
tion excess)  ture

JeDi Daily P, T,LW,SW No Priestley— Saturation Degree- Yes Yes Pavlick et al.(2013
Taylor excess/beta  day
function

Earth Syst. Dynam., 4, 359374, 2013 www.earth-syst-dynam.net/4/359/2013/
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Table 2. Model simulations analysed in the present study (all driven by ISI-MIP forcing data for HadGEM2-ES historic and RCP8.5 scenar-
ios) — (a) nosoc: naturalized runs, with no human impact, no irrigation, and no population/GDP data prescribed; nolu=no human land use
assumed.

Model name Main Sensitivity experiments
simulations (a)
Vegetation COp Fixed Dynamic
dynamics impacts vegetation vegetation
Fixed Varying Fixed Varying
CO; CO; CO; CO;
Hydrological models
DBH nosoc - - - - - -
VIC nosoc - - - - - -
WBM nosoc - - - - - -
Mac-PDM.09 nosoc - - - - - —
MPI-HM nosoc - - - - - -
WaterGAP nosoc - - - - - -
HO8 nosoc - - - - - -
PCR-GLOBWB nosoc - - - - - -
Biome models
LPJIJmL nolu Yes Yes - - Yes Yes
JULES nolu Yes Yes Yes Yes Yes Yes
VISIT nolu - Yes Yes Yes - -
JeDlI nolu Yes Yes - - Yes Yes

impact models, with the ISLSCP 1| UNH/GRDC composite were calculated and the difference between them analysed.
monthly runoff Fekete et a).2002 Hall et al, 2006 Fekete  Precipitation was largely identical in all of the models since
et al, 1999 Fekete and Vorosmarty201]) by calculating  they were driven by the common forcing data, which had
global and regional annual averages (Ta®)leThis showed a global mean of 893 mmyt for the land surface during
that globally, the impact models tend to predict higher runoff the baseline period (1981-2010), which is within the range
totals than the GRDC data set. Regionally the impact mod-of 743-926 mm yr! suggested bBiemans et al(2009, al-
els also tended to overestimate runoff, with very few modelthough the latter used a baseline period of 1979-1999. Very
and region combinations giving lower runoff values than theminor differences in the precipitation have arisen through dif-
composite runoff field. This, however, is strongly related to ferences in model setup, including grid resolution.
the GCM precipitation input; simulated runoff driven by ob-  Data was analysed on annual and monthly timescales for
served precipitation has given values more similar to theland Giorgi regions (Supplementary Fig. Giorgi and Bj
GRDC data set in previous studiesaf Beek et aJ.2011). 2005 Ruosteenoja2003, in order to compare differences
Secondly, the annual cycles of runoff from the Fekete com-between models across large regions with different climates.
posite runoff field, for a group of Giorgi regions have been As discussed iMeehl et al.(2007), the Giorgi regions have
overplotted on annual cycle plots of modelled runoff to com- simple shapes and are no smaller than the horizontal scales
pare the timing of runoff throughout the year, which show on which current global climate models are useful for cli-
whether the impact models captured observed seasonalitynate simulations (typically judged to be roughly 1000 km).
The timing of runoff projected by the models matches well This means that the whole global land area could be covered
with ISLSCP Il UNH/GRDC composite runoffekete eta).  using a manageable number of similarly sized boxes, giving a
2002 1999 Hall et al, 2006 Voérosmarty et al.1998, al- broader global picture than a selection of river basins. Using
though the magnitudes are different, particularly at the peakstegions of similar size also means that in scatter plots with
where the models (mainly the biome models) gave generallya point representing each region, results are less biased to-
higher runoff than the composite data set in some regions. wards giving smaller basins relatively more effect visually
per unit area than larger basins. Despite these benefits of
2.5 Analysis using Giorgi regions rather than river basins, regional aver-

) ) ages over Giorgi regions may have some deficiendieefl
Using the full model data set described above, 30 yr averageg; 4| 2007). These are discussed in Sect. 4.

of annual and monthly runoff for 1981-2010 and 2070-2099

www.earth-syst-dynam.net/4/359/2013/ Earth Syst. Dynam., 4, 35944, 2013
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Table 3. Globally and regionally averaged runoff calculated from the ISLSCP Il UNH/GRB¢kéte and Vorosmarty2011) data set (1986-1995 average) and impacts model

(1981-1990 average) in mmyt.

Global AMZ WAF SAS ALA TIB CAS WNA CNA ENA CAM SSA NEU SEU SAH EAF SAF EAS SEA NAU
Fekete composite 292 921 409 480 137 64 63 151 159 437 323 139 260 123 1 193 181 222 1379
LPImL 415 920 616 765 320 85 105 329 363 565 443 290 438 228 7 305 278 371 1376
VISIT 254 887 689 730 262 88 114 325 436 638 469 323 443 232 7 323 277 363 1538
JeDi 384 729 510 658 450 65 84 350 340 668 294 169 564 207 5 193 189 325 1105
DBH 520 1153 637 859 421 78 122 375 471 784 574 430 564 303 13 334 357 548 1782
JULES 423 1016 555 815 311 55 e 274 415 655 465 304 377 204 12 299 243 418 1324
HO8 396 954 558 767 393 101 86 342 295 524 385 239 412 230 2 275 257 352 1262
Mac-PDM.09 403 981 539 741 317 91 107 282 349 587 400 306 388 224 10 268 290 398 1267
MPI-HM 362 915 495 617 235 53 60 269 300 569 377 268 411 214 2 223 173 375 1332
VIC 340 728 393 699 339 98 107 291 335 507 332 238 353 212 4 201 186 380 980
WBM 336 789 400 668 237 69 60 281 347 604 404 251 325 203 2 204 248 308 1257
WaterGAP 345 795 354 702 334 73 80 310 245 518 330 226 372 245 13 154 178 363 1221
PCR-GLOBWB 357 776 407 675 290 122 103 284 377 537 397 322 354 233 9 221 252 387 1131

41
184
167
162
257
246
143
175
77
136
169
156
92
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Runoff Change vs. Precipitation Change
for Giorgi regions

CAM
SAF
SEA
NEU
SAH
WAF
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EAF
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CGl
ARL
SAS

]
3
=

Al

1.0p

sau NAU SEU
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0.5r

[ il Pl e i e et

—0.5F

1981-2010 and 2070-2099 in mm/day

WaterGAP
PCR-GLOBWB

LPJmL varying CO2

JULES varying CO2

JeDi varying CO2

VISIT varying CO2 static veg

-1.0 -0.5 0.0 0.5 1.0

Averaée Precipitation Difference in Region between
1981-2010 and 2070-2099 in mm/day

Average Runoff Difference in Region between

~EtAd000

180 90W 0 90E
-1.0

Fig. 3. Scatter plot of precipitation change against runoff change
between 1981-2010 and 2070-2099 in mmdafor the Giorgi
regions — including results from all models forced with HadGEM2-
ES RCP8.5 climate. Solid 1:1 line. Dashed-=0 line andy =0

line.
<-0.50
05010010 3 Results and discussion
-0.10to 0.10
0.10t0 0.50 3.1 Runoff changes across all models
> 0.50
delta R, mm day” 2 0 0 70 100 % model agreement . . .
There were differences between the runoff projections from

Fig. 2. Ensemble consensus for runoff change between 1981—201H1e thFO'OQ'Ca' and biome models (Fig). However, in

and 2070-2099 fofa) hydrological models(b) biome models and  cOMmon with Hagemann et al(2013 there was a large

(c) all models when forced with HadGEM2-ES RCP8.5 climate. Spread of projections between models (Rj.Within each

Each colour shows the category of runoff change, while lighter model category the spread was larger than the difference be-

(darker) shades indicate the proportion of models agreeing withtween the two categories, as well as there being considerable

that category of change. Runoff changes were calculated individoverlap, so the differences largely result from intermodel un-

ually for each model, and then the consensus across these indivitertainty.Haddeland et a{2011) also found that differences

ual model changes were calculated for hydrological models, biomeoetween models in each class were larger than inter-class dif-

models and all models. ferences. The direction of projected runoff change tended to
be the same for each type of model, but with different magni-

In order to identify spatial patterns of model agreement, {Ude of change (Figg and3). The approximately linear pos-
consensus plotKaye et al, 2011 McSweeney and Jones itive relationship between annual mean precipitation change
2013 were created for the biome models and hydrological2d annual mean runoff change showing the dominance of
models separately as well as for the full set of models. Thes@r€cipitation in controlling the runoff changes (F8), is in
show the proportion of models which agreed on a particu-29reement wittBetts et al(2007). _
lar category of runoff change. This was done since averag- R€gional differences in other processes affecting runoff
ing over model groups may compromise the physical Con_changes are apparent from the dlsperspn of' points about the
sistency between variables, and does not show the true bé-: 1 line in Fig.3. An exception to the direction of change

haviour of any particular model outconiga/lor et al, 2013 being consistent between the model types is in parts of cen-
Ehret et al,2012). tral Africa where biome models showed consensus for in-

creased runoff, while the hydrological models showed con-
sensus for decreased runoff (FR). In some regions includ-

ing Europe, central Africa and the Amazon, the hydrologi-
cal models gave consensus for a drying, whereas the biome
models had little agreement as to the projected change.

www.earth-syst-dynam.net/4/359/2013/ Earth Syst. Dynam., 4, 35944, 2013
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The biome models tended to have more increased and less
decreased runoff between 1981-2010 and 2070-2099 than
the hydrological models, particularly in regions with a large
model spread, and when large change was projected3¥ig.

However, this was not the case for all of the models, as JeDi o
Runoff Change vs.Precipitation Change

and VISIT projected larger decreases in some regions. The s for Giorgi regions using different impacts models
seasonal patterns of runoff change were reasonably similal ' . e e e <m ms
; ; ; P 3 g3 323585 28 82 3
for the biome and hydrological models, with the main dif- > g . ="
i i ¢ ol 2 3 8 3
ference between the model types being the magnitude ofzg 1.0 z "
. £ 3 EH
changes (Fig4). For example, the annual cycle of runoff < c =
. 2 F
change for Amazonia shows that the two types of model had g% osl ¢
a similar shape to the seasonal cycle, but the hydrological.gg'
models projected larger decreases than the biome modelsg S
For Amazonia, Southern Asia and West Africa, regions with £5 0.0F-=-=-=--------g4-paPher-Sa- - ------- -1
. . [t
pronounced differences, there was most difference betweers g ' e oz
model types at times of peak runoffaddeland et a2011) 28 o4 i + LPmLvarying CO2 ||
L. o Y 1 x  JULES constant CO2
found that runoff results for the Amazon were sensitive to g ! % JULES varying CO2
. . o 4 JeDi constant CO2
the representation of canopy evaporatiblagemann et al.  z ' 4 JeDivarying CO2
(2013 also found that spread in runoff projections largely =~ -1© I D Vemvanigcos [
came from model choice over the Amazon and high latitudes. -10 05 0.0 05 1o
However, it is more difficult to determine differences in the B e 010 anel 20705650 I e Eeen

seasonal pattern for Alaska and Western Canada, but both

types of model gave a shift to an earlier month of peak runoff.Fig. 5. Scatter plot of precipitation change against runoff change
between 1981-2010 and 2070-2099 in mmdafpr the Giorgi re-

gions — for models including both varying and constanpG&ced
with HadGEM2-ES RCP8.5 climate. Solid 1 line. Dashed =0
line andy = 0 line.

3.2 Theimpact of varying CO; in biome models

The biome models tended to be consistent in their indi-
vidual projections for the direction of runoff change over
time, regardless of whether G®aried or remained constant

(Fig. 5). The projected changes in runoff from the constant
CO» runs tended to be within the range of projected changes
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from the varying CQ runs, so the changes in the varying for some models and regions. For example, in the JULES

CO; runs were more spread with smaller and larger magni-runs, Amazonia (AMZ) was projected to have an aver-

tude changes than under constant,CThe biome models age change of-88.26 mmyr! with varying CQ and

did not agree, however, on the direction of change in runoff—191.51 mmyr! with constant C@. Spatially, the areas

due to elevated C§ with two of the models (JULES and where runoff change was most affected by elevated, CO

LPJmL) showing larger increases and smaller decreases iwere very similar between the four biome models (Ama-

runoff and the other two (JeDi and VISIT) showing the re- zonia, eastern North America, Southeast Asia and central

verse. The increase in Gas competing effects on runoff, Africa), however with opposing directions of change be-

and the comparative strengths of these control whether thereveen models in these regions.

will be increased or decreased runoff due to elevated.CO  Seasonally, the timing of change in runoff was very simi-

Therefore, these models must have had differently relatedar for model runs with varying C@®as for those with con-

strengths to produce the opposite overall effects in runoff.stant CQ, and the main difference was the magnitude of

Compared to the other biome models, JeDi has a weakechange at different times of year (Fi#). In Amazonia, West

coupling between C®and stomatal conductance, leading Africa and Southern Asia, there was most difference between

to smaller reductions in transpiration under increase@d.CO the varying CQ and fixed CQ runoff change projections

However, it produces a similar strength gfertilisation ef-  at times of peak runoff. During the rainy season, evapotran-

fect to the other models, so the balance between the opposingpiration is not limited by soil moisture availability so that

influences on runoff led to higher transpiration and reducedplants usually may transpire at their potential rate. Thus, lim-

runoff. Wada et al.(2013h found reduced irrigation water its on transpiration imposed by the stomatal conductance will

demand for LPImL projections with elevated £&mpared  directly impact the total amounts of evapotranspiration, and

to the constant C®projection, which is consistent with our hence runoff.

findings. The biome models which differed most from the

hydrological models in their runoff projections (F8).were 3.3 The impact of varying vegetation and CQ in

also those which projected higher runoff from varying £0 JULES

than constant C®(Fig. 5). The more similar changes pro-

jected by the models’ constant G@uns showed that some The relative effects of elevated G@nd changing vegeta-

of the uncertainty in biome models’ runoff projections was tion on runoff change were analysed using sensitivity exper-

related to processes linking G@ith runoff. iments carried out with JULES. As in the previous Sect. 3.2,

The effect of elevated COon runoff change was of JULES projected greater increases and smaller decreases un-

as large a magnitude as the change projected over timder elevated C@ This was regardless of the inclusion of

vegetation change, which had a much smaller magnitude
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Runoff Change vs. Precipitation Change of vegetation distribution change and the timing of high and

—for Giorgi regions using JULES low runoff throughout the year, some regions were projected
to experience an increasing effect during high runoff (WAF),
and some a decreasing effect (SAS).

Spatially, there was mostly higher runoff projected by the
run with dynamic vegetation, particularly over Amazonia and
Southeast Asia, but lower runoff projected in a few places
than the run with a static vegetation distribution. Over Ama-
zonia (AMZ), there were projected to be smaller decreases

CAM
SAF
SEA
NEU
SAH
EAF
ENA
EAS
CGl
ARL
SAS

ALA

1.0p

ANL WNA WAF

AMZ
sau NAU SEU
TIB Cna CAs SSA

0.5F

0.0

1981-2010 and 2070-2099 in mm/day

Average Runoff Difference in Region between

el P . 1
o

in runoff in the JULES run with changing vegetation than the
run with static vegetation, with a change from shrubs to trees.
-0.5 [ULES Sensitvity Rums Annual evaporation is generally higher in forested catch-
X Varying CO2 and dynamic vegetation ments compared to non-forested catchmegtsafg et al.
10 s Veying con and et vegorston | 2001), so this change from shrub to trees would be expected
‘ o Constant CO2 and static vegetation to reduce runoff. Therefore, reduced transpiration rates due
e Average Precipitation Difference in Region between to elevated CQ@ outweighed increases in evapotranspiration

1981-2010 and 2070-2099 in mm/day due to change in vegetation cover. However, over Europe and

Fig. 7. Scatter plot of precipitation change against runoff changeParts of eastern North America, the effect on runoff of the
between 19812010 and 2070-2099 in mmdajor the Giorgi ~ Change in vegetation type was not outweighed by the effects
regions — for the four JULES simulations forced with HadGEM2- of COp on stomatal conductance. In these regions, a change
ES RCP8.5 climate. Solid:11 line. Dashedc =0 line andy =0 from needleleaf to broadleaf trees was projected along with
line. reduced runoff, as when fully leafed out, broadleaf trees
have twice the albedo and 50-80 % greater evapotranspira-
tion rates than needleleaf tre€ann et al.2010.
impact on the projections. The impact of vegetation distri-
bution change on projected runoff change varied in direction
for different regions (Fig7).

There was relatively little change in the vegetation dis-
tribution in the model runs (Supplementary Figs. 4 and 5)Two of the biome models in this study (JULES and LPJmL)
which accounts for the small effect on runoff. This agreeshad runoff change projections which were more dissimilar
with Falloon et al.(20123 who found only small impacts in magnitude of change to the hydrological models’ projec-
of vegetation change on future (2080s) surface climate. Irtions than the other two. These were also the biome mod-
contrast, in studies where larger vegetation changes were agls which projected increased runoff with elevated>C€&b
plied, either in palaeoclimat&Xishi and Abe-Ouchi2012 the inclusion of CQ processes contributed to the differences
Micheels et al. 2009, at equilibrium in the futureJones between the hydrological models and the biome models in
et al, 2009 2010 or synthetically Fraedrich et a).2005, this study. The larger spread of projections from the biome
larger impacts on surface climate were observed. There wamodel runs with varying C®than with constant C@added
a larger effect of vegetation change on relative runoff changdo the uncertainty of projections and so it is important not
in regions with lower precipitation (Supplementary Fig. 3), to discount these models in hydrological impact studies if
which was also found byeipprand and Gerte(2006. As the full range of possible outcomes is to be considered. The
well as the magnitude, the seasonal pattern of the effects odifferences in runoff change projections between runs with
runoff change of the two factors also differed. The impact of varying CQ and constant C®were as large as the change
elevated CQ was relatively even throughout the year, while over time in some regions in some model projections. The
the impact of vegetation change varied more seasonally. Fospatial pattern of where there was most difference between
example, there was most effect from vegetation change irbiome and hydrological models’ projections and the pattern
West Africa between July and September in both the ele-of where there was most difference by varying Laver-
vated and constant GQuns and for Amazonia, there was lapped in Amazonia, central Africa, eastern North Amer-
most effect between January and April in the constant CO ica and Southern Asia. Seasonally, both for differences be-
projection (Fig.8). tween biome and hydrological models and between varying

Seasonally, the effect of a changing vegetation distribu-and constant C® model runs, the main differences were
tion varied between regions (Fig). For example, vegetation the magnitude of changes, rather than the timing. The two
change gave a larger shift to an earlier peak in spring runoftomparisons also showed the common pattern that there was
for Alaska and Western Canada, while the effect was less omost difference at the peaks of runoff for Amazonia, South-
the timing of the seasonal cycle and more on the magnitudern Asia and West Africa. Vegetation change, however, had a
of the changes for some other regions. Considering the effeanuch smaller effect on the runoff projections, so contributed

3.4 Linking vegetation effects and model differences
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Fig. 8. Annual cycles of runoff for selected Giorgi regions using sensitivity experiment runs from JULES forced with HadGEM2-ES RCP8.5
climate:(a—d): absolute values for 1981-1990 (solid lines) and 2081-2090 (dashed (i€ds);absolute changes between 1981-1990 and
2081-2090.

less to the differences between the biome and hydrologicalvhich considered runoff or discharge with our general find-
models’ runoff change projections. ings, the choice of Giorgi region scale rather than river basin
scale would be unlikely to alter the overall conclusions. For
example, $chewe et a).2013 considered runoff at a coun-
try scale (calculated using basins) and global scale, and found
that JULES and LPJmL had a lower proportion of the global

Only changes in annual and monthly means were Considpopulatic_)n under water ;tre§s_than the other_hydrolo_gical
ered, which do not account for changes in extremes linked0dels in the future, which is in agreement with our find-
to runoff, such as floodsD@ankers et a).2013 and drought ings. Prudhomme et a(2013 considered runoff at a global
(Taylor et al, 2013 Prudhomme et g12013. Differences spale and GEO s_ub-_region scalg, and _drew similar conclu-
between biome and hydrological model projections may notSIons \_/vhen considering JULES in relation to the other hy-
show the same patterns for the extremes as they did fofirological models. . _
the mean changes. Nevertheless, in the ISI-MIP simulations, e have found that there were differences in runoff pro-
Prudhomme et a(2013 noted smaller runoff deficits (less i€ctions between models, butin order to determine the causes
time is projected to be spent with runoff values below the Of these differences, other variables contributing to runoff
Qg0 threshold of daily runoff calculated for the reference pe-raté such as evapotranspiration, snow mass, leaf area index
riod) projected by the impact model JULES under elevateg@nd pl_ant functional type fractions could be investigated sys-
COy,, compared to fixed C§ while JULES with both fixed tematically Haddeland et al.2011), even though the com-
vegetation distribution and constant €Behaved most like plicated interactions between the various processes make it
the hydrological models. infeasible to explain the causes of many simulation differ-
Use of spatial means using Giorgi region averages wa$nces in detail, as noted in previous model intercomparisons
beneficial for the aims of this study, however has some de{€-8-Koster and Milly 1997.
ficiencies. For instance in some cases, the simple boxes K€y uncertainties in projections of future runoff come
used result in spatial averaging over regions where precipiffom the possible changes in climate (GCM uncertainty),
tation is projected to increase and decrease. On a sub-regidif!anges in vegetation and the runoff responses determined
scale within Giorgi regions, there may be robust and plau—by the impacts m_odels. As t_hese findings used bias-corregted
sible hydrological responses, which would not be captured!2dGEM2-ES climate forcing data, runoff responses using
through spatial averaging. Other papers have also used reforcing data which has not been bias corrected may dif-
atively large regions rather than river basins; for example,fer (Kahana et al.2013 _and using forc;lng data from other
Betts et al.(2007) and Gedney et al(200§ both consider ~GCMs and representative concentration pathways may also
runoff at the continental scale rather than at a river basirinfluence runoff projections differently to HadGEM2-ES
scale. When comparing results from other ISI-MIP papersRCP 8.5 Gchewe et a].2013. Although the present study

4 Limitations and future work
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has only considered one future scenario (RCP8&ng and  found between impacts models, despite using common cli-
Lettenmaie2012 found that spatial patterns of runoff sen- mate forcing data. The projected timing of runoff change for
sitivity are stable across emissions scenarios, which suggestsach category is similar, with the main difference being the
that there would be spatial similarities if this analysis were magnitude at times of peak runoff.
repeated for a different scenario. In a similar analysis for The JULES simulations of sensitivity experiments with
RCP2.6, the spatial patterns of changes, as well as the difstatic vegetation distributions showed that the impacts of
ferences between the two types of model, were indeed fairlwegetation distribution change on runoff were generally
similar, although the magnitude of changes were smaller unmuch smaller than overall future projected changes in the
der the mitigation scenaridg@vie et al, 2013. period considered to 2100. We found that in some regions,
The methods we have used for validation within this studyrunoff changed in the direction which would be expected for
were only to give a broad picture of how the models per-the change in vegetation type, however in others it did not, so
form compared with observationally constrained data andother factors outweighed the influence of vegetation change
hence conclusions are limited, as the models were not driveen runoff.
with observed precipitation, which explains some of the dif- Interestingly, the impact of elevated @On runoff in the
ference in magnitude, and also the ISLSCP Il UNH/GRDC four biome models studied here was not consistent. Two
composite field would not ideally be used as a whole for val-models showed increases and two decreases, with a larger
idation. Therefore, more detailed comparison of simulatedspread between the projections with varying Q@an con-
water balance terms with observational data (dafddeland stant CQ. These differences in model behaviour are affected
et al, 2012, Falloon et al. 2011) would provide further in- by two competing processes, which vary in strength across
sight into the reasons for differences between the model prothe models, that of elevated G@n stomatal conductance
jections discussed here. Many of the impact models conand the fertilising impact on transpiration. In some regions,
sidered in this study have been extensively validated previmodels projected differences between the varying @ad
ously (Falloon et al. 2011, Hagemann et gl2013 Hadde-  constant CQ runs which were as large as the magnitude of
land et al, 2011). However, for land surface processes, vali- change over time. The differences were largest at times of
dation does not necessarily help to constrain the future spreakligh runoff and the timing of runoff change throughout the
of projections — a wide range of future outcomes may resultyear was similar.
despite reasonable simulation of present-day values (e.g. for The biome models which increased runoff from varying
water:Haddeland et al2011 Hagemann et gl2013 Wada COy, JULES and LPJmL, were also most dissimilar to the
et al, 2013h and for ecosystems and the carbon cy@eod hydrological models in their projections. Therefore, the ef-
et al, 2012 Nishina et al.2013. fects of CQ on runoff add to the uncertainty in model projec-
This study has only assessed runoff projections and notions, and partly explain differences between the hydrologi-
any of the associated socioeconomic impacts (for examplecal and biome models’ projections. The spatial and seasonal
assessing impacts on water stre&chewe et al2013. Hu- patterns of runoff change are also similar. Broadly, regions
man interventions through land use change, irrigation andvhich showed most difference between the biome and hy-
construction of dams and reservoirs may also affect futuredrological models also projected most difference between the
runoff, but have not been considered. Different impacts mayarying and constant GOruns. Seasonally the differences
also result from biome and hydrological models when fully between model types or sensitivity experiments tended to be
coupled to GCMs as feedbacks can have a significant efgreatest at times of high runoff. The impact of varyingCO
fect on projectionsKalloon et al.2012h Martin and Leving ~ was much larger than the impact of a changing vegetation
2012. distribution and so contributes more to explaining the differ-
ences between the biome and hydrological models.
To account for the full range of uncertainty, climate im-
5 Summary and conclusions pact studies should consider a range of impact models. In
planning studies of water resource management into the fu-
Our study has found notable differences in runoff projec-ture, biome models which include G@ffects and dynamic
tions between hydrological and biome models. In generalyvegetation should be used in conjunction with hydrological
the biome models tended to produce larger increases anchodels, as this will better show the full range of uncertainty
smaller decreases in regionally averaged annual mean runoffi these projections which should not be ignored.
than hydrological models. However, there was much spread
between the model projections within each category. Con-
sensus for both types of model agreed on the sign of changgupplementary material related to this article is
across most of the world's land area. However in West Africa, available online athttp://www.earth-syst-dynam.net/4/
the hydrological models tend to project drying whereas the359/2013/esd-4-359-2013-supplement.pdf
biome models project a moistening. In some regions large
differences in projections of changes in average runoff were
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