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Abstract Monte Carlo algorithms often aim to draw
from a distribution 7 by simulating a Markov chain
with transition kernel P such that 7 is invariant under
P. However, there are many situations for which it is
impractical or impossible to draw from the transition
kernel P. For instance, this is the case with massive
datasets, where is it prohibitively expensive to calcu-
late the likelihood and is also the case for intractable
likelihood models arising from, for example, Gibbs ran-
dom fields, such as those found in spatial statistics and
network analysis. A natural approach in these cases is
to replace P by an approximation p. Using theory from
the stability of Markov chains we explore a variety of
situations where it is possible to quantify how ’close’ the
chain given by the transition kernel P is to the chain
given by P. We apply these results to several examples
from spatial statistics and network analysis.

Keywords Markov chain Monte Carlo - Pseudo-
marginal Monte Carlo - intractable likelihoods

P. Alquier
ENSAE, Paris, France.

N. Friel

School of mathematical Sciences and Insight: the national
center for data analytics, University College Dublin, Ireland.
E-mail: nial.friel@Qucd.ie

R. Everitt
Department of Mathematics and Statistics, University of
Reading, UK.

A. Boland
School of mathematical Sciences and Insight: the national
center for data analytics, University College Dublin, Ireland.

1 Introduction

There is considerable interest in the analysis of sta-
tistical models with difficult to evaluate or intractable
likelihood functions. Such models occur in a diverse
range of contexts including spatial statistics, social net-
work analysis, statistical genetics, finance and so on.
The challenges posed by this class of models has led to
the development of important theoretical and method-
ological advances in statistics. For example, Geman and
Geman (1984) developed the Gibbs sampler to sample
from an Ising model for application in image analysis.
More recently, the area of approximate Bayesian com-
putation has emerged to deal with situations where the
likelihood is not available for evaluation, but where it is
possible to simulate from the likelihood function. This
area has generated much activity in the literature. See
Marin et al (2012) for a recent survey.

In many applications in statistics, well known theo-
retically efficient estimators are not available in practice
for computational reasons. For example:

1. large datasets: the sample size £ is too large. This sit-
uation is very common nowadays as huge databases
can be stored at no cost. For example: in genomics
the cost of sequencing has fallen by a factor of 10°
in past decade and a half. This has led to the wide
availability of sequence data - the recently announced
Personal Genome Project UK aims to sequence 10°
human genomes, each consisting of 3 x 108 bases.

2. high-dimensional parameter spaces: the sample size
¢ might be reasonable, but the number of variables
p is too large. For example: data assimilation in nu-
merical weather prediction, in which the size of the
state space is typically 10°.

3. intractable models: the likelihood / regression / clas-
sification function is not available in closed form
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and each evaluation is computationally demanding.
Common examples are: in the statistical modelling
of large numbers of linked objects, leading to the
intractable likelihood in graphical models, which is
the main focus of the applications in this paper.

A new point of view in statistics emerged to address
these challenging situations: to focus on the computa-
tional aspects first, by proposing a fast enough algo-
rithm to deal with the data. In some way, this mean
that we replace the traditional definition of an esti-
mator as a measurable function of the data by an al-
gorithm able to proceed with the data. However, this
does not mean that we should forget the theoretical
properties of this estimator: a study of its properties is
necessary. A typical example is Tibshirani’s LASSO es-
timator (Tibshirani 1996), it became successful as the
first estimator available in linear regression when p is
very large (> 109), only later, were conditions provided
to ensure its theoretical optimality. See Biihlmann and
Van de Geer (2011) for a survey. This idea to consider
the algorithm as the definition of an estimator is pushed
further in (Valiant 1984; Bottou and Bousquet 2011)
among others.

This situation also appears in Bayesian statistics;
while some Bayesian estimators can be efficiently ap-
proximated by MCMC methods such as the Metropolis-
Hastings algorithm, sometimes, this is not possible be-
cause the acceptance ratio in the algorithm cannot be
evaluated — indeed this is the focus of our paper. It is
intuitive to replace this ratio by an estimate or an ap-
proximation. Nicholls et al (2012), Andrieu and Roberts
(2009) and Liang and Jin (2011) considered this idea
for models with intractable likelihood. Both Bardenet
et al (2014) and Korattikara et al (2014) applied this
idea in the case where the sample size ¢ is too large to
prohibit many evaluations of the likelihood. One might
also view situations in which an approximating model
is used (such as approximate Bayesian computation) as
a special case of this general view, although such exam-
ples are not considered in this paper.

In this paper, we propose a general approach to
“noisy” or “inexact” MCMC algorithms. In Section 2,
we describe the main idea and provide a result, due to
Mitrophanov, that gives a theoretical justification of the
algorithm in many situations, based on the assumption
that the Markov chain which leaves the target distribu-
tion stationary is uniformly ergodic. We also provide an
extension of this result to the weaker case of geometric
ergodicity. Our results gives bounds on the distance,
with respect to the total variation norm, between an
“ideal” chain which leaves the target distribution in-
variant and a noisy chain which approximates the target
distribution. We then study the special cases of a noisy

version of the Exchange algorithm (Murray et al 2006),
and discretized Langevin Monte Carlo in Section 3. For
these noisy algorithms we prove that the total variation
distance decreases with the number of iterations, IV, of
the randomisation step in the noisy algorithm, and find
a bound on this distance in terms of N. We study in
detail an application to intractable likelihood problems
in Section 4.

2 Noisy MCMC algorithms

In many practical situations, useful statistical estima-
tors can be written as

0= /@ O (de)

for some probability distribution 7. This is for example
the case in Bayesian statistics where m is the poste-
rior distribution of 8 given the data, but estimators un-
der this form appear in other situations, e.g. the expo-
nentially weighted aggregate (Dalalyan and Tsybakov
2012). More generally, one might want to estimate func-
tionals of the form

/ £(6)(d6)
€]

for some function f. A very popular approach in this
case is the family of MCMC algorithms. The idea is
simulate a Markov Chain (6,,)nen with transition kernel
P such that 7 is invariant under P: 7P = w. We then
use the approximation

1 N
¥ 2 s = [ 0, (1)

Of course, in order for such an approximation to be
useful, we need more than the requirement that 7P =
w. A very useful property in this respect is so-called
uniform ergodicity for which it holds that

sup ||dg, P — 7| < Cp",
0o

for some C < oo and p < 1, where || - | is the to-
tal variation distance. Meyn and Tweedie (1993) detail
conditions on P to ensure uniform ergodicity, and show
theoretical results that ensure that (1) holds, in some
sense.

However, there are many situations where there is
a natural kernel P such that 7P = m, but for which it
is not computationally feasible to draw 0,41 ~ P(0,,-)
for a fixed 6,. For these cases a natural approach is
to replace P by an approximation P so that when the
approximation is good we hope that P is “close” to
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P in some sense. Of course, in general we will have
7P # 7, but we will show that it is nevertheless useful
to ask the question whether it is possible to produce a
Markov chain with an upper bound Hégo pn— ﬂ'”?

It turns out that a useful answer to this question
is given by the study of the stability of Markov chains.
There have been a long history of research on this topic,
we refer the reader to the monograph by Kartashov
(1996) and the references therein. Here, we will focus
on a more recent method due to Mitrophanov (2005). In
order to measure the distance between P and P recall
the definition of the total variation measure between
two kernels:

|P = P|| := sup [|6pP — 5o P||.
0co

Theorem 21 (Corollary 3.1 page 1006 in Mitro-
phanov (2005))
Let us assume that

— (H1) the Markov chain with transition kernel P is
uniformly ergodic:

sup ||dg, P — 7| < Cp"
0o

for some C < o0 and p < 1.

Then we have, for any n € N, for any starting point g,

. Cp .
60,77 = b0 " < (3 + £ ) 1= P

where X = Fog(l/c)—‘
log(p) |-

This result serves as the basis for our paper. Practi-
cally, it says that the total variation distance between
two Markov chains each of which have the same initial
state, 6, is less than or equal to a constant times the
total variation distance between the kernels P and P.
It is interesting that this bound is independent of the
number of steps n of the Markov chain.

The main purpose of this article is to show that
there are many useful situations where this result can
provide approximate strategies with the guarantee of
theoretic convergence to the target distribution.

Note that, the uniform ergodicity supy, ||dg, P" — 7|| <

Cp'™ is a strong assumption. In some situations of prac-
tical interest, it actually does not hold. In the case
where the original chain is only geometrically (non uni-
formly ergodic) the following result will prove useful.

Theorem 22 (Theorem 1 page 186 in Ferré et al
(2013))

Consider a sequence of approzimate kernels Py for N €
N. Assume that there is a function V(-) > 1 which sat-
isfies the following:

— (HY’) the Markov chain with transition kernel P is
V -uniformly ergodic:

V0o, 60, P" — 7|y, < Cp"V(6o)

for some C' < 00 and p < 1.
—dNgeNO0O<d<1,L>0,VYN > N,

/V(G)PN(GO, df) < 6V (6) + L.
— ||Py — P|| —— 0.
N—oco

Then there exists an N1 € N such that any PN, for N >
Ny, is geometrically ergodic with limiting distribution
7wy and ||my — 7| —— 0.

N —oc0

(We refer the reader to Meyn and Tweedie (1993) for
the definition of the || ||y norm). Note that, in contrast
to the previous result, we don’t know explicitly the rate
of convergence of the distance between dy, Py — 7 when
N is fixed. However it is possible to get an estimate of
this rate (see Corollary 1 page 189 in Ferré et al (2013))
under stronger assumptions.

2.1 Noisy Metropolis-Hastings

The Metropolis-Hastings (M-H) algorithm, sequentially
draws candidate observations from a distribution, con-
ditional only upon the last observation, thus inducing
a Markov chain. The M-H algorithm is based upon the
observation that a Markov chain with transition density
P(0, ¢) and exhibiting detailed balance for T,

m(0ly)P(0,¢) = n(dly) P(¢,0),

has stationary density, 7(6).

Algorithm 1 Metropolis-Hastings algorithm

for n=0to I do
Draw 6’ ~ h(:|0)

Set 0,41 = 0’ with probability min(1, a(60’,6,))
4 ’
where a (0, 0,) = O 1W1OI0T)
w(0n|y)h(60'60r)

Otherwise, set 0,41 = On.
end for

In some applications, it is not possible to compute the
ratio a(¢’,0). In this case it seems reasonable to re-
place the ratio with an approximation or an estima-
tor. For example, one could draw 3’ ~ Fy.(-) for some
suitable probability distribution Fy/ (-) and estimate the
ratio @ by &(#’,0,y’). This gives the ‘noisy’ Metropolis-
Hastings algorithm in algorithm 2.
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Algorithm 2 Noisy Metropolis-Hastings algorithm
for n=0to I do
Draw 6’ ~ h(:|05)

Draw y’ ~ Fy/(-)
Set 0,41 = 0’ with probability min(1, &(0’,6,,y"))

Otherwise, set 0,41 = On.
end for

Note that &(¢’,6,y’) can be thought of as a randomised
version of a(6’,60) and as we shall see from the conver-
gence result below, in order for this to yield a useful
approximation, we require that |&(6’,60,y") — a(¢’,0)] is
small. Here we let P denote the transition kernel of the
Markov Chain resulting from Algorithm 2. Of course
there is no reason for 7w to be invariant under ]5, how-
ever we show under certain conditions that using an ap-
proximate kernel will yield a Markov chain which will
approximate the true density. Moreover, we provide a
bound on the distance between the Markov chain which
targets m and the Markov chain resulting from P.

2.1.1 Theoretical guarantees for Noisy
Metropolis-Hastings

We now provide an application of Theorem 21 to the
case of an approximation to the true transition kernel
arising from Algorithm 2.

Corollary 23 Let us assume that

— (H1) the Markov chain with transition kernel P is
uniformly ergodic holds,

— (H2) a(010",y") satisfies:
Eynr,, 00,0, y") — a(0,0)] < 6(0,6"). (2)

Then we have, for any n € N, for any starting point g,

A
100, P™ —08g, P™|| < <>\+ ICP> sup/d&’h(&’w)é(&,e’)
-p 0

where X = Fog(l/c)—‘
log(p) |°

All the proofs are given in Section A. The proof of
Corollary 23 relies on the result by Mitrophanov (2005).
Note, for example, that when the upper bound (2) is
uniform, ie §(0,6") < § < oo, then we have that

A
156, P — b9, || < 6 ()\ + f”) .
—p

Obviously, we expect that & is chosen in such a way
that 6 < 1 and so in this case, ||dg, P™ — dg, P"|| < 1
as a consequence. In which case, letting n — oo yields

A
limsup |7 — dg, P"|| <8 <>‘ + 1O_pp> :

n— oo

Remark 21 Andrieu and Roberts (2009) derived a spe-
cial case of this result for a given approximation of
the acceptance ratio o using their pseudo-marginal ap-
proach. We explore this more in section 2.4.

Remark 22 Another approach, due to Nicholls et al
(2012), gives a lower bound on the first time such that
the chain produced by the Metropolis-Hastings algorithm
and its noisy version differ, based on a coupled Markov
Chains argument.

Remark 23 Note that a deterministic version of this
result also holds in situations where one could replace
a(f',0) by a deterministic approzimation &(¢’,6).

We will show in the examples that follow in Section 3
that, when & is well chosen, it can be quite easy to check
that Hypothesis (H2) holds. On the other hand, it is
typically challenging to check that Hypothesis (H1)
holds. A nice study of conditions for geometric ergod-
icity of P is provided by Meyn and Tweedie (1993) and
Roberts and Tweedie (1996b).

2.2 Noisy Langevin Monte Carlo

The Metropolis-Hastings algorithm can be slow to ex-
plore the posterior density, if the chain proposes small
steps it will require a large number of moves to explore
the full density. Conversely, if the chain proposes large
steps there is a higher chance of moves being rejected so
it will take a large amount of proposed moves to explore
the density fully. An alternative Monte Carlo method is
to use Stochastic Langevin Monte Carlo (Welling and
Teh 2011). The Langevin diffusion is defined by the
stochastic differential equation (SDE)

dO(t) = Vlogw(0(t))dt/2 + db(?),

where db(T) denotes a D-dimensional Brownian mo-
tion. In general, it is not possible to solve such an SDE,
and often a first order Euler discretization of the SDE
is used to give the discrete time approximation

Algorithm 3 Langevin algorithm
for n =0 to [ do
Set 01 = 0n + S Vilogm(6n) +1
end for

,n~ N(0,%),

However convergence of the sequence {6,} to the
invariant distribution is not guaranteed for a finite step
size X' due to the first-order integration error that is
introduced. It is clear that the Langevin algorithm pro-
duces a Markov chain and we let Ps denote the cor-
responding transition kernel. Note that, we generally
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don’t have 7(-|y)Px = 7(:|y) nor dg, Ps — 7(+|y), how-
ever, under some assumptions, dg,Ps;, — mx for some
7y close to m when X' is small enough, we discuss this
in more detail below.

In practice, it is often the case that Vlogw(6,,) can-
not be computed. Here again, a natural idea is to re-
place Vlogm(6,,) by an approximation or an estimate
VY log 7(6,), possibly using a randomization step y’ ~
Fp, . This yields what we term a noisy Langevin algo-
rithm.

Algorithm 4 Noisy Langevin algorithm

for n=0to I do
Draw yg, ~ Fy, ().

Set Optr1 = 0, + %@y% logm(Only) + Cn  n ~
N(0,X).

end for

Note that a similar algorithm has been proposed in
Welling and Teh (2011); Ahn et al (2012) in the con-
text of big data situations, where the gradient of the
logarithm of the target distribution is estimated using
mini-batches of the data.

We let Ps; denote the corresponding transition ker-
nel arising from Algorithm 4. We now prove that the
Stochastic gradient Langevin algorithm, (Algorithm 4),
will converge to the discrete-time Langevin diffusion
with transition kernel resulting from Algorithm 3.

2.3 Towards theoretical guarantees for the noisy
Langevin algorithm

In this case, the approximation guarantees are not as
clear as they are for the noisy Metropolis-Hastings algo-
rithm. To begin, there are two levels of approximation:

— the transition kernel Py targets a distribution 7y
that might be far away from 7(-|y).

— Moreover, one does not simulate at each step from
Py, but rather from ]52.

The first point requires one to control the distance be-
tween mx and 7(-|y). Such an analysis is possible. Here
we refer the reader to Proposition 1 in Dalalyan and
Tsybakov (2012) and also to Roberts and Roberts and
Stramer (2002) for different discretization schemes. It
is possible to control || Py, — Py as Lemma 1 illustrates.

- 4]
IPo— ol </

Lemma 1

where

1 1
d =supEy,~r, {exp [QHEQ (Vlogn(6)
0

2
— V¥ log7(0))

1}_

The paper by Roberts and Tweedie (1996a) contains a
complete study of the chain generated by Ps. The prob-
lem is that it is not uniformly ergodic. So Theorem 21 is
not the appropriate tool in this situation. However, in
some situations, this chain is geometrically ergodic, and
in this instance we can use Theorem 22 instead (more-
over, note that Roberts and Tweedie (1996a) provide
the function V used in the Theorem). We provide an
example of such an application in Section 3 below.

2.4 Connection with the pseudo-marginal approach

There is a clear connection between this paper and
the pseudo-marginal approaches described in Beaumont
(2003) and Andrieu and Roberts (2009). In both cases
a noisy acceptance probability is considered, but in
pseudo-marginal approaches this is a consequence of
using an estimate of the desired target distribution at
each 6, rather than the true value. Before proceeding
further, we make precise some of the terminology used
in Beaumont (2003) and Andrieu and Roberts (2009).
These papers describe two alternative algorithms, the
“Monte Carlo within Metropolis” (MCWM) approach,
and “grouped independence MH” (GIMH). In both cases
an unbiased importance sampling estimator, 7, is used
in place of the desired target m, however the overall
algorithms proceed slightly differently. The (¢ + 1)th it-
eration of the MCWM algorithm is shown in algorithm
5.

Algorithm 5 MCWM

for n=0to I do
Draw 6’ ~ h(.|0y).

Draw z’ ~ G(.|6¢’), z ~ G(.|0), where G is an impor-
tance proposal and 2’ and z are random vectors of size N.

Calculate the acceptance probability, a(6n,,0"), where

N

7Y and 7} denote the importance sampling approxima-

tion to 7w based on auxiliary variables z and z’ respectively:
Set 041 = 0’ with probability min(1, &(6’,6)), where

7 (6))h(6.]6)

O 0n) = N 68/ )

Otherwise, set 0,41 = On.
end for
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GIMH differs from MCWM as follows. In MCWM
the estimate of the target in the denominator is re-
computed at every iteration of the MCMC, whereas
in GIMH it is reused from the previous iteration. The
property that is the focus of Andrieu and Roberts (2009)
is that GIMH actually has the desired target distribu-
tion 7 - this can be seen by viewing the algorithm as
an MCMC algorithm targeting an extended target dis-
tribution including the auxiliary variables. The same
argument holds when using any unbiased estimator of
the target. As regards our focus in this paper, GIMH
is something of a special case, and our framework has
more in common with MCWM. We note that despite
its exactness, there is no particular reason for estima-
tors from GIMH to be more statistically efficient than
those from MCWM.

For our framework to include MCWM as a spe-
cial case, we require that the distribution F(.|6") of
the auxiliary variables 3y’ that we use in order to find
a(6'10,y") also needs to depend on 6, so from here on
we use F'(.]0,60"). For MCWM we have y' = (2, 2’), with
F(y'0,0") = G(2]0)G(2'|¢"). We note that this addi-
tional dependence only requires minor alterations to
Corollary 23 and its proof. Corollary 23 and its proof
share some characteristics with the special case (An-
drieu and Roberts 2009) where they show that there
always exists an N such that an arbitrarily small accu-
racy can be achieved in the bound for the total variation
between the invariant distribution of MCWM (if it ex-
ists) and the true target. The arguments in this paper
are more general in the sense that the noisy acceptance
probability framework covers a larger set of situations
but also in that, as we see below, it is sometimes pos-
sible to obtain a rate of approximation in terms of IV,
which in our case is the number of auxiliary variables
used in the approximation.

3 Examples
3.1 Gibbs Random Fields

Gibbs random fields (or discrete Markov random fields)
are widely used to model complex dependency structure
jointly in graphical models in areas including spatial
statistics and network analysis. Let y = {y1,...,yn}
denote realised data defined on a set of nodes {1,..., M}
of a graph, where each observed value y; takes values
from some finite state space. The likelihood of y given
a vector of parameters § = (01, ...,0,,) is defined as

F(10) oc exp(6 s(y)) := qo(y), (3)

where s(y) = (s1(y), ..., sm(y)) is a vector of statistics
which are sufficient for the likelihood. We will use the

notation S = sup,cy [[s(y)||. The constant of propor-
tionality in (3),

Z(0) =Y exp(6”s(y)),

yey

depends on the parameters 0, and is a summation over

all possible realisation of the Gibbs random field. Clearly,
direct calculation of Z(6) is intractable for all but triv-

ially small situations, since it involves O(k™) calcula-

tions, where k is the number of possible states which

each node can take. The parameter of interest for the

Gibbs distribution is 6. Due to the intractability of the

normalising constant Z(0), inference on 6 is problem-

atic. Here and for the remainder of this article we focus

on the posterior distribution

qo (y) (0)’

w(0ly) ox 70) v

where 7(6) denotes the prior distribution for 6. For ex-
ample, a naive application of the Metropolis-Hastings
algorithm when proposing to move from 6; to 6’ ~
h(:0;) results in the acceptance probability,

qo (y)w(0)h(0]0")  Z(0)
q0(y)m(0)N(6']0) . Z(G’)> oW
Z(6)

VAUSR

One method to overcome this co(mgutational bot-
tleneck is to use an approximation of the likelihood
f(y|9). A composite likelihood approximation of the
true likelihood, consisting of a product of easily nor-
malised full-conditional distributions is most commonly
used. The most basic composite likelihood is the pseudo
likelihood (Besag 1974), which comprises the product
of full-conditional distributions of each y;,

a(f’,0) = min <1,

depending on the intractable ratio

M
f(ylo) ~ H f(Wily—i, 0).
i=1

However this approximation of the true likelihood can
give unreliable estimates of 8 (Friel and Pettitt 2004),
(Friel et al 2009).

3.2 Exchange Algorithm

A more sophisticated approach is to use the Exchange
algorithm. Murray et al (2006) extended the work of
Mogller et al (2006) to allow inference on doubly in-
tractable distributions using the exchange algorithm.
The algorithm samples from an augmented distribution

(0, y', 0ly) o< f(yl0)m(0)h(6'10)f(y']6)
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whose marginal distribution for 6 is the posterior of
interest. Here the auxiliary distribution f(y’|0") is the
same likelihood model in which y is defined. By sam-
pling from this augmented distribution, the acceptance
formula simplifies, as can be seen in algorithm 6, where
the normalising constants arising from the likelihood
and auxiliary likelihood cancel. One difficulty of im-

Algorithm 6 Exchange algorithm

for n=0to I do
Draw 6’ ~ h(:|0y).

Draw y' ~ f(-|0).

Set Op4+1 = 6’ with probability min(1,«(6’,0,,y")),
where

g0 (y)™(0")P(0160") g0, (")

a0, 0n,y") =
g0, (y)m(0n)R(0'0n)qe (y')
Z(0,)Z(0)
Z(0)2(0n)
Otherwise, set 0,41 = On.
end for

plementing the exchange algorithm is the requirement
to sample 3y’ ~ f(.|6'), perfect sampling (Propp and
Wilson 1996) is often possible for Markov random field
models. However when the exchange algorithm is used
with MRF's the resultant chains may not mix well. For
example, Caimo and Friel (2011) used adaptive direc-
tion sampling (Gilks et al 1994) to improve the mixing
of the exchange algorithm when used with ERGM mod-
els.

Murray et al (2006) proposed the following inter-
pretation of the exchange algorithm. If we compare
the acceptance ratios in the M-H and Exchange algo-
rithm, the only difference is that the ratio of the nor-
malising constants in the M-H acceptance probability
Z(0)/Z(0") is replaced by gg(y')/qge-(y') in the exchange
probability. This ratio of un-normalised likelihoods is in
fact an unbiased importance sampling estimator of the
ratio of normalising constants since it holds that

2 (y') ) Z(9)
E !~ .16 = . 5
y'~f(-10") <q0/(y/) Z(0") ()
A natural extension is therefore to use a better unbiased
estimator of Z(6)/Z(0") at each step of the exchange al-
gorithm. At each step we could simulate a number of

auxiliary variables (y1, ..., ¥j) from f(.|0), then approx-
imate the ratio of normalising constants by

1N
v

a(y;) _ Z(0)
) " Z20) ©)

3.3 Noisy exchange algorithm

Algorithm 7 results from using an importance sampling
estimator of intractable ratio of normalising constants
following (6). We term this algorithm the noisy ex-
change algorithm. In particular, note that the accep-
tance ratio is replaced by an estimate &. Note further
that when N = 1 this will be equivalent to the exchange
algorithm, and when N — oo this will be equivalent to
the standard Metropolis Hastings algorithm. Both of
these algorithms leave the target posterior invariant.
However when 1 < N < oo this algorithm is not guar-
anteed to sample from the posterior.

Algorithm 7 Noisy Exchange algorithm
for n =0 to [ do

Draw 0’ ~ h(:|05).

for i =1to N do
Draw y; ~ f(:|6").
end for
Define Yo = {yia cee 7y5\]}
Set 0,41 = 0’ with probability min(1,&(6’,0n,ye’)),
where

N

g0 (y)™(0")h(0n10") 1 >y 90, (¥7)
g0, ()7 (On)h(0"10n) N = qo (y;)

Otherwise, set 0,41 = On.
end for

d(elveTL:yG’) =

We will now show that under certain assumptions,
as N — oo the noisy exchange exchange algorithm will
yield a Markov chain which will converge to the target
posterior density. To do so, we can apply Corollary 23.
First, we define some notation and assumptions that
will be used to prove this Lemma.

(A1) there is a constant ¢, such that 1/¢,; < 7(0) < ¢;.
(A2) there is a constant ¢;, such that 1/¢, < h(6'|0) <
Ch.-

(A3) for any 6 and ¢’ in O,

q6 (y’))
Var /'m0 arY = < +00.
y'~f(y'10") <q9,(y/)

Note that when (A1) or (A2) is satisfied, we nec-
essarily have that © is a bounded set, in this case,
we put T = supgeg ||0]]. This also means that 0 <
exp(—TS) < qop(y) < exp(TS) for any 6 and S, we
then put K := exp(T'S). Also, note that this imme-
diately implies Assumption (A3) because in this case,
Vary ¢ (y10 (g0, (¥') /a0 (') < K2, so Assumption (A3)
is weaker than (A1) and than (A2).
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Lemma 2 Under (A3), &(0',0,y') satisfies (H2) in
Corollary 23 with

E’y’Nf(-\H’) |@(97€/5y/) - a(979/)| < 6(979/)

_ L O (a0 W) fy (qen(y’)>
VN W@10)x0)aoly) | T g ()
Theorem 31 Under (Al) and (A2) then (H2) in

Corollary 23 is satisfied with

5(6.0') < B
VN
and
sup [|0g, P™ — 09, P"|| < £
0oc0 VN

where C = C(cx, cn, K) is explicitly known.

Note that Liang and Jin (2011) presents a simi-
lar algorithm to that above. However in contrast to
Lemma 2, the results in Liang and Jin (2011) do not
explicitly provide a rate of approximation with respect
to N. Lemma 2.2, page 9 in Liang and Jin (2011) only
states that there exists a N large enough to reach arbi-
trarily small accuracy € > 0.

3.4 Noisy Langevin algorithm for Gibbs random fields

The discrete-time Langevin approximation (3) is un-
available for Gibbs random fields since the gradient of

the log posterior, V log m(6;|y) is analytically intractable,

in general. However Algorithm 4 can be used using a
Monte Carlo estimate of the gradient, as follows.

log w(6y) = 6" s(y) —log 2(6) + log w() — log 7(y)
Viog 7(8ly) = s(y) — i((g)) + Vg ()
_ () 2 5W)lexp 07 s(y)] -
=) S ep@Ts) 0 ©)
=s(y) —Eyjp[s(y)] + Vlogm(6) (7)

In practice, Ey/,[s(y)] is usually not known - an ex-
act evaluation of this quantity would require an eval-
uation of Z(#). However, it is possible to estimate it
through Monte-Carlo simulations. If we simulate yg =
(Y15 Yn) ~ f(.10), then Ey9[s(y)] can be estimated us-
ing > s(y})/n. This gives an estimate of the gradient
at 0 from (7).

N
V¥ log (6ly) = s(y Z s(y;) + Vg (0).

Algorithm 8 Noisy discretized Langevin algorithm for

Gibbs random fields
for n=0to I do
for i =1to N do
Draw y; ~ f(:|0n)
end for
Define y, = {y1,---

S YN D

Calculate VY logw(0nly) = Vlogn(0,) + s(y) —
N iy syh)-

Set
o oY
9n+1 = 9n+5v o lOg”(gn‘y)‘Fﬁm

end for

In turn this yield the following noisy discretized Langevin
algorithm.

We remark that in this case, the bound in Lemma 1
can be evaluated.

Lemma 3 As soon as N > 4kS?||X|2, the § in Lemma 1
18 finite with

5— ( klog(N) >_1+4W7?SIIEII
1S2|Z|2N N
klog (%)
TNz 182 3|2N

(where || X = sup{[|[ Xz, [[«]| = 1}).

We conclude by an application of Theorem 22 that
allows to assess the convergence of this scheme when
N — oo when the parameter is real.

Theorem 32 Assume that © € R and the prior is
Gaussian 0 ~ N(0,s%). Then, for ¥ < s%, the dis-
cretized Langevin Markov Chain is geometrically er-
godic, with asymptotic distribution ws;, and for N large
enough, the noisy version is geometrically ergodic, with
asymptotic distribution s N and

||7Tg —7T§,N|| — 0.
N—oo

3.5 MALA-exchange

An approach to ensure that the Markov chain from
Algorithm 8 targets the true density, is to include an
accept/reject step at each iteration in this algorithm
using a Metropolis adjusted Langevin (MALA) correc-
tion. We adapt the Exchange algorithm using this pro-
posal, yielding Algorithm 9.

The accept/reject step ensures that the distribution
targets the correct posterior density. If the stochastic
gradient v approximates the true gradient well, then

where 7, are i.i.d. (0, X).
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Algorithm 9 MALA-exchange

Algorithm 10 noisy MALA-exchange

Initialise; set X,

for i =1to N do
Draw y, ~ f(:|60).

end for

Define yeo = {yla s ayN}a
Calculate VY% logm(foly) =

% Zi\fz1 s(yi)-

forn=0toldo
Draw 0 = 0, +% VY0 log w(0n [y)+n,

Viegnm(0o) + s(y) —

n~ N(0,X).

for i=1to N do
Draw yj ~ f(:16").
end for

Define yo, = {y1,.- ., ¥N }-

Calculate VYo logm(0'|y) =

, Lal Viegn(0') + s(y) —
N et S(W7)-

Set 0,41 = 0 and Yo,,, = Yo with probability
min(1, a(0’,0n,y, )),

where (0,0, Yo, ) =
qe' (y)m(0") 1 (010", yor)qe,, (y1)
a6, ()7 (On)h(0"|0n, yo, )0 (y1)

and h(0,]0",yy) ~ N (0’ + 290 log (0" |y), 2).

Otherwise, set 0,41 = 0, and Yo,,, = Yo,"
end for

the proposal value at each iteration should be guided
towards areas of high density. This will allow the al-
gorithm to explore the posterior more efficiently when
compared with a random walk proposal.

3.6 Noisy MALA-exchange

In an approach identical to that in Section 3.3 one could
view the ratio gp,(y')/qer(y') in the acceptance ratio
from Algorithm 9 as an importance sampling estimator
of Z(0")/Z(0;). This suggests that one could replace
this ratio of un-normalised densities with a Monte Carlo
estimator using draws from f(y|6’), as described in (6).
Here, we suggest that the draws used to estimate the log
gradient could serve this purpose. This yields the noisy
MALA-exchange algorithm which we outline below.

4 Experiments

We first demonstrate our algorithms on a simple single
parameter model, the Ising model and then apply our
methodology to some challenging models for the anal-
ysis of network data.

Initialise; set X,

for i =1to N do
Draw y, ~ f(:|60)-

end for

Define yGO = {yla~ . .7yN}a

Calculate V¥ log w(Ooly) =

% 27{\]:1 5(yi)-

forn=0to I do N
Draw 0’ = 0,, + 2 V¥ log m(60n|y) + 1

Vilegnm(0o) + s(y) —

n~ N(0,X).

fori=1to N do
Draw yj ~ f(:]6").

end for

define y,, = {v1,.. ~7y§v}-

Calculate VYo' logm(0']y) =

al Viegw(0') + s(y) —
%Zizl s(y7)-

Set Ony1 = 0 and y, =~ = y, with probability
min(1, &(6”, 0n, ys, ))
where a8, 6., yen) =

qe (y)m(0")R(0n10" yp ) 1 3 qe, (y})
g0, (V)7 (0n)h(0" |0, yh ) N = qor (v})’
and h(0,)60",ys ) ~ N (9’ + %%ye’ log w(0’|y), E).

Otherwise, set 0,41 = 0, and Yo,,, = Yo,-
end for

4.1 Ising study

The Ising model is defined on a rectangular lattice or
grid. It is used to model the spatial distribution of bi-
nary variables, taking values —1 and 1. The joint den-
sity of the Ising model can be written as

) M
f(ylo) = 7(0) ™ 922%%’

j=1 irvj

where ¢ ~ j denotes that ¢ and j are neighbours and
2(0) = Xy exp {0 00 Xin it -
The normalising constant Z(6) is rarely available ana-
lytically since this relies on taking the summation over
all different possible realisations of the lattice. For a
lattice with M nodes this equates to 95 different
possible lattice formations.

For our study, we simulated 20 lattices of size 16 x
16. This size of lattice is sufficiently small enough such
that the normalising constant Z(6) can be calculated
exactly (36.5 minutes for each graph) using a recur-
sive forward-backward algorithm (Reeves and Pettitt
2004; Friel and Rue 2007), giving a gold standard with
which to compare the other algorithms. This is done
by calculating the exact density over a fine grid of 6
values, {61,...,0r} over the interval [—0.4,0.8], which
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Bias

0.006
|

0.002
I

-0.002
I

-0.006
I

T T T T T
Exchange Noisy Exch ~ Noisy Lang MALA Exch  Noisy MALA

Fig. 1 Boxplot of the bias estimate of 6 for 20 datasets cor-
responding to the exchange, importance sampling exchange,
Langevin and MALA algorithms.

cover the effective range of values that 6 can take. We
normalise 7(6;|y) by numerically integrating over the
un-normalised density.

46, _, (y)
Z(0;—1)

W(ei) + 77(01',1)

(8)
yielding

g0, (y) 7(6:)
Z(0:) 7(y)

Each of the algorithms was run for 30 seconds on
each of the 20 datasets, at each iteration the auxiliary
step to draw 3’ was run for 1000 iterations. For each
of the noisy, Langevin and MALA exchange, an extra
N =100 draws were taken during the auxiliary step to
use as the simulated graphs y,,.

Figure 1 shows the bias of the posterior means for each
of the algorithms. We see that both the noisy exchange
algorithm and the Langevin algorithm have a much
smaller bias when compared to the two exchange algo-
rithms. The two noisy algorithms perform better than
the two exact algorithms. This is due to the improved
mixing in the approximate algorithms, even though the
true distribution is only approximately targeted. There
is a trade off here between the bias and the efficiency.
As the step size decreases, both the efficiency and bias
decrease. The MALA-exchange appears better than the
exchange, this is due to the informed proposal used in
the MALA algorithm V log 7(6]y). This informed pro-
posal means the MALA-exchange will target areas of
high probability in the posterior density, therefore in-
creasing the chances of accepting a move at each itera-
tion when compared to the standard exchange. Finally,
in Figure 2 we display the estimated posterior density
for each of the five algorithms together with the true

m(0ily) ~

Exchange

- True
— Exchange

Noisy Exch

2 T
A
S\

T T T T
02 03 04 05 06

Langevin

o= True
— Langevin

Density

Density
0000 0010  0.020
0000 0010 0.020
Density
0000 0010 0.020
TR R R

] ) 0

Mala Exch

oo True
Mala Exch

Noisy Mala

---- True
—— Noisy Mala

Density
0000 0010 0020
L

Density
0000 0010 0020

L
~

02 03 04 05 06 02 03 04 05 06

) )

Fig. 2 Estimated posterior densities corresponding to the ex-
act and noisy algorithms corresponding to one of the datasets
used in the Ising simulation study.

posterior density for one of the 20 datasets in the sim-
ulation study.

4.2 ERGM study

Here we explore how our algorithms may be applied to
the exponential random graph model (ERGM) (Robins
et al 2007) which is widely used in social network anal-
ysis. An ERGM is defined on a random adjacency ma-
trix Y of a graph on n nodes (or actors) and a set of
edges (dyadic relationships) {Y;; : ¢ = 1,...,M;j =
1,...,M} where Y;; = 1 if the pair (4,7) is connected
by an edge, and Y;; = 0 otherwise. An edge connecting
a node to itself is not permitted so Y;; = 0. The dyadic
variables maybe be undirected, whereby Y;j; = Yj; for
each pair (4,j), or directed, whereby a directed edge
from node 7 to node j is not necessarily reciprocated.
The likelihood of an observed network y is modelled

in terms of a collection of sufficient statistics {s1(y), ..., sm(¥)},
9 07”}7

each with corresponding parameter vector § = {61, ...

exp{> 1", 0s1(y)}
Z(0) '

_ a(y) _

For example, typical statistics include s1(y) = >, ¥i
and s2(y) = >, ;. YirYjk which are, respectively, the
observed number of edges and two-stars, that is, the
number of configurations of pairs of edges which share
a common node. It is also possible to consider statistics
which count the number of triangle configurations, that
is, the number of configurations in which nodes 1, j, k
are all connected to each other.

4.2.1 The Florentine Business dataset

Here, we consider a simple 16 node undirected graph:
the Florentine family business graph. This concerns the
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Fig. 3 Florentine family business.

business relations between some Florentine families in
around 1430. The network is displayed in Figure 3. We
propose to estimate the following 2-dimensional model.

f(yl6) = ﬁ exp (6151 (y) + 0252(1))

where s1(y) is the number of edges in the graph and
s2(y) is the number of two-stars.

Before we could run the algorithms, certain param-
eters had to be tuned. We used a flat prior N (0, 100) in
all of the algorithms. The Langevin, MALA exchange
and noisy MALA exchange algorithms all depend on a
stepsize matrix Y. This matrix determines the scale of
proposal values for each of the parameters. This matrix
should be set up so that proposed values for 6 accom-
modate the different scales of the posterior density of 6.
In order to have good mixing in the algorithms we chose
a X which relates to the shape of the posterior density.
Our approach was to aim to relate X' to the covariance
of the posterior density. To do this, we equated X' to an
estimate of the inverse of the second derivative of the
log posterior at the mazimum a posteriori estimate 6*.
As the true value of the MAP is unknown, we used a
Robbins-Monro algorithm (Robbins and Monro 1951)
to estimate this. The Robbins-Monro algorithm takes
steps in the direction of the slope of the distribution. It
is very similar to Algorithm 8 except without the added
noise and follows the stochastic process

Ont1 = 0n + €, VY0 log m(0,]y),
N N
where Zen < oo and 26721 < 00.
i=0 i=0
The values of € decrease over time and once the dif-
ference between successive values of this process is less

than a specified tolerance level, the algorithm is deemed
to have converged to the MAP. The second derivative of

the log posterior is derived by differentiating (7) yield-
ing

V2 log (6% |y) = Covy» g+ (s(y™)) + V2 log m(6*) (9)

In turn, Covy-jg-(s(y*)) from (9) can be estimated us-
ing Monte Carlo based on draws from the likelihood
f(y]6*). We used the inverse of the estimate of the sec-
ond derivative of the log posterior as an estimate for the
curvature of our log posterior distribution. The matrix
2] we used was this estimate of the curvature multiplied
by a scalar. We multiply by a scalar to achieve differ-
ent acceptance rates for the algorithms. This is similar
to choosing a variance for the proposal in a standard
Metropolis-Hastings algorithm. If too small a value is
chosen for the scalar, the algorithm will propose small
steps and take a long time to fully explore the posterior
distribution. If too large a value is chosen for the scalar,
the chain will inefficiently explore the target distribu-
tion. A number of pilot runs were made to find a value
for the scalar which gave the desired acceptance rates
for each of the algorithms. The MALA exchange and
Noisy MALA exchange algorithms were tuned to have
an acceptance rate of approximately 25% and a similar
Y} matrix was used in the noisy Langevin algorithm.
If the second derivative matrix is singular, a problem
can arise, in that is impossible to calculate the inverse
of the matrix. Further information on singular matri-
ces can be found in numerical linear algebra literature,
such as Golub and Loan (1996).

The algorithms were time normalised, each using
30 seconds of CPU time. An extra N = 50 graphs
were simulated for the noisy exchange, noisy Langevin,
MALA exchange and noisy MALA exchange algorithms.
The auxiliary step to draw ¢’ was run for 1000 iterations
followed by an extra 200 iterations thinned by a factor
of 4 yielding N = 50 graphs. To compare the results
to a “ground truth”, the BERGM algorithm of Caimo
and Friel (2011) was run for an large number of itera-
tions equating to 2 hours of CPU time. This algorithm
involves a population MCMC algorithm and uses the
current state of the population to help make informed
proposals for the chains within the population.

Table 1 shows the posterior means and standard
deviations for the various algorithms. Figures 4 and 5
shows the chains, densities and autocorrelation plots.
In Table 1 we see that the noisy exchange algorithm
had improved mean estimates when compared to the
exchange algorithm. The MALA exchange and Noisy
MALA exchange algorithms both had better mean es-
timates than the noisy Langevin algorithm, although in
all cases the posterior standard deviation was underes-
timated.
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Table 1 Posterior means and standard deviations.

Edge 2-star

Method Mean SD Mean SD

BERGM -2.675 0.647 0.188 0.155
Exchange -2.573 0.568 0.146  0.133
Noisy Exchange -2.686 0.526 0.167 0.122
Noisy Langevin -2.281 0.513 0.081 0.119
MALA Exchange | -2.518  0.62 0.136  0.128
Noisy MALA -2.584 0.498 0.144 0.113

Noisy Exchange

it i

™5 " 1 0rP000 * 5 " 1u0P000 T o " f8%8on 8900 s "1, " 8000

Langevin MALA Exchange Noisy MALA Exch

ACF Edge

* Exchange
+ Noisy Exch
* Noisy Lan
MALA EXxcl
* Noisy MALA Exch

—— Noisy MALA

W

50 100 Egg 200 250 300

SRR

S
16 1'%

Fig. 4 Chains, density plot and ACF plot for the edge statis-
tic.

The ACF plots in Figures 4 and 5 show how all
of the noisy algorithms displayed better mixing when
compared to the exchange algorithm. The density plots
show that all of the algorithms with the exception of the
noisy Langevin estimated the mode of the true density
well but they underestimated the standard deviation.

The noisy Langevin performed poorly. A problem
of Langevin diffusion as pointed out in Girolami and
Calderhead (2011) is that convergence to the invariant
distribution is no longer guaranteed for finite step size
owing to the first-order integration error that is intro-
duced. This discrepancy is corrected by the Metropolis
step in the MALA exchange and noisy MALA exchange
but not in the Langevin algorithm. Since our Noisy
Langevin algorithm approximates Langevin diffusion
we are approximating an approximation. There are two
levels of approximations which leaves more room for
error.

4.2.2 The Molecule dataset

The Molecule dataset is a 20 node graph, shown in Fig-
ure 6. We consider a four parameter model which in-
cludes the number of edges in the graph, the number of
two-stars, the number of three-stars and the number of

Noisy Exchange Langevin MALA Exchange Noisy MALA Exch

@ o] o] o]
S S S 5
5 5 15 o
s <] < <|
T T 1 71
0 i ioPI00 O T I ioP000 O f%on 8900 O TidERn T 8000
2star ° ACF 2star
< - i « Exchange
— Sehange | 7| < Noisy Ben
= Matkes | @ IVRACE
o — NoisyMALA | ©  Noisy MALA Exch
©
o
<
o~ hs \
o
o
-
W
o
P

ol \
-10 -05 00,_05 10
2star

1's 6 5o 160 g(g) 200 250 300

Fig. 5 Chains, density plot and ACF plot for the 2-star
statistic.

Fig. 6 Molecule network

triangles.

F610) = 535 50 (Or51(6) + Da5a(v) + By53(0) + D154(0)
The X parameter was chosen in a similar fashion to the
Florentine business example. The Robbins-Monro algo-
rithm was run for 20,000 iterations to find an estimate
of the MAP, 4,000 graphs were then simulated at the
estimated MAP and these were used to calculate an
estimate of the second derivative using Equation (9).
The matrix X was the inverse of this estimate was cal-
culated multiplied by a scalar. The scalar was chosen as
a value which achieved the desired acceptance rate, a
number of pilot runs were used to get a reasonable value
for the scalar. This was carried out for both the MALA
exchange and noisy MALA exchange and a similar X
matrix was used for the noisy Langevin algorithm. The
ERGM model for the molecule data is more challenging
than the model for the Florentine data due to the extra
two parameters.

The BERGM algorithm of Caimo and Friel (2011)
was again used as a “ground truth”. This algorithm
was run for a large number of iterations equating to
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Table 2 Posterior means and standard deviations.

Edge 2-star
Method Mean SD Mean SD
BERGM 2.647 2.754  -1.069 0.953
Exchange 1.889 2.142  -0.797 0.744
Noisy Exch 1.927 2.444  -0.757 0.823
Noisy Lang 1.679 3.65 -0.509 1.429
MALA Exch 2.391 2.095 -0.938 0.795
Noisy MALA Exch | 2.731 2.749 -1.054 0.886

3-Star Triangle
Method Mean SD Mean SD
BERGM -0.021 0.483 1.787 0.646
Exchange -0.138 0.385 1.593 0.519
Noisy Exch -0.176  0.422 1.543 0.53
Noisy Lang -0.466  0.787 1.633 0.573
MALA Exch -0.113  0.451 1.454 0.598
Noisy MALA Exch | -0.041 0.417 1.519 0.492

4 hours of CPU time. This gave us accurate estimates
against which to compare the various algorithms. The
five algorithms were each run for 100 seconds of CPU
time. Table 2 shows the posterior mean and standard
deviations of each of the four parameters for each of
the algorithms. The results for the Molecule dataset
model are similar to the Florentine business dataset
model. In Table 2 we see that the noisy exchange al-
gorithm improved on the standard exchange algorithm.
The MALA exchange improved on noisy Langevin and
the Noisy MALA improved on the MALA exchange.

Figure 7 and Figure 8 show the densities and the
autocorrelation plots of the algorithms. The autocorre-
lation plots show that the noisy algorithms had less
correlation than the exchange algorithm. The densi-
ties show that again the algorithms, when run on the
Molecule model, performed in the same manner as the
Florentine model. The algorithms with the exception
of the noisy Langevin algorithm estimated the mode
well but underestimated the standard deviation. The
noisy Langevin algorithm did not estimate the mean or
standard deviations well.

5 Conclusion

The results in this paper give bounds on the total vari-
ation between a Markov chain with the desired target
distribution, and the Markov chain of a noisy MCMC
algorithm. An important question for future work con-
cerns the statistical efficiency of estimators given by
ergodic averages of the chain output. This is a key
question since the use of noisy MCMC will usually be
motivated by the inefficiency of a standard alternative
algorithm. This inefficiency may be: statistical, where
the standard algorithm is only capable of exploring the

Edge 2 Star
IS ©
Q4 ]
=} = - BERGM © = - BERGM
A — Exchange i — Exchange
ﬂA — Noisy Exch — Noisy Exch
o — Noisy Lang < | — Noisy Lang
MALA Exch © MALA Exch
24 — Noisy MALA i — Noisy MALA
S
N
= IS
[S) 4
34 =8
o T T T T T T T Ji
5 0 5 10 15 20 4 2 b0 2 i
3 Star Triangle
o
\ - - BERGM *4 - - BERGM
— Exchange ° — Exchange
o — Noisy Exch © — Noisy Exch
— Noisy Lang o — Noisy Lang
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~ i
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Fig. 7 Density plots of the 4 parameters for the molecule
example.
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Fig. 8 ACF plots for the 4 parameters for the molecule ex-
ample.

parameter space slowly (as can be the case for the stan-
dard exchange algorithm); or, computational, where a
single iteration of the standard algorithm is too com-
putationally expensive for the method to be practi-
cally useful (as is the case for large data sets, examined
by Korattikara et al (2014)). If we introduce a noisy
MCMC algorithm to overcome the inefficiency, usu-
ally the rationale is that the combined statistical and
computational efficiency is sufficiently improved to out-
weigh the effect of any bias that is introduced. To study
this theoretically we need to investigate the asymptotic
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variance of estimators from noisy MCMC algorithms.
Andrieu and Vihola (2012) have examined this ques-
tion for pseudo-marginal algorithms of the GIMH type,
and have shown the asymptotic variance for pseudo-
marginal algorithms is always larger than for the corre-
sponding “ideal” algorithm. One might expect a simi-
lar result to hold for noisy MCMC algorithms, in which
case the effect of this additional variance on top of the
aforementioned bias should be a consideration when
employing noisy MCMC.

In this paper our convergence results depend on
the ergodicity of the ideal non-noisy chain. In the case
where this chain is uniformly ergodic, we are able to
provide explict rates of convergence with N, the num-
ber of randomisation steps in the noisy algorithm. Of
course, the assumption of uniform ergodicity is strong
and difficult to prove, in general. However, we have also
provided results where we relax this assumption to the
less restrictive case of geometric ergodicity. Here we
prove convergence to the target distribution, although
we are not able to provide an explicit convergence rate
with N. This will be a focus for future research.
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As a consequence, for any 7 > 0,
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This ends the proof. [
Proof of Lemma 32. We just check all the conditions of The-
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V. Note that here:
Viogn(0ly) = Vilegm(0) + s(y) — Eyjo[s(y)]

_ _S% +5(y) — Eyjo[s(y)]

0

52

Then, according to Theorem 3.1 page 352 in Roberts and
Tweedie (1996a) (and its proof), we know that for ¥ < s2,
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