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ABSTRACT

There has been a recent rejuvenation of interest in studies of motivation-cognition
interactions arising from many different areas of psychology and neuroscience. The
current issue of Cognitive, Affective, and Behavioral Neuroscience provides a sampling
of some of the latest research from a number of these different areas. In this introductory
paper, we provide an overview of the current state of the field, in terms of key research
developments and candidate neural mechanisms receiving focused investigation as
potential sources of motivation-cognition interaction. However, our primary goal is
conceptual: to highlight the distinct perspectives taken by different research areas in
terms of how motivation is defined, the relevant dimensions and dissociations that are
emphasized, and the theoretical questions being targeted. Together, these distinctions
present both challenges and opportunities for efforts aiming towards a more unified and
cross-disciplinary approach. We identify a set of pressing research questions calling out
for this sort of cross-disciplinary approach, with the explicit goal of encouraging
integrative and collaborative investigations directed towards them.



INTRODUCTION

The construct of motivation has been a central part of psychology since the
earliest days of James and Wundt. It is a construct that spans many levels of analysis,
complexity and scope, from cellular and systems neuroscience, to individual differences
and social psychology (plus applied domains such as educational and
industrial/organizational psychology, and clinical psychology and psychiatry). Recently
there has been a rejuvenation of interest in scientific studies of motivation, arising from
three distinct scientific perspectives and research traditions: a) cognitive, systems, and
computational neuroscience; b) social, affective and personality psychology, and c)
aging, developmental, and lifespan research. This special issue of CABN is the direct
result of a recent effort to integrate and cross-fertilize these three research streams
through a small-group conference sponsored by the National Institute of Aging (with
additional support from the Scientific Research Network on Decision Neuroscience and
Aging): Mechanisms of Motivation, Cognition, and Aging Interactions (MOMCAI). This
special issue provides a sampling of the latest research that originates from these different
traditions, with a number of the contributions coming from conference participants.

In this introductory article, our goal is primarily conceptual: to define the space of
the domain being covered in the Special Issue, as we currently see it. Specifically, we
highlight some key unresolved theoretical questions and challenges that need to be
addressed by the field, while also highlighting what we believe are some of the most
profitable research strategies. Our hope is that this introductory article will serve as
something like a road-map for researchers interested in getting involved with this
research area. More importantly, we hope to stimulate cross-talk and the cross-
fertilization of ideas among investigators working in disparate research traditions.

The paper is organized into five different sections. The first section briefly covers
some of the recent developments that have rejuvenated the study of motivation-cognition
interactions from different research perspectives. In the second section, we discuss how
motivation is defined and studied, with different emphases and foci, in each of these
different traditions. Third, we describe some of the relevant dimensions and distinctions
within the domain of motivation, which help to further define and taxonomize this
domain.  The fourth section focuses on candidate neural mechanisms, arising from
cognitive neuroscience research, that are thought contribute to motivation-cognition
interactions. In the final section, we highlight what in our view are some of the most
pressing research questions and “low hanging fruit”, that we hope will be targeted in
future investigations within this domain.

RECENT DEVELOPMENTS

Recent research in cognitive, computational, and systems neuroscience has begun
to uncover some of the underlying core mechanisms by which reward signals and
motivational state changes modulate ongoing neurocognitive processing. In particular,
this work suggests that performing tasks in a context with available reward incentives
leads to enhancements in specific cognitive processes, such as active maintenance in
working memory, preparatory attention, episodic encoding, and decision-making
(Hannah S. Locke & Braver, 2010; Maddox & Markman, 2010; Pessoa, 2009; Pessoa &
Engelmann, 2010; Shohamy & Adcock, 2010). These cognitive effects appear to occur
via modulation of specific neural circuits involving the prefrontal cortex (PFC), midbrain



dopamine system, and related subcortical structures such as the basal ganglia and
hippocampus. The experimental work has been paralleled by theoretical developments
involving the reinforcement learning computational framework. This framework
postulates that inputs coding the current and predicted motivational value of events are
utilized by the brain as learning signals to adjust decision-making biases (K. C. Berridge,
2007; Daw & Shohamy, 2008; S. M. McClure, Daw, & Montague, 2003; Niv, Daw, Joel,
& Dayan, 2007).

A second stream of research development comes from the social, affective, and
personality perspective. In this domain, investigations have focused on the types of goals
that individuals select to pursue, and the internal and external influences on goal pursuit.
In recent years, two surprising findings have emerged: 1) the explicit motivational value
of behavioral goals is often not a strong determinant of whether those goals will be
implemented and realized (Gollwitzer, 1999), because nonconscious influences can alter
goal pursuit, primarily by modulating the perceived motivational value associated with
goal outcomes (Bargh, Gollwitzer, Lee-Chai, Barndollar, & Trotschel, 2001; R. Custers
& Aarts, 2010); and 2) goal pursuit follows specific stages (e.g., planning vs.
implementing) and time courses, such that goal directed behavior can increase, decreases
or fluctuate over time, depending on the nature of the goal and the feedback received
(Gollwitzer, 2012). This work has spawned a host of experimental paradigms and
research strategies for specifying and elucidating the nature of nonconscious effects on
goal pursuit (Bargh & Morsella, 2010), effective strategies for emotional regulation and
self-control (Kross & Ayduk, 2011), causes of self-regulatory persistence (Job, Walton,
Bernecker, & Dweck, 2013), or depletion and failure (Baumeister & Vohs, 2007), and
major sources of personality differences (Sorrentino, 2013).

The role of motivation-cognition interactions has also been emphasized in recent
aging and developmental research. On the aging side, a primary focus has been on
motivational reprioritization among older adults (Charles, 2010; J. Heckhausen, Wrosch,
& Schulz, 2010). In the socioemotional domain, accumulating studies suggest that older
adults can exhibit better emotion regulation than younger adults in some contexts, as well
as a stable or increased focus towards positive affect (Carstensen et al., 2011; Mather,
2012; Urry & Gross, 2010). Such findings are somewhat puzzling, given that emotion
regulation is generally hypothesized to depend on executive control processes and
supporting brain systems (e.g., prefrontal cortex) that are well-established as showing
age-related decline (Ochsner & Gross, 2005). Specifically, one theoretical account
postulates that these effects reflect increased motivation towards emotionally meaningful
goals and those associated with positive affect among older adults, as they get closer to
the end of their life (Carstensen, 2006; Carstensen, lsaacowitz, & Charles, 1999).
Contrasting accounts also focus on motivational reprioritization, but instead as a specific
response to age-related cognitive decline. According to such accounts older adults will
restrict cognitive engagement to: a) activities associated with maintenance or loss
prevention as opposed to growth (Baltes, 1997); or (b) tasks with the greatest
implications for self (Hess, in press).

A different emphasis has arisen from the developmental perspective. Here, the
focus has been on potentially diverging trajectories in the maturation of cognitive vs.
affective neural circuits. Specifically, adolescence has been highlighted as a period in
which cognitive control processes are especially sensitive to incentive-related



motivational influences (Geier, Terwilliger, Teslovich, Velanova, & Luna, 2010;
Prencipe et al., 2011; Somerville & Casey, 2010; Steinberg, 2010a; van den Bos, Cohen,
Kahnt, & Crone, 2012; Van Leijenhorst et al., 2010). These trajectories also diverge
again in older age, with cognitive prefrontal circuits more affected than emotional
prefrontal circuits (Mather, 2012).

Although the body of work examining motivational influences on basic cognition
and higher-level goal pursuit is rapidly growing, there is often a lack of cross-talk
between neurocognitively-focused researchers and those taking social/personality and
life-span perspectives. This is problematic because all of these perspectives are likely to
be required to achieve a comprehensive understanding of how motivation impacts
psychological and behavioral function. A number of challenges must be overcome to
enable such integration. In the next two sections, we outline the key challenges of: a)
defining motivation and b) specifying its relevant dimensions.

MOTIVATIONAL DEFINITIONS AND OPERATIONALIZATION
A key challenge for cross-disciplinary integration is to establish a unified
definition for motivation and how motivational consequences are operationalized in
experimental investigations. Indeed, different research traditions have emphasized
distinct aspects of motivation. Here we briefly discuss how motivation has been defined
and operationalized from within these different traditions.

Animal Learning / Systems Neuroscience.

Historically, studies of motivation in the animal learning tradition were strongly
focused on homeostatic drive accounts, in which physiological deviations from an
internal set-point led to shifts in motivational state (e.g., thirst, hunger) that trigger
corrective behaviors (Bindra, 1974; Hull, 1943; Toates, 1986). However, contemporary
research has been strongly influenced by the discovery that variations in the magnitude
and quality of a reinforcer or the outcome of an instrumental action have behavioral
effects that parallel those induced by physiological shifts in motivational state. This
finding suggests that such states, rather than inducing drives, motivate behavior by
modulating expectancies regarding the outcome (i.e., its incentive value). Because the
incentive value of an action outcome must be learned, much of current research focuses
on the learning processes that mediate motivational control over behavior (K. C.
Berridge, 2004). Incentive learning is investigated using standard Pavlovian and
instrumental conditioning paradigms, and assessed in terms of the behavioral,
physiological, and neural responses that develop to cue stimuli (CSs) previously
associated with rewarding or aversive outcomes.

In the domain of systems neuroscience, motivation is construed as having both
activational and directional functions (Salamone & Correa, 2012), with the former
related to the non-specific energization or invigoration of responding (typically assessed
in terms of response rate or intensity), and the latter referring to specific response biases
(typically assessed in terms of choice or place preferences). Behavior is further
considered to be under goal-directed motivational control if it meets two additional
criteria: 1) it is sensitive to the current incentive value of the outcome; and 2) it is
sensitive to action-outcome contingencies (Dickinson & Balleine, 1995). A canonical
paradigm for investigating goal-directed motivational effects is the outcome revaluation




procedure (Dickinson, 1985), which is used to demonstrate how a change in the
motivational state of the animal (selective satiation, physiological deprivation, aversive
conditioning, etc.) can immediately impact Pavlovian responses (e.g., licking), and can
also bias instrumental behaviors (e.g., rate of lever pressing) even in the absence of
further contact with the reinforcer. Studies are typically conducted with primary
reinforcers, such as food, liquid, or sexual stimuli, used as incentives.

Social, Affective, and Personality Psychology

Social and personality psychologists use motivational constructs to describe why
a person in a given situation selects one response over another or makes a given response
with stronger intensity or frequency (Bargh, Gollwitzer, & Oettingen, 2010). This
conceptualization follows that of animal learning and systems neuroscience studies, in
focusing on both the activational and directional functions of motivation. However, in
the social, affective, and personality tradition, the primary interest is in how the direction
and intensity of motivation arise from the expectations and needs of the individual
(Weiner, 1992). A key theoretical framework is the conceptualization of motivation in
terms of goals. Here, goals are considered to be mental representations of desired states,
which serve as an intermediate construct that actually generates the activational and
directional components of motivation (Austin & Vancouver, 1996; R. Custers & Aarts,
2005; Elliot & Fryer, 2008).  Additionally, social and personality psychologists, use the
term motive to refer to higher-order classes of incentives, such as achievement, power,
affiliation, and intimacy, that may be intrinsically attractive to an individual (McClelland,
1985b). Motives can exhibit state-like properties, such that they reflect different
situational construals, but there are also motive dispositions, which are relatively stable
and trait-like (Gollwitzer, Barry, & Oettingen, 2011; Schultheiss & Brunstein, 2010).

Gollwitzer (1990) coined the summary terms feasibility and desirability to
describe the directional and activational determinants of motivation, respectively.
Feasibility reflects expectations of the probability of attaining the desired future outcome,
based on experiences in the past (Bandura, 1977; Mischel & Moore, 1973). These
expectations can specify whether or not: a) one is capable of performing a certain
behavior that is necessary to achieve a desired outcome (i.e., self-efficacy expectations),
(b) the performed behavior will lead to the desired outcome (i.e., outcome expectations),
or (c) one will reach the desired outcome (general expectations; Oettingen & Mayer,
2002). In contrast, desirability is defined as the estimated value of a specific future
outcome (i.e., the perceived attractiveness of the expected short- and long-term
consequences, within and outside the person, of having reached the desired future).

The dimension of desirability is often further subdivided in terms of motive
strength and incentive value. Motive strength is defined primarily in terms of the
individual, and relates to the class of incentives that the individual usually finds
attractive. Thus, motive strength typically refers to the long-term likelihood that an
individual will engage in actions of any type that would tend to satisfy the motive. In
contrast, incentive value is defined in terms of properties of the stimulus, and specifies
the behavioral choices made within a particular domain of action. As an example, high
achievement motive strength will cause an individual to see challenging tasks as
attractive and seek out opportunities to engage in them. Tasks that provide the




opportunity for achievement pride will have high incentive value, and will be associated
with specific behavioral choices that indicate high effort expenditure and task persistence.

A typical experimental paradigm within social, affective, and personality
psychology will examine the intensity or frequency of motivated behavioral responses in
terms of these three factors (feasibility, motive, incentive value) (McClelland, 1985bh).
Response measures can be collected via laboratory performance tasks, but are also
commonly acquired through self-report or experience sampling approaches. Likewise,
measures of motive, incentive value, and feasibility (expectancy) can be taken from
personality questionnaires, implicit rating tasks (e.g., projective methods, such as the
Thematic Apperception Test; Murray, 1943), or experimental manipulations of success
likelihood. A canonical finding is the presence of a 3-way multiplicative interaction
among these factors that predicts response strength (i.e., frequency or intensity of a given
behavior) (McClelland, 1985a).

Cognitive Neuroscience

In cognitive neuroscience, motivation is often formulated in terms of neural
representations of expected outcomes that predict decisions regarding effort investment.
Experimental investigations commonly operationalize motivation in terms of the transient
neural responses evoked by extrinsic incentive cues. These cues are used to signal
parametrically manipulated rewards (typically monetary) available for instrumental
actions, on the assumption that motive strength will covary quantitatively with reward
amount. The Monetary Incentive Delay (MID) task is a canonical paradigm for
investigating such effects (Knutson, Fong, Adams, Varner, & Hommer, 2001): pre-trial
cues indicate the amount of monetary reward to be earned (or penalty avoided) by
making a sufficiently fast button-press response to a brief visual target, with the
allowable response window typically manipulated to ensure a specific reward rate. This
paradigm is used to identify cue-related activation in candidate motivation-linked brain
regions (e.g. midbrain dopamine system, nucleus accumbens) that tracks the expected
incentive value (i.e., amount x success probability) of the target action. A limitation of
these types of paradigms is that they do not directly indicate a motivational effect,
because typical behavioral indices of effort investment — accuracy and reinforcement rate
— are experimentally controlled (and even reaction time, which is not typically controlled,
is almost never considered a dependent measure). Instead, the expected value of an
action is often treated as an assumed proxy for motivation in many cognitive
neuroscience studies.

Another approach that has been utilized to decouple effort investment from
simple motor behaviors (e.g., response speed / vigor) is to examine how fluctuations in
incentive value modulate engagement in effortful cognitive processing. In this case, the
motivation triggered by an incentive cue is related not only to the expected value of the
action outcome, but also to the efficacy in obtaining it via a targeted neurocognitive
process. A canonical example of this approach is the Incentivized Encoding paradigm, in
which pre-trial incentive cues indicate the incentive value associated with successful
memorization of an upcoming visual stimulus, with payoffs delivered at a later memory
test session (Adcock, Thangavel, Whitfield-Gabrieli, Knutson, & Gabrieli, 2006;
Wittmann et al., 2005). This paradigm has been used to demonstrate incentive-related
mediation of successful memorization, in terms of the enhanced activation of motivation-




linked neural circuits (e.g., dopaminergic pathways) and/or functional connectivity with
memory systems (i.e., medial temporal lobe). Similar approaches have been used to target
different cognitive processes, such as working memory, task-switching, attentional
selection, response inhibition, and decision-making (Braem, Verguts, Roggeman, &
Notebaert, 2012; Krebs, Boehler, Roberts, Song, & Woldorff, 2012; Krebs, Boehler, &
Woldorff, 2010; Padmala & Pessoa, 2011; van Steenbergen, Band, & Hommel, 2012).

Cognitive Aging & Development

In cognitive aging research, motivational constructs have been invoked to explain
changes in the selection of cognitive activities, level of engagement, and biases in
attention and perceptual processing. A common approach in this tradition is to assess
cognitive task selection and engagement as a function of the motivational value
associated with that task (e.g., Freund, 2006; Germain & Hess, 2007).

A finding of particular interest within this domain is the positivity effect — in
which memory and attention in older adults appears to be asymmetrically biased towards
affectively positive items or events (i.e., age x valence interactions). An influential
hypothesis is that positivity biases are the result of chronically active emotion regulation
goals; that is, a heightened motivation to focus on the positive and avoid the negative
(Mather & Carstensen, 2005; Reed & Carstensen, 2012). A standard experimental
approach for testing this hypothesis is to put emotion regulation goals in competition with
other goals and compare their expression to unconstrained conditions. The assumption is
that age-differences in active emotion regulation goals will be less strongly expressed
when those goals are competing with experimentally-imposed task goals (e.g.,
remembering items for a subsequent memory test). This approach has been used to
demonstrate that: a) larger positivity effects (age x valence interactions) are observed
during unconstrained conditions relative to those that provide task-related goals (e.g.,
remember items for a subsequent memory test; Reed, Chan, & Mikels, 2014); and
conversely, b) positivity effects can emerge in younger adults instructed to focus on their
emotions (Kennedy, Mather, & Carstensen, 2004; Mather & Johnson, 2000). Another
experimental approach to the positivity effect is to focus on the role of cognitive control,
under the assumption that control is required to maintain emotion regulation goals in an
active and accessible state. The key finding is that positivity effects are reduced in older
adults with low cognitive control abilities, or under task conditions with high cognitive
control demands (Knight et al., 2007; Mather & Knight, 2005; Petrican, Moscovitch, &
Schimmack, 2008). However, it is important to note that to date, the influence of
motivational variables (e.g. motive strength, incentive value) on positivity effects have
not been assessed directly.

Motivational constructs have also been invoked in the developmental literature as
a primary means of explaining the apparent surge in risky decision-making that occurs
during adolescence (Somerville & Casey, 2010; Spear, 2000). Both rodent (Douglas,
Varlinskaya, & Spear, 2003) and human models (Cauffman et al., 2010; Steinberg et al.,
2008) suggest that reward-seeking, novelty-seeking, and exploratory behavior peaks in
adolescence. These behaviors are interpreted in terms of the unique trajectories of brain
development that occur during this age period, in which the key mechanisms that
modulate dopamine circuitry function are maximally activated, leading to biased dynamic
interactions  within  subcortical-cortical neural circuits.  Specifically, these




neurodevelopmental changes are thought to up-regulate the signaling strength of
motivationally salient information, such that it exerts a disproportionately strong
influence over adolescents’ choices, actions, and regulatory capacity (Somerville &
Casey, 2010; Spear, 2000; Steinberg, 2004; see Pressing Research Questions for further
discussion).

The standard experimental approach to this issue is to elicit motivational context-
specificity effects, involving the same types of incentive manipulations used in the
cognitive neuroscience literature, to demonstrate that adolescents show adult-like
decision-making under some circumstances, but selective disruptions under conditions in
which salient affective-motivational cues or contexts are present (e.g,. Figner, Mackinlay,
Wilkening, & Weber, 2009). Current work aims to define the necessary and sufficient
features of environmental cues and contexts that lead to heightened approach
motivational behavior in adolescents.

Summary
The preceding sections highlight the differences in how motivation is defined and

investigated in various subfields. In animal behavioral neuroscience, the emphasis is on
learning and conditioning processes, using primary incentives (food, liquid, sexual
stimuli) and measuring simple behaviors (physiological reflexes, response rates, stimulus
preferences). In social and personality psychology, the emphasis is on the pursuit of
temporally extended goals involving high-level incentives (power, achievement,
affiliation), and assessing self-reported beliefs and goal striving behaviors. In cognitive
neuroscience and adolescent developmental research, the emphasis is on neural
representations of incentive value, typically using monetary rewards, and assessing how
these modulate effortful cognitive processing. Finally, in cognitive aging research, there
is an emphasis on emotion-cognition interactions, using affectively-valenced stimuli, and
measuring attentional and memory biases.

This comparison across research domains reveals shortcomings within each
subfield. For example, systems and computational neuroscience studies typically focus on
very simple goal-directed behaviors, and thus have only rarely addressed why or how
motivational factors can influence high-level cognitive processing. In contrast, human
cognitive neuroscience studies tend to use rather narrow experimental manipulations of
motivational state (i.e., monetary reward incentives), and thus often fail to exploit the
higher degree of experimental control that comes from using biologically-relevant
incentives, such as food and liquids, that are more easily linked to motivational factors
(e.g., physiological shifts, satiation, subjective preferences, etc.) (Galvan & McGlennen,
2013; Krug & Braver, in press). Conversely, although social and personality
psychologists more commonly explore the types of complex factors that are known to
moderate human motivation (e.g., personality traits, affective context, situational
construals), this work does not typically take advantage of the experimental precision and
additional leverage afforded by the paradigms and methods employed in cognitive and
neuroscience research (e.g., neuroimaging, pharmacological interventions, etc). Finally,
in cognitive aging and developmental studies, motivational mechanisms of age-related
differences are often postulated without being explicitly tested with the types of
experimental manipulations employed in either the neuroscience or social/personality
literatures. Greater cross-fertilization would be highly fruitful in helping each subfield



address its own limitations, by bridging between constructs and paradigms, such that
motivation-cognition interactions can be understood at various levels of analysis.

MOTIVATIONAL DIMENSIONS & DISTINCTIONS

A second key challenge to cross-disciplinary integration is to identify the relevant
dimensions by which to taxonomize motivational influences on behavior. As will become
clear below, the motivational dimensions and distinctions that have been investigated and
emphasized vary significantly across disciplinary subfields. As a consequence,
researchers working in one subfield may not be aware of the distinctions prominent in
another, and as such, may not be sufficiently informed and constrained by them in their
own research investigations. The goal of this section is to highlight these distinctions,
and show how they challenge theory development and experimentation on the
mechanisms of motivation-cognition interactions.

Goal-directed Control versus Other Forms of Incentive-Based Learning

Motivation is most often conceptualized as being goal-directed, in that effort is
invested towards instrumental actions that bring about desirable outcomes, in relationship
to the incentive value of those outcomes. However, through incentive-based learning
mechanisms, stimulus-response (S-R) associations may also form that are independent of
the current incentive value of a goal, as in the case of habits. Habits are important for
behavioral control in that they enable efficient and automatized responding that does not
require representation of action-outcome associations (Balleine & Killcross, 2006;
Dickinson & Balleine, 2000).

Within the animal and systems neuroscience literature, considerable work has
been devoted to distinguishing motivational effects on goal-directed versus habitual
behavioral control. As described above, one classic approach is to identify goal-direct
behaviors via outcome revaluation procedures, since habitual behaviors have been found
to be insensitive to such manipulations (Dickinson & Balleine, 1994). A second test is
Pavlovian Instrumental Transfer (PIT; Dickinson & Balleine, 1994; Estes, 1943), in
which presentation of a Pavlovian cue (i.e., predictive of reward not contingent on
instrumental behavior) can enhance instrumental responding, although the cue had not
previously been paired with such instrumental responses. One form of PIT, termed
general PIT, enhances instrumental responses even when they are not linked to the
Pavlovian outcome (e.g., for a thirsty animal, a water-predicting cue can increase
instrumental responding for a food reward; Dickinson & Dawson, 1987). General PIT is
thus activational rather directional, and appears to have a greater influence when behavior
is under habitual control (Holland, 2004).

The phenomenon of PIT highlights the motivational effects of Pavlovian stimuli.
Pavlovian motivational control has been referred to as incentive salience, which may be
reflected in the subjective experience of ‘wanting’ (K. C. Berridge & Robinson, 1998).
Incentive salience indexes the motivational power of learned Pavlovian CSs (i.e., those
previously associated with appetitive or aversive outcomes) to invigorate behaviors.
Incentive salience is wholly motivational, in that it is a function not only of the learned
outcome value transferred to the CS, but also of the current physiological state (e.g.,
hunger, satiety, etc.). Nevertheless, incentive salience is not thought to be goal-directed,
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in the sense described above. Indeed, Pavlovian responses appear to be hard-wired and
reflexive, such that activated behaviors are somewhat inflexible, and may actually be
maladaptive (Dayan, Niv, Seymour, & Daw, 2006; Hershberger, 1986). A core feature of
incentive salience is that the Pavlovian CSs can sometimes become “motivational
magnets”, triggering approach (or avoidance) behaviors directed toward the cue itself
(rather than the outcome they signify; K. C. Berridge & Robinson, 1998; K. C. Berridge,
Robinson, & Aldridge, 2009).

In recent years, there has been increasing mutual influence between systems
neuroscience studies of animal learning and the computational framework of
reinforcement learning. This framework formalizes learning algorithms by which agents
maximize expected long-term reward (Sutton & Barto, 1998). Thus, reinforcement
learning refers to learning the value of events, actions, and stimuli. An important
distinction in this literature has been between model-free versus model-based
reinforcement learning, a computational distinction that parallels the habitual versus goal-
directed control distinction (Daw, Niv, & Dayan, 2005). In model-free learning, action
control is based on the learned (stored or “cached”) incentive values and behavioral
responses that are associated with specific stimulus cues (eventually leading to habit
formation). In contrast, model-based learning involves a forward simulation in which the
incentive value of an action is directly computed using a sequential transition model of its
associated outcomes.

Until recently, most reinforcement learning investigations have targeted the
computational and neurobiological mechanisms that contribute to model-free processes
(Doll, Simon, & Daw, 2012). One of the key reinforcement learning mechanisms that has
been best studied is the reward prediction error (RPE), the primary signal that drives CS-
UCS learning from reward outcomes. The RPE is now well-established to be encoded in
the phasic activity of midbrain dopamine neurons and their mesocorticolimbic targets
(i.e., ventral striatum) (Schultz & Dickinson, 2000). However, the RPE may also reflect
other forms of surprise signal triggered by salient, but not reward-predicting sensory cues
(Bromberg-Martin, Matsumoto, & Hikosaka, 2010; D'Ardenne, Lohrenz, Bartley, &
Montague, 2013; Dommett et al., 2005; Lammel, Lim, & Malenka, 2014; Redgrave,
Gurney, & Reynolds, 2008). The relationship between the motivational and
reinforcement learning functions of dopamine are still a matter of controversy, however
(K. C. Berridge, 2012). Most reinforcement learning accounts have neglected
motivational variables (Dayan & Balleine, 2002); thus, the proposed RPE-type
mechanisms that govern learning of CS+ reward values do not typically incorporate
instantaneous effects of change in motivational state, or whether instrumental responding
is goal-directed.

Approach versus Avoidance Motivation

A fundamental distinction within the domain of motivation is between whether
the motive is to seek out and approach some object or activity, or instead whether the
motive is avoidance, i.e., to escape from the object or activity. The affective responses
associated with these orientations differ, and the actions to which they relate also differ
(Guitart-Masip et al., 2012). The distinction between approach and avoidance motivation
is one that must be dealt with cautiously, however. It tends to be assumed that positive
affect is associated with approach and negative affect with avoidance, but that is not
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always the case. There is a good deal of evidence that anger and irritability are related to
thwarted approach rather than to threat motivation (Carver & Harmon-Jones, 2009;
Harmon-Jones, 2003).

The distinction between approach and avoidance motivation has been
operationalized in diverse ways across the various subfields engaged in motivational
research (Elliot, 2008). In animal and human neuroscience, the distinction is often made
in terms of the brain systems involved. For example, a classic distinction is between a
mesocorticolimbic dopaminergic Behavioral Activation System (BAS) associated with
approach motivation, and a Behavioral Inhibition System (BIS), originally localized to
the septo-hippocampal system, associated with avoidance motivation (Gray, 1987). In
contrast, for personality psychologists, approach and avoidance motivations are typically
discussed in terms of stable individual differences in habitual orientations to the world,
and assessed in terms of self-report scales (Carver, in press). These individual differences
are typically discussed in the framework of reward sensitivity and threat sensitivity (e.g.,
BIS/BAS scales)(Carver & White, 1994), or in related self-regulatory dimensions, such
as promotion (focus on advancement and accomplishment) versus prevention (focus on
safety and security)(E. Tory Higgins, 1997).

Activation of these systems is commonly elicited with different types of
incentives, such as rewards versus punishments, or in humans, monetary gains versus
losses. However, this work also indicates more complexity than the intuitive valence-
based dimensions. For example, in the cognitive literature, support has been found for a
regulatory fit account, in which a promotion focus (either trait-related or an
experimentally-induced state) will produce better performance when task incentives are
framed in terms of monetary gain, rather than avoidance of monetary loss, whereas a
prevention focus will show the opposite pattern (Maddox & Markman, 2010).

In the human cognitive neuroscience literature, there is an ongoing debate about
whether specific brain regions within motivational networks are valence- or affect-
specific. For example, some human neuroimaging studies have found that nucleus
accumbens activation is greater on trials incentivized by contingent gains relative to
losses in the Monetary Incentive Delay task (Cooper & Knutson, 2008). In other studies,
however, both the accumbens and the VTA respond during anticipation of both monetary
losses and gains (Carter, Macinnes, Huettel, & Adcock, 2009; Choi, Padmala, Spechler,
& Pessoa, 2013; Cooper & Knutson, 2008), and some studies report even greater
responses under aversive than approach motivation (Niznikiewicz & Delgado, 2011).
This result is paralleled by animal studies in which nucleus accumbens and ventral
tegmental area have been found to reflect both appetitive (desire) and aversive (dread)
motivation, although potentially in anatomically segregated subregions (Bromberg-
Martin et al., 2010; Lammel et al., 2012; S. M. Reynolds & Berridge, 2008; Roitman,
Wheeler, & Carelli, 2005). Similar complexities arise in regions often associated with
aversive reinforcement learning, such as amygdala and anterior cingulate cortex
(Hommer et al., 2003; Shackman et al., 2011), which also show responses to positive
valence and involvement in appetitive learning.

The lack of valence specificity in human studies using monetary incentives could
reflect the fact that in such studies gains and losses do not present a true valence
asymmetry. More specifically, unless participants are endowed on a prior visit and asked
to pay back the experimenter, even if they lose on a given trial, they still leave the
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experimental session with a net gain.  Likewise, loss of a positive incentive is not
necessarily equivalent to those involving punishment. The use of primary incentives
alleviates this problem, but introduces others. One potentially promising approach has
been to utilize selective patterns in the physiological activation of motivational systems
as a reliable index of the meaning evoked by the objective incentives. Such distributed
patterns have been differentially elicited by task incentive structures; for example, in the
Incentivized Encoding paradigm, shock threats (aversive motivation) were associated
with distinct patterns of activation and connectivity (amygdala / parahippocampal cortex)
compared to those found for monetary rewards (approach motivation; VTA /
hippocampus). These findings imply that engagement of distinct neural circuits impacts
the types of memory traces formed under distinct motivational conditions (Murty, Labar,
& Adcock, 2012), whether or not these differences are best accounted for by valence.

Transient versus Sustained Motivation

Animal and human neuroscience studies have typically investigated transient
motivational effects associated with specific external cues. Motivational influences are
not just transitory, however, but can also persist in a tonic fashion across behavioral
contexts. Recent findings have suggested the presence of sustained motivational effects,
using incentive context paradigms (Jimura, Locke, & Braver, 2010). Here, the incentive
value of cognitive task performance is manipulated in a block-wise manner, but also
more transiently via orthogonally manipulated trial-specific reward cues. Incentive
context has been found to be associated with enhanced task performance and sustained
neural activity, but these effects were independent of trial-specific incentive value (Chiew
& Braver, 2013; Jimura et al., 2010).

Similarly, physiological investigations, chiefly focused on the dopamine system,
have overwhelmingly focused on transient responses to discrete motivational cues,
despite a wealth of pharmacological research in animals, healthy humans and patient
populations that demonstrates a role for dopamine not just in processing and learning
about discrete rewards, but also in motivation and sustained motivated behavior (K. C.
Berridge, 2007; Salamone & Correa, 2012). Moreover, whereas the anatomy of
dopaminergic synapses in the striatum suggests high temporal precision, dopaminergic
effects on learning can potentially bridge multiple synapses and phasic events (Lisman,
Grace, & Duzel, 2011). Dopaminergic synaptic anatomy outside the striatum in cortex
and in the hippocampus includes significant distances between terminals and receptors,
consistent with modulation over slower, sustained timescales (Shohamy & Adcock,
2010).

One theoretical account explains these sustained motivational effects in terms of
incentive context-related changes in tonic dopamine (Niv et al., 2007). According to this
account, tonic dopamine signals the long-term average reward rate of the current
environment.  This signal is thought to lead to a generalized increase in the vigor or
intensity of action, by indicating an increased “opportunity cost” of response latency. In
other words, when the current environmental context has high incentive value, increasing
the speed of all actions (even those not directly rewarded) will typically enable more
rewards to be harvested per unit time. As such, sustained motivation may have
connections with general PIT effects, which are also thought to produce a more non-
specific invigoration of behavioral responding (Niv et al., 2007). Interestingly, recent
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evidence from microdialysis has demonstrated tonic dopamine efflux correlated with
long-term average reward rates selectively in PFC terminal regions, but not the nucleus
accumbens (St Onge, Ahn, Phillips, & Floresco, 2012). Other work has shown tonic
dopamine release, as well as sustained firing of dopamine neurons, under conditions
related to anticipatory, sustained motivated behaviors (Fiorillo, Tobler, & Schultz, 2003;
Howe, Tierney, Sandberg, Phillips, & Graybiel, 2013; Totah, Kim, & Moghaddam,
2013).  These dopamine-mediated effects of sustained motivation now await
demonstration in humans.

Conscious versus Non-conscious Motivation

Motivated behavior is often assumed to start with conscious awareness and the
formation of explicit intentions. However, as noted above, provocative findings over the
last two decades, primarily from within the social and personality literature, have
highlighted a distinction between conscious versus non-conscious motivation, and the
presence of implicit (or non-conscious) goal-pursuit, in which motivated behavior is
instigated by environmental cues that may not reach conscious awareness (R. Custers,
Eitam, & Bargh, 2012). This idea has led to a research focus that contrasts goal-pursuit
under conditions in which goals are implicitly versus explicitly activated. The typical
methodological approach to implicit goal priming is the presentation of words, pictures,
or other stimuli, either in seemingly unrelated tasks preceding the experimental task or by
subliminal priming, both of which render conscious awareness of this influence less
likely. These priming manipulations both increase the tendency to engage in goal-
relevant action patterns and the vigor with which goal pursuit is executed (R. Custers &
Aarts, 2010).

Recent studies have extended this approach to focus on implicit priming of reward
cues to motivate cognitive performance. In these studies, the reward that can be earned on
a particular trial is cued at its beginning, either clearly visible, or presented subliminally.
Subliminally presented high reward cues have been found to induce more cognitive effort
expenditure than low reward cues (Bijleveld, Custers, & Aarts, 2009; Capa, Bustin,
Cleeremans, & Hansenne, 2011). A few cognitive neuroscience studies using
subliminally presented reward cues have demonstrated that these engage subcortical
motivation-linked brain regions, such as the ventral pallidum, in proportion to incentive
value (Pessiglione et al., 2007; Schmidt et al., 2008). The cognitive performance effects
of subliminal reward cues have been found to diverge in some instances from that of
clearly visible reward cues, specifically under conditions in which visible rewards lead to
a strategic change in behavior. For example, in some cases whereas subliminal reward
cues only boost expenditure of effort, visible rewards lead to a speed-accuracy tradeoff
(Bijleveld, Custers, & Aarts, 2010). Likewise, subliminal reward cues modulate cognitive
performance even on trials in which rewards are known to be unattainable, whereas such
effects are not present for clearly visible reward cues (Zedelius, Veling, & Aarts, 2012).
If the effects of subliminal reward cues had been mediated by conscious processes (e.g.,
perceiving that the trial has high or low incentive value), such a divergence should be
absent. Hence, it appears that reward cues can motivate behavior in the sense that the
expenditure of effort is increased, even without people being aware of it (for further
discussion see Bargh & Morsella, 2008).
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Extrinsic versus Intrinsic Motivation

Animal and human neuroscience studies have almost uniformly focused on
extrinsic motivation, the neural and behavioral responses to extrinsically provided
incentives (e.g., food, money, etc.). However, in social and personality psychology,
extrinsic motivation is strongly distinguished from various forms of intrinsic motivation.
Intrinsic motivation is defined as engagement in a task for the inherent pleasure and
satisfaction derived from the task itself (Deci & Ryan, 1985). Intrinsic motivation appears
to drive behavior in a way that is different from, and potentially even in competition with
extrinsic motivation. The most provocative example of this competition is the
undermining effect (Deci, 1971; Deci, Koestner, & Ryan, 1999; Ryan, Mims, & Koestner,
1983)(also called the "motivation crowding-out effect”; Camerer & Hogarth, 1999; Frey
& Jegen, 2001)(or "overjustification effect”; Lepper, Greene, & Nisbett, 1973), a
phenomenon in which people’s intrinsic motivation is decreased by receiving
performance-contingent extrinsic rewards.

The standard approach for demonstrating undermining effects on intrinsic
motivation is through free-choice paradigms. Here, willingness to voluntarily engage in a
target task is assessed after a preceding phase in which the targeted task is performed
either under conditions in which performance-contingent extrinsic rewards are provided
or not (manipulated across groups). A large number of studies have found that the
extrinsic reward group spends significantly less time than the control group engaging in
the target task during the free-choice period, providing evidence that the extrinsic
rewards undermine intrinsic motivation for the task (Deci et al., 1999; Tang & Hall,
1995; Wiersma, 1992). Although intrinsic motivation has been mostly neglected in
cognitive and neuroscience studies, a recent study showed neural evidence of the
undermining effect, in that removing performance-contingent extrinsic rewards led to
reduced activity in reward motivation regions (anterior striatum, dopaminergic midbrain)
during a subsequent unrewarded performance phase (when compared to a never rewarded
control group) (Murayama, Matsumoto, lzuma, & Matsumoto, 2010). Other recent
studies using different paradigms, such as those involving interesting trivia questions
(Kang et al., 2009), inherently pleasurable music (Salimpoor et al., 2013), and self-
determined choice (Leotti & Delgado, 2011; Murayama et al., in press), also indicate that
intrinsic motivation may be related to the modulation of reward circuitry (e.g., striatum).
In the reinforcement learning literature there have also been recent attempts to expand the
basic framework to incorporate computational mechanisms of intrinsic motivation
(Oudeyer & Kaplan, 2007; Singh, Lewis, Barto, & Sorg, 2010).

Goal-setting versus Goal-striving

In social psychological treatments, the motivated pursuit of goals is often
separated into goal-setting and goal-striving phases (Gollwitzer & Moskowitz, 1996;
Oettingen & Gollwitzer, 2001). Goal setting refers to the processes and determinants of
how a particular goal gets selected for pursuit, whereas goal striving indicates the
processes by which a particular goal, once implemented, is used to modulate on-going
behavior. Goal-setting research is aimed at demonstrating that goal selection can be
influenced by various factors, such as how the goal is assigned (by self or other), framed
(the goal content) and internally represented (the goal structure). Here the
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approach/avoidance (or relatedly, promotion versus prevention) motivational distinction
becomes especially relevant, in terms of both trait-related individual differences (what
goals the individual finds desirable), as well situational context manipulations (to
minimize failure or maximize success).

Gollwitzer (1990) has suggested that whereas goal-setting can be characterized in
terms of motivational principles, goal-striving is best characterized in terms of volitional
factors. These include action initiation, persistence, goal-shielding, feedback integration,
and disengagement. Accordingly, goal-striving research primarily focuses on the kinds
and effectiveness of self-regulatory strategies that are implemented to attain the goal.
Surprisingly, increasing the strength of goal activation (intention) may sometimes
produce only limited impacts on successful goal attainment (Webb & Sheeran, 2006).
Instead, volitional self-regulatory strategies are needed to prepare for potential obstacles
standing in the way of attaining the desired future, and to stay on track and pursue the
desired future even in the face of difficulties and temptations.

Two key self-regulatory strategies that are a focus of current investigation are
mental contrasting and implementation intentions. Mental contrasting allows people to
explicitly consider possible resistances and conflicts when trying to reach a desired future
(Oettingen, 2012). Mental contrasting means mentally juxtaposing the desired future
(e.g., completing a writing project) with obstacles of present reality (e.g., following an
invitation to socialize). It is used to project success expectations, so that these can
determine the intensity of goal pursuit. Implementation intentions (Gollwitzer, 1999;
Gollwitzer & Oettingen, 2011) are a strategy that involves generating “if...,then...”” plans
to link a critical situation with an action that is instrumental to reaching a desired future
(e.g., if it is Saturday afternoon and my friends invite me to watch a movie, then I will tell
them that | will first finish my writing project). These plans offer a short-cut to automated
responding (i.e., creating ad-hoc habits). In other words, if-then plans allow people to
perform automatized responses in the specified critical situation in a fast and effortless
way and without any further conscious intent. It is worth pointing out that the automated
nature of implementation intentions suggests a potential similarity to habitual control as
studied in the animal learning literature. However, in implementation intentions, the
resilience to shifting motivational states is created not by overlearned associations, but
rather by the prospective decision to avoid outcome revaluation.

The goal-setting and goal-striving phases can also be distinguished in terms of
their differential “mindsets”, in that goal-setting is associated with a deliberative mindset,
whereas goal-striving is associated with an implemental mindset (Gollwitzer, 2012). The
deliberative mindset is characterized by general attentional broadening and a cognitive
focus on desirability and feasibility information, while the implemental mindset is
characterized by strengthened goal representations, upwardly biased assessments of
feasibility, and more general attentional narrowing. One methodological approach used
to investigate these mindsets and phases is to interrupt participants and have them engage
in cognitive tasks while they are in the midst of deciding upon a goal to pursue
(deliberative mindset), or immediately after they have chosen one (implemental mindset)
(H. Heckhausen & Gollwitzer, 1987).

Positive versus Negative Feedback
Feedback is thought to play a fundamental role in goal pursuit, by providing
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individuals information on how to evaluate their commitment to goal-striving, in terms of
whether, what, and how much to invest in their goals (A. Fishbach, Koo, & Finkelstein,
2014). An important distinction has been postulated between the motivational
consequences of positive (completed actions, strengths, correct responses) and negative
feedback (remaining actions, weaknesses, and incorrect responses) (A. Fishbach & Dhar,
2005; A. Fishbach, Dhar, & Zhang, 2006; Kluger & DeNisi, 1996). A key finding is that
positive feedback increases motivation (and thus, goal pursuit) when it is used to evaluate
commitment, by signaling that the goal is of high value and attainable. In contrast,
negative feedback increases motivation when it is used to evaluate progress: that more
effort is needed to accomplish the goal (e.g., cybernetic models; Carver & Scheier, 1998;
E. T. Higgins, 1987). Indeed, whereas positive feedback for successes can signal
sufficient accomplishment, and “licenses” the individual to disengage with the goal
(Monin & Miller, 2001), when people think of their goals in cybernetic terms (e.g.,
“closing a gap”), negative feedback is motivating.

In general, positive feedback should be more effective than negative feedback
when goal commitment is lower, because positive feedback increases commitment.
Negative feedback, in contrast, will be more effective than positive feedback when goal
commitment is already high, because it signals greater discrepancy (i.e., a larger gap to be
closed). A promising approach to investigate feedback effects has been to explore how
they interact with goal commitment level to influence motivation. For example, Koo and
Fishbach (2008) manipulated feedback by emphasizing either completed or missing goal
actions (e.g., positive feedback: “you have completed 50% of the work to date” versus
negative feedback: “you have 50% of the work left to do””). When goal commitment level
was low, positive feedback on completed actions increased motivation more than
negative feedback. Conversely, when goal commitment was high, the reverse pattern is
obtained (greater increase in motivation with negative feedback). It is interesting to note
that this perspective on negative feedback as sometimes increasing motivation contrasts
with the one typically adopted in the cognitive and neuroscience literatures, in which it is
assumed that negative feedback will have an immediate impact in reducing reward value
estimates.

Summary
As the above sections detail, the distinctions and dimensions investigated in

studies of motivation vary greatly in terms of disciplinary focus. Some, like distinctions
between phases of high-level goal-pursuit (e.g., goal-setting versus goal-striving) are
studied almost exclusively from within one domain. Others, like the approach / avoidance
distinction, have been studied from multiple perspectives. Yet even in such cases,
important differences in emphases are present. For example, approach versus avoidance
motivation is typically studied as a stable trait variable in the personality literature, but as
a state manipulation in systems and cognitive neuroscience.

There remain many important challenges for cross-disciplinary integration in the
study of motivation-cognition interactions. Challenges arise even at the level of defining
our terms: some concepts and phenomena do not currently extend across fields, and those
that do sometimes have different usage or implications. Table 1 presents the differential
representation and usage of key concepts across fields, including some examples of
potential conflicts in usage. Our hope is that, as researchers become more aware of the
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motivational dimensions and distinctions that are emphasized in other subfields, they will
be inspired to initiate further cognitive neuroscience and cross-disciplinary investigations
and bring these concepts into even closer alignment. The explorations into conscious
versus unconscious (Pessiglione et al., 2007; Schmidt et al., 2008) and intrinsic versus
extrinsic motivation (Murayama et al., 2010) beginning to occur from a cognitive
neuroscience perspective offer promising examples of these efforts.

MECHANISMS OF MOTIVATION-COGNITION INTERACTIONS

One of the challenges for cognitive, affective, and behavioral neuroscience
research is to provide an account of motivation-cognition interaction in terms of the
neural mechanisms that enable such interactions to occur. The key challenge is that
although “motivation” and “cognition” are usefully specified as distinct psychological
entities, it is not all clear that they have separable implementation in the brain. Indeed, the
neural systems implicated in the internal representation of cognitive goals, and the active
maintenance and manipulation of information in working memory (e.g., frontoparietal
and frontostriatal circuits), bear a striking similarity to those implicated in the generation
of motivated behaviors. Thus, mechanistic accounts of motivation-cognition interactions
run the risk of drawing a false dichotomy, if they are couched in terms of a discrete point
of interface between two distinct neural systems (Pessoa, 2013).

Despite this caveat, several neural candidate mechanisms have been described
that enable shifts in motivational state to be transmitted into a form that can modulate
cognitive processing (see Figure 1). These candidates fall into several broad classes: 1)
broadcast neuromodulation, influencing cellular-level physiologic response properties; 2)
communication between large-scale brain networks, either via direct pathways or shifts in
network topology; and 3) engagement of specific brain computational hubs that serve as
integrative convergence zones. All of these mechanisms implicate some form of
neuromodulatory transmission. Of the brain neuromodulatory systems, the one most
closely linked to motivation is dopamine. We therefore first consider the regulation of
dopamine release and its effects on its targets as a useful model mechanism for the
transmission of motivational signals. We then move on to discuss network and circuit
interactions. Finally, we highlight specific computational hubs in the striatum, anterior
cingulate cortex, and lateral PFC, that are thought to play increasingly well-understood
roles in motivated cognition.

Broadcast Neuromodulation: Dopamine (and other systems)

Widespread projections enable neuromodulatory systems to reach large portions
of the cortical surface and subcortical areas, from which they can rapidly influence
neuronal activity. The broadcast release of global neuromodulators, such as dopamine
and norepinephrine, are thus likely to have complex rather than monotonic effects, that
nevertheless may have synergistic actions at multiple levels of functioning. Dopamine, in
particular, is known to have a range of effects on cellular level physiology, including
modulating synaptic learning signals (Calabresi, Picconi, Tozzi, & Di Filippo, 2007;
Lisman et al., 2011; J. N. Reynolds & Wickens, 2002), altering neuronal excitability
(Henze, Gonzalez-Burgos, Urban, Lewis, & Barrionuevo, 2000; Nicola, Surmeier, &
Malenka, 2000), enhancing signal-to-noise ratio (Durstewitz & Seamans, 2008; Thurley,
Senn, & Luscher, 2008), and impacting the temporal patterning of neural activity
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(Walters, Ruskin, Allers, & Bergstrom, 2000). Such effects in subcortical and cortical
targets (e.g., frontal cortex) could alter processing efficiency in a number of ways, such
as by sharpening cortical tuning (Gamo & Arnsten, 2011), heightening perceptual
sensitivity and discrimination (Pleger et al., 2009), enhancing attentional or cognitive
control and working memory function (Pessoa & Engelmann, 2010), and enhancing
targeted long-term memory encoding (Shohamy & Adcock, 2010).

The dynamic changes in neurophysiology that result from release of the
neuromodulators implicated in motivation are evident not only cellularly, but also at the
circuit level. As one example, functional MRI evidence has shown that reward versus
punishment-motivated learning reconfigures neural circuits, with marked consequences
for the sensitivity of memory encoding systems (Adcock et al., 2006; Murty & Adcock,
2013; Murty et al., 2012). These reconfigurations are evident both in systems thought to
primarily implement motivation, and in the broader networks devoted to the memory
encoding task. For example, during intentional encoding, learning under reward
incentives increases connectivity and activation in the VTA and hippocampus, whereas
learning under threat engages amygdala and parahippocampal cortex. The consequences
of these differences in the neural implementation of memory encoding translate into
qualitatively different memory traces, because hippocampal encoding embeds items in
context to support more flexible representations, whereas parahippocampal encoding
selectively emphasizes features of the scene. These findings imply that motivated states
can influence the content and form of long-term memory formation, potentially tailoring
the memory trace to support future behaviors consistent with that same motivational
state.

Network Interactions: Direct Communication and Topological Reconfiguration

Interactions between motivation and cognition appear to rely on the
communication between “task networks” (e.g., the dorsal frontoparietal network engaged
during attention tasks) and “valuation networks,” which involve both subcortical regions,
such as those in the striatum, and cortical ones, such as orbitofrontal cortex. These
interactions are suggested to take place via multiple modes of communication. The first
mode involves direct pathways between task and valuation networks. One example is the
pathway between orbitofrontal and lateral PFC (Barbas & Pandya, 1989). Another
example involves the pathways between the extensively interconnected lateral surface of
frontal cortex (including dorsolateral PFC) and cingulate regions (Morecraft & Tanji,
2009). Finally, the caudate is connected with several regions of frontal cortex (including
lateral sectors) and parietal cortex, in part via the thalamus (Alexander, DeLong, &
Strick, 1986). Thus direct pathways provide a substrate for cognitive-motivational
interactions.

A second mode of communication that might enable motivational modulation of
cognitive processing is through a reconfiguration of network topology and structure.
Network analysis provides useful tools from which to quantitatively characterize
topological relationships within and between brain networks. For example, in one recent
study, Kinnison et al (2012) compared network properties and relationships in attentional
and valuation networks during trials with low versus high reward value. It was found
that on control trials the two networks were relatively segregated (modular) and locally
efficient (high within-network functional connectivity), but on high-reward trials
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between-network connectivity increased, decreasing the decomposability of the two
networks. This finding suggests that a primary consequence of changes in reward
motivational value is to increase the coupling and integration between motivational and
cognitive brain networks. Such reconfigurations of network topology could potentially
arise from neuromodulatory influences, as similar changes have been identified as a
consequence of noradrenergic response to stressors (Hermans et al., 2011) and dopamine
precursor depletion (Carbonell et al., 2014).

Striatum: Linking motivation to cognition and action

Work with behaving experimental animals has long highlighted the importance of
the striatum as a nexus mediating between motivation, cognition, and action (Baldo &
Kelley, 2007; Belin, Jonkman, Dickinson, Robbins, & Everitt, 2009; Mogenson, Jones, &
Yim, 1980). The nucleus accumbens in particular has been suggested as a key node,
which may translate dopaminergic incentive value signals into a source of behavioral
energization, drive, and the psychological experience of wanting (K. C. Berridge, 2003).
This is consistent with animal data suggesting that the nucleus accumbens processes both
the hedonic and motivational components of reward, within distinct subregions (S. M.
Reynolds & Berridge, 2008). Likewise, neuroanatomical data from nonhuman primates
have revealed an arrangement of spiraling connections between the midbrain and the
striatum that seems perfectly suited to subserve a dopamine-mediated mechanism
directing information flow from ventromedial to dorsomedial to dorsolateral regions of
the striatum (Haber, Fudge, & McFarland, 2000). In turn, an increasingly consensual
view is that the reciprocal circuits between the striatum and frontal cortex function as a
gating mechanism that prevents actions (and thoughts) from being released until the
contextually and sequentially appropriate points in time (Mink, 1996; O'Reilly & Frank,
2006). Taken together, these accounts suggest dopaminergic input to the striatum serves
to mediate the interaction between motivation, cognition, and action.

Accumulating evidence from genetic and neuroimaging (fMRI and dopamine
PET) work with human volunteers and patients supports this hypothesis. For example, a
recent dopamine PET study revealed that individual differences in baseline dopamine
synthesis capacity in the dorsomedial striatum of healthy young volunteers predicted the
effects of reward motivation on Stroop-like task performance (E. Aarts et al., 2014).
Moreover, genetic differences in a dopamine transporter polymorphism were found to
modulate the effects of reward on fMRI activation of the dorsomedial striatum (caudate
nucleus) during conditions of high cognitive control demand (task-switching) (E. Aarts,
van Holstein, & Cools, 2011). Likewise, it has been found that the ventral striatum
exhibits common activation in tracking the effects of incentive value on both physical
and mental effort exertion (Schmidt, Lebreton, Clery-Melin, Daunizeau, & Pessiglione,
2012), and that its response to rewards is discounted as a function of the degree of effort
exerted to obtain it (Botvinick, Huffstetler, & McGuire, 2009). These results further
suggest that striatal dopamine might be a key mechanism in energizing both cognitive
and motor behaviors based on their current motivational value.

Anterior Cingulate Cortex (ACC): Computing the expected value of control
Another key hub is a region of dorsomedial PFC that spans the pre-supplementary
motor area and dorsal ACC. The single-cell electrophysiology literature has suggested
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that neurons in this region encode multiple aspects of reward, such as proximity to the
reward within a behavioral sequence (Shidara & Richmond, 2002), the value of the on-
going task (Amiez, Joseph, & Procyk, 2006; Sallet et al., 2007), the temporal integration
of reward history (Kennerley, Walton, Behrens, Buckley, & Rushworth, 2006), and the
need to change response strategy (Shima & Tanji, 1998). A general consensus view is
that the ACC and adjacent dorsomedial PFC serve an evaluative role in monitoring and
adjusting levels of control (Botvinick, 2007; Holroyd & Coles, 2002; Ridderinkhof,
Ullsperger, Crone, & Nieuwenhuis, 2004; Rushworth & Behrens, 2008; Shackman et al.,
2011), potentially in response to motivational variables (Kouneiher, Charron, &
Koechlin, 2009).

These ideas were recently formalized in an integrative account that suggests that
the ACC might serve as a critical interface between motivation and executive function,
by computing the “expected value of control” (Shenhav, Botvinick, & Cohen, 2013).
Here, the imposition of top-down control in cognitive information processing is
understood as both yielding potential rewards (for example, through enablement of
context-appropriate responses) but also as carrying intrinsic subjective costs (Inzlicht,
Schmeichel, & Macrae, 2014a; Kool, McGuire, Rosen, & Botvinick, 2010; Kool,
McGuire, Wang, & Botvinick, 2013; Kurzban, Duckworth, Kable, & Myers, 2013;
Westbrook, Kester, & Braver, 2013). The decision as to whether executive resources
should be invoked, favoring controlled over automatic processing, is based on a cost-
benefit analysis, weighing potential payoffs against their attendant costs (e.g., Kool &
Botvinick, 2014). Based on a wide range of evidence, Shenhav and colleagues
(2013) proposed that the ACC might serve as a critical hub in the relevant cost-benefit
calculations, serving to link cognitive control with incentives and other motivational
variables.

Lateral PFC: Integrating motivation with cognitive goal representations

A wealth of findings in both animal and human neuroscience studies suggest that
the lateral PFC might serve as a convergence zone in which motivational and cognitive
variables are integrated. The integration of these signals reflects more than just additive
contributions of cognitive demands and reward value, but actually enhances functional
coding within PFC, such as by maximizing signal-to-noise ratio, enhancing
discriminability of visuospatial signals, and increasing the amount of information
transmitted by PFC neurons (Kobayashi, Lauwereyns, Koizumi, Sakagami, & Hikosaka,
2002; Leon & Shadlen, 1999; Pessoa, 2013; Watanabe, 1996; Watanabe, Hikosaka,
Sakagami, & Shirakawa, 2002). The dual mechanisms of control (DMC) framework
suggests a specific mechanism by which these motivational influences on lateral PFC
activity might modulate cognitive processing (Braver, 2012; Braver & Burgess, 2007,
Braver, Paxton, Locke, & Barch, 2009).

According to the DMC framework cognitive control can be accomplished either
via a transient, stimulus-triggered, reactive mode or a tonic and anticipatory (i.e.,
contextually-triggered) proactive mode. Proactive control is the more effective mode
because it enables pre-configuration of the cognitive system for expected task demands.
However, it is thought to be metabolically or computational costly, because it depends
upon the active representation and sustained maintenance of task goals in lateral PFC.
Thus, it should be preferred under conditions involving reward maximization and/or
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contexts with high motivational value. Computationally, proactive control is thought to
be achieved via dopaminergic inputs to lateral PFC, which enable both appropriate goal
updating (via phasic dopamine signals) and stable maintenance (via tonic dopamine
release) in accordance with current reward estimates (Braver & Cohen, 2000; O'Reilly,
2006). In contrast, the reactive mode, because it is transient and stimulus-triggered, may
be less dopamine-dependent and may also involve a wider network of brain regions.

Several studies have shown that pairing task contexts or trials with high reward
value shifts performance towards proactive control, as indicated both by behavioral
performance indicators and PFC activity dynamics (Braver, 2012; Chiew & Braver,
2013; Jimura et al., 2010; H. S. Locke & Braver, 2008). Conversely, in non-rewarded
contexts, lateral PFC activity has been found to reflect the subjective cost associated with
exerting cognitive control (as estimated via both self-report and the tendency to avoid
high control conditions; McGuire & Botvinick, 2010). Indeed, the robust findings of
motivational influences on PFC activity and performance in tasks with high control
demands suggests the possibility that proactive control shifts might be a primary
mechanism by which the cognitive effects of motivation are mediated.

Summary
As the above sections indicate, there are a number of candidate neural

mechanisms that have been proposed to mediate motivation-cognition interactions
(Figure 1). These range from more global and system-wide mechanisms, such as
broadcast neuromodulation and network-level interactions, to the more focal
computational hubs. The neuromodulatory effects of dopamine may serve as a unifying
mechanism underlying motivational influences on neurocognitive processing across a
range of levels. Specifically, as previously described, dopamine has effects at the cellular
level that are consistent with a range of motivation-cognition interactions (changing
cortical excitability, signal-to-noise ratio, synaptic plasticity, etc). Likewise, dopamine
serves a major input and neuromodulator of activation in each of the regions that have
been identified as likely convergence hubs for integration of motivational and cognitive
signals: striatum, anterior cingulate cortex, lateral PFC. Finally, more recent work has
suggested that changes in dopamine tone can produce substantial effects on network-level
dynamics and topology (e.g., Carbonell et al., 2014). Thus, one important direction for
future research will be to determine more rigorously whether these different levels of
motivational neural mechanisms can indeed be unified in terms of dopamine
neuromodulation.

Nevertheless, it is critical to acknowledge that though most of the
neuromodulatory-focused motivational research has targeted dopamine effects, the
dopamine system has well-known and strong interactions with other neuromodulatory
systems, such as acetylcholine, norepinephrine, serotonin, and adenosine. Thus, these
other neuromodulators will need to be properly considered in order to form a complete
picture of motivated cognition (Daw, Kakade, & Dayan, 2002; S. McClure, Gilzenrat, &
Cohen, 2006; Salamone et al., 2009; Sarter, Gehring, & Kozak, 2006). Likewise,
although we focused on the set of candidate hubs that have received the most attention in
recent research, this set is clearly not exhaustive. Indeed, other potential motivation-
cognition hubs have also been noted in the literature, such as the posterior cingulate
cortex (Mohanty, Gitelman, Small, & Mesulam, 2008; Small et al., 2005) and anterior
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insula (Mizuhiki, Richmond, & Shidara, 2012).

Finally, it is clear that our understanding of the neural mechanisms of motivation-
cognition interaction will require not only better integration between levels of analysis
(neuromodulation, regionally localized effects, network-level interactions), but also the
development of neurocomputational frameworks that can accommodate these effects and
better link them to cognitive and behavioral functioning.  Work in this area is just
beginning, but one of the most promising directions may be to expand the reinforcement
learning framework to incorporate motivational variables. For example, initial attempts
have been put forward to demonstrate the computational mechanisms by which
motivation might modulate reward prediction error signals (Zhang, Berridge, Tindell,
Smith, & Aldridge, 2009), simple model-free Pavlovian learning (Dayan & Balleine,
2002), and generalized response vigor (Niv et al., 2007). At a higher level, some
accounts have utilized hierarchical extensions of reinforcement learning to begin to
explain how reward and motivational signals might also be used to prioritize, select, and
maintain temporally extended goals and more abstract action plans (Botvinick, 2012;
Holroyd & Yeung, 2012). Excitingly, these accounts have put forward initial sketches of
the respective roles for the dopamine system, along with striatum, ACC, and lateral PFC
in these processes. Thus, more work in this area is clearly needed. Indeed, one of the
primary challenges will be to demonstrate whether such mechanisms and computational
frameworks can be used to account for the various dimensions and distinctive
components of motivational influence that were detailed in earlier sections.

PRESSING RESEARCH QUESTIONS

The previous sections highlighted some of the conceptual obstacles that challenge
an integrative and cross-disciplinary investigation of motivation-cognition interactions, as
well as some of the promising candidate neural mechanisms that are the focus of current
research. In this section, we discuss what we see are some of the current experimental
and methodological challenges. Specifically, we lay out a number of unresolved and
puzzling issues that seem central to this domain, but which may represent potential “low-
hanging fruit” that are ripe for investigation. Indeed, one of the goals of this section is to
direct investigators towards these open questions, in the hopes of inspiring new research
efforts targeted at them.

Can motivation be dissociated from related constructs?

A concern that is commonly raised in studies of motivation-cognition interactions
is whether effects attributed to motivational factors may actually reflect another related,
but potentially distinct construct. The most frequent candidates in this regard are affect,
attention, arousal, and high-level decision-making strategies. This important and
longstanding issue has seen increased experimental focus in recent years, but targeted
efforts are still needed. Below, we describe work focused on each of these constructs in
turn.

The potential distinction between affect and motivation has been most directly
addressed in the animal neuroscience literature, in terms of the distinction between the
hedonic impact versus incentive value of rewards and punishments. The work of Berridge
represents a major theoretical influence in this regard, employing pharmacological and
lesion manipulations to demonstrate that ‘wanting’ can be dissociated from ‘liking” (K.
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C. Berridge et al., 2009). The key methodological approach here is to assess the hedonic
impact of food rewards during consumption via orofacial response patterns, while using
Pavlovian and instrumental appetitive behaviors to assess incentive effects. This has
suggested that liking and wanting can be dissociated neurally in terms of anatomical
substrates (e.g., distinct “hotspots” within the nucleus accumbens and ventral pallidum)
and neurotransmitter modulation (GABA and dopamine) (Kringelbach & Berridge, 2009;
S. M. Reynolds & Berridge, 2008).

Similarly, a more recent stream of research within human cognitive neuroscience
has addressed the dissociability of positive affect and reward motivation (Chiew &
Braver, 2011). Positive affect has been shown to have numerous influences on cognitive
processing including enhanced creativity, broadened attentional focus, and greater
cognitive flexibility (Carver, 2003; Easterbrook, 1959; Fredrickson & Branigan, 2005;
Isen, Daubman, & Nowicki, 1987). Here, the critical question is whether these influences
can be dissociated neurally and behaviorally from the potentially overlapping effects of
reward motivation. Such overlap could occur because the receipt of motivating rewards
has positive affective consequences, or because positive affect induces approach
motivated behaviors. These types of overlap present considerable methodological
challenges. One approach has been to operationalize reward motivation in terms of
performance-contingent rewards, while positive affect is operationalized in terms of
either randomly delivered rewards or incidental, positively-valenced stimuli (Braem et
al., 2013; Chiew & Braver, 2011; Dreisbach & Fischer, 2012). Another approach has
been to induce affect that varies in motivational intensity, based on the theoretical
assumption that high motivational intensity, whether for positive or negative affect,
produces attentional narrowing, while low motivational intensity induces attentional
broadening (Harmon-Jones, Gable, & Price, 2013). Supportive evidence has been found
with different kinds of stimuli used to induce high versus low intensity positive affect
(e.g., desire: delicious desserts; amusement: humorous cats) (Gable & Harmon-Jones,
2008).

The conceptual similarity between attention and motivation has also been
frequently noted (Maunsell, 2004; Pessoa & Engelmann, 2010). The term attention is
often used similarly to motivation, in describing how processing resources are allocated,
how they can be captured by salient stimulus cues, and how they are influenced by
behavioral goals and expectations. However, there are points of conceptual dissociation:
motivation is primarily related to the representation of incentive value and the
energization of instrumental behaviors, while attention is primarily concerned with
mechanisms of perceptual and response selection. A common methodological approach
has been to orthogonally manipulate attentional and motivational factors within the same
experimental design (Geier et al., 2010; Krebs et al., 2012). In terms of the neural
mechanisms of attention and motivation, Pessoa and Engelmann (2010) detail a number
of possible different scenarios: a) full independence, via distinct neural pathways; b)
mediation, in which at least part of motivational influence is mediated by changes in
attentional processes and neural systems; and c) integration, in which there is tight
coupling between motivational and attentional brain systems, either in terms of
convergence zones (hubs) or via network-wide interactions.

The relationship of motivation to arousal has been less well studied, particularly
since arousal is a construct that is often under-specified experimentally. Nevertheless,
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arousal may imply the energization or invigoration of cognitive processing and behavior;
this is also a central component of motivation. Traditionally, arousal has been identified
with the locus coeruleus — norepinephrine (LC-NE) system (C. W. Berridge &
Waterhouse, 2003), while motivational signaling has been conceptualized in terms of
dopamine activity (Wise & Rompre, 1989). The relationships between these two
neuromodulatory systems, and arousal and motivation more generally, have not been
systematically investigated in cognitive neuroscience research. Methodologically, it
seems possible to manipulate arousal independently of motivation (e.g., via
pharmacological challenge, physical exertion, sleep-wake cycle, stress, etc.), which
should enable a targeted examination of the relationship between the two constructs.

A final issue concerns the role of motivation versus high-level decision-making
strategies in modulating task performance. This concern relates to the fact that
manipulations of performance incentives have been a staple of cognitive research for
decades, and have been traditionally used to modulate high-level cognitive strategies
(e.g., response bias in signal detection experiments; Green & Swets, 1966). Yet such
work is usually not construed in terms of motivation, but rather in decision theoretic
terms related to strategic performance optimization. Thus, it has been questioned whether
it is necessary or even relevant to appeal to volitional and motivational factors when
describing such effects. There are a variety of methodological approaches that can be
used to address this issue, such as: use of symbolic versus real incentives (Hubner &
Schlosser, 2010; Krug & Braver, in press), identification of idiosyncratic effects of
subjective reward preference (O'Doherty, Buchanan, Seymour, & Dolan, 2006),
exploiting stable individual differences related to reward and punishment sensitivity
(Engelmann, Damaraju, Padmala, & Pessoa, 2009; Jimura et al., 2010), leveraging
differential developmental trajectories of deliberative versus affective-motivational
processes (Somerville, Hare, & Casey, 2011), and examining implicit or subliminal rather
than explicit incentive cues (Bijleveld et al., 2009; Pessiglione et al., 2007). All of these
approaches tend to support the attribution of incentive effects on behavior and brain
activity to motivational, rather than strategic factors.

Why does motivation sometimes impair cognitive performance?

In folk psychological terms, being motivated implies being goal-driven.
Accordingly, motivation is commonly assumed to have only beneficial and monotonic
influences on goal-pursuit. In line with this intuition, reward motivation often produces a
general enhancing effect on cognition. However, motivation does not always improve
and may in fact impair task performance in a variety of conditions (Bonner, Hastie,
Sprinkle, & Young, 2000; Bonner & Sprinkle, 2002; Camerer & Hogarth, 1999). For
example, the *choking under pressure” phenomenon has been coined to describe
instances in which cognitive performance falters when motivational salience is high
(Baumeister & Showers, 1986; Beilock, 2010; Callan & Schweighofer, 2008; Mobbs et
al., 2009). The affective, motivational, and cognitive factors that elicit such phenomenon
are still not well-understood.

One account of choking phenomena is that they stem from increased and
distracting anxiety (Callan & Schweighofer, 2008), occurring especially in high-stakes
situations (e.g., evaluative tests). Both state and trait anxiety effects have been
implicated in processes of over-arousal (i.e., U-shaped curve effects; Yerkes & Dodson,
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1908) or diversion of attention and working memory towards the source of anxiety (e.g.,
threat monitoring; Eysenck, Derakshan, Santos, & Calvo, 2007). It is still not clear how
to predict the motivational or cognitive factors that will elicit these anxiety-type effects.
However, recent work using skin conductance as a marker of physiological arousal has
found evidence of processes consistent with a noradrenergic contribution to such
paradoxical incentive effects (Murty, LaBar, Hamilton, & Adcock, 2011).

A second account suggests that motivation can produce impairing effects directly,
even without elicitation of anxiety or over-arousal, simply by heightened activation in
motivational brain circuits (Mobbs et al., 2009; Padmala & Pessoa, 2010), and possibly
supraoptimal levels of dopamine (E. Aarts et al., 2014). One version holds that high
motivation shifts the balance of influence towards an impulsive limbic reward system
myopically focused on immediate rewards, and away from a more prospectively-oriented
prefrontal cortical system oriented towards maximizing long-run gains (Loewenstein,
Rick, & Cohen, 2008; S. M. McClure, Laibson, Loewenstein, & Cohen, 2004). Another
version focuses more directly on interactions between striatal and cortical dopaminergic
systems, and, in particular, that dopamine has contrasting effects on cognitive control
depending on current task demands, associated neural systems and baseline levels of
dopamine in these neural systems (Cools & D'Esposito, 2011; Cools & Robbins, 2004).
Accordingly, incentive motivation should enhance processes associated with cognitive
flexibility (e.g., task-switching) via striatal dopamine effects, but can also, as a
consequence, produce impairments associated with increased distractibility and reduced
cognitive focus (E. Aarts et al., 2011). However, the fit of this account to experimental
findings is somewhat mixed, indicating that further theoretical and experimental work is
needed to provide a more comprehensive understanding of motivational impairment
effects.

For example, a related, but distinct account is that of regulatory fit (Maddox &
Markman, 2010), which suggests that motivational effects on performance depend upon
the interaction of three factors: a) whether approach or avoidance motivation is activated
(promotion or prevention focus); b) the incentive structure of the task (gains or loss
related); and c) the cognitive processes that are required to optimize task performance.
Specifically, under conditions in which the current regulatory focus matches the task
incentive structure (i.e., promotion focus with gain incentives, or prevention focus with
loss incentives), processes associated with cognitive flexibility should be enhanced. In
contrast, if there is a regulatory mismatch, task performance can be impaired, particularly
when successful performance demands high cognitive flexibility. In one supportive study
testing this account, choking effects were observed when participants were put under
high performance pressure (prevention focus) with a gain incentive structure (i.e., a
regulatory mismatch), but only when the classification learning task relied upon flexible
application of categorization rules (Worthy, Markman, & Maddox, 2009).

How does motivation modulate cognitive effort?

As described previously, a primary account of motivation-cognition interactions is
that motivation not only influences performance in cognitively effortful activities, but
also the willingness to engage in them in the first place. Indeed, some accounts suggest
that the enhanced cognitive performance may actually result from selection of more
effortful strategies, assuming that more effortful cognitive strategies are more effective
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(e.g., proactive control; Braver, 2012). A role for motivation in the selection of effortful
strategies is often neglected since strategy selection is typically considered in strict
decision-theoretic terms of performance optimization. And yet, recent work has
confirmed that participants will avoid cognitively effortful tasks, all else being equal
(Botvinick, 2007; Kool et al., 2010). Thus, selection of effortful cognitive strategies
should depend on cost-benefit considerations, weighing the incentive benefits of
increased performance against the apparent cost of effort.

Several state and trait factors may influence the subjective cost of cognitive effort.
In the personality literature, it is well-established that there are stable trait-like
differences in individuals’ “need for cognition”, which refers to preferences for effortful
cognitive activities (Cacioppo, Petty, Feinstein, & Jarvis, 1996). More recently,
experimental paradigms have been developed that enable direct assessment of avoidance
rates for cognitive tasks (Botvinick, 2007; Kool et al., 2010). Related paradigms directly
estimate the subjective value of cognitive effort in terms of an economic decision
(Westbrook et al., 2013): what additional amount of monetary reward will an individual
trade away to avoid a high working memory load task in favor of a matched task with
lower load? Individuals high in need-for-cognition were found to trade away less reward
than those low in need-for-cognition. Additionally, state factors also moderate these
effects, as they became stronger when working memory loads increased, but were
proportionally smaller when incentive magnitude increased. Such results are consistent
with the idea that motivational incentives can influence willingness to expend cognitive
effort, yet there is no direct evidence yet that these effects mediate strategy selection
within a particular cognitive task.

There are a number of possible mechanisms by which motivational value could
interact with cognitive effort. First, motivation might modulate the computation and
estimation of effort costs. For example, motivational incentives have been shown to
affect the rate of accumulation of a physical effort cost signal, arising in the anterior
insula, which predicts decisions about when to rest (Meyniel, Sergent, Rigoux,
Daunizeau, & Pessiglione, 2013). Another proposal postulates that effort cost
computations and effort-reward functions are directly mediated by dopaminergic
mechanisms (Phillips, Walton, & Jhou, 2007). There is support for this idea from the
animal literature, but only for physical effort (Breton, Mullett, Conover, & Shizgal, 2013;
Salamone & Correa, 2012).

A related possibility is that reward motivation might decrease effort costs. This
decreased effort cost could occur directly, via dopaminergic broadcast effects. As
described above, these could increase the fluency of cognitive processing via a variety of
mechanisms (e.g., enhanced signal-to-noise ratio, sharpened cortical tuning, altered
neuronal excitability, heightened perceptual sensitivity). Motivation could also decrease
effort costs indirectly, by increasing cognitive control, and thus the ability to successfully
meet increased effort demands. Such an account would be consistent with proposed
mechanisms of motivation-cognition interactions that postulate effects on how and when
cognitive control is allocated (e.g., proactive control, expected value of control). This tpe
of account also aligns with the influential ego depletion literature in social psychology
(Baumeister, Vohs, & Tice, 2007), which assumes that exertion of control depletes a
limited resource (but see Inzlicht, Schmeichel, & Macrae, 2014b; Kurzban et al., 2013),
and that motivation compensates for depletion by decreasing people’s tendency to
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conserve willpower (Muraven & Slessareva, 2003). Likewise, as discussed further below,
it is also consistent with the finding that people’s beliefs about the reward value of
cognitive effort have a strong influence on their willingness to engage in it (Blackwell,
Trzesniewski, & Dweck, 2007; Dweck, 2012).

A final possibility is that the motivational effects on effortful cognitive
engagement occur through a primarily affective route. For example, it is intuitive to
think that increasing incentive motivation changes the affective valence of cognitive
effort from primarily aversive to primarily rewarding. Indeed, accounts of this flavor
have been put forward in the animal learning literature to explain the effects of
reinforcing high effort behaviors in the development of “work ethic” (Clement, Feltus,
Kaiser, & Zentall, 2000) or “learned industriousness” (Eisenberger, 1992). A similar
type of interpretation is present in accounts from the social-personality literature that
assume bi-directional affective-motivational interactions, such that making a cognitive
goal a desired outcome increases the positive affect associated with it, and vice versa (H.
Aarts, Custers, & Veltkamp, 2008). Such effects would be particularly relevant for
studies investigating how to enhance cognitive engagement in relatively hypo-
dopaminergic populations (e.g., healthy aging) and clinical syndromes (e.g., anergia,
anhedonia).

How do motivation-cognition interactions change across the lifespan?

Development. A primary goal of neurodevelopmental research is to specify the
biological mechanisms that dynamically influence behavior from childhood to adulthood.
The adolescent period is especially interesting, in that some aspects of the brain have
reached adult-level structure and connectivity, whereas others, including the prefrontal
cortex, show developmentally-lagged trajectories, not reaching adult volume and
connectivity until the late twenties. Lagged development of the prefrontal cortex has been
implicated in the still-maturing capacity for adolescents to instantiate impulse control and
other forms of self-regulation (Casey, Galvan, & Hare, 2005; Rubia et al., 2006). In
contrast, critical components of dopaminergic neurocircuitry, including the ventral
striatum and orbitofrontal cortex, are functionally sensitized during adolescence
(Andersen, Dumont, & Teicher, 1997; Brenhouse, Sonntag, & Andersen, 2008).
Likewise, fMRI studies demonstrate that the adolescent striatum shows a greater
magnitude of response to reward cues relative to both children and adults (Galvan et al.,
2006; Somerville et al., 2011), and shows exaggerated prediction error learning signals
(Cohen et al., 2010).

As such, the adolescent brain is thought to be in a unique state of heightened
incentive salience signaling, paired with an underdeveloped capacity for impulse control
(Somerville & Casey, 2010; Steinberg, 2010b). This combination is thought to represent
a developmentally normative ‘imbalance’ that could lead to a heightened influence of
motivational cues on adolescents’ behavior and decisions. Indeed, studies probing
dynamic interactions within striatocortical circuitry demonstrate adolescent-specific
patterns of neural reactivity and heightened functional connectivity that parallels a
reduced capacity to withhold behavioral responses to appetitive cues (Somerville et al.,
2011). Evolutionarily-inspired accounts argue that the adolescent brain might exist in
such a state of bias in order to facilitate exploratory behavior to leave safety in search of
mates and resources (Spear, 2000).
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Despite initial support for this framework, numerous fundamental questions
remain. While a growing number of studies measure incentive salience responding or
cognitive control across development, only a few have manipulated both processes within
the same experimental design. Thus, there is still a poor understanding of how dynamic
striatocortical interactions and connectivity might shape selective shifts in adolescent
cognitive behavior. In addition, it is unclear how particular contextual factors that
influence adolescent motivated and risky behavior in the real world (such as the presence
of peers or affectively arousing contexts) dynamically modulate striatocortical
interactions and ultimately, motivated behavior during this complex phase of the lifespan.

Aging. Much cognitive aging research is focused on identifying the nature of age-
related change in specific cognitive processes, as well as understanding the underlying
neural mechanisms. Although cognitive and neurobiological factors, such as processing
speed, working memory, or gray matter volume may be predictive, they clearly do not
explain all the age-related variance in performance (for review, see Allaire, 2012).
Motivation-based accounts are also being increasingly emphasized as relevant for
determining age differences in cognitive performance.

Age-related motivational influences may be evident in response to changes in the
costs of engaging in cognitive activity. Hess and colleagues (Hess, in press; Hess &
Emery, 2012) have argued that such costs increase in later life, and may negatively
impact the motivation to engage cognitive resources in support of performance. Resultant
shifts in the costs relative to benefits of engaging in particular activities are hypothesized
to result in both reduced overall levels of participation in cognitively demanding
activities, and in increased salience of the self-relevance of the task in determining
engagement. Some support for this selective engagement account has been observed
experimentally in terms of self-report, physiological, and behavioral indicators regarding
the costs of cognitive activity (e.g., Ennis, Hess, & Smith, 2013; Westbrook et al., 2013),
as well as with self-reported shifts from a more extrinsic to more intrinsic motivational
focus in later life (Hess, Emery, & Neupert, 2012). These findings lead to the interesting
suggestion that some of the age-related variance observed on such tasks may reflect
motivational influences, and that the observed age effects may overestimate age
differences in underlying ability. However, it will be important for further research to be
able to disentangle and quantitatively estimate the distinct contributions of motivational
and cognitive performance effects on age differences in behavioral performance.

As described above, motivational accounts have also been put forward to describe
the positivity effect in cognitive aging. One tool for exploring whether such effects reflect
a shift in motivational goals is to use eye-tracking, so as to provide real-time measures of
visual attention. These have resulted in fairly clear evidence that older adults look less at
negative and more at positive stimuli than their younger counterparts (see, for example,
(see, for example, Isaacowitz, Wadlinger, Goren, & Wilson, 2006)). These age
differences are magnified when participants come to the task in a bad mood (Isaacowitz,
Toner, Goren, & Wilson, 2008). But do these effects reflect motivation? Positive
looking behaviors could conceivably arise for motivational reasons (i.e., due to age-
related prioritization of emotional goals). However, direct evidence for a motivational
explanation of these findings at this point is lacking. It may be that these effects result
from age-related changes in goals, but that remains to be tested empirically. Thus, it
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remains an open question as to whether age differences in looking and looking-feeling
links really arise from age differences in motivation, and if they do, what specific
configuration of goals lead to these patterns. To determine this, studies are needed that
directly assess goals and track individual differences in goal states through looking
patterns and mood changes, as well as studies that manipulate goals and put goals in
competition to determine effects on looking and mood across different age groups.

In general, theories of cognitive aging are strongly based in descriptions of
neurobiological change, whereas none of the current motivational theories of aging
integrate neurobiology. One account interprets the age-related positivity effect described
above in terms of a potential re-tuning of amygdala sensitivity from a negative emotional
bias in young adulthood toward a relatively more positive emotional bias in older age
(Mather et al., 2004) as argued by the *“aging-brain” hypothesis (Cacioppo, Bernston,
Bechara, Tranel, & Hawkley, 2011; for an opposing view see Nashiro, Sakaki, & Mather,
2012). Similarly, there is evidence for intact reward motivation and enhancement of
positive anticipation relative to negative anticipation in older adults’ self-reported
emotional ratings and neural activation in the striatum and anterior insula (Samanez-
Larkin et al., 2007). In contrast, a large literature suggests that many of the brain systems
implicated in motivational enhancement of cognition decline structurally and functionally
with age. For example, there is relatively linear decline in D1-like and D2-like dopamine
receptors and dopamine transporters across adulthood (and mixed evidence for age
differences in synthesis capacity; Backman, Nyberg, Lindenberger, Li, & Farde, 2006).
Some have argued that differential age-related decline of specific neural systems may
account for divergent trajectories of motivational and cognitive functions (e.g.,
MacPherson, Phillips, & Della Sala, 2002), but there is much debate about these theories,
and they are not well supported by larger, cross-sectional and longitudinal studies of
brain aging (Driscoll et al., 2009; Raz, Ghisletta, Rodrigue, Kennedy, & Lindenberger,
2010; Walhovd et al., 2011). All of this is further complicated by a wave of recent,
seemingly contradictory findings on age differences in sensitivity to positive and negative
information in reward-based tasks (e.g., Eppinger, Schuck, Nystrom, & Cohen, 2013;
Frank & Kong, 2008; Samanez-Larkin et al., 2007). Thus, there is an urgent need for
development of testable neurobiologically-based models of age differences in motivation
and cognition.

How do motivational incentives get translated into goals?

Traditional theories (e.g., (e.g., Ajzen, 1991)) assume that high perceived
feasibility and desirability of an imagined future outcome will always result in a strong
intention (i.e., a goal) to reach this outcome. Under such condition, the desired outcome
(or incentive) is likely to transform into a goal. Extensive research has revealed, however,
that even when the perceived feasibility of an attractive future outcome (i.e., a positive
incentive) is high, people do not always commit to striving for it (e.g., imagine the highly
attractive and feasible future outcome of becoming a skilled piano player). Thus, a key
question remains regarding what factors are critical to ensuring that a highly motivating
outcome translates into a change in cognitive goals.

Social psychological research has suggested important roles for both mental
contrasting and mindset theory in the translation of an incentivized outcome into a goal
commitment, even given high feasibility. Mental contrasting is a process of simulating
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both the desired future outcome as well as potential obstacles. This process is thought to
activate expectations of overcoming the obstacles: if expectations are high, people will
actively pursue (commit to and strive for) reaching the desired future, but if they are low
then people will refrain from goal pursuit, either reducing efforts or curbing them
altogether (Oettingen, Pak, & Schnetter, 2001).

According to mindset theory (Gollwitzer, 1990; 2012; also known as the
"Rubicon Model™), goal-setting is the process of transition from a pre-decisional
deliberative phase into the post-decisional implementation phase. In the pre-decisional
phase, the desirability and feasibility of a wish need to be fully and completely
deliberated before the person can move from indecisiveness to decisiveness. Accordingly,
when people feel that they have deliberated enough, they feel justified to move (i.e.,
“cross the Rubicon”) into implementation. Indeed, Gollwitzer, Heckhausen, and
Ratajczak (1990) observed that as yet undecided people were more likely to make a
decision after they had been asked to list likely positive and negative, short-term and
long-term consequences of goal attainment.

Although these accounts of goal-setting may apply well to the types of abstract,
higher-order, and temporally-extended outcomes that are typically studied in social and
personality psychology, it is not at all clear that they fit well for the types of goals,
motivational incentives, and behaviors that are the focus of standard cognitive
neuroscience studies. Thus, more work will be needed to understand whether the
concepts of mental contrasting and mindsets can be “translated” into more basic
experimental domains. It is also thus unknown what cognitive and neural mechanisms
underlie components of higher-order processes of mental contrasting and goal setting.

How do beliefs impact motivations?

An important, but often overlooked, area of motivation involves the study of beliefs
and their impact. Recent research has shown that people’s beliefs (for example, about the
fixedness or malleability of personal attributes) predict their school achievement, the
success of their relationships, the hardiness of their willpower, and their willingness to
compromise for peace in the face of conflict (see Dweck, 2012). These beliefs do so by
changing the goals people are motivated to pursue and the ways that they pursue them.
Moreover, the same lines of research show that changing people’s beliefs can change
these goals and outcomes. Beliefs can change the meaning of the seemingly same
experience, determining whether an individual views challenges as threats or
opportunities (e.g., Tomaka, Blascovich, Kibler, & Ernst, 1997), and setbacks as
indicating a lack of ability or as signaling that a change in effort or strategy is called for
(e.g., Blackwell et al., 2007; Walton & Cohen, 2007). Beliefs can change the meaning of
effort, from something unpleasant that makes people feel less competent, to something
positive that signals learning (Blackwell et al., 2007). These different meanings have
profoundly different motivational consequences.

Yet research is only just beginning to understand the potential cognitive and neural
mechanisms by which beliefs impact motivation. For example, in one study, individuals
who differed in their beliefs about intelligence showed distinct patterns of behavioral and
neural responses to errors in a demanding cognitive task. Specifically, individuals
possessing a “growth mindset” (i.e., that intelligence is malleable and can be developed)
showed higher accuracy after making an error, and this effect was mediated by a post-
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error ERP component (termed the Pe), thought to reflect error awareness and attentional
allocation (Steinhauser & Yeung, 2010). Thus, it is possible to interpret these results as
suggesting that beliefs about intelligence alter: a) how task errors are interpreted by the
brain, and b) their motivational impact on subsequent performance. Given that such
research is only in its infancy, much additional work is needed to understand the neural
mechanisms of belief development and change, and how such processes alter the
landscape of motivation-cognition interactions.

Are there other motivational constructs that should receive neuroscience investigation?

In addition to the topics discussed in this paper, there are still many motivational
constructs and phenomena that have been proposed and/or examined in psychology but
have been paid little attention in neuroscience (Reeve & Lee, 2012). In fact,
psychologists have proposed a number of motivational constructs to explain human
behavior (some of them are already discussed in the paper), such as intrinsic motivation
(Deci & Ryan, 1985), need for achievement (McClelland, Atkinson, Clark, & Lowell,
1976), need to belong (Baumeister & Leary, 1995), self-efficacy (Bandura, 1977),
achievement goals (Dweck, 1986), self-enhancement motives (Sedikides & Strube, 1997),
and self-consistency motive (Aronson, 1968), just to name a few. These topics may be an
important avenue for future research in neuroscience. Yet they also present an important
challenge: Can an integrative account be developed that incorporates the myriad of
motivational constructs proposed in psychology into the theoretical frameworks used in
neuroscience and/or computational models?

This is a critical question for understanding the complicated nature of motivation.
For example, there is a long-lasting tradition in psychology to distinguish intrinsic
interest and extrinsic motivation (Deci & Ryan, 1985), and most research in psychology
has stood on the assumption that these motivations are distinct, qualitatively different
entities. Viewed from the reinforcement learning theory framework, however, extrinsic
motivation and intrinsic motivation may come from a common reward-processing
mechanism to produce motivated behavior, with extrinsic motivation being focused on
immediate, tangible reward and intrinsic motivation being focused on invisible, future
reward (Singh et al., 2010)(see also Daw, O'Doherty, Dayan, Seymour, & Dolan, 2006).
Likewise, as described above, intrinsic motivation and extrinsic motivation seem to
activate common striatal reward areas (Murayama et al., 2010), suggesting a common
neural basis. As another example, a large literature in social psychology posits that a host
of human social behavior can be interpreted in terms of a fundamental “cognitive
consistency motive” (or a “dissonance reduction motive”): a drive to reduce
psychologically dissonant cognitions by modifying them to be consistent (Abelson, 1968;
Aronson, 1968; Festinger, 1957). However, many of cognitive dissonance phenomena
were successfully simulated in a computational model in which dissonance reduction
occurs as an emergent product of much simpler cognitive phenomena (i.e., low-level
constraint satisfaction mechanisms; Shultz & Lepper, 1998). Together, these examples
suggest that neuroscience and computationally-based theories may be able to provide
accounts of complex motivational phenomena in terms of simpler and potentially more
unifying mechanisms.

Motivation is invisible. Yet people are extremely talented in ascribing
motivational concepts to interpret behavioral patterns. When we see a person acting in an
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unusual way, we cannot help thinking “why does s/he do that?”” Even infants have basic
inclination to infer other’s intentions or motives (Woodward, 1998). Many studies have
shown that people are good at giving post-hoc explanations (i.e., motivation) for the
behavior that was actually induced unconsciously by extraneous factors (Nisbett &
Wilson, 1977). This inborn-tendency to attribute motivation to action may have
contributed to the current myriad of definitions, hypotheses, and constructs to describe
motivation (as discussed in this article). With the advance in the neuroscientific and
computational approaches to motivation, the time may now be ripe to integrate these
divergent views on motivation in a coherent, parsimonious way, instead of using
motivation as a convenient “catch-all” to explain (or explain away) complex aspects of
human behavior.

GENERAL CONCLUSIONS

As we suggested at the outset of this article, it is indeed an exciting time for the
study of motivation-cognition interactions. Although studies of motivation have been an
active focus within psychology and neuroscience for decades, there has clearly also been
a recent rejuvenation of interest. This rejuvenation is due, at least in part, to the growing
body of exciting new findings occurring across a range of areas, including dissociations
between goal-directed versus habitual motivational control, subliminal priming of goal
pursuit, ego-depletion and related influences on the engagement of cognitive effort, age-
related positivity biases, and adolescent over-sensitivity to incentive motivation.
Likewise, emerging insights into the mechanisms of motivation have been prompted by
new evidence that motivation influences cognition in areas where it has been previously
thought irrelevant, for example in long-term memory formation. As we reviewed above,
and as is detailed in this Special Issue, some of these findings are having a strong impact
on, and are being impacted by, current cognitive neuroscience research.

Yet for all the rejuvenation, excitement, and new findings, many challenges
remain. We would argue that the most critical and formidable challenge is that, with few
exceptions, research on motivation-cognition interactions has been somewhat balkanized.
Each of the different sub-fields tends to work largely in isolation, with the questions
being pursued and methods being utilized showing little influence from, and awareness
of, the parallel work going on in other areas. This balkanization has an impact even at
the conceptual level, in terms of the definitions and dimensions that are used to
taxonomize the domain and specify the relevant theoretical issues to be investigated.

Nevertheless, we believe that the time is ripe to move towards greater cross-
disciplinary interaction and integration. A large number of pressing research questions
are only just beginning to be addressed by current studies. We believe that the field is
now poised to make rapid progress on these and related questions, but that such progress
will critically depend upon the adoption of an integrative, collaborative approach.
Indeed, an explicit goal of this article, and the Special Issue, is to encourage researchers
towards such an approach, by highlighting not only the challenges but also the
opportunities that come about from greater awareness of the breadth of motivation-
cognition work occurring throughout psychology and neuroscience. Our hope is that the
forging of new cross-disciplinary approaches and collaborations, hopefully inspired by
this Special Issue, will lead us towards a more unified and comprehensive account of the
mechanisms of motivation-cognition interaction.
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TERMINOLOGY | ANIMAL SOCIAL & REINFORCEMENT | HUMAN COGNITIVE Consistency, Conflict or
LITERATURE PERSONALITY LEARNING NEUROSCIENCE Gaps in accounts
emphasis PSYCHOLOGY emphasis emphasis
emphasis
Motivation Components: Motives: ‘Motivated” behavior Quantification: neural Consistency
directional component Expectations, = action selection / representation of expected | 1) behavior driven by reward
orients toward goal needs and efficacy | decision-making value of future events or utility; not limited to drive
state, and activation of the individual, driven by predicting decisions to reduction
component invigorates more than considerations of invest effort 2) Moderated by perceived
and energizes action quantifiable reward or utility; these efficacy
incentive values. are modulated by 3) Regulates effort investment
Energization and motivational state
directional Gap
components are Individual motives usually
recognized. neglected in the cognitive and
animal literature, whereas
quantification is limited in
Social.
Goal Internal subjective Mental The implicit, constant | Operationalized as active Consistency
states that generate representation of goal of the organism is | maintenance of internal All postulate desired and
activational and desired state, to maximize reward representations of desired predicted states that may differ
directional characterized by states from current state
components of feasibility and
motivation desirability, Gap
commitment, and Cognitive Neuroscience and
beliefs animal literature emphasize
transient goals; RL and Social
include study of common
stable goals; Personality focus
on individual differences in
goals
Goal pursuit Learning which Distinctions Nested goal In some accounts Consistency
actions bring about the between goal hierarchies are conceptualized in terms of | All accounts emphasize effort
valued outcome — setting or mere necessary framework affective valence states Gap

unlike habit, goal
pursuit behavior is
sensitive to outcome

activation of a
goal representation
and goal striving

for model-based
reinforcement learning

Not all disciplines recognize
subprocesses
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revaluation

Habit

Stimulus-response
association unmoored
from modification by

Goal-action links
causing automatic
activation of

May depend on prior
model-free
reinforcement learning

Mostly considered in
research on
addiction, mainly

Consistency
A highly automatized link to
action. #

outcomes or incentive behavior recapitulates animal Conflict
salience. literature Social psychology concept of
habit as goal-oriented is at
odds with animal literature
account of habit as goal-
independent
Incentive value Eventually decoupled Not typically Defined by magnitude | Defined by magnitude, Consistency

by learning from
hedonic impact of
incentives

discussed except in
terms of individual
motives

X success probability

valence x success
probability

Value includes magnitude x
success probability

Gap

Computation of incentive value
is relatively unexamined in
terms of individual motives

Incentive salience Dictated by learned Not typically Salience concept is Inferred from activation of | Consistency
incentive value and discussed but ambiguous, sometimes | motivational architecture quantifies influence of a
current state implied by meaning during anticipation and stimulus on behavior
emphasis on ‘associability’ rather subsequent instrumental Gap
individual motives | than value behavior Current definitions do not
consider individual motives or
long-term goals
Intrinsic vs. Animal models have Intrinsic motivation | Classically no Most cognitive Consistency
extrinsic found this distinction is engagement ina | distinction (recent neuroscience work has Most approaches acknowledge
motivation challenging to explore task for inherent work includes focused on extrinsic but do not manipulate this

satisfaction;
extrinsic
reinforcement may
undermine this
effect

information structure
as a reinforcer)

motivation given focus on
quantifiable reinforcement

distinction.

Conflict

Tension with ideas about
common currency of “reward”

Table 1. Do we speak the same language? Disciplines of research on motivation have had substantially different foci and
operationalization, but there are relatively few frank conflicts in terminology and usage.
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ANTEROR CINGULATE
Computing the
expected value of

control

Frontal-panetal
attentional network

BROADCIAST
’ ¥ ATION:
NEUROMOOULATY rs‘ O Fronto-panetal
r roiectioe 3 oI
Dopamene projections from region
midbrain to subcortical and
cortical areas

: A | Lo\
s W
2/ W2,
!
LATERAL PFC:
Integrating motivation
with cogretive goal

representations

STRIATUM

Linking motivabon to VALUATION NETWORE, CORTICAL VALUATION NETWORX, SUBCORTICAL:
cognition and acten OFC, ant. insuls, medal PFC, PCC, Caudate, putamen, NAcc, amygdala, ete
etc.

Figure 1: Diagram showing candidate neural mechanisms of motivation-cognition interaction. Shown are broadcast neuromodulation
of the dopamine system and anterior cingulate cortex in medial view (upper), lateral PFC and striatum on lateral view (lower), and
network mode of communication between frontoparietal network and cortical / subcortical valuation networks (right). Right panel

adapted from Engelman and Pessoa (2010).
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