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Abstract. We investigate the initialisation of North-
ern Hemisphere sea ice in the global climate model
ECHAM5/MPI-OM by assimilating sea-ice concentration
data. The analysis updates for concentration are given by
Newtonian relaxation, and we discuss different ways of spec-
ifying the analysis updates for mean thickness. Because the
conservation of mean ice thickness or actual ice thickness
in the analysis updates leads to poor assimilation perfor-
mance, we introduce a proportional dependence between
concentration and mean thickness analysis updates. Assim-
ilation with these proportional mean-thickness analysis up-
dates leads to good assimilation performance for sea-ice con-
centration and thickness, both in identical-twin experiments
and when assimilating sea-ice observations. The simulation
of other Arctic surface fields in the coupled model is, how-
ever, not significantly improved by the assimilation. To un-
derstand the physical aspects of assimilation errors, we con-
struct a simple prognostic model of the sea-ice thermody-
namics, and analyse its response to the assimilation. We
find that an adjustment of mean ice thickness in the analy-
sis update is essential to arrive at plausible state estimates.
To understand the statistical aspects of assimilation errors,
we study the model background error covariance between
ice concentration and ice thickness. We find that the spatial
structure of covariances is best represented by the propor-
tional mean-thickness analysis updates. Both physical and
statistical evidence supports the experimental finding that as-
similation with proportional mean-thickness updates outper-
forms the other two methods considered. The method de-
scribed here is very simple to implement, and gives results
that are sufficiently good to be used for initialising sea ice in
a global climate model for seasonal to decadal predictions.

1 Introduction

For skillful seasonal to decadal predictions, good ini-
tial conditions of atmosphere–ocean global climate models
(AOGCMs) are of paramount importance. So far, global pre-
diction studies have been restricted to the initialisation of
the oceanic and atmospheric state (e.g.,Smith et al., 2007;
Pohlmann et al., 2009). However, slow surface processes
might constitute a substantial source of untapped predictabil-
ity (Hurrell et al., 2009; Shepherd et al., 2011). One of the
most important of these surface processes is arguably the
existence of sea ice at high latitudes.Holland et al.(2010)
andBlanchard-Wrigglesworth et al.(2011a) have shown that
Arctic sea ice has inherent predictability of up to two years.
Moreover, anomalies in Arctic sea ice can have an influ-
ence far beyond the Arctic by changing the large-scale at-
mospheric circulation (Honda et al., 2009; Budikova, 2009;
Francis and Vavrus, 2012) and the oceanic thermohaline
circulation (Koenigk et al., 2006; Levermann et al., 2007).
Hence, the initialisation of sea ice in an AOGCM with suit-
able data assimilation techniques is an important step to-
wards more skillful seasonal to decadal predictions. Here,
we investigate data assimilation techniques for the initial-
isation of Northern Hemisphere sea ice in the AOGCM
ECHAM5/MPI-OM.

For climate studies, the most important parameters of sea
ice are the sea-ice concentration, which is the fraction of sur-
face area covered by sea ice, and the sea-ice mean thickness,
which is the volume of sea ice present per surface area. While
the observational record of ice concentration in the Arctic
is dense in space and time, and relatively reliable since the
late 1970’s, observations for ice thickness are sparse. Hence,
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20 S. Tietsche et al.: Sea-ice concentration assimilation in an AOGCM

sea-ice data assimilation suffers from a large uncertainty
about the true thickness. Initial conditions derived from the
assimilation inherit this uncertainty, which in turn severely
limits the reliability of sea-ice predictions.

Previous studies have demonstrated that the assimilation
of observed sea-ice concentration in ice–ocean models im-
proves the simulated concentration (Lisæter et al., 2003;
Lindsay and Zhang, 2006; Stark et al., 2008). However, the
improvement in ice thickness is not straightforward, and
Dulière and Fichefet(2007) emphasised that the assimilation
can easily deteriorate the model performance if inappropriate
assimilation techniques are chosen.

These findings from ice concentration assimilation in ice–
ocean models forced by atmospheric surface conditions can-
not be directly transferred to ice-concentration assimilation
in AOGCMs, because in AOGCMs the atmospheric surface
conditions are not necessarily consistent with the assimilated
sea-ice state. Rather, they develop interactively from large-
scale dynamics and from local interaction with the sea-ice
state. This makes the impact of ice-concentration assimila-
tion on ice thickness less obvious than in ice–ocean models
and calls for dedicated studies on sea-ice data assimilation
in an AOGCM. To our knowledge, the only such published
study is bySaha et al.(2010), who did not describe the im-
pact of the ice concentration assimilation on ice thickness.

Here, we assimilate observations of Northern Hemisphere
sea-ice concentration and compare different methods of
prescribing changes in mean ice thickness associated with
changes in ice concentration during the assimilation step. We
systematically assess the assimilation performance both for
concentration and thickness, and use conceptual arguments
to explain the differences in assimilation performance.

The rest of the paper is organised as follows: Sect.2
describes the global climate model used for this study, in
particular the sea-ice component. Section3 introduces the
sea-ice data assimilation methods which we use to investi-
gate feasibility of sea-ice data assimilation. The assimilation
performance is evaluated first in identical-twin experiments
(Sect.4) and then with actual observations of sea-ice concen-
tration (Sect.5). Section6.1uses both a simple model and an
AOGCM case study to develop a conceptual understanding
of assimilation errors, while Sect.6.2analyses the model er-
ror statistics. Section7 presents conclusions.

2 The coupled global climate model

2.1 The atmosphere and ocean models

Our AOGCM consists of the atmosphere component
ECHAM5 (Roeckner et al., 2003) with a T31 horizontal
resolution and 19 vertical levels, and the ocean component
MPI-OM (Marsland et al., 2003) with a curvilinear grid that
has a horizontal resolution of 50–200 km in the Arctic and
40 vertical levels. The time step of the atmosphere model

is 40 min, the time step of the ocean and sea-ice models is
144 min. The ocean and atmosphere exchange surface fields
once a day before the first time step. The model setup is a
coarse-resolution version of the IPCC-AR4 model described
by Jungclaus et al.(2006).

2.2 The sea-ice model

The sea-ice model in ECHAM5/MPI-OM is based onHi-
bler III (1979) andSemtner(1976). It consists of three prog-
nostic equations for the mean ice thicknesshm(x, y, t), the
ice concentrationC(x, y, t), and the ice velocityv(x, y, t):

∂thm = ∇ · (hmv) + Sh (1)

∂tC = ∇ · (Cv) + SC (2)

∂tv = −f (k × v) − g∇ζ +
τa

ρihm
+

τo

ρihm
+ ∇ · σ . (3)

The divergence terms on the right-hand side of Eqs. (1) and
(2) describe the redistribution of ice volume and concentra-
tion by advection with ice velocityv. Sh andSC are the ther-
modynamic sources of mean thickness and concentration, re-
spectively, which describe local melting and freezing. The
change of ice velocityv = (vx, vy) is determined by the mo-
mentum balance of Eq. (3), wheref is the Coriolis parame-
ter, k the vertical unit vector,g the Earth’s gravitational ac-
celeration,ζ the sea-surface height above sea-level,ρi the ice
density,τa/o the stress of wind from above and of ocean cur-
rent from below, andσ the sea-ice internal stress tensor. The
terms on the right-hand side of Eq. (3) from left to right cor-
respond to forces that originate in the Coriolis effect, the tilt
of the sea-surface, the drag from atmosphere and ocean, and
internal sea-ice stresses.

These equations are based on the model assumption that
within a grid cell, a fractionC of the area is covered by thick
ice with the constant actual thicknessht, and the remaining
fraction 1−C of the area is open water. The actual thickness
ht is connected to the mean ice thicknesshm by

hm = Cht. (4)

It is further assumed that the sea-water in a grid cell that
contains sea ice is always at a representative sea-water freez-
ing temperature of−1.9◦C. Thus, any heat flux imbalance
over either the ice-covered or the open-water part of the grid
cell is immediately converted into ice growth or melt, and so
the thermodynamic source of mean ice thickness in Eq. (1) is
given by:

Sh = Cgi + (1− C)gw. (5)

The two different growth rates,gi for the ice-covered part of
the grid cell andgw for the open-water part, are calculated
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from the surface energy balance of the coupled model, as-
suming a linear temperature profile within the ice (Semtner,
1976).

The thermodynamic source term for ice concentrationSC

is parametrised in terms of the ice growth rates according to
Hibler III (1979):

SC = 2(gw)
gw

h0
(1− C) + 2(−Sh)

C

2hm
Sh, (6)

with 2 the Heaviside step function (i.e.2(x) = 1 if x ≥ 0,
2(x) = 0 if x < 0). The first term on the right-hand side of
Eq. (6) is active when new ice forms from open water; the
parameterh0 = 0.5 m is chosen such that open water freezes
over within a few days if there is strong ice growth. The
second term approximates the decrease in ice concentration
when thick ice melts, assuming that the thickness of the ice
floe is distributed linearly between 0 and 2ht. A critical dis-
cussion of Eq. (6) is provided byMellor and Kantha(1989).

3 Sea-ice data assimilation approach

In this study, we utilise daily data of Arctic sea-ice concen-
tration. In Sect.4, these data are derived from model output,
whereas in Sect.5 they are derived from satellite observa-
tions. For the concentration analysis updates, we choose here
the simplest possible approach: the Newtonian relaxation of
the model state towards observations (Lindsay and Zhang,
2006). This approach is feasible here since sea-ice concen-
tration observations are both dense and relatively reliable.
The analysis updates of other sea ice-related variables like
mean ice thickness, sea-surface temperature and sea-surface
salinity are derived from the concentration analysis updates
as described in Sects.3.2and3.3.

We remind the reader that Newtonian relaxation is the sim-
plest conceivable data assimilation scheme. It does not ac-
count for spatial correlation in model and observations; nor
does it account for multivariate covariances, unless they are
explicitly prescribed. Therefore, the state estimates obtained
by this simple method should always be critically evaluated.
For an overview of state-of-the-art data assimilation tech-
niques, which in general provide far more consistent state es-
timates, see for instanceKalnay (2003). Nevertheless, there
is one major advantage of the Newtonian Relaxation: its im-
plementational complexity and computational costs are or-
ders of magnitude smaller than those of more complex meth-
ods. If this simple approach delivers a state estimate that is
good enough for the application at hand, we argue that it can
be a very useful alternative to full-fledged assimilation meth-
ods. In our case, the application is the initialisation of sea
ice in a global climate model for seasonal to decadal climate
predictions. There, the usefulness of the initialisation can be
easily inferred from the change in predictive skill that it pro-
vides.

We perform long assimilation runs for the period 1979–2007,
spanning almost the entire satellite observational record of
Northern Hemisphere sea-ice concentration. We primarily
consider the global performance of sea-ice data assimilation,
averaged over different regions and different years, rather
than focus on specific case studies. On the one hand, this
complicates the attribution of failure or success of a method
to physical causes, since we deal with the average over a
plethora of different local conditions. On the other hand, we
can verify that there are no spurious drifts in the AOGCM
induced by the sea-ice data assimilation and that the perfor-
mance is robust over a range of climatic conditions.

In the following, we use the notation ofBouttier and
Courtier (1999). For any variablex, we denote the model
background state byxb and the observed state byxo. Every
time an assimilation step is performed, the departure of the
modelled statexb from the observed statexo is calculated,
and a correction1x is computed that depends on this depar-
ture. The correction1x is called the analysis update, and the
corrected statexa

= xb
+ 1x is called the analysis.

3.1 Analysis updates of ice concentration

We obtain the analysed sea-ice concentrationCa once a day
by correcting the model background concentrationCb with
an analysis update1C that corresponds to Newtonian relax-
ation towards observed valuesCo:

Ca
= Cb

+ 1C with 1C = KN

(
Co

− Cb
)
. (7)

The scalar constantKN determines the strength of the anal-
ysis update. This approach is akin to data assimilation by
nudging, where the same analysis update would be applied
at each time step of the model. For all our experiments, we
chooseKN = 0.1. Without model interaction, the analysis
update in Eq. (7) with KN = 0.1 applied once a day leads to
the exponential relaxation of an initial departure of the model
background state from the observation on a relaxation time
scale ofTR = 10 days. Thus, the time scale of the assimila-
tion matches the time scale on which large-scale changes in
sea ice can occur. Section6.2 discusses further implications
of the choice ofKN.

3.2 Analysis updates of mean ice thickness

We consider analysis updates of mean ice thicknesshm as a
function of analysis updates of ice concentration:

ha
m = hb

m + 1hm with 1hm = f (1C). (8)

Our motivation to follow this approach is twofold: (i) reli-
able and dense satellite observations of mean ice thickness
are not available to date, and (ii) anomalies in ice concen-
tration and mean ice thickness are correlated (Lisæter et al.,
2003; Zhang, 2010). By choosingf so that it approximates
these correlations, we can try to estimate the mean thickness
from observation of sea-ice concentration alone.
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22 S. Tietsche et al.: Sea-ice concentration assimilation in an AOGCM

It is to be expected that this approach works well close to
the ice edge, where concentration is very variable, and corre-
lation between concentration and thickness is strong. In the
central Arctic, however, ice concentration is almost always
close to 100 %, and the correlation between concentration
and thickness is weak. There, we cannot expect this approach
to correct ice thickness from concentration data effectively.

As we will see in Sects.4 and5, the assimilation error dif-
fers substantially between different choices for the functional
dependencef , and in Sects.6.1and6.2we will discuss pos-
sible sources of assimilation errors in detail. We introduce
and discuss the following three choices:

3.2.1 Analysis updates with conserved mean
thickness (CMT)

With this method, the analysis update of mean ice thickness
hm is always zero, no matter the value of the concentration
analysis update:

1hm = 0. (9)

The analysed actual ice thicknessha
t is then given byha

t =

hb
t Cb/Ca. From idealised experiments with prescribed per-

turbations in thermodynamic atmospheric forcing,Dulière
and Fichefet(2007) concluded that this is the best approach
when model error is mainly due to ice advection.

3.2.2 Analysis updates with conserved actual
thickness (CAT)

We assume that the model has the correct actual ice thickness
ht, and demand that1ht ≡ ha

t − hb
t

!
= 0. Applying Eqs. (4)

and (8), we see that this is guaranteed if we choose:

1hm = hb
t 1C, (10)

wherehb
t = hb

t (x, y, t) is the spatially and temporally vary-
ing actual thickness in the model background. Thus, for the
same concentration analysis update, mean-thickness analysis
updates will be small for low background actual thickness,
and large for high background actual thickness.Dulière and
Fichefet(2007) found that this method performs best when
model error is mainly due to ice thermodynamics.

3.2.3 Proportional mean thickness analysis
updates (PMT)

Dulière and Fichefet(2007) report best assimilation results
for a combination of CMT and CAT, depending on whether
errors are related to errors in the thermodynamic or the dy-
namic forcing of the sea ice. However, in an AOGCM the
attribution of errors in the sea-ice state to either dynamical
or thermodynamical processes is not practicable. Hence, we
propose a simple new scheme that – as we will show – per-
forms well independent of the source of the errors. This is

a scheme where the mean-thickness analysis updates have a
fixed proportionality to the concentration analysis updates:

1hm = h∗1C. (11)

The proportionality constanth∗ is a free parameter. In our ex-
periments, we use a value ofh∗

= 2 m. That means that for a
concentration update of 1 % we change the mean ice thick-
ness by 2 cm. However, we find that the assimilation perfor-
mance considered in Sects.4 and5 is not very sensitive to
changingh∗ in the range 0.5 m≤ h∗

≤ 4 m. Our choice ofh∗

is supported by the frequency of occurrence of mean thick-
ness and concentration in the AOGCM (see Sect.6.1) and
the model background error covariance between concentra-
tion and thickness diagnosed from the AOGCM (Sect.6.2).

3.3 Analysis updates of sea-surface temperature
and salinity

Growth and melt of sea ice are strongly coupled to the prop-
erties of the sea-water directly below and adjacent to the ice.
Thus, sea-ice data assimilation schemes for a model with a
prognostic ocean need to find a satisfying solution to adjust
sea-surface salinity (SSS) and sea-surface temperature (SST)
when changing the sea-ice state through the analysis updates.

In ECHAM5/MPI-OM, the assimilation of SST in the
presence of sea ice is implicitly provided by the assumption
of thermodynamic equilibrium between sea ice and the water
in the ocean surface layer. If sea ice is present in the obser-
vations, but not in the model, positive analysis updates of
ice concentration merely lead to a decrease in SST until the
freezing point is reached. In this case, analysis updates for
sea ice are effectively zero, while we have negative analy-
sis updates of SST. As soon as ice starts to form, SST stays
constant at the freezing temperature, and the analysis updates
change only the sea-ice concentration and thickness.

The SSS plays an important role for the establishment
or inhibition of oceanic convection in the presence of sea
ice. If there is convection, the entrainment of warm wa-
ter from below during the deepening of the surface mixed
layer can inhibit ice growth considerably (see, for instance,
Lemke, 1987). Since growth and melt of sea ice provide sub-
stantial freshwater fluxes into the ocean surface water, the
treatment of SSS in the analysis update will strongly inter-
act with the sea-ice analysis. The character of this interac-
tion, however, is very variable and depends on the specific
local conditions. Since the covariance between ice concen-
tration and SSS shows such a high degree of complexity
(Lisæter et al., 2003), it is not feasible to prescribe a global
time-independent functional relation between the analysis
updates that exploits the existing covariance structures.

In our experiments, we assume that no knowledge about
appropriate SSS analysis updates can be derived from the
analysis updates of sea-ice concentration, and therefore we
do not change SSS in the assimilation step.

Ocean Sci., 9, 19–36, 2013 www.ocean-sci.net/9/19/2013/
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4 Assimilating sea-ice data in identical-twin
experiments

4.1 Rationale and method

When assimilating observed sea-ice concentration in an
AOGCM, we face two basic problems: (i) the ice thickness
and the state of the ocean below sea ice are poorly observed,
hence we cannot determine if the assimilation improves those
variables, and (ii) we cannot decide if problems in the assim-
ilation are due to drawbacks in the assimilation scheme or
due to model biases.

Those issues can be addressed in a so-called “identical-
twin” or “perfect-model” study. In the data assimilation con-
text, this means that we treat model output from a reference
run as observations, and assimilate it back into a different run
of the same model. When both model runs start from differ-
ent but climatologically equivalent initial conditions and are
exposed to the same external forcing, the model is perfect
with respect to the reference-run observations. This allows
us to disentangle the effects of model bias and data assimila-
tion method and to answer the question, “If the model were
perfect, would we be able to initialise it successfully with a
given data assimilation approach?”.

The reference runR is started from a long control run
with preindustrial conditions, and is then exposed to the ob-
served greenhouse-gas forcing from 1900 onwards. In the
reference run, the overall decrease of Northern Hemisphere
sea-ice extent is comparable to observations, although the re-
treat of summer-time sea ice is somewhat underestimated. A
detailed description of the deficiencies of the IPCC-AR4 ver-
sion of this model in simulating Northern Hemisphere sea ice
is given byKoldunov et al.(2010).

We obtain an equivalent but different realisation of nat-
ural climate variability by starting a second runP in 1979
with exactly the same model setup, but from slightly per-
turbed initial conditions. The applied perturbation is a time
shift of the model state by one day, and is hence compara-
tively small. However, the perturbation is quickly amplified
by chaotic processes, so that important large-scale modes of
climate variability, like ENSO, the slow components of the
Atlantic meridional overturning circulation, and interannual
variations in sea-ice cover are out of phase between the two
runs.

The assimilation runA starts from the same initial condi-
tions as the perturbed runP , but assimilates the ice concen-
tration from the reference runR. The time period considered
is 1979 to 2007, so that we can later compare the assimilation
of ice concentration from model output to the assimilation of
ice concentration from satellite observations.

To quantify the usefulness of the data assimilation, we
measure the mismatch of a climate variableX between any
two time series with the root mean square differences be-
tween the two time series:

δXT1T2 =

√
〈
(
XT1(t) − XT2(t)

)2
〉. (12)

The expectation value〈·〉 is meant to be taken over time for
aggregated quantities like Northern Hemisphere sea-ice ex-
tent, and over time and space for field variables like sea-ice
concentration.

Using Eq. (12), we can compare the natural variability
δXRP with the assimilation errorδXRA. Only if δXRA <

δXRP does the assimilation actually improve the initialisa-
tion of X in the model. For a perfect initialisation ofX, we
would haveδXRA = 0.

4.2 Results

For seasonal to decadal predictions of sea ice, the total
ice volume and the total area covered are arguably the
most important parameters (Holland et al., 2010; Blanchard-
Wrigglesworth et al., 2011b). They are closely related to lo-
cal ice thickness and ice concentration: ice volume is propor-
tional to the sum of the mean thickness for all grid cells, and
ice extent is the area sum of all grid cells with ice concen-
tration higher than 15 %. In the following, we will therefore
quantify the improvement brought by the data assimilation
by discussing errors in ice volume and ice extent alongside
root mean square errors (RMSE) of concentration and thick-
ness.

Figure1 shows how successfully the different assimilation
schemes allow the assimilation runA to match the annual
mean sea-ice extent and sea-ice volume of the reference run
R. The reference run has generally decreasing sea-ice extent
and sea-ice volume in response to the warming background
climate. Additionally, there are year-to-year variations as
well as decadal-scale variations in the sea-ice state. For in-
stance, between 1988 and 1991 sea-ice extent increases, stays
relatively high until 1998, and then drops sharply to the low-
est value of the time series in 2000. We consider a sea-ice
data assimilation successful only if (i)A has the same clima-
tology asR, i.e. the multi-year running means are the same,
(ii) A shows similar decadal-scale anomalies asR, and (iii)
A has year-to-year changes comparable toR.

The CMT assimilation scheme fails in all three criteria:
it does not reproduce the negative trend in sea-ice volume,
the period between 1984 and 1992 that should see a negative
anomaly in sea-ice volume actually has a positive anomaly,
and the small year-to-year fluctuations are not captured at
all. The CAT run has a negative bias, but reasonably cap-
tures year-to-year and decadal variations. Finally, the PMT
run meets all three criteria set above, and by far provides the
best assimilation performance.

Table 1 shows the time-averaged error in annual mean
sea-ice extentδSIE and sea-ice volumeδSIV as defined in
Eq. (12). Although all assimilation methods decrease the er-
ror in sea-ice extent with respect to the reference run, we see

www.ocean-sci.net/9/19/2013/ Ocean Sci., 9, 19–36, 2013



24 S. Tietsche et al.: Sea-ice concentration assimilation in an AOGCM

Fig. 1. Annual mean sea-ice extent (left) and sea-ice volume (right) in the Northern Hemisphere for the identical-twin study. Shown are the
reference run (black), the perturbed run with no assimilation (grey), and the assimilation runs (colours) that assimilate sea-ice concentration
from the reference run. The corresponding time-averaged global extent and volume errorsδSIE andδSIV are given in Table1.

Table 1. Average assimilation error after Eq. (12) for annual mean
Arctic ice volume and extent in the twin study (first and second
column; cp. Fig.1) and for annual mean Arctic ice extent when
compared to observations (third column; cp. Fig.3).

Twin study Observations
δSIV (1012m3) δSIE (1012m2) δSIE (1012m2)

No assimilation 2.1 0.56 0.35
CMT assimilation 2.4 0.41 0.60
CAT assimilation 1.8 0.25 0.51
PMT assimilation 0.6 0.03 0.07

that only PMT reduces the error in sea-ice volume far below
the level of natural variability.

To analyse the seasonal cycle of the assimilation errors,
we calculate the discrepancy in concentrationδC and mean
thicknessδhm for the Arctic Ocean with Eq. (12), taking the
time mean separately for each month of the year (Fig.2a and
b). Since the Arctic Ocean is essentially ice-covered during
winter, even the no-assimilation run exhibits only small nat-
ural variations in sea-ice concentration, withδCRP ≈ 5–8 %.
The summer melt, however, is much more variable, and con-
centration variability in the no-assimilation run reaches 24 %
in September and October. Clearly, all assimilation methods
are able to significantly reduce the concentration discrepancy
δC, although there are marked differences between the meth-
ods. The CMT gives the worst performance, and the PMT
gives the best performance, reducing concentration error to
about 5 % year-round.

The error in mean thicknessδhm is shown in Fig.2b. The
natural variabilityδhm (R, P ) is about 40 cm in winter and
about 50 cm in summer. It is evident that the CMT does not
decrease, but even increases the error of mean ice thickness,
i.e.δhm(R, P ) < δhm (R, A). This is quite a dramatic failure
of the data assimilation method. In Sects.6.1and6.2we will
see that there are good conceptual arguments why the CMT
is not a suitable assimilation method in an AOGCM.

The two other methods (CAT and PMT) successfully re-
duce the thickness error. Again, PMT has the lowest thick-
ness error; it is about 25–30 cm year-round. Note that the as-
similation is most successful in summer, as it halves the error
in the mean ice thickness compared to the natural variability.

We shall also assess the impact of the sea-ice data as-
similation on Arctic climate variables that are closely re-
lated to sea ice, but not directly changed by the assimila-
tion procedure: the Arctic Ocean SST and SSS, the Arctic
Ocean mixed-layer depth, and the Arctic surface air temper-
ature (SAT). In our simple assimilation method, these fields
are constrained neither by observations nor by statistical rela-
tionships with analysis updates of sea-ice concentration, and
so it is important to check whether our assimilation method
introduces unexpected anomalies in these fields.

The error in Arctic Ocean SST (Fig.2c) resembles the er-
ror in sea-ice concentration. Without assimilation, it is about
0.3 K in winter and about 1 K in summer. All assimilation
methods reduce this error. The PMT method performs best
and halves the SST error throughout the year. For the Arc-
tic Ocean SSS field, all assimilation methods lead only to a
small reduction of the error of 0 to 0.1 g kg−1 starting from
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Fig. 2. Average point-wise root mean square error for each month
over the Arctic Ocean for(a) sea-ice concentration,(b) sea-ice
mean thickness(c) sea-surface temperature,(d) sea-surface salin-
ity, (e)ocean mixed layer depth, and(f) surface air temperature. All
errors are obtained from the differences to the reference run of the
identical-twin experiments.

0.6 to 0.7 g kg−1 as the level of natural variability (Fig.2d).
This demonstrates that assimilation of sea-ice concentration
with our approach is not very successful in constraining other
variables in the climate model. The Arctic Ocean mixed-
layer depth (Fig.2e) shows even less positive impact of the
assimilation. While assimilation with the PMT method re-
duces mixed-layer-depth error over the winter months, it in-
creases the error over the summer months. Finally, for Arctic
SAT we find a slight improvement caused by the assimila-
tion between September and March, but little effect in sum-
mer months (Fig.2f). In summary, we note that (i) the as-
similation improves the considered non-sea-ice fields only
marginally, but does not introduce unexpected anomalies in
these fields, and (ii) the PMT assimilation performs better

than the CMT and CAT methods also for the non-sea-ice
fields considered.

5 Assimilating sea-ice observations

We now investigate how successfully we can assimilate satel-
lite observations of sea-ice concentration into the coupled cli-
mate model. The observations are derived from Nimbus-7
SMMR and DMSP SSM/I passive microwave data, pro-
cessed by the NSIDC with the NASA team algorithm (Cav-
alieri et al., 2008). Temporal resolution of the data is every
two days, which we interpolate to daily values. The horizon-
tal resolution is 25 km, which we interpolate to the model
resolution of about 50–200 km. For an estimate of uncer-
tainty in the sea-ice concentration observations, the reader
may refer toTonboe and Nielsen(2010), who arrive at an
error estimate of around 10 % on average. The assimilation
methods we employ in this section are exactly the same as in
the identical-twin study. We will again show ice extent along-
side with concentration RMSE as a performance metric. Note
that the observational uncertainties in year-to-year changes in
ice extent are only in the order of 104 km2 (NSIDC user ser-
vice, personal communication), and are therefore negligible
when discussing observed year-to-year changes in the order
of 106 km2.

5.1 Ice concentration

From Fig.3 we see that the annual mean state of ice extent in
ECHAM5/MPI-OM without data assimilation is reasonably
close to the observed state. Of course, there are marked dif-
ferences between the free model and the observations that are
caused by natural variability – for instance, at the observed
extreme extent minimum in 2007 the model actually has a
temporary extent maximum.

Comparing Fig.3 with Fig. 1, we see that the conclusions
regarding the performance of the different methods are the
same as in the identical-twin study: CMT fails as a sea-ice
data assimilation approach in all quality criteria, CAT repro-
duces natural variability somewhat, but has a biased mean
state, and PMT has both an acceptable mean state and repro-
duces natural variability satisfyingly. Considering the time-
averaged measure for the assimilation error in sea-ice extent,
δSIE, we see that only PMT is able to reduceδSIE below the
no-assimilation case (see Table1).

The seasonal cycle of sea-ice concentration error in the
Arctic (Fig. 4) also resembles the result from the identical-
twin study (Fig.2a). Note, however, that during summer the
free model state now exhibits larger errors of up to 30 %.
Also, the errors for CMT and CAT are twice as large as in
the identical-twin study, while the PMT shows only a slight
increase inδSIE compared to the identical-twin experiments.

In summary, we find that assimilating observations
in ECHAM5/MPI-OM gives results for ice-extent and
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Fig. 3. Annual mean ice extent in the Northern Hemisphere from
observations (black), a model run with no assimilation (grey), and
from the different assimilation methods (colours). The correspond-
ing time-averaged global extent errorsδSIE are given in Table1.

ice-concentration error that are very similar to the results of
assimilating output of the same model. This indicates that
the assimilation performance for sea-ice concentration is de-
termined more by deficiencies in the assimilation techniques
rather than by model biases.

5.2 Ice thickness

There are currently only few large-scale ice thickness mea-
surements available (Rothrock and Wensnahan, 2007; Kwok
et al., 2009). For a direct comparison of the simulated ice
thickness with observations, we need validated observations
that cover the whole Arctic Ocean. The only such data set
available to us are ice thickness measurements from the ICE-
Sat laser altimeter between 2005 and 2008 processed byYi
and Zwally (2010). These data have complete coverage of
mean sea-ice thickness data north of 65◦ N. Unfortunately,
they are only available for a few discontinuous months, when
the laser altimeter on the satellite was in operation. Due to
the limited temporal coverage of direct observations, we also
compare our assimilation results to the PIOMAS reanalysis
of Arctic sea-ice volume, which has been thoroughly val-
idated against all available observations of ice thickness
(Schweiger et al., 2011).

As shown in Fig.5, there are differences between the ICE-
Sat and PIOMAS ice volume estimates of up to 3000 km3,
which are, however, mostly compatible with their respec-
tive uncertainties as estimated byKwok et al. (2009) and
Schweiger et al.(2011). The relative anomaly of the annual

Fig. 4.The average point-wise error in sea-ice concentration for the
Arctic Ocean for each month of the year. All errors are obtained
from the differences to the observed concentration fields.

sea-ice minimum in 2007 with respect to the previous years
is a prominent feature in both data sets.

The no-assimilation run with ECHAM5/MPI-OM has too
low an ice volume throughout. All assimilation methods
bring the ice volume closer to both ICESat and PIOMAS
estimates. Nevertheless, the CMT assimilation run performs
less well regarding two aspects: first, it consistently over-
estimates the seasonal cycle in comparison with PIOMAS;
and second, it does not show anomalously low volume in
2007 with respect to the previous years. The CAT and PMT
methods on the other hand are always – except for ICESat
data in March 2007 – within the error bars of both PIOMAS
and ICESat volume estimates, and they do capture the 2007
anomaly.

6 Understanding assimilation errors

6.1 Physical aspects – local sea-ice growth rates

We have seen in Sect.4.2that assimilating sea-ice data in an
AOGCM does not necessarily lead to an improvement of the
simulated sea-ice state. In particular, the assimilation of ice
concentration can deteriorate the representation of ice thick-
ness. We now show that this can largely be explained by con-
sidering the local sea-ice energy balance.

Local sea-ice growth rates depend heavily on concentra-
tion, as detailed in AppendixA. This has implications for
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Fig. 5. Monthly mean of Arctic sea-ice volume between 2005 and
2008, as modelled with MPIOM-ECHAM5 and estimated from
ICESat observations and the PIOMAS reanalysis. Thin vertical
lines give uncertainties in ICESat and PIOMAS estimates as given
by Kwok et al.(2009) andSchweiger et al.(2011).

the development of mean ice thickness when assimilating ice
concentration: in summer, the melt rate decreases with in-
creasing concentration. Therefore, assimilating high ice con-
centration without any thickness correction leads to less melt
and thicker ice than without the assimilation. In winter, the
atmospherically driven growth rate decreases with increasing
concentration. Therefore, assimilating low ice concentration
leads to enhanced growth and thicker ice. While this thick-
ness response leads to plausible ice states during summer,
it leads to an inconsistent combination of low concentration
and high mean thickness during winter.

To quantify this effect and to illustrate the difference be-
tween the CMT and PMT assimilation techniques, we apply
the assimilation to a local ice-energy balance model (IEBM)
derived from the sea-ice model Eqs. (1) and (2) and driven
by atmospheric downwelling radiation. As shown in Ap-
pendixA1, these IEBM equations, combined with a continu-
ous version of the relaxation terms discussed in Sect.3, can
be written as

dC

dt
= SC + NC = 2(gw)

gw

h0
(1− C) + 2(−Sh)

C

2hm
Sh (13)

+T −1
R

(
Co

− C
)

dh

dt
= Sh + Nh = giC + (1− C)gw + f

(
T −1

R

(
Co

− C
))

. (14)

The termNC in Eq. (13) assimilates (nudges) the idealised
concentration observationsCo into the model with a relax-
ation timeTR of 10 days. The termNh in Eq. (14) represents
the different forms of the functional dependence between the
mean-thickness analysis update and the concentration analy-
sis update that we investigate (CMT or PMT).

In AppendicesA2 andA3, we discuss in detail the de-
pendence of ice growth on atmospheric forcing and ice con-
centration in this idealised model. Here, we focus on re-
sults from two concrete test cases, which illustrate prob-
lematic behaviour of concentration assimilation without vol-
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Fig. 6. Trajectories of the sea-ice state in the ice energy balance
model with and without assimilation for one month of(a) constant
winter forcing and(b) constant summer forcing. Positions for each
day are marked by black points (trajectory without assimilation),
blue points (trajectory with CMT assimilation), and orange points
(trajectory with PMT assimilation). All trajectories start from the
same initial conditions marked by the black circle. The target ice
concentration is marked by a thin vertical line. The nudging param-
eters are as in the AOGCM experiments. Mean ice thickness for
a given concentration in the AOGCM is typically within the grey
shaded area.

ume correction (CMT). The first test case is the assimilation
of low sea-ice concentration under winter conditions with
a downwelling shortwave radiation of 0 W m−2 and down-
welling longwave radiation of 220 W m−2. The second test
case is the assimilation of high sea-ice concentration un-
der summer conditions with a downwelling shortwave radi-
ation of 160 W m−2 and downwelling longwave radiation of
300 W m−2.

Figure6 shows the trajectories ofC andhm without as-
similation, with CMT assimilation and with PMT assimila-
tion for both test cases. Within the grey area that underlies
the trajectories, the joint probability of occurrence forC and
hm is higher than 0.1 %, as diagnosed from a long AOGCM
run. In the following, we will call this the region of plausible
ice states.

For the winter test case (Fig.6a), the trajectories start
from high concentration and 1 m mean thickness. Since the
forcing implies freezing conditions, both concentration and
mean thickness increase when there is no nudging. When we
nudge the model towards low ice concentration, the concen-
tration initially decreases, but after one month the model and
nudging tendencies for concentration almost compensate,
and concentration stays constant at an intermediate level. For
the mean ice thickness, we observe contrasting behaviour
for PMT and CMT. The CMT trajectory still goes to higher
thickness, and even outgrows the free trajectory. This is due
to the concentration dependence of net growth rate described
in AppendixA3. It therefore enters a state of low sea-ice con-
centration and high mean ice thickness, which is rather un-
physical and not typically seen in the AOGCM. On the other
hand, the PMT trajectory decreases mean ice thickness, and
hence stays within the region of plausible ice states.
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Fig. 7.Average March conditions 1990–1999 when assimilating ob-
served sea-ice concentration in the AOGCM with the CMT method
(top) and the PMT method (bottom). Ice concentration (left) is sim-
ilar between CMT and PMT, and quite close to observations. How-
ever, mean ice thickness (right) is much too high for CMT, and re-
alistic for PMT.

For the summer test case (Fig.6b), we let the trajectories
start at low concentration and 0.2 m mean thickness. The tra-
jectory without the relaxation term goes to an ice-free state
within 6 days. When we nudge towards high concentration,
the behaviour of PMT and CMT is again very different. The
CMT trajectory loses ice volume; because for constant forc-
ing the concentration loss is higher for thinner ice (see Eq.6),
concentration only initially increases, but soon the thermo-
dynamic tendency outweighs the nudging tendency. Conse-
quently, the CMT trajectory becomes ice-free within seven
days, even though the data assimilation aims at increasing the
ice concentration. Note that the melt is somewhat slower than
without data assimilation, in accordance with the dependence
of growth rate on concentration discussed in AppendixA3.
On the other hand, the PMT trajectory gains ice volume, and
stays inside the region of plausible ice states for the whole
month.

In the AOGCM, an indication for the problematic be-
haviour of the CMT method is found in the wintertime Bar-
ents Sea (Fig.7). During the 1990’s, the Barents Sea was
mainly ice-free during winter, as derived from the satellite
observations, whereas the model without assimilation is bi-
ased towards ice-covered conditions. With assimilation, the
ice concentration in this area decreases, but the decreased
concentration leads to enhanced thermodynamic ice growth
rates. As a result, there is unrealistically high ice volume

in conjunction with a reduced ice concentration if the CMT
method is employed. Only when we apply PMT is this effect
averted, as the nudging updates of ice volume compensate
the excessive thermodynamic growth rates.

In summary, we have shown in this section that there are
cases of practical relevance when the sea-ice growth rates as
determined by the local surface energy balance necessitate
adjustments of mean sea-ice thickness during the assimila-
tion, as it is done in the CAT and PMT methods. This find-
ing is consistent with results byDulière and Fichefet(2007).
Without these mean-thickness adjustments, as is the case for
the CMT method, assimilation of ice concentration leads to
implausible sea-ice states both in a conceptual IEBM and in
the AOGCM.

6.2 Statistical aspects – model error covariances
and weight matrices

We now take a different view on assimilation errors: instead
of examining the sea-ice prognostic equations and how anal-
ysis updates affect them, we examine the covariance structure
of thickness and concentration errors in the AOGCM. There
is a well-established theory that connects these so-called
model background errors with the optimal analysis update;
see, for instance,Bouttier and Courtier(1999) or Kalnay
(2003). The analysis updates we apply are not optimal, but
are derived from the simple nudging approach. Nevertheless,
we can map our different choices for the analysis update to
different model background errors that are implied under the
assumption of optimality. If the implied model background
errors are clearly unrealistic, we can argue that the assimila-
tion method is prone to fail, since it is far from being opti-
mal. We follow the notation ofBouttier and Courtier(1999)
and briefly introduce the basic terminology in Sect.6.2.1. We
then apply the general terminology to our setup in Sect.6.2.2,
devising simplifications and a specialised notation. These
simplifications and the specialised notation allow us to con-
cisely discuss in Sect.6.2.3the relation between concentra-
tion and mean thickness errors on the one hand and optimal
analysis updates on the other hand.

6.2.1 Introduction of terminology

The state of a model that hasv variables andp grid points
is encoded in the state vectorx, a column vector withp · v

entries. To obtain the analysisxa, i.e. our estimate of the true
statext, the model backgroundxb is updated with a term
that depends on the departure of the model state from the
observationsy:

xa = xb + K (y − Hxb) . (15)

The observation operatorH maps theo observations to the
vp-dimensional state vectorx and therefore is a matrix with
dimensionso × vp. The (vp × o)-dimensional matrixK de-
termines how discrepancies between observations and the
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model state translate to analysis updates. It is called the gain,
or weight matrix. If the weight matrix is chosen according to

Kopt
= BHT

(
HBHT

+ R
)−1

, (16)

then the analysis in Eq. (15) is the best linear unbiased esti-
mator of the true state (Bouttier and Courtier, 1999).

The optimal weight matrixKopt is related to the covari-
ance matrices of background and observation errorsB and
R, defined by

B = 〈(εb − ε̄b)(εb − ε̄b)
T

〉 R = 〈(εo − ε̄o)(εo − ε̄o)
T

〉. (17)

The model background errorεb = xb − xt describes the dis-
crepancy between the modelled and the true state just before
an analysis update. Therefore,εb depends not only on the
error of the model itself, but also on the applied analysis up-
dates and the time interval between them. The observation
error εo = y − Hxt expresses that the reported value of an
observation is not a perfect image of reality, but is distorted
due to instrumental and discretisation errors.B has dimen-
sionspv × pv, andR has dimensionso × o.

6.2.2 Application to ice concentration and thickness

After introducing the general terminology, we now apply it
to our setup. Because the simplicity of the setup allows for
several algebraic simplifications, we can derive concise ex-
pressions that are useful for understanding the interplay be-
tween ice thickness and ice concentration errors. We order
the state vectorx so that it starts with the entries for ice con-
centrationC and ice mean thicknessh, followed by all other
model variables:

x =
(
C1, . . . , Cp, h1, . . . , hp, . . .

)T
. (18)

Sea-ice concentration is the only variable observed, and we
are not interested in issues related to the interpolation from
observation points to model points. Thus, we can assume a
very simple form for the observation operator:

H =
(
I 0 . . .

)
, (19)

with I denoting thep × p identity matrix and0 denoting the
p×p zero matrix. Furthermore, the observation error covari-
ance matrixR reduces to thep × p matrixRCC.

We partition the background error covariance matrixB and
the weight matrixK into submatrices of dimensionp × p

that respectively describe the covariance between each pair
of variables in the model, and the gains for each model vari-
able resulting from the concentration observations:

B =

BCC BhC . . .

BCh Bhh . . .
...

...
. . .

 K =

KCC
KCh

...

 . (20)

Using Eqs. (18) to (20), the analysis update in Eq. (15) can
be written as:Ca

ha
...

 =

Cb
hb
...

 +

KCC
KCh

...

(Co − Cb) , (21)

and the optimal weight matrix (Eq.16) reduces to a form
that shows how the concentration and thickness background
errors enter the optimal weight matrix:

Kopt
=

BCC
BCh
...

(
BCC+ RCC

)−1
. (22)

Equation (22) tells us how to obtain the optimal analysis
update when we already know the correct statistics of the
background and observation errors. Determining these error
statistics is a difficult task within the data assimilation frame-
work. Here, we are only interested in conceptual statements
that can be derived from the error covariances, and so we es-
timate them using simplifying assumptions. We assume that
the observation error covarianceRCC is spatially uncorre-
lated and corresponds to a constant uncertainty of 10 %.

This value is a reasonable average error for concentration
observation according toTonboe and Nielsen(2010). We es-
timate the background error covariancesBCC andBCh from
the daily differences between concentration and thickness of
two long, independent AOGCM runs. These background er-
rors apply when the time interval between analysis updates is
very large. For shorter time intervals between the analysis up-
dates (one day for our setup), the absolute magnitude of the
covariances is smaller, but we expect theirspatial structure
to be the same. For instance, in the central Arctic the sea-
ice concentration is usually high, and thus we expect a low
concentration background error variance, whereas we expect
substantial background error covariance in areas that experi-
ence a pronounced seasonal cycle of both thickness and con-
centration.

From the model background error covariances we can also
derive the correlation between concentration and thickness
errors at the locationP :

corrP(C, h) =
BCh(P )

√
BCC(P )Bhh(P )

. (23)

For the central Arctic, the correlation between concentration
and thickness errors is between 0.3 and 0.5, whereas it is al-
ways higher than 0.5 in the seasonal ice zones. We find a
pan-Arctic average over the concentration and thickness cor-
relation of 0.7, which is similar to the correlations reported
by Lisæter et al.(2003) andZhang(2010). In hindsight, this
high correlation between background errors in concentration
and thickness justifies the proportionality assumption in the
PMT method stated in Eq. (11).
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Fig. 8. Scaled diagonal elements of the background model error covariance matrices;(a) derived from Eq. (26) when analysis updates
conserve actual thickness;(b) best estimate from a long free model run, and(c) derived from Eq. (27) for proportional mean-thickness
analysis updates. The background error covariance implied by analysis updates that conserve mean thickness is zero everywhere. For an
interpretation of the figure see main text.

6.2.3 Comparing nudging with optimal
analysis updates

For the analysis updates of mean thickness, Eq. (22) defines
the optimal weight matrix

Kopt
Ch = BCh

(
BCC+ RCC

)−1
. (24)

In our setup, we use weight matrices derived not from the
optimality condition, but from an ad hoc nudging approach.
Nevertheless, we can ask the following question: “Suppose
the weight matrixKX

Ch used in methodX is optimal, and
we know the background error covariance for concentration
BCC, what would be the implied background error covari-
ance between concentration and thicknessBX

Ch?” If BX
Ch is

unrealistic, i.e. has substantial deviations fromBCh, we can
conclude that the weight matrix is far from being optimal and
we reject an assimilation scheme that uses this weight matrix
as being inconsistent.

For CMT, we do not update mean thickness at all, and so:

KCMT
Ch = 0

Optimality
⇐⇒ BCMT

Ch = 0. (25)

For CAT, we see from Eq. (10) that nudging weights vary in
time and space, depending on the background actual thick-
ness. We derive a time-averaged analysis update by diagnos-
ing a diagonal matrixht that contains the time average of
actual ice thickness at each grid point over a long model run
on the diagonal. With this, the average weight matrix and im-
plied background error covariance are

KCAT
Ch = KNht

Optimality
⇐⇒ BCAT

Ch = KNht (BCC+ RCC) . (26)

Finally, for PMT the weights are constant, because they are
determined byh∗ from Eq. (11). The weight matrix together

with its implied background error covariance matrix is given
by

KPMT
Ch = KNh∗I

Optimality
⇐⇒ BPMT

Ch = KNh∗(BCC+ RCC). (27)

The different background error covariances are compared in
Fig. 8 by showing maps of their scaled diagonal elements.
The absolute values of the covariances are not important,
since they depend on the time interval between the analy-
sis updates. However, the spatial distribution of high and low
covariances has a large influence on the assimilation perfor-
mance, as it determines the relative strengths of the optimal
weights.

From Fig. 8b we see that background error covariances
should be low in the perennial ice zone of the central Arc-
tic, since there the concentration is always high, and low at
the southern edge of the seasonal ice zone, since there the
mean ice thickness is always low. In between, there is a re-
gion where mean ice thickness and ice concentration co-vary
strongly.

The CMT analysis updates imply a covariance structure
that is very different from our best guess of the true covari-
ance structure: it is zero everywhere. This implies a perfect
representation of thickness forecasts in the model, which is
a bad assumption, as we have seen in Sect.6.1. Therefore,
the CMT weight matrix is far from being optimal. Already
from this simple analysis of background error covariance,
one could have expected the poor assimilation performance
seen in Sects.4 and5.

The CAT updates imply a covariance structure that re-
sembles our best guess reasonably well, so that one would
expect a useful assimilation performance (Fig.8a). How-
ever, some discrepancies stand out: The implied thickness–
concentration covariance is too high in the central Arctic, in-
dicating that the weights for updating mean thickness are too

Ocean Sci., 9, 19–36, 2013 www.ocean-sci.net/9/19/2013/



S. Tietsche et al.: Sea-ice concentration assimilation in an AOGCM 31

large there. On the other hand, the implied covariance is too
low in the Bering Sea, the Labrador Sea, and the Barents
Sea. One would expect the method to have difficulties assim-
ilating observations there, since the analysis weights are too
small.

Finally, the PMT updates shown in Fig.8c imply a
concentration–thickness covariance structure that is close to
our best guess. There is a tendency to underestimate covari-
ance in the Arctic shelf seas, and to overestimate it in the
Hudson and Baffin Bays, but overall there is good agreement.

We conclude that the comparison of the background error
covariances implied by the chosen nudging weight matrices
KCh corroborates the experimentally found differences be-
tween the assimilation performance of the CMT, CAT, and
PMT methods. Moreover, we think that the examination of
implied background error covariance is a useful guide for
designing weight matrices: only if the implied background
error covariance looks plausible, can we expect a good per-
formance of the assimilation method.

7 Summary and conclusion

We examine the performance of sea-ice data assimilation
in a global climate model, using a simple Newtonian relax-
ation approach. Analysis updates of sea-ice concentration are
derived from the discrepancy between model and observa-
tions, and analysis updates of sea-ice mean thickness (i.e.
volume) are derived from the concentration updates. We in-
vestigate three different approaches for the mean-thickness
analysis updates. The first approach keeps the mean thick-
ness constant during the analysis update (CMT). The sec-
ond approach keeps the actual ice thickness constant (CAT).
CMT and CAT have been suggested and used before in sea-
ice data assimilation in an ice–ocean model (Dulière and
Fichefet, 2007), but we find that with our assimilation setup
in an AOGCM they do not give satisfying results. Therefore,
we introduce a third approach, which prescribes a fixed pro-
portionality between concentration updates and mean thick-
ness updates (PMT).

We establish four independent lines of evaluation by (i)
comparing the simulated ice concentration and extent with
observations, (ii) comparing simulated ice concentration and
thickness with a reference simulation in an identical-twin ex-
periment, (iii) considering conceptual arguments about the
local ice energy balance, and (iv) considering the statistics of
model background errors.

We find that PMT has much lower assimilation errors than
the other two methods. For synthetic observation data de-
rived from output of the same model (identical-twin study),
PMT reduces the error of year-to-year changes in annual
mean sea-ice extent to less than 0.1× 106 km2, the error in
annual mean sea-ice volume to 600 km3, the gridpoint-wise
error in ice concentration to below 5 % throughout the year,
and the gridpoint-wise error in mean ice thickness in the Arc-

tic Ocean to less than 30 cm. In contrast to these significant
improvements, the impact of the assimilation on simulating
other Arctic surface fields like sea-surface salinity and sur-
face air temperature is only weak.

For the assimilation of observed sea-ice concentration be-
tween 1979 and 2007, the PMT assimilation significantly re-
duces differences between modelled and observed ice extent
and concentration, with deviations becoming almost as low
as in the identical-twin study. The monthly mean sea-ice vol-
ume between 2005 and 2008 in the PMT assimilation is in
good agreement with volume estimates derived from ICESat
observations and the PIOMAS reanalysis, with deviations of
less than 2000 km3.

The simplicity of the assimilation scheme allows us to ex-
amine the assimilation errors with two conceptual tools: first,
we apply the assimilation to a simple model of the local ice
energy balance and conclude that the CMT method, where
no adjustments to the mean thickness are made during the
analysis update, causes unacceptable assimilation errors.

Second, we analyse the spatial structure of the background
error covariance between concentration and thickness as im-
plied by the nudging weight matrices of the different meth-
ods and find that the spatial structure of the background er-
ror is unrealistic for CMT, reasonable with some deficiencies
for CAT, and realistic for PMT. These conceptual arguments
support our experimental finding that the PMT method out-
performs both CMT and CAT.

A drawback of our simple assimilation approach is that
the model equations are not used in the analysis step, as
they would be in four-dimensional variational data assimi-
lation. Therefore, inconsistencies between our analysis up-
dates and model physics are expected to occur, a property
shared with several other data assimilation approaches. Our
results show, however, that the parameters of our simple as-
similation approach can be chosen such that we obtain im-
provement of both ice concentration and ice thickness, and
that we understand why some methods work better than oth-
ers. Therefore we conclude that skillful sea-ice initialisation
in an AOGCM is possible from ice-concentration data even
with a simple Newtonian relaxation scheme, provided that
we choose an appropriate functional relationship between
concentration and mean-thickness analysis updates.

Appendix A

A simple radiative energy balance model for sea-ice mean
thickness and concentration

A1 Derivation of the simple model

We discuss the equations for the sea-ice thermodynamics
as they are implemented in ECHAM5/MPI-OM. After sev-
eral simplifications we arrive at a closed set of prognostic
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Fig. 9. Contour plot of ice growth rates in cm day−1 for mean
ice thicknesshm = 1 m and ice concentrationC = 0.7. On the x-
axis is the downwelling shortwave radiation, on the y-axis the
downwelling longwave radiation. The black dots correspond to the
typical monthly-mean forcing in the Arctic according toMaykut
and Untersteiner(1971). The blue and white lines mark the zero-
crossing of the growth rates for open water and over ice, which
are independent of the state of the ice. The thick black line is the
zero-crossing of net growth rate, and depends on the state of the
ice. At the dashed grey line, the ice surface temperature is at the
melting point of 0◦C. The larger blue and red dots, labelled “W”
and “S”, mark typical winter and summer conditions, for which the
conditional probability distributions of growth rate in Fig.10 are
calculated.

equations for the ice concentrationC and mean ice thickness
hm. These equations constitute a simple ice-energy-balance
model (IEBM), which we use to analyse the ice growth rate
for different atmospheric forcing regimes and to study how
the analysis updates affect the thermodynamics of the ice.

The first simplification we make is to neglect sea-ice ad-
vection. Since melting and freezing of ice are local pro-
cesses, we can then solve the prognostic equations for mean
thickness (Eq.1) and concentration (Eq.2) for each point
in space separately. The thermodynamic source terms for
sea-ice mean thicknessSh (Eq. 5) and sea-ice concentration
SC (Eq. 6) are determined by a balance of atmospheric and
oceanic heat fluxes at the sea-ice interfaces. An oceanic heat
flux is established when sea-water warmer than the freezing
temperature is brought into contact with the ice, while an at-
mospheric heat flux occurs at the interface between atmo-
sphere and sea ice or open water.

Since the dominant contribution to the sea-ice energy bal-
ance in the Arctic is typically the surface radiation (Maykut
and Untersteiner, 1971; Serreze et al., 2007), we neglect

Fig. 10. Conditional probability densities with which heat fluxes
contributing to sea-ice growth occur for a given sea-ice concentra-
tion. The occurrence probabilities were diagnosed from a long run
of ECHAM5/MPI-OM for representative summer(a–c) and win-
ter (d–f) conditions. Heat fluxes are given as equivalent ice growth
rates (1 cm day−1

= 35 W m−2). Heat fluxes shown in(a andd) are
between the ice and the atmosphere, and in (b ande) between the
ice and the ocean. (c andf) show the net growth rates of the sea ice,
which are equivalent to the sum of atmospheric and oceanic heat
flux into the ice. The dashed green line is the dependence found in
the simple radiative ice-energy balance model.

oceanic and turbulent atmospheric heat fluxes as a first ap-
proximation and determine the ice growth rates from the ra-
diative balance:

gw, i = −
1

ρL

(
(1− αw, i)SW↓ + LW↓ − σT 4

w, i

)
. (A1)

The subscript “w” denotes the open-water part of the sur-
face, and “i” denotes the ice-covered part. Heat fluxes are
converted to growth rates by dividing by the negative prod-
uct of sea-ice densityρ and latent heat of fusion for waterL.
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SW↓ and LW↓ are the downwelling shortwave and longwave
radiation at the surface, andαw, i is the albedo of open water
or sea ice. In ECHAM5/MPI-OM, the surface temperature
of open water in a partly ice-covered grid cell is always at a
representative sea-water freezing temperatureTw = −1.9◦C,
and the ice surface temperatureTi is calculated from the bal-
ance of heat fluxes at the ice surface. We prescribe the at-
mospheric downwelling radiation as an external forcing and
determineSh andSC as a function of ice state and forcing.
Thereby, we can convert Eqs. (1) and (2) into a closed set of
two coupled ordinary differential equations, which are forced
by the time-dependent downwelling radiation at the surface.

To obtain a closed set of equations using Eqs. (1), (2), (5)
(6) and (A1), we need to determine how the growth ratesgw
andgi depend on the forcing, i.e. downwelling longwave and
shortwave radiation at the surface, and the state of the ice,
i.e. concentration and mean thickness. These growth rates are
directly proportional to the heat fluxesqw, i via

gw, i = −
1

ρL
qw, i . (A2)

The heat flux over open water in a partly ice-covered grid
cell, qw, is easy to determine: the temperature of that open
water is at the freezing point, so that the upwelling longwave
radiation is constant. The heat flux over ice,qi , is more diffi-
cult, since it depends on the ice surface temperatureTi . The
ice surface temperature has to be determined from the bal-
ance of the heat flux at the ice surfaceqi with the conductive
heat flux through the iceqc and a residual heat fluxqr that
goes into surface melt:

qi = qc + qr. (A3)

The conductive heat flux through the ice is assumed to be
proportional to the difference between the temperature at the
top of the iceTi and the temperature at the bottom, which is
always at the freezing temperatureTf . This is the so-called
0-layer model for ice growth suggested bySemtner(1976).
The proportionality constant is the heat conductivity of icek

divided by the actual ice thicknessht = hm/C. The conduc-
tive heat flux as a function of ice surface temperature then is

qC(Ti) =
kC

hm
(Ti − Tf) . (A4)

In our model, sea ice is assumed to melt at the freshwa-
ter melting temperatureTm = 0◦C at the top. WhenTi <

Tm, there is no surface melt,qr = 0, andTi can be derived
from qi = qc. With a linearisation of the black-body radia-
tion aroundTm, we can solve forTi and obtain

Ti =
TfkC/hm + (1− αi)SW↓ + LW↓ + 3σT 4

m

kC/hm + 4σT 3
m

. (A5)

The ice surface temperature cannot get larger thanTm in
the model, because forTi = Tm the residual heat flux be-

comes larger than zero,qr > 0, and melts ice at the surface:

qr
∣∣
Ti=Tm

= qi (Tm) − qc (Tm) = (1− αi)SW↓ + LW↓ (A6)

−σT 4
m −

kC

hm
(Tm − Tf) .

Inserting Eqs. (A4) and (A6) into Eq. (A3), we can write
the net heat flux into the ice-covered part of the cell in a com-
pact form:

qi =
kC

hm
(Ti − Tf) + δ(Ti − Tm)( −

kC

hm
(Tm − Tf) + (1− αi)SW↓ (A7)

+LW↓ − σT 4
m )

With this, we arrive at the following set of prognostic
equations for the mean ice thicknesshm and the ice concen-
trationC:

dhm

dt
= giC + (1− C)gw (A8)

dC

dt
= 2(gw)

gw

h0
(1− C) + 2(−Sh)

C

2hm
Sh, (A9)

where we can use Eqs. (5), (6), and Eqs. (A1–A7) to express
each term on the right-hand side as a function only of the
prognostic variableshm andC and the external forcings SW↓
and LW↓.

A2 Dependence of ice growth on atmospheric forcing

With Eq. (A1) we have an explicit expression for the ice
growth rate, and we can study how it depends on the atmo-
spheric forcing. If we are able to identify forcing regimes that
differ among each other in the way the sea-ice thermodynam-
ics reacts to changes in concentration, we will have important
information for assessing the effects of the data assimilation
on the prognostic equations.

Figure 9 shows the net growth rates derived from the
IEBM for a sea-ice state of 1 m mean thickness and 70 %
concentration. We can identify three different regimes, which
are separated by the zero-growth contour over open water
gw = 0 and the zero-growth contour over icegi = 0. Impor-
tantly, the zero-growth contours are independent of the state
of the ice and constitute the boundaries between three differ-
ent forcing regimes.

In the winter regime, freezing occurs both over ice and
over open water (gw > 0, gi > 0). In this regime, shortwave
absorption is negligible, and the longwave heat loss over
open water is much stronger than over ice, which leads to
gw > gi . It therefore follows from Eq. (5) that the net ice
growth rateg decreases for increasing concentration. In the
transitional regime, growth rates are generally small. Over
open water there is net heating leading to a negative growth
rate of the adjacent ice, whereas growth rate over ice is posi-
tive (gw < 0, gi > 0). In the summer regime, both over open
water and over ice there is net heating that leads to ice melt
(gw < 0, gi < 0). Over ice, there is less shortwave absorp-
tion than over open water, whereas longwave heat fluxes are
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small. This impliesgw < gi , and therefore the net growth rate
increases with increasing concentration.

A3 Dependence of ice growth on ice concentration

To quantify the dependence of growth rate on ice con-
centration, we select two representative forcing conditions:
one for winter with SW↓ = 0 W m−2 and LW↓ =220 W m−2

(marked with a blue dot in Fig.9), and one for summer with
SW↓ = 160 W m−2 and LW↓ = 300 W m−2 (marked with a
red dot in Fig.9). We calculate growth rates from the radia-
tive budget of the IEBM described above, but there are two
other contributions to the growth rate that we have neglected
so far: the sensible and latent atmospheric heat flux, and the
oceanic heat flux. Capturing these effects goes beyond the
scope of the IEBM, but we can diagnose them from daily-
mean fields of a long AOGCM run.

Figure 10 shows a synthesis of ice growth rates derived
from the IEBM, and the occurrence of ice growth rates as di-
agnosed from the AOGCM. During summer (Fig.10a–c), the
single curve obtained from the IEBM approximates the oc-
currence of growth rates diagnosed from the AOGCM quite
well, implying that oceanic contributions to ice melt as well
as turbulent atmospheric heat fluxes are negligible. This is
readily explained since the temperature of the near-surface
atmosphere is close to the melting point, so that turbulent
heat fluxes at the surface are small. At the same time, the
ocean surface is warmed and becomes fresher, so that it gains
buoyancy, and therefore convection is inhibited. Both in the
IEBM and in the AOGCM, we observe a strong dependence
of net ice growth rate on concentration: for the chosen at-
mospheric summer forcing, ice melts at the rate of 1 cm per
day for 100 % ice concentration, whereas it melts at a rate of
more than 4 cm per day for very low ice concentration.

In winter, the IEBM is not a good approximation to the
sea-ice thermodynamics in the AOGCM. As Fig.10d shows,
the curve determined from the radiative budget in the IEBM
is actually at the lower boundary of the probability distri-
bution of atmospheric growth rates. For open-water condi-
tions, the IEBM predicts an atmospheric growth rate of 2 cm
per day, whereas the most frequent value in the AOGCM is
5 cm per day, and even values of 8 cm per day occur quite
often. The missing contribution comes from the turbulent at-
mospheric heat flux, which can be very large over open water
during winter. Only if the near-surface atmosphere stratifica-
tion is very stable and near-surface winds are very weak, does
the turbulent heat flux become so small that the AOGCM ex-
hibits the dependence derived from the radiation budget in
the IEBM.

Additionally, in winter the oceanic contribution to ice
growth becomes large (Fig.10e). The oceanic contribution
can be due to horizontal advection of warm water under the
ice, upwelling of warm water through Ekman suction, or en-
trainment of warm water when the surface mixed layer deep-
ens. The model shows high ocean-ice heat fluxes predom-

inantly close to the ice edge. The diagnostic we use does
not differentiate between the processes, but we believe that
the major contribution comes from entrainment of warm wa-
ter from below during the deepening of the surface mixed
layer. AsLemke(1987) pointed out, especially at the onset
of freezing the convection can be vigorous enough to explain
the magnitude of the ocean-ice heat flux that we see in the
model.

For low ice concentration in winter, the ocean-ice heat
flux strongly inhibits ice growth. The most frequent value
of the ocean-ice heat flux, expressed as an equivalent melt
rate, is 4 cm day, and even much larger values are possible
(Fig. 10e). This compensates the large atmosphere–ice heat
flux (Fig. 10d), so that the net growth rate in winter depends
only weakly on the concentration (Fig.10f). Nevertheless,
since sea ice is closely coupled to the surface mixed layer
below, it is the heat content of the coupled system of sea ice
and surface mixed layer that is essential for the evolution of
the ice. This heat content is determined by the atmospheric
heat flux, and we therefore argue that the atmospheric growth
rate in winter is more important than the net growth rate. The
heat that goes from the mixed layer into the ice and inhibits
ice growth cools the sea-water, so that ice formation is af-
fected at a later time.
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