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Abstract. In this paper ensembles of forecasts (of up to six precipitation skill scores, adding model error variability has
hours) are studied from a convection-permitting model with the effect of improving the skill in the first 1-2 h of the fore-
a representation of model error due to unresolved processesast, but then of reducing the skill after that. Complemen-
The ensemble prediction system (EPS) used is an experimetary experiments were performed where the only difference
tal convection-permitting version of the UK Met Office’s 24- between members was the set of parameter values (i.e. no
member Global and Regional Ensemble Prediction Systeninitial condition variability). The resulting spread was found
(MOGREPS). The method of representing model error vari-to be significantly less than the spread from initial condition
ability, which perturbs parameters within the model’'s param-variability alone.
eterisation schemes, has been modified and we investigate
the impact of applying this scheme in different ways. These
are: a control ensemble where all ensemble members have
the same parameter values; an ensemble where the pararh- Introduction
eters are different between members, but fixed in time; and
ensembles where the parameters are updated randomly eTors in forecasts originate from a number of sources,
ery 30 or 60 min. The choice of parameters and their rangegamely the initial conditions, the boundary conditions and
of variability have been determined from expert opinion andthe model formulation. In synoptic scale forecasts of lead
parameter sensitivity tests. A case of frontal rain over thelimes up to a day, itis thought that the first two sources dom-
southern UK has been chosen, which has a multi-bandedate. However, at convective scale model errors are thought
rainfall structure. to become more important, especially for relatively short
The consequences of including model error variability in Fange forecasts. Here we investigate a proposed representa-
the case studied are mixed and are summarised as followdion of model error that can influence the forecast skill at con-
The multiple banding, evident in the radar, is not Capturedvective scale. We use an experimental convection-permitting
for any single member. However, the single band is posi-version of the UK Met Office’s 24-member Global and
tioned in some members where a secondary band is preseftegional Ensemble Prediction System (EPS) (MOGREPS)
in the radar. This is found for all ensembles studied. Adding(Bowler et al, 2008: the southern UK 1.5 km EP$/fglior-
model error variability with fixed parameters in time does ini et al, 2011 Caron 2013. We focus on the effect of
increase the ensemble spread for near-surface variables likgodel error resulting from the parameterisation of unre-
wind and temperature, but can actually decrease the spread §pIved processes; specifically microphysics and turbulent
the rainfall. Perturbing the parameters periodically through-Poundary layer processes. In this study we modify the so-
out the forecast does not further increase the spread and e%alled Random Parameters (RP) scheme, used in MOGREPS
hibits “jumpiness” in the spread at times when the parame-{(Bowler et al, 2008, by applying changes designed to make
ters are perturbed. Adding model error variability gives anit @ppropriate for use in a convective-scale ensemble.
improvement in forecast skill after the first 2-3 h of the fore- ~ The aim of this work is to investigate how this modified

cast for near-surface temperature and relative humidity. Foersion of the RP scheme affects the characteristics of the
ensemble, with particular focus on the ensemble spread and
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20 L. H. Baker et al.: Representation of model error in a convective-scale EPS

the forecast skill. By evaluating these effects, we determineesenting model error is not guaranteed to increase the en-
how useful this scheme could be as a method of representingemble spread, due to the nonlinear dependence of the model
model error in a convective-scale EPS. Although it is difficult on the parameters.
to draw general conclusions from one case study, this work In Sect.2 we describe the configuration of the MetUM, the
presents new results of the impact of a model error schemérmulation of the RP scheme and the evaluation tools used,
on a convection-permitting model. and give an outline of the experiments performed in Sdcts.
There are several different methods commonly used to repand 5. In Sect.3 we describe the meteorology of the case
resent model error. In the multiphysics method (also some-used in this study, and show results of parameter sensitivity
times called the multimodel method), a set of different modeltests performed for this case. In Settve evaluate the per-
physics parameterisation schemes is used, and generally darmance of the control (no model error) ensemble, and in
ensemble is constructed of members which use differenSect.5 we evaluate the effects of model error variability on
combinations of schemeStensrud et al200Q Berner et al. the forecast skill and on the spread of the ensemble. Finally,
201% Clark Jr. et al.201Q Clark et al, 2011). The stochastic  Sect.6 provides a summary and discussion of our results.
kinetic energy backscatter (SKEB) schemeSbiutts(2005
(developed further berner et al.2009and used byerner
et al, 2011) aims to replace upscale kinetic energy lost in
the numerical integration of the model and in the parameter-
isation of unresolved processes. Another method is to use a Methodology
stochastically perturbed physical tendencies (SPT or SPPT)
scheme Buizza et al. 1999 Bouttier et al, 2012 Fresnay o
et al, 2012, in which the total tendencies from parameter- 2.1 Description of the 1.5km EPS
isation schemes are perturbed. A further method, and the
one on which we focus here, is to perturb a set of individualThis work was performed using the MetUM version 7.8.
parameters within the parameterisation schemes themselveshe MetUM is a finite-difference model that solves the non-
This method can be applied in two different ways: the first hydrostatic, fully compressible, deep-atmosphere dynami-
is to perturb individual or sets of parameters about their de-cal equations with a semi-Lagrangian, semi-implicit inte-
fault values, and keep these perturbed values fixed throughgration scheme. The equations are solved on a horizontally
out each forecast; the second is to use a stochastic techniqetaggered Arakawa C grid and a terrain-following hybrid-
to vary the parameter values periodically throughout theheight vertical coordinate with Charney—Phillips grid stag-
forecast. The fixed parameter perturbation method has beegering Davies et al.2005. In all the MetUM ensemble sys-
widely used for global ensembles (notably the climatepre-tems discussed here, boundary-layer mixing is parameterised
diction.net multi-thousand member ensemble projbtire using the scheme dfock et al.(2000 and large-scale pre-
phy et al, 2004 Stainforth et al.2005 and the Met Office’s  cipitation is parameterised using the schemé&\iiton and
Quantifying Uncertainty in Model Predictions (QUMP) en- Ballard(1999. In the global and regional formulations of the
semble Murphy et al, 2009), mesoscale ensemble sys- ensemble system (MOGREPS-G and MOGREPS-R, respec-
tems Hacker et al.2011) and convection-permitting mod- tively, described in more detail below), convection is parame-
els Gebhardt et al2011; Vié et al, 2012. In this study we terised using the scheme@fegory and Rowntre@990; no
use both methods of setting parameter values (see &2ct. convection scheme is used in the 1.5km EPS. To limit the
for details of the scheme used when updating parametereccurrence of grid-point convection in the 1.5km EPS, a
periodically). A similar method was also used bin and prognostic rain variable is advected with the wind field, fol-
Neelin (2000 and Bright and Mullen(2002), but for only  lowing Sect. 2d oLean et al(2008. In MOGREPS-G and
one and two parameters, respectively. The advantage of uWMOGREPS-R, gravity-wave drag is parameterised using the
dating the parameters throughout the forecast is that it inscheme ofVebster et al(2003; this scheme is not active in
creases the amount of random variability in the parametersthe 1.5 km EPS.
and increases the volume of parameter values explored dur- The 1.5km EPS has a horizontal grid spacing of 1.5km,
ing the period of the forecast. However, a disadvantage of thisvith 360 x 288 grid points covering a domain over the south-
method is that perturbing the parameters during the forecastrn UK (Fig. 1). The model has 70 vertical levels with
may introduce jumps, loss of conservation of quantites thatvariable spacing, with the highest vertical resolution in the
should be conserved, and changes of state, which may ledooundary-layer, and a model lid at around 38 km. This model
to undesirable effects on the forecast. For the purposes of this run with a time step of 50s. The 1.5km EPS is nested
study, the RP scheme is a logical choice since the basic RRithin MOGREPS-R, which has a domain covering the
framework already exists in the Met Office Unified Model North Atlantic and Europe and a horizontal resolution equiv-
(MetUM), and some parameters for which there is genuinealent to 18 km in the mid-latitudes and 70 vertical levels, with
uncertainty in their values had already been identified anda model lid at around 80 km. MOGREPS-R is nested within
their uncertainty quantified. We note that this method of rep-MOGREPS-G, which covers the full globe and runs with a
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L. H. Baker et al.: Representation of model error in a convective-scale EPS 21

resolution equivalent to 60 km in the mid-latitudes and the MOGR
same vertical levels as MOGREPS:R S

A 24-member ensemble is generated in MOGREPS-G us-
ing an ensemble transform Kalman filter (ETKmighop
et al, 200)). The ETKF is used to produce a set of per-
turbations which can be added to the Met Office 4-D-Var
analysis to give the initial conditions (ICs) for the ensemble
members. A detailed description of the way that the ETKF
is used to generate these IC perturbations is givéBoinler
et al.(2008§. MOGREPS-G is run with 12 h cyclifgstart- §
ing at 00:00 UTC and 12:00 UTC. MOGREPS-R also runs
with 12 h cycling starting at 06:00 UTC and 18:00 UTC, but
takes its initial conditions and hourly lateral boundary con-
ditions (LBCs) from MOGREPS-G. In this study we run
a MOGREPS-G forecast starting at 00:00 UTC 20 Septem- %[ % —
ber 2011 and extend the forecast to 19:00 UTC. We use this i SR Pttt
to provide ICs and LBCs for a MOGREPS-R forecast start- SEEbE » BETE
ing at 06:00 UTC, which outputs hourly ICs and LBCs for
the 1.5km EPS from 07:00 UTC to 18:00 UTC.

The 1.5km EPS is described in detail blygliorini et al.
(2011). Subsequent improvements to the 1.5km EPS setup ;
using the so-called scale-selective ETKF to avoid ensemble
perturbation mismatches between the ICs and LBCs are de: :
scribed byCaron(2013. In this study we run a 13 h fore- H
cast with hourly ETKF cycling for the first 6 h, followed by :
a 7 h forecast, forced by hourly LBCs from MOGREPS-R.

EPS-G

M 5

1.5km-EPS

The system is described schematically in FAgin each of

the ETKF cycles, the initial conditions for the 1.5km EPS
control member are produced from a 3-D-Var analysis, with
LBCs provided by a 4km grid-spacing model with a do-
main covering the whole UK. For each 1.5km EPS ensem-
ble member, a perturbation is applied to the control member
ICs. These IC perturbations are derived from MOGREPS-
R as follows: in the first cycle, the IC perturbations for the Fig. 1. Schematic diagram showing the model domains of
1.5km EPS ensemble members are downscaled from th®IOGREPS-G, MOGREPS-R and the 1.5km EPS used here. Taken
MOGREPS-R IC perturbations; in subsequent cycles, thefrom Fig. 1 ofCaron(2013. ©Crown Copyright 2013, Met Office.
1.5km EPS IC perturbations are partitioned into small-scale

and large-scale components. The small-scale component of ) ) .

the IC perturbations is derived by applying the scale-selectivdential temperature and horizontal wind using data from four

ETKF to the 1.5 km EPS forecast perturbations from the pre-different model levels, as was done Ggron(2013. The IC

vious cycle. The large-scale component of the 1.5km gpdperturbations and analysis increments are added to th_e back-
ICs is derived by using the downscaled MOGREPS-R fore-9round forecast gradually over a one hour peripe- 80 min

cast perturbations for each ensemble member to perturb thf9 7-+30min) using the Incremental Analysis Update (IA,U)
1.5km analysis. An inflation factor is applied to scale the per-Scheéme. Hourly LBCs for the control member are derived

turbations. This ensures that the innovation variance is conffom the MOGREPS-R control member. Perturbed LBCs are

sistent with observations dt+ 1 of the forecastMigliorini provided for each ensemble member, again by MOGREPS-

et al, 2011 Caron 2013. A spatially and temporally fixed R. During the ET_KF cycles, the perturbed LBCs are intro-
inflation factor value is used throughout the forecast. A suit-duced using the incremental LBC update (ILBCU) method

able value for the inflation factor in the particular case stud-(€aron 2013 to gradually apply the corresponding LBC per-

ied here was determined by examining power spectra of pogurﬁ)ations ;)ver the same one-hour time period as the 1AU
scheme acts.

1The current operational version of MOGREPS-G runs at a
higher resolution than this, with a grid length of 33 km in the mid-
latitudes.

2The current operational version has 6 h cycling.

www.nonlin-processes-geophys.net/21/19/2014/ Nonlin. Processes Geophys., 28919614
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Fig. 2. Schematic diagram showing the model setup of the 1.5km
EPS used in this study. Times shown are for 20 September 2011.

2.2 The random parameters scheme as a method of
representing model error

The RP scheme is used operationally in MOGREB&\]er

et al, 2009. The scheme is designed to simulate model error
due to uncertainty in the parameterisation of sub-grid scale
processes. The RP scheme takes a set of parameters from var-
ious parameterisation schemes and treats them as stochastic
variables. For each parameter, a physically sensible range of
values has been defined as advised by experts. The parameter
is allowed to vary within this range.

In the original RP scheme, two parameters from each of
the boundary layer, large-scale precipitation, gravity-wave
drag and convection schemes were selected (see Table 1 of
Bowler et al.(2008 for the full list of parameters and val-
ues). Five additional boundary layer parameters were later
added to the RP scheme following the work #ddra and
Lock (2010. The full set of boundary layer and large-scale

precipitation scheme parameters used in this updated schenféd- 3. Met Office mean sea level pressure analysis charts valid at
is shown in the top part of Table (a) 12:00UTC andb) 18:00 UTC 20 September 2011. Grey pres-

The parameter values are calculated first using the firstSU'® contours every 4hPaCrown Copyright 2011, Met Office.
order autoregression model

PY=p+r(Pi1—p)+e, (1)
The range ofe and the value of were chosen following
a series of 72 h forecasts and selecting the combination of
galues that gave the maximum spread and best determinis-
tic scores for individual ensemble membeBowler et al,
2008. These values are therefore tuned for the resolution of
MOGREPS-G, which at the time had 90 km grid spacing.
In the standard formulation of the RP scheme, the param-
fFters are updated using Eqs) @nd @) once every 3h. The
parameter values are then fixed for a period of 3 h until the
next update time. The same parameter values are used for all
Pmin  if P,0 < Pnmin, grid points. Each time the scheme is applied, a new random
Pr={ Pnax if P®> Prax. (2)  numberk € [0, 1] is generated to give a different value of
defined ag = (2k — 1)(Pmax— Pmin)/3. A different random
number is used for each parameter so that they vary indepen-
3,1 is not necessarily the true mean of the resulting distribution dently from one another. On the first application of the RP
of parameter values. The true mean is influenced by the roundinggcheme, the parameter values are set to random values within
process described in Eq)( the parameter range. Each ensemble member, including the

WhereP,0 and P;_; are the intermediate and previous param-
eter valuesy is the mean valué of the parameter distri-
bution (taken to be the default value of that parameter) an
r is the auto-correlation constant (setras 0.95). € is the
stochastic shock term, sampled from a uniform distribution
in the ranget(Pmax— Pmin)/3, WherePmax and Pnin are the
maximum and minimum values for the parameterPff is
outside of the prescribed range, it is rounded down or up t
give the new parameter valug,:

P?  otherwise

Nonlin. Processes Geophys., 21, 136, 2014 www.nonlin-processes-geophys.net/21/19/2014/



L. H. Baker et al.: Representation of model error in a convective-scale EPS 23

Table 1. Parameters used in the modified RP scheme. The four pairs of parameters that vary together (using the same random number tc
updater in Eq. 1) are shown in their respective pairs in italics and bold. Paranitevaries asRic = 10/ g.

Scheme Parameter Name Description Min  Default Max

BL g0 flux profile parameter Controls stability dependence of turbulent 5 10 20
mixing coefficients in the stable boundary-
layer scheme.

BL Ric critical Richardson number Determines the boundary-layer top (defined 0.5 10 20
as the lowest level for whicRi > Ric).

BL gmezcla neutral mixing length Sets the magnitude of the turbulent mixing 0.03 015 045
lengths.

BL Amin minimum mixing length Sets the magnitude of the turbulent mixing 8 40 120
lengths.

BL Charnock  Charnock parameter Determines the magnitude of the windd.010 Q011 Q0026
speed dependent roughness length over sea.

BL A1 entrainment parameter Multiplication factor for the entrainment 0.1 0.23 04
rate at the boundary-layer top.

BL g1 cloud-top diffusion parameter Multiplication factor for the eddy diffusiv- 0.5 0.85 15
ity at the cloud top in the boundary layer.

LSP RHyyit critical relative humidity Relative humidity at which cloud begins to 0.875 Q9 0.910
form.

LSP mej ice-fall speed Multiplication factor for the fall speed ofice 0.3 10 30
crystals.

LSP x1r particle size distribution (PSD) Multiplication factor for the PSD function 2x 106 8x 108 2 x 10°

for rain for rain.

LSP x1i PSD for ice aggregates Multiplication factor for the PSD function 1x 10° 2x10° 1x 107
for ice aggregates.

LSP xlic PSD for ice crystals Multiplication factor for the PSD function 1x 107 4x 107 1x 10°
for ice crystals.

LSP ai ice aggregate mass diameter Multiplication factor for the mass—diameter 0.0222 Q0444 Q0888
relationship for ice aggregates.

LSP aic ice crystal mass diameter Multiplication factor for the mass—diameter 0.2935 0587 1174
relationship for ice crystals.

LSP nuc maximum ice nucleation tem- Maximum temperature at which ice crystals —25 -10 -1

perature can form.
LSP €Guto autoconversion efficiency Collection/collision coefficient for the con- 0.01 055 06

version of cloud liquid water to rain.

control member, is given a different set of random parameter Given the shorter time step of the high-resolution forecast
perturbations by the RP scheme. compared with the global and NAE forecasts (50 s compared
with 5-10 min) and the short forecast lead times we are in-

2.3 Modifications to the scheme for the convective-scale terested in, it was appropriate to revise the time interval be-
EPS tween calls to the RP scheme (3h in the original scheme).

] We test update times of 30 and 60 min, which were chosen
To apply the RP scheme to a forecast ensemble run in thg, 410, the parameters to vary smoothly over time, without

1.5km EPS convective-scale setup, it was necessary to makg,ing continual shocks to the model. Consideration was also
some modifications to the existing scheme. Importantly, atyjyen to the timescales of the processes that the parameterisa-
this resolution, the convection scheme and grawty—wave. dragion schemes represent. A further version of the RP scheme,
schemes are not used. Therefore, only parameters in thgqging parameters fixed throughout the forecasts, was also
boundary layer and large-scale precipitation schemes werggeq |n all cases the first application of the RP scheme is at
perturbed. Sensitivity tests were used to determine approprir 4 30 min, after the IAU and ILBCU schemes have finished.

ate parameters in the large-scale precipitation scheme to P€his is to allow the IC and LBC perturbations to be added
turb. These tests are described in S&c8. The full set of completely before the RP scheme is applied.

parameters used here is given in Tahle

www.nonlin-processes-geophys.net/21/19/2014/ Nonlin. Processes Geophys., 28919614



24 L. H. Baker et al.: Representation of model error in a convective-scale EPS

<

where

1 N
%ij= |7 Z(Pi,j,k —7ij)?
k=1

nx andny are the numbers of grid points in thheand y di-
rections, respectively (in our cage = 360 andny = 288),
pi,j.k denotes the value of field at point(, j) for ensem-

ble memberk andp; ; is the ensemble mean value of field

p at point(i, j). CR is calculated followingsebhardt et al.
(2011 as CR= N (Pai)/N(P=1), whereN (Py) is the num-

ber of grid points where all members forecast an event, and
N (P=1) is the number of grid points where at least one mem-
ber forecasts the event. A low CR indicates large ensemble
spread, while a high CR value indicates that the ensemble
members are generally in agreement.

To evaluate the forecast skill of the ensemble by compar-
ing with observations, we use three methods: the first, for rain
and near-surface fields, is the continuous ranked probability
score (CRPS); the second, for rainfall accumulation only, is
the precipitation skill score (PSS); the third, for rainfall rate
only, is the innovation magnitude.

The CRPS is a way of measuring the closeness between
two cumulative distribution functions (CDFs). In our case the
two CDFs are those of a forecast,(x), and of an observa-
tion, Fo(x). The definition of the CRPS at poirit, j) and

. i i for quantityx;_; is the total squared difference between these
trmine CDFs:

£

Fig. 4. Radar-derived surface precipitation rate (1 km composite) ¢ )
at 15:00 UTC 20 September 2019Crown Copyright 2011, Met CRPS; = / dx; j (F¥(x;, ;) — Fo(x; ;)<
Office.

Xj, j=—00
(Wilks, 2006, where the CDFs are Fyo(xi )=
2.4 Evaluation and verification methods f;,‘*f e dxi/ij/O(xi/,j) and wherePy/o(x; ;) is the proba-

)
: bility density function (PDF) for the forecast/observation
th d and skill of the ensemble by con- . ;
We evaluate the spread and skill of the y at the point(i, j). The forecast's PDF is described by the

sidering near-surface fields (1.5 m temperature, 1.5m rela® @ . )
tive humidity (RH) and 10 m wind speed), rainfall rate and €nsémble members; 7, by assuming that each is equally
rainfall accumulation. These quantities were chosen becaustikely: Pr(x; j) = YN, 8(x;.; —x,-(,kj)% wheres is the Dirac
they could be evaluated against surface and radar observalelta-function. In previous works using the CRPS, an obser-
tions that were available to us. vation’s PDF assumes that the observation is perfect, i.e. that
To evaluate the spread of the ensemble we use two differ®,(x; ;) = §(x; j — yl?j), whereyl?. is the observed value,
ent diagnostics: the first is a domain-averaged measure of thehich leads to the observation’s CDF being a Heaviside
ensemble spread at each time; the second, for the hourly raistep function. This simplifies the calculation of the CRPS
accumulation only, is the correspondence ratio (CR), whichas it avoids the need to do explicit quadrature (see Sect. 4
gives a measure of spread for a whole field rather than in-of Hersbach 2000. In this work though we account for
dividual grid points (as used b@ebhardt et al.2011). We imperfect observations by assuming that each observation’s
define the spread for atmember ensemble as PDFs is a normal distribution with finite widtla,. In this
case the CRPS reduces to the following calculation:

1
spread= > o, i 1
nx xny L= CRPS; = / dx; ﬁ”lf(xi,j)_

Xj, j=—00

1 Xij =¥ ?
_ 1+erf u ,
2[ ( V200 )“

Nonlin. Processes Geophys., 21, 136, 2014 www.nonlin-processes-geophys.net/21/19/2014/



L. H. Baker et al.: Representation of model error in a convective-scale EPS

(a Radar rain rate (mm/h) at 15:00

025 a5 1.00 200 200 800 18.00 3200

25

Radar rain rate (mrmn) at 18:00

025 0.50 1.00 200 400 a0 16,00 3200

Central forecast rain rate (mnvh) at 18:00

025 as0 100 200 a0 800 1800 3200 025 0.50 1.00 200 a00 a0 1800 3200

Fig. 5. Observed and model rain rate (mm¥). Left column: 15:00 UTCT + 3), right column: 18:00 UTCX + 6) 20 September 2011. Top
row: radar-derived surface precipitation rates (1 km composite), bottom row: control forecast rainfall rate at the surface.

wheren(x; ;) is the number of ensemble members whoseThe PSS is therefore given with respect to a control ensem-
forecast values are less than or equal;tpand erfx) is the ble, which here is the ensemble with IC and BC perturbations
standard error function &rf) = %f;‘/:oexp—xzdx. Nu-  butno RP scheme applied (CTL in Talde
merical quadrature is necessary to evaluate this integral. Note T0 compare the ensemble mean with the radar observa-
that a lower CRPS indicates a more skillful forecast. tions we calculate the innovation magnitude,defined at

To calculate the PSS, the hourly rainfall accumulation data®ach grid point as the absolute difference between the mean
for the model forecast and radar observations are first resan@lué of the ensemble at that point and the observation value
pled to 13.5km. This reduces the chance of penalising anyt that point:
small displacement errors twice, which can happen in high ,

: ) ) - . ) d =11 —v2.l.
resolution forecasts if using grid point comparison methods. "/ Ipi.j =il

A similar resampling was done yaron(2013 (to 15 km)
when using the PSS. Next, the Brier score (B&ks (2006)
is calculated, and is defined as

1 nx,ny
BS— o 0; 2’
nx xny ijzz:l(fw w)

where f; ; is the probability of a given event occurring in
the model ensemble data, agd; is a binary indicator of the

2.5 Description of the experiments

The various ensemble experiments discussed in Seatsd

5 are listed in Tabl@. The control ensemble (CTL) is com-
posed of a set of 24 six-hour forecasts with ICs at 12:00 UTC
derived from MOGREPS-R IC perturbations and previous
cycles of the 1.5km EPS, as described in S@ct. The

IC and LBC perturbations are introduced gradually between
T—30 and7T+30 using the 1AU and ILBCU schemes, re-
spectively. This ensemble has no representation of model er-

occurrence of the event in the observations. In this case theor variability. Experiments labelled IC + BC + RP* (where
eventis the exceedance of a threshold rain rate at a given gridere and throughout this paper, * is shorthand for either

point. The PSS for an ensemble ENS is given by

BSens
BSctL’

PSS=1-

www.nonlin-processes-geophys.net/21/19/2014/

“fix”, “30” or “60") use the same IC and LBC perturbations
as the control ensemble but also use the RP scheme with
different lengths of time between parameter updates (once,
every 30 min and every 60 min, respectively), starting from

Nonlin. Processes Geophys., 28919614
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@ 10m wind at 15:00 (b) 10m wind at 18:00

Fig. 6. Control forecast. Left column: 15:00 UTQ@ (+ 3), right column: 18:00 UTCT + 6) 20 September 2011. Top row: 10 m wind speed
(ms—1), bottom row: 1.5 m temperature (K).

Table 2. Summary of model configurations for the ensemble experiments.

Ensemble name  Description IC and LBC perts RP scheme
CTL Control (perturbed ICs and LBCs, no RP scheme) Yes No
IC+BC+RPfix perturbed ICs and LBCs, RP scheme applied once Yes Yes
IC+BC+RP30 perturbed ICs and LBCs, RP scheme applied every 30 min Yes Yes
IC+BC+RP60 perturbed ICs and LBCs, RP scheme applied every 60 min Yes Yes
RPfix RP scheme applied once No Yes
RP30 RP scheme applied every 30 min No Yes
RP60 RP scheme applied every 60 min No Yes

T+30 min (after the IAU and ILBCU have finished). Experi- ern UK (Fig.3). It can be seen from the analysis charts that
ments labelled RP* have no IC and LBC perturbations: theirthis is part of a long, trailing front with several weak frontal
members all use the unperturbed ICs and LBCs of the controlvaves. This frontal structure passed across the southern UK
member, with model error represented by applying the RRn a north-eastward direction. There are two main reasons
scheme. These ensembles therefore show the effects of usidigr selecting this particular case. First, it occurred during a
the RP scheme to perturb parameters, without the effects ahree-week field campaign period of the DIAMET (DIAbatic
perturbing the ICs and LBCs. influences on Mesoscale structures in ExTratropical storms)
project (funded by the Natural Environment Research Coun-
cil (NERC)), and was thus selected as a DIAMET inten-

3 Description of the case and sensitivity tests to inform ~ Sive observation period (IOP-2). We therefore have access

the modifications to the RP scheme to high-resolution observations for this case, in addition to
those made operationally, including in situ aircraft measure-
3.1 Overview ments, dropsonde profiles and extra radiosonde ascents from

some UK stations. These non-operational observations are
For this study we focus on a case on 20 September 201hot used in the study reported in this paper, but are being
characterised by the passage of a cold front over the south-
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(a) Difterence between perturbed and control for 1.5 m temperature (K) at 15:00 (b) Ditterence between perturbed and control for 10 m u-wind (mis) at 15:00
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(C) RMSE of perturbed relative to control for 1.5 m temperature (K) at 15:00 (d) RMSE of perturbed relative to control for 10 m u-wind (m/s) at 15:00
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Fig. 7. Sensitivities of the forecasts @+ 3 (15:00 UTC) to perturbing parameters to their maximum and minimum values. Top row:
difference between perturbed and control forecast at each point, averaged over the domain. Error bars show the standard deviation of the
differences. Bottom row: RMS difference between the perturbed and control forecast at each point, averaged over the domain. Left column:
1.5 m temperature. Right columm:component of 10 m wind.

used in ongoing related work (Migliorini, Bannister, Rudd 3.2 Control forecast from the 1.5 km EPS
and Baker, in preparation). The second reason for choosing
this case is that it has an unusual triple banded structure ifhe control forecast (using the standard default parameter
the rain band passing over the UK, which was present invalues in each of the parameterisation schemes) captures the
the radar rain rate (Figl) but was not captured by the Met main rain band (Fig5c and d) but does not capture the sec-
Office operational high-resolution deterministic forecast (theond band over South Wales seen in the radar @agnd b).
UKV forecast; 1.5km grid length, covering the whole UK; Note that during the period studied here the third rain band in
not shown). This triple rain band feature, and the fact that itFig. 4 does not reach the 1.5 km EPS domain. There is some
was not captured by the operational deterministic forecastsmaller-scale banding along the rain band in the control fore-
makes it an interesting case to study using an ensemble gfast at both times shown, indicating that the model is repre-
forecasts. It is not clear from either the model forecasts orsenting the correct type of smaller-scale structure within the
the radar observations what the cause of this banded stru¢ain band. Figuréa and b show stronger winds ahead of the
ture is; this is the subject of ongoing work and is beyond thefront than behind the front, with a sharp drop in 10 m wind
scope of this paper. speeds over land compared with the wind speeds over the sea,
We focus on the period 12:00 UTC to 18:00 UTC, and Which is likely to be caused by the different surface rough-
are particularly interested in evaluating the performance and€ss and orographic effects. The frontis relatively weak, with
spread of the ensemble at 15:00 UTC+ 3) as this is typ- & temperature gradient of around 6 K across the front @eig.
ically a useful timescale for convective scale forecasts. Thisand d). The location of the strongest temperature gradient in
should also allow time for model error introduced by the RP Fig. 6d is consistent with the position of the analysed surface
scheme to have effect before information coming through thefront in Fig. 3b.
boundaries begins to dominaté€bhardt et al2017).
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Fig. 8. Control ensemble rainfall rate (mnth) at 15:00 UTC. The control member (member 0) is in the top left-hand corner.

3.3 Parameter sensitivity tests collectively control a variety of different processes also has
the advantage that the overall effects of the scheme may be
In order to make the RP scheme suitable to be used in théess case-dependent. In addition, some parameters were cho-
1.5km EPS, we first identified suitable parameters to be persen to vary together in pairs. These pairs of related parame-
turbed within the scheme, in addition to those used in theters are indicated in Table Parameter®i. andgg are re-
operational scheme. Since work had already been done blated byRic = 10/ go; for the other parameter pairs the same
Zadra and Lock(2010 to identify extra parameters to be random number is used to update their associate&q. (1),
perturbed in the boundary layer scheme after the RP schemahich ensures that these pairs of parameters remain corre-
was originally developed, we focus here on parameters in théated. In this chosen set of parameters, there are seven pa-
large-scale precipitation scheme. An extensive set of aroungiameters from the boundary layer scheme and nine from the
50 parameters known to have some uncertainty was detelarge-scale precipitation scheme, but due to the pairings of
mined by consulting with experts at the Met Office. For eachsome parameters there are five independent parameters from
parameter a suitable range of values was chosen such thattie boundary layer scheme and seven independent parame-
was physically sensible while also reflecting the uncertaintyters from the large-scale precipitation scheme.
in the value of the parameter. To test the sensitivity of the forecast to each of these pa-
From this extensive list of parameters, a smaller subset wagameters, a series of forecasts was run in which each pa-
chosen (Tabld). The first nine parameters listed in Tallle rameter (or pair of parameters) was perturbed to its maxi-
are those used in the operational RP scheme, although sormmaum or minimum value. The perturbed forecasts were com-
of the ranges have been changed, based on advice by expergared with the control forecast to determine the sensitivity
The last seven parameters in Tahlare those that we have of the forecast to each parameter, and also to test in what
added to the RP scheme. The selection of these parametengy the forecast was affected. In particular, it is desirable
was motivated by choosing from the 50 those with the high-that perturbing a parameter to its maximum and minimum
est sensitivity, and choosing one parameter for each physicalalues gives opposite effects (e.g. one increases the tempera-
process, in order to minimise the possibility of parametersture while the other decreases it), than for both cases to have
counteracting each other. Choosing a set of parameters th#te same result (e.g. a reduction in temperature) which would
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( a) Ensemble mean rai rate at 15:00 (b) Ensemble spread at 15:00 ( c ) RMSE ensemble mean at 15:00

( d) Ensemble mean rai rate at 18:00

Fig. 9. Spatial distribution of rain rate diagnostics (mm) for the control ensemble. Left column: ensemble mean, middle column: ensem-
ble spread and right column: innovation magnitude of the ensemble mean, at 15:00 UTC (top row) and 18:00 UTC (bottom row) 20 Septem-
ber 2011.

imply that perturbing this parameter randomly may introducesensitivity to each of the parameters. It can be seen that the
a bias. boundary layer parameter paigg(Ric) and Emezcla Amin),

The sensitivity of the forecast to perturbing each of the pa-and the large-scale precipitation parametér (perturbed
rameters to its maximum and minimum value was examinedonly to its maximum value) have the largest effects on both
both by computing domain-averaged differences and rootthe temperature and component of wind. The parameter
mean-squared (RMS) differences. Difference maps of surpairs o, Ric) and @mezcla Amin) affect the wind more, while
face variables at different forecast lead times were also exx1r has a large impact on the temperature. Although the ef-
amined (not shown). These show that different parameters affects of these parameters dominate in this case, the effects
fect the forecast in different parts of the domain. Specifically, of perturbing the other parameters are not orders of magni-
the large-scale precipitation parameters have the strongestide smaller. The sensitivity to most of the parameters will be
effects in the region of the rain band, while the effects of dependent on the atmospheric state (in particular the bound-
boundary layer parameters are generally more widespreadyry layer stability for the boundary layer parameters, and the
and most strongly affect the north-east part of the domain. cloud amount and type for the large-scale precipitation pa-

Figure7 shows the domain-averaged 3 h sensitivities with rameters), and these results confirm that this is a reasonable
respect to each of the 12 independent parameters (or pararset of parameters and ranges to choose in order to simulate
eter pairs) for 1.5 m temperature and for theomponent of ~ model error variability.
the 10 m wind. Equivalent plots for 1.5m RH anc¢compo-
nent of 10 m wind (not shown) show qualitatively similar re-
sults to those for 1.5 m temperature and fordtmmponent 4 Eyaluation of the control ensemble
of 10 m wind (respectively), in terms of their relative sensi-
tivities to each parameter (although note that the response faf, this section we describe the properties of the control en-
1.5mRH has the opposite sign to the response for 1.5 m temsemble, CTL, which has IC and LBC perturbations but no
perature, as might be expected). Figdeeand b show that  representation of model error variability.
for all parameters, the domain average effects on the temper- A|| the ensemble members capture the main rain band at
ature and u-component of wind of perturbing a parameter t015:00 UTC (Fig8), although there is considerable variability
its maximum value has an opposite sign to perturbing it tojn the amount of rainfall associated with this band (compare,
its minimum value. However, the bars showing the standardior example, members 7 and 11). Inspection of the rain rate in
deviation indicate that there is a large variability in the effect the ensemble members from the driving model, MOGREPS-
of these parameters over the domain. The RMS differencer (not shown), also shows the main rain band, but no member
plots (Fig.7c and d) give a measure of the magnitude of thehas the second band, suggesting that the mechanism causing
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Fig. 11. Correspondence ratio for the control ensemble for hourly

rain accumulation.
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(b) 4

. 1 the radar rain rate. The locations of these localised regions of
- heavy rain correspond to the two regions of heaviest rain in
. 1 the ensemble mean at this time (F8g). By 18:00 UTC the
P . positioning of the rain band in the ensemble mean (8d).
- . compares well with the position of the main rain band in
. ] the radar (Fig5b), although the region of moderately heavy
e 1 rain off the east coast in the radar is relatively weak in the
. ensemble mean.
p 1 Comparison of the ensemble spread with the innovation
~ ] magnitude (middle and right columns of Fig). shows that
g 1 these quantities have quite different spatial distributions at
N fN [ [ e both times shown. In the ensemble spread (Bly.and e)
ensomble forecast error variance [mm*h] there are more widespread regions of low values of spread,
while in the innovation magnitude (Fi§c and f) there are
Fig. 10. (a) Domain averaged ensemble variance and innovationmore localised regions of higher values. Thus although the
variance for rain rate every hoyb) Spread-skill plot for the con- domain-averaged quantities (Fif}a) appear to be very sim-
trol ensemble. In(b) the data for each grid point for each hour of jlar, this is not due to these quantities having the same spatial
the forecast are binned into 10 bins by ensemble variance. distribution. The spread-skill plot produced by binning the
data by ensemble variance (Fitbb) shows generally good
agreement between the ensemble forecast error variance and
this banded structure to form in reality was not well repre- the innovation variance. For larger ensemble forecast error
sented in MOGREPS-R. Our hope was that the increased resariances the innovation variance is not as large, which could
olution might lead to some 1.5km EPS members capturingsuggest that the ensemble is overspread in areas with higher
the second band, but Fi§shows that this ensemble also fails rain rates. However, this may be at least partly due to the
to capture the two bands together in any individual memberlimited ensemble sizeBpwler et al, 2008. These results are
Whether this is an inevitable consequence of the lack of mul-qualitatively similar to Fig. 16 irBowler et al.(2008 and
tiple bands in the driving model is an open question. Fig. 15 inMigliorini et al. (2011J).

There is generally good agreement in the positioning of The correspondence ratio (CR) was calculated for hourly
the main rain band, although three members (members 1, 1@&infall accumulation for different accumulation thresholds
and 19) have the rain band displaced further to the north. ThigFig. 11). At 13:00 UTC, the CR for the 0 mm threshold is
means that, although the two distinct bands seen in the radanitially high (0.8), but decreases throughout the forecast,
are not captured, these three members do have some rain rraching a minimum of around 0.4. In contrast, for the higher
roughly the location of the second radar rain band. Several ofhresholds the CR is initially low (less than 0.2) and quickly
the ensemble members have more intense rain in the northdecreases to zero or near-zero values. This indicates that after
east part of the rain band, and in particular some of thenthe first 1-2 h of the forecast there are no, or very few, grid
have one or two localised regions of heavy rain (e.g. mem-oints where all ensemble members agree for these thresh-
bers 7, 8 and 13) exceeding 16 mmthwhich is not seenin  olds. These results suggest that, while the ensemble members
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Probability ot rain > Omm at 1500z Probability ot rain > 0.2mm at 1500z

(by’

(1) g

53N 53N

52N 52N

52N

Fig. 12.Probability of rain rate exceeding given thresholds (%) for the control ensemble at 15:00 UTC. Thresh@lyé ame,(b) 0.2 mm,
(c) 1 mm andd) 2 mm.

are in generally good agreement about the location of the raifs  Evaluation of the effects of applying the RP scheme
band, they disagree in the details of the location of heavier

rain. This is supported by Fig2 which shows the probabil- The CTL ensemble represents just one realisation of fore-
ity of rain exceeding given thresholds. For a 0 mm thresholdcast error. Here we examine the ensembles that have model
(F|g ]_Za), there is a broad region across the domain with€error variability represented using the RP scheme. The fea-
100% probability of rain. In contrast, for higher thresholds tures of each ensemble and the way that each is labelled are
(Fig. 12b—d) there are more areas with lower probabilities. described in Sect. 2.5 and in TaldleHere we show results
For the three thresholds shown in Figb—d, there is a small ~ for one run of each type of ensemble. To confirm that the
region in the centre of the domain with high probabilities. results presented here are robust and not simply a result of
This corresponds to some much smaller regions of rain exspecific combinations of random numbers used inctterm
ceeding 2mm in the radar (Fi§a). In Fig.12b and c there  in Eq. (1), these ensemble runs were repeated using differ-
is some hint of a slightly separated band extending furtherent sets of random numbers. The results from these repeated
north than the main rain band, which may be related to theensembles were found to be qualitatively similar to those

second band seen in the radar (Fa), although in Figl2b ~ presented here.
and c it does not extend as far north. One possibility considered is that the different parameters

The Brier score (BS) for hourly rain accumulation across the ensemble members in all IC+BC +RP* experi-
(Fig. 13a) shows an improvement in the skill over time for the ments may lead to some members forecasting the multiple
0 and 0.2mm accumulation thresholds. This improvement@in bands. Once again though, all members in all of these
over time, particularly after 15:00 UTC, suggests that the in-ensembles fail to show this feature. This suggests that it may
formation coming through the boundaries at later times im-be the absence of the seed of this feature in the ICs and BCs
proves the forecast. There is also a significant improvemenprovided by the driving model — rather than problems associ-
with increasing accumulation threshold, which is largely dueated with model parameter values — that results in this fore-
to the decrease in the number of points exceeding the largefast failure, since collectively our experiments have used so
thresholds (Fig13b). This increases the number of points many different combinations of model parameters.
that are correctly forecast as not having rain exceeding the
threshold, thus effectively improving the BS.

www.nonlin-processes-geophys.net/21/19/2014/ Nonlin. Processes Geophys., 28919614



32 L. H. Baker et al.: Representation of model error in a convective-scale EPS

(a) consistently larger spread than the CTL ensemble. For these
0 Srer Score variables there is little difference between the three model er-

ror ensembles, although IC + BC + RPfix has a slightly larger
—— spread towards the end of the forecast. For 10 m wind speed

0 \ (Fig. 14b) there is a slight increase in the spread in the
— IC + BC +RP* ensembles compared with the CTL ensem-
0 T ble. The spread for the two ensembles with periodic calls

[ to the RP scheme (IC+BC + RP30 and IC + BC + RP60) has
some small jumps at times corresponding to the times that
the RP scheme updates the parameters. For hourly rain ac-
— cumulation (Fig.14a) the evolution of spread for ensem-
e, S bles IC+BC+RP30 and IC + BC + RP60 is less smooth than
U for ensemble IC+BC +RPfix, and while generally lower
S T than the spread for the CTL ensemble, both ensembles have
I e 0 oY larger spread between around 16:30 and 17:30 UTC than the

Brier score
I

o
(=

e IC +BC + RPfix.
The spread gained by applying the RP scheme compared
(b) with the CTL ensemble can be compared with the results
0 Percentage of abservations above thréshold of Hacker et al.(2011). Their perturbed parameter ensem-

— ble gave an increase in spread for 2m temperature of up
o to 30 % (their Fig. 6a), compared with their control ensem-
—————— ble. This compares well with Fidl4c, which shows an in-
R crease in spread of 30 % in the last hour or so of the forecast
for 1.5m temperature. Their results also show an increase
- in spread of around 20% for 2m specific humidity (their
Fig. 6¢), compared with a 15-20 % increase in the spread
© for RH (Fig. 14d). In contrast to our result$jacker et al.
- (2011 show a negligible change in 10 m wind speed, and an
increase in spread for precipitation accumulation.
NSO L -4 Figurel4a—d show that model error variability alone intro-
T B — duces much smaller spread than the IC perturbations, but still
SRR s = amuch larger amount than the difference between the spread
e in the CTL and IC + BC + RP* ensembles. This is consistent
Fig. 13. (a) Brier score for the control ensemble for hourly rain With the results of5ebhardt et af2011) who found that the
accumulation, calculated using model and radar data resampled tgffects of their combined physics and LBC perturbations was
a 13.5km grid.(b) shows the number of observation data points hot the sum of these two perturbations individually. For all
exceeding each rain accumulation threshold. four variables shown in Figl4a—d the change in spread of
the RP* ensembles mirrors the shape of the spread of the
IC + BC + RP* ensembles, increasing slightly throughout the
5.1 The effects of the RP scheme on ensemble spread  forecast. It is interesting to note that the RPfix ensemble still
shows an increase in spread throughout the forecast similar to
For all the IC + BC + RP* ensembles there is some increaseéhe RP30 and RP60 ensembles, despite the fact that the RP
in the ensemble spread compared with the CTL ensemscheme is only applied once. This indicates that the effect
ble, for the near-surface fields shown in Fitgb—d. For  of the RP scheme on the spread is due to the members fol-
hourly rain accumulation (Figl4a) there is a slight de- lowing different model manifolds from the first application,
crease in spread in the IC + BC + RP* ensembles comparednd subsequent changes to the manifolds due to repeated ap-
with the CTL ensemble. Note that the rapid increase in en-plications of the RP scheme in RP30 and RP60 do not in-
semble spread over the first hour of the simulation (untilcrease the spread further in a substantial way. The similarity
12:30UTC) is due to the gradual introduction of the IC per- of the spreads between all RP* experiments may also be re-
turbations by the IAU scheme over this period, which meandated to the high autocorrelation coefficientjn Eq. (1) and
that the ensemble members diverge throughout this timethe nonlinear relationships between the parameter values and
The RP scheme is first applied at the end of the IAU pe-the forecasts.
riod (at 12:30 UTC), causing a divergence in the spread of For the Omm threshold (Figl5a) the CR for the
the four ensembles at this time. For temperature and RHC + BC + RP* ensembles is higher than for the CTL en-
(Fig. 14c and d), the three IC +BC + RP* ensembles havesemble, indicating a lower spread and a stronger agreement

Obs abova thrashald (%)
|
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(a)

Ensemble spread for rainfall accumulation

(b)

Ensemble spread for 10m wind speed
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Fig. 14. Evolution of ensemble spread with forecast time for the different ensemble®)foourly rainfall accumulation (mm)b) 10 m
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between members in the location of the rain band. This is(not shown). Therefore the addition of model error has not
in agreement with plots of the probability of rain exceed- improved the relationship between the spatial distributions
ing Omm for the IC +BC + RP* ensembles (equivalent to of ensemble spread and innovation magnitude.

Fig. 12a) (not shown) which show broader regions with

100% probability of rain than for the CTL ensemble. For 55 The effects of the RP scheme on the forecast skill
higher thresholds (FidgL5b—d) there is no significant change

. . .
It';] thngR for thbel ICT“;B%;FP ensbelmblhes cohm%aregév Itthhe skill of each ensemble forecast was evaluated using the
c ensemble. 1he ensembles nhave higher va CRPS, as shown in Fid.7 (accounting for observation error

ues than the CTL and IC + BC + RP* ensembles throughout ; ; : ;
4. Th f
the forecast for all thresholds (Fitsa—d). This is consistent > Geocrioed in Sed.4). The observation error variance for

ith th hi d _ . lation f each quantity was estimated from spread-skill plots for this
\t’;’]' RPE mue bc:werFs_préga Tsheegl:l)rzséaln accz:nuha 10N 10T case as the value of the skill for zero spread. The values used

€ ensembles (Fid4a). The ensemble has con- ;¢ specified in the figure caption. Repeating the calculations,
sistently lower CR values than the other RP* ensembles for,

Il thresholds. indicati ability bet bl but with zero observation error gives qualitatively similar re-
all tnresnolds, Indicating more variabiiity between ensem esults, which suggests that the results are not sensitive to the
members in this case. This is in agreement with Hida

: . . exact observation error variance values used.
which shows a slightly higher spread for the RP60 ensem- The CRPS for 1.5m temperature and 10m winds
bIeFf[han folr6IZP3r(]) and Itthftlxnth bl for th (Fig. 17c, e and f) shows a general improvement in skill (re-
igure _shows that ne ensemble mean for €, iy of CRPS) with forecast lead time, particularly in the
IC+BC+ RP_ﬂX ensemble has a larger peak and a SllghtlyIC+ BC + RP* ensembles. This is surprising, as skill is nor-
gzi\rr[ower ra;)r: b?:nd gthar_lrhthe enseg?ble mezén ; forththemally expected to degrade with lead time. One hypothesis is
ensemble (Fig.9a). The ensemble spread for the that this improvement is due to large-scale information (and

IC+BC +RPfix ensemble extends over a narrower bandh . . . : :
. . : ence potentially more reliable information) entering the do-
than the CTL ensemble (Fig6b compared with Figab), main via the LBCs. If this were the case, we might expect see

which dls conglstﬁpt 4v2thTLhe.reduc'E[|'on n don.lag'a]cver?hgedreductions in maps of CRPS propagating inwards, especially
lsgrfgciesgf.m gL 'bl ?:.'ngCOV.a lon mggT ut ethor_ € from the prevailing wind direction (from the south and west
Ix ensemble (Fig.&c) is very similar to the in- boundaries). Also, temporal evolutions of spread-skill rela-

novation magnitude for the CTL ensemble (Fg), and sim- . : . .
. tionships at different lead times were calculated to search for
llarly for the IC + BC + RP30 and IC + BC + RP60 ensembles evidence of better spread-skill agreement at later lead times.
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Fig. 15. Correspondence ratio for hourly rain accumulation for all the ensembles. Threshol@ @rem, (b) 0.2 mm,(c) 1 mm and(d)
2mm.

Both investigations, however (results not shown), showed nssembles, indicating that the RP scheme has little impact on
systematic signals to suggest that the LBC information is re-the skill of the wind forecast. For rain rate and hourly rain ac-
sponsible for the decrease of CRPS (although this may beumulation (Figl7a and b) all ensembles show an improve-
due to an insufficient observational sample at any given leadnent in skill between the 1 and 2 h lead times, followed by
time and so this remains an open question). The improvea degradation in skill over the remainder of the forecast. For
ment in skill with lead time for temperature and winds may the first 2 h, the IC + BC + RP* ensembles show an improve-
be due to the effect of the readjustment of the forecast enment in the skill compared with the CTL ensemble, which
semble to a more balanced set of states after the effect ab particularly significant in the rain accumulation at the 1 h
the inflation on the initial ensemble spread. As discussed idead time. After this the IC + BC + RP* ensembles have a sig-
Sect. 2.1, the inflation is a spatially constant factor — deter-ificantly worse skill than the CTL ensemble. These results
mined from temperature and winds power spectra at selectedre consistent with results using the PSS (E&). In the first
levels — imposed on the ICs as determined by the ETKF. Ar-2 h of the forecast the PSS is positive for all thresholds, show-
guably, a sub-optimal inflation on the initial ensemble spreading that the IC + BC + RP* ensembles perform slightly better
could cause spurious gravity waves leading to loss of skill inthan the CTL ensemble; after this time the PSS is negative,
the first hour into the forecast and subsequent improvementshowing that the IC + BC + RP* ensembles are less skillful
in skill would be achieved when the effects of the initial in- than the CTL ensemble according to this diagnostic. For the
flation are “forgotten” by the forecast ensemble. higher thresholds (Fidl8c and d) the PSS is approximately
The IC+BC+RP* ensembles have consistently betterzero at 15:00 UTC, indicating no change in the skill at this
skill than the CTL ensemble, with a significant improvement time for these thresholds. All three IC + BC + RP* ensembles
in skill at and after the 4 h lead time. For 1.5 m RH (Figd) show similar PSS values throughout much of the forecast,
the skill for all ensembles gets worse over the first two hours although for the 0 mm threshold (Fig8a) IC + BC + RPfix
followed by an improvement from the 3 h lead time. As with performs worse than the other ensembles towards the end of
1.5m temperature, the IC + BC + RP* ensembles show conthe forecast.
sistently better skill than the CTL ensemble, with the dif- The CRPS for the RP* ensembles was also calculated (not
ferences becoming more significant after the 2 h lead timeshown). These ensembles have consistently worse skill than
For surface: andv wind (Fig. 17e and f) there is large un- either the CTL or the IC + BC + RP* ensembles. This shows
certainty in these results, shown by the standard error barghat using the RP scheme to add model error variability alone
There is no significant difference in the CRPS between enproduces a less skillful ensemble than an ensemble with
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magnitude of the ensemble mean, all at 15:00 UTC 20 September 2011.

perturbed ICs and LBCs. This is likely due to the smaller dom number), with the intention of controlling each physical
spread in the RP* ensembles compared with the others.  process by only one parameter or one pair of parameters. Pa-
For all ensembles shown in Fid7 (i.e. with and with-  rameter sensitivity testing on forecasts showed that there was
out model error variability) and for the near-surface quanti- some sensitivity to all the chosen parameters when perturbed
ties (1.5 m temperature and RH and 10 m wind) the forecastindividually, and none of the perturbed forecasts gave physi-
show a tendency to improve throughout the forecast. This ically unrealistic results.
indicated by a decrease of the CRPS with time. This may be Seven ensembles were run with different configurations:
due to the spin-up of the model after the IAU has finished andhe control ensemble had IC and BC perturbations only; three
to large-scale information coming in from the boundaries.ensembles had IC and BC perturbations and model error rep-
All ensembles show an improvement in rainfall skill for the resented by the RP scheme, with parameter values updated
first 2 h of the forecast, with the IC + BC + RP* ensembles with different periods; and three ensembles had no IC or BC
performing better in this period. In contrast, all ensemblesperturbations but did have model error represented by the RP
show a worsening of skill in rainfall towards the end of the scheme, with the same three update periods.
forecast, and the IC + BC + RP* ensembles show worse skill The control ensemble was found to represent the main rain
than the CTL ensemble for rain rate and accumulation. Thisband reasonably well, but all members failed to capture the
may be due to inconsistencies between fields in the interior ofwo separate rain bands seen in the radar in the model’s do-
the domain (for which some parameters have been perturbedhain. The position of the main rain band, however, in this
and the LBCs (which have not been perturbed). However, theensemble was positioned in some members at locations oc-
validity of this idea is difficult to demonstrate with just one cupied by the second rain band in the radar. This was also the
case study. case for the ensembles with model error.
The ensembles with IC and BC perturbations and the RP
scheme applied were found to have higher domain-averaged
6 Conclusions ensemble spread for the near-surface temperature, RH and
wind speed than the control ensemble, but a reduced spread
In this paper we have evaluated the effects of using the ranfor hourly rain accumulation. This decrease in rainfall spread
dom parameters (RP) scheme as a method of representingay be due to the fact that the ensembles with the RP scheme
model error in the 1.5km EPS for a case on 20 Septemapplied have a narrower rain band in most members, which
ber 2011 in which a frontal rain band crossed through theaccounts for the lower domain averaged spread. The corre-
domain. Although it is difficult to draw conclusions from one spondence ratio showed a fast convergence to zero for rain
case study only, we have shown that the RP scheme in thisccumulation thresholds greater than zero, indicating that af-
convective-scale EPS can actually reduce the ensemble varier the first hour or so of the forecast the members disagree

ability for some variables. on the positions of regions of heavier rain. This is not a
surprising result as the regions of heavier rain are found to
6.1 Summary of results be more localised than those of lighter rain. The ensembles

_ _ with the RP scheme applied but no IC and LBC perturba-
The standard RP scheme (used operationally in MOGREPS) s showed that model error alone introduces less spread

was used as a basis for the representation of model error URpan the IC and LBC perturbations (at least in the way that

certainty, and modifications were made to make it suitable for o h4ve configured the RP system), but considerably more

use in the convective-scale 1.5 km EPS. A set of extra paraMgnread than the spread gained in the IC + BC + RP* ensem-
eters to be perturbed were identified in the large-scale precipp|og compared with the control. According to the CRPS, ap-

itation scheme, in addition to the existing boundary layer andyying the RP scheme gave a significant improvement in skill
large-scale precipitation parameters (TabjleSome pairs of - 4fier the first 2-3 h of the forecast for 1.5 m temperature and
related parameters were varied together (using the same ran-
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1.5 m relative humidity, as compared with the control ensem-fixed for the rest of the forecast. However, perturbing the pa-

ble. For rainfall, there was an improvement in skill at the startrameters only once means that less of the parameter space

of the forecast for the IC + BC + RP* ensembles comparedwill be spanned.

with the control, but a reduced skill in the last few hours.  Overall, for the case discussed here, the effects of applying

This may be due to inconsistencies between the interior andhe RP scheme to an ensemble with IC and LBC perturba-

the boundaries of the domain, which may lead to incorrecttions has a positive effect on the spread and skill of near-

rainfall amounts later in the forecast. surface temperature and relative humidity, but a negative
The results for both the spread and the skill indicate thateffect on the spread and skill of precipitation.

perturbing the parameters periodically throughout the fore-

cast has little impact on the forecast spread or skill com-

pared with perturbing the parameters once and holding them
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6.2 Further work This would allow a smooth evolution of parameters. By ex-
trapolating the results in this study, we hypothesize that this

An obvious limitation of this study is that we have considered SMoOther approach would give a more skillful forecast than
only one particular case. This was due to time constraints an{'® Méthod used here, but may not give any additional in-
upgrades to the modelling system which meant that it was nofréase in ensemble spre_ad. It would _also require tuning of
possible to run further cases with the same model setup. Re2nde. which would be a time-consuming process. _
peating these experiments with different cases, in particular 1 N€ Possible ways inwhich the RP scheme may be applied
for different synoptic situations such as convective showerd iS€S some interesting issues. At one end of the scale RPfix
rather than a synoptically forced frontal system would give a/l0Ws sets of parameters (wherés the number of ensem-

broader picture of the usefulness of the RP scheme. We e>p_|e members) to be ap_plied in forecasts that each follow pre-
pect that for different synoptic situations there would be dif- CiSely the model equations. At the other end of the scale RPts

ferences in the relative sensitivity to each of the parameters2!/0Ws more of parameter space to be explored, but no mem-

For example, we expect that in a convective case the pertuIl;)er will follow the same model equations. Strictly speaking

bations made to the large-scale precipitation parameters ma§is Will Iead to loss of continuity (of e.g. mass, water, energy,
have a larger effect than in the case discussed here. étc.), but this may actually be a desirable feature given that

A further limitation is our constraint to using the existing the mod_el equations are imperfect and the conserved quanti-
formulation of the RP scheme as a basis for our study. Ondi€S are imperfectly known anyway. Each strategy represents
potential issue with this setup is that each time the parame different philosophical approach to representing model er-

ters are perturbed the model is “kicked” into a different state®" variability with variable parameters and a comparison
corresponding to a particular set of parameter values. WhilgVould make an interesting piece of future work. _
the formulation of the autoregression E) @sed in the RP The issues with the degradation of for_ecast skill for rain
scheme ensures that the parameters remain within a certa[@€ towards the end of the forecast, which we hypothesize
range of their previous values, this did still introduce some'S dué to conflicting information in the perturbed domain
jumpiness in the wind and rain fields, which is not desirable.Nterior and the information coming in through the domain
An alternative approach would be to update the parametePoundaries from the non-perturbed driving model, suggests
values more frequently (e.g. every time step, which we mightthat this method may not be ideal for_forecasts of more _than
call RPts), but change the autoregression constariq. (1) ar_ound a3h Ieaq time. However, the improvement in skill of
to be closer to unity, and/or reduce the range of the skock rainfall forecast in the first 1-2 h of the forecast show that
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it could be useful for nowcasting and very short forecasts.Buizza, R., Miller, M., and Palmer, T. N.: Stochastic representation
A potential application of the RP scheme could be to use it of model uncertainties in the ECMWF Ensemble Prediction Sys-
within an hourly cycling system as an alternative to the in- tem, Q. J. Roy. Meteorol. Soc., 125, 2887-2908, 1999.

flation factor as a method of increasing the ensemble spread:.a,ror.“ J.-F.: Mismatching perturbgtions at the lateral boundaries in
It would also be of use on a larger domain, such as that of limited-area ensemble forecasting: A case study, Mon. Weather
the new MOGREPS-UK ensemble, which covers the whole RV 141, 356-374, 2013,

. . . Clark, A. J., Gallus Jr., W. A., Xue, M., and Kong, F.: Growth
of the UK, and therefore the interior of the domain would be of spread in convection-allowing and convection-parameterizing

less strqngly |anue_nced bY the L_BCS' ensembles, Weather Forecast., 25, 594—-612, 2010.

Ongoing work aims to investigate the effects of the RP cjark A 3., Kain, J. S., Stensrud, D. J., Xue, M., Kong, F., Coniglio,
scheme on forecast error covariance statistics and covari- M. c., Thomas, K. W., Wang, Y., Brewster, K., Gao, J., Wang, X.,
ance length scales (Migliorini, Bannister, Rudd and Baker, Weiss, S. J., and Du, J.: Probabilistic precipitation forecast skill
in preparation) and on the inherent balances that are obeyed as a function of ensemble size and spatial scale in a convection-
by the ensemble (Bannister, Migliorini, Baker and Rudd, in  allowing ensemble, Mon. Weather Rev., 139, 1410-1418, 2011.
preparation). These have applications to informing the approDavies, T., Cullen, M. J. P., Malcolm, A. J., Mawson, M. H., Stan-
priate formulation of the background error covariance matrix  iforth, A., White, A. A., and Wood, N.: A new dynamical core

used in convective-scale data assimilation systems. for the Met Office’s global and regional modelling of the atmo-
sphere, Q. J. Roy. Meteorol. Soc., 131, 1759-1782, 2005.
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D.: Heavy precipitation events in the Mediterranean: sensitiv-
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