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Abstract The role of atmospheric general circulation
model (AGCM) horizontal resolution in representing the
global energy budget and hydrological cycle is assessed,
with the aim of improving the understanding of model
uncertainties in simulating the hydrological cycle. We use
two AGCMs from the UK Met Office Hadley Centre:
HadGEMI-A at resolutions ranging from 270 to 60 km,
and HadGEM3-A ranging from 135 to 25 km. The models
exhibit a stable hydrological cycle, although too intense
compared to reanalyses and observations. This over-
intensity is explained by excess surface shortwave radia-
tion, a common error in general circulation models
(GCMs). This result is insensitive to resolution. However,
as resolution is increased, precipitation decreases over the
ocean and increases over the land. This is associated with
an increase in atmospheric moisture transport from ocean
to land, which changes the partitioning of moisture fluxes
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that contribute to precipitation over land from less local to
more non-local moisture sources. The results start to con-
verge at 60-km resolution, which underlines the excessive
reliance of the mean hydrological cycle on physical
parametrization (local unresolved processes) versus model
dynamics (large-scale resolved processes) in coarser Had-
GEM1 and HadGEM3 GCMs. This finding may be valid
for other GCMs, showing the necessity to analyze other
chains of GCMs that may become available in the future
with such a range of horizontal resolutions. Our finding
supports the hypothesis that heterogeneity in model
parametrization is one of the underlying causes of model
disagreement in the Coupled Model Intercomparison Pro-
ject (CMIP) exercises.

Keywords Hydrological cycle - Atmospheric
moisture transport - Precipitation - Moisture recycling -
GCM - Horizontal resolution

1 Introduction

General circulation models (GCM) are the only predictive
tools capable of isolating the drivers of climate change in
response to natural and/or anthropogenic forcings. However,
while some features are well represented (e.g. global and
regional temperature), other fundamental aspects of the cli-
mate system are not well understood, are poorly observed
and are still uncertain in GCMs. One such aspect of uncer-
tainty is the hydrological cycle. The hydrological cycle is not
only important at the global scale, as latent heat release is one
of the major drivers of mean circulation, but a change in its
characteristics will have profound impacts at the regional
scale. It is crucial to evaluate and understand the ability of
GCMs to represent the global hydrological cycle, in order to
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determine how much we can trust GCM predictions of
changes in the hydrological cycle in climate change sce-
narios (e.g. Waliser et al. 2007; Liepert and Previdi 2009;
John et al. 2009; Liepert and Previdi 2012; Balan Sarojini
et al. 2012). The global hydrological cycle is intimately
linked with the global energy budget of the Earth. This link
creates some fundamental constraints on the global hydro-
logical cycle mean, variability and changes with future cli-
mate (e.g. Held and Soden 2006, and references therein).
Studying the hydrological cycle in conjunction with the
energy budget is therefore crucial to the understanding of
GCM deficiencies (Wild and Liepert 2010).

1.1 Limitations for evaluating the global hydrological
cycle in GCMs

1.1.1 Limitations in observations

Making use of observations is essential to support a rigorous
evaluation of the energy and water budgets in GCMs, but
there are important limitations in these products. The most
recent attempts in estimating the Earth’s global hydrological
cycle and energy budget, using the best observational data-
sets available at the time, were performed by Trenberth et al.
(2007b, 2009). Such studies provide an essential basis to
evaluate the GCMs because they ensure a closure (with
uncertainties associated with observations) in the global
energy and water budgets, which might not be the case if all
variables were calculated independently from different
sources (Schlosser and Houser 2007; Sheffield et al. 2009).
Some issues, however, remain in terms of the availability and
quality of observational products. For example, although
estimates of global evaporation are emerging, they are still
under development and validation (Fisher et al. 2008; Jung
et al. 2009; Jiménez et al. 2011). Such a lack of observations
limits us to the use of reanalysis products together with the
water balance equations, a method often used to estimate
moisture quantities (Oki et al. 1995; Yeh et al. 1998; Sene-
viratne et al. 2004). This method has the advantage of
closing the water budget, but it provides an incomplete
description of the Earth’s climate system. Moreover, while
many satellite and gauge observations exist to quantify
global precipitation, biases persist within precipitation data
due to uncertainties in the calibration of instruments and the
precision of their measurements (Trenberth et al. 2007a;
Schlosser and Houser 2007; Tian et al. 2009), or the sparsity
of the observational coverage (e.g. Balan Sarojini et al.
2012). Global precipitation estimates have recently been
revised to higher rates than previously estimated (Trenberth
et al. 2011) by considering new satellite products (Huffman
et al. 2009). For similar reasons, large uncertainties apply to
energy quantities, particularly surface heat fluxes and
downward surface longwave radiation (Stephens et al. 2012;
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Wild et al. 2013, and references therein). This highlights
that, although observational studies of the global energy and
water budgets are an essential aspect of assessing GCMs,
their incompleteness and lack of independence and physical
consistency prevent an accurate component-level evaluation
of the global hydrological cycle in GCMs (Waliser et al.
2007).

1.1.2 Limitations in reanalyses

Additional valuable information that can be used to verify
GCM fidelity is provided by reanalysis products. Reanaly-
ses bridge the gap between observations and GCMs. As in
GCMs, moisture and energy components are calculated
explicitly in reanalyses, and not inferred from the water and
energy balance equations. While this internal model con-
sistency provides added value to observations, reanalyses
differ in terms of their representation of the water and
energy budgets, either due to different data assimilation
systems, to different observational data, or to different
model formulation (Trenberth et al. 2011). In many rea-
nalyses, the energy and water budgets are also out of bal-
ance (e.g. Berrisford et al. 2011; Bosilovich et al. 2011;
Robertson et al. 2011); reanalyses are not constrained to
conserve mass and to balance radiation at the top of the
atmosphere (TOA) as GCMs are. This lack of constraints
leads to significant uncertainties in the representation of the
global hydrological cycle in reanalyses (Trenberth et al.
2011). This constraint provides stability to GCM simula-
tions and makes GCMs more appropriate tools for under-
standing the drivers of the hydrological cycle; the internal
consistency between radiative forcing and precipitation
response in GCMs supports a process-level assessment of
climate model behavior and trustworthiness, e.g. by iso-
lating the impact of each process on atmospheric circulation
(Allan 2009). However, Liepert and Previdi (2012) have
shown that most GCMs have deficiencies in simulating the
global atmospheric moisture balance and produce highly
uncertain estimates of atmospheric moisture transport from
ocean to land. These deficiencies affect the multi-model
ensemble mean’s moisture budgets over the globe, ocean
and land under current and future climate conditions.

1.2 Towards understanding model uncertainties
in the global hydrological cycle

In this study, we aim to contribute to the understanding of
model uncertainties in the global hydrological cycle in two
ways:

1. By verifying the internal consistency of state-of-the-art
GCMs in simulating the hydrological cycle, including
its link with radiative forcing;
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2. By evaluating an aspect of climate model uncertainties
in simulating the hydrological cycle, namely the
impact of increasing horizontal resolution.

The significant role of horizontal resolution in GCMs has

been verified for many aspects of the simulated climate
system. These include improvements in the large-scale
atmospheric and oceanic circulation, global and regional
precipitation distribution, El Nifio Southern Oscillation and
its teleconnections (Duffy et al. 2003; Hack et al. 2006;
Roberts et al. 2009; Shaffrey et al. 2009; Marti et al. 2010;
Delworth et al. 2012; Kinter III et al. 2013, and references
therein). Blocking events are also improved in high-
horizontal resolution GCMs due to an improvement in the
atmospheric mean state and variability (Matsueda and
Palmer 2010; Jung et al. 2012), and the better resolved
orography (Berckmans et al. 2013). High-resolution GCMs
are also able to simulate realistic high-impact precipitation
events (Iorio et al. 2004; Kimoto et al. 2005; Kitoh et al.
2011), and to better simulate the structure and variability of
tropical and extra-tropical cyclones (Jung et al. 2006; Catto
et al. 2010; Manganello et al. 2012; Strachan et al. 2013),
responsible for transporting large amounts of water from
the ocean to the land.

Here we assess how two atmospheric GCMs (AGCM),
developed over a range of horizontal resolutions, are able
to simulate the processes that connect and drive each
component of the hydrological cycle, with an approach
comparable and complementary to that of recent studies
based on observations and reanalyses (Trenberth et al.
2007b, 2009, 2011). The use of multi-model analyses is
important, as different model formulations may have a
different water balance and thus exhibit different sensi-
tivity to resolution. However, the GCMs included in the
Coupled Model Intercomparison Projects, CMIP3 or
CMIPS, do not span such a wide range of resolutions, and
only two studies focus on the systematic impact of res-
olution on the global hydrological cycle using HadAM3
and ECHAMS with resolutions up to 90 km (Pope and
Stratton 2002; Hagemann et al. 2006). It is also crucial to
determine at which resolution the model behavior con-
verges, as such convergence may depend on the climate
features considered (for example Strachan et al. 2013
have shown a convergence in the model representation of
the average number of tropical cyclones at 135 km, while
the convergence is at 60 km for simulating a realistic
interannual variability of storms occurrence). Pope and
Stratton (2002) and Hagemann et al. (2006) have not
found convergence in the representation of the hydro-
logical cycle across the resolutions considered. This is
addressed in this study by assessing a hierarchy of similar
formulation at multiple resolutions, over a range of
270-25 km.

2 Data and methodology
2.1 Atmosphere-only GCM experiments

We consider AGCMs instead of coupled GCMs, as AG-
CMs are constrained by observed boundary conditions (sea
surface temperature and sea ice cover) that: (1) make their
results more comparable to observations and reanalyses,
allowing a proper evaluation of the models; (2) allow for
comparison between models, providing that the same
boundary conditions are applied across the models; (3)
simplify the simulated climate system by removing inter-
actions with the ocean. Sea surface temperature and
salinity are intimately linked with the hydrological cycle
(Trenberth and Shea 2005; O’Gorman and Schneider 2008;
Allan 2009; Trenberth et al. 2010), but GCMs still have
some major biases in their oceanic mean state representa-
tion and in the ocean-atmosphere coupling (e.g. doubled
inter-tropical convergence zone; Randall et al. 2007a;
Guilyardi et al. 2012). As resolution increases either in the
atmosphere, ocean, or both, new feedback processes are
generated and can affect the large-scale simulations
(Roberts et al. 2009). With such coupled models, it is very
difficult to isolate the atmospheric processes responsible
for affecting the hydrological cycle in GCMs with various
resolutions.

We use two AGCMs developed by the UK Met Office
Hadley Centre. The first is the atmospheric component of
HadGEM1 with 38 vertical levels extending to over 39 km
in height (fully described by Johns et al. 2006; Martin et al.
2006; Ringer et al. 2006). The second is the atmospheric
component of HadGEM3 (Hewitt et al. 2011) in the GA3.0
configuration with 85 vertical levels extending to 85 km in
height (Walters et al. 2011). The models are based on the
same dynamical core, but differ in their parametrization
schemes, for instance in the treatment of clouds: Had-
GEMI1 uses a diagnostic cloud scheme, while HadGEM3
uses a prognostic cloud scheme allowing clouds to be
advected with the wind even long after the convection has
ceased (Hewitt et al. 2011; Walters et al. 2011). These
differences allow us to consider HadGEM1 and HadGEM3
as two independent models. Both models use a regular
latitude/longitude grid. They were developed at four hori-
zontal resolutions, while retaining their vertical resolution:
HadGEM1-A at N48, N96, N144, and N216; HadGEM3-A
at N96, N216, N320, and N512 (Table 1). HadGEM1-A
and HadGEM3-A describe a non-hydrostatic atmosphere
using a semi-Lagrangian, semi-implicit formulation, which
allows an increase in horizontal resolution, while keeping a
relatively long time step necessary for climate integrations
(Davies et al. 2005). Some of the physics parametrization
schemes include inherent dependence on the model’s grid-
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Table 1 Description of the models and simulations used in this study (u, v and w are zonal, meridional and vertical wind components, and 0 is

potential temperature)

HadGEMI1-A HadGEM3-A
Model grid N48 N96 N144 N216 N96 N216 N320 N512
Resolution (longitude) (°) 3.75 1.88 1.25 0.83 1.88 0.83 0.56 0.35
Resolution (latitude) (°) 2.5 1.25 0.83 0.56 1.25 0.56 0.37 0.23
Approx. res. at 50°N (km) 270 135 90 60 135 60 40 25
Number of vertical levels 38 38 38 38 85 85 85 85
Altitude of top level (km) 39.25 39.25 39.25 39.25 85 85 85 85
Land fraction (%) 28.7 28.7 29.7 29.7 28.7 29.7 29.2 29.2
Time step (min) 30 30 20 15 20 20 12 10
CAPE timescale (min) 60 60 60 30 90 90 60 60
Use of vertical diffusion - - - u, v - - - -
Use of horizontal diffusion — — - u, v, 0 - - w w
w for targeted diffusion (m/s) 0.3 0.3 0.5 0.5 0.3 0.5 1. 1.
Standard simulations
Solar forcing Constant Constant 11-year cycle
Forcing dataset AMIP-II AMIP-II OSTIA
Simulation period 1979-2002 1979-2002 1986-2002
Ensemble members 3 3 1 3 5 1 1 5

Extra simulations to test sensitivity to forcings
Solar forcing

Forcing dataset

Simulation period

Ensemble members

11-year cycle
OSTIA
1986-2002

5 3

box size, a requirement of the latitude/longitude grid,
which automatically allows resolved processes at high
resolution to take up the role of physical parametrization at
low resolution. This method has the advantage of keeping
model formulation as similar as possible while increasing
resolution. A special tuning was performed for a single
model (out of a total of eight in this study), namely Had-
GEMI1-A at N216, to ensure radiative balance, an impor-
tant prerequisite in climate modeling, particularly when
studying the global hydrological cycle and its link with the
energy budget. This model initially suffered from a lack of
clouds leading to a net radiation imbalance at TOA of +4
W m™2. To increase cloud cover and bring the radiative
budget at TOA closer to zero, the collision/coalescence
parameter used for determining the autoconversion rate of
cloud water droplets was decreased, a common tuning in
high-resolution models (Duffy et al. 2003; Roeckner et al.
2006; Hack et al. 2006; Hourdin et al. 2013; Delworth
et al. 2012). For numerical stability reasons, some
dynamical settings also needed to be adjusted; these
adjustments are common when increasing horizontal res-
olution in GCMs (Pope and Stratton 2002; Roeckner et al.
2006; Shaffrey et al. 2009; Hourdin et al. 2013). In Had-
GEM1-A and HadGEM3-A, these include the time step,
the magnitude of polar filtering in the advection scheme,
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the vertical velocity threshold at which the targeted moisture
diffusion scheme is triggered to prevent numerical instabil-
ities (Table 1); we find that these dynamical adjustments do
not impact the climatology of the simulations. At higher
resolutions (N216 in HadGEMI1-A; N320 and N512 in
HadGEM3-A), the timescale for dissipation of convective
available potential energy (CAPE) was also decreased,
which justifies the ability of high-resolution models to sus-
tain higher energy and remove it faster than low-resolution
models (Table 1). The exception to these limited and unin-
fluential adjustments is again a single model (out of eight):
HadGEMI1-A at N216. This model was particularly unsta-
ble, requiring limited use of horizontal and vertical diffu-
sions on the horizontal wind components. We found that
such treatments, unlike the adaptations applied to the other
seven models, had an impact on the hydrological cycle by
increasing precipitation and moisture transport over land.
Despite these departures from the standard formulation,
HadGEMI-A at N216 is included in this study to allow for
an extra comparison with HadGEM3-A. The impact of these
adaptations when developing high-resolution GCMs on the
hydrological cycle are treated in detail in a following
manuscript (Demory et al. in prep).

The atmospheric components are fully coupled with the
UK Met Office Surface Exchange Scheme (MOSES-II;
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Cox et al. 1999) in HadGEM1, replaced by the Joint UK
Land Environment Simulator (JULES), a more developed
version of MOSES-II, in HadGEM3 (Walters et al. 2011).
MOSES-II is a distributed grid-point model (it resolves
processes in the vertical only, there is no horizontal flux)
using the same regular grid as the atmosphere, at the same
resolution. The land-surface boundary conditions (orogra-
phy, vegetation and soil cover) come from high-spatial
resolution maps that have been interpolated to each reso-
lution grid (as detailed by Shaffrey et al. 2009). The land—
sea mask for each atmospheric model resolution includes a
land fraction field that is used in a coastal tiling scheme to
facilitate flux-conserving coupling to the ocean grid in the
HadGEM family coupled models (Essery et al. 2003). As
such, the atmosphere mask is derived from the appropriate
resolution ocean land-sea mask: 1° for N48 and N96, 1/3°
for N144 and N216 (HadGEM1), and 1/4° for N216, N320
and N512 (HadGEM3). Since they are calculated on dif-
ferent grids, the global, land and sea areas are different
between low- and high-resolution models, and the land
fractions differ by up to 1 % of the global area (Table 1). It
was found that these differences in the land fraction have a
large impact at regional scales, in particular in areas cov-
ered by islands, such as the Maritime Continent (Schie-
mann et al. 2013).

2.2 Simulations description

Running high-resolution models is expensive in terms of
computing cost and data storage. Running HadGEM1-A at
various resolutions took approximately 1 year because this
model scaled poorly on the Japanese Earth Simulator
supercomputer, and was also very unstable at N216. Had-
GEM3-A is more scalable and more stable than Had-
GEM1-A but it is also more expensive (mainly because of
its higher vertical resolution). Performing 25-year inte-
grations at N512 therefore still required several months
depending on the supercomputer maintenance and queuing
system (Mizielinski et al. in prep). Considering these costs
and timescales, we quantify the robustness of our results
using a mini-ensemble of three to five simulations per
model resolution (except HadGEM1-A at N144 and Had-
GEM3-A at N216 and N320, for which one simulation was
performed; Table 1). The ensembles were created by per-
turbing the initial model prognostic field (0) globally at bit
level (in the order of 1071 K). The spread of the ensem-
bles climatology is very small (as shown in Tables 2, 3)
and not included in Figs. 2 and 3.

Most of the simulations were performed for 24 years
(1979-2002) using the monthly Atmospheric Model Inter-
comparison Project II (AMIP-II) sea surface temperature
and sea ice provided on a 1° grid (Taylor et al. 2000),
interpolated to daily intervals by the models. HaddGEM3-A
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Fig. 1 Monthly-mean time series of weighted average P-E (mm
day™ 1) over the globe (fop), land (top middle), ocean (bottom middle),
and atmospheric moisture convergence over land (bottom) for
HadGEMI1-A at N48 (solid black) and N216 (dashed red) resolutions.
Each thin line represents an ensemble member; the thick line
represents a 12-month running average performed on the ensemble
mean

at N512 uses the new daily Operational Sea Surface Tem-
perature and Sea Ice Analysis (OSTIA) available from 1986
on a 1/20° grid (Donlon et al. 2012), which we consider to
be a more appropriate product to force such a high-resolu-
tion model than AMIP-II. OSTIA has slightly colder cli-
matology than AMIP-II (Mizielinski et al. in prep).
Moreover, a climatological annual cycle of present-day
(1990s—2000s) greenhouse gas and aerosol emissions is
imposed in HadGEM1-A, while observed values from 1970
to present are used in HadGEM3-A. The incoming solar
energy is constant in all models but HadGEM3-A at N512,
in which the 11-year solar cycle is included. To evaluate the
impact of such use in HadGEM3-A at N512 on the global
water and energy budgets, we performed ensembles
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of 17-year (1986-2002) test-simulations with HaddGEM3-A
at N96 and N216 using the OSTIA forcing dataset and the
11-year solar cycle (refer to Table 1, and compare experi-
ments HG3 N96,,,,, and HG3 N216,,, with the standard
versions HG3 N96 and HG3 N216 in Tables 2, 3, respec-
tively). Including the 11-year solar cycle contributes to a
slightly larger radiative imbalance at TOA, which presents
an equivalent imbalance at the surface without changing the
atmospheric energy and water fluxes. Using OSTIA reduces
the global upwelling longwave fluxes at the surface by
0.7-0.8 W m72, which is reflected by a decrease in the
surface longwave back radiation, and decreases precipitable
water by 0.4 mm.

To evaluate the effect of adjusting the CAPE timescale
on the energy and water budgets, we analysed an AMIP-II
20-year test-simulation (1979-1998) with HadGEM3-A at
N216 with a CAPE timescale equal to 60 min instead of
90 min in the standard version. Reducing CAPE in Had-
GEM3-A changes very little the energy and water budgets
(refer to experiment HG3 N216,,,,, in Tables 2, 3). For this
reason, HadGEM3-A N216.,,. is added in the analyses as
an extra member to HadGEM3-A at N216.

2.3 Model output and methodology

The radiation and energy fluxes are calculated at every
time step and averaged monthly by the model. The fields
are then averaged over the simulation periods. Ground
surface heat flux is not output by the model and is therefore
calculated from the surface energy balance. Total evapo-
ration rate is calculated from surface latent heat flux by
making use of the latent heat of vaporisation. Precipitation,
rainfall and snowfall rates are instantaneous values that are
averaged monthly over each time step by the model.

The atmospheric moisture convergence is calculated
using a central finite difference method, equivalent to that
used in the model, from the moisture fluxes vertically
integrated at every time step and averaged over the month.
The precipitable water is calculated as the difference
between atmospheric wet mass and atmospheric dry mass,
which includes the contributions from water vapor, cloud
liquid water and cloud frozen water.

The models’ energy and moisture quantities are com-
puted globally, over land and over ocean. Weighted aver-
ages are computed on each model grid to retain the detail in
variable distribution afforded by the high-resolution sim-
ulations (e.g. precipitation along coastlines or over orog-
raphy). However, averaging fields separately over land and
ocean using different land-sea masks may impede the
comparability between resolutions. To ensure that the
fraction of land and ocean remains the same in different
grids, the land fraction fields of the high-resolution model
(N144 or N216 for HadGEM1-A; N320 or N512 for
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HadGEM3-A) were regridded to the lower-resolution grids
(N48 and N96 for HadGEM1-A; N96 and N216 for Had-
GEM3-A). Doing so allows comparability within a model
with various resolutions, although it does not allow a strict
comparison between the two model versions HadGEM1-A
and HadGEM3-A, which is not the purpose of this paper.
The alternative approach that consists of calculating the
weighted average on the native grids using the original
land-sea masks has been tested as well: the total amount of
water and energy circulating in the simulated system is
slightly altered due to the differences in land fractions, but
the sensitivity to resolution remains similar.

2.3.1 Moisture conservation in HadGEMI-A
and HadGEM3-A

Before performing analyses on the simulated hydrological
cycle at global or regional scales, it is essential to verify
that the respective GCMs close the moisture budget. Most
Intergovernmental Panel on Climate Change (IPCC) GCMs
do not necessarily close the moisture budget, which leads
to the so-called ‘moisture conservation error’: some GCMs
show small conservation errors, while others depict errors
that can be larger than the interannual variability of global
mean precipitation (Liepert and Previdi 2012). The current
generation of Hadley Centre models (from HadGEMI to
HadGEM3) conserve dry mass exactly (Staniforth et al.
2005), but do not close the global moisture budget exactly.
Liepert and Previdi (2012) show that the HadGEM1 model
is nonetheless amongst the models that best balance
atmospheric moisture (5th on 18 CMIP3 models consid-
ered). In HadGEMI1-A and HadGEM3-A, the moisture
budget is preserved with the precision of 0.002 and
0.004 mm day ™' globally respectively (refer to P—E in
Table 3). This precision is smaller than most reanalyses
(Trenberth et al. 2011), among them ERA-Interim that has
a precision of 0.003 + 0.3 mm day ' (the ERA-Interim’s
value depends on the period considered, here 1989-2008;
Berrisford et al. 2011). This level of model precision is
larger than the interannual variability of the global mois-
ture budget (approximately 0.001 mm day '), but far
smaller than the interannual variability of global mean
precipitation (approximately 0.02 mm day~'; Table 3),
and smaller than the positive trend in global precipitation
and evaporation (approximately 0.01 mm day™'; not
shown) associated with an increase in sea surface temper-
ature over time. This small conservation error therefore
does not affect the evolution of the hydrological variables
over time: P—E over the globe, land and ocean, as well as
moisture convergence over land (that represents the ocean
to land moisture transport), are very stable over time
(Fig. 1). This stability further confirms a realistic balance
of the moisture budget over the climatological period,
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allowing a thorough study of the hydrological cycle within
these models.

There is an additional error to be considered before
starting these analyses. P-E over land should be mathe-
matically equal to the ocean to land moisture transport.
Over land, P-E differs from moisture convergence by
0.05-0.09 mm day " in HadGEM1-A and by 0.05-0.1 mm
day~! in HadGEM3-A, with no systematic sensitivity to
resolution. These differences are attributed to computa-
tional reasons: they are the result of the finite difference
method applied to the moisture fluxes to interpolate them
on the right grid before computing moisture divergence.
This interpolation results in a noisy field that generates
computational errors when averaged over land. These
computational errors are larger than the moisture conser-
vation error, and are also larger than the interannual vari-
ability of P-E and moisture convergence over land
(approximately 0.02-0.04 mm day~'; Table 3). However,
they are smaller than the systematic increase in moisture
convergence over land with resolution (0.14-0.32 mm
dayfl from N48 to N96/N216 in HadGEMI-A, and
0.08-0.13 mm day ' from N96 to N216/N512 in Had-
GEM3-A), which is consistent with the systematic increase
in P-E over land with resolution (0.14-0.35 mm day ™'
from N48 to N96/N216 in HadGEMI-A, and
0.11-0.18 mm day ™' from N96 to N216/N512 in Had-
GEM3-A; Table 3). At this scale, these random computa-
tional errors do not bring into question the outcomes of this
study.

2.4 Observational and reanalysis data

As mentioned in Sect. 1.1, it is necessary to validate the
simulated energy and water budgets with observational
data that ensure the closure of the budgets. This is ensured,
as far as possible, by the most recent observational esti-
mates provided by Trenberth et al. (2007b, 2009, 2011),
hereafter referred to as TRO7, TR09 and TR11 respec-
tively, and those recently provided by Wild et al. (2013).
TRO7, TR09, TR11 and Wild et al. (2013) present a
complete description of the energy and/or water budgets
for the periods 1979-2000, 2000-2004, 2002-2008 and
2001-2010, respectively.

We also make use of the estimates provided by TR11
using eight different reanalysis products for the period
2002-2008, with a particular focus on those with the best
ability in representing and balancing the global energy and
water budgets: the European Centre for Medium-Range
Weather Forecasts (ECMWF)’s ERA-Interim (ERA-I; Dee
et al. 2011) and the NASA Goddard Center’s MERRA
(Rienecker et al. 2011).

At last, we also perform an independent comparison
using ERA-Interim reanalyses by making use of the global

energy and water budgets presented by Berrisford et al.
(2011) for the period 1989-2008. This time period is closer
to the model simulation periods of 1979-2002 and
19862002 than the period 2002-2008 considered by
TR11, which ensures a more consistent validation of model
simulations of the global energy and water budgets pre-
sented in the following section.

3 Results
3.1 Global energy budget

HadGEM1-A and HadGEM3-A simulate a similar global
energy budget (Fig. 2; for detailed values over the globe,
land and ocean, refer to Table 2). Radiation at TOA is very
close to balance. The net radiation at TOA varies from
—0.2 to +0.7 W m~? in both models with various resolu-
tions, with the exception of HadGEM3-A at N512 that has
a larger imbalance of +1.7 W m~2 partly due to the
introduction of the 11-year solar cycle (Sect. 2). The slight
imbalance is caused by the incomplete forcing imposed to
the atmospheric models, particularly HadGEMI1-A in
which the 1990s greenhouse gas forcing is constant and not
in exact balance with the underlying sea surface tempera-
tures that vary year by year. This imbalance remains nev-
ertheless in agreement with the imbalance of 0.9 W m™>
found by TRO9 taking into account errors in satellite
observations and changes in atmospheric compositions. It
is also smaller than most reanalysis products, such as ERA-
I and MERRA, and is smaller than the imbalance of +2 to
+4 W m~? common amongst IPCC Fourth Assessment
Report (AR4) coupled models (Wild 2008).

Compared to observations, the models overestimate net
surface shortwave (SW) radiation by 11 W m2, explained
by too little SW absorbed by the atmosphere and too little
reflected by clouds and aerosols. The latter enhances net
absorbed SW radiation at TOA (noted ASR on Fig. 2) by
4-5W m72, while the former enhances surface insolation
by a further 5-7 W m™> compared to TR09. These biases
mainly occur over the land (Table 2). They are common
amongst GCMs (Wild and Roeckner 2006; Andrews 2009;
Takahashi 2009; Wild et al. 2013) and the reasons are still
being debated. In the IPCC AR4 GCMs, these are mostly
attributed to clear-sky biases due to inaccurate partitioning
of solar absorption between the atmosphere and the surface
(Wild 2008). There is also a general lack of clouds in
HadGEM1 that further reduces the planetary albedo (Johns
et al. 2006; Milton and Earnshaw 2007), while total cloud
radiative forcing is mostly right due to a compensation of
errors: there is too little high and low thin clouds, and too
much high and low thick clouds (Martin et al. 2006). At the
surface there is too much reflected SW, mainly from the
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Saharan region due to the absence of an interactive dust
scheme, which slightly reduces the net SW flux at the
surface. The models show smaller biases compared to
reanalyses. Surface insolation is larger by approximately 8
and 3 W m 2 compared to ERA-I and MERRA respec-
tively (note that ERA-I has an erroneous high incoming
solar radiation that might, in part, explain their excess in
surface insolation compared to TR09; Berrisford et al.
2011; Dee et al. 2011). However, although their range is
large, most reanalyses (5 out of 8 in TR11) produce larger
values of surface insolation than observations. These dif-
ferences are mainly attributed to biases in clouds and
aerosols by TR11.

The surface emitted longwave (LW) radiation is higher
by approximately 3 W m~2 in the models than TR09’s
estimates. However, the models agree well with 6 out of 8
reanalysis estimates calculated by TR11, among them
ERA-I, while MERRA has a lower value, closer to TR09.
LW back radiation at the surface is higher in the models by
5 W m~? compared to TR09, but lower than the value
estimated by ERA-I and most other reanalyses (5 out of 8
reanalyses used by TR11 estimate the surface back radia-
tion to be between 341 and 344 W m™2). These high values
compared to TR09 are also reflected in the outgoing
longwave radiation (OLR). The models exceed OLR by
4-5 W m~2 compared to TR09, but are in agreement with 5
out of 8 reanalyses estimates used by TR11, among them
ERA-I and MERRA. Uncertainties lie in the estimates of
LW radiation variables (Kato et al. 2012; Wild et al. 2013,
and references therein). TR09 retrieved the value of 333 W
m ™2 for surface LW back radiation from the surface energy
balance. However, independent studies show that surface
back radiation ranges from 338 to 348 W m~2 (Wild 2008;
Stephens et al. 2012; Wild et al. 2013). This higher range
of observations requires an equivalent adjustment in sur-
face heat fluxes: sensible and latent heat fluxes are esti-
mated between 15-25 and 80-90 W m 2 respectively
(Wild et al. 2013). These values are underestimated by
TRO9, particularly over land (using new observational
products of evapotranspiration, Mueller et al. 2011 esti-
mate latent heat over land to be ~48 £ 5.5 W m_z, while
TRO9’s estimate is ~38.5 W m~2). These higher estimates
bring GCMs within the range of observational uncertainties
(Table 2). Reanalyses are close to this new range of
observations. Most reanalyses analysed by TR11 also agree
on higher values of latent heat flux than TR09, which
would indicate that the models perform better than cur-
rently believed. The models exhibit an excess in net surface
radiation compared to TR09, which is entirely compen-
sated by latent heat flux in HadGEM1-A. In HadGEM3-A,
the excess net radiation is returned as a combination of
sensible and latent heat fluxes, bringing HadGEM3-A
closer to the new range of observations. The surface energy

budget is not fully balanced in the models, as reflected by
the residuals (net absorbed at surface), which are none-
theless smaller than in reanalyses assessed by TR11.

3.2 Global water budget

In response to the global energy budget, which causes too
much net available energy at the surface, the hydrological
cycle in HadGEM1-A and HadGEM3-A is too intense
compared to observations (the water fluxes are larger in
models than in observations as shown on Fig. 3 and
detailed in Table 3), a common error in GCMs (Duffy
et al. 2003; Hack et al. 2006; Hagemann et al. 2006;
Randall et al. 2007b; Trenberth et al. 2011). HadGEM3-A
agrees better with observations than HadGEMI-A, par-
ticularly over the ocean, which is a result of the lower
latent heat release (Sect. 3.1). The models’ estimates are
also higher than most reanalyses, including ERA-I and
MERRA, particularly over the ocean. However, the
spread in reanalysis products is large and their values
uncertain. Over land, the models agree better with
observations and reanalyses. Atmospheric moisture
transport from ocean to land and continental runoff are
generally overestimated by the models compared to TRO7
and reanalyses.

3.3 Impact of AGCM horizontal resolution
3.3.1 At global scale

Globally, the energy and water budgets are not sensitive to
resolution in both HadGEM1-A and HadGEM3-A (Figs. 2,
3). There is as much global energy, precipitation and
evaporation at low as at high resolution. This finding is in
line with previous studies (Pope and Stratton 2002; Hack
et al. 2006; Hagemann et al. 2006; Duffy et al. 2003 when
their models are properly tuned to balance radiation at
TOA). Nonetheless, precipitable water increases system-
atically with resolution in HadGEM 1-A, bringing the high-
resolution model estimates closer to TR0O7 and reanalyses.
The increase in humidity with resolution occurs globally
and is associated with a slightly warmer mid-level tropo-
sphere (top and middle left panels of Fig. 4). Global-mean
mid-level atmospheric temperature increases by approxi-
mately 0.71K in HadGEMI1-A from N48 to N216 and
atmospheric specific humidity increases by 5.29 %, while
global-mean relative humidity remains relatively constant
from low to high resolution (increase of 1 % globally). The
model therefore follows a temperature-humidity relation-
ship of 7.45 %/K, close to the Clausius—Clapeyron rela-
tionship (Held and Soden 2006). As a consequence of the
increase in precipitable water, the residence time of
moisture in the atmosphere slightly increases in
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Fig. 4 Difference in zonal mean annual mean air temperature (fop left), cloud amount (top right), relative change in specific humidity (middle
left), relative humidity (middle right) and zonal wind (bottom left) between HadGEM1-A at N216 and HadGEM1-A at N48

HadGEM1-A with resolution, from 7.5 at N48 to 8 days at
N216, again bringing the high-resolution model closer to
TRO7 and TR11’s observed estimates of about 9 days. In
the Tropics, specific humidity increases mainly as a result
of increasing relative humidity (middle panels of Fig. 4).
This is associated with more high-level clouds and less
low- to mid-level clouds at high resolution that increase net
surface heating (right panels of Fig. 4). This finding is
consistent with previous studies (Pope and Stratton 2002;
Roeckner et al. 2006; Hourdin et al. 2013). In the extra-
Tropics, changes in relative humidity with resolution fol-
low a similar distribution to cloud cover with a reduction at
midlatitude that is consistent with the warmer atmosphere
(top left panel of Fig. 4), and an increase at the poles and
tropopause. The shift in cloudiness towards the poles is
associated with a poleward shift of the jets at high reso-
lution (bottom panel of Fig. 4), a result that is again con-
sistent with previous studies (Roeckner et al. 2006;
Hourdin et al. 2013). At the poles, total cloudiness
increases, which enhances outgoing LW radiation but also
the greenhouse effect that is associated with the increase in
air temperature.
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As mentioned in Sect. 2, the use of OSTIA products at
N512 decreases precipitable water by 0.4 mm. This effect
shows that precipitable water would increase with resolu-
tion in HadGEM3-A as well if all simulations were forced
with the same products, although to a lesser extent com-
pared to HadGEM1-A (Fig. 3; fully detailed in Table 3).
The sensitivity of precipitable water to horizontal resolu-
tion was also noticed in HadAM3 (Pope and Stratton 2002)
but it was not verified in ECHAMS (Hagemann et al.
2006), which probably shows that the sensitivity of pre-
cipitable water to resolution is formulation dependent. In
fact in HadGEM3-A, relative changes in specific humidity
with resolution (from N96 to N320) are tightly linked with
changes in relative humidity and cloudiness, while air
temperature changes very little (Fig. 5). Total cloudiness
decreases at midlatitude, which is again associated with a
poleward shift of the midlatitude jets. Tropical low- and
mid-level cloudiness slightly increases, which increases
relative and specific humidity while tropical air tempera-
ture decreases slightly. This shows a weaker relationship
between the increase in precipitable water and air tem-
perature in HadGEM3-A than in HadGEMI-A, but is
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Fig. 5 Same as Fig. 4 between HadGEM3-A at N320 and HadGEM3-A at N96

nonetheless in agreement with other models (Hourdin et al.
2013). Although the mechanisms appear to be different, the
impact of resolution on the vertical structures shown on
Figs. 4 and 5 is surprisingly similar between HadGEM1-A
and HadGEM3-A (note that we are not comparing the same
resolutions but instead we compare two equivalent jumps
in resolutions: N216 vs. N48 in HadGEM1-A, and N320
vs. N96 in HadGEM3-A).

3.3.2 Contrast between land and ocean

When splitting the analyses over land and ocean, the
energy budget varies little with resolution (Table 2; note
that the land-sea partitioning of solar incoming radiation at
TOA simulated by HaddGEM1-A and HadGEM3-A is dif-
ferent from observations, so that the models start with a
biased value of incoming SW over land and sea at all
resolutions). Over land, there is no systematic change in
evapotranspiration with resolution in both models (Fig. 3).
Ocean evaporation does not change systematically either,
because observed sea surface temperatures are imposed
and global mean near-surface humidity and wind speed are
mostly insensitive to resolution. Precipitation, however,

systematically changes with resolution: it decreases over
the ocean, while it increases over the land. This is in line
with Pope and Stratton (2002), but not with Hagemann
et al. (2006) who found in ECHAMS an increase in ocean
precipitation, due to an increase in radiative cooling with
resolution over the ocean. Moreover, land precipitation in
HadGEM1-A mainly increases through convective rain,
while large-scale rain decreases with resolution (Table 3).
This result again opposes previous studies, which found
that large-scale precipitation increases with resolution,
while convective precipitation decreases (Duffy et al.
2003; Hagemann et al. 2006). There are strong precipita-
tion biases in HadGEMI1-A at N48, particularly in the
Tropics that could explain the difference in the behaviour
of this model compared to others (Fig. 6). Increasing res-
olution increases precipitation, particularly over the Mari-
time Continent region, while precipitation decreases over
the surrounding oceanic regions of the Maritime Continent,
which improves the main biases of the model against
observations (Schiemann et al. 2013). In HadGEM3-A,
total land precipitation increases both through large-scale
and convective rain, a consequence of the prognostic cloud
scheme (Wilson et al. 2008).
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The change in precipitation is particularly large in
HadGEM1-A over the whole range of resolutions (Fig. 3).
In HadGEM3-A, the change is large from N96 to N216,
while the values converge at resolutions higher than N216.
These results bring oceanic precipitation in high-resolution
models closer to observations, while the wet biases over
land increase in high-resolution models compared to cur-
rent observations and reanalysis estimates. However, if we
remove the effect of the global precipitation bias (which we
have shown to be caused by excessive net radiation) by
computing the ratio of land precipitation to global precip-
itation, we notice that the land precipitation fraction is
systematically closer to the observational and reanalysis
ratios in both HadGEM1-A and HadGEM3-A at high res-
olution (Fig. 7). Moreover, the increase in land precipita-
tion with resolution is larger than the change in land
evaporation, which decreases the ratio of evaporation to
precipitation over land with resolution (black solid and
open circles on Fig. 8; note that all simulations are inclu-
ded in this figure, showing the small effect of using dif-
ferent forcings on the hydrological cycle). The E/P ratio
over land is lower in HadGEM1-A than in HadGEM3-A,
particularly at N216, but the resolution dependence follows
a similar and consistent pattern. This result brings high-
resolution models closer to the ratio suggested by TRO7,
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TR11 and older studies’ estimates of different water bud-
gets (black triangles and grey bar on Fig. 8). The land E/
P ratio simulated at high resolution is also very similar to
the 20-year climatology (1989-2008) of ERA-I, calculated
independently from that used by TR11. The other reanal-
ysis estimates provided by TRI11 are also included in
Fig. 8, revealing a large spread. We have noticed that 4-5
out of 8 reanalysis products seem to show a similar ten-
dency of high land E/P ratio at low resolution and low E/
P ratio at high resolution; however, water balance in rea-
nalyses is not well respected, so this finding may be mis-
leading. This tendency of high-resolution models to
decrease the E/P ratio over land strongly suggests that
high-resolution models are able to reduce the contribution
of local moisture sources to precipitation, a process com-
monly believed to be overestimated in GCMs (e.g. Ruiz-
Barradas and Nigam 2005). To provide further evidence for
the fact that this model behavior can be attributed to
increasingly resolved dynamical processes, we show that
the contribution to land precipitation from non-local sour-
ces of moisture through atmospheric moisture convergence
becomes increasingly important with resolution (red solid
and open squares on Fig. 8). Moisture convergence is low
at low resolution, while it is increasingly larger at high
resolution in both HadGEM1-A and HadGEM3-A. This
finding is consistent with an increase with resolution in
continental runoff that returns moisture back to the oceans
(Fig. 3). HadGEM3-A values of moisture transport reach a
plateau around N216-N320 resolution, showing that the
model behavior converges around 60-km resolution. It is
not possible to determine this convergence with Had-
GEMI1-A over the range of resolutions considered.

3.4 Impact of AGCM horizontal resolution
on the annual cycle of the hydrological cycle
over land

At timescales of a month or less, variations in atmospheric
moisture are not negligible and become a source of mois-
ture for precipitation. The annual cycle over global land is
properly represented in HadGEM1-A compared to TRO7,
although the fluxes are overestimated, particularly at high
resolution (Fig. 9). The models have a good representation
of the maximum peak of land precipitation in July, and a
decrease during the boreal autumn season, although it is 1
month too early (October instead of November). The
minimum in evapotranspiration is well represented in the
models, but it peaks too early (June instead of July). As in
TRO7, the recycling of moisture over land is larger in the
summer (Fig. 10).

The impact of resolution on the annual cycle of the
water budget over land is similar to that on the climato-
logical mean. All the components of the water budget tend
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Fig. 7 Land to global
precipitation ratio for each
member of HadGEMI1-A (solid
circles) and HadGEM3-A (open
circles; the test-simulations at
N216 are included here). ‘REA’
corresponds to ERA-I reanalysis
estimates (1989-2008). ‘OBS’
corresponds to observational
estimates from TRO7, TR11 and
GPCP2.1 (1983-2002); the grey
bar includes estimates from
Peixoto and Kettani (1973),
Baumgartner and Reichel
(1975), Chahine (1992), Oki

et al. (2004), Oki and Kanae
(2006), Schlosser and Houser
(2007)
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corresponds to observational
estimates of E/P from TR0O7 and
TRI11; the grey bar includes
estimates from Peixoto and
Kettani (1973), Baumgartner
and Reichel (1975), Chahine
(1992), Oki et al. (2004), Oki

0,4

0,35

T

0,3 -

Land conv(qU)/P

0,2 1

T

fu mT =

0,85

& R2TE2

038

a

& R1TE2

F 0,75
& MERRA 0.5deg

& ERA-40T159

ERA-l T255
C20R 2deg & JRA T108

F0,7

d/3puey

& ERA-I 20 yrs TR11

Aoy | i

r 0,6

& CFSR T382

N48 N96 N144

and Kanae (2006), Schlosser
and Houser (2007)

N216

(270 km)(135 km)(90 km} (60 km)

B HadGEM1-A conv(qU)/P

® HadGEM1-AE/P

to increase with resolution during each month, which sys-
tematically brings the high-resolution model further away
from observations. However, atmospheric moisture con-
vergence at N216 is more realistic during the summer
season, while it is more comparable to observations at N48
during the winter season. Moreover, E/P ratio over land is
systematically improved with resolution for each month.
The slope in E/P with resolution is also larger in summer
than in winter, resulting in a smaller and more realistic
annual cycle of E/P as resolution increases. These high
values of recycling at low resolution in summer are asso-
ciated with low values of atmospheric moisture
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(25 km)

REA 0BS5S
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O HadGEM3-A E/P

A OBSERVATIONS E/P
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convergence (approximately half those estimated by
TRO7), while moisture convergence at N216 is close to
TRO7 (Fig. 9). HadGEM1-A at N216 is also the only
model that simulates a decrease in atmospheric moisture
storage that is consistent with observations during the
autumn season. This result shows that, although the water
budget over land is increasingly overestimated at higher
resolution compared to observations, the model at N216
tends to have the right behavior in recycling less moisture
than at low resolution and in increasing moisture conver-
gence over land. This finding underlines the excessive
reliance on physical parametrization versus model
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Fig. 9 Annual cycle of moisture budget over land in HadGEM1-A
with various resolutions for 1979-2002 (1979-2000 in TRO7; dark
colors): mean evaporation (blue), convergence of atmospheric

dynamics (local, unresolved processes versus large-scale
processes) in coarser HadGEM1 and HadGEM3 GCMs.
This behavior is systematically the same, whether we
consider the mean hydrological cycle or its annual cycle,
and reflects the robust signal of the impact of resolution on
the water fluxes over land.

4 Discussion and conclusion

We have assessed the ability of two AGCMs with varying
horizontal resolutions, HaddGEM1-A and HadGEM3-A, to
simulate the processes that connect and drive each com-
ponent of the global hydrological cycle. The global energy
and water budgets were systematically compared to recent
observations and reanalysis products. Although improve-
ments are still needed, the models produce a high quality
climatology: (1) they simulate small residuals in the energy
and water balances, which are smaller than residuals
stemming from observational uncertainty and smaller than
residuals in most CMIP3 GCMs (Liepert and Previdi
2012); (2) the simulated water and energy budgets in
HadGEM1-A and HadGEM3-A are in agreement with
most reanalyses and are mostly within the range of
observational uncertainty (Wild et al. 2013); (3) the models
simulate well the link existing between the global energy
budget and the hydrological cycle, with full consistency
between atmospheric radiative cooling and precipitation
(Allan 2009). The high surface net radiation is consistent
with high outgoing longwave radiation and latent heat flux,
and leads to an overly intense simulated global hydrolog-
ical cycle compared to observations and reanalyses. This
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Precipitation M Change in moisture storage

moisture (green), change in atmospheric moisture storage (purple)
and total precipitation (red). Units are in 10°> km® month™'

over-intensity is mainly found in HadGEM1-A, while it is
restricted in HadGEM3-A by a compensating sensible heat
flux that is closer to recent observations (Wild et al. 2013).

The global energy and water budgets are found to be
insensitive to spatial resolution. This finding is in line with
Duffy et al. (2003) who showed that when the models are
tuned to balance radiation at TOA, the global water budget
is insensitive to resolution. HadGEM1-A and HadGEM3-A
needed little adjustments (refer to Sect. 2) to satisfy such a
balance, possibly due to the scale-dependent formulation of
the parametrizations. This ability to simulate nearly iden-
tical global budgets at all resolutions allows an attribution
of the processes involved in the representation of the
hydrological cycle over land and ocean with various res-
olutions. In fact, although resolution affects the energy
budget over land and ocean very little, it affects the
hydrological cycle by increasing (decreasing) precipitation
over land (ocean). This makes high-resolution model
simulations closer to observations over the ocean, but
further away over land. Changes in precipitation are
compensated by an increase in atmospheric moisture
transport from ocean to land with resolution, which affects
the partitioning of moisture sources that contribute to
precipitation. While the models at N96 resolution, typical
of current IPCC-class GCMs, appear to show the closest
results to observations over land, the evaporation to pre-
cipitation ratio over land is too high, and the moisture
convergence to precipitation ratio is too low at this reso-
lution (this is also verified over the annual cycle of the
water budget over land). This finding shows that it is not
solely the amount of water that needs to be properly rep-
resented in GCMs. Each model has its own balance
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Fig. 10 Annual cycle of E/P over land in HadGEM1-A with various resolutions (grey bars) for 1979-2002 (1979-2000 in TRO7; black bars)

depending on available energy, and it is only by improving
the global energy budget that the biases in the global water
budget will be diminished. This point also highlights that
when model deficiencies arise from its formulation,
increasing resolution does not remove the main biases
(Iorio et al. 2004; Scaife et al. 2010), but it often improves
the trustworthiness of the model, as shown by calculating
the water fluxes over land and ocean as a fraction of global
precipitation, a method used to remove global biases.
Nonetheless, we have shown that the relative contributions
of atmospheric processes controlling moisture fluxes also
need to be simulated properly. At higher resolution in both
HadGEM1-A and HadGEM3-A, the ratio of evaporation to
precipitation over land decreases while that of moisture
convergence to precipitation increases, giving more weight
to the resolved (large-scale dynamics) processes than the
unresolved (local physics) processes largely dominant at
low resolution. Our finding supports the hypothesis that
heterogeneity in model parametrization is one of the
underlying causes of model disagreement in the CMIP
exercises.

Our results, using HadGEM3-A, appear to converge
around 60-km resolution, suggesting that using a 60-km
GCM is necessary to simulate such dynamical processes
driving the mean global hydrological cycle, while a reso-
lution of 130-300 km is too coarse. Although these results
include a small number of ensemble members (running
multiple high-resolution simulations is challenging due to
computational resources and data storage limitations),
these analyses include up to ten members per resolution,
together with multi-decadal simulations and many land
points. Moreover, despite the differences in model

formulation between HadGEM1-A and HadGEM3-A that
result in a different global water budget, the two model
versions show the same tendency of decreasing E/P over
land with increased resolution. This systematic tendency is
significant, but analyzing other chains of AGCMs that may
become available in the future with such a range of hori-
zontal resolutions would be required to further strengthen
our argument. To perform such a comparison and attribute
changes in the hydrological cycle with resolution, we
emphasize again the requirements for a balanced radiative
budget at TOA, for a balanced atmospheric water budget,
and for the global energy and water budgets to be insensitive
to resolution. The processes associated with the increase in
atmospheric moisture transport from ocean to land with
resolution are treated in detail, globally and regionally, in a
following manuscript (Demory et al. in prep).

Acknowledgments The authors acknowledge the HadGEM teams,
with a particular thank to S. Bush for performing the CAPE sensitivity
experiment. This study was funded by the UK—Japan Climate Col-
laboration (supported by the Foreign and Commonwealth Office
Global Opportunities Fund, jointly funded by NERC CR1540 and the
Joint DECC/Defra Met Office Hadley Centre Climate Program
GAO01101) and the High-Resolution Climate Modelling program (R8/
H12/123). We used the UK national and Met Office supercomputers,
the Earth Simulator at JAMSTEC, Japan. The N512 model was run
through the UPSCALE project using the PRACE Research Infra-
structure resource HERMIT at HLRS, Germany. Data are hosted by
the STFC Centre for Environmental Data Archiving. M.-E. Demory
thanks kindly E. Eltahir and S. Seager at MIT, US, where part of this
research was undertaken.

Open Access This article is distributed under the terms of the
Creative Commons Attribution License which permits any use, dis-
tribution, and reproduction in any medium, provided the original
author(s) and the source are credited.

@ Springer



M.-E. Demory et al.

Appendix: Detailed values of annual-mean energy
and water fluxes over the globe, land and ocean
in HadGEM1-A and HadGEM3-A

See Tables 2 and 3.

Table 2 Energy fluxes (W m72) in HadGEM1-A and HadGEM3-A simulations (1979-2002; 19862002 at N512)

Globe Ocean Land

M S oM M S om M S om

Net radiation at TOA

HG1 N48 —0.22 0.39 0.03 8.04 0.47 0.06 —19.83 0.31 0.03
N96 —0.03 0.42 0.03 8.47 0.48 0.05 —20.19 0.36 0.02
N144 0.66 0.41 9.70 0.49 —20.78 0.39

N216 0.46 0.42 0.05 9.18 0.53 0.05 —20.24 0.27 0.06
HG3 N96 —0.11 0.58 0.04 8.42 0.64 0.04 —-20.83 0.50 0.06
N96,stia —0.09 0.70 0.04 8.49 0.76 0.05 -20.97 0.61 0.05
N216 0.37 0.62 9.04 0.66 —20.68 0.57

N2164pe 0.21 0.66 8.81 0.70 —20.67 0.61

N216,ia 0.81 0.65 0.04 9.40 0.70 0.04 —20.06 0.57 0.05
N320 0.66 0.53 9.38 0.57 —20.51 0.46

N512,5iq 1.68 0.74 0.01 10.36 0.79 0.01 —19.41 0.64 0.03
ERA-I —1.20 6.50 —20.30

TRO9 0.90 6.90 —15.60

Solar incoming radiation at TOA

HG1 N48 341.37 0.00 0.00 347.81 0.00 0.00 326.07 0.00 0.00
N96 341.39 0.00 0.00 347.84 0.00 0.00 326.09 0.00 0.00
N144 341.39 0.00 347.84 0.00 326.08 0.00

N216 341.39 0.00 0.00 347.84 0.00 0.00 326.09 0.00 0.00
HG3 N96 341.39 0.00 0.00 347.65 0.00 0.00 326.19 0.00 0.00
N96,stia 341.53 0.10 0.00 347.79 0.10 0.00 326.32 0.09 0.00
N216 341.39 0.00 347.65 0.00 326.19 0.00

N2164pc 341.39 0.00 347.65 0.00 326.19 0.00

N216,ia 341.53 0.10 0.00 347.79 0.10 0.00 326.32 0.10 0.00
N320 341.39 0.00 347.65 0.00 326.19 0.00

N512,ia 341.53 0.10 0.00 347.79 0.10 0.00 326.32 0.10 0.00
ERA-I 344.20 350.20 329.20

TRO9 341.30 345.40 330.20

Solar reflected radiation at TOA

HGI1 N48 —-97.26 0.19 0.05 —93.87 0.27 0.02 —105.31 0.44 0.14
N96 —97.74 0.25 0.03 —93.89 0.33 0.06 —106.85 0.41 0.03
N144 —96.57 0.25 —91.98 0.33 —107.46 0.53

N216 -96.11 0.26 0.01 —91.38 0.44 0.03 —107.35 0.35 0.08
HG3 N96 —98.91 0.81 0.03 —-93.90 0.87 0.02 —111.08 0.81 0.10
N96,stia —-99.22 0.87 0.03 —94.23 0.91 0.03 —111.34 0.87 0.05
N216 —98.00 0.83 —-92.59 0.88 —111.14 0.82

N216.4pe —98.17 0.86 —-92.75 0.92 —111.37 0.90

N216,ia —97.90 0.83 0.03 —92.55 0.88 0.05 —110.88 0.82 0.10
N320 —97.61 0.79 —92.04 0.78 —111.14 0.92

N512,4ia —97.18 0.85 0.02 —91.56 0.92 0.01 —110.84 0.77 0.08
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Table 2 continued

Globe Ocean Land

M S oM M S oM M S oM
ERA-I —100.0 —95.50 —110.60
TRO9 —101.90 —-97.80 —113.40
Outgoing longwave radiation at TOA
HGI1 N48 —244.33 0.40 0.02 —24591 0.33 0.04 —240.58 0.64 0.14
N96 —243.68 0.36 0.03 —245.47 0.27 0.03 —239.42 0.64 0.04
N144 —244.16 0.36 —246.17 0.27 —239.40 0.76
N216 —244.82 0.27 0.05 —247.29 0.19 0.08 —238.98 0.53 0.03
HG3 N96 —242.59 0.37 0.03 —245.33 0.34 0.04 —235.93 0.52 0.06
N96,stia —242.41 0.44 0.03 —245.07 0.38 0.04 —235.94 0.64 0.07
N216 —243.02 0.38 —246.02 0.35 —235.73 0.61
N216.4pc —243.01 0.42 —246.10 0.40 —235.49 0.71
N216,41iq —242.83 0.45 0.02 —245.84 0.40 0.02 —235.50 0.65 0.10
N320 —243.12 0.47 —246.23 0.38 —235.55 0.79
N512,4ia —242.67 0.47 0.02 —245.87 0.41 0.01 —234.89 0.68 0.09
ERA-I —245.50 —248.20 —239.0
TRO9 —238.50 —240.80 —232.40
Surface longwave downward
HG1 N48 336.95 0.98 0.04 352.52 0.93 0.03 300.02 1.19 0.14
N96 338.49 1.01 0.06 354.12 0.96 0.06 301.38 1.19 0.06
N144 337.80 1.03 353.48 0.99 300.60 1.21
N216 337.65 1.04 0.02 353.13 0.99 0.03 300.91 1.22 0.12
HG3 N96 336.71 1.09 0.04 351.03 0.97 0.03 301.90 1.42 0.09
N96,stia 335.62 0.74 0.05 350.03 0.65 0.03 300.60 1.10 0.13
N216 336.56 1.13 351.13 1.03 301.16 1.46
N216.4pc 336.28 1.06 350.93 0.91 300.68 1.51
N216,1ia 335.30 0.76 0.06 349.86 0.68 0.04 299.94 1.08 0.14
N320 336.46 0.99 351.16 0.89 300.73 1.30
N512,ia 335.41 0.73 0.05 350.09 0.66 0.02 299.73 1.11 0.12
ERA-I 341.20 356.20 303.90
TRO9 333.0 343.30 303.60
Surface longwave upward
HG1 N48 —399.03 0.74 0.07 —408.90 0.60 0.01 —375.61 1.17 0.24
N96 —399.16 0.74 0.02 —409.21 0.60 0.01 —375.29 1.14 0.05
N144 —398.67 0.77 —409.09 0.60 —373.95 1.29
N216 —398.44 0.72 0.03 —409.08 0.60 0.00 —373.19 1.12 0.09
HG3 N96 —398.99 0.80 0.04 —408.64 0.61 0.02 —375.52 1.34 0.13
N96,stia —398.32 0.57 0.03 —407.69 0.41 0.01 —375.55 1.10 0.10
N216 —398.75 0.82 —408.67 0.61 —374.63 1.41
N216.4pc —398.60 0.79 —408.57 0.57 —374.37 1.41
N216,51ia —397.99 0.54 0.05 —407.69 0.40 0.00 —374.41 1.05 0.17
N320 —398.74 0.75 —408.69 0.57 —374.55 1.34
N512,51ia —397.75 0.53 0.04 —407.75 0.41 0.01 —373.43 1.00 0.13
ERA-I —397.70 —408.60 —370.60
TRO9 —396.0 —400.70 —383.20
Surface shortwave downward
HG1 N48 199.68 0.32 0.05 195.85 0.45 0.01 208.76 0.42 0.16
N96 198.50 0.37 0.06 195.19 0.49 0.09 206.36 0.42 0.06
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Table 2 continued

Globe Ocean Land

M S oM M S oM M S oM
N144 200.20 0.37 197.25 0.53 207.21 0.35
N216 200.02 0.47 0.02 197.20 0.65 0.04 206.72 0.37 0.15
HG3 N96 197.23 0.81 0.04 195.73 0.88 0.02 200.88 0.78 0.10
N96,sria 197.33 0.86 0.04 195.58 0.89 0.04 201.57 0.86 0.12
N216 198.34 0.81 196.97 0.90 201.66 0.79
N2164p, 198.23 0.88 196.86 0.94 201.56 0.96
N216,41iq 198.78 0.83 0.05 197.31 0.86 0.07 202.35 0.87 0.10
N320 198.81 0.76 197.50 0.75 201.99 0.96
N512,51ia 199.52 0.83 0.03 198.20 0.90 0.01 202.71 0.81 0.11
ERA-I 188.10 188.40 187.20
TRO9 184.30 184.40 184.70
Surface shortwave upward
HGI1 N48 —28.12 0.13 0.02 —16.59 0.12 0.01 —55.50 0.22 0.07
No6 —27.74 0.12 0.02 —16.13 0.11 0.02 —55.29 0.22 0.04
N144 —28.20 0.15 —16.18 0.12 —56.73 0.28
N216 —28.13 0.14 0.02 —16.08 0.13 0.00 —56.72 0.19 0.06
HG3 N96 —25.89 0.17 0.02 —15.37 0.15 0.01 —51.44 0.26 0.05
N96,sria —26.04 0.16 0.02 —15.31 0.13 0.01 —52.11 0.27 0.06
N216 —26.15 0.16 —15.33 0.16 —52.45 0.29
N216,4pc —26.18 0.20 —15.34 0.16 —52.53 0.38
N216,1ia —26.16 0.14 0.03 —15.30 0.12 0.01 —52.54 0.25 0.07
N320 —26.20 0.17 —15.26 0.15 —52.81 0.28
N512,tia —26.20 0.14 0.01 —15.17 0.12 0.00 —53.02 0.27 0.05
ERA-I —23.80 —14.20 —47.50
TRO9 —23.10 —16.60 —39.60
Surface net radiation
HGI1 N48 109.48 0.16 0.02 122.89 0.18 0.03 77.67 0.22 0.04
No6 110.09 0.21 0.02 123.96 0.23 0.03 77.17 0.25 0.03
N144 111.13 0.18 125.46 0.19 77.13 0.27
N216 111.10 0.24 0.02 125.17 0.30 0.01 77.71 0.22 0.05
HG3 N96 109.07 0.68 0.00 122.75 0.78 0.02 75.82 0.48 0.03
N96,stia 108.58 0.72 0.03 122.61 0.81 0.03 74.51 0.53 0.06
N216 110.00 0.68 124.10 0.78 75.73 0.49
N216,4pc 109.73 0.69 123.88 0.77 75.33 0.54
N216,ia 109.93 0.68 0.03 124.17 0.78 0.04 75.34 0.48 0.05
N320 110.32 0.65 124.71 0.73 75.36 0.50
N512,51ia 110.98 0.72 0.02 125.37 0.82 0.01 75.99 0.50 0.05
ERA-I 107.80 121.80 73.0
TRO9 98.20 110.40 65.50
Sensible heat flux
HG1 N48 —18.11 0.11 0.02 —12.71 0.07 0.00 -30.93 0.35 0.06
N96 —17.44 0.13 0.01 —12.03 0.08 0.01 —30.28 0.40 0.05
N144 —18.00 0.15 —12.26 0.08 —31.62 0.44
N216 —18.11 0.14 0.04 —12.32 0.07 0.02 —31.87 0.38 0.17
HG3 N96 —20.08 0.08 0.03 —15.58 0.10 0.02 -31.03 0.33 0.10
N96,stia —19.69 0.08 0.02 —15.58 0.08 0.01 —29.69 0.30 0.06
N216 -20.27 0.11 —15.57 0.12 —31.69 0.42
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Table 2 continued

Globe Ocean Land

M S oM M S oM M S oM
N216.4pc —20.41 0.13 —15.59 0.12 —32.14 0.47
N216,5ia —20.17 0.08 0.01 —15.47 0.08 0.01 —-31.57 0.30 0.04
N320 —20.24 0.09 —15.25 0.11 —32.37 0.34
N512,51ia —19.83 0.09 0.04 —15.11 0.08 0.01 —-31.29 0.30 0.11
ERA-I —17.40 —13.10 —28.20
TRO9 —17.0 —12.0 -27.0
Latent heat flux
HG1 N48 —90.72 0.40 0.03 —111.14 0.59 0.02 —42.27 0.32 0.06
N96 —91.77 0.43 0.02 —111.84 0.62 0.03 —44.13 0.38 0.05
N144 —91.56 0.44 —111.94 0.61 —43.21 0.39
N216 —91.62 0.42 0.09 —111.70 0.56 0.05 —43.97 0.45 0.20
HG3 N96 —88.28 0.38 0.06 —106.07 0.45 0.09 —45.06 0.39 0.10
N96,sia —88.11 0.34 0.04 —105.93 0.46 0.04 —44.81 0.41 0.11
N216 —88.57 0.41 —106.63 0.55 —44.67 0.54
N216.qpe —88.30 0.47 —106.57 0.56 —43.87 0.57
N216,1ia —88.12 0.36 0.03 —106.18 0.46 0.03 —44.23 0.43 0.04
N320 —88.62 0.44 —107.08 0.54 —43.77 0.41
N512451ia —88.63 0.39 0.05 —106.40 0.54 0.01 —45.45 0.53 0.14
ERA-I —83.50 —99.30 —44.30
TR09 —80.0 —97.10 —38.50
Ground heat flux
HG1 N48 0.65 0.36 0.03 —-0.96 0.51 0.05 4.47 0.16 0.02
N96 0.88 0.38 0.04 0.09 0.54 0.06 2.75 0.11 0.02
N144 1.57 0.39 1.26 0.56 2.30 0.07
N216 1.37 0.41 0.04 1.16 0.58 0.06 1.87 0.06 0.01
HG3 N96 0.70 0.55 0.04 1.10 0.75 0.06 —0.28 0.14 0.01
N96,sia 0.78 0.68 0.05 1.09 0.94 0.06 0.01 0.14 0.01
N216 1.17 0.60 1.90 0.83 —0.63 0.12
N216,4pc 1.02 0.63 1.72 0.87 —0.68 0.14
N216,1ia 1.65 0.63 0.04 2.52 0.87 0.07 —-0.47 0.10 0.01
N320 1.46 0.47 2.38 0.65 -0.79 0.13
N512451ia 2.51 0.72 0.01 3.86 1.01 0.01 —0.76 0.09 0.00
ERA-I 6.90 9.40 0.50
TR09 0.90 1.30 0.0

M is the climatological mean of the ensemble mean, S is the interannual variability and g, is the standard deviation of the ensemble mean. ERA-I
(1989-2008) and TRO9 (2000-2004) are the reanalyses and observational estimates obtained from Berrisford et al. (2011) and Trenberth et al.
(2009) respectively. Fluxes are positive downward
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Table 3 Water storage (mm) and fluxes (mm dayfl) in HadGEM1-A and HadGEM3-A (1979-2002; 1986-2002 at N512)

Globe Ocean Land

M S om M S om M S om

Precipitable water (mm)

HG1 N48 23.15 0.23 0.01 25.69 0.25 0.01 17.10 0.20 0.02
N96 23.90 0.28 0.02 26.44 0.30 0.02 17.86 0.25 0.02
N144 24.13 0.27 26.70 0.29 18.03 0.25

N216 24.45 0.29 0.01 26.98 0.30 0.02 18.45 0.27 0.04
HG3 N96 23.51 0.26 0.01 25.82 0.27 0.01 17.88 0.28 0.02
NO96,ssia 23.14 0.19 0.02 25.45 0.20 0.02 17.51 0.22 0.03
N216 23.75 0.29 26.05 0.30 18.16 0.29

N216.4pc 23.65 0.25 25.96 0.24 18.02 0.29

N216,51iq 23.34 0.21 0.02 25.62 0.21 0.02 17.80 0.23 0.02
N320 23.75 0.25 26.06 0.27 18.15 0.25

N512,51ia 23.55 0.21 0.01 25.83 0.21 0.01 18.05 0.26 0.03
ERA-I 24.3

TRI11 24.90 (26.5) (20.0)

Precipitation (mm day ")

HG1 N48 3.13 0.01 0.00 3.61 0.02 0.00 2.00 0.03 0.01
N96 3.17 0.02 0.00 3.58 0.02 0.00 2.20 0.04 0.00
N144 3.16 0.02 3.55 0.02 223 0.04

N216 3.16 0.01 0.00 3.48 0.02 0.00 241 0.03 0.02
HG3 N96 3.05 0.01 0.00 3.38 0.02 0.00 2.23 0.06 0.01
N96,stia 3.04 0.01 0.00 3.38 0.02 0.00 221 0.04 0.01
N216 3.06 0.01 3.36 0.02 233 0.04

N2164p, 3.05 0.02 3.35 0.02 2.31 0.05

N216,5ia 3.04 0.01 0.00 3.34 0.02 0.00 2.32 0.05 0.00
N320 3.06 0.02 3.35 0.02 2.35 0.04

N512,5i4 3.06 0.01 0.00 3.32 0.03 0.00 242 0.05 0.01
ERA-I 2.90 3.10 2.30

TRI11 2.69 293 2.10

Convective rain (mm dayfl)

HG1 N48 2.30 0.01 0.00 2.66 0.02 0.00 1.45 0.03 0.00
N96 243 0.01 0.00 2.75 0.02 0.00 1.66 0.04 0.00
N144 2.45 0.01 2.76 0.02 1.70 0.04

N216 2.49 0.01 0.00 2.74 0.02 0.00 1.89 0.04 0.02
HG3 N96 2.08 0.01 0.01 2.32 0.02 0.00 1.49 0.05 0.01
NO96,ssia 2.10 0.01 0.00 2.35 0.02 0.00 1.49 0.04 0.01
N216 2.04 0.01 2.25 0.02 1.54 0.04

N216.4pc 2.08 0.01 2.29 0.02 1.56 0.04

N216,51iq 2.07 0.01 0.00 2.27 0.02 0.00 1.56 0.04 0.00
N320 2.06 0.01 2.26 0.02 1.57 0.04

N512,5ia 2.07 0.01 0.00 2.24 0.02 0.00 1.63 0.05 0.01
Large-scale rain (mm dayfl)

HGI1 N48 0.60 0.01 0.00 0.72 0.01 0.00 0.32 0.01 0.00
N96 0.50 0.01 0.00 0.59 0.01 0.00 0.28 0.01 0.00
N144 0.47 0.01 0.55 0.01 0.26 0.01

N216 0.43 0.01 0.00 0.51 0.01 0.00 0.24 0.01 0.00
HG3 N96 0.74 0.01 0.01 0.84 0.01 0.01 0.48 0.01 0.01
N96,sria 0.70 0.01 0.00 0.80 0.01 0.00 0.46 0.01 0.00
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Table 3 continued

Globe Ocean Land

M S oM M S oM M S oM
N216 0.79 0.01 0.89 0.01 0.53 0.01
N216.4pc 0.74 0.01 0.85 0.01 0.49 0.01
N216,ia 0.74 0.01 0.00 0.84 0.01 0.00 0.50 0.01 0.00
N320 0.77 0.01 0.88 0.01 0.52 0.01
N512,51ia 0.75 0.01 0.00 0.85 0.01 0.00 0.52 0.01 0.00
Evaporation (mm day™ b
HG1 N48 3.14 0.01 0.00 3.84 0.02 0.00 1.46 0.01 0.00
N96 3.17 0.01 0.00 3.87 0.02 0.00 1.53 0.01 0.00
N144 3.16 0.02 3.87 0.02 1.49 0.01
N216 3.17 0.01 0.00 3.86 0.02 0.00 1.52 0.02 0.01
HG3 N96 3.05 0.01 0.00 3.67 0.01 0.00 1.56 0.02 0.00
N96,sia 3.05 0.01 0.00 3.66 0.02 0.00 1.55 0.01 0.00
N216 3.06 0.01 3.68 0.02 1.54 0.02
N2164p, 3.05 0.02 3.68 0.02 1.52 0.02
N216,1ia 3.05 0.01 0.00 3.67 0.02 0.00 1.53 0.02 0.00
N320 3.06 0.02 3.70 0.02 1.51 0.01
N512451ia 3.06 0.01 0.00 3.67 0.02 0.00 1.57 0.02 0.00
ERA-I 2.90 3.40 1.50
TRI11 2.69 3.23 1.36
P-E (mm dayfl)
HG1 N48 —0.002 0.001 0.000 -0.23 0.01 0.00 0.54 0.02 0.01
N96 —0.002 0.001 0.000 —-0.29 0.01 0.00 0.68 0.03 0.00
N144 —0.002 0.001 —0.32 0.01 0.00 0.74 0.04
N216 —0.002 0.001 0.000 —0.38 0.01 0.00 0.89 0.03 0.01
HG3 N96 —0.004 0.001 0.000 —0.28 0.02 0.00 0.67 0.04 0.00
N96,1ia —0.003 0.001 0.000 —0.28 0.01 0.00 0.66 0.03 0.00
N216 —0.004 0.001 —-0.33 0.01 0.78 0.03
N2164pc —0.004 0.001 —-0.33 0.01 0.79 0.04
N216,51ia —0.004 0.001 0.000 —-0.33 0.01 0.00 0.79 0.04 0.00
N320 —0.004 0.001 —-0.35 0.01 0.83 0.04
N51245tia —0.004 0.001 0.000 —-0.36 0.01 0.00 0.85 0.03 0.01
ERA-I —0.003 —0.29 0.73
TRI11 0.00 —-0.30 0.74
Moisture convergence (mm day ')
HG1 N48 0.00 0.00 0.00 —-0.26 0.01 0.00 0.62 0.02 0.00
No6 0.00 0.00 0.00 —-0.32 0.01 0.00 0.76 0.03 0.00
N144 0.00 0.00 —-0.35 0.01 0.83 0.03
N216 0.00 0.00 0.00 —0.40 0.01 0.00 0.94 0.02 0.01
HG3 N96 0.00 0.00 0.00 —0.32 0.02 0.00 0.77 0.04 0.00
NO96,s1ia 0.00 0.00 0.00 —0.31 0.01 0.00 0.75 0.03 0.01
N216 0.00 0.00 —0.35 0.01 0.85 0.03
N2164pc 0.00 0.00 —0.36 0.01 0.87 0.04
N216,4ia 0.00 0.00 0.00 —0.36 0.01 0.00 0.87 0.04 0.00
N320 0.00 0.00 —-0.37 0.01 0.90 0.03
N512,51a 0.00 0.00 0.00 —-0.37 0.01 0.00 0.90 0.02 0.00
TRI11 0.00 0.74
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Table 3 continued

Globe Ocean Land

M S oM M S oM M S oM
Total runoff (mm day™")
HG1 N48 0.63 0.02 0.01
N96 0.74 0.03 0.00
N144 0.77 0.03
N216 0.92 0.03 0.01
HG3 N96 0.70 0.03 0.00
N96,s1ia 0.68 0.03 0.00
N216 0.78 0.03
N216.4pc 0.79 0.03
N216,5i0 0.78 0.03 0.01
N320 0.82 0.02
N512,51ia 0.82 0.03 0.00
TRI11 0.74

M is the climatological mean of the ensemble mean, S is the interannual variability and g, is the standard deviation of the ensemble mean. ERA-I
(1989-2008) and TR11 (2002-2008) are the reanalyses and observational estimates obtained from Berrisford et al. (2011) and Trenberth et al.
(2007b, 2011) respectively. The observational values in parentheses are from Trenberth (1998)
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