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ABSTRACT

During the 1990s there was a major change in the state of the world’s oceans. In particular, the North
Atlantic underwent a rapid warming, with sea surface temperatures (SSTs) in the subpolar gyre region in-
creasing by 1°C in just a few years. Associated with the changes in SST patterns were changes in the surface
climate, in particular, a tendency for warm and dry conditions over areas of North America in all seasons, and
warm springs and wet summers over areas of Europe. Here, the extent to which a climate prediction system
initialized using observations of the ocean state is able to capture the observed changes in seasonal mean
surface climate is investigated. Rather than examining predictions of the mid-1990s North Atlantic warming
event itself, this study compares hindcasts started before and after the warming, relative to hindcasts that do
not assimilate information. It is demonstrated that the hindcasts capture many aspects of the observed
changes in seasonal mean surface climate, especially in North, South, and Central America and in Europe.
Furthermore, the prediction system retains skill beyond the first year. Finally, it is shown that, in addition to
memory of Atlantic SSTs, successfully predicting Pacific SSTs was likely important for the hindcasts to predict
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surface climate over North America.

1. Introduction

The goal of decadal climate prediction is to improve
the skill of climate projections by initializing climate
models using observations. This field has recently re-
ceived rapid growth in attention (Smith et al. 2007;
Pohlmann et al. 2009; Meehl et al. 2009). Many studies
have demonstrated skill in predictions of sea surface tem-
peratures (SSTs) and related ocean variables (Keenlyside
et al. 2008; Smith et al. 2010; Robson 2010). However,
there is much less evidence for skill in predicting soci-
etally relevant climate variables over land (Kim et al.
2012; van Oldenborgh et al. 2012; MacLeod et al. 2012).
In some ways this is surprising, given the evidence that
decadal variability in SST modulates the surface climate
in many regions of the world. For example, many studies
suggest that North Atlantic SSTs modulate surface
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temperature and rainfall in the tropical North Atlantic,
Africa, Europe, and the Americas (Sutton and Hodson
2005, 2007; Knight et al. 2006; Zhang and Delworth
2006; Kushnir et al. 2010; Sutton and Dong 2012). Tt
is also well established that multidecadal variability in
Pacific SSTs—for example, the interdecadal Pacific os-
cillation (IPO; Power et al. 1999)—can affect the climate
in many regions, especially droughts and flooding in
North America (Seager et al. 2005b; Schubert et al. 2004,
2009; Meehl and Hu 2006; Wang et al. 2009; Dai 2013).

One of the challenges in the development and eval-
uation of decadal prediction systems is that the low
frequency of the variations of interest—and short ob-
servational records—create serious problems of sam-
pling when assessing skill. Faced by this problem, one
approach is to focus on case studies rather than average
skill scores. Case studies can be selected to identify sit-
uations in which the signal-to-noise ratio of decadal
changes is relatively high, making it easier to identify
robust influences and elucidate the mechanisms involved.
This approach has been used successfully to demon-
strate and understand the predictability of the rapid
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warming of the North Atlantic Ocean in the 1990s
(Robson et al. 2012a,b; Yeager et al. 2012) and has also
been used to examine shifts in Pacific SST (Meehl and
Teng 2012).

During the mid-1990s, North Atlantic SSTs warmed
very rapidly (Robson et al. 2012a). Previous studies have
established that initialized decadal predictions could
have predicted this event (Robson et al. 2012b; Yeager
etal.2012). However, a key question is whether changes
in climate over land that appear to be related to this
ocean warming (e.g., Sutton and Dong 2012) could also
have been predicted. Some evidence that this is the
case was provided by Robson et al. (2012b) using hind-
casts made with Met Office decadal prediction system
(DePreSys, also referred to in this paper as DeP; Smith
et al. 2007). However, Robson et al. (2012b) only ex-
amined the mean impact from March to November,
whereas important seasonally dependent differences are
expected (Sutton and Hodson 2007; Sutton and Dong
2012). Given the potential societal importance of de-
cadal predictions over land, we build on Robson et al.
(2012b) by investigating the seasonal climate impacts of
the mid-1990s Atlantic warming. To do so, we examine
the differences between hindcasts initialized before and
after the warming, relative to hindcasts initialized without
the use of observations, in contrast to the focus of Robson
et al. (2012b) of whether the warming itself was pre-
dictable. We address two specific questions: (i) Does ini-
tialization with observations affect the predicted seasonal
mean surface climate variables associated with the At-
lantic warming event? and (ii) Do the predicted changes
in seasonal mean surface climate agree with those ob-
served? The article is organized as follows: the meth-
odology is outlined in section 2, and the results are
presented and discussed in sections 3 and 4. Finally, the
main conclusions are summarized in section 5.

2. Data and methods
a. DePreSys

This study examines the perturbed physics ensemble
version of DePreSys (Smith et al. 2010), which uses nine
variants of the third climate configuration of the Met
Office Unified Model (HadCM3) (one standard and eight
with perturbed parameters) to represent some model
uncertainty in predictions (Collins et al. 2006). The pa-
rameter perturbations introduce radiative imbalances to
the models, and so flux adjustments are used to maintain
a realistic climatology for SST and surface salinity [see
Collins et al. (2006) for details]. Nine-member ensemble
hindcasts (one member per model version) start every
November from 1960 to 2005 after observed anomalies
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are assimilated into the ocean and atmosphere. More
specifically, anomalies are computed from precalculated
gridded datasets for the ocean (3D temperature and
salinity from the Met Office ocean analysis; Smith and
Murphy 2007) and atmosphere [3D winds, 3D tempera-
ture, and sea level pressure from the 40-yr European Centre
for Medium-Range Weather Forecasts (ECMWF) Re-
Analysis (ERA-40); Uppala et al. 2005] and are assim-
ilated by relaxing the model to its own climatology plus
the observed anomalies. The ocean and atmosphere
climatologies are defined as 1951-2006 and 1958-2001,
respectively, and are calculated from each model’s
(flux corrected) free-running transient simulation.
Hindcasts are forced with (historical) anthropogenic and
(projected) natural forcings. More specifically, total solar
irradiance is assumed to follow the previous 11-yr solar
cycle, and initial volcanic aerosol was reduced to zero
with an e-folding time scale of 1yr (i.e., no future
eruptions). The sulfur cycle is simulated interactively,
driven by emissions of sulfur dioxide; the direct and
first indirect effect of sulfate aerosols are represented
(Johns et al. 2003). After 2000, the Special Report on
Emissions Scenarios (SRES) A1B is used.

A control experiment is also performed (NoAssim,
also referred to in this paper as NoA). NoAssim is iden-
tical to DePreSys (i.e., nine-member ensembles), except
the initial conditions are taken from the free-running
transient simulations (using the same model variants as
DePreSys), which were initialized in preindustrial con-
ditions and forced with historical anthropogenic and
natural forcings. A full description of DePreSys and
NoAssim is found in Smith et al. (2010).

b. Comparison method

Figure 1a shows the warming of North Atlantic SSTs
(35°-65°N) in the mid-1990s, by 0.8°C in just a few years.
The mid-1990s warming is captured by DePreSys (see
1994 hindcast in Fig. 1a), but not by NoAssim. NoAssim
predicts a slow warming trend and does not capture the
magnitude of the multidecadal variability in SST. To
assess the seasonal climate impacts of the rapid warming
of the North Atlantic predicted by DePreSys, hindcasts
that start before and after the warming of the North At-
lantic are compared. More specifically, for each season
the difference in hindcasts started between 1997 and 2005
(warm Atlantic following warming) and hindcasts started
between 1968 and 1990 (cold Atlantic before warming) is
calculated (gray shading in Fig. 1a highlights time periods
used)." Moreover, we assess the impact of initialization by

! Hindcasts for 1991-96 are not used, as they predict a warming
of Atlantic SSTs (Robson et al. 2012b).
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FIG. 1. Comparison of the observed and modeled change in SST (°C) associated with the mid-1990s warming of the
North Atlantic. (a) Black line denotes rolling annual mean time series of the observed and predicted SST in the North
Atlantic between 35° and 65°N. Blue line shows the average of all NoAssim hindcasts, which represents the forced
projections of SST, and the blue shading denotes the 1o spread of NoAssim. Red lines show DePreSys hindcasts
initialized in November 1962, 1970, 1978, 1986, 1994, and 2002, where the thick and thin lines denote the ensemble
mean and 95% confidence interval, respectively. Gray shading highlights the start times used to compare hindcasts
made before and after the mid-1990s warming of the North Atlantic. (b) Difference in annual mean SST before and
after the mid-1990s warming of the North Atlantic (i.e., 1997-2005 minus 1968-90), calculated from the HadISST
dataset. (c) As in (b), but for 1999-2009 minus 1970-94, and is the validation of the DePreSys SST difference in (e).
Note that (b) and (c) have been detrended at each grid point—see text. (d) SST averaged over year 1 from DePreSys
hindcasts initialized in 1997-2005 minus the SST averaged over year 1 of hindcasts initialized in 1968-90. Difference
in DePreSys is made relative to the same difference in NoAssim. (e¢) As in (d), but for years 2-6. Stippling shows
where the differences are significant at the p = 0.1 level based on a two-sided Student’s ¢ test.
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comparing the difference in DePreSys (ADePreSys) rela-
tive to the same difference in NoAssim (i.e., ADePreSys —
ANoAssim), which removes externally forced changes
from DePreSys. More specifically for clarity, for a variable
V we compare the difference (Vs 2% —Vhor ) —
(711\192:2005 - ‘_/;?Sif%), where Vpep (Vnoa) defines the
average of all DePreSys (NoAssim) hindcasts started
over the period shown in superscript.

Figure 1b shows the mean difference in observed SST
between the two periods after a trend is removed from
each grid point (see below). To the extent that the ex-
ternal forcing can be removed by detrending, this shows
the difference in DePreSys initial conditions. Thus, the
hindcasts initialized between 1997 and 2005 are initial-
ized significantly warmer in the North Atlantic, espe-
cially in the North Atlantic subpolar gyre. Warm anomalies
are also present in the northwestern Pacific and weak
cool anomalies are present in the equatorial tropical
Pacific, but the latter are not significant. Our analysis
assesses the impact of these initial differences in ocean
conditions (including those beneath the surface, not shown)
on the subsequent evolution of the climate system.

Finally, to reduce the effects of unpredictable vari-
ability, surface variables are averaged over multiyear
periods. Specifically, the focus is on forecast years 2-6 to
highlight where the impact of initialization remains be-
yond forecast year 1. Differences are tested for signifi-
cance using a two-sided Student’s ¢ test after the degrees
of freedom are reduced to take account of the serial
correlation in consecutive NoAssim hindcasts as a func-
tion of forecast lead time (Zwiers and von Storch 1995;
Robson et al. 2012b). Note that taking the difference
between hindcasts started in the two periods but, for the
same lead times, overcomes the need to define a model
climatology (from which to express anomalies) or for
mean bias corrections.

The modeled changes are also compared with the ob-
served changes in SST [from the Hadley Centre Sea Ice
and SST dataset (HadISST); Rayner et al. 2003], sea level
pressure [SLP, from the Hadley Centre SLP dataset,
version 2 (HadSLP2); Allan and Ansell 2006], surface
air temperature, and precipitation [SAT and Precip, re-
spectively, from the Climatic Research Unit Time Series,
version 3.1 (CRU TS3.1); Mitchell and Jones 2005]. Re-
moving the difference in NoAssim from the difference in
DePreSys removes the forced change. Therefore, for the
comparison, an estimate of the forced change is also
removed from all observations at each grid point by
fitting a linear regression to the rolling 3-yr-average
global mean (60°S-75°N) SST over the period 1949-2009
(the common time period of all datasets). However, note
that the detrending will not remove regional forcings
(e.g., anthropogenic aerosols; Forster et al. 2007; Booth
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et al. 2012). We investigated sensitivity to other de-
trending methods (e.g., quadratic) or the end points and
found that the magnitude of the SST and SAT anomalies
is sensitive to the details of detrending, but the patterns
of anomalies are broadly similar (not shown). Note that
SLP and precipitation anomalies are not sensitive to
the detrending. Finally, it is worth highlighting that we
should not expect the model and observations to agree
perfectly, because we are comparing a single realization
with the mean of hundreds of model predictions.

3. Results
a. Sea surface temperatures

Figure 1e shows the difference in years 2-6 SSTs be-
tween hindcasts initialized before and after the mid-
1990s warming. Warm SST anomalies are still present in
the extratropical North Atlantic, highlighting the mem-
ory of the North Atlantic, but they do not remain in the
tropical North Atlantic. In the Pacific, DePreSys pre-
dicts significant cool anomalies in the eastern and trop-
ical Pacific, and warm anomalies in the northwestern
Pacific. Although a similar, but weaker, pattern of Pa-
cific SSTs is present in the initial conditions (Fig. 1a), the
SST anomalies grow through the DePreSys hindcasts
[cf. years 2-6 (Fig. 1e) with year 1 (Fig. 1d)] and peak in
year 5 (not shown). Cool anomalies are also present in
the Indian Ocean, the southern tropical Atlantic, and
the Southern Ocean.

The difference in years 2-6 SSTs in DePreSys hind-
casts initialized before and after the mid-1990s warming
is remarkably similar to the observed changes in SST for
the validation period (1999-2009 minus 1970-94;* see
Fig. 1c). In the observations, the North Atlantic Ocean
remains significantly warm. In the Pacific, cool anoma-
lies intensify in the eastern tropical Pacific, and warm
anomalies are present in the northwestern Pacific. Al-
though decadal Pacific SST anomalies are sensitive to
the irregularity of the El Nino-Southern Oscillation
(Newman et al. 2003; Wittenberg 2009), the anomalies
in Fig. 1c are consistent with other studies that suggest
a shift in the wider Pacific state occurred in the late 1990s
(Peterson and Schwing 2003; Burgman et al. 2008; Chen
et al. 2008; Lee and McPhaden 2008). The successful
prediction of the development of SST anomalies in the
Pacific in the late 1990s, and early 2000s, is consistent
with the studies showing skill in this region (Mochizuki
et al. 2010, 2012; Meehl and Teng 2012).

2Note that the observed comparison in Fig. 1c excludes years
close to the observed warming (i.e., 1995 or 1996), and ends in 2009
because CRU TS3.1 data end in 2009.
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FIG. 2. Comparison of the predicted (years 2-6) and observed change in surface climate before and after the
mid-1990s warming of the North Atlantic. (a) Difference in DJF SAT and SST (°C) averaged over years 2-6 (i.e., the
difference in SAT and SST in DePreSys hindcasts initialized in 1997-2005 minus years 2—6 from DePreSys hindcasts
initialized from 1968 to 1990). Difference is then made relative to the same difference in NoAssim hindcasts.
(b) Difference between 19992009 and 1970-94 for the observed DJF SAT and SST after trend has been removed
from each grid point—see text for details. (c),(d) and (e),(f) As in (a) and (b), but for SLP (hPa) and precipitation
(% of the mean) anomalies, respectively. Stippling shows where the differences are significant at the p = 0.1 level

based on a two-sided Student’s ¢ test.

b. Surface variable climate impacts

We now explore other societally relevant climate var-
iables in the North Atlantic sector (10°S-80°N, 130°W-
50°E) in forecast years 2-6. In December—February
(DJF), DePreSys predicts significant SAT anomalies
in North America and northern Europe (Fig. 2a) and
substantial SLP anomalies that resemble a positive

North Atlantic Oscillation (NAO; Fig. 2c). Finally, sig-
nificantly reduced rainfall is predicted over the southern
United States and Mexico, and increased rainfall in
Central America and northern South America (Fig. 2e),
which is consistent with warm Atlantic SSTs in this
model (Sutton and Hodson 2005; Knight et al. 2006).
A weak increase in precipitation is also predicted over
Scandinavia. The predictions of SAT agree with those
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FIG. 3. As in Fig. 2, but for MAM.

-1

observed in North America (Fig. 2b); however, DePreSys
predicts the wrong sign of anomalies in southern Eu-
rope, which may be related to a poor prediction of SLP.
The observations show high SLP over the eastern sub-
polar North Atlantic (Fig. 2d) and not a positive NAO,
as in DePreSys. Finally, an observed reduction in rain-
fall over the southern United States and Mexico, and an
increase in Central America and northern South America
and Scandinavia (Fig. 2f), is similar to that predicted by
DePreSys.

In March-May (MAM), DePreSys predicts significant
warm SAT in western Europe, a dipole of SAT anomalies
in western North America, and cool anomalies over the
northern part of South America and central Africa

1 25 5

(Fig. 3a). A weak pattern of low pressure is present over
the North Atlantic, North America, and Europe (Fig. 3c),
and the pattern of rainfall in MAM (Fig. 3e) is similar to
that seen in DJF (Fig. 2e). The pattern of SAT anomalies
predicted by DePreSys (Fig. 3a) agrees well with those
observed (Fig. 3b), especially the warm anomalies in
western Europe, and the anomalies over the west of
North America. The observed SLP is anomalously low
over the Atlantic region (Fig. 3d); however, the reduction
in observed SLP is greater than in DePreSys. Finally,
the observed precipitation patterns over the Americas
(Fig. 3f) are similar to those simulated by DePreSys.
In June-August (JJA; Fig. 4) and September—
November (SON; Fig. 5), DePreSys predicts significant
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FIG. 4. As in Fig.

warm SAT anomalies over much of the United States,
cool SAT anomalies in northwestern North America
and central Africa (Figs. 4a, 5a), and an extension of
warm SST anomalies into the tropical North Atlantic in
SON (Fig. 5a). Low SLP anomalies are predicted across
North America, the subtropical North Atlantic, and Eu-
rope (Figs. 4c, 5¢). Last, DePreSys predicts a significant
reduction in rainfall over North America in JJA and
SON (Figs. 4e, Se) and a weak increase across northern
Europe in JJA [Fig. Se; which is significant when taking
a box average (not shown)]. Again, the predicted SAT is
in good agreement with the observed SAT anomalies
(Figs. 4b, 5b) in North America and in central Africa.

1 2.5 5 10
2, but for JTA.

However, DePreSys fails to predict the observed SAT
increase in North Africa, South America, or eastern Eu-
rope. The low pressure anomalies in DePreSys (Figs. 4c,
Sc) are similar to those observed (Figs. 4d, 5d), and are
consistent with the model’s response to warm North
Atlantic SSTs (Sutton and Hodson 2005; Knight et al.
2006). Finally, the predicted reduction in rainfall over
North America in JJA and SON (Figs. 4f, 5f), and an
increase over northern Europe in JJA (Fig. 4f) are also
observed. However, DePreSys does not capture the
observed rainfall change in the Sahel (Figs. 4f, 5f),
which is likely due to model bias in this region (Knight
et al. 2006).
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4. Discussion: Pacific SSTs

Many of the changes in surface variables predicted by
DePreSys, especially those over the North American
region, appear to be consistent with the impact of warm
North Atlantic SSTs identified in previous research
(Sutton and Hodson 2005, 2007; Knight et al. 2006;
Kushnir et al. 2010; Hodson et al. 2010; Ting et al. 2011).
However, it is well established that tropical Pacific
SSTs can affect the North American and wider climate,
especially via the excitation and propagation of Rossby
waves (Trenberth and Branstator 1992; Robinson et al.
2002; Schubert et al. 2004, 2009; Seager et al. 2005a,b;
Meehl et al. 2012). Figure 6 shows the difference in

1 25 5
FIG. 5. As in Fig. 2, but for SON.

250-hPa geopotential height (GEOPOT) for DePreSys
hindcasts started before and after the mid-1990s Atlantic
warming event relative to NoAssim for December-May
(DJFMAM) and June-November (JJASON) so to min-
imize plots. In the North Pacific, a Rossby wave train is
clear in both extended seasons (Figs. 6b,e), which forces
anegative Pacific-North America (PNA) pattern. The
predicted pattern of geopotential height anomalies
agrees well with the National Centers for Environmental
Prediction (NCEP) reanalysis (Fig. 6¢) in DJFMAM,
suggesting that the simulation by DePreSys is realistic.
However, the agreement is not as good in JJASON
(Fig. 6¢). The Rossby wave train in DePreSys is consis-
tent with forcing from SST and associated precipitation
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FIG. 6. Role of the Pacific in the predicted climate impacts over North America. (a) DJFMAM difference between precipitation (% of
the mean) averaged over years 2-6 from the DePreSys hindcasts initialized in 1997-2005 minus years 2-6 from DePreSys hindcasts
initialized from 1968 to 1990. Anomalies are relative to the same difference in NoAssim. (b) As in (a), but for the 250-hPa GEOPOT (m).
(c) 1999-2009 mean 250-hPa GEOPOT from NCEP reanalysis minus 1970-94. Note that a trend is removed from each grid point from the
NCEP data as other observed data (see text). (d)—(f) Asin (a)—(c), but for JJASON. Stippling shows where anomalies are significant at the

p = 0.1 based on a two-sided Student’s ¢ test.

anomalies over the Pacific (Figs. 6a,d). Thus, Fig. 6
suggests that the Pacific SSTs exert an important in-
fluence on the North American climate in the DePreSys
hindcasts initialized before and after the mid-1990s, similar
to findings by previous studies (Seager et al. 2005b; Dai
2013; Meehl et al. 2012).

Finally, many studies suggest that Atlantic SST anom-
alies can influence Pacific SST (Dong et al. 2006; Sutton
and Hodson 2007; Zhang and Delworth 2007; Kushnir
et al. 2010; Kucharski et al. 2011; Chikamoto et al. 2012).
Thus, the predicted Pacific SSTs in DePreSys could be
a coupled response to warm Atlantic SSTs. However,
given the proposed mechanisms of the IPO (Meehl and
Hu 2006; Power and Colman 2006), it is possible that
Pacific SST anomalies developed independently of the
Atlantic. Further experiments are needed to elucidate
any Atlantic influence on Pacific SSTs in these hindcasts.

5. Conclusions

This study has investigated the impact of initialization
on predictions of changes in seasonal surface climate

associated with the mid-1990s warming of the North At-
lantic. To do so we analyzed results from the Met Office
decadal prediction system (DePreSys), examining the
differences between hindcasts initialized before and af-
ter the warming, relative to the differences found in
hindcasts initialized without the use of observations. By
focusing on forecast years 2-6, we have demonstrated
that the impact of initialization lasts beyond the first year,
even over land. The main results are as follows:

o DePreSys successfully predicts the persistence and de-
velopment of the global pattern of sea surface temper-
ature (SST) anomalies over forecast years 2-6 following
the mid-1990s—particularly, warm anomalies in the
North Atlantic and cool anomalies in the tropical
eastern Pacific.

o Associated with the SST anomalies, DePreSys pre-
dicts significant anomalies in the surface climate over
land as well as ocean in all seasons—specifically,
anomalies in surface air temperature (SAT), sea level
pressure (SLP), and precipitation over North America,
northwestern Europe, and the tropical North Atlantic.
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e Many predicted anomalies are similar to those ob-
served, especially warm and dry conditions over North
America in all seasons, low SLP and increased rainfall
over northern Europe in JJA, and mild temperatures
over western Europe in MAM. DePreSys also cap-
tures low SLP and increased rainfall in the tropics.
However, DePreSys does not predict all the observed
anomalies, especially over Europe in DJF, where
DePreSys predicts the wrong sign of the North Atlan-
tic Oscillation. Such errors highlight the need to improve
the models used for near-term climate prediction.

o The predicted anomalies in SAT and precipitation
over North America are consistent with those related
to warm North Atlantic SSTs in the model (Sutton and
Hodson 2005; Knight et al. 2006). However, it is
demonstrated that the Pacific SST anomalies also play
a role in the DePreSys predictions of surface climate
over North America.

The similarity of the simulated changes with that ob-
served provides further evidence that the changes in the
ocean played a significant role in the observed decadal
variability of surface climate variables and, importantly,
gives encouragement for the prospects of providing use-
ful near-term predictions of climate variables over land.
The results also suggest that changes in SST in both the
Atlantic and in the Pacific during the mid-1990s were
important for surface climate impacts, particularly over
North America. Therefore, this study highlights the need
for future research to address, for example, the relative
role of Atlantic and Pacific SST anomalies for the pre-
dicted impacts, and the origin of skill in predicting the
Pacific SSTs. Finally, we believe that the case study ap-
proach is a fruitful one for making progress in under-
standing the capabilities and limitations of decadal
climate prediction systems. Distinguishing the role of
model errors from errors in initialization and other sources
is a difficult challenge; in this context, it would be valu-
able to repeat our study using results from other systems
and to apply a similar approach to other case studies.
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