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Abstract. We compare future changes in global mean tem-distribution. This design decision (a legacy of previous as-
perature in response to different future scenarios whichsessments) is likely to lead concentration-driven experiments
for the first time, arise from emission-driven rather thanto under-sample strong feedback responses in future pro-
concentration-driven perturbed parameter ensemble of gections. Our ensemble of emission-driven simulations span
global climate model (GCM). These new GCM simulations the global temperature response of the CMIP5 emission-
sample uncertainties in atmospheric feedbacks, land camriven simulations, except at the low end. Combinations
bon cycle, ocean physics and aerosol sulphur cycle proeof low climate sensitivity and low carbon cycle feedbacks
cesses. We find broader ranges of projected temperatudead to a number of CMIP5 responses to lie below our en-
responses arising when considering emission rather thaeemble range. The ensemble simulates a number of high-
concentration-driven simulations (with 10-90th percentileend responses which lie above the CMIP5 carbon cycle
ranges of 1.7 K for the aggressive mitigation scenario, uprange. These high-end simulations can be linked to sam-
to 3.9K for the high-end, business as usual scenario). Apling a number of stronger carbon cycle feedbacks and to
small minority of simulations resulting from combinations sampling climate sensitivities above 4.5K. This latter as-
of strong atmospheric feedbacks and carbon cycle responseggct highlights the priority in identifying real-world climate-
show temperature increases in excess of 9K (RCP8.5) andensitivity constraints which, if achieved, would lead to re-
even under aggressive mitigation (RCP2.6) temperatures iductions on the upper bound of projected global mean tem-
excess of 4K. While the simulations point to much larger perature change. The ensembles of simulations presented
temperature ranges for emission-driven experiments, theyere provides a framework to explore relationships between
do not change existing expectations (based on previoupresent-day observables and future changes, while the large
concentration-driven experiments) on the timescales ovespread of future-projected changes highlights the ongoing
which different sources of uncertainty are important. Theneed for such work.

new simulations sample a range of future atmospheric con-

centrations for each emission scenario. Both in the case

of SRES A1B and the Representative Concentration Path-

ways (RCPs), the concentration scenarios used to drive GCM

ensembles, lies towards the lower end of our simulated
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96 B. B. B. Booth et al.: Emission-driven global change

1 Introduction provided using simpler model frameworks which rely on
global energy balance assumptions to constrain the range of
There are important unknowns both in how we under-future changes. At the simplest level these relate changes in
stand the current climate system and future socio-economiclimate forcing to global mean temperature change based on
change, which lead to a broad spread in future projectecassumptions about the nature of the ocean heat uptake and
global mean temperature changé3ox and Stephenson sensitivity of climate feedbacks, but more commonly are ca-
2007 Hawkins and Sutton2009. The unknowns exter- pable of translating global emission changes into concen-
nal to the climate processes relate to different future pathtrations and therefore global temperatures. These relation-
ways of population change, economic growth, technologyships form the basis of simple climate models (SCMs) and
development and energy usBlakicenovic et al. 2000, even some Earth system models of intermediate complexity
while uncertainties in climate feedbackenutti and Heger| (EMICs), which in turn are often used as the climate compo-
2008 Collins et al, 2017 and carbon cycle processes nent of integrated assessment models (IAMs). These model
(Friedlingstein et a).2006 Booth et al, 20123 alongside  frameworks enable much more exhaustive sampling of possi-
processes which drive natural variabilityee et al, 2006 ble future projections based on different emission scenarios,
lead to differences in how the climate responds to theseand are capable of rapidly sampling uncertainties in the re-
socio-economic changes. On short lead times (10-15yr) insponses. For example, the future projection advice in the last
ternal variability represents a large fraction of the total un-IPCC assessment report used an SCM to synthesise the infor-
certainty, with the uncertainties in model response becomingnation on future projections (Fig. 10.26, WG1 SPRCC,
more dominant as the anthropogenic signal increases througk007). Similarly, Murphy et al.(2009 make use of an SCM
the 21st century. By the end of the century, differences into capture the response of a number of GCM experiments de-
socio-economic pathways which diverge from present-daysigned to sample different climate uncertainties, and provide
dominate the global mean temperature spread. Yet much gbrojection information based on how these processes com-
our existing information on how these uncertainties play outbine within the SCM. Credibility of projections using these
is based on general circulation models (GCMs), driven by fu-tools arises from their ability to capture the range of different
ture changes in atmospheric greenhouse gas concentratiofigure responses of a particular GCM, using a single SCM
(Hawkins and Suttor2009, a framework that explicitly ig-  configuration. While many of these tools provide only in-
nores uncertainties in carbon cycle processe®dlingstein  formation on global mean temperature, models on the more
et al, 2006, which relate emissions to global concentrations. complex end of this spectrum (such as EMICs) often extend
As a result, emission-driven projections have largely reliedthese approaches to include spatial scales and other variables.
on simpler modelling frameworks and to date, no study has Here, in a complementary approach to the multi-model
explored future global mean temperature uncertainty fromGCM assessments of climate uncertainties, we make use of
the emission-driven paradigm, using ensembles of full car-a new ensemble of simulations which samples uncertainty
bon cycle GCMs. within a single coupled climate model GCM (HadCM3C)
GCMs and Earth system models (ESMs) form the top ofusing a perturbed physics or perturbed parameter approach.
the hierarchy of climate modelling tools. The driving mo- Murphy et al.(2004 demonstrated that uncertainties in the
tivation behind these models is to represent the climate aphysical model’s atmospheric and surface parameters could
a process level. The response of these models to differaccount for a very large fraction of the uncertainty in Cli-
ences in future socio-economic pathways is an emergeninate Sensitivity (the amount the climate would be expected
rather than a prescribed property, which results from the into warm in response to a doubling of @OSince then sim-
teraction of climate processes with the future concentratiorilar perturbations to the atmosphere-ocean configuration of
(GCM) or emission (ESM) changes. In contrast, computa-this model have been used to explore uncertainties in tran-
tionally faster climate simulation tools prescribe the magni- sient climate changeCpllins et al, 2006 2011). This ap-
tude of the response for some or all climate components (ofproach has been extended to look at ocean physics uncer-
ten calibrated against the emergent GCM/ESM simulationtainty (Collins et al, 2007 Brierley et al, 2010 and the land
responses). GCMs/ESMs are computationally very expen€arbon cycleBooth et al, 20123. In this latter studyBooth
sive to run (with some state-of-the-art configurations capa-et al. (20123 noted that the uncertainty in future climate
ble of taking more than a year to simulate 240 climate modelprojections arising from land carbon cycle processes con-
years) and so there are limited realisations of these modelgibuted comparably to future projection uncertainty as at-
available. Increasingly we see ESMs incorporating processesospheric feedbacks. The impact of these uncertainties and
controlling the exchange of carbon around the climate systheir interactions, together with perturbations to the sulphur
tem, which are capable of being driven directly by emissions,cycle, were explored within a single 57-member ensemble
rather than relying on future concentration pathways. How-(Lambert et al.2013 for a central SRES scenario, A1B.
ever, these remain a minority of available simulations. Here we present a further two experiments which extend
Due to these computational limits on the numbers of GCMthe future projections from this ensemble of HadCM3C sim-
simulations, much current climate projection information is ulations to encompass a high-end business as usual scenario
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B. B. B. Booth et al.: Emission-driven global change 97

and a scenario for future emissions under aggressive miti- These 4 separate ensembles give us 4 different sets of
gation. These simulations enable us to explore some of th&7 parameter combinations, from which we construct a sin-
implications for projections, arising from uncertainties in the gle ensemble of Earth system model simulations that ex-
modelling components. They also mean we can compare cliplores how uncertainties in the 4 separate Earth system com-
mate responses with CMIP5 models, directly, as emissionponents interact. The details about the experimental design
driven CMIP5 simulations are available for one of these twoof this ensemble for the A1B SRES scenario can be found in
scenarios. Here we reassess what these uncertainties implyambert et al(2013 but here we briefly describe the main
for future changes in atmospheric g@nd global mean points. The first constraint on the experimental design was
temperature, when considered from the perspective of emisthat we could only afford to run an ensemble of 68 mem-
sions driven scenarios (as opposed to atmospheric conceibers. To sample a broad range of combinations and minimise
tration) where the full effect of carbon cycle feedbacks arethe correlations between pairings of individual Earth system
expressed. At the high-end, these simulations complementomponents, the 68-member ensemble was generated using
the new CMIP5 RCP8.5 emission-driven simulations. Forfour 17-member Latin Hypercube designs. This means that
the central SRES A1B and the aggressive mitigation scenari@ach of the 17 parameter combinations for each of the 4 in-
(RCP2.6), these simulations represent a unique sampling dfividual Earth system components appears 4 times in the 68-
emission-driven uncertainty in ESMs. member ensemble. Each of the 68 members was spun up to
achieve a pre-industrial (1860) stable climate control state
(temperature drifts per 100 yr less than 0.01 K and net carbon
fluxes into the land or ocean less than 0.4 GtCyrTo avoid
running scenario simulations for any model variant deemed
grossly unrealistic in its control state, we rejected ensemble

The model which underpins these ensembles (HadCM3) hagwe_mbers based_on the following three criteria. First, we re-
been in use for over 10yr. The spatial resolution is coarsefuireéd models with control states that had top of atmosphere
than a number of more recent models but still performsradiative imbalance no greater than found in the previous at-

credibly (relative to multi-model GCMs) when compared to MOSPheric physics ensemblédllins et al, 2011) and all 68
observed climateReichler and Kim 2008. The relatively members passed. The second criterion rejected 10 models

lower resolution means that the computational cost of run-Where either tropical or boreal forests were largely absent.

ning a number of versions of the model (an ensemble) tol Nirdly, one simulation was rejected as it had formed an ice

explore uncertainty is affordable. This is what is done hereWerld with 1860 boundary conditions (with global tempera-

using HadCM3C, a coupled carbon cycle configuration (de_tures 10 below 1860 values). This left 57 simulations which

scribed inBooth et al, 20123 of the Atmospheric-Oceanic WeTe subsequently run on to simulate the historical and fu-
version, HadCM3ollins et al, 2011). ture scenarios presented here. We will refer to this resulting

57 ensemble as the Earth system ensemble (or ESE) and we
run this for three emission scenarios as described in the next

2 Ensembles and data

2.1 Perturbed parameter ensembles of HadCM3C

The framework presented here is the culmination of previ-
ous experiments to explore the uncertainty in future climate’*""*
projections, using ensembles of GCM simulations, whichS€ction-
each sample plausible model variants in a different Earth sys- i
tem componentNlurphy et al, 2007. There were 4 previ- 22 Scenarios
ous ensembles of HadCM3 (each with 17 members) which

sampled uncertain parameters in the land and atmospherid€’® We consider 3 future emission pathways, one
physics, land carbon cycle, ocean physics and aerosol sulSRES A1B) chosen to provide continuity with previous en-
phur cycle, respectively. The original atmospheric ensem-S€mbles, and two (RCP8.5 and RCP2.6) chosen to sample
ble explored parameter uncertainty in convection, radia-tn€ full spread of scenarios used by CMIPS simulations.

tion, gravity wave drag, dynamics, boundary layer and land The first of these pathways, the SRES A1B scenario
surface parameterisation€dllins et al, 201): the ocean (referred to hereafter as A1B) represents future emissions

physics ensemble explored mixed layer, vertical mixing, ad-ToM greenhouse gases and aerosols under a central non-
vection and eddy mixing parameterisatio@ollins et al, _ iNtervention socio-economic scenario. The implementation

2007): The sulphur cycle physics ensemble explored para-Of the scenario data to drive the Earth system ensemble is
metric uncertainty in sulphate formation and removal path-fully described inCollins et al(2008. The exception is C®
ways and direct scattering properties (discusselflimphy which, in line with the experimental design, is prescribed as
et al, 2007 Lambert et al.2013. The land carbon cycle en- &7 emission rather than an atmospheric concentration (as de-
semble explored parameters involved in plant competition SCribed inBooth etal, 20123.

temperature controls on photosynthesis and respiration, leaf 11€ representative concentration pathways (RCPs) are a
nitrogen, sensitivity to C@change and soil moisture con- SCcenario set containing emissions, concentrations and land

trols on evapotranspiratioB6oth et al, 20123. use traject(_)ries\(an_Vuuren et al.2011). They are intended
to be consistent with, and span the plausible range of, the
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98 B. B. B. Booth et al.: Emission-driven global change

current scenario literature and will form the basis of the mod-precursors (S®and DMS) and the sulphate formation and
elling work that contributes to the fifth assessment report ofremoval pathways and uses background cloud droplet num-
the IPCC through the CMIP5 exercisaf/lor et al, 2012. ber to account for natural aerosols that are not explicitly
The two most extreme pathways are examined here. RCP8.EepresentedJones et al.2001). Consequently, where im-
lies at the upper end of these pathways and is likely to repportant time variations in non-sulphate aerosols played im-
resent a very high baseline emissions scendfm (Vuuren  portant roles (such as changes in black carbon emissions
etal, 2011). The 8.5 denotes the approximate radiative forc-in the monsoon region) these simulations would be missing
ing, in Wm™2, in 2100 (as estimated by the IAMs used to these regional effects. On the global scale, however, histori-
develop the RCP). These concentration pathways will typi-cal aerosol changes have been dominated by sulphates, and
cally be used for atmosphere-ocean general circulation modhere the simulations would be expected to be able to capture
els (AOGCM), and while individual AOGCMs may differ these sulphate changes. Both the ESE and the HadGEM2ES
somewhat in the magnitude of modelled radiative forcing, theconfiguration, described idones et al(2011), represent the
RCP value is a good indicator of the typical radiative forcing dynamical response of vegetation to climate, but differ on
at the end of the century. how they account for human-induced land cover change.
In addition to concentration-driven simulations, core sim- Unlike HadGEM2ES, which imposes a time-varying land
ulations for CMIP5 from earth system models include emis-use change, the ESE instead uses a time-invariant land use
sions driven simulations of the 20th century RCP8.5. Thesanap and so does not capture the temporal variability in
are based on the harmonised emissions recommended fétwuman-induced land cover changes. Another aspect where
CMIP5 (Meinshausen et al20118. Prescribing emissions, the HadCM3C scenario implementation also differs from
rather than concentrations, enables the carbon cycle prajones et al(2011), is the treatment of C® Similarly to the
cesses within a GCM to calculate the resulting@0Oncen-  emission-driven RCP8.5 scenaridaflor et al, 2012, the
tration changes explicitly. When the subsequenp€@hcen-  HadCM3C prescribes C£emission time series rather than
trations are calculated (either in CMIP5 simulations or theconcentrations.
ESE) they may result in higher or lower concentrations, and Historical simulations from 1860 onwards were performed
therefore radiative forcing, than the RCP concentration pathfor every configuration using SRES datasdtanibert et
way. The comparison with CMIP5 simulations is only done al., 2013. There are some differences, mainly towards the
for RCP8.5, as this is the only emission-driven RCP proposednd of the century, between SRES and RCP historical driv-
for the CMIP5 exercise; however, harmonised emissions proing data used in the ESE experiments which could lead
files for each RCP do exisMeinshausen et al2011h). to small differences in simulation of the historical climate.
The other RCP examined in the ESE here is RCP2.6. Thig-or this reason, parallel RCP historical simulations were
is intended to produce a radiative forcing in 2100 of aroundalso performed, initiated from the corresponding SRES 1945
2.6 Wn12. Unlike the other pathways considered here (or historical state. The SRES future scenario (A1B) was ex-
more broadly within other sets drawn from SRES scenarios)tended from the SRES historical simulations. The RCP2.6
this pathway is representative of scenarios including extenand RCP8.5 (which diverge from 2005) were both extended
sive and coherent mitigation of greenhouse gas emissiongrom the RCP historical simulations (1945-2005) which ex-
Radiative forcing peaks at 3WTmA in the next 40 yr and then tended from the first half of the SRES historical simulations
declines to 2.6 Wm? by the end of the century. RCP2.6 (1860-1945). This design was adopted as a precaution, to
marks the first aggressive mitigation scenario used extenminimise the climate impact from switching from SRES to
sively by the full Climate Model Intercomparison Project RCP historical forcings immediately prior to starting the fu-
(CMIP). Within the fifth phase of CMIP5, however, this ture scenario simulations. The SRES/RCP historical differ-
was only done using concentration pathwaVay(or et al, ences, where they exist, arise either from re-evaluation of
2012. To reiterate, there is no official emission-driven equiv- the underlying driving data between publication in the SRES
alent multi-model simulations with which to compare the and RCP datasets, or due to differences in how these are im-
ESE simulations presented here, and in this study emissioplemented in the model. The parallel historical simulations
data for the ESE’s RCP2.6 is based Meinshausen et al. ensures that the future SRES A1B response extended from
(2011b. the corresponding SRES historical simulation and the future
For the two RCP emission-driven experiments simulatedRCP responses extended from the corresponding RCP his-
by the ESE, the implementation of the scenario-driving datatorical simulations, in a clean way. Where quantitative,CO
is as described for HadGEM2ESJones et al2011). There  or temperature responses are subsequently quoted, or illus-
are a number of model processes (typically aerosol speciesated, they are done so relative to the corresponding histori-
other than sulphates) that are included in the HadGEMZ2cal extensions, noted above.
models but which are not represented with the HadCM3C
framework used in the ESE (for example black carbon,
biogenic and dust aerosols). The HadCM3C implementa-
tion represents natural and industrial emissions of sulphate
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(A) ESE: Global Temperature Change (B) Uncertainty in decadal mean temperature
100~ , A | A

Temperature (K)
Fraction of total variance [%)]

1900 1950 2000 2050 072010 2020 2030 2040 2050 2060 2070 2080 2090 2100
date (year) Year

Fig. 1. The global mean temperature response to RCP and SRES scenarios. The projected response to RCP8.5 (red), SRES A1B (yellow) an
RCP2.6 (blue) are shown for the ESE ensenghlewith respect to the 1900 to 2000 baseline. The mean response of each ensemble is shown
(bold line). The observations (HadCRUT3) are overplotted in light blue for the historical period. Differences between the mean ensemble
response and the observations are evident in the last 10 yr, though the observations are still within the ESE di¢B)tsitaws the fraction
of total variance in decadal global mean surface air temperature projections explained by the scenarios uncertainty (green), model respons
(blue) and internal variability of the climate system (orange), calculated using the methodology desdrbedtiims and Sutto2009.

2.3 CMIP5 data cycle processes (which were not quantifiable in their analysis

due to availability of simulations).
Data for atmospheric C£and global temperature change is  We show that the global mean temperature response, aris-
available for 10 CMIP5 emission-driven simulations (avail- ing from the earth system uncertainties explored in the ESE,
able for the single RCP8.5 future scenario described abovejives rise to a broad spread in future responses (Fig. 1a). By
at the time of writing. These models are: BNU-ESM, 2011, the median ensemble response (RCP scenarios) is al-
CanESM2, GFDL-ESM2, HadGEMZ2ES, INMCM4, IPSL- ready 1.1K above the 1900-2000 baseline climate. In con-
CM5A-LR, MIROC-ESM, MPI-ESM-LR, MRI-ESM1 and trast, the observations warm by only 0.5K relative to the
CESM1-BGC. GFDL-ESM2M also exists in the archive (dif- same baseline, though they still lie within the ESE envelope.
fering from GFDL-ESM2G presented here, only in the ocean  Future temperature projections diverge depending on dif-
physics representation). Given the strong similarity in re-ferences in the emissions scenario, ranging between a 2.3K
sponse between these two configurations, we have considnedian response above baseline for the aggressive mitiga-
ered them here, for global mean €@nd temperature re- tion scenario, to a median response of 6.1 K for the high-end,
sponses, to be one model. The historical and future scenaribusiness as usual scenario. The spread of these responses
used to drive these CMIP5 models is discussed in the previis broader than previous concentration-driven GCM simula-
ous section. Initial analysis of these CMIP5 emission-driventions, and is discussed further in the following sections.
runs appears iArora et al.(2013 andGillett et al.(2013 While the emission-driven ESE simulations point towards

a greater projection uncertainty for global mean temperature

than previous concentration-driven simulations, they do not

3 Results imply any fundamental change to the timescale on which
different sources of uncertainties play dominant roles. Pre-
3.1 Implications for future projections vious work using concentration-driven GCMsgwkins and

Sutton 2009 point to the role that different sources of cli-

As acknowledged itHawkins and Suttoif2009), “progress ~ mate projection uncertainty play, on different timescales. De-
in climate science may sometimes broaden rather than naSPite marked increases in future projection spread within
row uncertainty”. They were referring to processes whichthe emission-driven ensemble, the ESE produces a remark-
lie outside current climate modelling systems and the impac@Ply similar picture (Fig. 1b). This figure compares the frac-
that quantification will have for the spread of responses wheriion of the total variance for each decade ahead, explained
they are included. Of course the underlying uncertainty hady the scenario, model response or internal variability vari-
not really increased in any real sense, but rather the increase’ce (details of the method are describedHawkins and
spread accounts for uncertain processes which previously layutton(2009). Over the shorter 30-50yr term, the impact
outside the quantifiable framework. The primary example atof different emissions scenarios or adoption (or not) of ex-
the time Hawkins and Suttor2009 was written was carbon plicit climate mitigation policies is not a significant factor

www.earth-syst-dynam.net/4/95/2013/ Earth Syst. Dynam., 4, 9568 2013



100 B. B. B. Booth et al.: Emission-driven global change

Table 1.The distribution of the range of Atmospheric @(ppm) and global temperature (K) responses in ESE, expressed as a change from
their pre-industrial values, are given below. These give the lower bound, 10th percentile, 25th percentile, mean, 75th and 90th percentiles
and the upper bound for each scenario. The same statistics are also provided for the ensemble if the high-climate sensitivity simulations are
excluded from the distribution. The temperatures are based on 5yr averages at the end of the century, in Kelvin.ig tieeCD99 value

in ppm. Comparable statistics are provided for concentration-driven SRES A1B.

Lower — yip 25th e dian S g0t UPPET 16 90
bound percentile percentile bound
Full ESE range
RCP8.5 CQo 808 864 998 1106 1234 1389 1596 525
Temp. 4.0 4.2 51 6.1 7.2 8.1 9.3 3.9
SRES A1B CQ 615 635 723 794 876 972 1099 367
Temp. 25 2.8 3.6 4.3 5.2 6.1 7.3 3.3
RCP2.6 Co 387 390 422 449 474 514 574 124
Temp. 1.3 1.5 2.0 2.3 2.6 3.2 4.1 1.7

ESE range subsampled to exclude climate sensitivities above the CMIP5 range

RCP8.5 CQ 808 821 959 1078 1193 1374 1596 553
Temp. 4.0 4.2 4.9 55 6.0 6.8 8.1 2.6
SRESA1B CGQ 615 617 689 771 854 932 1060 315
Temp. 25 2.9 3.3 3.7 4.1 4.8 5.7 1.9
RCP2.6 Co 387 402 420 441 465 486 496 84
Temp. 1.3 1.4 1.7 2.0 2.3 2.6 3.2 1.2
Concentration-driven ensemble sampling the same atmospheric physics
AlB CO, conc. 708
Temp. 25 2.6 3.0 3.6 4.1 4.5 4.7 1.9

in determining the global mean temperature range. Here, théo the comparable analysis on the sources of uncertainty
key uncertainties remain in climate response (largely physfrom the concentration-driven paradigm (Fig. 1b compared
ical feedbacks) and internal variability within the climate to Hawkins and Sutton2009. Differences in the future
system (Fig. 1b). Whilst differences in emissions pathwayssocio-economic pathway is still the dominant uncertainty by
will not significantly affect temperatures during this period, 2100, despite the increase in model uncertainty exhibited
it should be noted that emissions and mitigation actions ovein these simulations. Differences between the ensemble me-
the next 30 yr will be the significant determinant of climate dian responses of the two emission pathways which bound
as we move towards the end of the century. the high- and low-end (RCP8.5 and RCP2.6) are larger than
Figure 1b identifies a scenario component, albeit a smalthe Hawkins and Suttoif2009 range, largely due to the in-
contribution, to the total variance in the next 30yr. This is clusion in this analysis of an emissions pathways which ac-
in contrast with theHawkins and Suttoif2009 assessment counts for aggressive mitigation (RCP2.6) and one which lies
where there was little evidence that scenarios make an imeloser to the upper end of business as usual type scenarios
pact on this time frame. Its presence in the ESE projectiongcompared to the upper-most SRES scenario (A2) used in
more to do with using different implementations of historical Hawkins and Suttor2009.
forcing datasets in our study (SRES and RCP) than implying Although the spread of future responses within the emis-
that emission-driven runs lead to greater near term scenarision paradigm exceeds that documented previously for
uncertainty. The reason this was not seerHawkins and  concentration-driven projections (e.glawkins and Sutton
Sutton (2009 was that all their simulations shared a com- 2009, adopting smaller future emission profiles is still effec-
mon historical forcing dataset. It highlights that near time tive in reducing future temperature uncertainty. The model
projections are sensitive to uncertainties in how we representesponse uncertainty (using simulated spread between 10—
the past, even if this sensitivity is much smaller than model90 percentiles) more than doubles from 1.7 K in RCP2.6 to
uncertainty and internal variability. 3.9Kin RCP8.5 (Table 1). Figure 1b is a useful way of visu-
As we look out to the end of the century, uncertainties ally representing the contribution of scenario, model and in-
concerning future global temperatures are rapidly increasternal variability for future projections over the next century.
ing and differences between different emission scenariost is worth noting, though, that what is not characterised here
are becoming apparent (Fig. 1a). This is remarkably similar
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B. B. B. Booth et al.: Emission-driven global change 101

is any non-linear dependence of the climate model responsg RCP8.5). Even under aggressive mitigation, a small num-

on the scenario (such as describedip et al,, 2011). ber of models (Fig. 2) suggest a large global mean temper-
ature response is possible (with one model suggesting CO
3.2 Responses of the earth system ensemble could exceed 500 ppm, and with 3 models suggesting temper-

ature responses in excess of 4 K), implying that high levels of

We can break down the plume of future projections (Fig. 1a)climate change cannot be ruled out — something we return to
into the component atmospheric €@nd temperature re- in the Discussion and Conclusions.
sponses for each scenario (Fig. 2). For RCP8.5 the &@ For the SRES A1B scenario (chosen as a central marker
temperatures continue to rise during the 20th century, reachscenario within the SRES range) the 2100 Cahd tem-
ing 1106 ppm (ensemble median, 864-1389 ppm 10-90 perperature changes fall between RCP2.6 and RCP8.5 (median
centile range, see Table 1 for summary statistics) and 6.1 K794 ppm and 10-90 range 635-972 ppm; median 4.3K, 10—
(ensemble median, 4.2-8.1 K 10-90 percentile range). Thi®0 range 2.8 to 6.1 K). Here we can compare the temper-
can be compared with the projections using the SCM MAG-ature response from the ESE ensemble with that simulated
ICC6 (Meinshausen et al2011H for RCP8.5 Meinshausen by the equivalent concentration-driven ensemi@®lijns
et al, 20113 based on SCM fits to the climate response et al, 2011). The 2100 temperature response lies between
(Meinshausen et al20119 of 19 CMIP3 concentration- 2.50and 7.30Kin A1B, which compares to the much smaller
driven GCMs and 9 simulations from the Coupled Carbontemperature range for the concentration-driven A1B sce-
Cycle Climate Model Intercomparison Project'({@P). The nario between 2.50 and 4.65K (black and orange box and
ESE projections span the MAGICC6 RCP8.5£44nd global  whisker bars, Fig. 2d). The concentration-driven simula-
temperature responses over the coming century, from the lowions are broadly in line with estimates from multi-model
to the high bounds. In addition, a number of stronger ESE concentration-driven GCMZLpllins et al, 2011).
COp, and temperature responses lie above this SCM range The previous IPCC report put tHiely range to be be-
(something we return to in the next section). tween 1.7 and 4.4K. This upper bound is considerably

Under aggressive mitigation (RCP2.6) the mean ESE resmaller than that suggested by the emission-driven ESE. This
sponse is 451 ppm (10-90 range: 390-514 ppm). The mearange was largely informed by a combination of available
temperature response is 2.3K (10-90 range: 1.5-3.2 K)atmosphere-ocean global climate models (AOGCMs) and
Comparisons with the SCM projections for the same RCP2.@anges from SCMsKnutti and Hegerl(2008 show that a
scenario fleinshausen et al20118 show that the median number of sources of information (notably*/@IP simula-
ESE responses tend to be larger by 2100. Whether this iions and Knutti et al., 2003's emulation) were not avail-
due to real differences between the ESE and response thable to inform the SRES A1B range in previous assessments.
CMIP3/C*MIP simulations would have produced under this Where this information is included for the A2 scenario, this
emission pathway (8MIP experiments were previously car- raises the upper bound for A2 projections by more than
ried out under the A2 scenario), or whether it points to dif- would be expected from the difference in emissions alone
ficulties in establishing carbon cycle responses to emissiorfby almost 2 in the case oKnutti et al, 2003. The tem-
cuts in CQ using SCMs is an open questidnowe et al.  peratures presented here for the ESE in SRES A1B are more
(2009 illustrated that once temperatures have reached a cein line with the underlying uncertainty explored within this
tain level, atmospheric COconcentrations can be remark- latter study.
ably resistant to future reduction, driven by subsequent emis- Lambert et al(2013 show that the ESE temperature dis-
sion cuts. We would expect similar behaviour in any modelstribution range is broadly consistent with what would be
presented here, where the simulated land surface has ceasexipected from interactions between climate and carbon cy-
to be a sink by the time of the emission cuts. While the cle feedbacks using an SCM tuned to reproduce the atmo-
SCM RCP8.5 projections lie within the ESE range, therespheric Collins et al, 2011, carbon cycle Booth et al,
is a suggestion that the SCM response appears to divergg0123, ocean physicgZollins et al, 2007 and sulphur cycle
from ESE projections for the RCP2.6 scenario (where emis{Lambert et al.2013 within the component GCM ensembles
sions are cut) highlighting that this maybe the case. If so, thighat make up the ESE. Whileambert et al.(2013 found
highlights the importance of aggressive mitigation scenariosvidence of interactions between the components, this does
for coupled carbon cycle climate models with which to cali- not lead to a significant broadening of the expected range.
brate SCMs responses, data which is currently not commonhfhe reasons for the increase to the upper temperature bound,
available. AsMeinshausen et a{2011h note, the RCP sce- over many previous estimates, are linked to ranges of climate
narios represent a rather stringent test, as the future pathwaygensitivities and carbon cycle feedbacks and are discussed in
fall well outside the SRES scenarios that the SCM was cali-more detail in the following two sections.
brated against. It is worth highlighting the comparison of the range of

Another evident feature of the RCP2.6 responses is thafuture atmospheric C®concentration projections with the
the inherent uncertainty in ESE climate system representaconcentration pathways used for multi-model ensembles.
tion is much reduced (1.7 K 10-90 range compared to 3.9 KThe SRES A1B concentration (dashed red line, Fig. 2c)
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Fig. 2. Simulated CQ (A, C andE) and TemperaturéB, D andF) for RCP8.5(A andB), SRES A1B(C andD) and RCP2.GE andF)

are shown for the ESE. The concentration profiles (dashed red lines) used by CMIP5 and CMIP3 concentration-driven simulations, are also
shown. The 2100 values from these concentration pathways are marked by the red crosses to the right of these panels. The black box an
whisker bars (right of panels) indicate the full range (thin line), 10th—90th (medium line) and 25th—75th (thick line) and median (central
bar) of the CQ and global mean temperature at the end of the century. Thev@lDe is the annual mean value for 2099 while the global

mean is the mean of the last 5 yr (to minimise the impact of internal variability). For temperature panels, grey box and whisker bars illustrate
the distribution of responses if climate sensitivity values larger than CMIP5 models are excluded. Also included is the distribution of global
mean temperature responses, for the equivalent atmospheric physics response, to the concentration-driven SRES A1B scenario (orange b
and whisker bar, based @vllins et al, 2011).
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lies well toward the lower portion of the ESE distribution. almost the full range of the CMIP5 projections (ranging from
This is a concentration pathway based on the standard Berrjust above MRI-ESM on the lower bound, up past MIROC-
CC configuration, which provided the SRES concentrationsESM on the upper bound). In addition, the ESE ensemble
based on SRES emissions. The carbon cycle feedbacks aimulates responses that lie above the CMIP5 range. There
this model are known to be on the low end of the multi- are reasons why we would expect this. Recent analysis of
model responseFfiedlingstein et a).2006 Booth et al, CMIPS5 carbon cycle responsearfra et al, 2013 suggests
20123. Under SRES A1B, only 11 of the 57 ESE configura- that the upper bound of carbon cycle sensitivity is likely to
tions simulated lower C®concentrations by the end of the be smaller than in tMIP. Uncoupled experiments for the
century compared to the representative pathway/Bern-CC. IfESE which would enable us to make direct comparisons are
contrast, 46 simulations produce larger concentrations thamot currently available. One factor which may contribute to
Bern-CC (704 ppm), reaching as high as 1060.4 ppm in 210@his reduced upper bound is that the model which previously
in one of the models. We see a similar picture in both RCPsmarked the &MIP upper bound, HadCM3L (the lower reso-
examined with the ESE, which is also evident when compardution version of the standard HadCM3C configuration, per-
ing the RCP radiative forcing estimates (Supplement). This igurbed in the ESE), was not submitted to CMIP5. So we
because the SCM used to harmonise emissions with concemvould expect a larger upper bound in the ESE compared
trations for the RCPs and MAGICC6.Mginshausen et al.  to CMIP5 on this basis alone. In addition, perturbations to
2011B is tuned to match the carbon cycle response fromHadCM3C span most of the*®IIP range and sample a

Bern-CC. number of stronger carbon cycle responses than the standard
HadCM3C configurationRooth et al, 20123, which will
3.3 Context within CMIP5 simulations also contribute to the larger upper bound. It is worth noting

that the carbon cycle spread is not centred around a high car-

The Earth system model ensemble responses illustrated ihon feedback model variant. Fifty-one (51) out of 57 ESE
Figs. 1 and 2 are unique, but it is important to relate themsimulations lead to smaller atmospheric £€»ncentrations
to other available information to provide a context for thesein 2100 than the standard HadCM3C, despite many of these
climate projections. The advent of emission-driven histori- configurations having larger climate sensitivities.
cal and future (RCP8.5) simulations under the CMIP5 pro- To understand why the ESE and CMIP5 explore differ-
tocol of experiments provides a common basis for this com-ent parts of the future range, it is useful to compare the cli-
parison. Before doing so, it is worth considering the spreadmate sensitivities of the models which make up these en-
across CMIP5 simulations (Fig. 3). These simulations repressembles (Fig. 3e). The most obvious difference between the
sent a diverse range of processes, parameterisations and rég0 are the 5 atmospheric configurations with climate sen-
olutions, which make it difficult to identify what drives the sitivities above the most sensitive CMIP5 model (MIROC-
CMIPS5 spread in responses. We can, however, note the rolESM). Plotting only those ESE configurations with sensitiv-
of physical climate responses on the physical and carbon cyities within the CMIP5 climate sensitivity range (grey and
cle responses across CMIP5. Here, the ordering of CMIP®lue lines, Fig. 3a) excludes most of the high-temperature re-
future responses for both temperature ang G€only partly  sponses within the ESE ensemble. So differences in the up-
determined by the magnitude of climate sensitivity (indicatedper bound of climate sensitivity appear to explain most, but
by colours, right-hand panels in Fig. 3), illustrating how im- not all, of the temperature responses above the CMIP5 range.
portant the interactions can be between physical and carbokven if we were able to exclude those models with larger
cycle feedbacks in determining the overall response. climate sensitivities, for example through better observation

The first aspect of the comparison of global temperatureconstraints, there would still be a small number of config-
that is immediately evident (Figs. 3a and b) is that while theurations that simulate atmospheric £€bncentrations well
ESE ensemble explores a broader range of temperature, ttebove the CMIP5 range, which even with the smaller upper
ensemble mean is also substantially larger than that of thelimate sensitivity values lead to stronger warming. This is
CMIP5 ensemble mean (6.1 K relative to 4.6 K) and does notrelated to the inclusions of models with stronger carbon cy-
capture temperature responses below 4 K for the RCP8.5 scele feedbacks than CMIP5 (see discussion above). Excluding
nario. While most CMIP5 models (7 out of 10) fall within the the high-sensitivity simulations leads to a slightly lower me-
ESE range, 3 models (INM, GFDL-ESM2 and MRI-ESM) dian ESE CQ concentration by 2100 (1078 ppm compared
explore temperatures below the ESE'’s lower bound (3.1to 1106 ppm in the full ensemble) as climate-carbon cycle
3.4 and 3.3 K, respectively). The reasons for these differencefeedbacks respond to smaller temperature changes across the
at both the high and low end relate to a larger ensemble sizensemble. However, inclusion of models with high-climate
used to sample this range and also relate to differences isensitivities appears to have only small impact on the range
physical climate feedbacks and carbon cycle responses bef atmospheric C@ for business as usual scenarios (10—
tween the two ensembles. These are discussed later. 90 range actually increases for RCP8.5, see Table 1). This

In contrast, when comparing future atmospheric@6n- is in contrast with the mitigation scenario where the climate
centrations (Fig. 3c and d), the ESE is able to encompass
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Fig. 3. Comparison of ESE and CMIP5 responses. The figure shows projecte@E&8t C) and CMIP5 emisRCP8@ andD) responses

for global mean temperatuf@ andB) and atmospheric C&(C andD). For the ESE projections, colours are used to distinguish between
models with climate sensitivities above 4.5 K (orange) and those below (grey). The 4 ESE configurations with the lowest climate sensitivity
configuration are overplotted (dashed blue). The box and whisker bars indicate the full range (thin line), 10th—90th (medium line) and
25th—75th (thick line) and median (central bar). The Box and Whiskers bars present the spread for the full ESE range (orange) and the
ESE range when high-climate sensitivities are excluded (grey) and the CMIP5 range (black). The colours for the CMIP5 pr@ections
andD) indicate the relative magnitude of climate sensitivity of each simulation (based on valigs(E) shows the ranking for CMIP5

model (short, coloured bars) with estimates for the 17 Atmospheric configurations which make up the ESE ensemble (thin black bars). The
original 68 members of the ESE ensemble combines each atmospheric configuration with 4 different combinations of land carbon cycle,
ocean physics and aerosol configuratibarbert et al.2013. The resultant 57 members (after 11 combinations were rejected based on
1860 climate Lambert et al.2013 therefore contains multiple incidences (up to 4) of each of these climate sensitivities (thin black bars).
The climate sensitivities were estimated from 1 % 0@mp experiments for the perturbed HadCM3 configurati@dlips et al, 2017)

and CMIP5 estimates are based Aindrews et al(2012. The exceptions to this are values for NCAR’s CCSM4 (T. Andrews, personal
communications, based on same methodology, 2012) and BNU for which data was not available at the time of writing. Where the CMIP5
configuration used to estimate the climate sensitivity excluded carbon cycle processes, we make the assumption that the inclusion of these
carbon cycle processes in this analysis does not change the climate sensitivity.
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sensitivity does have a larger impact on the range op CO these and other relationships, and these simulations are ex-
responses. pected to help inform this future work.

Returning to the 3 CMIP5 models with low magnitudes of  In the previous section we touched on the relationship be-
global warming, these lie outside the distribution of modelledtween climate sensitivity and the ESE temperature responses.
ESE responses presented here. It is not the case that the coe can use this to illustrate the implication for what we could
ponent of these responses lie outside the ESE model ranggy if we could narrow the climate sensitivity range. The pre-
due to carbon cycle processes (the ESE spans the CMIP&ious IPCC assessment estimated the likely range of climate
atmospheric C@ concentrations, Fig. 3), nor is it the case sensitivity as being between 1.5 and 4.5 K. Work done to con-
that these models are outside the climate sensitivity rangeatrain the range based on observational metrics suggests that
(only INM lies below the ESE range of climate sensitivi- it is very unlikely that the value of the real world lies be-
ties, Fig. 3e). The experimental design (a latin hypercube, seow this range. However, as the last assessment notes: “Val-
Lambert et al.2013 is set up to evenly span ESE response ues substantially higher than 4.5K cannot be excluded, but
space rather than specifically explore the corners (e.g. higlagreement with observations is not as good for those values”.
(low) carbon cycle feedback configurations combined with The relationship between high-climate sensitivity and tem-
high (low) atmospheric feedbacks). The ESE does not samperature response in the ESE implies that if we can constrain
ple this low carbon cycle feedback, or low climate sensitivity the climate sensitivity of the real world below this value,
corner. This is illustrated (Fig. 3, dashed blue lines) by show-then we can exclude many of the warm outliers. In particular,
ing the CQ and temperature responses of 4 ESE configurathis would reduce the worst case temperature response under
tions using the low-climate sensitivity, where carbon cycle RCP2.6, from 4.1 to 3.2 K. For the high-end RCP8.5, reject-
combinations lead to mid/high atmospheric £€ncentra-  ing high-sensitivity models would lead to the 90th percentile,
tions. If there was only a single CMIP5 model in this particu- reducing from 8.1 to 6.8 KKnutti and Heger(2008), in their
lar low-carbon cycle, low sensitivity part of model space, we review of climate sensitivity, show that it is very difficult to
could perhaps assume that this was just chance sampling efarrow this upper range despite drawing information from a
possible model processes. The fact that there are 3 CMIPSery broad range of sources. There are more recent sugges-
models below the ESE range suggests that it is unlikely to beions (Sexton et a].2012 Sexton and Murphy2012 whose
the lower limit of all possible coupled carbon climate model systematic comparisons of modelled and observed climate
responses. Therefore, is it more probable that there are struenay provide a stronger constraint than previously thought,
tural differences in HadCM3C which limits its ability to cap- but this question is still very much an open orgkiqiner
ture the low end of possible emission-driven responses. 2012. These results highlight why it is so important to nar-

row down the range of climate sensitivity consistent with the

real world.
4 Discussion and conclusions We find interesting differences in the behaviour of the car-

bon cycle between different scenarios. There is a relation-
Sampling uncertainty from the emission perspective, ratheship between high-climate sensitivity and high-atmospheric
than concentration, can lead to a very broad range of fuCO; in the RCP2.6 (presumably acting via larger climate-
ture atmospheric concentrations and resulting temperaturearbon cycle feedbacks). The relationship is much weaker
changes. It is important to note here that no attempt has beeander RCP8.5 where, for example, the largesp @3ponse
made to formally assess which of these projections are morés not linked to these high-climate sensitivity configurations.
likely. This is an important step before information from This means that different carbon cycle configurations deter-
these kinds of simulations can be most effectively used inmine the high-end C®response, depending on the future
understanding future climate change. For example, a humemission pathways. This implies that we will need to find
ber of the ESE members diverge from observed@@lues  constraints for different aspects of carbon cycle to narrow
in present-day. This is also evident for CMIP5’s MRI-ESM, future uncertainties depending on the future scenario. Much
which underestimates the observed trend. Uncertainties imore work will need to be done on this, but having an en-
the historical carbon emissions (which are dominated by landsemble of this kind will enable us to identify and explore
use change rather than fossil fuel emission estimates), nanhechanisms behind these questions.
sampled in the ESE will first need to be accounted for be- We have shown that sampling uncertainties arising from
fore we can use these present-day values to weight the moditmospheric physics, land carbon cycle, ocean physics and
els. One of the primary motivations for developing the ESE sulphur cycle can lead to a broad range of future atmo-
simulations presented here is that they will provide a frame-spheric CQ and temperature responses for 3 future emis-
work with which to explore simulated and observed climate sions scenariod.ambert et al(2013 demonstrate that for
changesCox et al.(2013 point to metrics via which we can  A1B this range is largely consistent with what would be ex-
relate observable properties of the climate system to aspect gfected from energy balance and simple carbon cycle assump-
the future projections. The strength of the ESE is that it simu-tions alone, based on information from the component at-
lates broad ranges of responses within which we can explorenospheric physicsQollins et al, 2011), land carbon cycle
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