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ABSTRACT

Remote sensing observations often have correlated errors, but the correlations are typically ignored in data
assimilation for numerical weather prediction. The assumption of zero correlations is often used with data
thinning methods, resulting in a loss of information. As operational centres move towards higher-resolution
forecasting, there is a requirement to retain data providing detail on appropriate scales. Thus an alternative
approach to dealing with observation error correlations is needed. In this article, we consider several
approaches to approximating observation error correlation matrices: diagonal approximations, eigendecom-
position approximations and Markov matrices. These approximations are applied in incremental variational
assimilation experiments with a 1-D shallow water model using synthetic observations. Our experiments
quantify analysis accuracy in comparison with a reference or ‘truth’ trajectory, as well as with analyses using
the ‘true’ observation error covariance matrix. We show that it is often better to include an approximate
correlation structure in the observation error covariance matrix than to incorrectly assume error independence.
Furthermore, by choosing a suitable matrix approximation, it is feasible and computationally cheap to include
error correlation structure in a variational data assimilation algorithm.

Keywords: variational data assimilation, correlated observation errors, approximate covariance matrices,
Markov correlation structures, eigendecompositions, shallow water equations

1. Introduction Observation errors can generally be attributed to four

. . . . main sources:
Data assimilation provides techniques for combining ob-

servations of atmospheric variables with a priori knowledge (1) Instrument noise.
of the atmosphere to obtain a consistent representation (2) Observation operator, or forward model error — For
known as the analysis. The weighted importance of each satellite observations, this includes errors associated
contribution is determined by the size of its associated with the discretisation of the radiative transfer
errors; hence it is crucial to the accuracy of the analysis that equation and errors in the mis-representation of
these errors be correctly specified. gaseous contributors.

Theoretical presentations of data assimilation are usually (3) Representativity error — This is present when the
restricted to cases where observation errors are taken to be observations can resolve spatial scales or features in
random and unbiased. In practice, systematic observation the horizontal or vertical that the model cannot. For

errors are often estimated and removed from observations example, a sharp temperature inversion can be well-

either in a pre-processing step or using an online bias observed using radiosondes but cannot be repre-
correction system (e.g. Dee, 2005). In this article, we are
concerned chiefly with the random component of observa-
tion error, and we will assume that these random errors are @)

unbiased (have a zero mean), but may be correlated.

sented precisely with the current vertical resolution
of atmospheric models.

Pre-processing — For example, if we eliminate all
satellite observations affected by clouds and some
cloud-affected observations pass through the quality
control, then one of the assimilation assumptions is
violated and the cloudy observations will contam-
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errors are independent and uncorrelated. However,
the other three sources of error result in observation
error correlations.

Observation error correlations may be inter-channel
error correlations (for satellite observations) or spatial
correlations associated with an observation footprint (the
region of atmosphere observed) e.g. horizontal, vertical,
along a weather radar ray path etc. Temporal correlations
are excluded from this work, although in principle tempo-
ral correlations (e.g. between successive observations using
the same instrument) could be treated using an enlarged
version of the observation error covariance matrix where
the time dimension was also modelled. Here we also
exclude correlations between observation errors for differ-
ent instrument types, so the observation error covariance
matrix can be considered block diagonal, with each block
corresponding to a different instrument type.

Quantifying observation error correlations is not a
straightforward problem because they can only be esti-
mated in a statistical sense, not observed directly. A
particular issue is that the distinction between biased and
correlated errors can be blurred in practical contexts. For
example, if we take a series of correlated samples, the series
will tend to be smoother than a series of independent
samples, with adjacent and nearby values more likely to be
similar than a series of independent samples. Hence, in
practical situations it would be easy for a sample from a
correlated distribution with a zero mean to be interpreted
as a biased independent sample (Wilks, 1995, section 5.2.3).

Nevertheless, attempts have been made to quantify error
correlation structure for a few different observation types
such as Atmospheric Motion Vectors (Bormann et al.,
2003) and satellite radiances (Sherlock et al., 2003; Stewart
et al., 2009; Bormann and Bauer, 2010; Bormann et al.,
2010; Stewart, 2010; Stewart et al., 2012). Using diagnosed
correlations such as these in an operational assimilation
system is far from straightforward: early attempts by the
UK Met Office using IASI and AIRS data have resulted
in conditioning problems with the 4D-Var minimisation
(Weston, 2011).

Due to the large number of observations, the computa-
tional demands of using observation error correlations
appear to be significant. However, the size of the matrices
to be stored may be reduced if the observation error
covariance matrix has a block-diagonal structure, with
(uncorrelated) blocks corresponding to different instru-
ments or channels. For each block, if the observation sub-
vector is of size p then the observation error covariance
sub-matrix contains (p>+ p)/2 independent elements. When
observations have independent errors, i.e. the errors are
uncorrelated, (p? — p)/2 of these elements are zero, and we
only need represent p elements. For relatively small p,

using full observation covariance sub-matrices appears
feasible, although a form of regularisation may be required
to overcome ill-conditioning (e.g. the recent work of Weston
(2011)). However, for large p, for example when dealing with
spatial correlations, another approach is required.

In current operations, observation errors are usually
assumed uncorrelated. In most cases, to compensate for the
omission of error correlation, the observation error var-
iances are inflated so that the observations have a more
appropriate lower weighting in the analysis (e.g. Collard,
2004). The assumptions of zero correlations and variance
inflation are often used in conjunction with data thinning
methods such as superobbing (Berger and Forsythe, 2004).
Superobbing reduces the density of the data by averaging
the properties of observations in a region and assigning
this average as a single observation value. Under these
assumptions, increasing the observation density beyond
some threshold value has been shown to yield little or no
improvement in analysis accuracy (Liu and Rabier, 2003;
Berger and Forsythe, 2004; Dando et al., 2007). Stewart
et al. (2008) and Stewart (2010) showed that the observa-
tion information content in the analysis is severely de-
graded under the incorrect assumption of independent
observation errors. Such studies, combined with examples
demonstrating that ignoring correlation structure hinders
the use of satellite data [e.g. constraining channel selection
algorithms (Collard, 2007)], suggest that error correlations
for certain observation types have an important role to play
in improving numerical weather forecasting. Indeed, the
inclusion of observation error correlations has been shown
to increase the accuracy of gradients of observed fields
represented in the analysis (Seaman, 1977). Furthermore,
retaining even an approximate error correlation structure
shows clear benefits in terms of analysis information
content (Stewart et al., 2008; Stewart, 2010).

Approximating observation error correlations in numer-
ical weather prediction (NWP) is a relatively new direction
of research but progress has been made. Healy and White
(2005) used circulant matrices to approximate symmetric
Toeplitz observation error covariance matrices. Results
showed that assuming uncorrelated observation errors
gave misleading estimates of information content, but using
an approximate circulant correlation structure was prefer-
able to using no correlations. Fisher (2005) proposed giving
the observation error covariance matrix a block-diagonal
structure, with (uncorrelated) blocks corresponding to
different instruments or channels. Individual block matrices
were approximated by a truncated eigendecomposition. The
method was shown to be successful in representing the true
error correlation structure using a subset of the available
eigenpairs. However, spurious long-range correlations were
observed when too few eigenpairs were used.
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In this article, we carry out numerical experiments using
incremental variational assimilation (Section 2) to address
the following questions: Is it better to model observation
error correlation structure approximately than not at all?
and Is it computationally feasible to model observation error
correlations? We use identical twin experiments so that a
‘truth’ trajectory is available and we are able to consider
analysis errors explicitly. We specify two ‘true’ correlated
observation error covariance matrices that we use to
simulate synthetic observation errors, described in Section
3. However, in the variational minimisation, we use
approximate observation error correlation structures to
compute the cost function, with the aim that these
approximations will provide more accurate analyses than
incorrectly assuming uncorrelated errors, without a large
increase in computational cost. The approximations chosen
include diagonal matrices with inflated variances (Collard,
2004), a truncated eigendecomposition (Fisher, 2005), and
a Markov matrix (Sections 3.2-3.4). The Markov matrix
has not been applied in this context before and has the
advantage of a tri-diagonal inverse.

The experiments are carried out using a 1-D, irrota-
tional, non-linear shallow water model (SWM) described in
Section 4. The experimental design is given in Section 5,
and analysis error measures are discussed in Section 6. The
results (Sections 7, 8 and 9) show that including some
correlation structure, even a basic approximation, often
produces a smaller analysis error than using a diagonal
approximation. We conclude (Section 10) that it is compu-
tationally feasible and advantageous for analysis accuracy
to include approximate observation error correlations in
data assimilation. These encouraging results in a simple
model should be investigated further for the potential
improvement of operational assimilation systems.

2. Variational assimilation

Consider a discretised representation of the true state of the
atmosphere x} € R”, at time #;, where 7 is the total number
of state variables. The analysis used in NWP will consist of
the same model variables as this discretisation and must be
consistent with the first guess or background field and the
actual observations. The background field, x* € R”", is valid
at initial time ¢y and is usually given by a previous forecast.
Observations are available at a sequence of times ¢; and are
denoted y; € R, where p; is the total number of measure-
ments available at time ¢, The background state and
observations will be approximations to the true state of
the atmosphere,

X =xh e, )

yi = hi(xi) + ¢, (2)

where ¢’ € R" are the background errors valid at initial
time, €’ € R”" are the observation errors at time #;, and /; is
the, possibly non-linear, observation operator mapping
from state space to measurement space at time ¢; for
example, a radiative transfer model which simulates
radiances from an input atmospheric profile. The errors
are assumed unbiased and mutually independent, and also
to have covariances B = [[¢’(¢")"] and R, = E[e?(¢?)"].

The objective of variational assimilation is to minimise
the cost function,

Tv0) =5 (g =3B (3= )
n (©)

+% Z(lli(xi) - yi)TR;1(17i(Xi) - i)

subject to the strong constraint that the sequence of model
states must also be a solution to the model equations,

X = m(t07ti7x0)7 (4)

where x; is the model state at time #; and m(¢, t,, x,) is the
non-linear model evolving x, from time #, to time ¢, The
strong constraint given by eq. (4) implies the model is
assumed to be perfect.

The cost function [eq. (3)] measures the weighted sum of
the distances between the model state x, and the back-
ground at the start of the time interval 7y and the sum of the
observation innovations (/4;(x;) —y;) computed with re-
spect to the time of the observation. Variational assimila-
tion therefore provides an initial condition such that
the forecast best fits the observations within the whole
assimilation interval.

Incremental assimilation (Courtier et al., 1994), reduces
the cost of the algorithm by approximating the full non-
linear cost function [eq. (3)] by a series of convex quadratic
cost functions. The minimisation of these cost functions
is constrained by a linear approximation M to the non-
linear model m [eq. (4)]. Each cost function minimisation is
performed iteratively and the resultant solution is used to
update the non-linear model trajectory. Full details of
the procedure are described by Lawless et al. (2005) and
Stewart (2010). We summarise the algorithm here, denoting
k as iteration number and as the full non-linear solution
valid at time ¢; and the k-th iteration.

At the first time step (k=0) define the current guess
X)) = Xt

Loop over k:

(1) Run the non-linear model [eq. (4)] to calculate x,(k)

each time step i.

(2) Calculate the innovation vector for each observation

d" =y, = h(x").

1

at



4 L. M. STEWART ET AL.

(3) Start the inner loop minimisation. Find the value of
5xgk) that minimises the incremental cost function

N : :
T8 (5x7) =3 (0xg” = (x" = xg") B (o — (" — x{))
¢ K NT e ® )
+- > Hox — d") R (H oY — df
3 ;( j ) R )
©)
subject to
5x,(-k) = M(t,,t,, xék))éxék)7

where H; is the linearisation of the observation operator
h; and M(lo,ti,xg")) is the linearisation of the model
m(to,t,-,xg‘)). Both of these linearisations are around the
current state estimate (the non-linear model trajectory
satisfying x = xék) when ¢ = ¢,).

(4) Update the guess field using

xf)k“) = x(()k) + 5x(()k).

(5) Repeat outer loop (Steps 2-5) until the desired
convergence is reached.

In our implementation, the conjugate gradient method
(Golub and van Loan, 1996, section 10.2) is used to carry
out the inner loop minimisation to solve eq. (5). The
maximum number of outer and inner loops performed is 20
and 200, respectively. The outer and inner loops are
terminated once the following criteria are satisfied. For
the outer loop, we require that (Lawless and Nichols, 2006)

(k1) _ g(k)
| JY

<0.01, (6)
1+ |J®|

where the superscripts indicate the outer loop iteration
index. For the inner loop, we require that

[v ]
-7 1 gy, )
[v°]

2

where the subscripts 0, ¢ indicate the inner loop iteration
index and k indicates the outer loop iteration index. With
these stopping criteria and tolerance values, we expect the
converged solution of the minimisation to be accurate to
approximately two decimal places (Gill et al., 1981, section
8.2; Stewart, 2010).

3. Observation error covariance matrices

This article describes incremental variational assimilation
experiments using approximate forms of observation error
covariance matrices to take account of correlated observa-
tion errors in the minimisation. In Section 3.1, we describe

the ‘true’ error covariance structures we use to simulate
synthetic observation errors. In Sections 3.2-3.4, we
explain the choice of the various approximate forms of
observation error covariance matrix we employ in the cost
function. The goal is that these choices will improve the
accuracy of the analysis and have only a modest computa-
tional burden.

3.1. True error covariance structures

For our experiments, we use a 1-D spatial distribution of
observations, with a regular spacing between the observa-
tions. Observation errors are assumed correlated in space
only (no temporal correlations). We use two different forms
of true observation error covariance structure, R,. We
make use of the general decomposition of an observation
error covariance matrix R into a diagonal variance matrix
D € R”? and a correlation matrix C € R”*? such that

R=D'*cD'?, ®)

so that we may vary the observation error variance and
correlation structure separately. Note that if C =7 then R is
diagonal and D is the diagonal matrix of error variances.

In Experiments 1 and 3 we use a true error correlation
matrix with a Markov distribution, C,,, given by

Cylin)) = exp{_'i_L”A’“’} ©)
R

where Ax;, = 0.01 mis the spatial separationand Ly = 0.1 m
is the length scale. The Markov matrix is the resultant
covariance matrix from a first-order autoregression pro-
cess, (Wilks, 1995) and is discussed in more detail in Section
3.3.

In the second experiment the true error correlation
structure follows a SOAR (second-order autoregressive)
distribution. The SOAR error covariance matrix is given by

o i—jlAx —|i —j|Ax
Cs(i,)) = (1 +|£|D> exp{L]D}. (10
R R

The SOAR matrix is an idealised correlation structure
that is often used to model background error correlation
structures in the horizontal (e.g. Ingleby, 2001). It is
commonly employed in preference to a Gaussian structure
because its distribution has longer tails, better at matching
empirical estimates and is better conditioned for inversion
(Haben, 2011; Haben et al., 2011).
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3.2. Diagonal approximation

The diagonal approximation that we use in our experiments
is commonly employed operationally. Diagonal matrices are
simple and numerical efficient: In incremental variational
assimilation, inverse observation error covariance matrices
are required for matrix-vector products in evaluating the
cost function and gradient, where N is the number of
assimilation time steps. When an observation error covar-
iance matrix is diagonal, its inverse will also be diagonal,
resulting in very inexpensive matrix-vector products.

The simplest diagonal approximation of an error covar-
iance matrix is taking the diagonal equal to the true
variances. However, by ignoring entirely the correlated
component of the observation error, the observations will
be overweighted in the analysis because they will appear
more informative than they truly are. Therefore, in order to
compensate for the lack of correlation, a diagonal approx-
imation given by the diagonal of the true matrix scaled by
an inflation factor is used (Hilton et al., 2009). This reduces
the weighting of the observations in the analysis. The
diagonal approximation is now in the form

dad 0 ... 0

R 0 do? ... 0

b= . , (11
o 0 . 0
0 ... 0 dpaﬁ

where d; is the real, positive inflation factor for variance af.

In our experiments, the diagonal matrix representations
are a diagonal matrix of the true error variances [¢7 for
i=1,2,...pineq. (11)], and scalar multiples of this matrix
[d. = p for some scalar u>1, i=1,2,...,p in eq. (11)].
The scalar multiples are chosen to be between two and
four, in line with our earlier 3D-Var information content
results (Stewart et al., 2008; Stewart, 2010) and results
given in Collard (2004). These showed that a two—four
times variance inflation was preferable to a simple diagonal
approximation when observation and background error
correlations were both present; but when there were
correlated observation errors and uncorrelated background
errors, a simple diagonal approximation performed better
than variance inflation.

3.3. Markov matrix

The second approximate form of matrix that we employ is
a Markov matrix. This is a novel choice that has not
previously been reported in the literature for observation
error covariance approximation. The (i, j)th element of a
general Markov matrix, R, is given by

R(i,j) = a*p", (12)

where ¢ is the observation error variance, and 0 <p <1 is
a parameter describing the strength of the correlations.
This matrix has a tri-diagonal inverse (Rodgers, 2000),

1 —p 0 0
| —p 1+p* —p 0
—1 . . .
e, R
—p 1+p° —p
0 0 —p 1

(13)

The storage needed for reconstructing matrix [eq. (13)] is
limited to the value of p, and the number of operations
involved in a matrix-vector product using a tri-diagonal
matrix is the same order as that using a diagonal matrix.
Therefore, calculating the cost function using the Markov
matrix approximation is a possibility for operational
assimilation.

In our experiments, we let p = exp(—Ax,/Lyg), as in
eq. (9). The Markov matrix representations are Markov
structured matrices with length scales L,=0.2m, L, =0.1m,
L, =0.05m and Ly =0.01 m, i.e. double, the same as,
half, and a tenth of the true length scale. These values are
chosen to represent different levels of error dependence. In
Fig. 1, the central row of each Markov matrix is plotted.
Note that as the length scale decreases, the thickness of
the central correlation band decreases. We also test the
Markov matrix representation for the case where Ly is
small enough that C,(i,j) =0 for i#j; this should
produce the same result as using the diagonal approxima-
tion with the true error variances, and is a continuity test
on our system.

Row 500 of 1001 x 1001 Markov matrix

1 T T T T T

0.8 E
0.7 i
0.6 g
0.5 4 i

0.4 1

Row element value

0.2

[
[
03 il 1
1
1
1

0.1 Sl 1

0 P A QI

0 100 200 300 400 500 600 700 800 900 1000
Column number

Fig. 1.  Middle row of a 1001 x 1001 Markov matrix, (9). Dash—
dot line Lz =0.01 m, full line Lz =0.05m, dashed line Lz =0.1m
and dotted line Lz =0.2 m.
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3.4. Eigendecomposition matrix

Starting from the general covariance decomposition [eq.
(8)], Fisher (2005) proposed that the observation error
covariance matrix be approximated using a truncated
eigendecomposition C of the error correlation matrix C,

K
R=D"*(ol + Z (A —o)vv{) D'? = D'2CD'?, (14)

k=1

where (4, v,) is an (eigenvalue, eigenvector) pair of C, K is
the number of leading eigenpairs used in the approxima-
tion, and is chosen such that trace (R) =trace (D). This
ensures that there is no mis-approximation of the total
error variance, since trace (D'/2CD'?)=trace (D). A
formula for may be computed as

K

trace(D) — trace (Dl/2 {E Vs v[] D'/z)
k=1

o= 5

K
trace(D) — trace (Dl/2 {E vkv[] D'/Z)
=1

(15)

using the additive property of the trace function. The
inverse of eq. (14) is easily obtainable and is given by

K
R'=D"2 (a1 + Z (4" =y ) D12
=1

=D 'V2C'D 1~ (16)
The representation [eq. (14)] allows the retention of some of
the true correlation structure, with the user choosing how
accurately to represent the inverse error covariance matrix
[eq. (16)] through the choice of K. Care must be taken to
ensure numerical stability (for example choosing K such
that 2,' — «~! is never too small).

(a)

Eigenspectrum of a Markov matrix (LR=0'1 m)

10° ; ; ; .
(]
N
]
(]
=3
®
>
c
[
(=
©
B
o
o
-
1072 T T T T
0 200 400 600 800 1000
Eigenvalue number
Fig. 2.

matrix.

In Fisher (2005) the leading eigenpairs of C are found
using the Lanczos algorithm. In our experiments, the leading
eigenpairs needed for the representation are pre-computed
using the MATLAB function eigs() (MathWorks,
2009) which uses an implicitly restarted Arnoldi method
(Sorensen, 1992; Lehoucq and Sorensen, 1996).

By studying the eigenspectra of the true error correlation
matrices we can estimate how many eigenpairs are needed
for a good representation. The eigenspectra of a Markov
matrix and a SOAR matrix, both of size 1001 x 1001,
with length scale L, = 0.1 m and spatial separation Ax, =
0.01 m, are plotted in Fig. 2. The plots show that the
eigenvalue size declines sharply as the eigenvalue number
increases. The condition number (ratio of largest to
smallest eigenvalue) for the Markov matrix is 400 and for
the SOAR matrix is 4.8 x 10°. After 100 eigenvalues, 80
and 99% of the overall uncertainty is represented for
the Markov and SOAR matrix respectively — uncertainty
percentages are calculated using (sum of eigenvalues used)/
(sum of all eigenvalues or trace of matrix) x 100%. There-
fore, we use 100 eigenpairs as an empirical upper limit to
the number of eigenpairs used in the assimilation.

The number of eigenpairs we use in our approximations
are K=10, K=20, K=50 and K=100. This represents
1, 2, 5 and 10% of the total number of eigenpairs. An
eigendecomposition (ED) approximation using the full
number of eigenpairs K =1001 is equivalent to using the
true error correlation matrix in the system. Obviously using
all the eigenpairs is an expensive procedure and would not
be attempted operationally. However, in these smaller
dimensioned experiments, knowing the performance of
the assimilation under the true error correlation matrix
allows us to quantify the success of an assimilation using
an approximated correlation matrix relative to the truth.

(b)
Eigenspectrum of a SOAR matrix (L_=0.1 m)
10 T T T T

Log of eigenvalue size

400 600 800

Eigenvalue number

0 200 1000

(a) Eigenspectrum of a 1001 x 1001 Markov error correlation matrix; (b) Eigenspectrum of a 1001 x 1001 SOAR error correlation
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We therefore also run the assimilation using the ED
approximation with the full number of eigenpairs.

4. Shallow water model

In this section we describe the forecast model used in
our experiments. This is a 1-D, non-linear, SWM system
describing the irrotational flow of a single-layer, inviscid
fluid over an object. The SWM has been used for a variety
of assimilation experiments e.g. Lawless et al. (2005, 2008);
Katz et al. (2011); Steward et al. (2012). As an idealised
system, it allows clearer understanding of the results
without the obfuscating complexity of a more realistic
system.

The continuous equations describing 1-D shallow water
flow are given by

Du, 00 _ g% (17)
Dt 0x, oxp
Dl
(ng), e _, (18)
Dt Oxy

on the domain x,, € [0, L], ¢ € [0, T'], where

b = 9 + ui7 (19)
Dt Ot  0x,

and &, = h,(xp) is the height of the bottom orography, u is
the fluid velocity, ¢ =ghyis the geopotential where g is the
gravitational acceleration and A,>0 is the depth of fluid
above the orography. The spatial boundary conditions are
taken to be periodic, so that at any time ¢ € [0, 77,

u(ov [) = M(L7 t)v ¢(07 l) = d)(Lv t)v /’10(0) = ho(L)'

The non-linear shallow water equations are discretised
using a two-time-level semi-implicit, semi-Lagrangian
scheme, described by (Lawless, 2001; Lawless et al., 2003).

The experiments in this article model a flow field
described in Houghton and Kasahara (1968) in which
shallow water motion is forced by some orography. Using
the shallow water egs. (17) and (18), we consider a fluid at
rest when 7 <0, with the geopotential equal to ¢, — ,(xp),
where ¢q is a constant. At t =0 the fluid is set in motion
with a constant velocity u at all grid points, causing a wave
motion to develop outwards from the obstacle in the fluid.
The solution close to the object becomes a steady state
solution (Lawless et al., 2003). We restrict the fluid motions
to be not too highly non-linear so as to keep our
assumptions of linearity as valid as possible. We use a
periodic domain where the boundaries are at a sufficient
distance from the obstacle to ensure any propagating wave
motions in the vicinity of the obstacle respect the asymp-
totic conditions.

The data used in the experiment is based on Case A in
Houghton and Kasahara (1968). We consider a 1-D spatial
domain between [0,10m] equally divided into 1001 grid
points with spatial step Ax, = 0.01 m. The height of the
obstacle in the fluid is given by

ho(xn):{hc(l_z_%) 0<l|xp|<a

0 |xp| <0 or |x,| >a

where /i is the maximum height of the obstacle and « is
half the length over which the base of the obstacle extends.
The values of a and /o are set as: a =40Ax, = 0.4 m,
he =0.05m. The temporal domain is 100 time steps
with step size 1 = 9.2 x 1073 s. At =0 the initial velocity
is up=0.1 ms ~', and the geopotential is ¢(x,) = g(0.2—
h,(xp))where g =10 ms ~2.

5. Twin experiments

Our numerical experiments are performed using an assim-
ilation-forecast system based on an incremental variational
assimilation system implemented for the SWM of Section
4. In order to assess the impact of modelling correlated
observation error structure, we use different approxima-
tions to the observation error covariance matrix in the cost
function, as discussed in Section 3: diagonal approxima-
tions, Markov approximations and ED approximations.
By keeping all other variables the same, any changes in the
analysis trajectory can be attributed to the specification of
the observation errors. In practice, such an approach is not
always possible since the true error covariance matrix is
rarely known explicitly. The 1-D construction of the SWM
means we are considering error correlations between
observations in the horizontal. However, the techniques
we are using could easily be translated to a 1-D vertical
profile, such as the radiance profiles used in 1D-Var.
Therefore our assimilation tests will remain independent
of any discussion on issues of spatial resolution or
horizontal thinning.

An identical twin experiment is performed by running
the non-linear SWM forward in time from the initial
conditions described in Section 4, to generate a true model
solution at each assimilation time step, #j,... . This
is known as the truth trajectory. Observations of fluid
velocity u and geopotential ¢ are sampled from the truth
trajectory. It is assumed that there is an observation at each
grid point, and after every 10 time steps, i.e. 10 sets of 1001
observations in total; this density was chosen to represent a
very well-observed system. Random noise with multivariate
normal distribution N (0, R,) is added as observation error.
The errors in the u and ¢ observations are assumed
mutually uncorrelated so that the observation error vectors
for the u and ¢ fields may be generated independently.
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The correlation structures for the errors are given in
Section 3.1. For most of the experiments, the observation
error variances are set at 0.0004 m?s ~2 for u observations
and 0.04 m*s~* for ¢ observations. Thus the standard
deviation of the noise corresponds to 20% of the mean field
value.

The initial background is taken as the initial truth
trajectory plus random noise from a normal distribution
with mean zero and covariance matrix B,. Experiments 1
and 2 are run with uncorrelated background errors where
the background error variances are set at 0.0002 m?>s ~> for
u observations and 0.02 m*s™* for ¢ observations. In
Experiment 3, we choose the background error variances to
be the same as in the other experiments. However, for this
experiment, the errors are spatially correlated, with a
Markov correlation structure, specified as in eq. (9) with
Axp, =0.01 m and Lg=0.1m.

An incremental data assimilation algorithm is then run
using these observation and background data, with the
covariances used in the calculation of the cost function

taken to be B, for the background error covariance and R,

(an approximate covariance structure) for the observation
error covariance. The time window for the assimilation is
100 model time steps. The assimilation finds an analysis
valid at initial time ¢ =0, for each model grid point. We then
integrate the analysis forward in time to give an updated
forecast. The accuracy of the resulting analysis and forecast
can be evaluated using the error measures described in the
next section. Note that we perform only one analysis and
forecast — we perform no cycling in these experiments.

6. Analysis error measures

We now describe the diagnostics used to evaluate the
success of each approximation. The assimilation is run
using different approximations R, to the true error
covariance matrix R,. We illustrate the comparative
behaviour of the assimilation under different approxima-
tions by comparing:

e Error 1 (El): The norm of the analysis error with
respect to the true solution

!

‘xR/ — x (20)
where x' is the true solution of the original model run from
which the observations are sampled, and Xx X, is the
converged solution to the assimilation problem when the
approximation R, is used in calculating the cost function,
but the observation errors themselves are sampled using the
true error covariance R;;

2

e Error 2 (E2): The percentage norm of the analysis
error in the converged solution relative to the norm
of the true converged solution

* _)_CR’HZ x 100 (1)

|,
where X, is the true converged solution to the assimilation
problem when the true error covariance matrix R, is used
both in calculating the cost function and in sampling the
observation errors.

Errors E1 and E2 provide us with information on the
closeness of different analyses. Since the magnitude of the
¢ field is an order larger than that of the u field, we produce
separate error norms [eqgs. (20) and (21)] for u« and ¢ to
avoid changes in the u field being overshadowed by changes
in the ¢ field.

7. Experiment 1: Markov error correlation
structure

In our first experiment we investigate the impact on
analysis accuracy of using a diagonal matrix, a Markov
matrix and an ED matrix to represent a Markov error
correlation structure. The analysis errors E1 and E2 at
the start of the assimilation window (z=0) for different
approximations to a Markov error correlation structure are
given in Tables 1 and 2 for u and ¢, respectively.

The error in the background field is [|x* — x'||,= 0.32 for
the u field and ||x* — x'||,= 6.32 for the ¢ field. We can see
in Tables 1 and 2 that in all cases the approximation results
in an improvement to the background field. Using the true
error covariance matrix, i.e. a Markov matrix with length
scale Lr=0.1m, produces the smallest analysis errors;

Table 1. Analysis errors in u field at t =0 for different approx-
imations to a Markov error covariance matrix (|| Xg|,= 3.20)

Approximation El: Xg, — x! ‘2 Xg, — Xg, H2 E2 (%)
Truth 0.20 0 0
Diagonal 0.30 0.23 7.2
2 x diagonal 0.31 0.23 7.2
4 x diagonal 0.31 0.24 7.5
Markov (Lg=0.2) 0.21 0.06 1.9
Markov (Lzx=0.1) 0.20 0 0
Markov (Lz =0.05) 0.21 0.05 1.6
Markov (Lz =0.01) 0.27 0.18 5.6
ED (K =10) 0.28 0.19 5.9
ED (K =20) 0.28 0.19 5.9
ED (K =50) 0.25 0.15 4.7
ED (K=100) 0.23 0.10 3.1
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Table 2. Analysis errors in ¢ field at =0 for different approxi-
mations to a Markov error covariance matrix (||Xg||,= 62.64)

Approximation El: HXR/ - x’Hz HXR/ - XRIHZ E2 (%)
Truth 2.35 0 0
Diagonal 3.61 3.04 4.9
2 x diagonal 3.85 3.32 5.3
4 x diagonal 4.11 3.61 5.8
Markov (Lz=0.2) 2.41 0.54 0.9
Markov (Lg=0.1) 2.35 0 0
Markov (Lg =0.05) 2.42 0.67 1.1
Markov (Lg =0.01) 3.06 2.27 3.6
ED (K=10) 3.97 3.25 5.2
ED (K =20) 3.80 3.03 4.8
ED (K =50) 3.33 2.39 3.8
ED (K =100) 2.77 1.56 2.5

the percentage error E2 is zero for this matrix because
R, =R, Using a diagonal matrix approximation results in
the largest analysis errors.

Using a Markov approximation with double (Lg=
0.2 m) or half (Lr=0.05 m), the true length scale results
in a small E2 error of less than 2% for the u and ¢ fields.
This implies that choosing the exact length scale is not
essential to producing accurate results. Also, using a
Markov matrix approximation with length scale between
Lz=02m and Lz =0.05 m results in a smaller E2 error
than that of an ED approximation using 100 eigenpairs.
Using more eigenpairs in the ED approximation produces a
more accurate analysis, but at greater computational
expense because additional eigenpairs must be stored and
used in cost function computations. We can therefore
infer that although using more eigenpairs is beneficial, a
Markov approximation using an approximate length scale
is cheaper and more effective. In the next section, we will
see if the same conclusions are drawn when the true error
covariance matrix follows a non-Markov distribution.

It is worth noting that using an ED approximation with
a small number of eigenpairs can generate a smaller
analysis error than when a diagonal approximation is
used and is comparable with a weakly correlated Markov
approximation. For example, a diagonal matrix approx-
imation results in an E2 error of 7.2% in the u field
compared to a 5.9% error under an ED matrix with 10
eigenpairs and a 5.6% error under a Markov matrix with
length scale Lz =0.01 m. Combined with the results for a
Markov matrix approximation, this implies that it is often
better to include some correlation structure, even if it is a
weak approximation, than none at all.

Similar tests were performed for different observation
frequencies. We found that using more frequent observa-
tions resulted in a small improvement in E2 for the three
matrix approximations tested: a diagonal matrix, a Markov

matrix with Lz =0.05 m and an ED matrix with K=50.
Increasing the frequency of observations had the biggest
impact on the diagonal approximation. Nevertheless, even
when there were observations at every time step (100
observation sets) the error E2 under a diagonal approx-
imation was still significantly larger (5.7%than when a
Markov (1.3%) and an ED approximation (3.4%) were
used.

In the next section we will extend the experiments
performed here to a different choice of true error correla-
tion structure.

8. Experiment 2: SOAR error correlation
structure

In this section we consider the effect of our choice of the
true observation error correlation structure. In Experiment
1, the true error correlation matrix was generated from a
Markov distribution [egs. (8) and (9)]. We now change the
true correlation matrix to represent a SOAR distribution
with length scale Lz =0.1m [eqgs. (8) and (10)]. The matrix
representations used to approximate this correlation struc-
ture are the same as those used in Experiment 1. Using
a SOAR matrix will allow us to determine whether the
Markov approximation also minimises analysis error when
the true correlation structure is not in Markov form, and
how well the ED and diagonal approximations perform in
comparison.

The analysis errors E1 and E2 at 1 =0 for the different
approximations to the SOAR error covariance matrix
are given in Tables 3 and 4, for u and ¢ respectively.
Comparing the results to Tables 1 and 2, we observe that
the qualitative nature of the errors is very similar. For
example, using the true error covariance matrix structure
results in the smallest errors and diagonal approximations
result in the largest errors. The approximations resulting in

Table 3. Analysis errors in u field at =0 for different approx-

imations to a SOAR error covariance matrix (||xg|,= 3.19)
Approximation El: H)_CR/ — x’H2 H)_CR/ — )‘cR,H7 E2 (%)
Truth 0.11 0 0
Diagonal 0.31 0.28 8.8
2 x diagonal 0.32 0.29 9.1
4 x diagonal 0.32 0.30 9.4
Markov (Lgr =0.2) 0.13 0.07 22
Markov (Lg =0.1) 0.15 0.11 34
Markov (Lg =0.05) 0.18 0.15 4.7
Markov (Lg =0.01) 0.27 0.25 7.8
ED (K=10) 0.26 0.24 7.5
ED (K =20) 0.23 0.20 6.3
ED (K =50) 0.15 0.11 34
ED (K =100) 0.13 0.07 22
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Table 4. Analysis errors in ¢ field at 1 =0 for different approxi-
mations to a SOAR error covariance matrix (||xg||,= 62.54)

Approximation El: H)’cR/ —x’H’ HXR/ _XR'Hz E2 (%)
Truth 0.57 0 0
Diagonal 3.36 3.32 5.3
2 x diagonal 3.59 3.55 5.7
4 x diagonal 3.99 3.95 6.3
Markov (Lz=0.2) 0.81 0.63 1.0
Markov (Lz =0.1) 1.18 1.06 1.7
Markov (Lg =0.05) 1.69 1.60 2.6
Markov (Lz=0.01) 2.89 2.84 4.5
ED (K=10) 3.90 3.87 6.2
ED (K =20) 3.71 3.67 5.9
ED (K =50) 1.56 1.45 23
ED (K=100) 1.06 0.85 1.4

the smallest analysis errors are a Markov matrix with
length scale Lz=0.2 m and an ED matrix using 100
eigenpairs. It is intuitive that a Markov matrix with a
longer length scale is preferable, because of the longer tails
in a SOAR function. The E2 error in the u field is also
small for Markov approximations with length scale be-
tween Lz =0.2 m and Lz =0.05 m, compared to a 9.4%
error when a 4 x diagonal approximation is used. Inflated
diagonal approximations perform slightly worse than a
simple diagonal approximation; this is in line with the
information content results in Stewart (2010), when the
background errors were uncorrelated.

It is also expected that an ED matrix using 100
eigenpairs results in a very small analysis error relative to
the converged solution, because as we observed in Section
3.4, 100 eigenpairs represent 99% of the overall uncertainty
in the matrix. It is encouraging that an ED approximation
using even fewer eigenpairs also results in an improved E2
error relative to a diagonal approximation; using 5% of the

(a)
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available eigenpairs results in an E2 error in the ¢ field of
2.3% compared to 5.3% when a diagonal approximation is
used. The El errors in using an ED approximation to
model a SOAR error covariance structure are smaller than
those generated when an ED approximation was used to
model a Markov error covariance structure in Experiment
1. This is because, for a SOAR error covariance matrix,
more uncertainty is represented using the same number
of eigenpairs; as demonstrated in the steeper gradient in
Fig. 2.

It is also interesting to look at individual analysis errors
over the domain. At each grid point the analysis error is
given by the difference between the true analysis and the
analysis resulting from the assimilation. Figures 3 and 4
show the analysis errors in the u and ¢ fields at 1 =0 and
t =50, respectively. By looking at the spread of analysis
errors for the diagonal and Markov approximations, we see
that the difference between the two is not uniform over the
domain, i.e. in some regions, a diagonal approximation is
much worse than a Markov approximation compared to
the average. In real atmospheric systems, such locally larger
errors may lead to severe errors in subsequent forecasts.

Comparing Fig. 3 to Fig. 4, we observe that as the
forecast evolves the analysis errors become smoother. For
the u field, the overall magnitude of the errors remains the
same, but there is a reduction in error for the ¢ field. At the
start of the time window, the diagonal approximation
performs worse than the Markov approximation for both u
and ¢ fields. At the centre of the time window, the errors in
the u field for a Markov and a diagonal approximation are
very similar, but for the ¢ field, the Markov approximation
is still noticeably better. We can explain this by considering
the assumptions on the SWM. The model in this assimila-
tion is assumed perfect, and by construction is well-
behaved, meaning that small errors in the analysis at 1 =0

(b)
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Fig. 3. Analysis errors in (a) u field and (b) ¢ field at the start of the time window. The grey line is for a diagonal approximation and the

black line is for a Markov approximation with Lz =0.2m.
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Fig. 4.  Analysis errors in (a) u field and (b) ¢ field at the centre of the time window, ¢ =50. The grey line is for a diagonal approximation

and the black line is for a Markov approximation with Lz =0.2m. Note that the scale in panel (b) is different from Fig. 3b.

will be smoothed out over time. However, for a more
complex operational system, a slight error in the true
analysis field at r =0 may propagate and grow with time,
resulting in a modified forecast. It would therefore be
interesting to extend these results to an imperfect and more
poorly behaved model system.

Finally in this section we study how the error in the
assimilation depends on the level of noise on the observa-
tions. Previous experiments were run with the standard
deviation of the noise at 20% of the mean field value; here
we vary this value between 1 and 30% . The error in the
assimilation is described by E2, as defined in Section 6
[eq. (21)]. A plot of this error measure vs. the percentage
observation error in the u# and ¢ field is shown in Fig. 5. We
see that for all three approximations studied, the E2 error
increases with the percentage observation error. In the u
field, E2 increases close to linearly with noise level for the

@ 4
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E2

Markov and ED approximation; similarly for the ¢ field
below 20% noise level. However, the diagonal approxima-
tion increases more rapidly with noise level in both fields,
although the gradient becomes more linear as the observa-
tion errors increase. We can conclude that using a
correlated matrix approximation is preferable to a diagonal
one regardless of the level of observation error noise.

9. Experiment 3: correlated background errors

The previous two experiments used uncorrelated back-
ground errors and a diagonal covariance matrix B, We
now consider the effect of correlated background errors.
The true observation error structure is chosen to be the
same as in Experiment 1, i.e. a Markov structure, [eq. (9)
with Lz =0.1]. The background error covariance is taken
to be B,=1R, The background errors are modelled

Percentage observation error

Fig. 5.

Percentage observation error

Plot of E2 against level of observation noise for (a) u field, (b) ¢ field. The solid line is for the diagonal approximation, the dashed

line for the ED approximation with K =50 and the dotted line for the Markov approximation with Lz =0.05m.
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correctly in the experiment, i.e. the random background
errors are sampled from the same distribution as is
modelled in the cost function.

The analysis errors E1 and E2 at r =0 are given in Tables
5 and 6, for u and ¢ respectively. The tables show that the
different approximations to R still have an impact on the
analysis accuracy when the background errors are corre-
lated, and the impact is a similar order of magnitude to
that seen in Experiment 1 (with uncorrelated background
errors). As before, the diagonal approximations give some
of the worst performances. However, unlike Experiment 1,
variance inflation improves the results slightly. This change
in behaviour with correlated vs. uncorrelated background
errors is consistent with our earlier 3D-Var information
content results (Stewart et al., 2008) as discussed in Section
3.2. The results using an ED approximation are mixed: for
the u field the performance is only comparable to the
diagonal approximations, although for the ¢ field the ED
approximation yields better results. Fisher (2005) notes a
potential problem with the eigendecomposition approach
in that the approximate R matrices contain spurious
correlations, although it is hoped that contributions from
these spurious correlations may cancel out in the analysis.
We hypothesise that the particular realisation of the
observation and background noise used in this experiment
has amplified this problem, although more detailed experi-
ments beyond the scope of this article would be needed to
verify this hypothesis definitively. Overall the Markov
approximations provide the best results in terms of analysis
accuracy (also seen in Experiment 1 and 2). Finally, we
note that the detailed results seen in Experiments 1 and 2
change when background errors are correlated, but that the
general conclusion that it is better to include some level of
correlation structure in the observation error covariance
matrix approximation than to incorrectly assume error
independence still holds.

Table 5. Analysis errors in u field at 1 =0 for different approx-
imations to a Markov observation error covariance matrix, with
correlated background errors

Approximation El: H)‘cR/ —-x' R H)‘cR/ 7)_%”2 E2 (%)
Truth 0.23 0 0
Diagonal 0.30 0.19 5.7

2 x diagonal 0.28 0.16 5.0

4 x diagonal 0.26 0.14 4.4
Markov (Lg=0.2) 0.26 0.11 34
Markov (Lr=0.1) 0.23 0 0
Markov (Lg =0.05) 0.23 0.07 23
ED (K =50) 0.34 0.21 6.4
ED (K =100) 0.30 0.16 5.0

Table 6. Analysis errors in ¢ field at 1 =0 for different approxi-
mations to a Markov observation error covariance matrix, with
correlated background errors

Approximation El: HXR/ - x’HZ HXR/ - XR’HZ E2 (%)
Truth 1.59 0 0
Diagonal 2.07 1.37 2.2

2 x diagonal 2.06 1.37 2.2

4 x diagonal 2.06 1.35 2.2
Markov (Lg =0.2) 1.74 0.72 1.1
Markov (Lg=0.1) 1.59 0 0
Markov (Lg =0.05) 1.65 0.45 0.7
ED (K =50) 1.85 0.91 1.4
ED (K =100) 1.77 0.78 1.3

10. Summary and discussion

The correct treatment of observation errors is a double
problem for operational weather centres. Firstly the
statistical properties of the errors are relatively unknown.
Observations taken by different instruments are likely to
have independent errors, but pre-processing techniques,
mis-representation in the forward model, and contrasting
observation and model resolutions can create error correla-
tions. Secondly, even when good estimates of the errors can
be made, it is unclear what effect their inclusion in the
assimilation may have. Although the feasibility of including
cross-channel correlations for satellite infra-red sounders
has already been shown and seen to improve forecast skill,
there were conditioning problems with the minimisation
that had to be overcome (Weston, 2011). This was
accomplished using matrix approximations of a similar
type to those used in this article.

In this article, we developed an incremental variational
data assimilation algorithm that used correlated approx-
imations to model a simulated error correlation structure.
This was applied to a 1-D SWM, and the impact of each
approximation on analysis accuracy was determined. These
results were encouraging but of course suffer from some
limitations. The idealised perfect model system in the
experiments does not have the same characteristics as an
imperfect, complex NWP system. The assumption that
every model variable is observed directly prohibits a direct
comparison with satellite data assimilation, in which the
desired atmospheric fields are non-linear combinations of
the observed quantities, and observations are only avail-
able over limited regions at a given time. The choice of
background error covariance matrix, B, has been specified
using a functional form that is easy to calculate, rather than
by collating statistics from forecast differences or an
ensemble, as is more typical in operational forecasting
(Bannister, 2008).
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We concluded from the experiments that by choosing a
suitable matrix approximation it is feasible to cheaply
include some level of error correlation structure in a
variational data assimilation algorithm. For different
simulated observation error distributions and levels of
error noise, we showed it is better to include some level
of correlation structure in the observation error covariance
matrix approximation than to assume incorrectly error
independence. The best results were achieved using a
Markov matrix approximation, and this was found to be
robust to changes in true correlation form and lengthscale.
While these results show promise and provide useful
guidance, further development is needed to apply these
ideas with real observations in operational systems. This
work is already underway (Weston, 2011; Pocock et al.,
2012; Stewart et al., 2012).
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