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ABSTRACT

The behavior of the ensemble Kalman filter (EnKF) is examined in the context of a model that exhibits a
nonlinear chaotic (slow) vortical mode coupled to a linear (fast) gravity wave of a given amplitude and
frequency. It is shown that accurate recovery of both modes is enhanced when covariances between fast and
slow normal-mode variables (which reflect the slaving relations inherent in balanced dynamics) are modeled
correctly. More ensemble members are needed to recover the fast, linear gravity wave than the slow, vortical
motion. Although the EnKF tends to diverge in the analysis of the gravity wave, the filter divergence is stable
and does not lead to a great loss of accuracy. Consequently, provided the ensemble is large enough and
observations are made that reflect both time scales, the EnKF is able to recover both time scales more
accurately than optimal interpolation (OI), which uses a static error covariance matrix. For Ol it is also found
to be problematic to observe the state at a frequency that is a subharmonic of the gravity wave frequency, a
problem that is in part overcome by the EnKF. However, error in the modeled gravity wave parameters can be
detrimental to the performance of the EnKF and remove its implied advantages, suggesting that a modified
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algorithm or a method for accounting for model error is needed.

1. Introduction

Four-dimensional (4D) data assimilation is now op-
erationally implemented at the European Centre for
Medium-Range Weather Forecasts (ECMWF), Météo
France, the UK Met Office, the Japan Meteorological
Agency, and the Canadian Meteorological Centre
(Rabier 2005) and is in the process of being extended to
the upper stratosphere and mesosphere, where obser-
vations are both new and typically sparse. Gravity
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waves, generally considered as unimportant noise in the
context of numerical weather prediction, play an im-
portant role in the upper stratosphere and mesosphere,
especially in driving the quasi-biennial oscillation
(QBO) and meridional circulation, as well as in the
dissipation of the tides. In these regions gravity waves
represent a significant component of the flow in both
observations and models (Koshyk et al. 1999). This
presents a new challenge for data assimilation: the
separation and correct representation of (fast) gravity
waves and (slow) balanced motion when both flow
components are present in the true state.

Because 4D assimilation methods evolve error co-
variances in time, they have the potential to improve on
the traditional method of statistical or optimal inter-
polation (OI; Bergman 1979; Daley 1991). Of the two
principal 4D assimilation algorithms, four-dimensional
variational data assimilation (4D-Var) and the ensemble
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Kalman filter (EnKF), 4D-Var is currently more widely
used for operational deterministic weather forecasting,
although the EnKF is used for the ensemble prediction
system at the Canadian Meteorological Centre (Houte-
kamer and Mitchell 2005) and represents a promising
algorithm for future use because of its relative ease of
implementation. Variational methods are able to analyze
unbalanced flow by choosing balanced and unbalanced
variables as uncorrelated control variables and estimat-
ing their covariances (e.g., Parrish and Derber 1992;
Derber and Bouttier 1999; Gauthier et al. 1999). Note
that the balance can also be nonlinear so that the un-
balanced variables are defined as departures from the
nonlinear balances (Fisher 2003).

However, here we focus on the ability of sequential
(nonvariational) 4D methods to separate the “slow”
balanced vortical motion from relatively ““fast” unbal-
anced motion. Our specific focus is on the EnKF rela-
tive to the simpler OI. Because application of the EnKF
is still largely in a discussion/testing phase (Lorenc 2003;
Houtekamer and Mitchell 2005), the ability of this al-
gorithm to capture unbalanced motion is still poorly
understood. Szunyogh et al. (2005) report a single case
in which an EnKF-type assimilation method captured a
gravity wave that was present in reality but not in the
model estimate, thereby suggesting that flow-dependent
covariance models can potentially capture unbalanced
motion better than stationary ones. It is unclear, how-
ever, whether the additional cost of developing an en-
semble of states can generally be expected to make it
easier to recover different time scales from a set of
observations, or whether a static covariance model is
sufficient or even preferable.

In regimes in which modeled flows are expected to be
balanced, it has been found that 4D data assimilation
can cause the excitation of spurious unbalanced motion,
essentially because of the development of unphysical
correlations (Polavarapu et al. 2000; Lea et al. 2002;
Houtekamer and Mitchell 2005; Neef et al. 2006, here-
after NPS06) A general solution to this problem in-
volves imposing balance constraints on the analysis
(Courtier and Talagrand 1990; Dee 1991; Todling and
Cohn 1994; Polavarapu et al. 2000; Kepert 2004) or
simply filtering out fast waves. In the upper stratosphere
and mesosphere, excessive filtering can eliminate im-
portant gravity waves and either remove or amplify the
tides (Sankey et al. 2007). There also appears to be a
significant unbalanced component to flow in the tropical
stratosphere, which makes it similar in many respects to
the mesosphere (Nezlin et al. 2009).

It is also unclear how the frequency and type of the
available observations affect the recovery of an unbal-
anced state. Observed quantities project differently onto
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vortical and inertia—gravity wave modes; moreover,
gravity waves have time scales (from tens of minutes up
to the inertial period) that are similar to or shorter than
data assimilation intervals (usually 6 or 12 h). If obser-
vations are assimilated roughly once (or less) in a fast
period, it will be difficult to glean the wave’s magnitude
and frequency.

Here we address these issues using a simple model of
a chaotic vortical mode coupled to a linear gravity wave.
This work follows in the vein of NPS06, which examined
balance (and the loss thereof) in sequential 4D data
assimilation in the case of a balanced truth. It was shown
there that the EnKF is generally able to conserve bal-
ance in the analysis, given a large enough ensemble,
because it retains nonlinearity in the estimation of error
covariances. Using the same model, and motivated by
the current challenge of assimilation in the mesosphere
and the tropical stratosphere, we now address regimes
of imbalance and time scale overlap.

The model and the EnKF equations are described in
section 2. In section 3, the regimes of convergence and
divergence of the EnKF are defined in the context of the
present model. Section 4 examines numerically how the
physical characteristics of the gravity wave that is pre-
sent in the true state affect the EnKF’s ability to capture
the dynamics of both time scales from observations of
the partial state. A generalization to imperfect models is
made in section 5. Conclusions and some discussion are
provided in section 6.

2. Methodology
a. Model

As in NPS06, we use the model derived by Lorenz
(1986) and extended by Wirosoetisno and Shepherd
(2000):

“_, M
‘Z_Vt” _ —%sin(Zq’) +2ebx), )
X D in(2 + 2ebx), @)
C(t) = ap + ay cos(yr). (%)

Equations (1)—(5) describe a chaotic vortical mode in ¢
and w, coupled to a linear gravity wave in x and z. The four
variables are the spectral coefficients of potential vorticity
¢ and w (note that ¢ is actually related to the phase of two
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potential vorticity coefficients from the original deriva-
tion), geostrophic imbalance z, and divergence x. The slow
vortical mode varies on a nondimensional time scale of
about six time units, and the gravity wave has frequency
€ ! (where typically € < 1) and period Tgw = 2me. If the
slow time scale is assumed to correspond to typical
weather-system time scales of 36—48 h, we can say that one
time unit corresponds to 6-8 h; thus, for e = 0.1, the
gravity wave period is about 4 or 5 h. The two modes are
coupled by the parameter b, which corresponds to a ro-
tational Froude number. Chaos in the slow mode is con-
trolled by the periodic variation of C(¢) with ag = 1, a; =
0.8, and y = 0.92. Further description and a derivation of
this system are given in appendix 1 of NPS06 and chapter 2
of Neef (2007).

Wirosoetisno and Shepherd (2000) showed that the
gravity wave variables have components that are
“slaved” to the slow mode and are given [to O(e*)] by
the asymptotic balance relations

€

5 Chsin2¢ + O(¢’) and (6)

Ux(¢re) =

U.(¢,wie) = €(Cbw cos2¢ + %b sin2¢) + O(€%),
(7)

where C’ is the time derivative of C(¢). If the model is
initialized with x(0) = U, and z(0) = U,, the free gravity
wave will be suppressed, meaning it will have an am-
plitude ~¢, with a growth rate that is exponentially
slow in e (Wirosoetisno and Shepherd 2000). For a
general state of the system, the free gravity wave is the
unslaved part of x and z; its magnitude can be approx-
imated [to O (¢%)] as [ = /& + 72 and its phase as
6 = tan"! (z/x), where ¥ =x - U, and Z = z — U,. In
principle, the separation between fast and slow compo-
nents can be made more accurate by extending the balance
relations (6) and (7) to higher order in € (Wirosoetisno
and Shepherd 2000), but we use the second-order rela-
tions here.

b. The nonlinear Kalman filter

Sequential, variance-minimizing assimilation systems
have the following form:

X, = M1 (x)_)), ®)
Xp = X’Z + Ky (2 — Hkxj;), 9)
Ky = PLH] (H{P/H; + Ry (10)

(e.g., Kalnay 2003, sections 5.3 and 5.4). Equation (8)
represents the forward evolution of the state estimate
x;_1 by the forecast model M;_;. In (9), the resulting

NEEF ET AL.

1719

forecast x}, is compared to a vector of observations z;
(made at a discrete time k) and adjusted proportionally
to the difference between them (where the operator Hy
maps the forecast state to observation space). The so-
called observation increment z;, — Hkx£ is weighted by
the optimal gain matrix Ky, a function of the observa-
tion error covariance matrix R, and the forecast error
covariance matrix PY.

OI (Bergman 1979) is a three-dimensional (3D) data
assimilation algorithm because the error covariance
matrix P} = P’ is defined in the model space but is static
in time. In OI, (9) is cycled with (8) to produce a series
of forecasts and analyses that sequentially approximate
the true state. In the Kalman filter (Kalman 1960; Ghil
et al. 1981; Miller et al. 1994), P{ is instead estimated
dynamically by evolving it forward in time using a
model, then updating it to reflect the information
brought in by observations in (9).

For nonlinear models, both the evolution and analysis
update of the covariance matrix depend on higher-order
moments of the forecast error distribution, and a closure
approximation must be made. The extended Kalman
filter (EKF) estimates the evolution of P’ by linearizing
the model about the state estimate at each discrete point
in time. Whereas NPS06 compared the EnKF to the
EKF, here we focus entirely on the EnKF, in light of the
fact that the EKF algorithm has been shown to be highly
unstable (e.g., NPS06; R. Todling 2007, personal com-
munication). The EnKF (Evensen 1994) estimates fore-
cast and analysis error covariances according to the en-
semble averages

Pl = ((x/, — (X, N, — (&, )7) and  (11)

PR = () — (D (e — (x5 ), (12)

where the subscript i denotes individual forecasts in an
N-member ensemble. The analysis step (9) is performed
N times, with each ensemble member updated with a
randomly perturbed observation [corresponding to the
estimated observation error statistics (Burgers et al.
1998)]. Thus, the EnKF produces an ensemble of state
estimates, the mean of which is the EnKF best estimate
of the analysis state.

c. Assimilation experiments

This study is focused primarily on so-called twin ex-
periments, where ‘“true” and ‘“estimated” states are
evolved with the same model, which is also used to
generate observations. This way, the forecast error at
observation times comes from the initial state error,
accumulated analysis error, observation error, and the
growth of perturbations between observation times, but
not from model error.
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Numerical results shown, except for single examples,
will be averages over K different realizations of the initial
conditions. In each experiment (or realization), the initial
true state x' = (¢', w', X', )" is generated by randomly
selecting initial values of ¢ and w, computing the corre-
sponding slaved components of x and z [(6) and (7)], and
then generating a free gravity wave of magnitude I'.
Unless noted otherwise, the parameters that define the
gravity wave will have values I' = 1.5, e = 0.1, and b =
0.71. The initial estimated state is generated by randomly
perturbing the slow component of the truth (¢ and w) N
times, with the perturbations for both variables having
variance o-% = (.25. Ensemble members are initialized
with free gravity wave magnitudes chosen randomly from
Ii~ N0, (r?.), where o; = I'. The sensitivity of the as-
similation result to this estimated initial gravity wave
error is examined in section 3. The gravity wave phases
are chosen randomly from a uniform distribution be-
tween [—ar, 7], such that the mean free gravity wave in
the initial ensemble mean is zero. Likewise, the initial
state estimate in OI experiments is generated with no
free gravity wave. The truth and forecast are both
evolved forward in time using a fourth-order Runge—
Kutta method with a time step of Az = 0.01.

Observations are generated at intervals A°™ by adding
random noise r;, ~ A (0, 0% to the truth. In general, we
set Ar°" = 0.1 (corresponding to an assimilation interval
of about 40 min) and the ensemble size to 24. The choice
of these parameters is justified in the following section.

Two types of observations are considered in the ex-
periments. In general, we will observe the mixed—time
scale state given by

IMIX = ( ¢obs
Wobs )’

where w' = (w — bz)/(1+b?) represents a mixed—time
scale quantity related to vorticity. To examine the be-
havior of the EnKF when the gravity wave is excluded
from the observations, we also compare observations of
the entirely slow state given by

ZsLow = (¢°b5 )
Wobs

Because model variables are directly observed, the
observation operator Hy is linear. Hereafter the time
subscripts on H and R will be dropped because neither
operator changes in time. All experiments are run with
the correct observation error statistics—that is, with
R = 02,5, where |, represents the 2 X 2 identity matrix,
and o = 0.1.

Whereas the EnKF covariance matrix is given by (11),
OI requires an estimate of the stationary covariance

(13)

(14)
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TABLE 1. The estimated correlations of the six variable pairs of
the exL86 model, estimated from an ensemble of 50 states run to
500 time units.

Average correlation Correlation standard error

b, w 0.4851 0.0941
b, x —0.0005 0.1645
b,z 0.0001 0.1644
w, X 0.0000 0.1530
w, zZ 0.0009 0.1531
X,z 0.0000 0.1830

matrix. This requires an estimate of multivariate cor-
relations as well as the average variances. Table 1 shows
the six correlations between the components of the
model state, estimated from an ensemble of 50 states
integrated to 500 time units (with e = 0.1 and b = 0.71).
The correlations were computed at each time step and
then averaged over all time steps, which amounts to 2.5
million samples of each variable. The associated stan-
dard deviations for each correlation term are also shown
in Table 1. Note that except for p, ., the standard de-
viations are much larger than the mean correlations.
This indicates that the correlations are strongly time and
state dependent, which in turn indicates that a station-
ary covariance matrix, despite the above optimizations,
will not be a good approximation.

It can furthermore be seen that all correlations except
Pe.w average to zero. Although the correlations between
fast and slow variables (e.g., p,,,) increase with in-
creasing € and b (to be discussed in more detail in sec-
tion 4), we verified that they are still zero in the time
average. We therefore formulate the static OI covari-
ance matrix as

O’% U§p¢,w 0 0
2 2
| o5 o 0 0
Po=1 "o 0 o2 0 | (1s)
0 0 0 o0

For the correlation term py,, we take the average
value given in Table 1, py,, = 0.49. The variances as-
cribed to the slow and fast variables (o and oy, re-
spectively) were optimized by sweeping over a range of
values and selecting the values that minimize error (see
appendix). The optimal values of o, and oy were found
to depend on the observation interval, with approxi-
mate functional dependencies given by o' = 0.3Ar°"
and o' = 0.03 + 0.14A:°™ + 0.06(A°™)*. Given these
values, (15) represents the best possible OI implemen-
tation for the exL.86 model.

Although OI does not update the forecast error co-
variance matrix, an analysis error covariance matrix can
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be computed after the assimilation of the observations
(Kalnay 2003, chapter 5):

P*=(1— KH)P'(1— KH)" + KRKT. (16)
Here, (16) represents the reduction in uncertainty due
to the information gained from the observations and
corresponds theoretically to the ensemble-estimated
errors produced by the EnKF (12).

3. Convergence and divergence of the EnKF with
two time scales

a. Convergence regimes for the slow mode

Filter divergence is the phenomenon whereby the
dynamic errors estimated by the assimilation system
become increasingly small relative to actual errors, such
that subsequent observations are rejected and the al-
gorithm can no longer correct itself (eventually arriving
with high confidence at a poor analysis). In the EnKF,
filter divergence means that ensemble members become
more tightly clustered around their mean than the dis-
tance from the mean to the true state. To examine the
treatment of gravity waves in the EnKF analysis, we will
first establish the regimes (in the space of assimilation
parameters) where the EnKF converges for the slow
mode, then examine the analysis of the fast mode.

Convergence of the EnKF is controlled by the size of
the ensemble and by the frequency at which observa-
tions are made. Figure 1 examines the stability of the
slow-mode analysis for different regimes of these two
parameters by comparing the ratio between the actual
and ensemble-estimated error in w as a function of A°™
for five ensemble sizes. Each line represents an average
over 50 experiments where the mixed—time scale state
zZyrx (13) is observed. The ratio shown is computed
from the actual and ensemble-estimated errors aver-
aged in time according to

Ey= (W — (w")")\7 and 17)
E, = (W] = (W) ))\7 (18)

where the inner brackets indicate the ensemble average
and the brackets (-) o7 indicate the average over all time
steps of a time window AT = [40, 100]. The temporal
averaging window is chosen to avoid an adjustment
period that will be explained in section 3c.

For N = 4 and 8, the ratio is much larger than unity
for all observation intervals. Estimated errors match the
true errors consistently for N ~ 20 members. To mini-
mize ensemble sampling error, we will choose N = 24 as

NEEF ET AL.
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3 EnKF True And Estimated Errors

—N=4---N=8 - N=16——N=20—— N=24

Average Error Ratio
S

0 0.5 1 1.5 2 2.5 3
A tobs

FIG. 1. Averages of the ratio between RMS error in w and the
EnKF-estimated error as a function of the observation interval
A%, for five different ensemble sizes. Each line represents an
average over 50 experiments with observations of the mixed—time
scale state zpyx (13).

the standard ensemble size in all subsequent experiments.
[We have verified, but not shown, that the apparently
higher average errorsinthe N = 24 case here are only due
to statistical noise. Note also that for small ensemble
sizes the ratio between actual and estimated errors is
larger for more frequent observations. This happens
because the ensemble is updated often but poorly,
causing it to cluster around an erroneous state and not
spread enough between observation times (NPS06).]

b. Fast and slow analysis increments

To understand how the EnKF treats the fast mode,
consider the two analysis increments dw” = w* — w/
(representing the slow-mode increment) and 6z = z* — 7
(representing the fast-mode increment) for observations
of either the slow variable w or the mixed-time scale
variable w’. If w is observed, then only the balanced
components of the fast variables (x and z) can be
gleaned from the observations, and the analysis incre-
ments become

e =w —w =k (Weps —w') and (19)
82" =7 — 7/ = k(Wops — W/), (20)
with weights
2
g
Ky = ud and 21
O.%V + Ugbs ( )
Czw
wE S 22
‘ 02W + O%bs 22)
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where o7, is the estimated error variance for w and c,,, is
the estimated covariance between fast z and slow w.
Because the slow mode and free gravity wave are pre-
sumed to be independent, c,,, results entirely from the
slaving relationship. The fraction of the observation
increment added to z in (20) is proportional to c,,, be-
cause wgps contains information about the slaved com-
ponents of the fast variables. Therefore, the balance
relationship must be captured by the estimated fast—
slow error covariances (such as c,,,) in order to correctly
update the fast variables with observations of the slow
variables. Error in the estimation of these fast-—slow
covariances will cause a misadjustment of fast variables,
which can lead to an excitation of a gravity wave that
has nothing to do with the true free gravity wave. Note
that the forecast error standard deviations ascribed to
the free gravity wave (o and o) do not affect the fast-
variable increments in this case.

The problem changes if the observed variable is the
mixed-time scale quantity w’, in which case observa-
tions also contain information about the free gravity
wave, and the analysis increments become

1
9 a:kww’ é%f—wf*bf:| and 23
w |:WbA 1—|—b2( Z) ( )

1
82 =k ww——wf—bzf}, 24
: { o = (o — b2 24)
with weights
K = —"_ and 5
e, 2
Coir’
kzw = = (26)
0-1%\1' + O%bs
where
¢ ! (02 — bc,,) and (27)
ww' = g, w
1+ b2 ‘
- ba? 2
w' = m(czw g, ( 8)

In this case, fast-slow covariances such as c,,, are needed
not only to correctly update the (balanced components of
the) fast variables but also to recover information about
the slow mode from the fast-variable component of the
observations. If estimated correctly, these balanced
terms will comprise a small correction to the slow mode
analysis. If overestimated, however, they can cause filter
divergence in the slow mode.

For the fast variables the analysis step [e.g., (24)] now
also depends on estimated fast-variable error variances
[0Zin (28), but also ¢Z]. These have both balanced and
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free gravity wave components, where the free gravity
wave components (which have linear evolution) will
dominate for an unbalanced truth.

The nature of fast-slow covariances (and how these
are explicitly evolved in the EnKF) is illustrated in Fig. 2.
Figure 2a shows ¢(f) and x(¢) for a reference state with
a free gravity wave defined by I' = 1.5, € = 0.1, and
b = 0.71. The correlation between errors in ¢ and x is
Ppx = Cox/O 0. The error in x at each time can be ap-
proximated by linearizing the balance relationship (6)
about the time-varying state estimate. Then the co-
variance term c,, becomes

Cox = (egx) ~ <@¢ aal;: e¢> = —eCb cos (2(],’))0-3),

(29)

where e, represents the error in ¢ at each time. Then
the correlation can be approximated as

o o
Pyr = —€Cb cos 24’0—4) = ”’ILIN(I)O_—¢, (30)

where

nun() = —€eCb cos2¢p (31)
approximates the slow—time scale evolution of the co-
variance between ¢ and x, and it results from a linear-
ization of the slaving relationship (6). We can evaluate
the slow—fast correlations estimated by the ensemble by
comparing np v to the quantity nens = pgx (0/04),
where o, and o4 are computed from the ensemble. This
is done for an example state in Fig. 2b, where ngns is
computed from a 24-member EnKF analysis, with
mixed-time scale observations (13) assimilated at in-
tervals Ar°™ = 0.1.

Both estimates of 1 show again that the correlation is
strongly state dependent, which implies that a dynamic
covariance model will be more useful than a static one
for the recovery of both time scales. We have verified
(not shown) that the similarity between ngns and 7N
increases with ensemble size. The 24-member EnKF
used in this example can at times produce large esti-
mation errors and is contaminated by oscillations with
the period of the gravity wave, which result from re-
sidual imbalance in the ensemble average. However, it
captures the overall variability of 7, at least as approx-
imated by linearization.

Figure 3 shows two EnKF analyses for this state,
comparing a 24-member ensemble and a six-member
ensemble, each with observations of z,,;, assimilated
every Ar°™ = 0.1 time units. Figures 3a,b compare the
truth and estimates of ¢ and x for this state. For visual
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Evolution of ¢—x Correlation in Time
6 T T T
(a) ab —X
= i I | (1 )| R JrmN | I'l
0) “'nlllh‘“l“.'l‘un'.‘““"uul'.‘.'.'.‘l'l‘uln'u‘,'.'.‘.‘ﬁun'.‘.'.'.‘l A M M llllmwmlhlﬂ"“
—2r
0 1‘0 25 35 45 55 60 70 100
(b) 05l T T T T T T T T _Eg\l ]
= 0O
-0.5 |
0 1‘0 20 35 45 _55 éo 75 50 95 100
time

FIG. 2. (a) Evolution of the slow variable ¢ and the fast variable x over 100 time units, for an example state with a
gravity wave of magnitude I' = 1.5.In this case, e = 0.1 and b = 0.71. (b) The term 7, which governs the evolution of
the correlation between ¢ and x for the same state, as given by the linear approximation [(31); thick line] and as
computed by a 24-member EnKF (thin line), with mixed—time scale observations (13) assimilated every Ar°® = 0.1

time units.

clarity, only the last 20 time units of the assimilation
period are shown. In both plots, the analysis of ¢ is
nearly indistinguishable from the truth. Accordingly,
the true and EnKF-estimated errors in ¢, shown in Figs.
3c,d for the respective cases, are similar over the assim-
ilation period. For the six-member EnKF, the analysis of
x (Fig. 3b) has the correct phase but the wrong ampli-
tude. Figure 3f compares actual and estimated error in x
for this case, and the estimated errors are found to
quickly become several orders of magnitude smaller
than the true error. The EnKF is diverging in the fast
mode (with the ensemble tightly locked around a
gravity wave of the wrong amplitude), even though it is
clearly in a regime of convergence of the slow mode. In
the 24-member case, the truth and analysis for x are also
very close (Fig. 3a), with a correspondence between the
true and estimated errors in x (Fig. 3e), indicating that
the estimation of fast-slow covariances in Fig. 2b is
sufficient for the analyses of both the slow and fast mode
and that the estimated fast variances have been adjusted
sufficiently. Note also that a slight underestimation of
the error in x is starting to grow by the end of the as-
similation period.

c¢. Evolution of average slow and fast errors in time

Figure 4 shows the average time evolution of EnKF-
estimated and actual errors. Errors are shown for con-
vergent (N = 24) and divergent (N = 8) regimes, with
Ar°™ = 0.1 in both cases. Average errors are subdivided
into w, x, and § components, with each line representing
an average over 200 experiments. For each ensemble
size, solid lines represent actual errors and dashed lines
the estimated errors. The initial-time standard devia-

tions in w [0,(0) = e, x [ o(0) = I'/v/2], and the
gravity wave phase 6 [0(0) = /2] are indicated in the
respective panels by a horizontal black line.

The top row of Fig. 4 compares average errors for
observations of the mixed-time scale state (13), that is,
when both fast-slow covariances and fast-variable vari-
ances must be estimated accurately. For both ensemble
sizes, the average error in w is reduced well below the
initial standard errors as soon as the first few observa-
tions are made, although for N = 8 (as expected) the
actual w errors grow in time whereas the corresponding
estimated errors decrease in time. Average errors in x
and 6 behave quite differently from this for both en-
semble sizes, decreasing in time but with the distance
between actual and estimated errors increasing in time.
Thus, on average there is filter divergence in the fast
mode even while there is convergence in the slow mode,
for both the small (N = 8) and large (N = 24) ensembles.

The bottom row of Fig. 4 shows the same quantities but
for observations of the slow state (14)—that is, where
only the slaved components of the fast variables can be
recovered while the free gravity wave is ignored. For N =
24, average w errors are not changed significantly by the
change from mixed-time scale observations to observa-
tions of the full slow mode, suggesting that fast-slow
covariances were estimated sufficiently well in the former
case to retrieve the slow mode even though it was only
partially observed. For N = §, the change of observation
variable reduces w error slightly. The extra information
about the slow mode that is gained by the change in ob-
servation variable is compensated by a loss of informa-
tion about the fast mode: average x error does not de-
crease in time. Estimated x error, however, does decrease
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FIG. 3. Two sample assimilations with the EnKF. (a),(b) A comparison of ¢ (the slow chaotic curve)
and x (the fast oscillation) for the true state (black) and the analysis (gray). For clarity, only the last 20
time units of the 100-time-unit assimilation period are shown in each case. In both experiments, the

observation interval is Ar°®

= 0.1 and the mixed-time scale state (13) is observed. The two experiments

differ only in ensemble size: a 24-member ensemble is used in (a), and a six-member ensemble in (b). (c),(d)
The true (solid) and estimated (dashed) errors in ¢ over the entire assimilation period, corresponding
respectively to (a) and (b). (e),(f) The true (black) and estimated (gray) errors in x for each case.

in this case. This means that spurious fast-slow correla-
tions are causing the EnKF to reduce estimated error,
leading to eventual filter divergence, in the fast mode.

There are two reasons why the EnKF might diverge in
the fast mode even while converging in the slow mode.
One reason is that the free gravity wave is linear: the
ensemble members do not spread in time between ob-
servations, so that small estimation errors in the analysis
increments accumulate and the ensemble eventually locks
too tightly on either an erroneous amplitude (e.g., Fig. 4b)
or both the wrong amplitude and phase (e.g., Figs. 4e,f).
A second reason is that the fast mode is observed about
10 times less frequently per cycle than the slow mode;
this will be examined in the subsequent section.

Despite filter divergence there is still significant error
reduction in x and 6 (when both modes are observed),
even for a small ensemble, while ignoring the fast mode
does not significantly impact the slow-mode analysis.

Note also that there exists (in the convergent cases) a
spinup period of about 40 time units, after which slow
mode error stabilizes. To take this into account, assimi-
lation experiments will hereafter be evaluated by com-
paring RMS errors for w, x, and 0, averaged over the last
60 time units, as in (17), and defining also

= ((x' = (x*))"))7 and (32)
= (0" — (6")")17- (33)

d. Observation interval

For A°® = 0.1 and € = 0.1 (as above), the gravity
wave is observed about six times in a cycle and the
slow mode 60 times. Figure 5 examines how the re-
covery of the fast mode is affected as the observation
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FIG. 4. Convergence/divergence of the EnKF in time. In the top row, average errors are shown for (a) the slow variable w,
(b) the fast variable x, and (c) the gravity wave phase 6 for experiments in which MIX observations (13) are assimilated every
A" = 0.1 time units. Each line represents an average over 200 experiments, comparing ensemble sizes N = 8 (gray) and 24
(black). Solid lines show actual errors and dashed lines the estimated errors. (d)—(f) As in (a)—(c) but for SLOW observations
(14). The horizontal solid lines in each panel represent the average initial-time error.

interval approaches and surpasses the gravity wave pe-
riod (Tgw =~ 0.6). Average actual and estimated E, are
compared for a 24-member EnKF and O], each assim-
ilating mixed-time scale observations (13) with Ar°® =
0.1. Figure Sa shows that the average true error in the
EnKF exceeds the average estimated error at all ob-
servation intervals. However, the ratio between actual
and estimated E, (Fig. 5b) does not increase with Ar°>,
and actual errors are moreover consistently lower in the
EnKF than for OI Thus, despite a tendency to under-
estimate fast variable error, the EnKF, which dynami-
cally estimates slow—fast correlations, is still able to
retrieve the fast mode better than OI, which relies on
average correlations.

For both methods there exist peaks, in average actual
and estimated error, at A°™ equal to multiples of the
gravity wave period. These peaks reflect the fact that it
is impossible to infer the amplitude of a wave when
observing at single phase. Note that the peaks are more
pronounced in OI. In the EnKF, estimated error also
increases for these special observation intervals, al-
though generally error is underestimated more (as in-
dicated by spikes in the error ratio in Fig. 5b).

e. Ensemble size

It is of course also possible to increase the ensemble
size beyond what is required to achieve convergence in
the slow mode, although this may not be a feasible op-
tion in realistic applications. Figure 6 shows average
true and estimated E, as a function of the ensemble size,
again assimilating mixed-time scale observations with
A% = (.1. Also shown are the initial-time E, and the
average E, that results from 50 OI assimilation runs
using mixed-time scale observations with A°™ = 0.1.
The actual error is reduced from the initial value by
over an order of magnitude for as few as six ensemble
members; 18-20 ensemble members are required to
have errors lower than those returned by OI. In order
for estimated errors to match actual errors, around
80 ensemble members are needed—almost 4 times as
many ensemble members as are needed to achieve
convergence in the slow mode. Nonetheless, even when
sampling error is large the assimilation of fast mode
observations can be useful, and fewer ensemble mem-
bers are required to improve on OI than to completely
eliminate filter divergence.
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FIG. 5. (a) Average error in x (32) for a 24-member EnKF,
comparing true (black) and estimated (gray) errors as a function of
the observation interval. These are further compared to true
(black dashed) and estimated (gray dashed) error for OI. (b) The
average ratio between true and estimated error in x for the EnKF.
In both the EnKF and the OI, the mixed-time scale state (13) is
observed.

f- Fast variance of the initial ensemble

Recall that in the case of mixed-time scale observa-
tions, the ability to capture the gravity wave also de-
pends on the variance attributed in the ensemble to the
fast wave [section 3b, specifically (28)]. Figure 7 exam-
ines average true and estimated E, over a range of o7j,
the standard error from which the gravity waves in the
initial ensemble are generated (assimilating mixed—time
scale observations, with N = 24 and A°® = 0.1). The
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FIG. 6. Average true (black) and EnKF-estimated (gray) error in
x (32) as a function of the ensemble size, computed for 50 reali-
zations (with A7°® = 0.1 throughout). The initial fast variable error
is indicated by a dashed line, and the average OI error is shown by
the plus signs. In both the EnKF and the OI, the mixed-time scale
state (13) is observed.

errors are again compared to the initial-time error, and
the average OI error with similar observations; E, de-
creases as the magnitude of the initial fast variance in-
creases, saturating around o; = 1. Because there is no
increase in error when o;(0) exceeds the true value
(07 = I' = 1.5), this experiment suggests that it would
be prudent, in realistic applications, to overestimate the
fast variable error. It is also encouraging that the EnKF
can initially underestimate the fast variable standard
deviation by about 50% and yet substantially reduce
errors from the initial value and improve over Ol

On the other hand, an 80% underestimation of the
fast-variable standard deviation [i.e., o;(0) = 0.3] yields
analysis errors that are twice the minimum error that
can be achieved by increasing o;. Moreover, actual er-
rors remain consistently larger than estimated errors
over all o;(0). Thus, Fig. 7 also shows that although it
helps to overestimate fast errors, it is also difficult to
fully eliminate divergence of the EnKF (in the case
where the ensemble is too small to fully converge in
the fast mode) by attributing more initial error to the
gravity wave.

In summary, we can say that the EnKF is able to re-
trieve both time scales as long as mixed-time scale ob-
servations are made, although with a strong tendency to
diverge in the fast mode. Even if the ensemble is not
large enough to achieve convergence in the fast mode,
however, fast-mode errors are stable in time, generally
small compared to the initial-time errors, and may still
be lower than OI errors.
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state (13) is observed.

4. Gravity wave parameters

We now examine how the quality of the analysis, the
relative value of slow— and mixed-time scale observa-
tions, and the EnKF’s possible advantage over OI are
affected by the parameters that define the gravity wave.
In this set of experiments, we compare three assimila-
tion systems. The first, denoted MIX, is a 24-member
EnKF with observations of the mixed—time scale state
(13) made at intervals of Ar°® = 0.1. The second, de-
noted SLOW, is the same except that the observations
are made of the slow—time scale state (14). In the third,
mixed-time scale observations are made but assimilated
using OI. Comparison of SLOW and MIX shows the
relative benefit of observing or ignoring the gravity
wave, whereas comparison of MIX and OI shows
the possible advantage of time-dependent covariance
estimation.

a. Gravity wave magnitude

The influence of the gravity wave on the evolution of
the full system can be changed by varying its magnitude.
This will change the relative value of slow— and mixed-
time scale observations because slow observations ig-
nore a greater component of the system as I’ increases.
Because the initial-time ensemble mean state is bal-
anced, a larger true gravity wave magnitude also means
that the first few analysis increments in the assimilation
period will be larger, thereby amplifying any potential
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errors in estimated covariances. Consequently, a larger-
magnitude true-state gravity wave, given a balanced ini-
tial estimate, could lead to a worse analysis in both
modes, in which case it may be better to simply neglect
the fast-slow covariances, as in our OI implementation.

Figure 8 shows the three error measures as a function
of I', comparing MIX, SLOW, OI, and the corre-
sponding estimated errors for all three. For MIX, both
E,, and E, are unaffected by the increased magnitude of
the true gravity wave, although the EnKF’s underesti-
mation of fast error remains throughout. For SLOW, E,,
increases slightly as I’ increases because of the in-
creasingly large source of variability that is now ignored
by the observations. For OI, where the fast mode is
observed but covariances and variances are kept con-
stant, E, increases slightly with I, although we found
(not shown) that this increase in error can be removed
by slightly increasing o with I' in (15). Thus, the ad-
vantage of the EnKF over OI does not clearly change
with the magnitude of the true gravity wave. However,
the value of observing both time scales does increase
with increasing gravity wave magnitude.

Note also that E, decreases with I’ in the two cases
where the free fast mode is observed, MIX and OI.
Presumably this happens because increasing the mag-
nitude of the gravity wave decreases the ratio between
observation error and the gravity wave signal.

b. Gravity wave period

Changing the time scale of the gravity wave also
changes the significance of the gravity wave in the ev-
olution of the full system. Increasing € means that the
balanced components of x and z [(6) and (7)] become
larger, while the correlations between fast and slow
variables become both larger and more nonlinear.

This is illustrated in Fig. 9, which compares 7y v and
nens for a state that is equal to the state shown in Fig. 2a
in all respects except that the gravity wave frequency
has been changed to e ! = 3, corresponding to a gravity
wave period Tgw ~ 2. It can be seen by both approxi-
mations that the magnitude of the slow—fast correlation
increases relative to Fig. 2b. For OI, this means that the
zero correlations used in the covariance matrix, al-
though still representative of the average, will become a
poorer estimate. Increased fast-slow correlation also
means that error in the estimation of the fast mode more
strongly influences the evolution of (true) error in the
slow mode, and vice versa. For the SLOW case, in-
creasing € will mean that a larger component of the
fast variables can be recovered from the observations,
while at the same time the lack of observed information
about the gravity wave may worsen the analysis of the
slow mode. Disagreement between ngns and np N also
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increases between Figs. 2 and 9, indicating that the
nonlinearity of the balance relationship is increasing,
which may make the ensemble less Gaussian and thus
increase error in either the SLOW or MIX cases.
Figure 10 compares average errors over a range of
Tow for MIX, SLOW, and OI. The change in fast-slow
correlation that comes with changing Tgw does not
clearly affect the performance of OI relative to the
EnKF (MIX). The MIX case shows only a weak effect of
Tcw on average errors (average E, increases slightly), so
we can infer that the increasingly nonlinear balance re-
lationship is not much more difficult to capture by the
EnKF cycle. Changing the fast time scale does, how-
ever, affect how much information about the fast mode
can be recovered from slow observations: both E, and
E, decrease with increasing 7w for SLOW. This means
that after a certain point (7w = 2), more information
can be recovered about the fast mode using the EnKF
and slow observations than by using OI and mixed-time
scale observations. Note also that E,, also increases with
Tow for SLOW, reflecting the increasing effect of the
unobserved free gravity wave on the slow mode, al-

Evolution of ¢—x Correlation in Time; =3

though average E,, for SLOW is mostly below average
E,, for OI.

c. Slow—fast coupling

Changing the coupling parameter b also changes the
nonlinearity of the balance relationship and the magni-
tude of the fast-slow correlations, but now without
changing the time scale overlap of the two modes. Fig-
ure 11 shows 7y and mgens for the same initial condi-
tion as in the previous examples, but now with b = 3.
Again, the fluctuations in the correlation term are
larger, and the difference between the EnKF-estimated
correlation and the linearized value increases, implying
greater nonlinearity. Changing b also changes the in-
formation content of observations, with w’ becoming
more gravity wave dominated as b increases. This means
that MIX observations as defined in (13) will contain
increasingly more information about the gravity wave
and less about the slow mode as the coupling between
the two modes increases. Changing b in the ex.86 model
thus illustrates the effect of observations that project
more or less strongly onto the gravity wave manifold.

-1

s

FIG. 9. As in Fig. 2b, but for a state with € = 1/3. A 24-member EnKF (with A°® = 0.1) is used to estimate ngxs.
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FIG. 10. As in Fig. 8, but as a function of the period of the true-state gravity wave.

Figure 12 compares the effect of changing b while
keeping e and I' fixed. Here E,, increases with b for
SLOW and OI but not for MIX, a result similar to that
of Fig. 10. In terms of E, and E,, there is an “‘optimal” b
(roughly b = 1) such that MIX and OI give their most
accurate recovery of the fast mode, whereas SLOW
simply improves in the fast mode with increasing b. The
results can be explained as follows: As coupling increases,
SLOW neglects an increasingly relevant source of var-
iability, which increases slow error. At the same time,
the additional fast-mode information contained in the
observations decreases E, and E,. As coupling increases,
OI neglects an increasingly relevant time-varying cor-
relation, which also increases E,, with increasing b. In
contrast to the previous experiment, however, E, and E,
now decrease with b for OI and MIX when b < 1, a
decrease that is presumably due to the fact that obser-
vations of w’ become more fast-mode dominated as b
increases. The subsequent increase in E, and E, for
MIX and for b = 1 suggests that the fast-slow correla-
tion, which helps to recover the fast mode, becomes
more important at large b. By preserving fast-slow cor-
relations the EnKF (MIX) excels over Ol in its recov-
ery of the gravity wave.

5. Model error experiments

In all experiments shown so far, forecasts and truths
were evolved with the same model, such that the EnKF
had to estimate the amplitude and phase of the gravity
wave but was always perfect in gravity wave frequency.
It can be argued that this could be the reason why the
EnKF performed so much better than OI in the ex-
periments above. In practice, not all gravity wave fre-
quencies are observed and not all frequencies are
modeled. For example, fast gravity waves are less likely
to be observed than slow gravity waves simply because
fast waves spend less time in an instrument’s observa-
tion region (Alexander and Barnet 2007). Modeled
gravity wave frequencies depend on a model’s resolu-
tion and on generation mechanisms such as convective
parameterization, and their dispersion relation may be
deformed by the time-integration scheme. In consider-
ation of these limitations, two sets of experiments were
performed in which the perfect model restriction is re-
moved by introducing error in the modeled gravity wave
parameters € and b.

In the first experiment, the gravity wave frequency
assumed by the forecast model, now denoted ¢, is

Evolution of ¢—x Correlation in Time; b=3
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FIG. 11. As in Fig. 2b, but for a state with b = 3. A 24-member EnKF (with Ar°® = 0.1) is used to estimate ngxs.
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FIG. 12. As in Fig. 8, but as a function of the coupling parameter b.

changed while the true state is kept at €’ = 0.1. Figure 13a
shows the three error components as a function of €.
The 24-member EnKF is compared to OI, using mixed—
time scale observations (13) in both cases. For the EnKF,
misestimation of the gravity wave frequency is detri-
mental to the recovery of the gravity wave: both E, and
E, shoot to the initial error levels for any e £ €. Note E,
even exceeds the initial-state error, indicating the exci-
tation of gravity waves that are not of the same fre-
quency, phase, or magnitude as the true gravity wave and
are left uncontrolled by the observations. OI errors in x
and 6 are a bit lower for € # €', or at least not greater
than the initial-time error, which indicates that it is better
in these experiments to simply neglect fast-slow covari-
ances. In the slow mode (E,,), the EnKF is able to per-
form at least as well as OI when € is close to the true
frequency (i.e., for ¢ — €' < 0.1), but OI clearly yields a
better analysis overall. For the EnKF, the strong growth
of E,, for € = 1.5 reveals an unfavorable characteristic of
the (large-ensemble) EnKF: recovery of the slow mode
can be harmed when the gravity wave is not captured at
all, in which case it would be better to force fast—slow
correlations to zero.

The second case of model error is shown in Fig. 13b,
where the estimated coupling parameter, now denoted
b, is changed while the true value is kept constant at
b" = 0.71. The EnKF again returns large errors in all
three variables when the estimated b exceeds the true
parameter by a certain amount. Interestingly, under-
estimating the coupling parameter (b’ < 0.71) increases
error less than when it is overestimated (b” > 0.71). The
difference can be understood from the fact that b
changes the information content of the observation (13)
from being purely slow to being mixed. For » > 0.71,
the assimilation is assuming that w’ is more time scale
mixed than it actually is, resulting in adjustment of the
gravity wave away from its true amplitude and phase
and not enough adjustment of the slow variables, the

estimates of which have suffered from the misestimated
gravity wave. For b’ < 0.71, the assimilation is assuming
that w' is less mixed; thus, it adjusts the slow mode with
more information than is actually contained in obser-
vations, while the gravity wave is not adjusted enough.
Slow-mode error consequently increases relative to es-
timated error for b’ < 0.71 but, given less simultaneous
adjustment of fast variables, the impact is presumably
smaller. Again, although OI behaves similarly, it is more
accurate overall.

These admittedly simplistic experiments show that
the EnKF’s ease in locking onto a linear gravity wave
phase will be limited by differences between the re-
solved frequencies in observations and models. When
the ability to capture a gravity wave is lost, the analysis
of the vortical mode suffers as well, especially if the
correlation between the fast and slow modes is over-
estimated.

6. Summary and conclusions

This study examined the behavior of the ensemble
Kalman filter in the physical context in which there is a
preponderance of free gravity waves in the truth. This
problem differs from the initialization problem of nu-
merical weather prediction but is relevant to data as-
similation in the mesosphere and tropical stratosphere
(Nezlin et al. 2009). We used a highly simplified model
in which the state consists of a vortical mode and a free
gravity wave of a relatively fast time scale.

It was found that the EnKF analysis cycle can cause
the ensemble to lock onto a gravity wave of the wrong
amplitude, causing filter divergence in the analysis of
the fast mode, even in regimes where it converges in the
slow mode. To prevent this type of filter divergence
requires upward of 3 times as many ensemble members
as are required for convergence in the slow mode
(Fig. 6). When the ensemble size is too small to fully
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FIG. 13. (a) The three error measures [(17), (32)—(33)] as a function of (a) the gravity wave frequency assumed in the model
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values, € = 0.1 and b = 0.71. The 24-member EnKF (black) is compared to OI (gray), and average actual errors for each case
(solid lines) are compared to average estimated errors (dashed lines).

converge in the fast mode, the impact of fast-mode filter
divergence on the overall analysis can be lessened by
increasing the amount of error initially attributed to the
free gravity wave (Fig. 7), although this only alleviates
the problem and does not eliminate it. Fast-mode filter
divergence comes about because the linear-nonchaotic
gravity wave ensemble does not spread between ob-
servations, and thus persists even when observations are
very frequent (Fig. 5). Because gravity waves in the real
atmosphere are also linear to a first approximation, this
may indicate a fundamental problem for assimilating
unbalanced states with the EnKF.

In realistic applications it is possible that gravity
waves that are present in the truth may not be captured
in the observations, perhaps because of filtering or av-
eraging of observations. In that case, only the compo-
nent that is slaved to the slow mode can be controlled by
observations, which requires the error covariance esti-
mation cycle to capture the balance relationships be-
tween slow and fast model variables. Despite diver-
gence in the fast mode, the EnKF’s covariance model
was found to be more accurate than the highly tuned
static covariance model used in our OI, resulting in a
better recovery of both modes if a mixed-time scale

state is observed, and of the slow mode and the slaved
component of the fast mode if slow variables are ob-
served. For sufficiently large ensembles, recovery of
the full slow mode from the observations that contain
both time scales was found to be nearly as accurate as it
would be from the observations where the gravity wave
signal is absent (Fig. 4), and the EnKF was able to re-
cover the gravity wave more accurately than OI even for
observation periods much longer than the gravity wave
period (Fig. 5). The EnKF was also found to more easily
overcome the error associated with observing at or near
multiples of the gravity wave period (the peaks in Fig. 5)
because information is spread forward in time.
Changing the magnitude of the gravity wave, the time
scale separation, or the coupling between the two modes
changed the relative benefit of observing both time scales
versus observing only the slow time scale. Large gravity
waves are more difficult to ignore by the EnKF (Fig. 8),
and it was found that for gravity waves above a certain
magnitude the EnKF can better recover the slow mode
if both time scales are observed partially than if the
full slow mode is observed alone. On the other hand,
the amount of information about the fast mode that can
be recovered from entirely slow observations increases
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as the correlation between the two modes increases, and
we found a case (Fig. 10, center) for which the EnKF
returns a better analysis of the fast mode with slow
observations than OI does with mixed—time scale ob-
servations. Thus, changing the gravity wave parameters
(Figs. 8, 10, and 12) also illustrated the flexibility of the
EnKeF relative to OL

Model bias is generally large in the middle atmos-
phere and comes from a variety of sources, such as
uncertainty in parameterized processes (Dee 2005;
Polavarapu et al. 2005). Model error implies that distances
between the truth and forecast will grow faster than
estimated forecast errors, leading to increased filter di-
vergence. In a sense, the SLOW experiments shown
above can be interpreted as model-error experiments:
because one mode is not captured in the analysis, the
evolution of the forecast state is systematically different
from the truth, resulting in larger analysis increments
and the amplification of covariance estimation error.
Because the analysis of the slow mode (reflected in E,,)
does not suffer greatly from the change of observation
variable from MIX to SLOW (Figs. 4, 8, 10, and 12), the
EnKF seems to be somewhat resistant to small sys-
tematic dynamical errors.

However, by introducing an error into the estimated
gravity wave frequency or coupling parameter, it was
found that capturing the fast mode becomes far more
difficult when the gravity wave parameters assumed by
the model differ from the true values. The inability to
capture a correct gravity wave in this case also harms
the slow mode analysis, and no benefit was found in
using the EnKF rather than OI. This indicates that other
methods, or a method for estimating and accounting for
model error, might be necessary when assimilating un-
balanced states.

Several issues remain that this study did not address. In
the exLL86 model, the gravity wave neither propagates
away nor dissipates between observation times. Szu-
nyogh et al. (2005) point out that in reality gravity wave
events may not last through the entire observation in-
terval and thus may not be captured by either the ob-
servations or the assimilation. The propagation of gravity
waves and the role of observation spatial density are is-
sues to address in higher-dimensional model studies.

In future studies it will also be important to address
the comparative performance of 4D-Var for unbalanced
truth states. It was mentioned in the introduction that
variational methods can be made to handle unbalanced
motion by statistically or analytically prescribing the
covariance matrix, which is not evolved explicitly as in
the Kalman filter. 3D and 4D variational methods rep-
resent a very different approach to the same problem
and a detailed comparison between 4D-Var and the
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EnKeF is beyond the scope of a single paper, although a
short comparison of the two algorithms is made in Neef
(2007).

This study also did not address currently suggested
modifications to the EnKF algorithm, such as inflation
of covariances, the addition of stochastic model error, or
the use of two ensembles in the EnKF, which are
designed to keep the filter from diverging. A brief ex-
amination of such modifications is performed in Neef
(2007). We also did not look at alternative Kalman
filter—type schemes, such as deterministic ensemble fil-
ters (Tippett et al. 2003) or the so-called kernel or par-
ticle filter (Anderson and Anderson 1999; Xiong et al.
2006). Because the usefulness of these modified algo-
rithms in practical data assimilation problems is still un-
der consideration, future comparisons of these alterna-
tive algorithms should include an examination of the
effects of different coexisting time scales.
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APPENDIX

The optimal variances in the OI forecast error co-
variance matrix were computed numerically by sweeping

Estimation of Optimal Slow—Var. Variance
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FIG. A1l. RMS error in w as a function of the assumed slow
variable (¢, w) variance in the static OI covariance matrix for
seven different observation intervals. The minima of the curves are
indicated by black circles.
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FIG. A2. RMS error in x as a function of the assumed fast var-
iable variance (o) in the static OI covariance matrix. The minima
of the curves are indicated by black circles.

over o, and oy for different values of Ar°™ and then
performing a polynomial regression to find approximate
functional dependencies of o, and oy on the observation
interval.

Figure A1l shows the error measure E,, as a function
of o, for seven different observation intervals, each line
representing an average over 100 realizations. We per-
formed a polynomial regression on these seven exper-
iment sets and found that the dependence of the opti-
mal o, on Ar°™ is approximately linear and is given by
ot = 0.3A°.

Figure A2 shows average error in x (E,), averaged over
100 runs for the same seven observation intervals, now as
a function of 0. Again, the optimal assumed variance is a
function of the observation interval, and a polynomial
regression yields an approximate functional dependence,
given by aP'= 0.03 + 0.14A°™ + 0.06(A°™)?.

By similar experiments, we also found that the opti-
mal ois not sensitive to the choices of the gravity wave
parameters I', e, and b.
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