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Abstract. We present a novel kinetic multi-layer model
for gas-particle interactions in aerosols and clouds (KM-
GAP) that treats explicitly all steps of mass transport and
chemical reaction of semi-volatile species partitioning be-
tween gas phase, particle surface and particle bulk. KM-
GAP is based on the PRA model framework (Pöschl-Rudich-
Ammann, 2007), and it includes gas phase diffusion, re-
versible adsorption, surface reactions, bulk diffusion and re-
action, as well as condensation, evaporation and heat transfer.
The size change of atmospheric particles and the temporal
evolution and spatial profile of the concentration of individ-
ual chemical species can be modeled along with gas uptake
and accommodation coefficients. Depending on the com-
plexity of the investigated system and the computational con-
straints, unlimited numbers of semi-volatile species, chemi-
cal reactions, and physical processes can be treated, and the
model shall help to bridge gaps in the understanding and
quantification of multiphase chemistry and microphysics in
atmospheric aerosols and clouds.

In this study we demonstrate how KM-GAP can be used
to analyze, interpret and design experimental investigations
of changes in particle size and chemical composition in re-
sponse to condensation, evaporation, and chemical reaction.
For the condensational growth of water droplets, our kinetic
model results provide a direct link between laboratory ob-
servations and molecular dynamic simulations, confirming
that the accommodation coefficient of water at∼270 K is

close to unity (Winkler et al., 2006). Literature data on the
evaporation of dioctyl phthalate as a function of particle size
and time can be reproduced, and the model results suggest
that changes in the experimental conditions like aerosol par-
ticle concentration and chamber geometry may influence the
evaporation kinetics and can be optimized for efficient prob-
ing of specific physical effects and parameters. With regard
to oxidative aging of organic aerosol particles, we illustrate
how the formation and evaporation of volatile reaction prod-
ucts like nonanal can cause a decrease in the size of oleic acid
particles exposed to ozone.

1 Introduction

Aerosol particles are ubiquitous in the atmosphere and play a
critical role in global climate, air quality, atmospheric chem-
istry and public health (Andreae and Crutzen, 1997; Pöschl,
2005). The interactions of atmospheric particles with water
vapor can lead to the formation of cloud droplets or ice crys-
tals depending on size, phase state and hygroscopicity, influ-
encing radiative budget and precipitation (Koop et al., 2000;
Andreae and Rosenfeld, 2008; Murray et al., 2010; Pöschl
et al., 2010). The interactions of aerosol particles with at-
mospheric oxidants can affect the abundance of trace gases
and significantly alter physical and chemical properties of
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aerosols such as toxicity, reactivity, ice and cloud condensa-
tion nucleation abilities, and radiative properties (Finlayson-
Pitts and Pitts, 1997; George and Abbatt, 2010b; Kolb et al.,
2010; Kuwata et al., 2011; Lu et al., 2011; Schwier et al.,
2011; Wang and Knopf, 2011; Shiraiwa et al., 2012). Gas-
particle partitioning of semi-volatile species is a key pro-
cess for formation and aging of secondary organic aerosol
(Odum et al., 1996; Seinfeld and Pankow, 2003; Donahue
et al., 2006; Robinson et al., 2007; Hallquist et al., 2009;
Jimenez et al., 2009; Riipinen et al., 2011).

Atmospheric particles consist of a wide variety of organic
and inorganic chemical compounds which can occur as dif-
ferent phase states of liquids, semi-solids or solids (crys-
talline, amorphous, glassy, ultraviscous, gel-like) depending
on their composition and ambient conditions (Marcolli et al.,
2004; Zobrist et al., 2008; Mikhailov et al., 2009; Virtanen
et al., 2010; Koop et al., 2011). The phase state can in-
fluence the gas-particle partitioning, heterogeneous reactions
and multiphase processes in atmospheric aerosols (Knopf et
al., 2005; Nash et al., 2006; Renbaum and Smith, 2009;
Cappa and Wilson, 2011; Pfrang et al., 2011; Shiraiwa et
al., 2011a; Vaden et al., 2011). Chemical reactions can pro-
ceed in both gas and condensed phase but it is often diffi-
cult to discriminate gas, surface and bulk reactions. More-
over, the relative importance of them for secondary organic
aerosol formation and aging is poorly understood (Moise and
Rudich, 2000; Kalberer et al., 2004; McNeill et al., 2008;
Hallquist et al., 2009; George and Abbatt, 2010a; Fry et al.,
2011; Salo et al., 2011; Loza et al., 2012). So far resistor
model formulations are widely used to describe and inves-
tigate heterogeneous reactions and multiphase processes in
laboratory, field and model studies of atmospheric chemistry
(Hanson, 1997; Finlayson-Pitts and Pitts, 2000; Worsnop et
al., 2002; Anttila et al., 2006; King et al., 2009; Xiao and
Bertram, 2011). The traditional resistor models, however,
are usually based on simplifying assumptions such as steady
state conditions, homogeneous mixing, and limited numbers
of non-interacting species and processes.

In order to overcome these limitations, Pöschl, Rudich
and Ammann (P̈oschl et al., 2007) have developed a ki-
netic model framework (PRA framework) with a double-
layer surface concept and universally applicable rate equa-
tions and parameters for mass transport and chemical reac-
tions at the gas-particle interface of aerosols and clouds. Am-
mann and P̈oschl (2007) provided first examples on how the
PRA framework can be applied to describe various physico-
chemical processes in aerosols and clouds such as reactive
gas uptake on solid particles and solubility saturation of liq-
uid droplets under transient or steady-state conditions. Shi-
raiwa et al. (2009) presented a kinetic double-layer surface
model (K2-SURF) for the degradation of a wide range of
polycyclic aromatic hydrocarbons (PAHs) by multiple photo-
oxidants (O3, NO2, OH and NO3). Using K2-SURF Shi-
raiwa et al. (2011b) showed that long-lived reactive oxy-
gen intermediates are formed in the reaction of ozone with

aerosol particles. Springmann et al. (2009) and Kaiser et
al. (2011) demonstrated the applicability and usefulness of
the PRA framework in an urban plume box model of the
degradation of benzo[a]pyrene on soot by ozone and ni-
trogen dioxide. Pfrang et al. (2010) developed a kinetic
double-layer model coupling aerosol surface and bulk chem-
istry (K2-SUB), in which mass transport and chemical reac-
tions in the bulk are not explicitly resolved but represented
by a reacto-diffusive flux analogous to traditional resistor-
model formulations. Shiraiwa et al. (2010) developed a ki-
netic multi-layer model of aerosol surface and bulk chemistry
(KM-SUB) that explicitly treats all steps of mass transport
and chemical reaction from the gas-particle interface to the
particle core, resolving concentration gradients and diffusion
throughout the particle bulk. Pfrang et al. (2011) applied and
extended KM-SUB to investigate the impact of transforma-
tion of diffusivity on the chemical aging of multi-component
organic aerosol particles.

Here we present a kinetic multi-layer model of gas-particle
interactions in aerosols and clouds (KM-GAP) that builds on
KM-SUB and explicitly treats all steps of mass transport and
chemical reaction from the gas phase to the particle core,
including the evaporation and condensation of semi-volatile
species. We demonstrate the applicability of KM-GAP for
the condensation of water as well as the oxidation and evap-
oration of organics. The model results are compared with
earlier experimental and theoretical studies.

2 Model description

As illustrated in Fig. 1, KM-GAP consists of multiple model
compartments and layers, respectively: gas phase, near-
surface gas phase, sorption layer, quasi-static surface layer,
near-surface bulk, and a number ofn bulk layers. The sorp-
tion and quasi-static surface layer has a monolayer thickness
that corresponds to the (average) effective molecular diam-
eter of semi-volatile species Zi (δZi

). The following pro-
cesses are considered in KM-GAP: gas phase diffusion, gas-
surface transport (reversible adsorption), surface-bulk trans-
port, surface and bulk reactions, bulk diffusion, vapor pres-
sure change, and heat transfer. The following differential
equations can be used to describe the mass or number bal-
ance of each molecule Zi for surface and each bulk layers:

dNZi ,s/dt =
(
Jads,Zi

−Jdes,Zi
+Ps,Zi

−Ls,Zi

−Js,ss,Zi
+Jss,s,Zi

)
Ass (1)

dNZi ,ss/dt =
(
Js,ss,Zi

−Jss,s,Zi
+Pss,Zi

−Lss,Zi

−Jss,b1,Zi
+Jb1,ss,Zi

)
A(1) (2)

dNZi ,b1/dt=(Jss,b1,Zi
−Jb1,ss,Zi

) A(1)

+(Jb2,b1,Zi
−Jb1,b2,Zi

) A(2)+(Pb1,Zi
−Lb1,Zi

)V (1) (3)
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Figure 1 
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Fig. 1. Kinetic multi-layer model of gas-particle interactions in aerosols and clouds (KM-GAP):(a) model compartments and layers with
corresponding distances from the particle center (r), surface areas (A), and volumes (V ). λZi

is the mean free path of semi-volatile species
Zi in the gas phase;δZi

is the thickness of sorption layer.(b) Transport fluxes (green arrows) and chemical reactions (red arrows). The black
arrows indicate that each bulk layer can grow or shrink.

dNZi ,bk/dt = (Jbk−1,bk,Zi
−Jbk,bk−1,Zi

) A(k)

+(Jbk+1,bk,Zi
−Jbk,bk+1,Zi

) A(k+1)

+(Pbk,Zi
−Lbk,Zi

) V (k) (k = 2,...,n−1) (4)

dNZi ,bn/dt = (Jbn−1,bn,Zi
−Jbn,bn−1,Zi

) A(n)

+(Pbn,Zi
−Lbn,Zi

) V (n) (5)

whereNZi ,s, NZi ,ss, andNZi ,bk are the absolute number of Zi

molecules at surface, at quasi-static surface layer, and in bulk
layer k, respectively. The various types of mass transport
fluxes (J ) and rates of chemical production and loss (P , L)

are defined in the list of symbols (Table A1).A(k) andV (k)

are the outer surface area and the volume of the bulk layerk,
respectively (Fig. 1). The volume of each layerV (k) can be
calculated usingNZi ,bk and molecular volumeVZi

assuming
ideal mixing (volume additivity).

V (k) =

∑
i

NZi ,bkVZi
(6)

The ideal mixing assumption is also employed in practically
all chemical transport models, and recent experiments are
consistent with pseudo-ideal mixing of anthropogenic and
biogenic SOA compounds at equilibrium (Hildebrandt et al.,
2011). Note that the assumption of ideality can be relaxed in
KM-GAP if activity coefficients are available.

For spherical particles, the radius positionr(k), the outer
surface areaA(k) and the layer thicknessδ(k) of the bulk
layerk and particle diameterdp can be calculated as follows:

r(k) =

[
3

4π

n∑
j=k

V (j)

]1/3

(7)

A(k) = 4πr(k)2 (8)

δ(k) = r(k)−r(k−1) (9)

dp = 2rp = 2(r(1)+δZi
) (10)

In this way, each layer can either shrink or grow, in response
to mass transport and chemical reactions. KM-GAP can also
deal with planar geometry (thin films) assumingA(k) is con-
stant.

The surface and bulk number concentrations of Zi can be
calculated as follows:

[Zi]s= NZi ,s/Ass (11)

[Zi]ss= NZi ,ss/A(1) (12)

[Zi]bk = NZi ,bk/V (k) (13)
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The uptake coefficient of gas species Zi can be expressed
as a ratio between the net fluxes of Zi from the gas phase to
the condensed phaseJnet,Zi

, and the collision fluxJcoll,Zi
.

γZi
=

Jnet,Zi

Jcoll,Zi

=
Jads,Zi

−Jdes,Zi

Jcoll,Zi

(14)

Note thatγZi
is 0≤ γZi

≤ 1 when Zi is adsorbing/condensing
onto a surface (particle growth), whereasγZi

can be nega-
tive when Zi is desorbing/evaporating from a surface (parti-
cle shrinkage). The change of gas phase concentration of Zi

can be described usingJnet,Zi
as follows:

d[Zi]g

dt
= −

Np∑
m=1

Jnet,Zi
Ass,m (15)

whereNp is the number concentration of aerosol particles
andAss,m is the surface area of the particlem. In case of
monodispersed particles the above equation is reduced to:

d[Zi]g

dt
= −NpJnet,Zi

Ass (16)

In the appendix we specify the formalisms used to describe
and calculate fluxes or rates of gas phase diffusion, gas-
surface interactions, surface reaction, surface-bulk transport,
diffusion and reaction in the particle bulk, and heat transfer
(Sects. A1–A5).

Note that KM-GAP can treat species of any volatility,
without the need to constrain any species to just one phase
(aerosol or gas), i.e. it effectively treats each species Zi as
semi-volatile by using its actual or estimated vapor pressures
(Sect. A4). In the kinetic models previously developed by
the authors, the volatile species X and non-volatile species Y
were treated separately (Shiraiwa et al., 2009, 2010; Pfrang
et al., 2010), but the distinction between them is removed
now in the KM-GAP model presented here.

3 Model application

To test and demonstrate the applicability of KM-GAP, we ap-
plied KM-GAP to three different processes: water condensa-
tion (Sect. 3.1), evaporation kinetics of organics (Sect. 3.2),
and particle shrinkage due to chemical reactions (Sect. 3.3).
In this study the coupled differential equations were solved in
Matlab software with an ordinary differential equation solver
(ode23tb), which integrates a system of differential equa-
tions using second and third order Runge-Kutta formulas.
The computational costs for one simulation were less than
one minute on a standard desktop computer. In each simula-
tion the KM-GAP results are compared to experimental data
available in the literature.

3.1 Condensation of water vapor

We simulated the condensation of water vapor in compari-
son to experimental data from Winkler et al. (2006). In their
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Fig. 2. Water vapor condensation simulated by KM-GAP.(a) Water
droplet growth curve with different surface accommodation coeffi-
cients of H2O (αs,0,w) in comparison with the experimental data
by Winkler et al. (2006). The blue line is modeled with a low
bulk diffusion coefficient (Db,w = 10−11cm2 s−1) andαs,0,w = 1.
(b) Temporal evolution of surface temperature (Ts, black), ambient
temperature (T , red) and supersaturation (S, blue).

experiments, monodisperse Ag particles with a diameter of
9 nm have been used as condensation nuclei and humidified
under initial supersaturation of 37.5 % at 268 K and 737 Torr.
The particle number concentration was 4381 cm−3. The
growth of water droplet was observed as shown in Fig. 2a.

We modeled the temporal variation of particle radius and
surface as well as ambient temperature by numerically solv-
ing the differential equations of mass balance for each model
compartment (Eqs. 1–5, 16, A41, A42). The model simu-
lations were performed withn = 50 bulk layers. The ther-
modynamic and kinetic parameters required for the simula-
tions are summarized in Table 1. The thermal accommoda-
tion coefficient of water (αT,w) is reported to be 1 (Winkler

Atmos. Chem. Phys., 12, 2777–2794, 2012 www.atmos-chem-phys.net/12/2777/2012/
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et al., 2004). The bulk diffusion coefficient of water (Db,w)

of supercooled water is reported to be 2×10−6 cm2 s−1 at
∼268 K (Debenedetti, 1996). The desorption lifetime of wa-
ter (τd,w) is estimated by the molecular dynamic simulation
to be 3.5×10−11 s (Vieceli et al., 2005; Garrett et al., 2006).
A sensitivity study onτd,w showed that the growth curve is
insensitive toτd,w as long as it is less than 10−7 s. Values of
0.1–1 have been reported for the mass accommodation coef-
ficient of water vapor on pure water (Davidovits et al., 2004;
Kolb et al., 2010), and we used this range ofαs,0,w to fit
the experimental data. For simplicity the kinetic parameters
were assumed to be constant throughout each model run.

Note that the molecular dynamic simulations suggest an
air/water interface thickness of 0.3–0.6 nm (Garrett et al.,
2006), which is equivalent to approximately two water
molecules. At the interface each water molecule has on aver-
age two hydrogen bonds less than it would have in the bulk
(Taylor et al., 1996). KM-GAP captures this interface with
monolayers in sorption and quasi-static surface layers.

As shown in Fig. 2b, the simulated temperature of the
droplet surface increased to 270 K because of latent heat re-
lease by water condensation at the surface. The released heat
was then transferred to the ambient air, leading to the grad-
ual increase of the ambient air temperature. The red lines in
Fig. 2a illustrate the model results of KM-GAP with different
values ofαs,0,w. With αs,0,w = 1 (solid line), the simulation
was in very good agreement with the experimental observa-
tion. In this case, the droplet growth is limited only by the
gas phase diffusion of water vapor. Due to the continuous
water condensation the ambient supersaturation decreased
from 37.5 % to∼33 %. Whenαs,0,w values between 0.1–
0.5 were used, the simulations substantially underestimated
the observed growth. In these cases the growth curves were
kinetically limited by the surface accommodation of water
vapor.

Our results suggest that the surface accommodation co-
efficient of water is close to unity, which is consistent with
molecular dynamic simulations (Morita et al., 2004; Win-
kler et al., 2004; Garrett et al., 2006). Indeed, Winkler et
al. (2004) and (2006) already showed that the accommoda-
tion coefficient is close to unity, but the actual value remained
under discussion (Kolb et al., 2010). Winkler et al. (2004,
2006) used a continuum model of gas phase diffusion and
condensation that does not resolve microscopic information
such as the desorption and surface residence times of water
molecules. These and other earlier studies did not provide
a direct, quantitative link between molecular dynamic sim-
ulations and laboratory observations through a single model
resolving both the molecular processes at the surface and the
macroscopic growth of particles. Thus, our model calcula-
tions help to confirm the findings of Winkler et al. (2004,
2006), which is relevant for estimating the number concen-
tration of cloud droplets (Laaksonen et al., 2005).

To investigate the effects of bulk diffusion and surface-
bulk transport of water, particle growth was simulated with
a smallerDb,w value of 10−11 cm2 s−1, which is a character-
istic value for ice and other solids (Huthwelker et al., 2006;
Shiraiwa et al., 2011a). As illustrated as blue line in Fig. 2a,
the particle growth was retarded substantially being kineti-
cally limited by bulk diffusion and surface-bulk transport of
water molecules. The bulk diffusion-limited particle growth
may be relevant for condensational growth of amorphous
(semi-)solid aerosol particles (Mikhailov et al., 2009; Koop
et al., 2011; Tong et al., 2011; Zobrist et al., 2011), which we
intend to investigate further in follow-up studies.

3.2 Evaporation of dioctyl phthalate

Here we simulated the size-dependent evaporation of single-
component organic particles composed of dioctyl phtha-
late (DOP) and compare the results to experimental data from
Vaden et al. (2011). In their experiments, the monodisperse
DOP droplets were loaded into a 7 L evaporation chamber
containing 1 L of activated charcoal at the bottom of the
chamber which continuously removed gas-phase organics.
The number concentration of particles in the chamber was
∼150 cm−3 and this value decreased by∼20 % during the
course of the evaporation experiments due to wall losses and
dilution during sampling (A. N. Zelenyuk, personal commu-
nication, 2011).

We modeled the temporal evolution of particle diameter
and gas phase concentration of DOP as a function of evap-
oration time. The coupled differential equations (Eqs. 1–
5, 16) were solved numerically (n = 5). Heat transfer was
not considered for simplicity. The required parameters are:
vapor pressure of DOP (10−7 Torr) (Cappa et al., 2008);
gas phase diffusion coefficient of DOP (Dg,DOP = 4.4×

10−2 cm2 s−1) (Ray et al., 1988); bulk diffusion coefficient
of DOP (Db,DOP= 3.0×10−8 cm2 s−1) which is estimated
from the viscosity of DOP (0.081 Pa s) through the Stokes-
Einstein equation (Shiraiwa et al., 2011a), using an effec-
tive molecular radius of DOP (δDOP = 0.86 nm) calculated
by density (ρDOP= 0.986 g cm−3) and molar mass (MDOP=

390.56 g mol−1). Desorption lifetime of DOP (τd,DOP) is as-
sumed to be 10−6 s which is longer than the one of H2O
inferred from molecular dynamics simulations (10−6 s vs.
∼10−11 s) as DOP molecules are larger and heavier than H2O
molecules. The surface accommodation coefficient of DOP
on free substrate (αs,0,DOP) is varied to fit to the experimen-
tal data. The loss of DOP to the denuder is considered using
a first-order wall loss coefficient (kw) and adding the term
−kw[DOP]g to the right hand side of Eq. (16). We assume
that the core of the chamber is well-mixed and the loss occurs
via molecular diffusion (1st Fick’s law) through a layer adja-
cent to the denuder wall to estimatekw. We varied the thick-
ness of the denuder wall up to the half-height of the chamber
(∼3 cm). Particle losses to the wall and coagulation were not
considered.

www.atmos-chem-phys.net/12/2777/2012/ Atmos. Chem. Phys., 12, 2777–2794, 2012
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Table 1. Thermodynamic and kinetic parameters of air and water used for the simulation of water condensation and droplet growth.

Parameter Description Value

cp,a specific heat capacity of dry air at constant pressure (J g−1 K−1) 1.005a

cp,w specific heat capacity of water vapor at constant pressure (J g−1 K−1) 1.860a

Dg,w gas diffusion coefficient of water vapor (Torr cm2 s−1) 163b

Db,w bulk diffusion coefficient of water (cm2 s−1) 2×10−6

K thermal conductivity of binary mixtures of air and water vapor (cm2 s−1) Kw/(1 + 0.556pa/pw)+Ka/(1 + 1.189pw/pa)
a

Ka thermal conductivity of dry air (J s−1 g−1 K−1) 3.44× 10−3
−7.51×10−5T a

Kv thermal conductivity of water vapor (J s−1 g−1 K−1) −6.72× 10−3
−7.49×10−5T a

Lw latent heat of water vaporization (J g−1) 3.14×103
−2.36×T a

Ma molar mass of air (g mol−1) 29
Mw molar mass of water (g mol−1) 18
R gas constant (J K−1 mol−1) 8.31
ρw density of water (g cm−3) 1.049–1.76× 10−4

×T a

αs,0,w surface accommodation coefficient of water on free substrate 0.1–1
αT thermal accommodation coefficient of water 1a

σ surface tension of water (J m−2) 0.0761–1.55× 10−4 (T −273)a

σ s,w effective molecular cross section of H2O (cm2) 1.6× 10−15

τd,w desorption lifetime of H2O (s) 4× 10−11

a Winkler et al. (2006),b Ivanov et al. (2007)

The experimentally measured size- and time-dependent
evaporation of DOP is modeled well by KM-GAP as shown
in Fig. 3, in which the molecular diffusion distance for the
denuder loss is assumed to be the half-height of the cham-
ber andαs,0,DOP is taken to be 0.5. The modeled gas phase
concentration of DOP is∼109 cm−3and mainly determined
by the vapor pressure of DOP. Due to turbulent mixing in the
chamber, the actual molecular diffusion distance might be
smaller (Crump and Seinfeld, 1981). For example, the data
can also be reproduced with a smaller diffusion distance of
1 mm andαs,0,DOP of ∼0.3, while variations ofτd,DOP in the
range of 10−12–1 s showed practically no effect. These find-
ings emphasize the importance of mixing effects and cham-
ber geometry. This information and related model sensitiv-
ity studies can be used to design and optimize further ex-
periments for efficient probing of specific physical effects
(e.g. experiments with variable chamber geometry to probe
accommodation vs. mixing).

For the above modeling the particle number concentra-
tion was kept constant at the initial concentration for sim-
plicity. The sensitivity studies on particle number concen-
tration showed that a particle loss of 20 % during the course
of the experiments does not affect the evaporation behavior
significantly. If the number concentration is decreased by a
factor of 10, however, the particles shrink faster by∼5 % be-
cause of the lower gas phase concentration of DOP, suggest-
ing that the particle number concentration also plays a role
in such evaporation experiments. While traditional evapora-
tion models may suffice to describe simple systems consist-
ing of single components or liquid droplets, KM-GAP may
provide further insight into the interplay of mass transport,
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Fig. 3. Evaporation of dioctyl phthalate simulated by KM-GAP as
a function of time with particle diameters of 296, 500, 697, and
836 nm. The data points are taken from Vaden et al. (2011).

phase transitions and chemical reactions in complex multi-
component systems of variable composition and phase state
such as (secondary) organic aerosols that undergo chemical
aging and transformation (Cappa and Wilson, 2011; Pfrang
et al., 2011). We intend to investigate the evaporation ki-
netics of (semi-)solid particles composed of multiple com-
ponents in follow-up studies.
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Table 2. Physical and chemical parameters for oleic acid ozonolysis including the assumed mole-based product yields (compare Zahardis
and Petrucci, 2007; all minor products are represented by a dimer with the properties given below).

Parameter ozone oleic acid nonanal oxononanoic acid nonanoic acid azelaic acid dimer

Yield – – 0.6 0.4 0.1 0.1 0.2
αs,0 4.2× 10−4 – 10−2 – – – –
τd [s] 0.01 – 10−4 – – – –
ρ [g cm−3] 1.35 0.895 0.827 1.018 0.9 1.225 1.06
Db [cm2 s−1] 10−5 1.9× 10−7 10−6 10−6 9.2× 10−7 10−6 10−10

M [g mol−1] 48 282.46 142.24 172.2 158.23 172.2 622.4

3.3 Oxidation and volatilization of oleic acid

Here we simulated the degradation of oleic acid by ozone
in comparison to experimental data from Ziemann (2005).
The same data set has been used by Pfrang et al. (2010) and
Shiraiwa et al. (2010) for simulations with a kinetic double-
layer model (K2-SUB) and a kinetic-multi layer model (KM-
SUB) for aerosol surface and bulk chemistry. In those stud-
ies the gas-particle partitioning of products was not consid-
ered, which is now included in the KM-GAP simulation.
The products of oleic acid oxidation by ozone are mainly
1-nonanal, 9-oxononanoic acid, nonanoic acid, azelaic acid,
and peroxidic dimer (e.g. Zahardis and Petrucci, 2007; Vesna
et al., 2009). Known and estimated physical properties of
oleic acid and its products are summarized in Table 2. The
assumed product yield of oleic acid ozonolysis is also given
(compare Zahardis and Petrucci, 2007). For simplicity we
assume only nonanal is semi-volatile and oleic acid and
other products are non-volatile as their vapor pressures are
low and all products other than 1-nonanal, 9-oxononanoic
acid, nonanoic acid and azelaic acid can be represented by a
dimer. We intend to remove these simplifying assumptions
in follow-up studies.

The gas phase ozone concentration was set to [Z1]g =

[Z1]gs = 7.0 × 1013 cm−3 (corresponding to 2.8 ppm at
1013 hPa and 298 K). The initial surface and bulk concen-
trations of ozone (Z1) and nonanal were set to [Zi ]s,0 =

[Zi ]bk,0 = 0. The initial surface and bulk concentrations
of oleic acid (Z2) were set to [Z2]ss,0 = 9.7× 1013 cm−2

and [Z2]b,0 = 1.2× 1021 cm−3, respectively (Pfrang et al.,
2010), corresponding to 3.15 mol l−1 as reported by Zie-
mann (2005). Accordingly, the initial value of the total
number of oleic acid molecules in a particle with a radius
of 0.2 µm wasNY,0 = 4.1× 107. Note that the bulk con-
centration of pure oleic acid is actually 1.95× 1021 cm−3

based on molecular weight and density, but the lower value
of 1.2×1021 cm−3 is used as an initial value because oleic
acid was already exposed to ozone until ozone is well-mixed
in the chamber (Ziemann, 2005). Therefore, oleic acid is
already partly degraded and initial concentration of non-
volatile products are estimated based on the product yield.

We modeled the temporal evolution of particle size, the
particle surface and bulk composition, and of the ozone
uptake coefficient by numerically solving the differential
equations of mass balance in terms of molecular num-
ber for each model compartment (Eqs. 1–5). Evolution
of gas phase concentration and heat transfer were not re-
solved for simplicity. The kinetic parameters required for
the model simulations are based on parameters of base
case 1 given in Shiraiwa et al. (2010) and summarized in
Table 2: the surface accommodation coefficient of ozone
(αs,0,Z1), the desorption lifetime of ozone (τd,Z1), the second-
order reaction rate coefficient at surface, quasi-static sur-
face, and bulk (kSLR,Z1,Z2 = kQSLR,Z1,Z2 = 6×10−12 cm−2;
kBR,Z1,Z2 = 5×10−17 cm−2). The bulk diffusion coefficients
(Db) of oleic acid, nonanal, and nonanoic acid were esti-
mated from viscosity data (Noureddini et al., 1992) using
the Stokes-Einstein equation (Shiraiwa et al., 2011a). Note
that in our earlier studiesDb for oleic acid was assumed to
10−10 cm2 s−1 (Pfrang et al., 2010; Shiraiwa et al., 2010), but
here we provide a better estimate of 1.9×10−7 cm2 s−1. Ad-
ditional input parameters were the mean thermal velocity of
ozone (ωZ1 = 3.6×104 cm s−1), the Henry’s law coefficient
of ozone (Ksol,cc,Z1 = 4.8×10−4 mol cm−3 atm−1), the va-
por pressure of nonanal (∼0.4 Torr) (Verevkin et al., 2003),
and desorption lifetime of nonanal which is assumed to be
10−4 s. For simplicity the kinetic parameters were assumed
to be constant throughout each model run. Note that the ac-
tual reaction mechanism might be more complex, involving
the formation of reactive oxygen intermediates (ROIs) with a
different set of kinetic parameters including a shorter ozone
desorption lifetime (Shiraiwa et al., 2011a, b).

The model simulations were performed withn = 100 lay-
ers to obtain high-resolution results of bulk concentration
profiles. To test how the number of model layers in the parti-
cle bulk affects the simulation results, we have run the model
within the range ofn = 1–200. The model results of oleic
acid degradation and particle growth were almost identical,
demonstrating the robustness of the multi-layer model ap-
proach with transport rate coefficients scaled by layer thick-
ness (Eqs. A18, A19, A27) (Shiraiwa et al., 2010).
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Fig. 4. Ozonolysis of oleic acid and evaporation of nonanal.(a) Experimental data (black symbols; Ziemann, 2005) and model results for
the total number of oleic acid molecules (NZ2, black line) and for the particle radius (red line);(b) surface concentrations at the quasi-static
surface layer and(c) average bulk concentration of ozone (red), oleic acid (black), nonanal (green), and non-volatile products (blue).

Figure 4 illustrates the model results of KM-GAP. As
shown in Fig. 4a, KM-GAP fits very well to the simulated
decay of oleic acid. The particle shrinks with the radius de-
creasing from 200 to 187 nm in 30 s (∼18 % of original mass
is lost), due to the formation and evaporation of the volatile
product nonanal. Sage et al. (2009) observed that only 1.5 %
of the original oleic acid mass was lost by volatilization of
the reaction product nonanal within a reaction time of several
hours. The discrepancy might be due to additional secondary
chemistry involving the carbon backbone or heterogeneous
uptake of nonanal to the particle, which are not considered in
this study. These processes can be implemented in KM-GAP
when the relevant kinetic parameters of secondary reactions
can be determined or estimated, which is a target for follow-
up studies but goes beyond the scope of this study introduc-
ing the new model approach.

The simulated ozone uptake coefficient is nearly constant
and identical to the surface and bulk accommodation coef-
ficients (γZ1 ≈ αs,Z1 ≈ αss,Z1 ≈ αb,Z1 ≈ 4.2×10−4), indicat-
ing that the gas uptake is limited by interfacial mass trans-
port, i.e. by the process of bulk accommodation which is in
turn limited by surface accommodation. Note that even if
evaporation of nonanal is switched off (i.e. no particle shrink-
age) the oleic acid degradation is well reproduced by KM-
GAP with the same kinetic parameters, indicating the lim-

ited impact of evaporation of volatile products on organics
degradation in this particular experimental data set.

As shown in Fig. 4b, the surface concentration of ozone
at the quasi-static surface layer increases gradually owing to
the combination of reversible adsorption, surface reaction,
and surface-to-bulk transport driven by the chemical reac-
tion in the bulk. In contrast, the surface concentration of
oleic acid decreases due to chemical reaction with ozone and
while the concentration of nonvolatile products increases for
the same reason. The surface concentration of nonanal stays
very low (∼106 cm−2) at steady-state determined by desorp-
tion, chemical production and transport from the bulk. A
very similar behavior is observed for the average bulk con-
centrations as illustrated in Fig. 4c. The bulk concentration
of nonanal stays constant at a low level, whereas the con-
centrations of non-volatile products increase as oleic acid is
degraded by bulk reaction.

Figure 5 shows the bulk concentration profiles of
(a) ozone, (b) oleic acid, (c) nonanal, and (d) other non-
volatile products (i.e. oxononanoic + nonanoic + azelaic
acids + dimer). The y-axis displays the radial distance from
the particle core. As shown in Fig. 5a, ozone diffuses rapidly
into the bulk and a concentration gradient between near-
surface bulk and core is observed, which is determined by
the interplay of interfacial transport with bulk diffusion and
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Fig. 5. Ozonolysis of oleic acid and evaporation of nonanal. Temporal evolution of bulk concentration profiles for(a) ozone,(b) oleic acid,
(c) nonanal and(d) non-volatile products. The y-axis indicates the radial distance from the particle core to the near-surface bulk. The color
shows the bulk concentration in units of cm−3 (blue= low, red= high).

reaction. During the first few seconds, the ozone concentra-
tion in the near-surface bulk is almost two orders of mag-
nitude higher than in the particle center, because ozone is
depleted due to fast bulk reaction in the near-surface bulk be-
fore it can diffuse more deeply into the bulk. Up to∼30 s, the
concentration gradient swiftly relaxes with decreasing abun-
dance of oleic acid.

As illustrated in Fig. 5b, the strong concentration gradient
of ozone induces almost no gradient for oleic acid because
the concentration of oleic acid is∼8 orders of magnitude
higher than that of ozone (Fig. 4c). Thus, oleic acid can ef-
fectively be regarded as well-mixed (i.e. concentration dif-
ferences< 1 %). Figure 5c illustrates the bulk concentration
profile of nonanal. It is interesting to note that even though
the average bulk concentration of nonanal stays constant at
a low concentration level (∼1014 cm−3) as shown in Fig. 4c,
a concentration gradient is observed. The concentration at
the core is by a factor of∼5 higher than that in the near-
surface bulk for the first 20 s, when the evaporation rate of
nonanal is faster than bulk diffusion, which in turn is faster
than the chemical production rate. After∼20 s, when ozone
reaches the particle core, the production rate of nonanal be-
comes faster than bulk diffusion leading to a steeper concen-
tration gradient. In contrast, the non-volatile products show
only a small concentration gradient, but at a high concentra-
tion level (∼1021 cm−3).

4 Summary and conclusions

We present a novel kinetic multi-layer model of gas-particle
interactions in aerosols and clouds (KM-GAP) that treats ex-
plicitly all steps of mass transport and chemical reaction of
semi-volatile species partitioning between gas phase, parti-
cle surface and particle bulk. KM-GAP builds on the kinetic
multi-layer model for aerosol surface and bulk chemistry
which includes gas phase diffusion, reversible adsorption,
surface reactions, and bulk diffusion and reaction (KM-SUB;
Shiraiwa et al., 2010). The new processes included in KM-
GAP are heat flux, evaporation and condensation of semi-
volatile species. The size change of the particle and the tem-
poral evolution and concentration profiles of semi-volatile
species at the gas-particle interface as well as in the parti-
cle bulk can be modeled along with surface concentrations
and gas uptake coefficients. Depending on the complexity of
the investigated system, unlimited numbers of semi-volatile
species, chemical reactions, and physical processes can be
treated, and the model shall help to bridge gaps in the un-
derstanding and quantification of multiphase chemistry and
microphysics in atmospheric aerosols and clouds.

To demonstrate the applicability of KM-GAP, the conden-
sation of water vapor on nanoparticles was simulated and
compared to experimental data. Resolving the reversible ad-
sorption of water vapor with a water desorption lifetime of
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picoseconds as suggested by molecular dynamic simulations,
we help to confirm the best estimate of the surface accom-
modation coefficient of water vapor on a water droplet to be
unity as reported by Winkler et al. (2006). Sensitivity studies
suggest that an artificially slow bulk diffusion can inhibit the
particle growth significantly, which may be relevant for con-
densational growth of (semi-)solid organic aerosol particles.

For further demonstration of the ability of KM-GAP, the
size- and time-dependent evaporation of single organic com-
ponent particles was modeled. Experimental data on the
evaporation of dioctyl phthalate particles can be reproduced
with an accommodation coefficient of∼0.5, and the model
results emphasize the importance of aerosol particle number
concentration and mixing effects in chamber experiments.
Moreover, we showed how the formation and evaporation of
volatile reaction products like nonanal can cause a decrease
in the size of oleic acid particles exposed to ozone.

In conclusion, KM-GAP is a versatile tool for the model-
ing of multiphase chemical and microphysical processes in
atmospheric aerosols and clouds in a self-consistent and re-
alistic manner. The model can resolve the effects of surface
and bulk mass transport in particles undergoing condensation
and/or evaporation, which may be crucial for the descrip-
tion and understanding of the atmospheric aging of multi-
component mixtures of time-dependent composition and dif-
fusivity. So far the formation and aging of secondary or-
ganic aerosol (SOA) has generally been described by thermo-
dynamic models that implicitly assume quasi-instantaneous
gas-particle partitioning (Pankow, 1994; Donahue et al.,
2006, 2011; Zuend et al., 2010). If, however, the phase
state of SOA is not liquid but (semi-)solid, this assumption
may break down and the SOA partitioning may be kinetically
limited (Virtanen et al., 2010; Cappa and Wilson, 2011;
Pfrang et al., 2011; Shiraiwa et al., 2011; Vaden et al., 2011).
We suggest and intend to use KM-GAP for the investigation
of such effects.

Appendix A

Detailed description of KM-GAP

A1 Gas phase diffusion, interfacial transport, and
surface reactions

Based on kinetic theory, the gas kinetic flux of Zi colliding
with the surfaceJcoll,Zi

can be expressed as

Jcoll,Zi
= [Zi]gsωZi

/4 (A1)

where [Zi ]gs is the near-surface gas phase concentration
of Zi and ωZi

is the mean thermal velocity given by
ωZi

= (8RT/(πMZi
))1/2, whereMZi

is the molar mass of Zi ,
R is the gas constant, andT is the absolute temperature. The
significant net uptake of Zi will lead to local depletion at
near-surface gas phase ([Zi ]gs< [Zi ]g) and gas phase diffu-
sion will influence further uptake. In this case near-surface

gas phase concentrations should be corrected using a gas
phase diffusion correction factorCg,Zi

.

[Zi]gs= Cg,Zi
[Zi]g (A2)

Cg,Zi
can be described as follows (Pöschl et al., 2007).

Cg,Zi
=

1

1+γZi

0.75+0.28KnZi

KnZi
(1+KnZi

)

(A3)

γZi
is the uptake coefficients of Zi , which can be calculated

as described in Eq. (14).KnZi
is the Knudsen number which

can be approximated by the gas phase diffusion coefficient
Dg,Zi

and particle diameterdp.

KnZi
=

6Dg,Zi

ωZi
dp

(A4)

The flux of adsorption of gas molecules on the quasi-static
particle surface can be expressed as

Jads,Zi
= αs,Zi

Jcoll,Zi
=ka,Zi

[Zi]g (A5)

whereαs,Zi
is the surface accommodation coefficient and

ka,Zi
(=αs,Zi

ωZi
/4) is a first-order adsorption rate coefficient.

Estimation ofαs,Zi
is based on a Langmuir adsorption model

in which all adsorbate species compete for a single type
of non-interfering sorption sites on the quasi-static surface
(Pöschl et al., 2007).αs,Zi

is determined by the surface ac-
commodation coefficient on an adsorbate-free surfaceαs,0,Zi

and the sorption layer coverageθs, which is given by the sum
of the fractional surface coverage of all competing adsorbate
speciesθs,Zp .

αs,Zi
= αs,0,Zi

(1−θs) = αs,0,Zi
(1−Σθs,Zp ) (A6)

θs,Zp
is the ratio between the actual and the maximum

surface concentration value of Zp: θs,Zp
= [Zp]s/[Zp]s,max=

σs,Zp
[Zp]s, whereσs,Zp

is the effective molecular cross sec-
tion of Zp. The inverse molecular cross section can be re-
garded as the overall concentration of non-interfering sorp-
tion sites on the quasi-static surface layer (Pöschl et al.,
2007): [SS]ss= σ−1

s,Zp
.

The adsorbed molecules can thermally desorb back to the
gas phase. Desorption (the inverse of adsorption) can be de-
scribed by a first-order rate coefficientkd,Zi

, which is as-
sumed to be independent ofθs,Zi

. The flux of desorption
of gas molecules on the quasi-static particle surface can be
expressed using the desorption coefficientkd,Zi

as

Jdes,Zi
= kd,Zi

[Zi]s= τ−1
d,Zi

[Zi]s (A7)

The desorption lifetimeτd,Zi
is the mean residence time

on the surface in the absence of surface reaction and surface-
bulk transport.

The transport of semi-volatile species Zi between sorption
layer and quasi-static surface layer (Js,ss,Zi

and Jss,s,Zi
) is

described as follows:

Js,ss,Zi
= ks,ss,Zi

[Zi]s (A8)
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Jss,s,Zi
= kss,s,Zi

[Zi]ss (A9)

whereasks,ss,Zi
andkss,s,Zi

are the first-order transport rate
coefficients. Estimates forkss,s,Zi

can be derived from the
corresponding bulk diffusion coefficientsDb,Zi

based on
Fick’s first law of diffusion considering that a molecule Zi

in the sorption layer needs to travel a distance ofδZi
to move

into the quasi-static surface layer:

kss,s,Zi
≈ Db,Zi

/δZi

2 (A10)

An estimate forks,ss,Zi
can be determined considering mass

transport equilibrium conditions. Mass balance implies that
ks,ss,Zi

[Zi ]s,eq= kss,s,Zi
[Zi ]ss,eq (Js,ss,Zi

= Jss,s,Zi
) andkd,Zi

[Zi ]s,eq = ka,Zi
[Zi ]g,eq(Jdes,Zi

= Jads,Zi
), where [Zi ]g,eq,

[Zi ]s,eq, and [Zi ]ss,eq are the equilibrium or solubility satu-
ration number concentrations of Zi in the gas phase, on the
sorption layer, and in the quasi-static surface layer, respec-
tively. It leads to

ks,ss,Zi
≈ kss,s,Zi

kd,Zi
[Zi]ss,eq

ka,Zi
[Zi]g,eq

(A11)

Note thatks,ss,Zi
reflects the vapor pressure of Zi (pZi

) as
[Zi ]g,eq is a function ofpZi

as described in Sect. 2.4.
General rate equations of chemical production and loss by

surface layer reactions, which can proceed within the sorp-
tion layer (SLR;Ps,Zi

−Ls,Zi
), within the quasi-static sur-

face layer (QSLR;Pss,Zj
− Lss,Zj

), and between reactants
of the sorption layer and of the quasi-static layer (SQSLR;
Ps,ss,Zi

−Ls,ss,Zi
), are given by:

Ps,Zi
−Ls,Zi

=

∑
v

∑
p

∑
q

cSLRv,s,Zi
[Zp]s(

kSLRv,Zp +kSLRv,Zp,Zq [Zq ]s
)

(A12)

Pss,Zi
−Lss,Zi

=

∑
v

∑
p

∑
q

cQSLRv,ss,Zi
[Zp]ss(

kQSLRv,Zp +kQSLRv,Zp,Zq [Zq ]ss
)

(A13)

Ps,ss,Zi
−Ls,ss,Zi

=

∑
v

∑
p

∑
q

cSQSLRv,ss,Zi

kSQSLRv,Zp,Zq [Zp]s[Zq ]ss (A14)

HerecSLRv,s,Zi
, cQSLRv,ss,Zi

andcSQSLRv,ss,Zi
stand for the

stoichiometric coefficients (negative for starting materials
and positive for reaction products) of species Zi in surface
reactions (v = 1, ..., vmax) in a system with a total number
of vmax (photo-)chemical reactions occurring on the surface
of the investigated aerosol particles.kSLRv,Zp andkQSLRv,Zp

are first-order reaction rate coefficients at sorption and quasi-
static surface layer, respectively.kSLRv,Zp,Zq , kQSLRv,Zp,Zq

andkSQSLRv,Zp,Zq are second-order reaction rate coefficients.
The quasi-static surface accommodation coefficient

(αss,Zi
), i.e. the probability for an individual gas molecule

colliding with the surface to enter the quasi-static surface
layer is given by:

αss,Zi
= αs,Zi

Js,ss,Zi

Jdes,Zi
+Js,ss,Zi

+Ls,Zi
+Ls,ss,Zi

(A15)

A2 Surface-bulk transport

The surface-bulk transport of semi-volatile species Zi is de-
fined as exchange between the quasi-static surface layer and
near-surface bulk. Based on the PRA framework and follow-
ing previous studies of kinetic models (Ammann and Pöschl,
2007; P̈oschl et al., 2007; Pfrang et al., 2010; Shiraiwa et
al., 2010), the transport flux from quasi-static surface layer
to bulk (Jss,b1,Zi) can be described as:

Jss,b1,Zi
= kss,b1,Zi

[Zi]ss (A16)

kss,b1,Zi
is the first-order transport rate coefficient (s−1) of

Zi . In the same way, bulk to surface transport (Jb,ss,Zi
) can

be described as follows:

Jb1,ss,Zi
= kb1,ss,Zi

[Zi]bs (A17)

kb1,ss,Zi
(cm s−1) is the first-order transport rate coefficient,

which can be regarded as an effective transport velocity. Ne-
glecting surfactant effects,kb1,ss,Zi

can be estimated based
on Fick’s first law of diffusion considering that a molecule
Zi in the near-surface bulk layer on average needs to travel a
distance of (δZi

+ δ(1))/2 to move into the quasi-static surface
layer:

kb1,ss,Zi
≈ 2 Db,Zi

/(δZi
+δ(1)) (A18)

Under equilibrium conditions, mass conservation implies
kb1,ss,Zi

[Zi ]b1 = kss,b1,Zi
[Zi ]ss (Jb1,ss,Zi

= Jss,b1,Zi
) and for

pure Zi the surface and bulk concentrations are given by the
inverse of the effective molecular cross section and of the
effective molecular volume, respectively: [Zi ]ss= δ−2

Zi
and

[Zi ]b1= δ−3
Zi

. Thus, we obtain

kss,b1,Zi
≈ kb1,ss,Zi

/δZi
(A19)

The bulk accommodation coefficient of Zi (αb,Zi
), i.e. the

probability for a gas molecule colliding with surface to enter
the bulk of the particle, can be derived by considering that a
molecule Zi in the quasi-static surface layer needs to travel
only over a distance of about one molecular diameterδZi

to
move into the bulk. The corresponding rate coefficient and
transport flux can be estimated by

kss,b,Zi
≈ Db,Zi

/δ2
Zi

(A20)

Jss,b,Zi
= kss,b,Zi

[Zi]ss (A21)

Note that the physical parameterskss,b,Zi
, Jss,b1,Zi

, andαb,Zi

do not depend on the bulk layer thickness, whereas the model
parameterskss,b1,Zi

and Jss,b1,Zi
vary with the bulk layer

thickness.
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Zi can enter the bulk after iterative exchange between the
sorption layer and the quasi-static surface layer, andαb,Zi

can be calculated as follows:

αb,Zi
= αss,Zi

{
Ψss,b+(Ψss,sΨs,ss)Ψss,b+(Ψss,sΨs,ss)

2Ψss,b+···

}
= αss,Zi

Ψss,b lim
n→∞

n∑
k=0

(Ψss,sΨs,ss)
k

= αss,Zi
Ψss,b lim

n→∞

1−(Ψss,sΨs,ss)
n+1

1−Ψss,sΨs,ss

≈ αss,Zi

Ψss,b

1−Ψss,sΨs,ss

(A22)

whereΨ ss,b andΨ ss,s are the probabilities for Zi in the quasi-
static surface layer to enter the bulk (Ψ ss,b) or transport back
to the sorption layer (Ψ ss,s); Ψ s,ss is the probability for Zi in
the sorption layer to enter the quasi-static surface layer:

Ψss,b = Jss,b,Zi
/(Jss,b,Zi

+Jss,s,Zi
+Lss,Zi

+Ls,ss,Zi
) (A23)

Ψss,s= Jss,s,Zi
/(Jss,b,Zi

+Jss,s,Zi
+Lss,Zi

+Ls,ss,Zi
) (A24)

Ψs,ss= Js,ss,Zi
/(Js,ss,Zi

+Jdes,Zi
+Ls,Zi

+Ls,ss,Zi
) (A25)

A3 Bulk diffusion and reaction

Bulk diffusion is explicitly treated in KM-GAP as the mass
transport (Jbk,bk±1) from one bulk layer (bulkk) to the next
(bulk k ±1). In analogy to surface-bulk mass transport, we
describe the mass transport fluxes between different layers of
the bulk by first-order rate equations:

Jbk,bk±1,Zi
= kb,b,Zi

(k)[Zi]bk (A26)

Estimates for the transport rate coefficients or effective ve-
locities of Zi from layerk to k +1, kb,b,Zi

(k) (cm s−1), can
be calculated from the corresponding diffusion coefficients
based on Fick’s first law of diffusion. For this purpose we
assume that each layer is homogeneously mixed (no concen-
tration gradient within a layer), but note that this assumption
can effectively be overcome by choosing an adequately large
number of bulk layers. The lower limit of physically mean-
ingful layer thickness corresponds to the molecular diame-
ter of the involved chemical species, and the upper limit for
correct treatment of bulk diffusion depends on the diffusiv-
ity. In (semi-)solid matrices with low diffusivity, the mixing
times are long and concentration gradients can be steep, so
that relatively thin layers should be used (>10 layers) (Shi-
raiwa et al., 2011a). In liquid matrices with high diffusivity,
the mixing times are short and concentration gradients are
small, so that relatively thick layers can provide sufficient
resolution (<10 layers) (Shiraiwa et al., 2011a). The average
travel distance for molecules moving from layerk to k+1 is
(δ(k) + δ(k+1))/2, and from Fick’s first law follows:

kb,b,Zi
(k) = 2Db,Zi

/(δ(k)+δ(k+1)) (A27)

Note that KM-SUB had used an alternative approach to es-
timate a transport velocity, but the approach presented here
is more straightforward and also used successfully in another
model study for similar purposes (Zobrist et al., 2011). This
treatment of bulk diffusion yields practically the same results
(concentration profiles) as the solving of partial differential
equations (Smith et al., 2003; Shiraiwa et al., 2010), but it is
more flexible and requires no assumptions about interfacial
transport. The influence of changing chemical composition
of the particle bulk on diffusion can be taken into account by
describingDb,Zi

using the obstruction or percolation theory
(Pfrang et al., 2011; Shiraiwa et al., 2011a), or from parame-
terizations of experimental data (Zobrist et al., 2011).

Chemical reactions proceeding within the bulk of a par-
ticle are defined as bulk reactions (BR). For simplicity, we
assume that all relevant bulk reactions proceed via quasi-
elementary steps with straightforward first- or second-order
rate dependences on the concentrations within each bulk
layer. The following generalized expressions can be used to
describe net chemical production (i.e. production minus loss)
of bulk species Zi within the bulk layerk.

Pbk,Zi
−Lbk,Zi

=

∑
v

∑
p

cBRv,Zi
[Zp]bk(

kBRv,Zp
+

∑
q

kBRv,Zp,Zq [Zq ]bk

)
(A28)

HerecBRv,Zi
stands for the stoichiometric coefficients (nega-

tive for starting materials and positive for reaction products)
of species Zi in reaction BRv; v = 1, . . . , vmax in a system
with a total number ofvmax chemical reactions occurring in
the bulk layerk. kBRv,Zp is a first-order reaction rate coeffi-
cient andkBRv,Zp,Zq is a second-order bulk reaction rate co-
efficient between Zp and Zq in the condensed phase bulk of
a system with multiple semi-volatile species which can react
with each other. In principle, higher-order reactions might
also occur in real systems and could be flexibly included in
the model. Moreover, the concentration variables in the rate
equations could be replaced by activities or corrected by ac-
tivity coefficients to account for non-ideal concentration de-
pendencies.

A4 Vapor pressure

The equilibrium (saturation) number concentrations of Zi in
the gas phase [Zi ]g,eq can be calculated using the saturation
vapor pressurepZi

(dp) of semi-volatile species Zi , which is
a function of the particle diameter as defined by the ideal gas
equation:

[Zi]g,eq=
PZi

(dp)NA

RTs
(A29)
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For waterpZi
(dp) can be calculated using Köhler theory

(Köhler, 1936; Seinfeld and Pandis, 1998):

PZi
(dp) = po(Ts)exp

(
4MZi

σ

RTsρZi
dp

)
−

6nsMZi

πρZi
dp

3
(A30)

whereσ is the solution surface tension,ns is moles of solute
in the particle, andpo(Ts) is the vapor pressure of pure Zi

over a flat surface.
pZi

(dp) can be also calculated using a single hygroscopic-
ity parameterκ (Petters and Kreidenweis, 2007):

PZi
(dp) = po(Ts)

dp
3
−dd

3

dp
3
−dd

3(1−κ)
exp

(
4MZi

σ

RTsρZi
dp

)
(A31)

wheredd is the dry diameter of the particle. Note thatpZi
(dp)

is also a function of the surface temperatureTs.

A5 Heat transfer

For water condensation the heat fluxQ directed away from a
single droplet can be expressed as (Vesala et al., 1997; Win-
kler et al., 2006):

Q = πdpβT(K(Ts)+K(T ))(Ts−T )+HvI (A32)

whereK(Ts) and K(T ) correspond to thermal conductivi-
ties of the binary mixture of inert gas and water vapor at the
droplet surface temperature (Ts) and the ambient gas temper-
ature (T ), respectively.I is the mass flux directed away from
a single droplet:

I = −Jnetπd2
pMw/NA (A33)

βT is the transitional correction factor for heat transfer given
by (Vesala et al., 1997; Winkler et al., 2006)

βT =
1+KnT

1+(4/3αT +0.377)KnT +4/3αTKn2
T

(A34)

KnT is the Knudsen number for heat transfer characterized
by particle diameter (dp) and effective mean free path of the
dry air molecules (λa):

KnT = 2λa/dp = 6DT/ωadp (A35)

whereDT is the thermal diffusivity of air andωa is the mean
thermal velocity of dry air. Hv is the specific enthalpy of
moist air:

Hv = Ha+xHw (A36)

whereHa andHw are the specific enthalpies of dry air and
water vapor, respectively. These can be calculated from
the specific heat capacities of dry air (cp,a) and water vapor
(cp,w), respectively:

Ha= cp,aT (A37)

Hw = cp,wT +Lw (A38)

Lw is the latent heat of water vaporization. The humidity
ratio x given in units of g g−1 is the ratio between the actual
mass of water vapor present in moist air to the mass of the
dry air.

The droplet surface temperatureTs can be obtained from
the heat balance equation (Vesala et al., 1997).

Q−Hl I = 0 (A39)

Hl(Ts) is the specific enthalpy of the liquid at the droplet
surface temperature.

Hl = Hv(Ts)−Lw(Ts) (A40)

Inserting Eqs. (A32) and (A40) into Eq. (A39) yields

Ts= T −
LwI

πdpβT(K(T )+K(Ts))
(A41)

Parameter definitions and values are given in Table 1. The
ambient temperature (T ) can be calculated by the heat bal-
ance equation below.

dT

dt
=

Np∑
m=1

−LwI

cp,aMa+cp,wMw
(A42)

The amount of heat released upon chemical reaction (reac-
tion enthalpy) can be of similar magnitude or larger than
the heat release upon condensation. Usually, however, the
heat release upon reaction of trace gases with aerosol par-
ticles proceeds over much longer time scales than the con-
densation of cloud droplets, because the mass flux is much
smaller. Therefore, the heat released by chemical reactions
can be efficiently buffered by the ambient gas and does nor-
mally not lead to a substantial increase of particle surface
temperature. For example, an oleic acid particle with a ra-
dius of 200 nm can be oxidized by ozone on the timescale of
a minute. If we insert the corresponding average rate of heat
release forLwI in Eq. (A41), the temperature change due to
reaction is estimated to be below∼10−4 K as long as the re-
action enthalpy is less negative than about−2000 kJ mol−1.
Indeed, the reaction enthalpy of oleic acid ozonolysis is esti-
mated to be on the order of−300 to−700 kJ mol−1 based on
published enthalpies of formation for the reaction products
(Bond, 2007; NIST, 2011), assuming one mole of nonanal,
0.5 mole of nonanoic acid, and 0.5 mole of azelaic acid are
formed from one mole of oleic acid. Even if we consider the
complete combustion of oleic acid with a reaction enthalpy
of −11161 kJ mol−1 (NIST, 2011), this would only lead to
a temperature change of less than 10−3 K. Thus, we ignore
heat transfer effects in the modeling of chemical reactions in
Sect. 3.3.
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Table A1. List of symbols.

Symbol Description Unit

αb,Zi
bulk accommodation coefficient of Zi

αs,Zi
surface accommodation coefficient of Zi

αss,Zi
quasi-static surface accommodation coefficient of Zi

αs,0,Zi
surface accommodation coefficient of Zi on an adsorbate-free surface

βT transitional correction factor for heat transfer
δ(k) thickness of bulk layerk cm
δZi

effective molecular diameter of Zi cm
λZi

mean free path of Zi in the gas phase cm
θs sorption layer surface coverage
θss quasi-static layer surface coverage
σ s,Zi

effective molecular cross section of Zi cm2

γ Zi
uptake coefficient of Zi

τd,Zi
desorption lifetime of Zi s

ωZi
mean thermal velocity of Zi in the gas phase cm s−1

A(k) outer surface area of bulk layerk cm2

Ass surface area of particle (quasi-static layer) cm2

Cg,Zi
gas phase diffusion correction factor for Zi

Db,Zi
bulk diffusion coefficient of Zi cm2 s−1

dd particle dry diameter cm
dp particle diameter cm
Ha specific enthalpy of dry air J g−1

Hv specific enthalpy of moist air J g−1

Hw specific enthalpy of water vapor J g−1

Kn Knudsen number
Jads,Zi

flux of adsorption of Zi cm−2 s−1

Jcoll,Zi
flux of surface collisions of Zi cm−2 s−1

Jdes,Zi
flux of desorption of Zi cm−2 s−1

Jb,ss,Zi
flux of bulk-to-surface transport of Zi cm−2 s−1

Jb1,ss,Zi
flux of bulk layer 1-to-surface transport of Zi cm−2 s−1

Js,ss,Zi
flux of sorption-to-quasi-static surface layer transport of Zi cm−2 s−1

Jss,s,Zi
flux of quasi-static surface-to-sorption layer transport of Zi cm−2 s−1

Jss,b,Zi
flux of quasi-static surface-to-bulk transport of Zi cm−2 s−1

Jss,b1,Zi
flux of quasi-static surface-to-bulk layer 1 transport of Zi cm−2 s−1

ka,Zi
first-order adsorption rate coefficient of Zi

kb,ss,Zi
rate coefficient (velocity) of bulk-to-quasi-static surface transport of Zi cm s−1

kb1,ss,Zi
rate coefficient (velocity) of bulk layer 1-to-quasi-static surface transport of Zi cm s−1

kBR,Zp,Zq
second-order rate coefficients for bulk reactions of Zp with Zq cm3 s−1

kb,ss,Zi
rate coefficient (velocity) of bulk-to-quasi-static surface transport of Zj cm s−1

kb1,ss,Zi
rate coefficient (velocity) of bulk layer 1-to-quasi-static surface transport of Zj cm s−1

kd,Zi
first-order desorption rate coefficient of Zi s−1

ks,ss,Zi
first-order rate coefficient for sorption-to-quasi-static surface transport of Zi s−1

kss,b1,Zi
rate coefficient (velocity) of surface-to- bulk layer 1 transport of Zi s−1

kss,s,Zi
first-order rate coefficients for quasi-static to sorption layer transport of Zi s−1

kSLR,Zp,Zq
second-order rate coefficients for surface layer reactions of Zp with Zq cm2 s−1

Ksol,cc,Zi
gas-particle partitioning coefficient of Zi

NZi ,s absolute number of Zi at surface
NZi ,ss absolute number of Zi at quasi-static surface layer
NZi ,bk absolute number of Zi at bulk layerk
Pbk,Zi

, Lbk,Zi
production (loss) rate of Zi by reaction in bulk layerk cm−3 s−1

Ps,Zi
, Ls,Zi

production (loss) rate of Zi by sorption surface layer reaction cm−2 s−1

Ps,ss,Zi
, Ls,ss,Zi

production (loss) rate of Zi by sorption – quasi-static surface layer reaction cm−2 s−1

Pss,Zi
, Lss,Zi

production (loss) rate of Zi by quasi-static surface layer reaction cm−2 s−1
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Table A1. Continued.

Symbol Description Unit

r(k) radial distance from particle core to bulk layerk cm
rp particle radius cm
[Zi ]g gas phase number concentration of Zi cm−3

[Zi ]gs near-surface gas phase number concentration of Zi cm−3

[Zi ]s surface number concentration of Zi (sorption layer) cm−2

[Zi ]ss surface number concentration of Zi (quasi-static surface layer) cm−2

[Zi ]bk bulk number concentration of Zi in the bulk layerk cm−3

Vb volume of particle bulk cm−3

V (k) volume of bulk layerk cm−3

VZi
molecular volume of Zi cm−3
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