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ABSTRACT

Currently, most operational forecasting models use latitude-longitude grids, whose convergence of me-
ridians toward the poles limits parallel scaling. Quasi-uniform grids might avoid this limitation. Thuburn et al.
and Ringler et al. have developed a method for arbitrarily structured, orthogonal C grids called TRiSK, which
has many of the desirable properties of the C grid on latitude-longitude grids but which works on a variety of
quasi-uniform grids. Here, five quasi-uniform, orthogonal grids of the sphere are investigated using TRiSK to
solve the shallow-water equations.

Some of the advantages and disadvantages of the hexagonal and triangular icosahedra, a ““Voronoi-ized”
cubed sphere, a Voronoi-ized skipped latitude—longitude grid, and a grid of kites in comparison to a full
latitude-longitude grid are demonstrated. It is shown that the hexagonal icosahedron gives the most accurate
results (for least computational cost). All of the grids suffer from spurious computational modes; this is
especially true of the kite grid, despite it having exactly twice as many velocity degrees of freedom as height
degrees of freedom. However, the computational modes are easiest to control on the hexagonal icosahedron
since they consist of vorticity oscillations on the dual grid that can be controlled using a diffusive advection

scheme for potential vorticity.

1. Introduction

For modeling the global atmosphere, grids with inher-
ent resolution clustering, such as the latitude—longitude
grid (lat-lon) and (less severely) the conformal cubed
sphere (Ranci¢ et al. 1996; Putman and Lin 2007), are
expected to be inefficient on massively parallel com-
puting architectures for which data communication will
be a performance bottleneck (e.g., Swinbank and Purser
2006) since resolution clustering leads to time-step re-
strictions that are circumvented by algorithms that use
a larger domain of dependence per time step. In recent
years this has reinvigorated research into the use of quasi-
uniform grids. However, all proposed quasi-uniform grids
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have potential problems associated with their grid struc-
ture; most notably these include grid imprinting and
the existence of computational modes (see below). This
paper examines five candidate quasi-uniform spherical
grids (section 2) for solving the shallow-water equa-
tions (SWEs) and compares them with the lat-lon grid.
A common numerical framework is used throughout
(section 3) so that the comparison is as clean as possi-
ble. The test cases and diagnostics presented (section 4)
focus in particular on grid imprinting and computational
modes.

No grid of the sphere is perfectly uniform. All grids
have some nonuniformity (such as variations in cell size,
edge length, cell orientation, or cell shape) and all grids
have special points or lines where the structure is locally
different from elsewhere (such as the cube vertices and
edges on a cubed sphere grid). Numerical truncation er-
rors can be expected to reflect the underlying grid struc-
ture, leading to grid imprinting in the numerical solution.
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The worst cases of grid imprinting can be quite con-
spicuous (e.g., Tomita et al. 2001). However, the mani-
festation of grid imprinting may be rather subtle, for
example in the form of spurious triggering of physical
barotropic or baroclinic instability (e.g., St-Cyr et al.
2008) or a spurious distortion of the energy spectrum.
Some grids are heterogeneous at the grid scale; the basic
repeating unit is a cluster of cells and a cell’s imme-
diate neighbor may be quite different from the cell itself
(e.g., on a triangular grid an “up” triangle is adjacent to
a “down” triangle). Such grids may have grid-scale vari-
ation in numerical truncation error leading to noisy so-
lutions (e.g., Le Roux et al. 2005; Danilov 2010).

Staniforth and Thuburn (2012) describe computa-
tional modes as wave modes supported by the dis-
cretization that have no analog among those supported
by the continuous equations. They are usually at or near
the grid scale. A discretization may support isolated in-
dividual computational modes (which are often station-
ary) or one or more entire branches. Some well-known
examples of isolated stationary computational modes
are the checkerboard gravity modes on the Arakawa A
and B grids, the vertical grid-scale mode supported by
the Lorenz-staggered vertical grid, and the Coriolis mode
on the Arakawa C grid. Stationary computational modes
are associated with a nontrivial null space of one or more
discrete operators in the linearized governing equations
[this is how Le Roux et al. (2005) define a computational
mode]. A serious consequence of the A- and B-grid
computational modes is that waves with spatial scale
close to the grid scale have group velocity of the wrong
sign and so energy propagates in the wrong direction
(e.g., Durran 1999).

The C grid has more accurate gravity wave dispersion
than the A and B grids but if the Rossby radius is not well
resolved, inertia—gravity modes wrongly have decreasing
frequency as wavenumber increases (Randall 1994). How-
ever, the Rossby radius is well resolved for the deepest
modes in the atmosphere and so the C grid on a regular
latitude—longitude grid is a common choice among oper-
ational forecasting centers (e.g., Davies et al. 2005) and a
C grid is used for the results presented in this paper. There
is also a stationary, nondivergent Coriolis mode on the
C grid. This arises because only an averaged version of
the discrete vorticity is seen by the momentum equation.

Computational modes are usually excited if they exist
in models of the atmosphere since nonlinear dynamics
and forcing from physical parameterizations can project
onto them. If they grow then they can overwhelm the
well-resolved part of the solution and so must be removed
by some form of diffusion. It is therefore desirable to use
a numerical method with fewest possible or no compu-
tational modes.

WELLER ET AL.
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Le Roux et al. (2005) and Staniforth and Thuburn
(2012) argue that a necessary (but not sufficient) condi-
tion for avoiding such spurious branches in 2D is that
there should be twice as many velocity degrees of free-
dom (DOFs) as height. Otherwise, in addition to iso-
lated stationary computational modes, entire branches
of computational modes can exist in the discrete dis-
persion relation. For example, the C-grid discretization
on Delaunay triangulations described by Bonaventura
and Ringler (2005) was subsequently found to support
four rather than two inertio-gravity modes for each hor-
izontal wavenumber (e.g., Danilov 2010). Each triangle
has 1 height DOF to just 1%z velocity DOFs. Hence
smaller length scale waves in height are represented
that cannot interact correctly with velocity because
velocity is at a coarser resolution. When the Rossby
radius is poorly resolved these computational modes
are retarded; the smallest-scale modes have very small
frequency and are then easily forced, which results in
grid-scale oscillations of height and divergence (e.g.,
Gassmann 2011) that are coupled with the physical waves
by the nonlinear terms.

The hexagonal C grid supports a branch of low-
frequency computational Rossby modes in addition to
the physical branch (Thuburn 2008). It is associated
with the fact that each grid cell has 3 velocity DOFs
per height DOF.

Most finite element pairs on triangles also have com-
putational modes, which again may be isolated modes
or entire branches (Le Roux et al. 2005). Some are due
to collocation of pressure and velocity while those with
more than twice as many velocity DOFs as pressure
DOFs may have spurious branches of inertial oscillations
(e.g., P1pg—P2; Cotter and Ham 2011).

A further issue with the hexagonal (and other polyg-
onal) C grid is the maintenance of geostrophic balance.
The hexagonal C grid was analyzed by Purser (1998),
Nickovic et al. (2002), and Torsvik et al. (2005), who
found that it could not support geostrophic modes of
zero frequency. Subsequently, Thuburn (2008), Thuburn
et al. (2009), and Ringler et al. (2010) showed how the
Coriolis term could be discretized to ensure stationary
geostrophic modes. (In the rest of this paper their scheme
is referred to as TRiSK.) Prior to TRiSK, models using
hexagonal icosahedra have either used collocation of
pressure and velocity (e.g., Tomita and Satoh 2004;
Weller and Weller 2008); collocation of pressure, vortic-
ity, and divergence (a hexagonal Z grid; e.g., Heikes
and Randall 1995a); or collocation of both components
of velocity (the ZM grid; Ringler and Randall 2002).

TRiSK is a horizontal discretization scheme for the
SWEs on arbitrarily structured orthogonal C grids.
(“‘Orthogonal” is defined to mean that the dual grid
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TABLE 1. Statistics of the grids of the sphere; A is the minimum Rossby radius of deformation of the test. The final column shows the

section in which results using this grid are presented.

Type No. of cells DOFs Axeq (km) A (km) At (s) Section
Lat-lon 84 (6 X 14) 322 2859 2168 4d
1104 (24 X 48) 3264 834 960 900, 3600 4b, 4c

Skipped lat-lon 218 (12 x 24) 674 1668 2168 4d
866 (24 x 48) 2642 834 960 3600 4b, 4c

59 954 (192 x 384) 180 242 104 2525 100 de

Hexagonal 162 (150 hexes) 642 1922 2168 4d
642 (630 hexes) 2562 961 960 3600 4b, 4c

40 962 163 842 120 1296 100 4a

40 962 163 842 120 2525 100 de

163 782 655 122 60 2525 100 4e

Triangular 320 800 1110 2168 4d
1280 3200 555 960 3600 4b, 4c

81920 204 800 70 2525 100 4e

Kites 258 (86 x 3) 774 1108, 1920 2168 4d
3840 (1280 X 3) 11 520 277 480 960 3600 4b, 4c

Voronoi-ized cube 150 (5 X5X%X6) 593 2002 2168 4d
864 (12 X 12 X 6) 3450 834 960 3600 4b, 4c

edges are at right angles to the primal grid edges. The
dual grid has vertices at the cell centers of the primal
grid and cell centers at the vertices of the primal grid.)
TRiSK can maintain discrete geostrophic balance and
has a number of other conservation and mimetic prop-
erties that will be described in section 3. Thus, these
properties, which can be obtained relatively straight-
forwardly on the lat-lon C grid, can now also be obtained
on a range of alternative grid structures. Note, however,
that TRiSK does not eliminate the branch of compu-
tational Rossby modes on the hexagonal C grid or the
branches of computational inertio-gravity modes on the
triangular C grid, since it does not alter the numbers of
DOF in the velocity and height fields. TRiSK does en-
sure that the frequency of both physical and computa-
tional Rossby modes goes to zero for constant f. Also,
TRiSK provides a discrete analog of the potential vor-
ticity (PV) equation with some flexibility in the choice of
PV flux; an upwind-biased interpolation of the PV par-
tially controls the computational Rossby modes (Weller
2012; see also section 4 herein).

2. Quasi-uniform orthogonal grids of the sphere

The construction of five quasi-uniform grids of the
sphere is described along with some statistics of the res-
olutions used in the results in section 4. Shallow-water
tests will, where possible, be done at very coarse reso-
lution so that the relationship between the errors and

the grid can be seen clearly at a global scale and so that
fundamental length scales such as the Rossby radius
can easily be underresolved, as sometimes happens in
3D models.

Some statistics of the grids, time steps used, and Rossby
radii of the test cases are shown in Table 1. For each test
case, grids of each type are generated with similar number
of DOFs.

a. Skipped latitude-longitude

The skipped lat-lon grid (Purser 1998; see our Figs. 1c,d)
has 2:1 coarsening in the longitude direction once the dis-
tance between cell centers reaches 2/5 of the equatorial
distance. To produce an orthogonal grid, the edges be-
tween fine and coarse cells are moved by first Delaunay
triangulating the cell centroids and then taking the Voronoi
dual to create a Voronoi grid. The result consists mostly of
squares, some pentagons (where the longitudinal resolu-
tion reduces toward the pole), and a polygon at each pole.

It is hoped that the skipped lat-lon grid will maintain
the accuracy of the lat-lon grid equatorward of the re-
ductions while achieving the properties of TRiSK (see
section 1) at the reductions and at the poles.

b. Hexagonal and triangular icosahedra

Hexagonal and triangular icosahedra (Figs. le,f) are
close to uniform and have the minimum ‘‘angular de-
ficiency” (Purser 1998). (The angular deficiency at the
vertex of a polyhedron is the difference between the sum
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FIG. 1. A variety of quasi-uniform grids of the sphere.

of the face angles at that vertex and 27.) Hence dis-
tortions near the edges of the base polyhedron will be
minimal. Icosahedral grids can also be constructed to be
orthogonal using Delaunay triangulation and Voronoi
tessellation.

Results will be presented on a centroidal Voronoi
hexagonal icosahedron (e.g., Ringler et al. 2008; see our
Fig. 1e) for direct comparison with Ringler et al. (2010);
and on the dual grid, the Delaunay triangulation. A cen-
troidal grid has Voronoi generating points collocated
with cell centroids, which improves accuracy of the esti-
mate of the cell average value by the cell-center value.
But the Voronoi—Delaunay grid crossover points do not
converge to the midpoints of the edges with increasing
resolution, which reduces the accuracy of the estimate
of the edge average value by the edge crossover point
value. Alternatively, the Heikes and Randall (1995b)
hexagonal icosahedron does not have Voronoi points
at the cell centroids but the crossover points do con-
verge to the midpoints of the edges. This version has
also been tested; for the results presented here, this makes

a little difference (not shown). Ringler (2003) found a
similar insensitivity to the grid details.

¢. Voronoi-ized cubed sphere

To make a quasi-uniform cubed sphere grid orthog-
onal and thus suitable for use with TRiSK, it has been
“Voronoi-ized” by taking the cell centroids of the
equal-angle cubed sphere, Delaunay triangulating them
and then taking the Voronoi dual (Fig. 1h). This Voronoi-
ized cubed sphere has lost some of the desirable properties
of a cubed sphere as the cells are no longer quadrilateral
(two short edges have been introduced into each cell) and
so there are more than twice as many velocity DOFs as
height. However, the cell to cell addressing is still very
straightforward, which may allow better code optimization.

The Delaunay triangulation is not always unique on
square grids of points; whether a quadrilateral is split into
an up-triangle and then a down-triangle or vice versa is
subject to rounding error. Therefore the Voronoi-ized
cubed sphere will lose the symmetry of the original
cubed sphere. (This loss of symmetry is visible in Fig. 7h.)
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FIG. 2. Two Delaunay triangles subdivided into orthogonal kites by lines from the triangle edge
midpoints to the triangle circumcenters.

d. Kites

Grids of quadrilaterals will always have exactly twice
the number of velocity DOFs as height DOFs using
C-grid staggering, which is a necessary condition for
avoiding computational modes. A grid of quadrilaterals
can be created by dividing the triangles in any Delaunay
triangulation into three kite-shaped quadrilaterals (Figs.
2 and 1g). The decomposition is achieved by lines from
the triangle edge midpoints to the triangle circumcenters.
The result has an orthogonal dual if the midpoint between
the triangle circumcenter and the triangle corner is used
as the kite center since the dark-shaded triangle is similar
to the light-shaded right-angle triangle (which is a right
angle since the Delaunay triangulation is orthogonal).
Similar grids were used by Giraldo and Rosmond (2004).

However, the kites lack a number of other desirable
grid properties: they are not Voronoi since the kites
edges are not midway between the kite centers; they
are not centroidal since the center used to make them
orthogonal is not the center of mass, so the value at the
center is not a second-order accurate approximation of
the area average; they are heterogeneous at the grid scale
(adjacent kites have different orientations) and they
are anisotropic (there are widely varying edge lengths
within each cell and widely varying cell center to cell
center distances). We will show in this paper that these
disadvantages outweigh the advantages of having the
correct ratio of DOFs.

e. Cubed sphere

Various versions of cubed sphere grids have been pro-
posed for atmospheric modeling, and have some ad-
vantages. For example, they retain a logically rectangular

quadrilateral structure, so the full C-grid accuracy of the
inertio-gravity wave dispersion may be possible with-
out computational modes. Accurate tracer transport al-
gorithms have been developed for the cubed sphere
(e.g., Lauritzen et al. 2010). The SWEs have been solved
accurately by Fournier et al. (2004) on the cubed sphere
by employing high-order accurate collocated spectral
elements, and this model has been extended to three
dimensions and coupled with physics parameterizations
to produce realistic rainfall simulations (Mishra et al.
2011). Given the popularity of the cubed sphere grids,
it would be desirable to include them in the present com-
parison. Unfortunately, TRiSK, as currently formu-
lated, requires an orthogonal grid. (An extension to
nonorthogonal grids is an active area of research.) The
conformal cubed sphere (Rancic et al. 1996) is orthog-
onal but suffers from resolution clustering around the
cube corners and so is not quasi-uniform. Various quasi-
uniform versions of the cubed sphere have been devel-
oped, including the equal-angle cubed sphere (e.g.,
Ranci¢ et al. 1996), the equal distance cubed sphere,
a version modified by spring dynamics, and a version
modified based on a variational principle (Putman and
Lin 2007). However, these are all nonorthogonal and so
unsuitable for TRiSK. None of the proposed schemes
for nonorthogonal cubed sphere grids has all of the de-
sirable properties of TRiSK (section 3). We therefore
restrict attention in this paper to grids that are suitable
for TRiSK in order to maintain a clean comparison.

3. TRiSK

TRiSK is exactly defined by Thuburn et al. (2009) and
Ringler et al. (2010) and here we summarize TRiSK
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(section 3a) and define some minor alterations relevant
for non-Voronoi, orthogonal 2D grids on the sphere
(section 3b). (Voronoi implies that the edges between
cells are exactly midway between the cell centers.)
TRIiSK has the following desirable properties:

1) Exact, local conservation of mass.

2) Exact, local conservation of potential vorticity. This
relies on, among other things, obeying a discrete
analog of V X VO® = 0 for any scalar field, ®.

3) The evolution of PV is consistent in the sense that
constant initial PV remains constant for all time.

4) The discrete PV is compatible with the momentum
equation (i.e., the same result is obtained whether
the PV is diagnosed at a particular time step from the
prognostic variables of velocity and height or whether
it is evolved using its own transport equation and the
fluxes from the velocity and height).

5) Conservation of total energy to within time-truncation
error (i.e., neither the Coriolis force nor the pressure
gradient force generate energy and the sources and
sinks of kinetic and potential energy are exactly equal
and opposite).

6) Ability to maintain discrete geostrophic balance for
the linearized equations in the limit of constant f.

a. Concise statement of TRiSK (Thuburn et al. 2009;
Ringler et al. 2010)

TRiSK is a mixed finite-volume—finite difference so-
lution method of the nonlinear, rotating SWEs with the
continuity equation in flux form and the momentum
equation in vector-invariant form:

oh
— 4+ V. (hu) =0 1
LV () = 0, (M
ou n
m + ghu— = —gV(h + b) — VK, (2)

where £ is the fluid depth, u is the horizontal wind, b is
the height of the bottom boundary, g is the accelera-
tion due to gravity, ¢ = (k - VX u + f)/h is the potential
vorticity, u™ = k X u, fis the Coriolis parameter, k is the
local outward pointing unit normal to the sphere, and
K = (1/2)|u]* is the kinetic energy.

The prognostic variables are the height £; in each cell i
and the normal component of the velocity u, at each
edge e between cells. The PV g, is diagnosed at each
vertex v (or equivalently, in each dual cell). The length
of cell edges is /., the distance between cell centers is d,
and the area of each cell is A; (Fig. 3). Calculation of the
lengths and areas for spherical geometry are stated in
section 3b. The cell centers are at locations x;, the
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FIG. 3. Cell centers x; and x;; edge cross-over points Xx,; edge
lengths /,; distance between cell centers d,; prognostic variables #;,
hj, and u,; and diagnostic variable g,

vertices at x,, and the crossover points between edges
and the lines between cell centers (the edge points) at x,.

1) DISCRETIZATION OF DIVERGENCE

The divergence of mass flux in the continuity equation
(1) and, by analogy, other divergences are discretized
using Gauss’s divergence theorem:

V- (hu), = %Zﬁeueée, )

i eci

where e € i means all the edges e around cell i and ﬁe is
the height at the edge mapped from the height in the cells
either side i and j and the sign of u, is switched if nec-
essary so that positive is outwards. In Ringler et al. (2010)
midpoint interpolation is used: /;e =(172)(h; + hj). On
Voronoi grids, this is a second-order approximation of
the value at the edge crossover point but only a first-
order approximation of the edge-average value since the
crossover point is not at the edge center. An alternative
interpolation for ﬁe for non-Voronoi grids will be defined
in section 3b below.

2) DISCRETIZATION OF GRADIENT NORMAL
TO CELL EDGES

The gradient at the cell edge is needed in the direction
normal to the cell edge:

L o)

e

V,(h) - &, =

where i and j are the cells either side of edge e. This simple
two-point formula on an orthogonal grid guarantees that
gradients are curl free around vertices. If the grid were
nonorthogonal, this formula would still give curl free
gradients but the formula would not be consistent (i.e.,
the truncation error would not go to zero as the grid is
refined). This discrete gradient is the dual of the discrete
divergence, which is required for energy conservation.
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3) DISCRETIZATION OF CURL

The vorticity and, by analogy, other curls are discretized
using Stoke’s theorem around the dual cells circulating
each vertex:

1
k-(VXu) =—>ud, (5)
v Av = e
where A, is the area of the dual cell surrounding vertex v
and the sign of u, is switched if necessary so that positive
implies anticlockwise circulation.

4) RECONSTRUCTION OF TANGENTIAL
VELOCITIES

The tangential velocities do not always need to be
calculated in TRiSK as the entire PV flux term ghu™ is
discretized together as described in section 6 below. The
method of reconstructing tangential vector components
is reproduced here as it will be needed in subsection 5
below.

Vector quantities along edges are reconstructed from
normal components at the edges of the cells either side
of the edge in question using weights that guarantee that
the divergence of the vector field on the dual grid is
a convex combination of the divergence on the primal
grid:

1 _
du, = Y Wyt (6)

e'€l,j

where the edges e’ are the edges of the cells i and j that
are either side of edge e. In Thuburn et al. (2009), the
weights w,,» were derived to be

W = i(% - z%) )

v i

where the vs are the vertices in a walk between edges e
and e’ and A, is the overlapping area between the dual
cell around vertex v with cell i (see Fig. 4). If this walk
starts in the positive u, direction, then the sign is posi-
tive if positive u, is outwards.

5) INTERPOLATION OF PV FROM VERTICES
TO EDGES

In TRiSK it is necessary to map the PV from the
vertices to the edges in the calculation of the accelera-
tion. Ringler et al. (2010) report two possible methods:
the arithmetic mean of the vertices at either end of the
edge (i.e., midpoint interpolation) or, to enable the re-
moval of potential enstrophy (but not energy) at the
smallest scales, the anticipated potential vorticity method
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FIG. 4. Adapted from Fig. 4 of Thuburn et al. (2009). The
overlapping area A;, between cell i and dual cell around vertex v
and the area A, of cell i associated with edge e.

(APVM) of Sadourny and Basdevant (1985), which cal-
culates PV at a point upstream of the edge:

T |
midpoint: g, = E(q"l + q,)s ®)

_ 1 1
APVM:g, = E(q“l +q,) — Eue - [Vq],8t, 9)

where [Vq]. is the gradient of ¢ and &¢ is the time step.
In this new implementation, the vector [Vgq], is re-
constructed from the normal gradients of g on the dual
grid using the weights described in subsection 4 above.

6) DISCRETIZATION OF THE PV FLUX

The PV flux ghu' of (2) is averaged between target
and surrounding edges to guarantee that the Coriolis
force conserves energy:

9, + 4,
- 10

1 .
(qhuL)e =7 ; Weelyhyit,
eeELj

7) CALCULATION OF KINETIC ENERGY

The cell kinetic energy is defined only in terms of the
normal velocities:

1 <A
K =—)»-5 11

where A, = (1/2)(,d,. This new implementation will use
a modified version for non-Voronoi grids, which will be
described in section 3b below.
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8) DISCRETIZATION OF 9/dt

The momentum and continuity equations are advanced
using the explicit fourth-order Runge—Kutta scheme
for exact comparison with Ringler et al. (2010, 2008) in
test cases in sections 4a and 4e. Semi-implicit Crank—
Nicolson time stepping (with no off-centering, nonlinear
and Coriolis terms treated explicitly, and two outer iter-
ations per time step) is used in sections 4b and 4c to
allow longer time steps to facilitate the use of the full
lat-lon grid. However, TRiSK is a definition of the spatial
discretization rather than temporal and many other tem-
poral schemes could be used instead.

This concludes the discretization of the SWEs (1) and
(2) as defined by Thuburn et al. (2009) and Ringler et al.
(2010). Next some modifications for non-Voronoi grids
and spherical geometry will be defined.

b. Modifications of TRiSK
1) SPHERICAL GEOMETRY

When using the vector-invariant form of the equations
on a C grid, spherical polar coordinates are not needed.
Instead all areas and distances need to be defined on the
sphere. The areas A;, A;,, and A,, (Fig. 4) are defined by
decomposing each cell into spherical triangles, with each
triangle having a parent cell center x; a parent vertex x,,
and a parent edge crossing point X, as its corners and
great circle lines between the points. The areas A;, A;,,
and A, can all be decomposed if the grid is Pitteway
(i.e., if the line between the cell centers crosses the edge
between the cells rather than being off the end). The
area of each spherical triangle is

A= |xi\24 tan ! \/

where a, b, and c are the angles between points x;, X,, and
x, on the sphere and s = (1/2)(a + b + ¢). This is the
formulation that is less sensitive to rounding error in the
limit of small triangles (Williams 2011). The angle a be-
tween points x; and X, is

at s
an
2

t St >
an - tan
2

(12)

1ﬁ%ﬁL (13)

a = 2sin"
The edge lengths ¢, (Fig. 3) are great circle distances:
l,= 2\)(e|2 sin71(|1fiv1 — X,|/2). The distances between
cells, d., are set by d, =2A /{, so as not to violate con-
servation of energy.

2) NON-VORONOI ORTHOGONAL GRIDS

Ringler et al. (2010) use midpoint interpolation from
cell centers to edges: h, = (1/2)(h; +h/,), which gives
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conservation of energy if the kinetic energy is calculated
using (11). Midpoint interpolation is second-order ac-
curate on Voronoi grids as the edges are midway be-
tween the cell centers and it produces a conservative
mapping between the cells and the edge areas. Instead
we use a conservative mapping between cell centers and
edges for Voronoi and non-Voronoi grids:

P A h; + A].ehj
e A ’

e

(14)

where i and j are the cells either side of edge e, A, is
the area of the triangle between edge e and cell center i
(Fig. 4), and A, = A;. + Aj.. With this modification,
a conservative transfer of energy between potential and
kinetic can only be maintained if the kinetic energy is
defined as

1

K= (15)

2 Aieu?

jeci

instead of (11). This scheme reduces to that of Ringler
et al. (2010) on Voronoi grids but is expected to be more
accurate on non-Voronoi grids.

c¢. Implementation in OpenFOAM

The additional TRiSK operators and Runge-Kutta
time discretization have been implemented in the
OpenFOAM CFD software library (The OpenCFD
Foundation 2011) in order to make use of some existing
OpenFOAM operators, grid handling, and linear equa-
tion solvers. The divergence and normal gradient of
TRiSK are the same as those already in OpenFOAM.
The reconstruction of tangential velocities, the curl, the
PV flux, the calculation of the kinetic energy, and the
APVM interpolation have been newly implemented in
OpenFOAM.

4. Results

Selected results are presented that demonstrate
strengths and weaknesses of the different grids and that
illuminate grid-imprinting and some computational
modes. These will start with a direct comparison with
Ringler et al. (2010) showing results of the Williamson
et al. (1992) test case 5, the flow over a midlatitude
mountain (section 4a). Then steady-state, geostrophically
balanced solid body rotation of the linearized and non-
linear SWEs (Williamson et al. 1992; test case 2) will
be presented (sections 4b and 4c). The normal mode
frequencies and some normal modes are presented in
section 4d; these help to explain the SWE results. Finally,
results of the barotropically unstable jet of Galewsky
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FIG. 5. Relative vorticity (s~!) after 50 days for shallow water flow over a midlatitude mountain.
(top) Figure 11a of Ringler et al. (2010) (using APVM). (middle) OpenFOAM implementation with
vorticity on hexagons. (bottom) OpenFOAM implementation with vorticity on triangles.

et al. (2004) will be presented with a subset of the grids
described (section 4e).

a. Flow over a mountain (Williamson et al. 1992;
test case 5)

TRiSK has been implemented exactly as in Ringler
et al. (2010) and so extensive comparisons have been
made with the results in that paper in order to validate
the implementation, including extensive diagnostics for
the Williamson et al. (1992) test case 2 (not shown).

Comparisons are presented here for the vorticity of the
flow over a midlatitude mountain after 50 days (Fig. 5)
using a hexagonal icosahedral grid of 40 962 cells (see
Table 1), giving a cell center to cell center distance of
around 120 km, a time step of 100 s, and APVM to re-
move small-scale potential enstrophy.

For Fig. 5, the vorticity was diagnosed at 50 days in
two different ways. First, the vorticity on hexagons was
calculated using Stoke’s theorem to circulate around
each hexagon and u, given by (6) (middle row of Fig. 5).
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This compares well with Ringler et al. (2010) (top left),
confirming the correct implementation. However, when
the vorticity is calculated on the vertices from the nor-
mal velocities using Stoke’s theorem (as is done during
the simulation) and plotted on the dual grid of triangles
(bottom left), then grid scale oscillations are visible de-
spite the Rossby radius (2525 km) being well resolved
and despite the APVM implicit diffusion of vorticity.
Calculating the vorticity on the primal (hexagonal) grid
rather than the dual (triangular) grid smooths the vor-
ticity, thus hiding the grid-scale velocity oscillations. The
vorticity oscillations on triangles are the manifestation
of the computational Rossby modes of the hexagonal C
grid (Thuburn 2008) caused by the excessive number of
velocity DOFs in comparison to height DOFs. Using
asmoothed version of the vorticity during the simulation
would not help. In fact it would make the mode more
difficult to control. The mode occurs because a smoothed
version of the vorticity is already used in the momentum
equation (the vorticity must be averaged from vertices to
edges). The momentum equation can only act to reduce
grid-scale oscillations if it can see them.

This level of grid-scale noise is considered small for
a 50-day run and may not be detrimental in 3D sim-
ulations with parameterized forcing and dissipation
(T. Ringler 2011, personal communication). However,
it may be possible to do better than this with an advec-
tion scheme more accurate than APVM for the potential
vorticity (e.g., Weller 2012).

b. Solid body rotation of the linearized SWEs

The linearized, rotating SWEs are

%+HV~u=O, a—“+fui:—ng,

16
ot ot (16)

where H is the mean fluid depth and 4 represents the
depth perturbations about H. These simplified equa-
tions are solved as well as the full nonlinear SWEs since
they support the same waves as the full SWEs, the com-
putational modes are the solutions of the linearized
equations, and the solution errors of solving the linear-
ized equations help in understanding the errors in solving
the full SWEs.

A steady-state analytic solution for solid-body rota-
tion on the sphere is available:
u=uycosp, v=0, gh= —alu, sin’¢, 17)
where ¢ is latitude and f = 2Q) sinp. We use H = 2000 m
and other parameters from test case 2 of Williamson et al.
(1992):a = 637122 X 10°m,Q =722 X 10> s} g =
9.806 16 m s~ 2, and u, = 2mal/(12 day). These parameters
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give a gravity wave speed of /g =140 ms™! and the
minimum Rossby radius is 960 km (at the poles).

The model is initialized by sampling u, v, and / at the
centroids of the edges and cells rather than at the com-
putational points since these values give a second-order
approximation to the fluxes. When initializing from a
divergence-free velocity field this means that the dis-
crete velocity is discretely divergence-free up to sec-
ond order in space. This initialization has been found
to be closer to discrete geostrophic balance than sam-
pling at the computational points, especially for the
noncentroidal grids.

The velocity and height differences from the initial
conditions after 5 days for all the grids are shown in
Fig. 6. These solutions use midpoint interpolation of
f from vertices to edges for calculating the PV flux from
(10). All the grids use Crank—Nicolson time-stepping with
a time step of 3600 s, apart from the full rotated lat-lon
grid, which uses 900 s in order to achieve a similar Cou-
rant number near the pole of the grid. The maximum and
minimum height errors and the 4, height error norm are
shown in the figure captions of Fig. 6. The ¢, error norm
is defined as \/[, (h — h))*dA/ [, h2 dA, where hg is the
initial condition equal to the sampled analytic solution
for this steady-state case. Since TRiSK can maintain
geostrophic balance (it has steady geostrophic modes)
and conserves energy in the limit of small Az, the errors
in Fig. 6 are due to the difference between the initial
conditions and a discretely balanced state. The sampled
initial conditions do not contain grid-scale oscillations
and so oscillations generated are due to model errors.

The grid that gives the lowest height errors is the
hexagonal icosahedron (Fig. 6e) and the errors have
large-scale structure with reduced height at the equator
and increased height at high latitudes. There is some
large-scale grid imprinting based on the fivefold sym-
metry of the grid, but no grid-scale oscillations in height.
The computational mode on hexagons consists of ve-
locity circulating in alternating directions around each
vertex (Thuburn 2008) that is present in Fig. 6e.

The unrotated and 45° rotated full lat-lon grids (Figs.
6a,b) also have low height errors, without grid-scale
oscillations, although larger height errors are localized
near the pole of the 45° rotated lat-lon grid. In an Eu-
lerian operational lat-lon model, these oscillations would
be removed by polar filtering. The unrotated skipped
lat-lon grid has additional errors at the grid reductions
(Fig. 6¢), which become grid-scale oscillations when the
skipped grid is rotated (Fig. 6d). These oscillations are
related to computational modes with grid-scale oscilla-
tions on the dual, which will be discussed later.

The sampled initial conditions have triggered large
grid-scale oscillations in height on the triangular grid
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(a) lat-lon, 1,104 cells, At

(d) rotated skipped, 866 cells, At =3600 sec (€) hexagonal, 642 cells, At = 3600 sec (f)

3600

(g) 960 kites, At =
-18.2< he <302, [ug| < 245, £=4.1x 1073

= 3600 sec. (b) rotated lat-lon, 1,104 cells, At =900 sec. (C) skipped, 866 cells, At
48< he <33, uc| €06, lo=11x10"7  -23.1< he <88, |uc| <3.3,£2=1.5x102 -63< h. <58, |uc| < 1.1, £2=1.3x107°

= 3600 sec.

-fO‘

1,280 triangles, At = 3600 sec.
7.2< he <9.0, [ug| < 134,65 =1.7x107°

sec. (h) Voronoi cube, 864 cells, At = 3600 sec.

A17.0< he <187, [uz| <5.8,£,=3.0x 107

height in metres - »

Q i 0 30

FIG. 6. Height and velocity errors after 5 days for the linearized shallow water equations simulating a linearized
version of Williamson et al. (1992), test case 2. Maximum and minimum height errors (in m) and maximum velocity

error (in m s™') given in each subcaption.

(Fig. 6f), similar in appearance to the spurious inertio-
gravity modes on the triangular C grid described by
Danilov (2010). The velocity errors on triangles in
Fig. 6f are mostly in the tangential component, with
velocity circulating in alternating directions around
each triangle. This pattern is present in the initial
conditions due to the initial TRiSK reconstruction of
velocity.

The height and velocity errors on the kite grid are
larger than on any other grid (Fig. 6g). In common with

other grids, there are negative height errors at the equator
but elsewhere the error is dominated by grid-scale oscil-
lations. These are likely to be due to the larger truncation
errors of using kites, resulting from the grid inhomo-
geneities and anisotropies described in section 2d.

The large height errors on the Voronoi-ized cube
(Fig. 6h) are mostly large scale rather than grid scale with
some large-scale grid imprinting with fourfold sym-
metry and velocity aligning with the grid rather than
along lines of latitude.
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(a) lat-lon, 1,104 cells, At = 3600 sec. (b) rotated lat-lon, 1,104 cells, At = 900 sec. (C) skipped, 866 cells, At = 3600 sec.

l2(q)=9.0x107% l2(q)=5.5x10"

la(q)=1.1x10"

(d) rotated skipped, 866 cells, At = 3600 sec (€) hexagonal, 642 cells, At = 3600 sec (f)
l2(q)=1.8x107°

l2(q)=4.4x107°

(g) 960 kites, At =

l2(q)=1.8x107°

3600

vorticity (571) caets -13e03 -ieas e o 5e06  1ed5

1,280 triangles, At = 3600 sec.

£2(q)=3.1x107"

sec. (h) Voronoi-ised cube, 864 cells, At = 3600
sec.  f2(q)=3.0x1076

1.5e-05 2=-05

FIG. 7. Relative vorticity on the dual grid after 5 days for the linearized shallow water equations simulating
a linearized version of Williamson et al. (1992), test case 2.

More insight can be gained into the errors on different
grids by inspecting the relative vorticity after 5 days de-
fined on the dual grid (Fig. 7) (i.e., defined on the
vertices of the primary grid). The ¢, error norms of PV
(/[ (a — q,)* dA/ [, ¢} dA) are shown in the captions
where g is the initial value of g calculated from the
sampled analytic values of u and /.

The unrotated full lat-lon grid has the smallest ¢,
error norm and so the relative vorticity in Fig. 7a can be
regarded as nearly exact. As for the height, the rotated

full lat-lon grid has errors around the pole of the grid
(Fig. 7b) where small-scale features are localized in
the fine resolution. Once grid reductions are included
(Fig. 7c) grid-scale oscillations are introduced with high
vorticity on the triangles of the dual. This corresponds
to cyclonic vorticity on the triangular dual cells that
occur at the grid reduction. This is due to the growth of
computational Rossby modes resulting from the exces-
sive number of velocity to height at the grid reductions.
(The vorticity oscillations must be computational modes
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since they are stationary and real Rossby modes at this
scale would propagate.) These grid-scale oscillations be-
come much worse when the grid is rotated (Fig. 7d) since
the mode is now forced by the flow across the grid
reductions. The alternating cyclonic and anticyclonic
flow forces the grid-scale oscillations in height as seen
in Fig. 6d.

Grid-scale oscillations consisting of just two values
can occur on grids of squares (checkerboard patterns)
and also on triangles but two values cannot create grid-
scale oscillations on hexagons on which two adjacent
hexagons never share the same value. This implies that
2D grid-scale computational modes cannot be present
when values are represented on hexagons. But for the
hexagonal C grid, the vorticity lives on the vertices (or
dual triangles). Therefore computational modes are
present in the vorticity on triangles (Fig. 7¢). These do
not directly reduce the accuracy of the height field
(Fig. 6) since the vorticity is averaged in the Coriolis
terms, so the noise is smoothed in its effect on the dy-
namics. The variable that lives on hexagons cannot have
grid-scale oscillations and so the vorticity on the hexag-
onal dual of the triangular grid (Fig. 7f) is free of grid-
scale oscillations. It also has a low /, error.

The worst grid-scale vorticity oscillations occur for
the kite grid (Fig. 7g) whose dual consists of a variety of
shapes, with different vorticities on each shape. These
grid-scale oscillations are stationary and are therefore
computational modes.

The results on the Voronoi-ized cube (Fig. 7h) have
similarities with those on the hexagonal grid (Fig. 7e).
Both grids are Voronoi with triangular duals and there
are grid-scale oscillations on the vorticity on the triangles.
These are worse on the Voronoi-ized cube since the grid
is less isotropic, with a local mixture of long and short
edges. The oscillations change phase around the cube as
the grid bends north and south. The dual of the Voronoi-
ized cube does not completely retain the symmetry of the
cube since, due to the nonuniqueness of the Delaunay
triangulation and rounding error, each face of the cube
is triangulated differently.

c. Solid body rotation of the nonlinear SWEs

The nonlinear SWEs are solved for Williamson et al.
(1992) test case 2 on the same grids and input parame-
ters as section 4b above. The height and velocity errors
after 5 days are shown in Fig. 8. These simulations have
midpoint interpolation of PV from vertices to edge
points (8).

When solving the linearized SWEs, all the grids ten-
ded to give negative height errors around the equator
and positive toward the poles (Fig. 6). This tendency
does not occur for the nonlinear equations (Fig. 8). This
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could be due to truncation errors of the opposite sign
introduced with approximating the nonlinear terms
[nonlinear PV flux and kinetic energy gradient in (2)].
Therefore, there could be a cancellation of errors, and
the height errors are reduced on the full and skipped
unrotated lat-lon grids when solving the nonlinear equa-
tions (Figs. 8a and 8c vs Figs. 6a and 6¢). However, all the
other grids give larger errors. When solving the non-
linear equations, velocity errors that are generated at
a grid inhomogeneity are advected away, increasing the
errors downstream. In particular, the hexagonal grid
shows more large-scale grid imprinting and large errors
are generated away from the grid reductions of the
rotated skipped grid. The grid-scale errors on the tri-
angular and kite grids retain the same structure but
deepen and the errors on the Voronoi-ized cube deepen
and display more large-scale grid imprinting.

The vorticity errors that result from solving the non-
linear equations are similar to those that result from
solving the linear equations but they grow more quickly
due to nonlinear feedbacks onto the computational
modes. They are not presented since they do not give
further insight.

d. Normal modes

Normal modes and their frequencies are calculated in
order to answer the following questions:

o Do all the grids have stationary geostrophic modes?

o Are these stationary modes physical (in which case
they will have zonal symmetry) or computational
(consisting of grid-scale oscillations)?

e Do grids with the correct ratio DOFs of suffer less
from computational modes?

o How do the computational modes relate to the errors
when simulating steady, geostrophically balanced
flow?

o How does the grid-scale heterogeneity influence the
wave modes?

The normal modes of the linearized SWEs and fre-
quencies can be found for any grid with any numerical
algorithm by calculating the eigenvectors and eigen-
values of the matrix M which represents the linearized
action of the model on any set of initial conditions. The
initial conditions are represented as a vector, (h, u,)”,
where his the vector of the / values in every cell and u,, is
the vector of the u, values normal to every edge. The
model matrix M is found by running the model for one
short time step for each of the set of initial conditions
(1,0,...0)%,(0,1,0...0)%,...(0,0,...,0,1)" and the
solutions form the columns of M. The short time step
is to ensure that nonlinear effects are minimal. The ei-
genvectors v and the eigenvalues A of M are computed
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(a) lat-lon, 1,104 cells, At = 3600 sec. (b) rotated lat-lon, 1,104 cells, At =900 sec. (C) skipped, 866 cells, At
2.0< he <14, |us| <06, la=4.1x107*

(d) rotated skipped, 866 cells, At = 3600 sec (€) hexagonal, 642 cells, At = 3600 sec (f) 1280 triangles, At =
-3.3< he <46, |uc| < 1.6,05=8.3x107%

28.5< he <311, [uc| < 5.0, 6, =4.3x1073

42.0< he <284, [uc| <3.2,00=4.0x1073 -8.8< he <2.3, |uc| <09, l2=6.7x 1074

= 3600 sec.

3600 sec.
-10.0< he <111, Jue| <129, 65=1.8x107°

(2) 960 kites, At = 3600
48.2< he <48.5, [uc| < 20.0, L, =7.6x 1073

sec. (h) Voronoi cube, 864 cells, At = 3600 sec.

27.1< he <226, [us| <69, Ly =4.4x1073

height in metres - 'S

] 4] 20 0

FI1G. 8. Height and velocity errors after 5 days for Williamson et al. (1992), test case 2. Maximum and minimum height
errors (in m) and maximum velocity error (in m s~ ') given in each subcaption.

and then the vs are the normal modes with frequencies w
calculated from the eigenvalues, A = ae’®. The normal
modes are calculated using the parameters given by
Thuburn et al. (2009): Earth’s radius, a = 6 371 220 m,
constant Coriolis, f = 1.4584 X 10 *s™!, gH =
10° m? s2, and using a time step of 10 s. Coarser ver-
sions of the grids shown in Fig. 1 are used due to the
computational expense of the eigendecomposition. Grid
specifications are given in Table 1. The Rossby radius
is 2168 km, which is marginally resolved. The zero fre-
quency modes of the rotating sphere are presented first

and then we will look at the remaining modes and com-
pare with the analytic frequencies.

1) STATIONARY MODES OF THE ROTATING
SPHERE

The stationary modes are particularly important since
they are either the physical, geostrophically balanced
states (which are zonally symmetric on the rotating
sphere) or they are stationary grid-scale computational
modes, which are damaging to the solution. These are
the modes associated with nontrivial null spaces in one
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Voronoi cube

FIG. 9. A selection of normal modes of height (colors) and velocity (vectors) on the rotating sphere, with frequencies (s~ ')
given for each. The scales of height and velocity are arbitrary.
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or more operators of the governing equations. For each
of the grids, one of the stationary modes is shown in the
first column of Fig. 9 (if it exists) and a stationary or very
slow mode is shown in the second column. The second
mode is chosen to contrast in structure with the first.

Only the lat-lon grid has stationary geostrophic modes
in perfect zonal symmetry as only this grid can repre-
sent perfect zonal symmetry (top left of Fig. 9). The
other zero-frequency mode shown for the lat-lon grid is
a combination of zonally symmetric geostrophic bal-
ance and the Coriolis mode (with spurious stationary
vortices around each vertex, zero Coriolis force, and
zero divergence).

The skipped lat-lon and hexagonal grids have very
low-frequency modes in near-zonal symmetry (second
column of Fig. 9). The exact zero-frequency modes are
contaminated by computational modes: the Coriolis mode
on the skipped lat-lon grid and a spurious Rossby mode
on the hexagonal grid.

An exact zero-frequency mode with some zonal sym-
metry has been found for the triangular grid (second
column of Fig. 9) but, contrary to the theory of the
triangular C grid on a beta plane, there is also a spuri-
ous stationary Rossby mode on triangles (first column).
However, in spherical geometry with spherically vary-
ing Coriolis, different spurious solutions are possible
and it has been possible to find a velocity field satisfying
V -u = 0 on the cells and V - fu = 0 on the vertices.

It was hoped that the kite grid, with the correct ratio of
velocity to height DOFs, would not suffer from the
spurious Rossby mode branches of the hexagonal grid.
However, the kite grid has spurious stationary rotational
modes (first column of Fig. 9) as well as spurious very
low-frequency rotational modes (second column) and
none of the slow modes is zonally symmetric.

The Voronoi-ized cube does not have any exact zero-
frequency modes or slow modes in near-zonal symmetry,
just the spurious slow Rossby modes of the hexagonal
C grid.

2) NONSTATIONARY MODES OF THE f SPHERE
AND ROTATING SPHERE

Normal modes are calculated on the fsphere as well as
the rotating sphere. The fsphere is a purely mathematical
concept—a sphere with globally uniform Coriolis. This is
used because there is an analytic dispersion relation
for the frequency w for each spherical harmonic with
wavenumber n:

w[w® — 2 — n(n + 1)gH/a*] = 0. (18)
The rotating sphere has the usual sinusoidal variation of
f with latitude.
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The f sphere model’s frequencies are compared with
the analytic frequencies from (18) and are shown in
Fig. 10. Since the frequencies occur in complex conjugate
pairs, only half of them are shown. Ideally the frequencies
would be plotted against wavenumber as a dispersion re-
lation. However, grid inhomogeneity causes many mode
structures to become localized, making it impossible to
define a meaningful wavenumber. Instead, for the f-sphere
results, the frequencies are simply sorted into zero values
and nonzero values in order to distinguish geostrophic
modes from inertio-gravity modes, and the nonzero values
are sorted into ascending order. Unfortunately physical
modes cannot be distinguished from computational modes
on the basis of frequency alone because their frequency
spectra overlap.

For the rotating sphere (red frequencies in Fig. 10) the
Rossby modes (low frequencies) are separated from
the inertio-gravity modes (high frequencies) purely by
ordering the frequencies and by assuming that the
rotating sphere has the same number of Rossby and
geostrophic modes as the f sphere has zero-frequency
geostrophic modes. This separation is arbitrary and
some modes may appear in the wrong branch. The ro-
tating sphere has less quantization of mode frequencies
because of the spatial variation of f.

For the f sphere, the hexagonal grid (Fig. 10c) and
Voronoi-ized cube sphere (Fig. 10f) have nearly the same
number of zero modes (geostrophic modes) and nonzero
modes (the inertio-gravity modes) since, as explained by
Thuburn et al. (2009), the number of geostrophic modes is
given by the number of vorticity degrees of freedom (the
number of vertices minus one) and the number of inertio-
gravity modes is the number of mass plus divergence de-
grees of freedom (twice the number of cells minus one).
These Voronoi grids have three cells meeting at one vertex
and most cells are hexagonal so the number of each type of
mode is about equal. The wave frequencies are similar for
these two grids except that there is less quantization of
frequencies for the Voronoi-ized cube sphere fsphere than
for the hexagonal icosahedron due to the variations in cell
sizes and edge lengths for the Voronoi-ized cube sphere.
The spurious Rossby modes on the hexagonal fsphere are
zero frequency and so are on the x axis.

For each of the grids, the spatial structure of two more
of the nonstationary eigenmodes of the rotating, linear-
ized SWEs is plotted in Fig. 9. One of the Rossby modes
with large spatial scale and frequency around 10 > s~
is plotted for each grid in the third column. The mode
with the highest frequency is in the final column.

All of the grids have a similar-looking wavenumber 1
Rossby mode that is symmetric about the equator (third
column of Fig. 9). This mode is presented as a sanity
check that the analysis reproduces the large-scale wave
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FIG. 10. Normal mode frequencies (X10 * s ') on the fsphere (in blue) and the rotating sphere (in red)
for various grids in comparison to the analytic solution for the f sphere (horizontal lines).

modes that we expect on the rotating sphere. All grids
capture the mode with comparable frequency, except
the coarser lat-lon grid.

The final column of Fig. 9 shows the highest-frequency
mode which, for most grids is associated with the smallest
cells. All of the grids have some variation in cell size and
consequently have higher-frequency modes localized in
the highest resolution regions. For some grids (lat-lon and
kites), the variation in cell size is so extreme that there is an
upturn at the end of the frequency graphs (Figs. 10a,b,e)
due to gravity waves localized near inhomogeneities of the
grid. For the triangular grid, the highest-frequency mode is
one of the spurious inertio-gravity modes of the triangular
C grid, with largest amplitude at the pole where the Rossby
radius is smallest.

For the triangular grid (Fig. 10d) and the kites (Fig.
10e) there is a jump in the frequency part way along the
inertio-gravity modes. This change in slope was also
recognized for triangles by Thuburn et al. (2009), who
attributed this to a switch to a spurious branch of inertio-
gravity modes. However, the nature of the jump in fre-
quency for the kite grid is different; beyond this jump, all
of the modes are regionally confined (not shown). Be-
cause of the inhomogeneous and anisotropic nature of
the kite grid, modes become localized in many locations
of the grid rather than just close to the two poles of the
lat-lon grids. This would be a problem for an operational
model: if convection occurred in one of the fine-resolution
regions of the kite grid, the resulting gravity waves could
not propagate cleanly away.
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The Voronoi-ized cube has frequencies that increase
approximately linearly (Fig. 10f) for the highest fre-
quencies whereas we would expect the frequencies to
flatten out for a uniform, structured C grid with linear
differencing (e.g., Randall 1994). So it is likely that this
apparently realistic increase in frequency is in fact a
computational artifact. This is confirmed by inspecting
the highest-frequency mode on this grid in Fig. 9, which
has grid-scale oscillations in a limited region of the grid.
These high-frequency waves will propagate around the
high-resolution regions of the grid rather than propa-
gating out of them.

3) SUMMARY

We can now answer the questions posed at the be-
ginning of this subsection concerning wave modes on the
rotation sphere:

o All of the grids have stationary geostrophic modes on
the rotating sphere, apart from the Voronoi-ized cube.

o All of the exactly stationary geostrophic modes on the
rotating sphere are spurious computational modes,
apart from on the full lat-lon grid, where perfect zonal
symmetry is possible.

o The triangular, kite, and Voronoi-ized cube grids
do not have any near-stationary modes in zonal sym-
metry. However, the hexagonal grid has a very low-
frequency mode in near-zonal symmetry.

o The kite grid, with the correct ratio of DOFs, suffers
from many computational modes. Merely having the
correct ratio of DOFs does not eliminate these.

o The grid-scale vorticity errors on hexagons are caused
by the stationary computational Rossby mode (first
column of Fig. 9).

o Heterogeneity and anisotropy at the grid scale leads to
wave modes localized near the finest parts of the grids,
for all grids. The kite grid has a large proportion of the
wave modes localized in different parts of the grid.

e. Barotropically unstable jet (Galewsky et al. 2004)

The simulation of a barotropically unstable jet with an
initial perturbation (Galewsky et al. 2004) is a tough test
for a low-order model on a non-lat-lon grid since the jet
is fast and narrow and numerical truncation errors lead
to perturbations that release the instability in a similar
manner to the initial perturbation. This test case there-
fore needs higher resolution than solid-body rotation in
order to achieve results qualitatively similar to the high-
resolution solution. A high-resolution solution for the
relative vorticity after 6 days is shown at the top of
Fig. 11 (using a hexagonal icosahedron of 163 782 cells,
8x ~ 60 km, as given in Table 1) and is compared with
the results from other the grids at lower resolutions;
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70 to 140 km (also in Table 1). Only the icosahedra and
skipped lat-lon grids were used since from sections 4b, 4c,
and 4d we can see no advantages of the kite and Voronoi-
ized cube over the icosahedral grids. The overlaid dual
grids are a factor of 8 coarser in both directions for
clarity.!

This test case has a Rossby radius of 2525 km based on
the midjet values, which is well resolved. The time step is
100 s, which implies that the flow Courant numbers based
on all the primal and dual grids are well below one but the
Courant number based on the gravity wave speed is close
to one. APVM (9) is used for suppressing grid-scale vor-
ticity oscillations and dissipating potential enstrophy.

An attempt is made to find initial conditions in dis-
crete balance so that initial grid-scale divergence and
geostrophic imbalance are not larger than the initial
perturbations. The initial velocity is found as in Ringler
et al. (2011) by sampling ¢ at the vertices from (17) then
setting u, = k X Vi. This ensures that the initial velocity
is divergence free and therefore initially dh/ot = 0. If
additionally it is possible to find /4 such that fu" = —gVh
then there should be no drift from the initial conditions.
This & is sought by solving the Poisson equation: —gV?h =
V - fu* using the TRiSK operators. The Poisson equation
can be solved to arbitrary tolerance but this does not
guarantee that discrete balance holds, just the diver-
gence of the discrete balance equation; it is only pos-
sible to find 4 satisfying the discretized fu™ = —gVh if
the discretized V - fu = 0 at the vertices. This is because
taking the curl of fu" = —gVh implies that V X fu’ =
V. fu =V X Vi = 0. However, the initial conditions
found are closer to discrete balance than sampled ini-
tial conditions.

The unrotated, skipped lat-lon grid (Fig. 11b) gives
results closest to the high-resolution solution because the
flow is aligned with the grid and the jet does not cross the
first grid reduction (at 66°N) until day 5 and so the ad-
ditional truncation errors caused by the grid reduction
have not had sufficient time to amplify and contaminate
the solution. Spikes in the vorticity can be seen where the
jet crosses the first grid reduction in the zoomed region.

When the skipped lat-lon grid is rotated by 90° (Fig.
11c), the poles are now along the equator and the grid
reductions are near the equator so the narrow mid-
latitude jet does not reach the first grid reduction until
day 5. Therefore, the grid reduction does not have a big

! The hexagonal icosahedral grid at this resolution should have
163 842 cells rather than 163 782. However, during the iterations to
make the grid centroidal while retaining uniform resolution, 60 of
the cells have vanished. This is unlikely to have a big impact on the
solution accuracy.
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FIG. 11. Relative vorticity after 6 days of the barotropically unstable jet (Galewsky et al. 2004). The zoomed region
shows the relative vorticity on the dual grids around 50°N, 140°W.

impact on the solution at day 6; the reduced accuracy,
phase error of the largest wave, and enhanced spurious
release of barotropic instability for the 90° rotated grid
are due to the misalignment of the jet with the grid and

the change in angle between the grid and the jet around
the sphere. It is only reasonable to compare non-lat-lon
grids with rotated lat-lon grids since real jets are not
aligned with the grid and so the optimal accuracy of the
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aligned lat-lon grid will never be achieved. So if the
quasi-uniform grids can perform as well as the 90° rotated
lat-lon grid then they may be sufficiently accurate for
operational forecasting. When the skipped grid is rotated
by 45° (Fig. 11d) more damage to the solution is done
when the jet passes through the grid reductions. APVM
imposes an additional time-step restriction and so this
case has not been simulated using a full lat-lon grid.

At 120-km resolution, the hexagonal grid does suffer
from some spurious release of instability after 6 days
(Fig. 11e), similar to the 90° rotated skipped lat-lon grid,
but it does not suffer from serious phase error. For
TRiSK, which uses the cheapest possible two-point dif-
ferencing, this is an impressive result that compares well
with a collocated model on the same grid which uses
much more expensive quadratic differencing (e.g., Fig. 7
of Weller et al. 2009). The spurious checkerboard pattern
in vorticity on the dual grid appears for this test case us-
ing the hexagonal grid (see zoomed region in Fig. 11e)
although APVM has damped this computational mode.
This numerical artifact is not visible when viewing the
vorticity on the primal grid of hexagons (not shown).

At 70-km resolution, the triangular grid results (Fig.
11f) are worse than the hexagonal grid results at 120 km;
larger waves have grown all around the hemisphere and
the position of the largest wave has a larger phase error
(clear from zoomed region). This is not due to the com-
putational mode of triangles or the grid-scale heteroge-
neity since there is no grid-scale noise in the height on
triangles (not shown). The computational modes on tri-
angles do not appear. Based on numerous other simula-
tions on triangles, this seems to be because these modes
are not strongly forced when using balanced initiali-
zation. The reduced accuracy of triangles relative to
hexagons in this case is therefore a consequence of the
lower-order accuracy two-point interpolation on triangles
since they are not Voronoi.

For this test case, the hexagonal grid and the lat-lon
grid are giving the most accurate results (so long as the
jet does not interact with the lat-lon grid reductions).
This crucial result implies that the hexagonal grid is as
good as the full latitude—longitude grid (since if the jet
does not interact with the lat-lon reductions then the
results will be as good as the full lat-lon grid). However
the hexagonal grid is quasi-uniform and therefore will
not have the same parallel scaling problems as the full
lat-lon grid. The skipped lat-lon grid leads to large errors
when the jet passes through the grid reductions.

5. Conclusions

TRiSK on all five quasi-uniform grids suffers from
computational modes that are usually associated with
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triangles in the primal or dual grid. The skipped lat-lon
grids have triangles in their dual which develop spikes in
the vorticity. The dual of the hexagonal icosahedron
is triangular and so computational modes consisting of
grid-scale vorticity oscillations on the triangles exist [the
computational Rossby modes of Thuburn (2008)]. The
triangular grid has the computational mode in height
on the primal grid. The dual of the Voronoi-ized cube
consists of anisotropic triangles and so vorticity oscilla-
tions grow on the triangles. The kite grid, despite having
the correct ratio of DOFs, suffers from more grid-scale
oscillations than any of the other grids. The resolutions
of velocity and mass are anisotropic on the kites and so
grid-scale noise and high-frequency waves are localized
in clusters of cells.

Using TRiSK, computational modes involving vor-
ticity oscillations can be damped using a diffusive ad-
vection scheme for PV such as APVM, which leads to a
dissipation of potential enstrophy. This does not remove
energy or violate any of the other desirable properties
of TRiSK, unlike divergence damping, which would be
needed to control spurious inertio-gravity modes on tri-
angles. Therefore, computational modes consisting of
vorticity oscillations on triangles appear to be easier to
deal with. Given this, the hexagonal icosahedron gives
the best results on all of the test cases.

The skipped lat-lon grid performs almost perfectly when
the flow is aligned with the grid and well when the grid is
rotated. However, when the flow interacts with the changes
of resolution of the skipped lat-lon grid, much larger errors
are generated, which are then advected globally.

The cubed sphere was made perfectly orthogonal while
retaining quasi-uniformity by making it into a Voronoi
tessellation. Hence the cells are composed of polygons
rather than squares. However, this implies that the dual
now consists of triangles and so computational Rossby
modes exist on the triangles. The triangular dual is less
isotropic than the dual of the hexagonal grid and so the
errors are larger.

All of these conclusions are relevant to the arbitrarily
structured, orthogonal C grid (TRiSK), which is a low-
order method with stationary geostrophic modes and con-
servation of mass, energy, and PV and which is consistent
and compatible. No consistent numerical C-grid method
currently exists with these properties on nonorthogonal
grids. These properties should enable accuracy close to
that of the lat-lon C grid. However, the conclusions will
be relevant to other methods on these grids. In particular,
the computational modes that can be supported when
the velocity and mass do not have the same resolution
will be problematic for all C-grid numerical methods.

The final conclusion is that TRiSK was developed for
hexagonal icosahedra and other Voronoi tessellations
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that are close to centroidal (Ringler et al. 2011), and
indeed TRiSK works best on the hexagonal icosahedra
and works very well in comparison to other, more ex-
pensive methods. It therefore appears to be a good choice
for a quasi-uniform operational weather and climate fore-
casting model.
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