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ABSTRACT

A near real-time flood detection algorithm giving a synoptic overview of the extent of
flooding in both urban and rural areas, and capable of working during night-time and
day-time even if cloud was present, could be a useful tool for operational flood relief
management. The paper describes an automatic algorithm using high resolution Synthetic
Aperture Radar (SAR) satellite data that builds on existing approaches, including the use
of image segmentation techniques prior to object classification to cope with the very
large number of pixels in these scenes. Flood detection in urban areas is guided by the
flood extent derived in adjacent rural areas. The algorithm assumes that high resolution
topographic height data are available for at least the urban areas of the scene, in order that
a SAR simulator may be used to estimate areas of radar shadow and layover. The
algorithm proved capable of detecting flooding in rural areas using TerraSAR-X with

good accuracy, classifying 89% of flooded pixels correctly, with an associated false



positive rate of 6%. Of the urban water pixels visibleto TerraSAR-X, 75% were correctly
detected, with a false positive rate of 24%. If all urban water pixels were considered,
including those in shadow and layover regions, these figures fell to 57% and 18%

respectively.

Index terms: Algorithms, hydrology, image processing, simulation.
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[. INTRODUCTION

Flooding is a major hazard in both rural and urban areas worldwide, and has occurred
regularly in the UK in recent times. The UK floods of 2007 caused the country’s largest
peacetime emergency since WW?2 [1]. The impact of globa warming means that the

probability of events of asimilar scale happening in the future isincreasing [2].

The Pitt Report set out to consider what lessons could be learned from the 2007 floods
[3]. Among its many recommendations, the report highlighted the need to have real-time
or near rea-time flood visualisation tools available to enable emergency responders to
react to and manage fast-moving events, and to target their limited resources at the
highest-priority areas. It was felt that a simple GIS that could be effectively updated with
timings, level and extent of flooding during a flood event would be a useful system to

keep the emergency services informed.

A near real-time flood detection algorithm giving a synoptic overview of the extent of
flooding in both urban and rura areas, and capable of working during night-time and
day-time even if cloud was present, could thus be a useful tool for operational flood relief
management. The latest generation of very high resolution Synthetic Aperture Radar
(SAR) satellites now make such technology possible. A near real-time algorithm might
alow the emergency services to view the geo-registered flood extent at very high
resolution over the whole area overlaid on a base map a few hours after overpass. This

could be difficult to achieve by other means.



The vast maority of a flooded area may be rural rather than urban, but it is very
important to detect the urban flooding because of the increased risks and costs associated
with it. Flood extent can be detected in rural floods using SARs such as ERS and ASAR,
but these have too low a resolution (25m) to detect flooded streets in urban areas.
However, a number of SARs with spatial resolutions as high as 3m or better have
recently been launched that are capable of detecting urban flooding. They include
TerraSAR-X, RADARSAT-2, and the four COSMO-SkyMed satellites. An important
factor making near real-time operation possible is that accurate geo-registration can be
performed rapidly. For example, the images from TerraSAR-X can be made available in
geo-registered form to better than one pixel locational accuracy using precise knowledge

of the orbit parameters [4].

In the absence of significant wind or rain, river flood-water generally appears dark in a
SAR image because the water acts as a specular reflector. A near real-time flood
detection algorithm using a split-based automatic thresholding procedure applied to
multi-look single-polarisation TerraSAR-X data has been implemented at the Centre for
Satellite-Based Crisis Information (ZKI) at the German Aerospace Centre (DLR) [5].
This searches for water as regions of low SAR backscatter using a region-growing
iterated segmentation/classification approach, and requires minimal user intervention. A
further more general automatic change detection method using Markov image modelling
on irregular graphs has been developed by the same authors [6], and applied to flood

detection with similar good success in rura areas. Another automatic method for rural



flood detection combining radiometric thresholding with region growing is described in
[7]. A further method for rural areas is described in [8], though this requires manual
intervention. A semi-automatic method for rural flood detection in multi-temporal
COSMO-SkyMed data using an electromagnetic scattering model is described in [9, 10].
However, these techniques would require modification to work in urban areas containing

radar shadow and layover.

A semi-automatic algorithm for the detection of floodwater in urban areas using
TerraSAR-X has also been developed previously [11]. It uses the DLR SAR End-To-End
simulator (SETES) in conjunction with LiDAR (Light Detection and Ranging) data to
estimate regions of the image in which water would not be visible due to shadow or
layover caused by buildings and taller vegetation [12], [13]. Ground will be in radar
shadow if it is hidden from the radar by an adjacent intervening building. The shadowed
area will appear dark, and may be misclassified as water even if it isdry. In contrast, an
area of flooded ground in front of the wall of a building viewed in the range direction
may be allocated to the same range bin as the wall, causing layover which generally
results in a strong return, and a possible misclassification of flooded ground as un-
flooded. The algorithm is aimed at detecting flood extents for calibrating and validating
an urban flood inundation model in an offline situation. It requires user interaction at a
number of stages, including choosing training areas for water and non-water pixels, and

thisinvariably introduces an element of delay into the production of the final product.



The objective of this paper is to build on a number of aspects of the existing algorithms,
to automate the steps requiring manua interaction and to take advantage of the
availability of LIDAR data in the urban area, in order to develop a near real-time

algorithm that for the near real-time processing steps is almost completely automatic.

I1. DESIGN CONSIDERATIONS

The algorithm design assumes that high resolution (~1m) LiDAR data are available for at
least the urban regions in the scene, in order that the SAR simulator may be run in
conjunction with the LiIiDAR data to generate maps of radar shadow and layover in urban
areas. The algorithm is therefore limited to urban regions of the globe that have been
mapped using airborne LiDAR. However, in the UK most major urban areas in flood-
plains have now been mapped, and the same is true for many urban areas in other
developed countries. It is further assumed that some form of (probably less accurate)
Digital Elevation Model (DEM) is available for the adjacent rural areas also. This could
be LiDAR data, but is more likely to be a lower resolution DEM constructed from map
data (e.g. Ordnance Survey (O.S.) Landform Profile DEM), airborne INSAR or Shuttle
SRTM data (the last being available for large areas of the globe). The reason for
including a DEM is that fase aarms from areas of low SAR backscatter may be
generated from higher un-flooded ground (e.g. radar shadow due to trees), but these can

be suppressed using a height threshold associated with the DEM.



As in [11], the approach adopted involves first detecting the flood extent in the rural
areas, and then detecting it in the urban areas using a secondary algorithm guided by the
rural flood extent. It is well-known in image processing that an improved classification
can be achieved by segmenting an image into regions of homogeneity and then
classifying them, rather than classifying each pixel independently using a per-pixel
classifier. The use of segmentation techniques provides a number of advantages
compared to per-pixel classification. Because of the high resolution of these SARs (up to
1m), individual regions on the ground may have high spectral variances, reducing the
accuracy of per-pixel classifiers. In addition, because the segments created correlate well
with real regions of the earth’s surface, further object-related features such as object size,
shape, texture and context may be used to improve the classification accuracy. In [11], an
active contour model (snake) was used to detect homogeneous regions in the rural flood,
with the snake being seeded as a thin closed contour covering the un-flooded river
channel. However, snakes require manual intervention and involve substantial processing
when applied to high resolution images such as TerraSAR-X. Instead, the approach used
for rura flood detection in [5] and [6] is adopted, which involves segmentation and

classification using the eCognition Developer software [14].

In [5] and [6], classification is performed by assigning all segmented homogeneous
regions (objects) of the SAR image with mean backscatter |ess than a given threshold to
the class ‘flood’. Estimation of this threshold uses parts (tiles) of the image known to
contain water, invariably contaminated by substantial quantities of non-water pixels. The

threshold is estimated from a mixture of two clusters having different backscatter



characteristics using an un-mixing technique. In this case the threshold is chosen by using
the fact that LiDAR data of the urban area must be available (unlike in [5], [6]), and by
assuming that these data contain water regions, as will invariably be the case. The water
regions will generally give no LiDAR return because they have acted as specular
reflectors that have generated no backscatter at the sensor. These regions can be used as
training areas for water (after filtering out high SAR backscatter from small objects such
as boats). Similarly, it is possible to select non-water training pixels by searching in un-
shadowed areas above the level of the flooding. A simple two-class Bayes classifier using
the Probability Distribution Functions (PDFs) for water and non-water can then be used
to select the threshold, assuming equal prior probabilities for both classes. This removes
the need to adopt an un-mixing approach, as well as the need to select training pixels

manually.

1. STUDY AREA AND DATA SET

The data set used for this study is based upon the 1-in-150-year flood that took place on
the lower Severn around Tewkesbury, U.K., in July 2007. This resulted in substantial
flooding of urban and rural areas, about 1500 homes in Tewkesbury being flooded.
Tewkesbury lies at the confluence of the Severn, flowing in from the northwest, and the
Avon, flowing in from the northeast. The peak of the flood occurred on July 22, and the

river did not return to bankfull until July 31 [1].



On July 25, TerraSAR-X acquired a 3m-resolution StripMap image of the region (Fig.1),
showing incredible detail of the flooded urban areas (Fig. 2). The TerraSAR-X incidence
angle was 24°, and the image was multi-look ground range spatially enhanced. The HH
polarisation mode chosen provided good discrimination between flooded and non-
flooded regions [5], [15]. At the time of overpass, there was relatively low wind speed

and norain.

Aerial photos of the flooding were acquired on July 24 and 27 [11, 16], and these were
used to validate the flood extent extracted from the TerraSAR-X image. The data set also
included LiDAR data (2m resolution, 0.1m height accuracy) of the un-flooded area, with
coincident LIiDAR and aerial photography covering the two regions identified in Fig. 1.
Rectangular region A covers the Tewkesbury urban area (2.6 x 2km), and the LiDAR
data here were used to provide a Digital Surface Model (DSM), which included building
and vegetation heights as well as the ‘bare-earth’ heights contained in a DEM. Region B
covers a larger more rural area along the Severn (with north-south extent 12.3km, east-
west extent 6km), and the data here were used to validate the TerraSAR-X flood extent in
the rural area. In the rura areas outside rectangle A, an O.S. Landform Profile DEM
generated from 1:10000 map contours [17] and having 10m spatial resolution and 2.5m
height accuracy was used as an example of a lower resolution, less accurate DEM that
might be employed in rural areas. Finally, the data set included O.S. Mastermap data[17]
of roads, raillways and embankments in the area, which would invariably be present in

any simple GIS used by the emergency services.



V. METHOD

Processing is carried out firstly within the region covered by LiDAR including the urban
area (i.e. rectangle A in Fig. 1) using SAR and LiDAR data re-sampled to 1m pixel size.
This re-sampling naturally does not generate any additional spatial resolution in the SAR
image, but has the effect of maintaining resolution during the region-growing process
ultimately performed in the urban flood detection. Processing is then carried out on a
lower-resolution (2.5m pixel size) SAR image covering the whole of Fig.1 (13 x 18 km),
in order to speed up processing over the larger area. The results for rectangle A in the
lower resolution image are finally replaced with those obtained at higher resolution. Steps

in the processing chain are shown in Fig. 3.

A. Higher resolution processing in rectangle A

Steps in the higher resolution processing chain applied to rectangle A include pre-

processing operations carried out prior to image acquisition, and near real-time operations

carried out after the geo-registered image has been obtained.

1) Pre-processing:

a) Delineation of urban areas. The main urban areas are delineated. Currently this

process is performed manually asit is a pre-processing operation that is not time-critical.
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b) Calculation of radar shadow and layover: The calculations of radar shadow and
layover are performed using the LIDAR DSM [11]. Substantial areas of urban flood
water may not be visible to the SAR because of the presence of radar shadow and layover
due to buildings or taller vegetation. The effect is described in [11] and illustrated in Fig.
5 of [11]. In summary, sections of the image in radar shadow will appear dark in the SAR
images, and may simulate water even if they are un-flooded. Other sections of ground
may be subject to layover from adjacent structures such as walls, generally leading to a
bright return even if the ground is flooded. The DLR SAR End to End Simulator SETES
[12], [13] is used to estimate regions of the TerraSAR-X image in which water will not
be visible due to the presence of shadow or layover. The estimation of these regions is
purely geometrical, and uses the LIDAR DSM of the scene’s surface as well as the radar
flight trajectory and incidence angle. Due to the fact that only boolean information is
required describing whether or not a pixel is affected by layover or shadow, no
simulation of realistic backscattering values is necessary. The binary images for shadow
and layover are combined to form a single image showing the shadow and layover
regions (Fig. 4). In Fig. 4, TerraSAR-X is travelling approximately North-South and
looking West. It can be seen that most shadow and layover occurs in streets parallel to the
satellite direction of travel, whereas streets perpendicular to this have less

shadow/layover.

¢) Construction of compound DEM: A compound DEM is constructed for rectangle A,

being the DSM in the urban areas and the DEM in the rural areas of the rectangle. In the

rural areas, building and vegetation heights are removed from the DSM to form the DEM

11



using the processing algorithm of the Environment Agency of England and Wales (EA)
[18]. The compound DEM is required because different processing is applied in the urban

and rural areas of rectangle A. The slope of the DEM is also calculated in the rural areas.

d) Identification of high land height threshold: In order to identify a set of pixelsin
regions of high land that potentially contain no water, the height (hy) above which lie

10% of pixelsintherural DEM is calculated.

e) Segmentation of shadow/layover: The shadow/layover objects are segmented using the
multi-resolution segmentation algorithm of the eCognition Developer software [14]. This
algorithm is used at several stages in the processing, and is based on the Fractal Net
Evolution concept of [19]. This employs an iterated bottom-up segmentation technique
based on pair-wise merging of adjacent regions. The merging is governed by a local
mutual best fitting algorithm, which aims to achieve the lowest increase in object
heterogeneity by merging the two adjacent regions separated by the smallest distancein a
feature space determined by mean spectral and textural features. The maximum allowable
heterogeneity of the objects is set by a user-defined scale parameter, homogeneity
criterion h, which is comprised of object spectral homogeneity h, and shape homogeneity
hs (e + hs = 100%), with hs in turn being made up of object compactness Neompact @nd
object smoothness hsmooth (Ncompact + hsmooth = 100%). The larger the scale parameter is, the
larger are the image objects. As the segmentation of the shadow/layover objects is
applied to the simple binary shadow/layover image (Fig. 4), the default settings of the

scale parameters are used (h = 10, hs = 10%, heompaet = 10%,). Objects in shadow or
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layover (i.e. dark in Fig. 4) are assigned to the shadow/layover class, while all other

objects are set unclassified.

f) Segmentation of potential water and high land: The unclassified objects in the above
segmentation are further segmented by applying the multi-resolution segmentation
algorithm to the compound LiDAR DEM, again using the default scale settings. Regions
containing water in the DEM will have unassigned heights, and will be represented as
individual objects in the segmentation. These are classified as potential water objects. At
the same time, objects having mean heights above that for high land (hy), that do not
contain unassigned heights (so that they are not water), and are not in shadow/layover
regions (so that they do not contain shadow having similar low backscatter to water), are

classed as high land.

2) Near Real-time Processing:

g) Speckle filtering of SAR sub-image: Near real-time processing may begin as soon as
the multi-look geo-registered TerraSAR-X image becomes available. Following [5], this
is first speckle-filtered using adaptive filtering to reduce salt-and-paper noise using the
Gamma-MAP filter of [20] with awindow size of 3 x 3 pixels. The speckle-filtered data
are used for processing in the rural areas, though in the urban areas the original SAR data

are employed instead to maintain spatial resolution.
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h) Identification of water and high land objects:. The objects classed as potential water
and high land in the multi-resolution segmentation produced during step (f) of pre-
processing are segmented further using the speckle-filtered SAR image. The
segmentation scale parameters were set by a process of trial-and-error based on visual
interpretation of the segmentation results, in order to produce objects such as fields
corresponding to those visible in the SAR image. No specia interpretation skills were
required in this process. It was found that good results could be obtained using a large
scale parameter (h = 100), coupled with a larger shape homogeneity (hs = 40%) and
larger compactness (Neompact = 40%) than the default settings, in order to select for
compact objects that were not over-segmented. These parameters were used in this and
subsequent multi-resolution segmentations in the processing chain, and are viewed as
constants that do not need to be reset by the user, at least for this SAR data type. The
‘potential water’ objects should be largely made up of water regions contaminated with
objects such as boats. Segmented water objects should have a relatively large area and
low mean intensity, while objects such as boats should have small area and high mean
intensity. An uncontaminated set of water objects could be obtained by selecting
‘potential water’ objects having areas greater than 180 m? and mean intensities less than

100 DN units.

i) Calculation of mean SAR backscatter threshold: The mean intensity threshold that best
separates water objects from non-water objects is calculated. For the water objects, a
histogram of pixel intensities is constructed by weighting the mean intensity of each

object by its area (note that this is not the same as constructing the histogram from the

14



intensities of the pixels making up the water objects). A similar histogram is constructed
from the area-weighted mean intensities of the high land objects (assumed to be an
uncontaminated sample of non-water objects). Both histograms are normalised to assume
equal prior probabilities for each class. The threshold T giving the minimum
misclassification of water and non-water objects is calculated from the measured
histograms. From Fig. 5, the minimum error rate is obtained using a threshold T of 57
DN units. This approach takes into account the fact that objects are being classified rather

than the individual pixels making up the objects.

J) Flood detection in rural areas of rectangle A: This step begins with the segmentation
produced in step (f), containing shadow/layover, potential water and high land objects.
Potential water and high land objects are reclassified as unclassified, and adjacent
unclassified objects are merged together to reduce the number of objects. The
unclassified objects are then segmented further using the speckle-filtered SAR image,
employing multi-resolution segmentation using the scale parameters of step (h). All
resulting objects with a mean SAR backscatter intensity less than or equal to the
threshold T are classed as ‘flood’. This step classifies the majority of the flooded area in

rectangle A.

k) Calculation of local waterline height threshold map: As a precursor to flood detection
in urban areas, aloca waterline height threshold map is calculated using the initial flood
map derived in the previous step. It seems reasonable to assume that water in the urban

areas should not be at a substantialy higher level than that in the nearby rural areas.
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Unless there is significant ponding (for example, on the falling limb of the hydrograph),
there should be very little water at higher urban levels. However, unless a height
threshold is imposed, there could be a substantial false positive rate of water at these
levels, as shown in [11]. The spatial variability of this threshold reflects the fact that
different parts of the area can be flooded to different heights. For example, the waterline
height along the river Severn in the northwest of rectangle A was 0.5m higher than that
along smaller tributaries in the southeast [11]. The method detects local flood waterline
heights in regions of low DEM slope within a range of +1.5m of the mean water height,
and interpolates these heights over rectangle A. Rectangle A is divided into four
gquadrants, each of size 1.3 x 1km. Within each quadrant, waterlines are detected by
applying the Sobel edge detector to the binary flood map. Because the flood map has
errors at this stage, edges will be present at the true waterlines, but also in the interior of
the water objects due to regions of emergent vegetation and shadow/layover regions
(because these have been segmented out), as well as above the waterline due to higher
water darms. To increase the signal-to-noise ratio of true edges, a dilation and erosion
operation is performed on the water objects to eliminate some of the artefacts prior to
finding edges. Water objects are first dilated by 40 pixels, then eroded by the same
amount. It is required that an edge pixel is present at the same location before and after
dilation and erosion. This tends to select for true waterline segments on straighter
sections of exterior boundaries of water objects. To suppress false aarms further,
waterline heights in regions of low DEM slope within £1.5m of the mean water height
are selected. The slope threshold must be set quite high (0.25), because in a valley-filling

event the waterlines may be on moderate rather than shallow slopes. In order to find the
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mean waterline height in the quadrant, a histogram is constructed of the waterline
heights, and the positions of the histogram maxima are found, including that of the main
maximum. Generally, the mean waterline height in the quadrant is set to correspond to
the height of the main maximum. However, if any substantial maxima greater than half
that of the main maximum is present at a higher height, the highest of these is chosen
instead. This latter rule copes with the situation where a substantial number of erroneous
low waterline heights in the interior of water objects have not been eliminated. Fig. 6
shows the histograms for the NW and SE quadrants of rectangle A (see Fig. 2), together
with the mean waterline heights calculated. The local mean waterline heights in the four
guadrants are interpolated to a height threshold image using bilinear interpolation. A
guard height threshold of 0.3 m is added to this image to allow a height tolerance. If it
was required to detect local mean water line heights in an urban area of different size to
rectangle A, the method should divide the area into non-overlapping tiles of area about
1km? so that sufficient waterline heights would be available to construct a sensible

histogram in each tile.

|) Rural flood refinement: The segmentation of the rural flood generated in step (j) isthen
refined. Shadow/layover objects in the rural areas are often adjacent to rows of trees
aong field boundaries, which are likely to be flooded if they are adjacent to flood
objects. As a result, shadow/layover objects in rural areas with a relative border to flood
> 0.3 are reclassified as flooded, iterating until no further changes occur. The relative
border of an object is the ratio of its shared border length with flood objects to its total

border length. In a similar manner, unclassified objects in rural areas that are long and
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thin and adjacent to flood objects are often hedgerows that are likely to be flooded even
though emergent. Provided such objects have a relative border to flood > 0.5, do not lie
aong a road, railway or embankment, and have either a length/width ratio > 2 or a
compactness > 2, they are reclassified as flooded. The compactness of an object is the
product of its length and width divided by its area, and the compactness criterion is
included because in some cases hedgerows aong two perpendicular field boundaries join
to form an L-shaped object with low length/width ratio but high compactness. The
thresholds above were determined experimentally, though results were not overly
sensitive to them. These rules for shadow/layover and unclassified objects proved more
effective than arule requiring that the mean height of such objects be less than or equal to

that of the adjacent flood objects.

While flood-water usually appears dark compared to the surrounding un-flooded land
because of specular reflection from the smooth water surface, wind or rain may cause
roughening of the water such that the backscatter from it may rise to similar or greater
levels than the surrounding land. Emergent vegetation may also produce increased
backscatter. Because different parts of the flooded reach may have different exposures to
wind, rain and emergent vegetation, it is unlikely that a single mean SAR backscatter
intensity threshold will be appropriate for all flood objects along the reach. It would be
possible to perform a second iteration of the segmentation/classification scheme,
segmenting with a smaller scale factor and the same intensity threshold [5], but this
would tend to split an object exposed to wind into smaller dark and light objects, whereas

in fact the original large scale segmentation of the object may be correct but the object is
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merely textured. This problem did not appear to be particularly widespread, and as a
result a ssimple rule was introduced to the effect that an unclassified object with arelative
border to flood > 0.3 and mean SAR backscatter intensity < T (where T' = 1.1T) is

reclassified as flooded. Thisruleisiterated until no further change occurs.

Although this rule may misclassify some un-flooded objects as flooded, these as well as
others are subsequently largely reclassified by setting unclassified any flood objects
having mean heights above the waterline height threshold. Furthermore, if any pixels
comprising a flood object have heights above this threshold, they are set unclassified.

Thisidentifies the final rural flood classification in rectangle A.

m) Flood detection in urban areas of rectangle A: Flood detection in urban areas is
performed by a similar approach to that described in [11], whereby, following flood
delineation in rural areas, flood delineation in adjacent urban areas is performed using a
simpler region-growing technique. The two methods are linked because the simpler one
is initialised using knowledge of the waterline heights in the rura areas. The urban
region-growing algorithm is of necessity different from the rural one, because it has been
found that the PDF of pixelsin flooded urban streets has a substantial tail towards higher
backscatter values compared to the PDF of rural water pixels [11]. This appears to be
caused by high backscatter from street furniture (cars, etc) as well as inaccuracies in the
layover calculation caused by the limited resolution of the LIDAR. In order to maintain
gpatial resolution in urban areas, the original multi-look SAR data rather than the speckle-

filtered data are used at this stage. A set of seed regions having low backscatter is
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identified in the urban areas using training data to classify pixels into urban water and
non-water classes. Training areas for water are provided by the river water objects
identified in step (h). Training areas for urban pixels not containing water are taken from
the high land objects identified in step (h). A Bayesian classification is performed

assuming equal prior probabilities for each class[21] i.e.

if P(w1] Q) >P(w2| Q) classifygasw: elseasw; @D

where P(w;i | Q) isthe posterior probability of a pixel with DN value g being from class
wi , where w1 = water and w, = non-water. Note that, in this case, pixels are being
classified individually rather than as objects, so that the minimum error rate can be
obtained directly from the Bayes rule. The minimum error rate was obtained with a

threshold (T,) of 68 DN units (Fig. 7).

Unclassified pixels in the urban area are then classified as water seeds if they have SAR
backscatter less than T, heights that are less than the spatially varying waterline height
threshold map calculated in step (k), and do not lie in shadow/layover areas. In [11], it
was found that that seed pixels from the same body of urban water were generally close
together, though not always connected. Seed pixels from different bodies of urban water
were generaly much farther apart. Seed pixels are therefore clustered together using a
region growing approach involving iterated 8-neighbour pixel dilation and 8-neighbour
connected component labelling [22]. Clustering is carried out on the basis of distance of a
pixel to the nearest seed pixel rather than similarity between the DN values of pixel and

seed. At each iteration, seed regions are dilated by a pixel, then the number of connected
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regions is found. In the dilation process, the re-sampling described in Section 1V ensures
that at each iteration only a 1m-wide border is added to a region, maintaining the shape of
the region better than if pixels at the SAR resolution (3m) had been added. Ideally
dilation should continue until al pixels from the same water body are agglomerated into
that body, but none of the different water bodies are fused together. In practice, iteration
is terminated after five iterations, when the number of connected regions began to show
relatively little change. At this point regions are eroded by the total amount by which they

have been dilated.

n) Urban flood refinement: The urban flood classification map output from step (m) is
included in the segmentation available at the end of the rural flood refinement (step 1), by
performing a multi-resolution segmentation to refine the unclassified urban areas of this
segmentation to match the urban flooding, and classifying these objects as urban flood.
An attempt is then made to grow the urban flood objects where possible by merging with
them unclassified or shadow/layover objects bordering them and of lower or similar
height. It is first necessary to break up those shadow/layover objects having parts lying
above and other parts lying below the waterline height threshold map where necessary,
by performing a multi-resolution segmentation using the threshold map. Then
unclassified or shadow/layover objects in the urban area with mean heights less than the
height threshold map and with a relative border to urban flood > 0.3, are classified as
urban flood provided that the mean height of the object is less than or equal to the mean
height of the adjacent urban flood objects. This identifies the fina urban flood

classification in rectangle A.
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B. Lower resolution processing over the whole image

Processing of the whole image at lower resolution follows a similar flow path to that used
for rural flood classification in rectangle A. However, the pre-processing operations
carried out on the higher resolution image, such as the shadow/layover calculation, are

unnecessary at this stage, and all processing steps are near real-time.

0) SAR image speckle filtering: The whole image is speckle-filtered using the method of

step (9).

p) Flood detection: The speckle-filtered SAR image is segmented using a multi-
resolution segmentation employing the scale parameters of step (h). The mean SAR
backscatter intensity threshold calculated in step (i) is then used to classify the image
objects. All objects with a mean intensity less than or equal to the threshold T are classed
asflood. It isvalid to apply the same threshold T used in rural areas of rectangle A to the
whole image, because there is no reason to suppose that the mean SAR backscatter of
flood objects should have different distributions in the two cases. As with rectangle A,

this step classifies the majority of the flooded areain the whole image.

) Calculation of waterline height threshold: Only a crude global waterline height
threshold could be set at this stage because of the low height accuracy of the O.S.
Landform Profile DEM compared to the LIDAR DEM. Although the quoted height

accuracy is £2.5m, experiments indicated that it was best to set the threshold
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conservatively, and a threshold of 25m (about 10m above the highest point on the
riverbank aong the reach) was employed. The simplistic approach adopted for this

threshold setting means that it could be set during pre-processing.

r) Flood refinement: The flood segmentation is refined in a similar manner to that used in
step (). As the whole area is predominantly rural, unclassified objects that are long and
thin and adjacent to flood objects are often hedgerows that are likely to be flooded even
though emergent. Provided such objects have a relative border to flood > 0.5, do not lie
aong a road, railway or embankment, and have cither a length/width ratio > 2 or a
compactness > 2, they are reclassified as flooded. To cope with the fact that a single
mean SAR intensity threshold is inappropriate for all flood objects along the reach, the
simple rule of step (1) is again used whereby an unclassified object with a relative border
to flood > 0.3 and mean SAR backscatter intensity < T’ (where T' = 1.1T) isreclassified
as flooded, this procedure being iterated until no further change occurs. As in step (1),
flood objects having mean heights above the waterline height threshold of step (q), or any

pixels comprising aflood object having heights above this threshold, are set unclassified.

s) Merging of lower and higher resolution classification images: The results for rectangle
A in the lower resolution image are replaced with those obtained at higher resolution,
though only in the rural areas of rectangle A. This identifies the final flood classification

over the whole image.
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V. PROCESSING OF THE VALIDATION DATA

Validation of the flood extents in regions A and B was carried out using aeria
photograph mosaics acquired approximately 19 hours before and 53 hours after the
satellite overpass. The method used is described in [11]. For each mosaic, a uniformly-
distributed set of flood extent waterline points in areas of low slope were selected
manually and heighted using the LiDAR data. These heights were interpolated to form a
water height threshold map over the whole area covered by the aerial photos using
kriging. Areas in the LIDAR images below the local height threshold were classed as
water. A height threshold map for the overpass time was then constructed using linear
interpolation between the two aerial photo height threshold maps, and areas in the LIiDAR
images below the local height threshold were taken as the flood extent at overpass time.
Some minor editing of this was necessary to correct obvious errors compared to the aerial
photos acquired 19 hours prior to overpass. The aerial photo flood extents in regions A
and B derived in this manner were assumed to be error-free for the purposes of

validation.

VI.VALIDATION OF THE TERRASAR-X FLOOD EXTENT

The flood extent estimated by TerraSAR-X in the urban and rural areas was validated

using the flood extent estimated from the aerial photographs. Results are considered

separately for the urban and rural areas.
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A. Urban flood classification accuracy

The accuracy of the basic urban flood detection algorithm (step (m)) is first considered.
Of the urban water pixels in rectangle A, 75% were correctly detected by TerraSAR-X,
giving afalse negative rate of 25%. The associated false positive rate of urban non-water
pixels incorrectly classified as water was 24% (table 1). Fig. 8 shows the correspondence
between the aerial photograph and TerraSAR-X flood extents that was achieved in the
main urban areas of Tewkesbury, superimposed on the LiDAR image (from which all but

the main urban areas have been masked out).

These figures quantify the fraction of the urban flood extent that is visible to TerraSAR-X
and also detected by it. However, it is more pertinent to consider the fraction of the urban
flood extent that is visible in the aerial photos that is detected by TerraSAR-X. This
fraction will be lower because flooded pixels in the shadow/layover regions must now be
included. If this was done, only 57% of the urban water pixels were now detected by
TerraSAR-X, with a false positive rate of 18%. It can be seen that the classification
obtained in the urban area is of limited accuracy, partly because of TerraSAR-X’s poor

visibility of the ground surface due to shadow and layover.

The basic urban flood detection step (m) is followed by the urban flood refinement step
(n), and the effect of this was measured. Shadow/layover regions are implicitly included
at this stage, in an attempt to grow urban flood objects where possible by merging them

with unclassified or shadow/layover objects bordering them and of lower or similar
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height. There was a small increase in the urban water detection rate to 59%, but this was
offset by an increase in the false positive rate to 26%. As a result, there seems to be no
advantage in applying the urban flood refinement step in this case. This may be due to the
limited resolution of the LiDAR data used in the shadow/layover calculation, and step (n)

may prove more useful if higher-resolution LIDAR data became available.

The effect of using speckle-filtered rather than original SAR data in this step was aso
quantified. It was first necessary to calculate the SAR backscatter threshold giving the
minimum error rate for the speckle-filtered SAR data in an analogous fashion to that
carried out in step (m). The revised SAR threshold was calculated to be 55 DN units.
Using this, and including flooded pixels in the shadow/layover regions, only 35% of
urban water pixels were correctly detected, with an associated false positive rate of 7%.
This detection rate was considerably lower than that obtained using the original SAR data
(57%), though the false positive rate was also lower. The total misclassification rate using
speckle-filtered data was 72%, compared to 61% using the original SAR data, thus

justifying the use of original datain this step.

B. Rural flood classification accuracy

The accuracy of flood detection in rural areas was primarily assessed using the aeridl

photo validation data of region B. 89% of the water pixels in region B were correctly

detected by TerraSAR-X, giving a false negative rate of 11%. The associated false

positive rate was 6%. Fig. 9 shows the correspondence between the aerial photograph and
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TerraSAR-X flood extents that was achieved in region B, superimposed on the

TerraSAR-X image.

The effect of the coarse DEM on the classification could not be reliably assessed using
the validation data in region B, as very little of region B was above the coarse DEM
waterline height threshold of 25m. However, over the whole image, the total number of
flood pixels set unclassified because they were above this threshold was only 1.4%, so
that, even assuming that these were all false alarms, the effect of the coarse DEM

appeared small.

The accuracy of flood detection in the rural area of rectangle A was 97%, giving a false
negative rate of 3%. The associated false positive rate was 21%, due partly to the
misclassification of afield that was only just flooded in the aerial photos being classed as
un-flooded in the TerraSAR-X image. However, the rural area in rectangle A is only a

small fraction (less than 10%) of that in region B.

V1. OPERATIONAL CONSIDERATIONS

In order to obtain a high resolution satellite SAR image of a developing flood, it would
be necessary immediately after a storm forecast had been issued to initiate operations
similar to those involved in an invocation of the International Charter “ Space and Major
Disasters’ [23]. When the Charter is invoked, Space Agencies around the world direct

their satellites to image the flooding if possible. Current practice usually involves waiting
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until the disaster has developed somewhat before initiating the imaging, but this would
need to be modified to invoke imaging immediately after the storm forecast had been
issued. ESA’s Heterogeneous Mission Accessibility (HMA) project [24], which aims to
allow seamless access to data from multiple earth observation missions, is likely to have

aroleto play in this process.

In order to ensure that a SAR image was obtained in near real-time, it would be necessary
to minimise the time delay between an overpass and the production of the resulting SAR
flood extent. The pre-processing operations could be carried out in parallel with tasking
the satellite to acquire the image of flooding. Considering TerraSAR-X as an example,
TerraSAR-X allows satellite tasking twice a day, so that the shadow/layover map could
be generated prior to the image acquisition by running SETES on the LiDAR data given
the SAR trgjectory and proposed look angle. The DEM and vegetation height map could
be generated off-line at an earlier date, and retrieved between satellite tasking and image
acquisition. Download of the image to the ground station, followed by near real-time
processing of the raw SAR to a multi-look image, automatic geo-registration and
delineation of the flood extent, could in theory be carried out within a few hours after
overpass. For example, it is known that raw TerraSAR-X images of the UK can be
downloaded to the ground station, processed to multi-look images, and geo-registered to
Enhanced Ellipsoid Corrected (EEC) form ready for download to the user in about 4
hours, though this facility would currently only appear to be available to scientific users
of TerraSAR-X data. A blueprint of the operational system required for near real-time

supply of geo-located high resolution SAR datato usersis provided by the FAIRE system
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developed at ESA-ESRIN, which is able to provide users with processed ENVISAT
ASAR and ERS-2 SAR images approximately 3 hours after acquisition [25-27]. Asfar as

is known, such a system has still to be developed for high resolution SAR images.

Table 2 gives the times of the various near real-time processing steps in the flood
delineation run on a 3GHz desktop PC. The overal time of 19.1 minutes for this image
size (6750 x 6000 pixels) could be significantly reduced using additional eCognition
processing nodes [14]. In the pre-processing steps, the computing time would be
dominated by the time taken to run the SAR simulator SETES on the LiDAR DSM,
which for this DSM size would be about 5 minutes, a figure which may also be reduced

using paralel processing (R. Speck, personal communication).

VIII. DISCUSSION

Fig. 10 shows a possible multi-scale visualisation of the flood extents in the rura and
urban areas, assuming the normal situation where aerial photo data for validation are not
available. Flooding is shown in blue in the rural area and in yellow in the urban area.
Regions coloured brown in the urban area are areas of shadow/layover that are below the
waterline height threshold, and therefore may or may not be flooded, as effectively they
cannot be imaged by TerraSAR-X. It is assumed that shadow/layover regions above the
height threshold are not flooded. Urban flood refinement (step n) has not been employed

in generating Fig. 10.
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Although developed using TerraSAR-X data, it is likely that the algorithm would also be
applicable to data from other high resolution single-polarisation SARs. In this case,
certain quantities treated as constants for TerraSAR-X data may need to be reset for the
new data type, as data grey value ranges and speckle may differ between different
sensors. In particular, the scale parameter h used in multi-resolution segmentation of SAR
data, and the mean intensity threshold for potential water objects, may prove data
dependent. The thresholds used in steps (1) and (r) to identify hedgerows are geometrical
guantities, and should remain valid for other sensors provided that these have have

similar resolution to TerraSAR-X.

The algorithm used for detecting flooding in rural areas, while based on that of [5],
differs in some important respects. It is most similar to the initial large-scale
segmentation and thresholding stage of [5] (see section 3.4.1 of [5]), though different
values for parameters h, hs and heompaee Nave been used. The subsequent stages involving
segmentation and classification of objects at medium and then small scale have not been
employed. Partly this has been done to avoid the substantial computation involved in
these stages for little reduction in overall error rate, and partly because a different
approach has been adopted for rural flood refinement, involving araising of the threshold
to classify wind-roughened water correctly (see step (I)). From the results presented, the
algorithm of [5] would appear to be somewhat more accurate than that developed here.
However, an objective comparison of the two algorithms was not possible. This study
used a different test areato that used in [5], as LIDAR data were available in rectangle B

to aid the processing of the aerial photography (see section V). Also, different aerid
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photography was used for validation in the two studies, and this was processed
differently. Nevertheless, the overall algorithm presented here has the clear advantage
over othersthat it is able to perform near real-time detection not just of rural flooding, but
more importantly of urban flooding also, even if the urban flood detection accuracy

obtained is limited due to radar shadow and layover.

The approach that has been adopted for detecting flood extent involves first detecting
flooding in the rura areas, and then detecting it in the urban areas using a secondary
algorithm guided by the rural flood extent. It should be noted that, as a result, the method

will not work in a situation where aflood is totally contained within an urban area.

Because of the time delay involved in downloading the SAR data and processing the
image to extract the flood extent, the image represents the flood situation a few hours
previously rather than the current situation. An aternative method of using the
information in the image that avoids this limitation would be to use it in conjunction with
a hydraulic model of river flood flow. The flood waterline from the image could be
intersected with the LIDAR DEM to obtain water surface elevations along the waterline,
and these could be assimilated into the model run, correcting the water surface elevations
predicted by the model where necessary [28]. This would help to keep the model ‘on
track’, so that the model’s prediction of the current flood extent could be viewed with
more confidence. The model would also predict water surface elevations within the

shadow/layover regions.
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IX. CONCLUSION

An automatic near real-time flood delineation algorithm has been developed that is
capable of detecting flooding in rural areas with good accuracy, and in urban areas with
reasonable accuracy. While good classification accuracy was obtained in rural areas, the
accuracy was reduced in urban areas partly because of TerraSAR-X's poor visibility of
the ground surface due to shadow and layover. The operational requirements for
acquiring a high resolution satellite SAR image of a developing flood and determining
the resulting SAR flood extent in near real-time were aso considered, and it was
concluded that, while technically feasible, appropriate systems for general users still have
to be developed for high resolution SAR images. A limitation of this work is that it is
based on data from a single flood event. Even though the scene involved contains a large
area with many example situations, the algorithm needs to be tested further using other
events. The method of suppressing false alarms in the urban flood delineation using a
spatially distributed height threshold could be improved, and the effect of increased

gpatial resolution in the urban area could be studied.
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Tables

Speckle- | Shadow/layover | Urban flood % of urban % false % false
filtered | masked out in refinement? | water pixels | negatives | positives
SAR? aerial photos? correctly
classified
No Yes No 75 25 24
No No No 57 43 18
No No Yes 59 41 26
Yes No No 35 65 7

Table 1. Accuracy of urban water detection.

Operation Time
(mins)

Higher resolution

SAR sub-image speckle filtering 0.2
Identification of water and high land objects 15
Calculation of mean SAR backscatter threshold 0.1
Flood detection in rural areas of rectangle A 17
Calculation of local waterline height threshold map 0.5
Rural flood refinement 0.1
Flood detection in urban areas of rectangle A 0.2
Urban flood refinement 2.5
Lower resolution

SAR image specklefiltering 2.0
Flood detection 10.0
Flood refinement 0.1
Merging of lower and higher resolution images 0.1
Total 19.1

Table 2. Timings of near real-time processing operations.

38




Figure captions

1. TerraSAR-X image of the lower Severn/Avon July 2007 flood (dark areas are water)
(© DLR 2007). Rectangle A includes the urban area of Tewkesbury, and region B the

rural validation area

2. TerraSAR-X image showing detail in the urban areas of Tewkesbury (2.6 x 2 km) (©

DLR 2007).

3. Stepsin the processing chain.

4. Regions (black) unseen by TerraSAR-X in the LIDAR DSM due to combined shadow

and layover (after [11]).

5. Variation of misclassified water and non-water objects with object mean intensity

threshold T.

6. Histograms of selected waterline heights for the NW and SE quadrants of rectangle A

(see Fig. 2). The upper histogram peak is at 11.8m for the NW quadrant, and 11.4m for

the SE quadrant.

7. Variation of misclassified water and non-water pixels with pixel intensity threshold T,.
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8. Correspondence between the TerraSAR-X and aerial photograph flood extentsin main
urban areas of Tewkesbury, superimposed on the LiDAR image (yellow = wet in SAR

and aerial photos, red = wet in SAR only, green = wet in aerial photos only).

9. Correspondence between the TerraSAR-X and aerial photograph flood extents over the
rural validation area (region B), superimposed on the TerraSAR-X image (blue = wet in

SAR and aerial photos, red = wet in SAR only, green = wet in aerial photos only).

10. Possible multi-scale visualisation of flood extentsin (a) rural (blue = predicted flood),

and (b) urban areas (yellow = predicted flood, brown = shadow/layover areas that may be

flooded).
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Figure 2.



Higher resolution pre-processing operations.

a)
b)
c)
d)
e)
f)

Delineation of urban areas.

Calculation and radar shadow and layover.
Construction of compound DEM.
Identification of high land height threshold.
Segmentation of shadow/layover.
Segmentation of potential water and high land.

A 4

Higher resolution near real-time processing operations.

9)

SAR sub-image speckle filtering.

Identification of water and high land objects.
Calculation of mean SAR backscatter threshold.
Flood detection in rural areas of rectangle A.
Calculation of local waterline height threshold map.
Rural flood refinement.

Flood detection in urban areas of rectangle A (using
original SAR data).

- Classification of urban flood seed regions.

- Application of urban water height threshold.

- Seed region growing.

Urban flood refinement.

A 4

Lower resolution near real-time processing operations.

0) SAR image speckle filtering.
p) Flood detection.
g) Calculation of waterline height threshold.

9
s)

Flood refinement.
Merging of lower and higher resolution images.

Figure 3.
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