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The Chaos Machine
Analogue Computing Rediscovered (1)

For some of us it may be surprising that, before the mid sixties, 
hardly any computing in real-time applications was done by a digital 
computer. Instead, analogue computers were used because of their 
speed and relative reliability. Analogue computers are machines 
that are built to behave as the system we want to compute.
A famous example is the Phillips moniac computer from the 1950s [1] 
(Figure 1) which used water flow through Perspex pipes to model 
the flow of money in an economy. However, in most practical appli-
cations, electronic analogies were used. The word analogue refers 
to the behaviour of the computer being analogous to that of the 

system we want to simulate. In contrast, the word digital refers to 
the process of transforming the behaviour of a system to a stream 
of numbers or digits calculated by a numerical algorithm. Although 
this is the origin of the word analogue, its meaning has now evolved 
to describe anything that is not digital.

Modern analogue computers
In the sixties it became clear that the digital computer would rap-
idly overtake the analogue computer. Advances in chip technology 
made the digital computer reliable and available to a large num-
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Analogue computers provide 

actual rather than virtual 

representations of model 

systems. They are powerful and 

engaging computing machines 

that are cheap and simple to 

build. This two-part Retronics 

article helps you build (and 

understand!) your own analogue 

computer to simulate the Lorenz 

butterfly that’s become iconic 

for Chaos theory. First, however, 

some history and background.
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ber of people and organisations. However, precisely because of the 
advances in chip technology driven by the digital revolution, we 
can now build very cheap and very accurate analogue computers 
as well.
As part of an art-science collaboration in our Department, we 
decided to exploit the accuracy of modern analogue electronics in 
an exhibit of an analogue computer for the Lorenz model which pro-
duces the butterfly that became the iconic cartoon for the science of 
chaos and the unpredictability of weather (See, for example, James 
Gleick’s Chaos: Making a new science for a wonderful introduction to 
chaos theory and its history).
Our building of the analogue computer turned out to be an inspiring 
and illuminating experience. Here we discuss some of the remark-
able properties of analogue computers, perhaps no longer widely 
appreciated. In next month’s instalment we will also describe how 
to make the analogue computer that simulates the Lorenz model. 
We call it the Chaos Machine.

Butterflies; poltergeists; mathematics
The Lorenz equations were developed in 1963 by the meteorologist 
Ed Lorenz to mimic the flow of air heated from below [2]. They are a 
set of three coupled equations that describe the time evolution of 
three variables X, Y , and Z,

dX/dt = σ(Y–X)

dY/dt = ρX–Y–XZ

dZ/dt = XY–βZ

The link of these three equations to actual air flow is rather obscure, 
and they do not work very well anyway.
What Lorenz did discover was that when he chose the three tune-
able parameters (σ; ρ; β) in his model carefully it would behave in 
an erratic and unpredictable way: chaos. This was completely unex-
pected and paved the way to a revolution in science. If the three 
variables X, Y, and Z are plotted as a moving point in three-dimen-
sional space, we get the famous Lorenz butterfly, a fractal floating 
in three-dimensional space, see Figure 2.
In our Chaos Machine we can feed two of the voltages that repre-
sent the X, Y, and Z, to an oscilloscope in XY-display mode to see it 
draw an electronic version of the butterfly. We can tune the three 
variables to produce various shapes of the butterfly. We can also 
feed the channels to an audio amplifier to hear the sound of chaos. 
This turns out to be a remarkably unsettling experience: the Chaos 
Machine screeches and screams in the most bizarre ways with the 
soul of an electronic poltergeist.

How do analogue computers work?
An electronic analogue computer solves equations by representing 
values of variables by voltages in a circuit. Wires connect modules 
that perform specific arithmetic operations. For example, a subtrac-
tion module will have two input connectors and one output con-

Figure 2. The Lorenz butterfly; the background is an image of solar 
convection, the original inspiration of the Lorenz equations.

Figure 1. Professor A.W.H (Bill) Phillips was an LSE economist known 
for the ‘Phillips curve’ and he developed MONIAC, an analogue 

computer that modelled economic theory with water flows. 
Image: Wikimedia Commons.



74 09-2011     elektor     

retronics

nector where the output voltage equals the difference between the 
input voltages. This particular module is in fact simply a differential 
amplifier with unit gain.
The topology of an analogue computer is similar to that of our brain 
with the axons being represented by the wires, the cell body by the 
arithmetic modules, and the input ports by the dendrites. Con-
trast this with a digital computer. In a digital computer variables 
are stored in memory spaces which are then occasionally operated 
upon by copying these memory spaces to the central processor 
which then changes the values of variables in other memory spaces.
Digital computers only change values of variables if the central pro-
cessor says this should happen, and if so, they alter successively. In 
an analogue computer values always remain consistent. So, if for 
three variables a, b, and c we have a+b = c then in an analogue com-
puter this will always be the case. There is no internal clock speed; 
calculations happen instantaneously. In a digital computer this is 
only valid after the central processor has performed this addition 
and then only until either a or b 
are updated again.
Time integration is also a very 
natural process for an analogue 
computer. The input and the 
output voltages of a time inte-
grating module are always con-
sistently related: at all times the 
output voltage is equal to the 
time-integral of the input volt-
age. There are no time steps 
involved, as would be the case 
for a numerical integration 
routine. Numerical instability 
of integration routines is not 
an issue, nor are computing or 
storage overheads. The basic 
circuit of an integration mod-
ule is shown in Figure 3. Inte-
gration in time occurs by converting a voltage to a current through 
use of an operational amplifier and then using this current to charge 
a capacitor. The instantaneous voltage across the capacitor is the 
time-integrated value of the input voltage. The schematic shows 
an electronic circuit able to perform integration in time of a varying 
input voltage. It is based on two operational amplifiers A1 and A2 
each having inverting (–) and non-inverting (+) inputs and an output 
terminal. A time varying voltage V1(t) is applied to A1, which drives 
the integrator circuit comprising R, C and A2. The output voltage 
V2(t) is (minus) the time integral of the input voltage, scaled by (1/
RC). A1 is a unit gain buffer stage, included solely to prevent load-
ing of the originating voltage source but permitting a wide choice 
of values for R. (The additional resistor with A2 is for compensation 
and does not form part of the functional circuit.) For clarity, the 
necessary power supplies are not shown.
Other arithmetic operations can also be performed with the help 
of operational amplifiers. For example, subtracting two voltages is 
achieved using a differential amplifier of unit gain. Multiplication 

and other related operations are more complicated to implement, 
requiring many op amp stages.
Analogue computers do not require a memory to work. This makes 
them essentially equivalent to the systems we try to simulate. A 
swinging pendulum does not have a memory of its previous states. 
One could connect an analogue computer to analogue–to–digital 
converters if digital storage or exact measurements are required. 
This construction can also be used to build a hybrid analogue–
digital computer. A purist who wants to stay away from any digital 
technique can use a tape recorder or chart recorder for storage, 
also circumventing the difficulties of aliasing which arise in a sam-
pled system.

Analogue computers are relatively hard to program: program-
ming the computer is the same as building the computer. Clearly 
this flexibility is where digital computers are far superior. Also, in 
a digital computer it is easy to allocate memory spaces to store a 

set of variables, while in an ana-
logue computer each variable 
is associated with a separate 
signal wire. Although a digi-
tal computer requires much 
more complex hardware for 
variable storage, it can use the 
same hardware configuration 
to tackle different virtual prob-
lems. A digital computer is a 
universal Turing machine, that 
is, a machine that can be used 
to solve different problems; an 
analogue computer can only 
solve one single problem.
Another fundamental differ-
ence between analogue and 
digital computers is that a 
digital computer calculates an 

approximated virtual representation of the model system, whereas 
an analogue computer is an actual electronic copy of the system. If 
we want to simulate a swinging pendulum with an analogue com-
puter, we build an electronic system that oscillates exactly like the 
swinging pendulum. The computer becomes an electronic version 
of the swinging pendulum itself. This is a very appealing property 
of analogue computers. Think of the Lorenz system that we use in 
our Chaos Machine. Apart from a very artificial set-up, there is no 
actual physical representation of the system; it was designed as a 
mathematical system. Analogue computers are the only way we can 
get genuine physical representations of such mathematical systems.

How fast are they?
People who see an analogue computer for the first time often ask: 
how fast is it compared to a modern digital computer? In fact, their 
speeds are hard to compare. In a digital computer speed is limited 
by the clock speed of the processor and the speed at which vari-
ables can be loaded into and out of the processor. One such calcu-
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Figure 3. Basic circuit of the time integration module.
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lation may typically take a nanosecond or so (one thousand mil-
lionth of a second). In an analogue computer the speed is limited 
by the speed at which the operational amplifiers, the key building 
blocks of analogue computers, can follow changes in input volt-
ages (the slew rate). Operational amplifiers can change over time 
scales of a few nanoseconds and for most practical purposes 
this does not limit the computer’s operation. However, 
analogue computers do not perform calculations as 
such; they perform simulations. Asking how fast 
an analogue computer calculates is the same as 
asking how fast the swinging pendulum calcu-
lates its motion.

Nevertheless, the ‘speed’ comparison can be 
made more precise. An analogue time integra-
tion module has an intrinsic timescale set by 
R×C, the resistance and capacitance, respec-
tively, of two components in the module. In 
other words, speed in a digital computer is 
limited by its clock speed, while ‘speed’ in an 
analogue computer can be arbitrarily defined 
by choosing different components. There is a 
practical limit to which we can increase the 
speed of the analogue computer set by the 
finite slew rate of the operational amplifiers 
and the stray capacitances in the system, 
both of which act to damp away the very 
highest frequencies.
Fortunately, dedicated analogue function 
chips are cheaply available which contain 
optimized log and antilog converters, provid-
ing multiplication, divisions, and square roots 
with excellent accuracy and temperature sta-
bility — and truly enormous speed.

Operational amplifiers
Advances in electronic components have had 
major benefits for many scientific activities, 
but they also now make the implementation 
of analogue computing straightforward. The 
key building block of an electronic analogue 
computer is the operational amplifier, a gen-
eral purpose electronic device which can be configured to perform 
the different mathematical operations (integration, addition, mul-
tiplication, scaling) required. General purpose amplifiers originated 
in the 1940s from military applications, particularly in anti-aircraft 
gunnery (although a mechanical analogue computer was used as 
recent as the Vietnam war in the ‘Norden’ bombsight to target 
bombs dropped from aircraft). The description operational ampli-
fier (or op amp), appeared in 1947, and the first commercial op amp 
— type K2-W — was produced by Philbrick in 1953, based on two 

dual triode valves, see Figure 4 and [3,4]. Solid state op amps fol-
lowed in the 1960s, with the first integrated circuit op amp in 1965 
(Jung’s Op Amp Applications Handbook provides a good overview of 
the history and use of op amps).
Comparison between early and modern op amps illustrates how 

the steady improvements have made analogue computing 
ever more practical. The thermionic K2-W had a speci-

fied drift of ±5 mV per day, whereas the integrated 
circuit OP97, used in our Lorenz design, has drift 
dominated by thermal changes, at 0.6 μV/°C. The 
power requirements are also dramatically differ-
ent. A K2-W required power supplies of ±300 V 
and 6.3 V, at about 10 mA and 0.6 A, whereas the 
OP97 requires ±15 V at 0.6 mA. Early analogue 
computers therefore had a substantial physi-
cal volume associated with each computing 

stage, as well as power dissipation and heat 
generation.
Integrated circuit analogue computers are 
now compact, and drift is no longer a char-
acteristic feature. Individual op amp stages 
are also relatively cheap, allowing complex 
systems to be readily simulated. A benefit of 
their low cost is that extra stages can easily be 
included, which although not essential to the 
computing function, may relax constraints on 
the components required.

The final analogue computer is an assembly 
of independent circuit modules, combined 
to solve one specific problem, but reusable 
for other applications. With such a modular 
approach the ‘programming’ of the com-
puter is a fairly simple job which requires 
hardly any knowledge of the electronics 
involved.

Next month’s second and final instalment dis-
cusses the elements that go into building the 
Chaos Machine.
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Figure 4. The Philbrick K2-W is generally 
considered the first commercial 

operational amplifier.


