University of
< Reading

The chaos machine: analogue computing
rediscovered (1)

Article

Published Version

Ambaum, M. H. P. ORCID: https://orcid.org/0000-0002-6824-
8083 and Harrison, R. G. ORCID: https://orcid.org/0000-0003-
0693-347X (2011) The chaos machine: analogue computing
rediscovered (1). Elektor, 37 (417). pp. 72-75. ISSN 0932-5468
Available at
https://reading-pure-test.eprints-hosting.org/22829/

It is advisable to refer to the publisher’s version if you intend to cite from the

work. See Guidance on citing.
Published version at: http://www.elektor.com/magazines/2011/september/the-chaos-machine-analogue-computing-
rediscovered.1912389.lynkx

Publisher: Elektor International Media

Publisher statement: © Elektor International Media b.v. 2010 Copyright Notice The
circuits described in this magazine are for domestic use only. All drawings,
photographs, printed circuit board layouts, programmed integrated circuits, disks,
CD-ROMs, software carriers and article texts published in our books and
magazines (other than third-party advertisements) are copyright Elektor
International Media b.v. and may not be reproduced or transmitted in any form or
by any means, including photocopying, scanning an recording, in whole or in part
without prior written permission from the Publisher. Such written permission must
also be obtained before any part of this publication is stored in a retrieval system
of any nature. Patent protection may exist in respect of circuits, devices,
components etc. described in this magazine. The Publisher does not accept
responsibility for failing to identify such patent(s) or other protection. The


http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf

w sos] University of
< Reading
submission of designs or articles implies permission to the Publisher to alter the
text and design, and to use the contents in other Elektor International Media
publications and activities. The Publisher cannot guarantee to return any material

submitted to them. Disclaimer Prices and descriptions of publication-related items
subject to change. Errors and omissions excluded.

All outputs in CentAUR are protected by Intellectual Property Rights law,
including copyright law. Copyright and IPR is retained by the creators or other
copyright holders. Terms and conditions for use of this material are defined in
the End User Agreement.

www.reading.ac.uk/centaur

CentAUR

Central Archive at the University of Reading

Reading’s research outputs online


http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence

RETRONICS

The Chaos Machine

By Maarten H. P. Ambaum and
R. Giles Harrison

(Department of Meteorology,
University of Reading, UK)

Analogue computers provide
actual rather than virtual
representations of model
systems. They are powerful and
engaging computing machines
that are cheap and simple to
build. This two-part Retronics
article helps you build (and
understand!) your own analogue
computer to simulate the Lorenz
butterfly that’s become iconic
for Chaos theory. First, however,

some history and background.

For some of us it may be surprising that, before the mid sixties,
hardly any computing in real-time applications was done by a digital
computer. Instead, analogue computers were used because of their
speed and relative reliability. Analogue computers are machines
that are built to behave as the system we want to compute.

A famous example is the Phillips moniac computer from the 1950s [1]
(Figure 1) which used water flow through Perspex pipes to model
the flow of money in an economy. However, in most practical appli-
cations, electronic analogies were used. The word analogue refers
to the behaviour of the computer being analogous to that of the
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system we want to simulate. In contrast, the word digital refers to
the process of transforming the behaviour of a system to a stream
of numbers or digits calculated by a numerical algorithm. Although
this is the origin of the word analogue, its meaning has now evolved
to describe anything that is not digital.

Modern analogue computers

In the sixties it became clear that the digital computer would rap-
idly overtake the analogue computer. Advances in chip technology
made the digital computer reliable and available to a large num-
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ber of people and organisations. However, precisely because of the
advances in chip technology driven by the digital revolution, we
can now build very cheap and very accurate analogue computers
as well.

As part of an art-science collaboration in our Department, we
decided to exploit the accuracy of modern analogue electronics in
an exhibit of an analogue computer for the Lorenz model which pro-
duces the butterfly that became the iconic cartoon for the science of
chaos and the unpredictability of weather (See, for example, James
Gleick’s Chaos: Making a new science for a wonderful introduction to
chaos theory and its history).

Our building of the analogue computer turned out to be an inspiring
and illuminating experience. Here we discuss some of the remark-
able properties of analogue computers, perhaps no longer widely
appreciated. In next month’s instalment we will also describe how
to make the analogue computer that simulates the Lorenz model.
We call it the Chaos Machine.

Butterflies; poltergeists; mathematics

The Lorenz equations were developed in 1963 by the meteorologist
Ed Lorenz to mimic the flow of air heated from below [2]. They are a
set of three coupled equations that describe the time evolution of
three variables X, Y, and Z,

dx/dt = 5(Y-X)
dY/dt = pX-Y-XZ
dz|dt=XY-pzZ

The link of these three equations to actual air flow is rather obscure,
and they do not work very well anyway.

What Lorenz did discover was that when he chose the three tune-
able parameters (o; p; B) in his model carefully it would behave in
an erratic and unpredictable way: chaos. This was completely unex-
pected and paved the way to a revolution in science. If the three
variables X, Y, and Z are plotted as a moving point in three-dimen-
sional space, we get the famous Lorenz butterfly, a fractal floating
in three-dimensional space, see Figure 2.

In our Chaos Machine we can feed two of the voltages that repre-
sent the X, Y, and Z, to an oscilloscope in XY-display mode to see it
draw an electronic version of the butterfly. We can tune the three
variables to produce various shapes of the butterfly. We can also
feed the channels to an audio amplifier to hear the sound of chaos.
This turns out to be a remarkably unsettling experience: the Chaos
Machine screeches and screams in the most bizarre ways with the
soul of an electronic poltergeist.

How do analogue computers work?

An electronic analogue computer solves equations by representing
values of variables by voltages in a circuit. Wires connect modules
that perform specific arithmetic operations. For example, a subtrac-
tion module will have two input connectors and one output con-
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Figure 1. Professor A.W.H (Bill) Phillips was an LSE economist known
for the ‘Phillips curve’ and he developed MONIAC, an analogue
computer that modelled economic theory with water flows.
Image: Wikimedia Commons.

Figure 2. The Lorenz butterfly; the background is an image of solar
convection, the original inspiration of the Lorenz equations.
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nector where the output voltage equals the difference between the
input voltages. This particular module is in fact simply a differential
amplifier with unit gain.

The topology of an analogue computer is similar to that of our brain
with the axons being represented by the wires, the cell body by the
arithmetic modules, and the input ports by the dendrites. Con-
trast this with a digital computer. In a digital computer variables
are stored in memory spaces which are then occasionally operated
upon by copying these memory spaces to the central processor
which then changes the values of variables in other memory spaces.
Digital computers only change values of variables if the central pro-
cessor says this should happen, and if so, they alter successively. In
an analogue computer values always remain consistent. So, if for
three variables a, b, and c we have a+b = c then in an analogue com-
puter this will always be the case. There is no internal clock speed;
calculations happen instantaneously. In a digital computer this is
only valid after the central processor has performed this addition
and then only until either a or b
are updated again.

Time integration is also a very
natural process for an analogue
computer. The input and the
output voltages of a time inte-
grating module are always con-
sistently related: at all times the V1
output voltage is equal to the

time-integral of the input volt-

age. There are no time steps

involved, as would be the case

for a numerical integration O

and other related operations are more complicated to implement,
requiring many op amp stages.

Analogue computers do not require a memory to work. This makes
them essentially equivalent to the systems we try to simulate. A
swinging pendulum does not have a memory of its previous states.
One could connect an analogue computer to analogue-to-digital
converters if digital storage or exact measurements are required.
This construction can also be used to build a hybrid analogue-
digital computer. A purist who wants to stay away from any digital
technique can use a tape recorder or chart recorder for storage,
also circumventing the difficulties of aliasing which arise in a sam-
pled system.

Analogue computers are relatively hard to program: program-
ming the computer is the same as building the computer. Clearly
this flexibility is where digital computers are far superior. Also, in
a digital computer it is easy to allocate memory spaces to store a
set of variables, while in an ana-

logue computer each variable

is associated with a separate

C signal wire. Although a digi-

— A tal computer requires much
more complex hardware for
variable storage, it can use the
same hardware configuration
to tackle different virtual prob-
lems. A digital computer is a
universal Turing machine, that
is, a machine that can be used
to solve different problems; an

V2

routine. Numerical instability
of integration routines is not
an issue, nor are computing or
storage overheads. The basic
circuit of an integration mod-
ule is shown in Figure 3. Inte-
gration in time occurs by converting a voltage to a current through
use of an operational amplifier and then using this current to charge
a capacitor. The instantaneous voltage across the capacitor is the
time-integrated value of the input voltage. The schematic shows
an electronic circuit able to perform integration in time of a varying
input voltage. It is based on two operational amplifiers A1 and A2
each having inverting (=) and non-inverting (+) inputs and an output
terminal. A time varying voltage V,(t) is applied to A1, which drives
the integrator circuit comprising R, C and A2. The output voltage
V,(t) is (minus) the time integral of the input voltage, scaled by (1/
RC). A1 is a unit gain buffer stage, included solely to prevent load-
ing of the originating voltage source but permitting a wide choice
of values for R. (The additional resistor with A2 is for compensation
and does not form part of the functional circuit.) For clarity, the
necessary power supplies are not shown.

Other arithmetic operations can also be performed with the help
of operational amplifiers. For example, subtracting two voltages is
achieved using a differential amplifier of unit gain. Multiplication
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Figure 3. Basic circuit of the time integration module.

100477 - 11 analogue computer can only
solve one single problem.

Another fundamental differ-
ence between analogue and
digital computers is that a
digital computer calculates an
approximated virtual representation of the model system, whereas
an analogue computer is an actual electronic copy of the system. If
we want to simulate a swinging pendulum with an analogue com-
puter, we build an electronic system that oscillates exactly like the
swinging pendulum. The computer becomes an electronic version
of the swinging pendulum itself. This is a very appealing property
of analogue computers. Think of the Lorenz system that we use in
our Chaos Machine. Apart from a very artificial set-up, there is no
actual physical representation of the system; it was designed as a
mathematical system. Analogue computers are the only way we can
get genuine physical representations of such mathematical systems.

How fast are they?

People who see an analogue computer for the first time often ask:
how fast is it compared to a modern digital computer? In fact, their
speeds are hard to compare. In a digital computer speed is limited
by the clock speed of the processor and the speed at which vari-
ables can be loaded into and out of the processor. One such calcu-
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lation may typically take a nanosecond or so (one thousand mil-
lionth of a second). In an analogue computer the speed is limited
by the speed at which the operational amplifiers, the key building
blocks of analogue computers, can follow changes in input volt-
ages (the slew rate). Operational amplifiers can change over time
scales of a few nanoseconds and for most practical purposes

this does not limit the computer’s operation. However,

analogue computers do not perform calculations as
such; they perform simulations. Asking how fast
an analogue computer calculates is the same as
asking how fast the swinging pendulum calcu-
lates its motion.

Nevertheless, the ‘speed’ comparison can be
made more precise. An analogue time integra-
tion module has an intrinsic timescale set by
RxC, the resistance and capacitance, respec-
tively, of two components in the module. In
other words, speed in a digital computer is
limited by its clock speed, while ‘speed’ in an
analogue computer can be arbitrarily defined
by choosing different components. There is a
practical limit to which we can increase the
speed of the analogue computer set by the
finite slew rate of the operational amplifiers
and the stray capacitances in the system,
both of which act to damp away the very
highest frequencies.

Fortunately, dedicated analogue function
chips are cheaply available which contain
optimized log and antilog converters, provid-
ing multiplication, divisions, and square roots
with excellent accuracy and temperature sta-
bility — and truly enormous speed.

Operational amplifiers

Advances in electronic components have had
major benefits for many scientific activities,
but they also now make the implementation
of analogue computing straightforward. The
key building block of an electronic analogue
computer is the operational amplifier, a gen-
eral purpose electronic device which can be configured to perform
the different mathematical operations (integration, addition, mul-
tiplication, scaling) required. General purpose amplifiers originated
in the 1940s from military applications, particularly in anti-aircraft
gunnery (although a mechanical analogue computer was used as
recent as the Vietnam war in the ‘Norden’ bombsight to target
bombs dropped from aircraft). The description operational ampli-
fier (or op amp), appeared in 1947, and the first commercial op amp
— type K2-W — was produced by Philbrick in 1953, based on two

Figure 4. The Philbrick K2-W is generally
considered the first commercial
operational amplifier.
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dual triode valves, see Figure 4 and [3,4]. Solid state op amps fol-
lowed in the 1960s, with the first integrated circuit op amp in 1965
(Jung’s Op Amp Applications Handbook provides a good overview of
the history and use of op amps).
Comparison between early and modern op amps illustrates how
the steady improvements have made analogue computing
ever more practical. The thermionic K2-W had a speci-
fied drift of £5 mV per day, whereas the integrated
circuit OP97, used in our Lorenz design, has drift
dominated by thermal changes, at 0.6 uV/°C. The
power requirements are also dramatically differ-
ent. A K2-W required power supplies of +300 V
and 6.3V, at about 10 mA and 0.6 A, whereas the
OP97 requires £15 V at 0.6 mA. Early analogue
computers therefore had a substantial physi-
cal volume associated with each computing
stage, as well as power dissipation and heat
generation.
Integrated circuit analogue computers are
now compact, and drift is no longer a char-
acteristic feature. Individual op amp stages
are also relatively cheap, allowing complex
systems to be readily simulated. A benefit of
their low cost is that extra stages can easily be
included, which although not essential to the
computing function, may relax constraints on
the components required.

The final analogue computer is an assembly
of independent circuit modules, combined
to solve one specific problem, but reusable
for other applications. With such a modular
approach the ‘programming’ of the com-
puter is a fairly simple job which requires
hardly any knowledge of the electronics
involved.

Next month’s second and final instalment dis-
cusses the elements that go into building the
Chaos Machine.
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