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 Biogeography of  Cyclamen   : an application 
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      A.   Culham  
   School of Biological Sciences and Th e Walker Institute for Climate Change, 

University of Reading, UK     

  Abstract 

  Cyclamen    is a genus of popular garden plant, protected by Convention on 
International Trade in Endangered Species (CITES  ) legislation. Many of its spe-
cies are morphologically and phenologically adapted to the seasonal climate of 
the Mediterranean   region. Most species occur in geographic isolation and will 
readily hybridise with their sister species when brought together. We investigate 
the biogeography   of  Cyclamen  and assess the impact of palaeogeography   and 
palaeoclimate   change on the distribution of the genus. We use techniques of phy-
loclimatic modelling   (combining ecological niche modelling   and phylogenetic 
character optimisation) to investigate the heritability of climatic preference and 
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to reconstruct ancestral niches  . Conventional and phyloclimatic approaches to 
biogeography are compared to provide an insight into the historic distribution of 
 Cyclamen  species and the potential impact of climate change on their future dis-
tribution. Th e predicted climate changes over the next century could see a north-
ward shift of many species’ climatic niches to places outside their current ranges. 
However, such distribution changes are unlikely to occur through natural ant-
based dispersal  , so conservation   measures are likely to be required. 

    12.1     Introduction 

  12.1.1      Cyclamen   : present-day status and distribution 

  Cyclamen    L. is a genus of  c . 20 species in the family Myrsinaceae. Its species are 
perennial herbs, having distinctive fl owers with refl exed petals, that are often 
scented, and winter blooming. Th ese characteristics make  Cyclamen  a popular 
garden plant. Its popularity has prompted many studies on the group, including 
cytology (Bennett and Grimshaw,  1991 ; Anderberg,  1994 ), hybridisation   (Gielly 
et al.,  2001 ; Grey-Wilson,  2003 ) and phenology   (Debussche et al.,  2004 ). Th ere 
are several phylogenetic studies based on morphological and molecular data 
(Anderberg et al.,  2000 ; Clennett,  2002 ; Compton et al.,  2004 ; Yesson et al.,  2009 ). 
Although these studies present similar fi ndings for many sister species pair-
ings, they do not agree on the complete phylogenetic topology. Some uncertainty 
remains regarding subgeneric relationships and species delimitation. 

  Cyclamen    is a phenologically interesting genus; in any month of the year, at least 
one species can be found fl owering somewhere (Grey-Wilson,  2003 ), which is an 
unusual trait for such a small group, limited to boreal, seasonal climates around 
the Mediterranean   basin. Its highest diversity is found in Turkey (11 species) and 
Greece (at least fi ve species – Culham et al.,  2009 ) ( Fig 12.1 ). Th e seasonal winter-
wet, summer-dry climate of this region is thought to be an important factor in 
the speciation   of  Cyclamen . Many species are adapted to a Mediterranean-type 
climate and die back to an underground organ during the dry summer months 
(Debussche et al.,  2004 ).      

 As with most predominantly European species,  Cyclamen    species are under 
pressure from habitat reduction. All species of  Cyclamen  are listed in Appendix II 
of the CITES   of Wild Fauna and Flora ( www.cites.org ), and thus receive some level 
of protection from wild collection. If protection of the species is to be eff ec tive, it 
is important to know how rapidly changing climate might aff ect  Cyclamen  in the 
wild. 

   12.1.2     Ecological niche models   

 It has long been accepted that climate creates boundaries to species distribution 
(Ricklefs and Latham,  1992 ; Inouye,  2000 ; Martínez-Meyer et al.,  2004a ; Peterson 
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et al.,  2005 ). Th ere are many methodological applications that attempt to model 
the environmental preferences of species and use these to establish the environ-
mental limits of species distribution (Nix,  1986 ; Guisan and Zimmermann,  2000 ; 
Guisan and Th uiller,  2005 ; Elith et al.,  2006 ; Phillips et al.,  2006 ). While individual 
techniques have been subject to criticism, the general technique of environmental 
niche modelling has been used widely for predicting species distributions   (such as 
for invasive species   – Peterson,  2003 ), predicting ancestral areas of extant species 
(Graham et al.,  2004 ), and predicting species most likely to be threatened by cli-
mate change (Culham and Yesson,  Chapter 10 ). 

   12.1.3     An evolutionary perspective 

 Th ere have been successful eff orts to extend the scope of these models   to esti-
mate historical geographic distributions by examining the models for extant spe-
cies in relation to palaeoclimatic   data from the Pleistocene   (Hugall et al.,  2002 ; 
Bonaccorso et al.,  2006 ). Th is technique of historical area prediction   has been 
tested with reference to the fossil record  , and shown to predict fossil distributions 
successfully (Martínez-Meyer et al.,  2004a ). Th ese studies demonstrate the long-
term stability of species’ climate preference. A logical next step is to look at longer-
term stability of climate preferences on evolutionary/geological timescales. Th ere 
is some evidence supporting phylogenetic niche conservatism   and ecological 
niche heritability (Ackerly,  2003 ; Wiens and Donoghue,  2004 ; Hoff mann,  2005 ). 
Peterson et al. ( 1999 ) suggest that bioclimatic envelopes are statistically more 
similar among sister species in a range of animal taxa and that they are conserved 

Cyclamen Species Diversity

Low: 0 High: 4

 Figure 12.1       Cyclamen    species diversity  . Grid shows decimal degrees. Distribution data 
from Grey-Wilson ( 2003 ).  
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across evolutionary time. Th is contention was supported by Martínez-Meyer et al. 
( 2004b ), who used species-level bioclimatic models to predict eff ectively the dis-
tribution of sister species of birds  . 

   12.1.4     Ancestral areas 

 Ancestral niches   have been modelled successfully by combining climatic 
preference data with phylogenetic trees   using techniques of ancestral state 
reconstruction (Yesson and Culham,  2006a ). Th e technique combining phylo-
genetic reconstruction and niche modelling is termed ‘phyloclimatic modelling  ’. 
Yesson and Culham ( 2006a ) recreated ancestral niches   for lineages of  Drosera    
(Droseraceae) and used a dated molecular phylogeny to select appropriate time-
frames to examine these models   within palaeoclimate   reconstructions. Th ey 
then estimated ancestral areas for  Drosera  lineages within the late Miocene   of 
Australia   and New Zealand. 

 Historically there has been a lot of interest in identifying ancestral areas and 
areas of prehistoric species diversity   (Page,  1988 ; Morrone and Crisci,  1995 ). 
Perhaps the most popular technique for ancestral area reconstruction   has been 
dispersal  –vicariance analysis (DIVA   – Ronquist,  1997 ). For DIVA  , ‘speciation is 
assumed to subdivide the ranges of widespread species into vicariant compo-
nents; the optimal ancestral distributions are those that minimise the number of 
implied dispersal   and extinction   events’ (Ronquist,  1997 ). DIVA   and phyloclimatic 
modelling   present alternative techniques for ancestral area reconstruction, but as 
yet there has been no comparison of these techniques. 

 Here we present an example of phyloclimatic modelling   on  Cyclamen   , to gain 
a better understanding of ecological and evolutionary patterns for the past and 
future. Th e ancestral areas estimated by phyloclimatic modelling   and DIVA   are 
presented for comparison. 

    12.2     Future distribution of  Cyclamen    

 Given the climatic specialisation of  Cyclamen    species, it is important to know how 
predicted climate change will aff ect these plants. Yesson and Culham ( 2006b ) 
examined the climatic preferences of 21  Cyclamen  species based on present-day 
distribution data, using annual and seasonal variations of climatic variables of tem-
perature and precipitation. Th ey found, using a randomisation test on the quanti-
tative convergence index, that 8 out of 14 climatic variables displayed signifi cant 
phylogenetic conservancy, but that within the genus climate specialisation ran 
from widely tolerant generalists ( Cyclamen coum  Mill. and  C. hederifolium  Alt.) 
through to Mediterranean   specialists ( C. creticum  (Dörfl .) Hildebr. and  C. cyprium  
Kotschv). Th ese data were used to develop ecological niche models   for each species 
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using BIOCLIM (Busby,  1991 ) and Maxent   (Phillips et al.,  2006 ) algorithms. Th e 
majority of niches   were isolated from each other, suggesting that species are cli-
matically isolated, with the exception of the climatically tolerant species, whose 
niches were found to wholly encompass those of the more specialist species. 

 Th ese niches   were projected into a mid-severity future climate scenario for 2050 
(scenario A2c), to examine whether areas presently occupied by  Cyclamen    spe-
cies will be climatically suitable in the future. Except for the few species showing 
wide climatic tolerance, Yesson and Culham ( 2006b ) found that for the BIOCLIM 
models   the majority of species would be under severe threat from climate change, 
with 11 species predicted to have no climatically suitable area within their pre-
sent range in 2050 ( Fig 12.2 ). Th ey noted a positive correlation of present-day range 
with proportion of area lost. Th e Maxent   models ( Fig 12.2 ) were less dramatic, but 
still predicted signifi cant area loss for many species and indicated no relationship 
between present-day range and proportion of area lost. However, the models both 
indicate that areas outside the native ranges of many species are, or will become, 
climatically suitable.    

 Th ere is some empirical evidence to support changes in geographic distribution 
of  Cyclamen    resulting from recent climate change (e.g.  Fig 12.3 ). Th e climatically 
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 Figure 12.2      Projected area loss for  Cyclamen    species in 2050 using Maxent   and BIOCLIM 
niche models  . Lines show linear regression, with line equations and  r  2  values adjacent. 
Bars to the right of the  y -axis signify risk status based on International Union for 
Conservation of Nature (IUCN) classifi cations. Reproduced with permission from Yesson 
and Culham ( 2006a ).  
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 Figure 12.3      Distribution data recorded for  C. hederifolium  in the British Isles. New 
records over the past century (data from www.bsbimaps.org.uk). Grid shows decimal 
degrees.  
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tolerant species  C. hederifolium , although native in central and southern Europe 
only, has spread northwards over the past few decades of warming (Stace,  1997 ). 
Th e niche models  , based on native distribution patterns, suggest that north-
ern Europe should be climatically suitable for this species. Th is is confi rmed by 
Botanical Society of the British Isles (BSBI) distribution data, which indicate that 
 C. hederifolium  has become naturalised and has spread its range northwards in 
the UK over the past century ( Fig 12.3 ). Th is northward migration   shows distribu-
tional changes of the scale of hundreds of kilometres within several decades and is 
unlikely to be due to natural dispersal  , as ant-based seed dispersal events are typ-
ically 0–10 m per year (Ness et al.,  2004 ). Plant migration rates of 10–40 km per 100 
years have been proposed for some tree species (Davis and Shaw,  2001 ; McLachlan 
et al.,  2005 ). It is therefore considered highly unlikely that the ant-dispersed seeds 
of  Cyclamen  would exceed this migration rate. However,  C. hederifolium  and 
 C. coum  are highly popular garden plants, and gardeners may have unwittingly 
spread these plants throughout habitats that could become important areas for 
conservation   as native areas become climatically unsuitable.    

 Yesson and Culham ( 2006b ) tested their categorisations of extinction   risk 
from a phylogenetic perspective, but reported no signifi cant phylogenetic pat-
tern of phylogenetic conservancy ( Fig 12.4A ). However, this result is somewhat 
dependent upon the choice of phylogeny.  Figure 12.4B  shows a revised topology 
(Yesson et al.,  2009 ), based on increased sampling for both subspecifi c taxa and 
molecular character data. Superfi cially, there appears to be a pattern of conser-
vancy of risk, but this is marginally short of being statistically signifi cant (0.05 
<  p  < 0.1) using a randomisation test of phylogenetic conservancy (Yesson and 
Culham,  2006b ). Th e expectation that extinction risk based on climatic niches   
should show phylogenetic conservatism follows directly from the fi ndings of 
phylogenetic conservatism of climatic characteristics, but for  Cyclamen    this is 
not the case.    

   12.3     Past distribution and biogeography   of  Cyclamen    

 Th e phylogenetic heritability of climatic preference and extinction   risk for 
 Cyclamen    suggests that evolutionary history is an important factor in understand-
ing the impact of climate change. Climatic conditions are inextricably linked with 
location, so understanding biogeography   is an important step in this process. 

  Cyclamen    species are currently restricted in their distribution. Th eir combined 
ranges cover approximately 2.25 million km 2 , which is about the area of Western 
Australia   ( Fig 12.1 ), and many species have overlapping ranges; 38% of the quar-
ter-degree squares contain more than one species. However, the majority of range 
overlap is accounted for by the few wide-ranging species ( C. coum ,  C. hederifolium , 
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 Figure 12.4      Parsimony optimisation of extinction   risk for  Cyclamen   . Parsimony 
optimisation of extinction risk based on examination of models   within 2050 scenario for 
BIOCLIM   niche models (Yesson and Culham,  2006a ). (A) Species-level phylogeny from 
Yesson and Culham ( 2006a ). (B) Alternative topology, including subspecifi c sampling 
(Yesson et al.,  2009 ). Risk categories are based on the proportion of area lost using the IUCN 
Red List categories. Note that risk value classifi cation for species and subspecies is the same.  
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 C. purpurascens  Mill. and  C. repandum  Sm.), and no more than four species can be 
found in any one quarter-degree square. 

 Yesson et al. ( 2009 ) examined  Cyclamen    distribution patterns from a phylogen-
etic perspective and found that no pair of sister species overlapped in range, with 
the exception of  C. balearicum  Wilk. and  C. repandum  in a small area of southern 
France. Such allopatry, coupled with the ease of hybridisation   between closely 
related species, implies a pattern of allopatric speciation   in the evolutionary devel-
opment of  Cyclamen . 

 Assuming that allopatric speciation   enables identifi cation of patterns of vicari-
ance and dispersal   that best fi t the observed distributions and reconstructed phy-
logeny, Yesson et al. ( 2009 ) used DIVA   to identify 19 dispersal and 11 vicariance 
events in the evolutionary development of  Cyclamen   . Notably, there were four vic-
ariance events coinciding with reported geological patterns elsewhere in the lit-
erature ( Table 12.1 ). However, the majority of proposed vicariance events were not 
coupled with recognised geological patterns. One explanation for this might be 
climatic diff erentiation, which could help to explain the distinct climatic niches   
of extant species. Th e DIVA   reconstruction was unable to discriminate between 
any of the areas of the present distribution at the root of the phylogenetic tree, and 
therefore the ancestral area for  Cyclamen  was estimated as the full extent of all 
extant  Cyclamen  species.    

 However, the niche model for the ancestral  Cyclamen    developed by Yesson and 
Culham ( 2006a ), together with a phyloclimatic modelling   approach, can be used 
to provide an alternative hypothesis of ancestral area (see Culham and Yesson, 
 Chapter 10 ). Th is model was projected into a palaeoclimate   reconstruction of the 

 Table 12.1     Vicariance events proposed for  Cyclamen    that have been identifi ed with 
reported geological events. From Yesson et al. ( 2009 ). 

Epoch Clade area 1 Clade area 2 Geological event

 Mid–Late 
Miocene   

  C. mirabile–
C. parvifl orum  Eastern 
Europe and Asia   

 C. creticum–
C.graecum  Western 
Europe

East/West European 
Divergence 
(Oberprieler, 2005)

 Early–Mid 
Pliocene   

 C. purpurascens + 
C. colchicum  
Eastern Europe

subgen.  Psilanthum  
Western Europe

East/West European 
Divergence 
(Oberprieler, 2005)

 Late 
Miocene   

 C. somalense  
Somalia

  C. rohlfsianum + 
C. persicum  North 
Africa   

Formation of Sahara 
(Douady et al., 2003)

 Mid 
Pliocene   

 C. hederifolium  
Europe

  C. africanum  Africa   Loss of Tyrrhenian 
land bridge 
(Estabrook, 2001)
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mid–late Miocene  , which is the age of the ancestral lineage determined by the 
molecular dating of Yesson et al. ( 2009 ).  Figure 12.5  demonstrates the climati-
cally suitable areas for the ancestral  Cyclamen  for the mid-Miocene, and shows 
that a very small proportion of the extant range for all  Cyclamen  species would 
have been climatically suitable; these lie in what is now northern Turkey, North 
Africa   and southern Iberia. In this case, the areas selected are a subset of the areas 
selected by DIVA  . However, the geography of the Mediterranean   at this time was 
very diff erent from the present (Krijgsman,  2002 ). For example, the Italian penin-
sula was not formed at this time. To understand why the diff erent methods vary we 
need to discuss their properties.    

   12.4     Potential of ancestral area reconstruction   
based on the reconstruction of ancestral niche 

 DIVA   is a popular method for ancestral area reconstruction   (Ronquist,  1997 ; 
Sanmartin,  2003 ; Oberprieler,  2005 ). Th e fi rst step is to partition observed 
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60°0'0"N 60°0'0"N
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3/5

Land Extent 10Ma
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 Figure 12.5      Area prediction for the ancestral  Cyclamen    in the late Miocene   around the 
Mediterranean   basin. Niche model developed by Yesson and Culham ( 2006a ), projected 
using the BIOCLIM ‘OR’ methodology (Piñeiro et al.,  2007 ), implemented in openModeller 
as the ‘Envelope Score’ algorithm. Reproduced with permission from Yesson ( 2008 ).  
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distributions into areas of endemism   (Ronquist,  1997 ). Th ese areas are chosen 
as being limited by geographical boundaries that may have acted as barriers to 
dispersal   (Oberprieler,  2005 ). Th is partitioning is a somewhat arbitrary process, 
relying on the subjective decision of the individual researcher, and may present 
problems of circular logic if assumptions of dispersal ability are made prior to an 
analysis of dispersal. DIVA   uses a cost-based model of dispersal and vicariance 
to reconstruct present-day observed areas onto internal nodes of a phylogeny 
(Ronquist,  1997 ). Clearly, if the true ancestral area was outside the present range, 
then DIVA   cannot select the true area. Neither can such an approach discriminate 
between geographic regions that did not exist at the time of ancestral evolution. 
Furthermore, such analysis takes no account of the environment of the area at the 
time, and though the area selected may be climatically suitable for some species at 
present, it may not have been suitable during relevant periods of the past. 

 Ancestral area selection based on the reconstruction of the ancestral niche is a 
viable alternative to DIVA  . It can construct independent hypotheses of potential 
distribution. As such it can be used as a complementary technique to refi ne area 
selection. It is a data-driven approach that does not rely on the subjective preselec-
tion of areas. Nor is it restricted analytically in the number of areas that it can con-
sider. Th e underlying assumption is that of niche persistence and heritability. 

 Current research in ancestral area selection is focused on integrating probabil-
ities of dispersal  , but these methods still require initial partitioning of areas. For 
example, the program Lagrange uses a likelihood model to reconstruct ancestral 
areas and integrates dispersal probabilities by pre-assigning these probabilities 
based on hypotheses of the presence or absence of geographic barriers at any 
given time (Ree et al.,  2005 ). 

   12.5     Conclusions 

 Phyloclimatic modelling does not integrate models   of dispersal  . Th is is an avenue 
for further development. One approach might be to track continuously, or at least 
at frequent intervals, the niches   over the evolutionary timescales, which could 
theoretically show the potential for gradual migration   through climatically suit-
able areas or reject such a theory by showing the need for long-distance dispersal. 
Unfortunately, we do not yet have continuous palaeoclimate   reconstructions of 
appropriate resolution spanning the millions of years required for such analysis. 
Th is means that we are always likely to see predictions for diff erent timeframes 
that do not spatially overlap, which presents diffi  culties in deciding between 
models of gradual migration or long-distance dispersal. Furthermore, the appear-
ance of intermediate areas with suitable environments does not discount the 
hypothesis that a long-distance dispersal event could have bypassed this area. 
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Such a hypothesis could only be rejected by the discovery of fossil evidence in the 
intermediate areas, but the paucity of the fossil record   often makes such testing 
impossible. 

 Climate change has already aff ected the distribution of  Cyclamen    species, 
and this seems likely to continue if predicted rates of warming prove accurate. 
Although niche modelling has met some criticism (see Rödder et al.,  Chapter 11 ), 
it is still a useful tool in the understanding, the prediction and ultimately the 
amelioration of the negative impacts of climate change. We have seen that phylo-
climatic modelling   approaches that take into account evolutionary perspectives 
can provide a deeper understanding of environmental niches  , and how these 
can or cannot change over time. Th ey can also be used to assess extinction   risk. 
When we have insuffi  cient data for traditional methods of extinction-risk esti-
mation, phylogenetic relatedness to species of known risk might be employed as 
a useful proxy  . 

 In the case of  Cyclamen    there is no signifi cant pattern of phylogenetic related-
ness, but if a new species was discovered in section  Gyropheobe , then it would 
seem appropriate to regard it as being at high risk, as most closely related species 
are at high risk. Th is may provide a useful interim rapid assessment until a more 
rigorous process can be accomplished. 
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