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Abstract. We present a comparative analysis of projectedGHM-CHM difference in mean annual runoff percentage
impacts of climate change on river runoff from two types of change for UKMO HadCM3 2C warming of up to 25%),
distributed hydrological model, a global hydrological model and they are generally larger for indicators of high and low
(GHM) and catchment-scale hydrological models (CHM). monthly runoff. However, they are relatively small in com-
Analyses are conducted for six catchments that are globaparison to the range of projections across the seven GCMs.
in coverage and feature strong contrasts in spatial scale ddence, for the six catchments and seven GCMs we consid-
well as climatic and developmental conditions. These in-ered, climate model structural uncertainty is greater than the
clude the Liard (Canada), Mekong (SE Asia), Okavango (SWuncertainty associated with the type of hydrological model
Africa), Rio Grande (Brazil), Xiangxi (China) and Harper's applied. Moreover, shifts in the seasonal cycle of runoff with
Brook (UK). A single GHM (Mac-PDM.09) is applied to climate change are represented similarly by both hydrologi-
all catchments whilst different CHMs are applied for each cal models, although for some catchments the monthly tim-
catchment. The CHMs include SLURP v. 12.2 (Liard), ing of high and low flows differs. This implies that for stud-
SLURP v. 12.7 (Mekong), Pitman (Okavango), MGB-IPH ies that seek to quantify and assess the role of climate model
(Rio Grande), AV-SWAT-X 2005 (Xiangxi) and Cat-PDM uncertainty on catchment-scale runoff, it may be equally as
(Harper's Brook). The CHMs typically simulate water re- feasible to apply a GHM (Mac-PDM.09 here) as it is to ap-
source impacts based on a more explicit representation gbly a CHM, especially when climate modelling uncertainty
catchment water resources than that available from the GHMacross the range of available GCMs is as large as it cur-
and the CHMs include river routing, whereas the GHM doesrently is. Whilst the GHM is able to represent the broad
not. Simulations of mean annual runoff, mean monthly climate change signal that is represented by the CHMs, we
runoff and high (Q5) and low (Q95) monthly runoff under find however, that for some catchments there are differences
baseline (1961-1990) and climate change scenarios are préetween GHMs and CHMs in mean annual runoff due to dif-
sented. We compare the simulated runoff response of eacferences in potential evapotranspiration estimation methods,
hydrological model to (1) prescribed increases in global-in the representation of the seasonality of runoff, and in the
mean air temperature of 1.0, 2.0, 3.0, 4.0, 5.0 and®.f&l- magnitude of changes in extreme (Q5, Q95) monthly runoff,
ative to baseline from the UKMO HadCM3 Global Climate all of which have implications for future water management
Model (GCM) to explore response to different amounts of issues.
climate forcing, and (2) a prescribed increase in global-mean
air temperature of 2.2C relative to baseline for seven GCMs
to explore response to climate model structural uncertainty. 4
We find that the differences in projected changes of
mean annual runoff between the two types of hydrological1.1 Classification of hydrological models
model can be substantial for a given GCM (e.g. an absolute
Numerically-based hydrological models can be classified as
eitherdeterministicor stochastiq(Beven, 2001; Abbott and

Correspondence tdS. N. Gosling Refsgaard, 1996). Deterministic models permit a single out-
BY (simon.gosling@nottingham.ac.uk) come from a simulation with one set of inputs and parameter
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values, whereas stochastic models allow for an element Ofemissions—s-Climate projections—s-Downscaling—s»-Hydrological projections
randomness in the outcomes due to uncertainties associate

. . . . GCM Statistical Dynamical Hydrological model
with the input variables, boundary conditions or model pa- uncertainty e uncertainty
rameters. With deterministic models, two main approaches

. Perturbed physics Initial “Ensembles of Parameter GHM
to mOde”Ing may be adopted, t”lernped approach or the ensembles  conditions ~opportunity” uncertainty vs.CHM

distributed approach (Breuer et al., 2009; Beven, 2001;

Abbott and Refsgaard, 1996). Lumped hydrological mod-Fig. 1. The four stages of a climate change hydrological impact
els consider the whole system (catchment, sub-catchmen@ssessment a_nd the inher_ent un(_:erta}inties. The shaded areas denote
aquifer, etc.) as a single unit and typically represent statén® uncertainties we considered in this analysis.

variables, such as average storage in the saturated zone, as an

average over the entire catchment. A limitation of the lumped

approach is that the models are not able to consider the sp&2€0rgakakos, 2006; Boyle et al., 2001; Refsgaard and Knud-
tial diversity of hydrological processes over large spatial do-S€n: 1996) or differences between several models that have
mains, associated with heterogeneity in land cover/use an§€€n designed to operate at similar spatial scales (Jones et
soil properties, for example. In contrast, distributed hydro-al-' 2006), the comparison of distributed model simulations
logical models typically incorporate spatial variable datasetsT0m @ GHM with a CHM has not yet been explored. Fur-
(e.g., land use, land and soil characteristics and forcing infhermore, the opportunity exists to explore how these two
put) and discretize the catchment into sub-units (e.g. gridyPes of model respond to consistent climate change forcing.
cells). As such, distributed models are able to provide a morel "€ comparison is novel and significant because GHMs typi-
representative description of catchment-scale processes th&®!ly aggregate catchment-scale measures of water resources
lumped models (Abbott and Refsgaard, 1996). Indeed, sevt calculate national, regional, or global-scale indicators of
eral studies show that distributed models demonstrate highepater resources (Arnell, 2004a; Alcamo et al., 2003). Such
skill than lumped models in simulations of runoff (Refsgaard & Comparison should demonstrate the potential feasibility of

and Knudsen, 1996; Boyle et al. 2001; Carpenter and GeordPplying a GHM to evaluate catchment-scale indicators of
gakakos, 2006). water resources, which are usually assessed by CHMs.

Distributed models feature a range of complexitieslly- o o
distributed models (e.g. MGB-IPOH, Collischonn et al., 1.3 Uncertainties in climate change hydrological impact
2007) typically divide the catchment into a uniform grid and assessment
are the most complex but they are often criticized because an ) ) )
a priori estimation of model parameters is difficult (Breuer et Climate change will affect the global terrestrial hydrological
al., 2009). Semi-distributednodels with less complex spa- system (Kundzewicz et al., 2007) and there is e_wdence that it
tial resolution simulate all hydrological processes within spa-has already responded to the observed warming over recent
tially non-explicit Hydrological Response Units (HRU); re- decades (Bates et al., 2008). The most common method for
sults for each HRU are lumped within sub-catchments andSSessing the magnitude of this impact is to run a hydrologi-
routed downstream. Examples include SWAT (Armnold et al., ¢@ model driven by various climate projections from general
1998) and SLURP (Kite, 1995). Furthermore, distributed C|rc_ulat|0n m_odels (GCMs, i.e. global-scale climate m(_)dels)
models are applied at a range of spatial scales, from a feviS input forcing data (e.g. Gosling et al., 2010). The simula-
tens of meters grid cell resolution for small basins and ur-tions of key hydrological indicators, such as river runoff, can
ban areas (e.g. the DSHVM model, Cuo et al., 2008), tothen bg used to assess the pqtgntlal impact of climate change
the size of medium-size sub-catchments using catchmentnd to inform policy- and decision-making. However, there
scale hydrological models (CHMs, e.g. the SLURP model,are & number of uncertainties associated with making such
Thorne, 2010) and up to the global-scale with global hy- Projections.
drological models (GHMs, e.g. the WaterGAP modedlID Figure 1 summarises the four main stages of performing
et al., 2003). The explicit representation of catchment wa-a climate change hydrological impact assessment, which is
ter resources (e.g., soil water, groundwater, snow/ice, riveproadly similar to other climate change impact sector assess-
channel losses) typically differ depending upon model scalements (Gosling et al., 2009). The first stage is to determine
For instance, CHMs usually simulate water resource impact$he greenhouse gas emissions scenarios with which the cli-
based on a more explicit representation of catchment watefate model (e.g. a GCM) will be driven with, in order to
resources than that available from GHMs. produce the climate change projections (the second stage).
GCMs typically represent the atmosphere, ocean, land sur-
1.2 The opportunity for a novel comparison of a GHM face, cryosphere, and biogeochemical processes, and solve
with a CHM the equations governing their evolution on a geographical
grid covering the globe. Some processes are represented ex-
Whilst a variety of earlier studies have inter-compared dis-plicitly within GCMs, large-scale circulations for instance,
tributed versus lumped model simulations (Carpenter andwvhile others are represented by simplified parameterisations.
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Mekong Okavango can be applied for the downscaling, which introduces uncer-
- - » tainty. The latter approach uses a dynamic model similar to
a GCM to cover a region. The dynamic model is then forced
at its lateral boundaries using results from the coarse scale
GCM. The dynamic method is typically more computation-
ally expensive but does not rely on the central assumption of
most statistical downscaling, that the downscaling relation-
ship derived for the present day will also hold in the future.

b

Rio Grande Xiangxi Harper's Brook In the final stage, the downscaled climate data is applied
T PV to a hydrological model. Uncertainty at this stage can arise
from the application of different hydrological models, e.g.
@ CHMs and GHMs (similar in essence to the uncertainty that
can be sampled from a GCM ensemble of opportunity), and

4
& from different parameters sets and perturbations within a
o5 given hydrological model, i.e. parameter uncertainty (simi-

lar in essence to the uncertainty that can be sampled from a
Fig. 2. Maps showing the 0.5x 0.5> model grid cells located g\ PPE).

within the catchments we investigated. The number of cells in-

cluded within each catchment is shown in Table 1. For six catchments, we compare the simulated runoff re-

sponse of a GHM and CHM to projected future climate asso-
ciated with (1) several prescribed increases in global-mean

L ) . temperature from a single GCM to explore simulated re-
The use of these parameterisations is sometimes due to pr%‘ponse to different amounts of climate forcing, and (2) a

cesses taking place on scales smaller than the typical grigrescribed increase in global-mean temperature GfQ for

size of a GCM (a horizontal resolution of between 250 andge, /e GCMs to explore response to climate model structural

600 km) or somet|m_es tothe _current I|m|te_d under_sta_ndlng _Ofuncertainty. The main sources of uncertainty sampled by this
these processes. Different climate modelling institutions will

methodological framework are shaded in Fig. 1. Note that

use different plausible representations of the climate systeMamissions uncertainty and downscaling uncertainty are not
which is why climate projections for a single greenhouse gassympleq, j.e. they are held constant, and nor do we consider
emissions scenario will differ between modelling institutes. - ~\, perturbed physics or hydrological model parameter un-
Two main methods can be used to sample this so called “C”'certainty.
mate model structural uncertainty”. The firstis to use a range

of climate projections from ensembles of plausible GCMs,

to produce an ensemble of impact projections for compari-»  pata and methods

son. Such multi-model datasets are often described as “en-

sembles of opportunity”, e.g. the World Climate Research, ihis section, we first describe the GHM and CHMs applied
Programme Third Coupled Model Intercomparison Projecti, thjs study. We then describe the climate data that was used
(WCRP CMIP3; Meehl et al., 2007). A second approachq grive the hydrological models. Finally, we describe the
generates a “perturbed physics ensemble” (PPE) that intropyqological indicators calculated for the comparison.

duces perturbations to the physical parameterisation schemes

of a single climate model, leading to many plausible versionsy 1  River catchments and hydrological models
of the same underlying model. If sufficient computer power
is available, then very large ensembles can be generated ifhe six catchments we considered for the comparison are
this way. For example, Stainforth et al. (2005) ran an ensemyjlobal in coverage and feature strong contrasts in spatial
ble of 2578 simulations that sampled combinations of low, scale as well as climatic and developmental conditions. They
intermediate, and high values of 6 parameters. As well asncjude: the Liard (Canada), Mekong (SE Asia), Okavango
climate model structural uncertainty, climate models are sen({SW Africa), Rio Grande (Brazil), Xiangxi (China) and
sitive to the initial conditions with which the models are ini- Harper's Brook (UK) — see Fig. 2. Catchments were selected
tialised, which adds a further level of uncertainty. where international researchers had already established lo-
The third stage of a climate change hydrological impactcally calibrated, distributed CHMs derived from previous and
assessment is to downscale the climate model output to an-going research projects (Todd et al., 2010). The CHMs
finer resolution, suitable for application to a hydrological are described in detail in each of the papers in this issue and
model. Two approaches are typically available, statisticala summary is provided in Table 1. Note that a different, sin-
downscaling and dynamical downscaling. The former usegle CHM was applied to each catchment respectively.
statistical relationships to convert the large-scale projections All the CHMs had already been calibrated typically us-
from a GCM to fine scales. Different statistical methods ing local gauge networks. For each catchment, the CHM

www.hydrol-earth-syst-sci.net/15/279/2011/ Hydrol. Earth Syst. Sci., 15,28202011
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Table 1. List of the catchments and their characteristics included in this study and the CHMs applied to each respective catchment. References
for the re-calibrated version of each CHM applied in this study are given in the far right column, next to the the Nash-Sutcliffe model
efficiency coefficientsK) (Nash and Sutcliffe, 1970) that were calculated in validation exercises presented by those stddiestes the

number of 0.5 x 0.5°> model grid cells located within each catchment.

Catchment Area n Catchment Climatic E Reference in
(kmz) Hydrological Model zone(s) this issue

Liard (a tributary of 275000 164 SLURP (v.12.2) Arctic and 0.75 Thorne (2010)
the MacKenzie river, semi-distributed sub-Arctic
Canada) 35 sub-basins

(Kite et al., 1994)
Mekong 569410 192 SLURP (v. 12.7) high-altitude 0.89,0.78,0.44 Kingston et al. (2010)
(Southeast Asia) semi-distributed sub-tropical, (three gauging stations)

13 sub-basins humid tropical

(Kite, 1995)
Okavango 226256 80 Pitman humid and 0.11-0.83 Hughes et al. (2010)
(south-west Africa) semi-distributed semi-arid tropical (range across 14

14 sub-basins gauging stations)

(Hughes et al., 2006)
Rio Grande 145000 75 MGB-IPH (VIC) humid tropical 0.69 oliega et al. (2010)
(a tributary of distributed

the Parana river, Brazil)
(Collischonn et al., 2007)

Xiangxi (a tributary of 3099 9 AV-SWAT-X 2005 humid sub-tropical  0.56 Xu et al. (2010)
the Yangzte river, China) semi-distributed

(Arnold et al., 1998)
Harper's Brook 74 1 Cat-PDM humid, temperate 0.58 Arnell (2010)
(a tributary of distributed
the Nene river, UK) (Arnell, 2003b; Arnell, 2004b)

was re-calibrated for use with gridded (0:60.5°) climate 65000 land surface 0?5« 0.5° cells on a daily basis, treat-
data from the CRU TS 3.0 dataset (Mitchell and Jones, 2005)ng each cell as an independent catchment. Itis implicit in the
for the period 1961-1990. This dataset was the baseline fomodel formulation that these cells are equivalent to medium-
all analyses presented here and for the papers listed in Tasized catchment areas (i.e., 100 to 5008knRiver runoff
ble 1. Importantly, the climate change scenarios (describeds generated from precipitation falling on the portion of the
in Sect. 2.2.) are compatible with the baseline (Todd et al.cell that is saturated, and by drainage from water stored in
2010), which is why each CHM was re-calibrated against thethe soil. A basin-specific calibration of Mac-PDM.09 was
baseline. This process is described in each of the individnot performed; instead, the model was calibrated by ‘tuning’
ual papers in this issue, listed in Table 1. A summary of theit to help set parameter values. This involved tests of pre-
Nash-Sutcliffe model efficiency coefficient&) (Nash and  cipitation datasets and potential evaporation calculations and
Sutcliffe, 1970) that were calculated in validation exerciseswas done against long-term average runoff and long-term av-
presented by each paper is also presented in Table 1. Accor@rage within-year runoff patterns for a small number of ma-
ing to the classifcation scheme of Henriksen et al. (2008), thgor river basins and for a large number of small basins (see
CHMs generally performed “fair” to “excellent”, although Arnell, 1999). Model parameters describing soil and vegeta-
for a very small number of gauging stations in the Okavangation characteristics are taken from spatial land cover data sets
and Mekong, the performance was “poor” (see Hughes et al.(de Fries et al., 1998; FAO, 1995). For comparison with the
2010, and Kingston et al., 2010, for more details). CHMs, river runoff was simply aggregated for all grid cells
We applied the Mac-PDM.09 (“Mac” for “macro-scale” Within the boundaries of the river catchments applicable to
and “PDM” for “probability distributed moisture model”) each CHM respectively as shown in Fig. 2. Hereafter, we
GHM in this study. Detailed descriptions of Mac-PDM.09 refer to Mac-PDM.09 as the GHM. The GHM simulations
which simulates runoff across the world at a spatial reso-were performed on the University of Reading Campus Grid
lution of 0.5 x 0.5, are provided by Gosling and Arnell by high-throughput computing (Gosling et al., 2010).
(2010) and Arnell (1999, 2003a). The model has been shown
to perform as well as other GHMs in a recent GHM inter-
model comparison exercise (Haddeland et al., 2011). In
brief, Mac-PDM.09 calculates the water balance in each of

Hydrol. Earth Syst. Sci., 15, 27294, 2011 www.hydrol-earth-syst-sci.net/15/279/2011/
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Table 2. GCMs that were pattern-scaled by ClimGen and applied in this study.

GCM Climate modelling centre and location

UKMO HadCM3 Hadley Centre for Climate Prediction and Research (UK)
CCCMA CGCM3.1  Canadian Centre for Climate Modelling and Analysis (Canada)

IPSL CM4 Institut Pierre Simon Laplace (France)
ECHAM5 Max Planck Institute for Meteorology (Germany)
NCAR CCSM3 National Centre for Atmospheric Research (USA)
UKMO HadGEM1  Hadley Centre for Climate Prediction and Research (UK)
CSIRO MK3.0 CSIRO Atmospheric Research (Australia)
2.2 Climate data (2010) for a more detailed discussion). Therefore all seven

GCMs are assumed to be equally credible in this analysis.

To facilitate the model comparison, consistent climate ClimGen generates 30-year long monthly timeseries of
change forcing data were applied to the CHMs and GHM re-forcing data for a given GCM and prescribed increase in
spectively. Monthly meteorological variables for the present-9lobal-mean temperature (e.g. UKMO HadCM3 ).

day climate — hereafter referred to as the baseline — were obtNiS means that the 30-year long climate change scenar-
tained from the gridded (0°5 0.5°) CRU TS 3.0 data set [0S for a given GCM are represeptatlve of a world that is
(Mitchell and Jones, 2005) for the period 1961-1990. Be-Warmer from baseline by a prescribed temperature, but they
cause the spatial resolution of climate change scenarios déi® not assigned a specific time period in years, which is ar-
rived from GCMs is coarse compared to that of the hydrolog-b'trary-_ Therefore the rqnoff simulations are also presented
ical processes simulated by GHMs and CHMs, climate datdor arbitrary 30-year periods, representative of worlds where
needed to be downscaled to a finer resolution. For eXamgloba_l-mean temperature is a prescribed amount warmer than
ple, the UK is covered by only 4 land cells and 2 ocean cellsP@seline (1.0, 2.0, 3 etc.). Most of the CHMs and
within the UKMO HadCM3 GCM. To this end, the climate the GHM required daily forcing data. Therefore a weather
change scenarios applied to the GHM and CHMs were generdenerator was applied to create daily data from monthly
ated using ClimGen, a spatial climate scenario generator thefata. Detailed descriptions of the generator are provided by
uses the pattern-scaling approach (Mitchell, 2003) to gen-Todd et al. (2010).

erate spatial climate change information for a given global-
mean temperature change from the baseline and a give
GCM. ClimGen includes a statistical downscaling algorithm
that calculates climate change scenarios &t £.6.5° reso-
lution, taking account of higher resolution surface variabil-
ity in doing so. A detailed description of the pattern-scaling
technique applied by ClimGen is given by Todd et al. (2010).

-3 Hydrological indicators

To investigate GHM-CHM differences in simulated runoff

we calculated three indicators of hydrological performance

for each CHM and GHM simulation respectively; (1) mean

annual runoff, (2) mean monthly runoff and (3) high and low

) monthly runoff, expressed as Q5 and Q95 respectively, where
To explore the effect of various degrees of global-meang,, example, Q5 is the monthly runoff exceeded only 5% of

warming on simulated runoff, climate change patterns foryne time, and thus high. To facilitate model comparisons,

the UKMO HadCM3 GCM associated with prescribed in- e express the mean monthly runoff as percentages of the
creases in global-mean temperature of 1.0, 2.0, 3.0, 4.0gimulated mean annual total runoff.

5.0 and 6.0C relative to the baseline were used. Also,

to explore the effects of climate model structural uncer-

tainty on simulated runoff, climate change patterns from3 Results

seven GCMs included in the Coupled Model Intercompar-

ison Project (CMIP3) archive (Meehl et al., 2007) associ-3.1 Precipitation changes

ated with a prescribed increase in global-mean temperature

of 2.0°C relative to the baseline were used — see Table 2Precipitation is the main driver of runoff (Chiew et al., 2009)
The prior uncertainty from climate model structural uncer- so it is important to understand the magnitude by which it
tainty could be reduced by comparing the GCM simulationschanges in each of the climate change scenarios we con-
of baseline climate with observations (e.g. Gleckler et al.,sidered. Figure 3 shows the percentage change from base-
2008) but the calculation of single indices of model perfor- line in total-annual precipitation for UKMO HadCM3 pre-
mance can be misleading because it hides a more complescribed warming of 1-6C, for each catchment. The greatest
picture of the relative merits of different GCMs (see Arnell changes in precipitation are observed for the Liard (around

www.hydrol-earth-syst-sci.net/15/279/2011/ Hydrol. Earth Syst. Sci., 15,28202011
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Liard Mekong Rio Grande Liard, Rio Grande and Xiangxi catchments. There is also
‘3‘8 30 agreement between the CHM and GHM that runoff decreases
i 20 with global warming for the Okavango. The absolute GHM-
10 10 CHM differences in mean annual runoff percentage change
0, 3456 o, 3456 T, 2456 for 2°C warming are 12% (Liard), 9% (Mekong), 1% (Rio
Grande), 6% (Okavango), 10% (Xiangxi) and 25% (Harper’s
g g kevango Xiangxi o arper' Brook Brook). Even under large increases in global mean air tem-
-10 perature £4°C) the GHM-CHM differences are relatively
2 -5 small for the Rio Grande<10%) and Okavango<{20%) but
:;lg o 1o the GHM estimates a substantially greater change in runoff
123456 123456 123456 relative to the CHM for the Liard%20%) and underesti-

mates it for the Xiangxi£30%). There are stark differences
Fig. 3. Change in total-annual precipitation relative to baseline (ver-in simulated annual runoff between the CHM and GHM
tical axis; %) for UKMO HadCM3 prescribed warming of 126 for the Mekong and Harper’s Brook catchments. With the
(horizontal axis), for each catchment. Mekong, the GHM simulates a largely linear relationship be-
tween global-mean temperature and runoff, whilst the CHM
simulates no major change from baseline. With Harper’s
Brook, the GHM simulates steady decreases in runoff with
global warming of up te-40%, whereas the CHM simulates
steady increases of up to +20%.

+33% with 6°C prescribed warming), Xiangxi (around
+31% with 6°C prescribed warming) and Okavango (around
—44% with 6°C prescribed warming). Harper’s Brook is
associated with a small change in precipitation wittC6
prescribed Warrr)ing—(Y%). Analysgs in S('ac_t. 32 demon- 3.2.2 The seasonal cycle
strate how the simulated changes in precipitation from each
prescribed increase in global-mean air temperature are r
alised in changes in runoff.

Figure 4 shows the percentage change from baseline in t

eIfigure 6 shows the mean monthly runoff (expressed as a
0(_)ercentage of the annual total), for the baseline conditions

S . and projected using climate fields from the UKMO HadCM3
tal annual precipitation projected by seven GCMs for a pre-, . . . .
. . . . 2°C prescribed warming scenario, simulated by the GHM
scribed increase in global-mean air temperature 4, Xor o
and CHMs. First, it is clear that for most catchments, espe-

each catchment. Whilst all GCMs simulate increases in Pr€%ially those in the tropics, the amplitude of the seasonal cycle
cipitation with climate change for the Liard, there is not con- y pics, P Y

as simulated by the GHM is much greater than that simulated

n >
GCMs for the remaining catchments. For instance, with thgb.y the CHM. The CHMs were calibrated locally and so the

. . . Lo ... simulated seasonal cycle is close to the observed seasonal cy-
Mekong, four GCMs simulate increases in precipitation with

: . le (see papers listed in Table 1). Hence the GHM tends to
climate change and three GCMs simulate decreases. It Cou:ilerestimate the seasonal cycle. The GHM and CHM simu-

be argued that this precludes a hydrological analysis using a te peak (Q5) and low (Q95) runoff as occurring in identical

seven GCMs. However, given the large dependence of runo ,
on precipitation (Chiew et al., 2009) and that complex non_months for the Mekong and Harper’s Brook. However, there

. . . . . s a tendency for the GHM to simulate the month of lowest
linear interactions are common between climate forcing an . .

. . runoff 1-2 months earlier than the CHM for the Rio Grande
runoff (Majone et al., 2010), it is important to demonstrate

how the uncertainty in the projections of precipitation across(AUQUSt for GHM and September for CHM) and Okavango

GCMs translates into runoff projections. Moreover, the Con_(September for GHM and November for CHM). Peak runoff

. : . . _is also simulated by the GHM one month earlier than the
sequent uncertainty across runoff simulations could have im-

L CHM for the Liard (May for the GHM and June for the
portant implications for water resources management. Anal- )

yses in Section 3.3. demonstrate how the simulated changes
in precipitation from each GCM are realised in changes in

runoff.

For the Rio Grande and Okavango, monthly runoff as a
proportion of the annual total remains relatively unaltered
with global warming; even up to®C the absolute difference

3.2 Hydrological model responses to different amounts N menthly runoff as a percentage of the annual total is small

of forcing projected by UKMO HadCM3 (<3%) for any given month. However, climate change af-
fects this proportion in the other catchments. For instance,
3.2.1 Mean annual river flow with the Liard, the GHM and CHM consistently show an

increase in springtime runoff with climate changelQ%
Figure 5 shows the GHM and CHM changes in simulatedin April with the GHM and>5% in May with the CHM).
mean annual runoff relative to baseline for UKMO HadCM3 There are subtle GHM-CHM differences for the Mekong;
prescribed warming of 1-€C. The GHM and CHMs sim-  July—September proportional runoff decreases with climate
ulate increased runoff with global-mean warming for the change for both hydrological models (by up to 3% of the
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Fig. 5. Change in mean annual runoff relative to baseline (verti- yo\veen 2C and C prescribed warming is shaded.
cal axis; %) for the 6 prescribed warming temperatures (horizontal

axis), as simulated by the GHM and CHM respectively, for each

catchment. . . .
of the change with the magnitude of global warming for all

catchments, although there are differences between the GHM

annual total) but April-June runoff increases relative to base2nd CHMs in the sign of change in some cases such as the
line using the CHM (up to 3% of the annual total), whereas Mekong (Q5), Harper's Brook (Q5) and Rio Grande (Q95).
as it remains almost unchanged from the baseline using the The sign and magnitude of projected changes to high and
GHM. With the Xiangxi, the GHM shows much greater de- low flows and the sensitivity to degree of global warming
creases in proportional summer runoff (up to 5% of the an-(with the UKMO HadCM3 driving fields) is generally sim-
nual total) with global warming compared with smaller de- ilar to that for mean annual flow (Fig. 5), with some no-
creases simulated by the CHM:2% of the annual total). table exceptions. For the Mekong Q95 increases are smaller
However, the GHM and CHM are consistent in showing athan those for mean annual flow; for the Rio Grande Q95
shift of the peak runoff season from summer (July—August)decreases with increasing global warming under the GHM
to autumn (September—October) with climate change. Fosimulations. With some catchments, the projected changes in
Harper’s Brook, global warming induces a slight strengthen-low flows are high, such as with the Xiangxi, where the GHM
ing of the seasonal cycle, which even under baseline climat@nd CHM simulate changes of +75% and +95% in Q95 rel-
is more pronounced with the CHM than the GHM. For ex- ative to baseline with 6C prescribed warming. Even under
ample, under 8C warming the CHM simulates that January large increases in global mean air temperaturé (C) ab-
runoff presents 23% of the mean annual total runoff (16% forsolute differences in simulated percentage changes between
baseline) whilst the GHM simulates 17% of the total (11% GHM and CHM are relatively small{20%) for some catch-

for baseline). ments (e.g. Q95 for the Xiangxi, Q5 for the Rio Grande)
whereas for other catchments, the differences are substantial
3.2.3 Peak high and low monthly river flows (>30%; Q5 for the Xiangxi and Liard).

The GHM-CHM differences in simulated changes in ex-
Figure 7 shows the percentage change from simulated baséreme flows can be substantially greater than they are for
line in Q5 (high flow) and Q95 (low flow) monthly runoff un- changes in mean annual runoff. For instance, comparing
der six degrees of prescribed global warming for each catchFig. 5 with Fig. 7, for each catchment, witlf€ warming,
ment and the GHM and CHM respectively. The GHM and the GHM-CHM differences in mean annual runoff (Q5 and
CHM are consistent in showing an increase in the magnitude95 differences respectively in parenthesis) are 12% (14%,
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Fig. 7. Percentage change from baseline in GHM- and CHM- 30% (31%; Harper’s Brook). Only for the Xiangxi and Liard
simulated Q5 and Q95 monthly runoff (vertical axis) with UKMO catchments do most of the simulations show a consistent (in-
HadCM3 prescribed warming of 1€ (horizontal axis), for each  creased runoff) signal across most of the GCMs (see Todd et
catchment. al. (2010) for further discussion of this).
Secondly, for a given GCM, the GHM and CHM are gen-
. . erally consistent in simulating the same sign of runoff change
10%; Liard), 9% (12%, 3%; Mekong), 1% (9%, 22%; Ri0 yg|ative to baseline. This is true where the simulated changes
Grande), 6% (7%, 20%; Okavango), 10% (11%, 5%; Xi-j, yunoff are greater thase10%. For cases where pro-
angxi) and 25% (38%, 6%; Harper's Brook). jected runoff changes are sma#i10%), the CHM and GHM
) ) ) may simulate runoff changes that are different in sign (e.g.
3.3 Hydrological model responses to climate modelling | jard with UKMO HadGEM1 forcing and Xiangxi with MPI

uncertainty ECHAM 5 forcing). The one exception to this is Harper’s
) Brook with UKMO HadCM3 and CSIRO MK3.0 forcing.
3.3.1 Mean annual river flow Generally, the differences in projected changes to mean an-

_ o nual runoff between the two types of hydrological model are
Figure 8 shows the GHM and CHM changes in simulatedye|atively small, in comparison to the range of projections
mean annual runoff relative to baseline for prescribed globalcross GCMs. In some cases, the difference in the absolute
warming of 2°C for seven GCMs. There are two important magnitude of the projected percentage change between the
observations to make. Firstly, there is little overall consensussHM and CHM may be as small as 1% (e.g. Rio Grande with

in the sign of runoff change, be it an increase or decreaseykKmMoO HadCM3 forcing and Xiangxi with NCAR CCSM3
across all seven GCMs for any of the catchments. For in+forcing).

stance, with the Rio Grande, the CHM and GHM are consis-

tent in showing decreases in runoff with climate change for3.3.2 The seasonal cycle

three GCMs — CCCMA CGCM3.143% and—3% [GHM

and CHM respectively]), IPSL CM4+429% and—19%) and  Figure 9 shows the mean monthly runoff for each catchment
UKMO HadGEM1 10% and—1%) — but for four GCMs  when the GHM and CHM are forced with the seven GCMs
the CHM and GHM simulate increases in runoff — UKMO under a 2C rise in global mean air temperature; the en-
HadCM3 (+15% and +16%), MPlI ECHAMS5 (+20% and semble mean, calculated from the mean of the seven projec-
+18%), NCAR CCSM3 (+1% and +3%) and CSIRO MK3.0 tions, is also displayed for the GHM and CHM respectively,
(+3% and +7%). Projected differences between GCMs maywith the inter-GCM range of projections shaded. For the
be large. For example, NCAR CCSM3 driving climate data Okavango and Rio Grande catchments, the inter-GCM range
simulates a +26% and +29% change in runoff for the Oka-is relatively small, compared to that for other catchments
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2°C prescribed warming, for each catchment. The light grey and® 9. y pec-

dark grey lines show the ensemble mean across the 7 GCMs for thtévely’ for each catchment.
CHM and GHM respectively, with the shaded region denoting the

inter-GCM . . .
ner range CHM projected changes are relatively smatb@s), such as

for the Xiangxi with the NCAR CCSM3 GCM, where GHM
and the ensemble mean is very close to baseline. Howevef"d CHM both project a 38% change in Q5 relative to base-
note that to aid hydrological model comparisons, Fig. 9 dis-line. However, in a small_ number of cases, the d|ffe_rences
plays the mean monthly runoff as a percentage of the meaf’@y be larger, such as with the CCCMA CGCM3.1 simula-
annual-total runoff — if the absolute values are plotted, thelions of Q95 change for the Liard, which are 22% (GHM)
inter-GCM range would appear larger, similar to what is @nd 3% (CHM). Also, there are some GCMs where the two
displayed in Fig. 9. There is consistency across GCMs inhydrologlcal models S|mulat.e changes thqt are different in
important changes in the seasonal cycle of runoff t’g 2 Sign, €.g., CSIRO MK3.0 (Liard Q5 and Rio Grande Q95)
prescribed increase in global-mean air temperature. For in2nd UKMO HadGEM1 (Liard Q5 and Q95, Rio Grande Q5,
stance, an increase relative to baseline in springtime runoff?kavango Q5, Xiangxi Q5 and Q95 and Harper's Brook Q5).
for the Liard is represented by all seven GCMs, and so is>econdly, for a given hydrological model, the sign of pro-
a shift in peak runoff season from summer (Ju|y_August)jeCted change is not consistent across a]l seven GCMs for
to autumn (September—October) for the Xiangxi. Also, the@ny catchment and indicator (with exception to Q95 for the
GCMs suggest a move in the month of peak runoff from Liard). For any given hydrological m(_)del, the differences
August to September with“Z prescribed warming for the between GCMs tend to be large. For instance, for the Oka-

Mekong. vango, NCAR CCSM3 suggests that the change in Q5 is
+30% to +38% (GHM and CHM respectively) and CSIRO
3.3.3 Peak high and low monthly river flows MK3.0 suggests the change-s10% to —30%. Generally,

for any given catchment, the difference between the GHM
Figure 10 shows the percentage change from baseline in Qand CHM simulated change for any given GCM is smaller
and Q95 monthly runoff (vertical axis) for the 7 GCMs with than the difference in projections between the seven GCMs.
2°C prescribed warming simulated by the GHM and CHM
respectively, for each catchment. Two observations, which
are consistent across the six catchments, are noteworthy.
Firstly, for a given GCM, the GHM and CHM tend to agree in
the sign of simulated change for high and low flows respec-
tively. In some cases, the difference between the GHM and
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4 Discussion ments, the response to 126 UKMO HadCM3 forcing
differs greatly between GHM and CHM with the Harper's
The simulations of response to prescribed global-mearBrook and Mekong catchments. These two catchments are
warming with UKMO HadCM3 suggest that the GHM sim- associated with the smallest changes in annual precipita-
ulates similar changes to the CHM for some hydrological tion with climate change of the six catchments investigated
indicators and catchments but substantial differences for- around—7% (Harper’'s Brook) and +19% (Mekong) with
others.  For instance, the GHM-CHM absolute differ- UKMO HadCM3 6°C (see Fig. 3). The inter-hydrological
ences between simulated percentage changes in mean amodel differences here can be explained by differences in
nual runoff are relatively small for the Rio GrandeX0%)  the seasonal cycle of runoff change simulated by each model
and Okavango<£20%). However, the GHM estimates sub- — in particular the peak runoff — which are associated with
stantially greater changes in mean annual runoff relative tadifferences in the relative dominance of potential evapotran-
the CHM for the Liard £30%) and lower estimates for the spiration (PET) over precipitation.
Xiangxi under large increases in global mean air tempera- For instance, with Harper’s Brook, there are increases in
ture (>4°C), whilst for Harper’s Brook and the Mekong, the winter precipitation and decreases in summer precipitation
GHM and CHM simulate changes that are opposite in signwith climate change (see Arnell, 2010). However, there are
Likewise, the GHM-CHM differences in simulated changes subtle differences between the GHM and CHM in the role
of extreme monthly runoff are relatively smak{0%) for  of the dominance of increased PET over precipitation with
some catchments (e.g. Q95 for the Xiangxi, Q5 for the Rioglobal warming. The CHM simulates a greater reduction in
Grande) whereas for other catchments, the differences areummer (JJA) runoff relative to the GHM and at® pre-
larger &30%; e.g. Q5 for the Xiangxi and Liard), whilst scribed warming; the late-summer runoff simulated by the
for the Mekong (Q5) and Rio Grande (Q95) the simulatedCHM is almost 0% of the annual total. Furthermore, the
changes are opposite in sign between the two models. CHM simulates comparatively much greater winter (DJF)
Although GHM-CHM differences are apparent for the runoff increases with climate change than simulated by the
UKMO HadCM3 GCM, when 2C prescribed warming GHM. The net effect is that annual runoff decreases with cli-
across all seven GCMs is considered, there is generally anate change with the GHM whereas it increases slightly with
higher level of agreement, for a given GCM, between thethe CHM because of the relative ‘strengthening’ of its sea-
two hydrological models in the sign and magnitude of the sonal cycle.
mean annual and monthly extreme runoff change for the six Similarly, for the Mekong, the CHM simulates a greater
catchmentsThe results imply that the GHM we applied here decrease in peak runoff (August—September) with climate
may be a useful and complimentary tool to the set of CHMschange than the GHM but the slight increases in early sea-
we applied for assessing catchment-scale changes in runo8on runoff (April-July) simulated by each model are similar.
where ensembles (instead of a single GCM) of GCMs areDifferences arise, in part, from the application of different al-
applied A potential advantage of this approach is that un- gorithms for estimating evapotranspiration. During the cali-
less a single CHM is calibrated for each catchment — whichbration of the CHM, Kingston et al. (2010) found that substi-
can be a time-consuming and demanding exercise — whetuting the Penman-Monteith method of estimating PET with
runoff simulations forseveralcatchments are required, the aless data-intensive, temperature-based method (Linacre) re-
inherent uncertainty derived from applying different CHMs duced the overestimation of runoff and improved the repre-
for each catchment can be removed. For instance, within thisentation of seasonal flows by the CHM. Indeed, as shown by
study the CHMs applied included SLURP (v. 12.2; Kite et Kingston et al. (2009) and Gosling and Arnell (2010), choice
al., 1994), SLURP (v. 12.7; Kite, 1995), Pitman (Hughes etof PET algorithm can substantially influence terrestrial wa-
al., 2006), MGB-IPH (Collischonn et al., 2007), AV-SWAT- ter balances. The GHM we applied employs the Penman-
X 2005 (Arnold et al., 1998) and Cat-PDM (Arnell, 2003b, Monteith method, so runoff for the Mekong is likely overes-
2004b), all of which include their own specific parameter- timated by the GHM. The net effect for the Mekong is that
isation schemes. By applying a GHM to several catch-annual runoff increases with climate change using the GHM
ments, the parameterisation scheme remains the same for alut remains relatively unchanged using the CHM. This may
catchments. Importantly, however, an element of uncertaintyalso explain why there is such a large discrepancy in simu-
would still remain, given that any model parameter is uncer-lated high and low monthly flows (Q5 and Q95) between the
tain. Only detailed sensitivity analyses such as multi-methodGHM and CHM for this catchment.
global sensitivity analysis (MMGSA,; Cloke et al. 2007) or  Changes in the seasonal cycle related to the dominance
parameter perturbations (Gosling and Arnell, 2010; Hughesof PET over precipitation by each hydrological model are
et al., 2010; Arnell, 2010) can demonstrate the sensitivity ofimportant and perhaps even more so where the change in
simulated runoff to a given parameterisation scheme. annual precipitation with climate change is mindfurther-
Although the difference in simulated response of annualmore, the nature of the response of runoff to climate change
runoff to 2°C prescribed warming between the GHM and is complex and the common use of mean annual runoff as a
CHM are generally small across the 7 GCMs for all catch- measure of the response of hydrological systems to climate
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change is over-simplistic. The analysis presented here antameters could lead to reductions in the magnitude of some
by others (Mbrega et al., 2010 Hughes et al., 2010; Ar- of the GHM-CHM differences presented. For instance, the
nell, 2010; Xu et al., 2010) shows that mean annual runoffapplication of the Linacre method for PET estimation to the
can mask considerably greater seasonal variations which ar@ HM instead of Penman-Monteith could reduce the magni-
of fundamental importance to water management and outude of the GHM-CHM differences in mean annual runoff
understanding of freshwater availability. and Q5 and Q95 that we present for the Mekong. How-
An important result is that even though the magnitudesever, it is important to note that the GHM parameter cali-
of simulated changes in mean annual runoff with climatebration process is sensitive to uncertainties in the observed
change differ considerably between GCMs, there is consisdata (Biemans et al., 2009).
tency in simulated directional shifts of the seasonal cycle. For any given catchment, the difference in simulated
For instance, the increase in spring runoff associated withchange in mean annual runoff (Fig. 5) or Q5 and Q95 (Fig. 7)
increased snow-melt and an increase in autumn runoff dudetween the GHM and CHM for UKMO HadCM3Z pre-
to increased precipitation with climate change for the Liard scribed warming is smaller than the difference across the
is represented by all seven GCMs, and so is the shift of theseven GCMs for either the GHM or CHM (Figs. 8 and
peak runoff season from summer (July—August) to autumnl0). For instance, with UKMO HadCM3 € prescribed
(September—October) with climate change for the Xiangxi.warming, the absolute GHM-CHM differences in mean an-
This means that for some catchments, whilst there is considaual runoff change are 12% (Liard), 9% (Mekong), 1% (Rio
erable uncertainty in the magnitude of projected mean an-Grande), 6% (Okavango), 10% (Xiangxi) and 25% (Harper’s
nual and monthly extreme runoff change across the 7 GCMsBrook), whilst the greatest absolute differences between any
there is higher confidence in directional shifts of the seasonatwo GCMs with 2°C prescribed warming for the GHM
cycle Furthermore, the GHM simulates such changes tha{CHM) for each catchment respectively are 28% (17%), 30%
are consistent with the CHM, which means despite the gen{23%), 48% (36%), 62% (58%), 34% (15%) and 30% (31%).
eralisations GHMs need to make in order to be run over thendeed,an important conclusion to draw from our analysis
global domain, th&sHM we applied can be as useful as, and is that there is little overall consensus in the sign of mean an-
complimentary to, the CHMs we considered for assessmentsual and monthly Q5 and Q95 runoff change across all seven
of catchment-scale shifts in the seasonal cycle GCMs for any of the catchments, even though the GHM and
However, it should be noted that whilst the GHM rep- CHM tend to agree on the magnitude and sign of change
resents the sub-arctic nival regime of the Liard fairly well, for any given GCMThe differences in projected changes of
compared with the CHM, the GHM simulates peak runoff mean annual and Q5 and Q95 runoff between the two types
one month behind the CHM. This is an inherent limitation of of hydrological model are relatively small, in comparison
the GHM applied here and Gosling and Arnell (2010) haveto the range of projections across GCMs. This result sup-
shown that the GHM we applied tends to simulate the pealports previous findings that climate modelling structural un-
monthly runoff one month early relative to observations with certainty is greater than hydrological modelling uncertainty
other sub-arctic catchments such as the Don (central Russiayith simulations of runoff under climate change scenarios
378000 kn), MacKenzie (central Canada 1570000%m  (Kay et al., 2009; Bbschl and Montanari, 2010; Kingston
and Ob (western Siberia, 2949 998%m Also, the GHM  and Taylor, 2010; Hughes et al., 2010; Arnell, 201This
has previously been shown to simulate peak runoff onesuggests that it may be equally feasible to apply a GHM, as
monthaheadof observations for very large catchments suchit is to apply a CHM, to explore catchment-scale changes
as the Amazon (4 640 300 K Volga (1 360000 krfy, and in runoff with climate change from ensembles of currently
Ob (2949998 krf) because runoff is not routed from one available GCM projections, where inter-GCM climate pro-
model cell to another (Gosling and Arnell, 2010). The jection differences are typically large due to climate mod-
largest catchment considered here, however, is 795 080 kmelling uncertainty However, given that the uncertainty range
(Mekong), which is why there is no discrepancy in the across the 7 GCMs for the CHM is generally slightly smaller
months of peak runoff between the GHM and CHM for than the range across the GHM, then should advances in cli-
catchments other than the Liard. mate modelling over the coming decades mean that climate
The CHMs applied in this study were calibrated using his- modelling uncertainty is substantially reduced, then the role
torical data — see individual papers listed in Table 1 for fur- of hydrological model (and land-surface model) uncertainty
ther details on the calibration methods employed by eactwill become more important and the application of a CHM
CHM. A catchment-specific calibration of the GHM was not over a GHM may be appropriate.
performed. Instead, the GHM was calibrated by ‘tuning’ it  Indeed, it should be noted that whilst Figs. 8, 9 and 10
to help set parameter values. This involved tests of precipitashow that GHM-CHM differences are generally relatively
tion datasets and potential evaporation calculations and wasmall when a range of GCMs is considered, and that the
done against long-term average runoff and long term averGHM is able to represent the broad climate change signal
age within-year runoff patterns (Arnell, 1999). Itis acknowl- that is represented by the CHMSs, Figs. 5 and 7 show that
edged that a catchment-specific calibration of the GHM pa-for a few catchments and hydrological indicators, when a
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single forcing GCM is considered, the CHM and GHM can Moreover, we have not sampled downscaling uncertainty,
disagree substantially. Hence, for a giveingle GCM, the  emissions uncertainty, and hydrological model parameter un-
GHM we applied is nanorefeasible than a CHM for esti- certainty (see Fig. 1). Therefore, we are likely underestimat-
mating catchment-scale runoff changes under global warming the magnitude of climate and hydrological uncertainty
ing scenarios. in our analysis. Given the constraints of computational re-
The substantial GHM-CHM differences observed for somesources, we considered seven climate models and two hy-
catchments in mean annual runoff, Q5 and Q95 monthlydrological models for each catchment. It can be argued that
runoff and in the seasonal cycle, has implications for futurethe application of seven climate models presents a reason-
water management issues, such as, for example, in the plarable representation of climate model structural uncertainty,
ning of dams and reservoirs for dealing with high and low given that previous climate change hydrological impact as-
flows The results suggest larger GHM-CHM differences for sessments have tended to apply a similar or lower number
indicators of high and low extreme monthly runoff (Q5 and of climate models (Arnell et al., 2011; Hayashi et al., 2010;
Q95) than for mean annual runoff (although the magnitudePrudhomme et al., 2003). The prior uncertainty from climate
of this difference is still smaller than the difference acrossmodel structural uncertainty could be reduced by compar-
GCMs) so careful thought should be given in whether to ap-ing GCM simulations of baseline climate with observations.
ply a CHM or GHM when measures of extreme hydrological Such considerations have led to the calculation of perfor-
behaviour are sought. This, however, in unsurprising givenmance metrics for GCMs, such as ranking them according
that extremes of hydrological behaviour are notoriously dif- to a measure of relative error (Gleckler et al., 2008). Form-
ficult to simulate. We postulate that if another CHM were ing a single index of model performance, however, can be
included for each catchment, the difference between the newnisleading in that it hides a more complex picture of the rel-
CHM and the CHM presented in this study, in simulated ative merits of different models. Furthermore, for one spe-
changes in Q5 and Q95 with climate change, might be com<ific region, Chiew et al. (2009) concluded that there was no
parable to that of the differences between GHM and CHMclear difference in rainfall projections between the “better”
presented here. Indeed, in a discussion of the role of uncerand “poorer” 23 GCMs included in the CMIP3 archive (7
tainty in climate change impacts assessment and hydrologyf which we applied here) based on their abilities to repro-
Bloschl and Montanari (2010) suggest that when two expertsluce observed historical rainfall. Therefore in their analysis,
estimate the 100-year flood in a small ungauged catchmentsing only the better GCMs or weights to favour the better
chances are that their estimates are very different. A recenECMs gave similar runoff impact assessment results as the
inter-model comparison confirms the case in point (Ludwig use of all the 23 GCMs. Moreover, on a conceptual level,
et al., 2009), suggesting that the difference in simulated disit has been argued that, because of deep and structural un-
charge under climate change scenarios for a 10-year floodertainty, it is not appropriate to seek to estimate the relative
event and given catchment between hydrological models ofveight of different GCMs, and to do so would lead to signifi-
different complexity may be over 200%. cant over-interpretation of model-based scenarios (Stainforth
The discrepancy in sign of simulated change across thet al., 2007): all models are only partial representations of a
7 GCMs has implications for policy- and decision-making. complex world, and miss important processes. For these rea-
Whilst one should be cautious with results based on projecsons, in the present analysis, we assumed that all the GCMs
tions from a single GCM because mistaken management deare equally credible, although they are not completely inde-
cisions may follow (Nbrega et al., 2010), decision-makers pendent.
are faced with a challenging prospect when approached with The computational resources required to perform multiple
a range of projections from several GCMs that are differentGHM simulations are relatively small compared with those
in sign. In the case of the Liard, where 6 of 7 GCMs sug- required to run multiple CHMs because in previous work
gest very little change or an increase in runoff with climate ClimGen was integrated with the GHM and adapted to run
change, the GCM that suggests a decrease in annual runaffy high throughput computing (HTC) on the University of
may arguably be considered as an outlier (Todd et al., 2010)Reading Campus Grid, which reduced simulation time by a
However, where around half the GCMs suggest a substantidictor of over 80 relative to running on a single compute node
increase in annual runoff with climate change and the othel(see Gosling et al., 2010). A more thorough consideration
half a substantial decrease (e.g. the Mekong and Rio Grandedf downscaling uncertainty would apply climate projections
then the decision-making process is more complex. Sumifrom regional climate models (RCMs), which have been dy-
mary statistics such as the ensemble-mean are inappropriatemically downscaled, and/or a range of different statistical
with such projections because “the mean of equal increasedownscaling algorithms other than that included in ClimGen
and decreases is no change”. (e.g. see Maraun et al., 2010). However, this would effec-
A key conclusion is that climate model uncertainty dom- tively at least double the computing and time resources re-
inates hydrological model uncertainty. However, it is ac- quired from what was used in the present analysis.
knowledged that this conclusion is based on the prior un- A more thorough consideration of hydrological model un-
certainty assigned to both climate and hydrological modelscertainty would explore (1) hydrological model parameter
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perturbations, and (2) the application of several CHMs forand simulated hydrological indicators, particularly with in-
each catchment. However, this would be demanding in termslicators of high and low extreme monthly runoff, the GHM-
of computational and human resources. For instance, t€HM difference for ssingleGCM and climate forcing can be
address the latter suggestion above, each CHM (SLURPsubstantial. This highlights firstly, that it is important to con-
SWAT, etc.) would need to be calibrated for each individual sider more than only the simulated mean annual runoff when
catchment (Liard, Mekong etc.) and would then involve per-comparing different hydrological models, and secondly, that
forming 216 CHM simulations (6 CHMs 6 catchmentx 6 for a givensingle GCM, the GHM we applied is no more
increases in global-mean air temperature) for a single GCMeasible than a CHM for estimating catchment-scale runoff
pattern. As such, a computer cluster with around 216 nodeshanges under global warming scenarios. Whilst for some
would be ideal, but each CHM would need to be adapted forcatchments there is considerable uncertainty in the magni-
running by HTC. This is not straightforward; see Gosling tude of projected mean annual runoff and Q5 and Q95 change
et al. (2010) for a detailed discussion on the issues regardingcross the seven GCMs, there is higher confidence in direc-
adapting a hydrological model to run by HTC. To address thetional shifts of the seasonal cycle, such as increases in spring
former suggestion, Multi-Method Global Sensitivity Analy- and autumn runoff with the Liard catchment, although the
sis (MMGSA; Cloke et al., 2007) presents a method for sys-GHM does, for some catchments, estimate the month of peak
tematically perturbing all model parameters systematicallyor low runoff one or two months ahead or behind the CHM.
but again, the extensive computing resources required for Perhaps the most important conclusion to draw from our
this precluded such an analysis here. Moreover, each CHMnalysis is that the differences in projected changes of mean
and GHM will include different parameters, so a like-with- annual as well as high (Q5) and low (Q95) monthly runoff
like comparison is not straightforward. Nevertheless, Arnellbetween the two types of hydrological model are generally
(2010) demonstrates that the uncertainty associated with 10felatively small in comparison to the range of projections
CHM model parameter sets is vastly smaller than the unceracross the seven GCMs. For example, with UKMO HadCM3
tainty across 21 GCM climate projections, which supports2°C prescribed warming, the absolute GHM-CHM differ-
our conclusion that climate model uncertainty dominatesences in mean annual runoff change are 12% (Liard), 9%
hydrological model uncertainty. Moreover, evidence from (Mekong), 1% (Rio Grande), 6% (Okavango), 10% (Xi-
other climate change impact assessment sectors (e.g. agangxi) and 25% (Harper’s Brook), whilst the greatest abso-
culture; Challinor et al., 2009) suggests that climate modellute differences between any two GCMs withQ@ prescribed
uncertainty is effectively damped once other non-climaticwarming for the GHM (CHM) for each catchment respec-
uncertainties, such as decision-making processes or socidively are 28% (17%), 30% (23%), 48% (36%), 62% (58%),
economic uncertainties are considered, in a wider decision34% (15%) and 30% (31%). This implies that climate model
making framework. structural uncertainty is greater than the uncertainty associ-
Our analysis demonstrates that the GHM is able to repreated with the type of hydrological model applied. There-
sent the broad climate change signal that is represented bipre, where future climate change impacts assessments seek
the CHMs, for each catchment. Therefore where future cli-to quantify and assess the range of hydrological projections
mate change impacts assessments seek to quantify and assasgoss an ensemble of GCMs, it may beeagially feasi-
the range of hydrological projections across an ensemble oble to apply a GHM (Mac-PDM.09 here) as it is to apply
GCMs, it may be asquallyfeasible to apply a GHM as itis a CHM to explore catchment-scale changes in runoff with
to apply a CHM to explore catchment-scale changes in runofiglobal warming. Given that there is a growing acceptance
with global warming. However, in the present analysis, wethat climate change impacts assessments should consider the
only considered only one GHM, Mac-PDM.09 (Gosling and range of uncertainty inherent in the currently available set
Arnell, 2010). Recent work highlights that there is uncer- of GCMs available to the modelling community, this is a
tainty across different GHMs in the simulation of runoff poignantfinding. However, although the GHM is able to rep-
(Haddeland et al., 2011), so it can not be assumed that allesent the broad climate change signal that is represented by
GHMs will perform in the same way as the GHM presented the CHMs, across seven GCMs, when a single forcing GCM
here. is considered, the CHM and GHM can disagree substantially,
for a few catchments and hydrological indicators, especially
with indicators of extreme monthly runoff. These differences
5 Conclusions have implications for future water management issues, such
as, for example, in the planning of dams and reservoirs for
We have presented a comparative analysis of projected imeealing with high and low flows. As such, our analysis sug-
pacts of global warming on river runoff from a GHM (Mac- gests that given the choice, there is no evidence to suggest
PDM.09; Gosling and Arnell, 2010) and a set of catchment-that the application of a GHM would reorefavourable than
specific CHMs for six catchments, which are global in cov- the application of a CHM, for the estimation of changes in
erage and feature strong contrasts in spatial scale as well asmtchment-scale runoff under climate change scenarios.
climatic and developmental conditions. For some catchments
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