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Abstract Land surface models (LSMs) are essential tools for simulating the coupled climate system,
representing the dynamics of water, energy, and carbon fluxes on land and their interaction with the atmosphere.
However, parameterizing sub‐grid processes at the scales relevant to climate models (∼10–100 km) remains a
considerable challenge. The parameterizations typically have a large number of unknown and often correlated
parameters, making calibration and uncertainty quantification difficult. Moreover, many existing LSMs are not
readily adaptable to the incorporation of modern machine learning (ML) parameterizations trained with in situ
and satellite data. This article presents the first version of ClimaLand, a new LSM designed for overcoming
these limitations, including a description of the core equations underlying the model, the results of an extensive
set of validation exercises, and an assessment of the computational performance of the model. We show that
ClimaLand can leverage graphics processing units for computational efficiency, and that its modular
architecture and high‐level programming language, Julia, allows for integration with ML libraries. In the future,
this will enable efficient simulation, calibration, and uncertainty quantification with ClimaLand.

Plain Language Summary Simulating the Earth's atmosphere, ocean, and land surface is an
important method that scientists use for understanding the Earth's climate, including its response to climate
change. Due the complexity of the processes involved, approximations are made when representing certain
aspects of the land surface, such as vegetation heterogeneity or topographical variation. These approximations
can be improved by using data (“calibration”), but doing so has a large computational cost. They can also be
improved using machine learning (ML), but this requires models to be easily integrated with ML packages.
ClimaLand is a new land surface model which has been designed from the start to incorporate ML
parameterizations and to more efficiently calibrate parameterizations with data. This article presents the
ClimaLand model, benchmarks its computational performance, and compares model output against data in a
variety of regimes. Follow‐on studies will improve the core model using ML parameterizations and by
calibrating the model.

1. Introduction
A land surface model (LSM) is an integral part of an Earth systemmodel (ESM), a key tool used to understand and
predict Earth's climate. Fluxes exchanged between the land, atmosphere and ocean close the water, energy, and
carbon cycles and provide sources and sinks driving other ESM components. LSMs are in turn driven by the
atmosphere and can be used to understand and predict how a changing climate will affect hydrology, the cryo-
sphere, and the terrestrial biosphere, including their coupled feedbacks on other Earth system components. These
land dynamics are regulated not only by physical principles but also by the complex biological and ecological
processes that drive biosphere–atmosphere coupling (G. B. Bonan et al., 2024). Differences in the representation
of these land processes in models lead to varying predictions in future climate state. For example, the land surface
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has absorbed nearly 30% of anthropogenic CO2 emissions, but the magnitude and sign of the future carbon uptake
rate by land is uncertain (Friedlingstein et al., 2023).

There are limitations in how current LSMs represent certain physical behaviors. Most LSMs do not explicitly
include processes such as lateral groundwater flow and water vapor diffusion in soil, requiring parameterizations
based on known prognostic variables (M. P. Clark et al., 2015). Heterogeneity in the land surface, and the fact that
different nonlinear physical processes are important at different scales, also necessitate parameterization, which
describe how the modeled variables, which typically represent horizontal scales ofO(10–100 km), are affected by
unresolved subgrid scales. Examples include parameterizations for the role of topography in runoff generation
(e.g., Niu et al. (2005)) and for partially snow‐covered grid cells. Disturbances, including wildfires, permafrost
thaw, and land‐use change, introduce further variability that influences carbon storage, surface albedo, and
aerosol emissions (Braghiere, Fisher, et al., 2023; Schädel et al., 2024). Addressing these uncertainties requires
integrating ecological and geophysical processes and their multi‐scale interactions (G. B. Bonan et al., 2024).

Calibration and uncertainty quantification are required for all parameterizations included in LSMs but remain
challenging due to the complexity of terrestrial processes and their combined impacts on the climate system.
Current land models incorporate a vast array of correlated parameters spanning hydrology, carbon cycling, and
plant physiology, many of which are poorly constrained by observational data (Dagon et al., 2020; Zaehle
et al., 2005). Calibration of computationally expensive models with many free parameters is difficult, and
quantifying the uncertainty that these parameters induce in downstream predictions is even more challenging
because it requires many model runs. Perturbed parameter ensemble (PPE) studies highlight that land parameter
uncertainty propagates through land–atmosphere fluxes, influencing global temperature and precipitation dis-
tributions (Fischer et al., 2011), and could drive a 2.2°C variation in global‐mean land surface temperature and
significant regional precipitation variability (Zarakas et al., 2024). The computational demand of running a model
many times with different parameter values is a key bottleneck in both inference and uncertainty quantification
(Danabasoglu et al., 2020).

Machine learning (ML) is transforming climate modeling in several areas, including model emulation and
replacing process parameterizations (Eyring et al., 2024; Lai et al., 2025; Reichstein et al., 2019; Schneider,
Teixeira, et al., 2017). In land surface modeling, for example, ML has excelled in modeling runoff, river
discharge, and flooding (Kratzert et al., 2018; Kratzert, Klotz, Herrnegger, et al., 2019; Kratzert, Klotz, Shalev,
et al., 2019; Nearing et al., 2024). It also has great promise for replacing highly uncertain parameterizations within
a process‐based LSM framework that can, for example, encode conservation laws for energy, water, and carbon
(Fang & Gentine, 2024; Kraft et al., 2021; Schneider, Lan, et al., 2017). These hybrid models have reduced biases
in subgrid‐scale processes such as cloud cover and ocean mesoscale eddies, outperforming traditional parame-
terizations (e.g., Beucler et al., 2021; Christopoulos et al., 2024; Lopez‐Gomez et al., 2022; Perezhogin
et al., 2024). Furthermore, ML‐enhanced approaches to modeling terrestrial processes such as evapotranspiration
have shown improved generalization, especially during extreme events, compared to purely physical models
(Zhao et al., 2019). ML can address longstanding challenges in land surface modeling when the necessary training
data are available. Such data are available for many applications, including rain and river discharge gauges (e.g.,
Färber et al., 2024), spectrometers that measure the land albedo (e.g., Schaaf & Wang, 2015), gravimeters that
measure the terrestrial storage of water (e.g., Landerer & Swenson, 2012), or flux towers that measure
atmosphere‐land fluxes (e.g., Ameriflux, 2015).

This article details version 1.0 of the Climate Modeling Alliance (CliMA) land model, ClimaLand. The model is
developed from scratch in Julia, a high‐level language that provides ML libraries that make it easy to incorporate
ML parameterizations. To demonstrate this, a prognostic snow depth model based on a neural differential
equation (Charbonneau et al., 2025) is added to ClimaLand; since ClimaLand is designed to be modular,
experimenting with other machine‐learned parameterizations is similarly straight forward. ClimaLand has also
been designed to run natively on GPUs. This leads to a computational performance that enables global simula-
tions without requiring access to a supercomputer, and it greatly reduces the computational cost of calibration and
uncertainty quantification. It also enables kilometer‐scale simulations on multiple GPUs. This article presents the
model equations (Section 2), quantifies the performance of the model on GPUs (Section 3), and validates the
model output using laboratory, site‐level, and global data (Section 4). Further contextualization of the model,
including plans for calibration and a discussion of model equations compared with other LSMs, is provided in
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Section 5. This work demonstrates the potential of ClimaLand as a tool for physics/ML hybrid modeling. The
code itself with additional documentation and tutorials is publicly available on GitHub (Deck et al., 2025).

2. ClimaLand Model Description
The land model is composed of three components: soil, snow, and canopy. The soil model, described in Sec-
tion 2.1, encodes water and energy balances, including freezing and thawing, in both the water table and the
vadose zone. Advancing these equations in time requires solving partial differential equations for soil moisture
and energy. An option to model heterotrophic respiration and the vertical profile of CO2 in the pore space is
available. The snow model, described in Section 2.2, also encodes energy and water balances, but because we do
not vertically resolve the snowpack structure, only a set of ordinary differential equations is solved. As described,
the snow depth is a variable predicted with an ML parametrization. The canopy model, described in Section 2.3,
models photosynthesis, radiative transfer in the canopy, transpiration, and the flow of water from the soil and
through the plant. As with the snow model, a set of ordinary differential equations is solved. These components
interact via fluxes or sources and sinks in their equations, as described in detail in the following sections.

2.1. Soil Model

The soil model consists of a set of equations describing the evolution of the soil volumetric internal energy ρe
( J m− 3), liquid water content θl (m3 m− 3), ice content θi (m3 m− 3), and, optionally, concentrations of tracers
such as CO2. We use the notation θ = (θl,θi) for the water content, x for spatial location, and ν for the dry‐soil
composition, which is a prescribed, spatially varying but temporally constant, parameter field (see Appendix A1).
The bold notation indicates vector‐valued variables. Table 1 lists the key variables and parameters in the soil
model, including prognostic variables, functions of the prognostic state, global physical constants, and empirical
—and often spatially varying—properties of the soil.

2.1.1. Water Balance

2.1.1.1. Liquid Water Flux

The central quantity around which the soil water balance revolves is the volume flux of water dl (m s− 1), given by
Darcy's law (e.g., Dingman, 2015):

dl = − K∇h. (1)

Here, K = K(θ; ν) is the hydraulic conductivity (m s− 1) and h = h(x,θ; ν) is the hydraulic head or water po-
tential (m). The hydraulic conductivityK is assumed to be a scalar, implying an isotropic conductivity. Horizontal
layering of soil may induce important anisotropy, which can be represented by an anisotropic hydraulic con-
ductivity tensor, if needed.

The hydraulic head is the sum of the elevation head, given by the height z above a reference elevation, and the
pressure head ψ:

h(x,θ; ν) = z + ψ(x,θ; ν). (2)

The pressure head represents the water pressure within the soil matrix. In unsaturated soils, it is the (negative)
matric potential ψm(θ; ν), which is determined from the capillary pressure across the pore liquid/gas interface by
assuming that the gas pressure within the pores is constant across the soil matrix (Bear, 2018). In the saturated
zone, below the water table, there are no capillary effects, and the pressure head ψ = ψ(x; ν) represents the
(positive) water pressure in the soil matrix.

2.1.1.2. Conservation Law for Liquid Water

Following Woodward and Dawson (2000) and Endrizzi et al. (2014), the Richards' equation suitable for the
vadose (unsaturated) zone is combined with a form of Richards' equation suitable for the saturated zone by
defining the augmented liquid fraction
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Table 1
Key Variables and Parameters in Soil Model

Prognostic variables Description Units Definition Range/Typical value

ρe Internal energy per unit volume J m− 3 Equation 6 4 × 106 J m− 3

ϑl Augmented liquid fraction m3 m− 3 Equation 3 0≤ϑl

θi Volume fraction of ice m3 m− 3 0≤ θi ≤ νp

Functions of prognostic state Description Units Definition Range/Typical value

θl Volume fraction of liquid water m3 m− 3 Equations A13a–A13c 0≤ θl ≤ νeff

θw = θl + θi Volume fraction of total water m3 m− 3 0≤ θw ≤ νp

T Soil Temperature K Equation 11 288 K

νeff = νp − θi Effective porosity Equation A12 0≤ νeff ≤ νp

ρ Bulk density of (wet) soil kg m− 3 Equation 7 1.5 × 103 kg m− 3

ρscs Volumetric heat capacity J m− 3 K− 1 Equation 8 2 × 106 J m− 3 K− 1

κ Thermal conductivity W m− 1 K− 1 Equation A2 0.85 W m− 1 K− 1

κsat Saturated thermal conductivity W m− 1 K− 1 Equation A11 3 W m− 1 K− 1

Ke Kersten number Equation A3 0≤Ke ≤ 1

Sl,Sl,eff Liquid saturation, Effective liquid saturation Equations A15 and A16 Sl,Sl,eff > 0

h Hydraulic head m Equation 2

ψ Pressure head m Equation A14

ψm Matric potential (van Genuchten) m Equation A17 ψm ≤ 0

K Hydraulic conductivity (van Genuchten) m s− 1 Equation A18 10− 6 m s− 1

Global constants Description Units Value

g Standard gravitational acceleration at the surface of Earth m s− 2 9.81 m s− 2

T f Freezing point temperature at 105 Pa K 273.15 K

T0 Reference temperature K 273.16 K

Lf ,0 Latent heat of fusion at T0 J kg− 1 333.6 × 103 J kg− 1

cl Specific heat capacity of liquid water J kg− 1 K− 1 4181 J kg− 1 K− 1

ci Specific heat capacity of ice J kg− 1 K− 1 2100 J kg− 1 K− 1

ρl Density of liquid water kg m− 3 1000 kg m− 3

ρi Density of ice kg m− 3 916.7 kg m− 3

Empirical properties Description Units Obtained from Typical value

νp Porosity Input data 0≤ νp ≤ 1

θres Residual fraction Input data 0≤ νp

νj Volume fraction of χj, relative to bulk soil Input data 0≤ χj ≤ 1

νj,ss Volume fraction of χj, relative to soil solids Input data 0≤ χj ≤ 1

ρjcj Volumetric heat capacity of χj J m− 3 K− 1 Input data O(1 J m− 3 K− 1

ρds Particle density dry soil kg m− 3 Input data O(103 kg m− 3)

ρb Bulk density of dry soil kg m− 3 Equation A7 O(103 kg m− 3)

κdry Dry thermal conductivity W m− 1 K− 1 Input data 1.5 W m− 1 K− 1

Ss Aquifer specific storage m− 1 Input data 10− 4 m− 1

Ksat Saturated hydraulic conductivity m s− 1 Input data 10− 5 m s− 1

n Van Genuchten shape parameter Input data 2

α Van Genuchten inverse ref. potential m− 1 Input data 2 m− 1

τFT Phase transition time s Equation 14

Note. Some variables are defined in Appendix A.
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ϑl(ψ) = θl(ψ) + {
0 when unsaturated (ψ ≤ 0),

Ssψ when saturated (ψ > 0),
(3)

where Ss (m− 1) is the specific storage (or specific storativity) of an aquifer, a coefficient that measures the in-
crease in water volume in a soil volume per increase in head h (Dingman, 2015, Chapter 7). The specific storage Ss
can vary with location and is proportional to the compressibility of water and of the soil matrix; it vanishes if both
compressibilities are zero (Bear, 2018, Chapter 5). The form of ψ in the saturated zone is given implicitly by
Equation 3, as ψ = (ϑl − θl)/ Ss.

The augmented liquid fraction ϑl and ice fraction θi satisfy the conservation laws

∂ϑl
∂t
= − ∇ ⋅ (− K∇h) −

FT
ρl
+ Sϑl, (4a)

∂θi
∂t
=
FT
ρi
+ Sθi. (4b)

The conservation laws assume constant densities ρl and ρi of liquid and ice, so that the volume fractions are
conserved. The first equation, for liquid water, is a generalized form of Richards' equation in terms of the
augmented liquid fraction ϑl, which holds in saturated and unsaturated soils (Woodward & Dawson, 2000). The
second equation, for ice, assumes that water frozen into the soil matrix does not flow, so no flux term appears on
the right‐hand side. The term FT (kg m− 3 s− 1) on the right‐hand side of both equations represents the mass
conversion rate between liquid and ice in phase changes of water, formulated so that total water mass is
conserved. The terms Sϑl,Sθi represents additional source/sink terms.

ClimaLand supports the van Genuchten (1980) and Brooks and Corey (1964) parameterizations for hydraulic
conductivity K and matric potential ψm as functions of volumetric liquid water content in the vadose zone, along
with factors that adjust K for the presence of ice and the temperature dependence of the viscosity of water
(Hansson et al., 2004; Lundin, 1990). These equations are presented for completeness in Appendices A3 and A4.

2.1.2. Energy Balance

We characterize the thermodynamic state of soil by its internal energy. The specific internal energy (energy per
unit mass, J kg− 1) is the mass‐weighted mean of the constituent specific internal energies of dry soil eds, liquid
water el, and ice ei; the small contribution of gases to the mass and specific internal energy of soil is neglected.
The specific internal energies of the constituents depend on the temperature T of the constituents (which are
assumed to be in local thermal equilibrium, so they have the same temperature in any one location) and the
specific heat capacities cds, cl, and ci:

eds(T; ν) = cds(ν)(T − T0), (5a)

el(T) = cl (T − T0), (5b)

ei(T) = ci (T − T0) − Lf ,0. (5c)

The temperature T0 is a reference temperature at which the specific internal energy of dry soil and liquid water are
zero, and Lf ,0 is the specific latent heat of fusion at T0; for consistency with the CliMA atmosphere model, we
choose T0 as the triple‐point temperature of water (Yatunin et al., 2025). As is common for liquids and solids, we
have equated the specific internal energies and enthalpies of liquid water and ice (consistent with taking their
densities to be constant), so that the specific latent heat of fusion appears in the internal energy definition in place
of the specific internal energy difference between the phases.

For the soil model, it is convenient to use internal energies per unit volume ( J m− 3) rather than per unit mass. The
internal energy per unit volume can be written as the mass‐weighted mean
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ρe(T,θ; ν) = θdsρdseds(T; ν) + θlρlel(T) + θiρiei(T)

= ρscs(θ; ν)(T − T0) − θiρiL f ,0.
(6)

Here, ρs is the soil density, the mass‐weighted mean of the constituent densities neglecting gases,

ρs(θ; ν) = (1 − νp)ρds(ν) + θlρl + θiρi, (7)

with porosity νp and with the dry soil particle density ρds in turn being the mass‐weighted mean of the dry‐soil
constituents. Similarly, the specific heat capacity cs(θ; ν) of soil is the mass‐weighted mean of those of the
constituents,

cs(θ; ν) =
(1 − νp)ρdscds(ν) + θlρlcl + θiρici

ρs
, (8)

where the dry soil specific heat capacity cds likewise is a mass‐weighted mean of the dry‐soil constituents. Note
that the volumetric internal energy is equal to zero when T = T0 and all water is in the liquid phase.

The conservation law for internal energy is defined by the first law of thermodynamics assuming an open system
(e.g., Longo et al., 2019; Walko et al., 2000):

∂ρe
∂t

= − ∇ ⋅ (− κ∇T + D) + Sρe. (9)

On the right‐hand side are the divergences of fluxes and source/sink terms. These include the conductive heat
fluxes − κ∇T (W m− 2), where κ = κ(θ; ν) (W m− 1 K− 1) is the thermal conductivity of soil, which we take to be
isotropic (scalar) and parametrized as in Appendix A2; and energy fluxes D (W m− 2) carried by moving water,

D = ρleldl, (10)

with dl given by Darcy's law (1). The source/sink term Sρe includes changes in energy, for example, due to root
extraction of liquid water, subsurface runoff, metabolic heat from microbes, etc. Surface runoff of liquid water
contributes to an energy flux at the boundary, as does radiation, which we assume does not penetrate into the soil
and hence is described via a boundary flux.

2.1.2.1. Temperature

Given the internal energy ρe and composition (θ; ν) of soil, the definition (6) of the internal energy can be inverted
to give the soil temperature:

T = T0 +
ρe + θiρiL f ,0
ρscs(θ; ν)

. (11)

Using internal energy rather than temperature as a prognostic variable is advantageous because internal energy,
unlike temperature, is conserved when water freezes or thaws. Thus, internal energy is unaffected by phase
transitions of water and remains continuous at freezing/thawing fronts.

2.1.3. Freezing and Thawing

We represent the liquid‐ice conversion rate FT as a relaxation of liquid and ice fractions toward their respective
thermodynamic equilibrium values θ∗

l and θ
∗
i :

FT =
ρl (θl − θ∗

l )

τFT
= −

ρi (θi − θ∗
i )

τFT
. (12)
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Here, τFT is a timescale for a model grid cell to reach thermodynamic equilibrium.

For the thermodynamic equilibrium fractions θ∗
l (T,ρΘ) and θ

∗
i (T,ρΘ), which depend on temperature T and the

total water content ρΘ ≡ ρlθl + ρiθi, we use the approximations derived by Painter et al. (2016):

θ∗
l = ψ − 1[ψ (

ρΘ
ρl
) +

Lf ,0
g
log(

T
T∗

f
)H(T∗

f − T)], (13a)

θ∗
i = (ρΘ − ρlθ∗

l )/ρi, (13b)

where

T∗
f = T f exp (

gψ(ρΘ/ρl)
Lf ,0

) (13c)

represents a freezing‐point temperature shifted by pressure effects andH(⋅) is the Heaviside function. These shifts
are typically less than a degree but can be larger for fine‐textured soils.

To derive this, one applies the Gibbs‐Duhem relation to each phase, yielding a more general Clausius‐Clapeyron
relation that accounts for the matric potential of the unsaturated soil, which accounts for capillary forces that do
not act on the ice and air; therefore, ice and liquid water do not occupy the same point in the temperature‐pressure
phase diagram. The derivation also assumes that the liquid pressure of freezing soils has the same functional form
as the soil water retention curve, relating capillary pressure to water content in unfrozen soils (Dall’Amico, 2011;
Kurylyk &Watanabe, 2013; Painter & Karra, 2014). This implies that the residual water fraction is always in the
liquid form, even for very cold soil. Finally, it also approximates the specific latent heat of fusion near the freezing
point by the value Lf ,0 at the triple‐point reference temperature T0, which lies within 0.01 K of the freezing point
at sea level pressure. Experiments byWatanabe et al. (2011) confirm that the equilibriummoisture content is close
to that given by Equation 13. Above the freezing point T∗

f , the partitioning reduces to θ∗
i = 0

and θ∗
l = ρΘ/ρl = θl.

The relaxation timescale τFT is finite because even when the freezing point is reached on the grid scale, additional
thermal diffusion or other energy fluxes are required to add or remove the latent heat of fusion. Moreover, un-
resolved subgrid‐scale temperature variations across a cell lead to different portions undergoing the phase
transition at different times, effectively smearing out the transition in time for the grid cell as a whole. The
timescale of thermal diffusion across a grid cell of vertical extent Δz, assuming negligible horizontal temperature
gradients relative to vertical ones, is

τdiff =
ρscsΔz2

κ
. (14)

We approximate τFT = τdiff .

2.1.4. Heterotrophic Respiration

Optionally, the soil model includes a balance equation for carbon dioxide in the soil pore space to model het-
erotrophic respiration and to predict the flux of CO2 at the soil surface. Expressing the concentration of CO2 as the
carbon mass per volume of soil ρC (kg m− 3), the evolution equation is

∂ρC
∂t

= ∇ ⋅ (DC(T,θ; ν)∇ρC) + SC, (15)

where DC(T,θ; ν) is the diffusivity (m2 s− 1) of CO2 gas, which depends on the soil temperature, water content,
and type, and SC represents volumetric sources/sinks of CO2 (kg m− 3 s− 1) due to microbes, which we represent
with the dual Arrhenius and Michaelis‐Menton approach (Davidson et al., 2012); this term depends on soil
moisture and oxygen levels (see Appendix A6 for details). The boundary flux at the surface of the soil FC,sfc
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depends on the values of DC,ρC at the top of the soil as well as the atmospheric value of ρC just above the soil.
This, along with the soil carbon mass per volume in the pore space ρC, can be compared with observations and
used as an indirect measure of heterotrophic respiration.

Additional gas constituents (water vapor, oxygen) could be modeled in a similar fashion but are not included in
the current version of ClimaLand. As noted, oxygen in the pore spaces affects respiration rates, but it is currently
prescribed. Autotrophic respiration is also modeled, but treated as part of the canopy model (Section 2.3).

2.1.5. Surface Boundary Conditions and Sources

At the soil surface, the boundary condition for the volumetric liquid water flux is given by

Fw = I ẑ, (16)

where ẑ is the local vertical unit vector and

I = Fw,sfc − Rs (17)

is the infiltration flux (m s− 1), defined as the available liquid water volume flux at the surface Fw,sfc less the
surface runoff Rs (Appendix A5). The available water flux is defined in terms of water mass fluxes
(kg m− 2 s− 1) as

ρl Fw,sfc = (1 − σ)(El − Pliq) − σρlRsnow. (18)

Here, Pliq > 0 is the liquid precipitation rate represented as a mass flux of water, El is the evaporation rate of liquid
water mass (Appendix E2), ρlRsnow > 0 is the meltwater flux from snow, and σ is the snowcover fraction. All
snow‐related fluxes are discussed in Section 2.2. Note that if snow melts or sublimates within a timestep, the
excess snow liquid water volume flux is included in the soil boundary condition to conserve mass. Precipitation is
either prescribed from meteorological forcings or supplied by an atmosphere model.

For volumetric internal energy, the flux boundary condition vector is given by

Fenergy = [(1 − σ)(− el,rain (Pliq − ρlRs) + H + LE − Rn) + σG] ẑ, (19)

where el,rain is the specific internal energy of rain (assumed to be the same as for the surface runoff), H is the
sensible heat flux, LE is the latent heat flux (Appendix E2), Rn is the net radiation (Appendix D1; positive if
warming), G is the soil‐snow heat flux, and we have ignored transmission of radiation through the snowpack to
the soil surface. If snow melts or sublimates within a timestep, the excess snow energy flux is included in the soil
boundary condition to conserve energy. All energy fluxes are in W m− 2.

The volumetric source terms for water ( s− 1) are sublimation of the surface layer of ice Ssubl (Section 2.1.5.1),
subsurface runoff Sss,w (SA5), and root extraction Sre,w (Section 2.3.1). We also include energy sources (W m− 3)
due to root extraction Sre,e and subsurface runoff Sss,e. Therefore, ClimaLand currently has the source/sink terms

Sϑl = Sre,w + Sss,w, (20)

Sθi = Ssubl, (21)

Sρe = Sre,e + Sss,e, (22)

in the conservation equations for water, Equation 4, and for energy, Equation 9.

2.1.5.1. Ice Sublimation

Sublimation from soil ice is computed as a mass flux Ei in a manner analogous to how we compute the evap-
oration of soil liquid water El. We define the sublimation source Ssubl as
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Ssubl = −
Ei

ρiΔzsfc
(1 − σ)H(z − zsfc + Δzsfc), (23)

where zsfc(x) (m) is the surface elevation, defined by the topography, and, as a reminder, z − zsfc is negative by
definition (z increases upward).

2.1.6. Bottom Boundary Conditions

We support multiple options for bottom boundary conditions of the soil domain, including zero‐flux and free‐
drainage boundary conditions. The former applies for water at bedrock. However, in global simulations, Cli-
maLand does not make use of bedrock depth data yet—the domain has the same depth everywhere—nor does the
model account for lateral flow yet (but the numerical core already supports lateral flow). Consequently, in the
global simulations presented here, we set a free‐drainage boundary condition for water with a corresponding flux
boundary condition for energy (equal to the energy flux created by water leaving the domain).

2.2. Snow Model

Snow is modeled using a bulk approach with conservation equations for water mass and internal energy, similar to
the Utah‐Energy‐Balance (UEB) model (Tarboton et al., 1996), and with a diagnostic equation for surface
temperature. The snow depth, which affects the surface temperature and the rate at which meltwater leaves the
snowpack, is modeled using a neural ordinary differential equation as described in Charbonneau et al. (2025).
Variables and parameters of the snow model are listed in Table 2.

2.2.1. Conservation Laws

The conservation law for snow water mass per unit snow area arises from vertically integrating the partial dif-
ferential equation for snow density and ignoring the time derivatives of snow depth. The resulting conservation
law is usually expressed in terms of the snow water equivalent S, the equivalent volume of liquid water per unit
ground area. The snow water mass per unit snow cover area is then ρlS/σ, where σ is the snow cover fraction. The
snow water equivalent satisfies, at each location on the land surface,

ρl
∂S
∂t
= Psnow + σ(Pliq − E − ρlRsnow). (24)

Here, Psnow and Pliq are precipitation in solid and liquid forms (positive by convention), E is the vapor flux
(positive if toward the atmosphere) and ρlRsnow is a flux due to percolation of water through and subsequent loss at
the bottom of the snowpack (positive by convention). In this equation, all fluxes are mass fluxes.

The snow internal energy per unit ground area, U, is

U = ρlS[csnow (T − T0) − (1 − ql)Lf ,0], (25)

where csnow = ci (1 − ql) + clql is the specific heat capacity of snow, with ql the bulk liquid water mass fraction
and 1 − ql the frozen water mass fraction, and T the bulk snow temperature.

The snow energy per ground area satisfies, at each horizontal location,

∂U
∂t
= ei,snowPsnow + (− ρlelRsnow + el,rainPliq + G − H − LE + Rn)σ. (26)

This can be derived by vertically integrating the partial differential equation for snow volumetric internal energy,
ignoring the time derivatives in snow depth, and ei,l is the internal energy per mass for water or ice, as defined in
Equation 5. In standalone runs, we estimate the internal energy per unit mass of the solid precipitation as
ei,snow = − Lf ,0, and approximate el,rain = 0. In coupled runs, the energy fluxes from precipitation are provided
by the atmosphere model in order to conserve energy. We also have the sensible and latent heat fluxes H and LE
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(positive if toward the atmosphere), net radiation Rn (positive if warming snow), the energy loss due to liquid
water loss (ρlelRsnow) and G, the soil/snow energy flux, which is positive if warming the snow.

The fraction of the snow water equivalent in liquid form Sl = qlS satisfies, at each horizontal location,

ρl
∂Sl
∂t
= (Pliq − El + ρlM − ρlRsnow)σ, (27)

where ρlM is the mass flux for liquid water arising from phase change.

If, in a given timestep, the snowmass is predicted to become negative due to the melt or sublimation rates, we set S
and U to zero and we take the remainder of the fluxes and add them to the soil boundary conditions to conserve
mass and energy.

The parameterizations for the mass flux resulting from phase change ρlM, the runoff of liquid water from the
snowpack ρlRsnow, the ground heat flux G, and the snow cover fraction σ are described in Appendix B. The
radiation calculation is described in Appendix D1. The expressions for latent heat flux, sensible heat flux, and
vapor fluxes are provided in Appendix E1.

2.2.2. Temperature and Liquid Mass Fraction

The temperature T is a diagnostic variable, obtained from the three prognostic variables S,Sl, and U. First, the
liquid mass fraction ql is solved for as

ql =
Sl

S + δS
, (28)

where the small constant δS is included for numerical stability when S approaches zero. By solving the definition
of internal energy (Equation 25) for temperature, we find

Table 2
Key Variables and Parameters in the Snow Model

Prognostic variables Description Units Definition Range/typical value

U Internal energy per unit ground area J m− 2 Equation 25 U ∼ O(− 108J m− 2)
S Snow water equivalent m3 m− 2 0≤ S

Sl Snow liquid water per ground area m3 m− 2 0≤ Sl ≤ S

zsnow Snow depth m S≤ zsnow

Functions of prognostic state Description Units Definition Range/Typical value

T Snow bulk temperature K Equation 29 T ≤ 273.15 K

Tsfc Snow surface temperature K Equation E6 T ≤ 273.15 K

ql Liquid water mass fraction per snow mass Equation 28 0≤ ql ≤ 1

csnow Specific heat capacity J kg− 1 K− 1 Equation in text after Equation 25 ci ≤ csnow ≤ cl

ρsnow Snow density kg m− 3 Equation 30 0< ρsnow ≤ ρl
κsnow Snow thermal conductivity W m− 1 K− 1 Equation B6 κair < κsnow ≤ κice

Empirical properties Description Units Obtained from Typical value

Ksat, snow Saturated hydraulic conductivity of snow m s− 1 Free parameter O(10− 4)
αsnow Albedo of snow in shortwave Free parameter 0< αsnow ≤ 1

ϵsnow Emissivity of snow in longwave Free parameter 0.97

θl,c Residual volumetric liquid water content Free parameter 0≤ θl,c ≤ 1

Journal of Advances in Modeling Earth Systems 10.1029/2025MS005118

DECK ET AL. 10 of 52

 19422466, 2026, 1, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2025M

S005118 by N
IC

E
, N

ational Institute for H
ealth and C

are E
xcellence, W

iley O
nline L

ibrary on [07/01/2026]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



T = T0 + [
U + ρlS(1 − ql) Lf ,0
ρlcsnow(S + δS)

]. (29)

Note that this expression alone does not guarantee that the snow temperature is strictly less than or equal to the
freezing temperature; however, the melt term ρlM approximately achieves that.

2.2.3. Snow Depth

The snow depth is required to compute heat fluxes throughout the snowpack. These are driven by gradients in
temperature; in a bulk model, they arise due to differences in temperature between the surface of the snow and the
bulk, or between the bulk and the underlying soil. Density is required to compute the thermal conductivity of the
snow, which also affects the heat fluxes within the snowpack. The depth also appears in the liquid water runoff
term, ρlRsnow (Appendix B). While the snow model needs both depth and density, only one (in addition to S) is
required to compute the other, as

ρsnowzsnow = ρlS. (30)

To model the evolution of snow depth, we use the neural network based snow depth model of Charbonneau
et al. (2025). In this model, the snow depth evolves according to the differential equation

dzsnow
dt

= g(…,S, zsnow), (31)

where g is a feed‐forward neural network. The function gwas trained offline using SNOTEL observations of local
environmental conditions, as well as the instantaneous S and zsnow. Though trained with site‐level data, the model
learns a single set of coefficients which, in principle, are location independent. In offline simulations, it was
shown to outperform the Snow17 model (Anderson, 1976) at depth predictions when provided with the observed
S (Charbonneau et al., 2025).

ClimaLand also supports a simpler single parameter density model, where ρsnow = ρminql + (1 − ql)ρliq, and
ρmin < ρl is the minimum density of the snow, a free parameter. In this case, snow depth is derived from density
and snow water equivalent and not modeled using Equation 31.

2.3. Canopy Model

The canopy model consists of eight sub‐modules: radiative transfer, photosynthesis, autotrophic respiration,
stomatal conductance, canopy energy, plant hydraulics, water stress, and solar induced fluorescence. Within these
sub‐modules, we currently support the following:

• Radiative transfer: Beer‐Lambert law (for a bulk canopy) or the vertically resolved two‐stream scheme of
Sellers (1985), as modified by Braghiere et al. (2021);

• Photosynthesis: Farquhar model (Farquhar et al., 1980) or the optimality‐based P‐model (Mengoli et al., 2022;
H. Wang et al., 2017), which is based on the Farquhar model but posits that plants find an optimal balance
between transpiration (water loss) and carbon assimilation. In both cases, rates are modified by a moisture
stress factor;

• Autotrophic respiration: D. Clark et al. (2011);
• Stomatal conductance: Medlyn conductance model (Medlyn et al., 2001) or the conductance as predicted by
the P‐model (must be paired with P‐model photosynthesis);

• Solar induced fluorescence: Lee et al. (2015);
• Canopy temperature: prescribed and equal to the air temperature, or prognostic;
• Plant hydraulics: prognostic water content, following D. M. Lawrence et al. (2019);
• Moisture stress: computed as a function of leaf water potential (Duursma &Medlyn, 2012; Tuzet et al., 2003),
or as a function of soil moisture (Egea et al., 2011).

At the top of the canopy, we compute exchanges of water, energy, and carbon with the atmosphere. At the bottom
of the canopy, we compute exchanges of water and energy with a prescribed or prognostic ground model.
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Therefore, the canopy can be run entirely in standalone mode (prescribed ground model) or as part of a land model
integrated with a prognostic soil and/or snow model. Radiative transfer is described in Appendix D2; the P‐model
is defined in Appendix C, and other parameterizations are detailed in the works cited above. Note that several
previous studies employed an early hyperspectral prototype of CliMA Land (v0.1) that integrated shortwave
radiative transfer, trait‐based optical properties, solar‐induced chlorophyll fluorescence, and photosynthesis and
energy fluxes (Braghiere et al., 2021; Y. Wang et al., 2021, 2023, 2024, 2025) within a standalone multi‐layer
canopy model. The hyperspectral modules are maintained in a separate repository (https://github.com/CliMA/
Land).

2.3.1. Plant Hydraulics

The plant hydraulics equations govern the volumetric water content along the water flow path within the canopy,
including the flux of water from the soil to the roots, which is computed dynamically. The equations are similar to
those of CLM5 (D. M. Lawrence et al., 2019) but without the assumption of steady state.

The volumetric liquid water content is denoted by ϑ, and the scalar volume flux of water per plant cross‐sectional
area by q. The water flow path is assumed to be aligned with the local Cartesian ẑ coordinate. We also assume that
the plant has an area basis A(z) (areal cross section per unit ground area) which varies along the flow path, and
possibly in time. Then the conservation law for water volume is

∂Aϑ
∂t

= −
∂(qA)
∂z

, (32)

where we approximate q with Darcy's law as

q = − K(ψ)
∂h
∂z
, (33)

where K is the conductivity (m s− 1) and h = ψ + z (m) is the hydraulic head. We use a Weibull relationship for
conductivity with constant parameters along the flow path,

K(ψ) =
⎧⎪⎨

⎪⎩

Ksat exp[− (
ψ
ψ63

)

c

] ϑ< νp

Ksat ϑ> νp,
(34)

and a linear retention curve, likewise with constant parameters along the flow path,

ψ(ϑ) =

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

1
a1
(ϑ/νp − 1) ϑ< νp

1
a2
(ϑ/νp − 1) ϑ> νp.

(35)

Here, Ksat (m s− 1) is the vegetation saturated conductivity, ψ63 (m) and c are parameters of the Weibull function,
νp is the porosity of the vegetation, and a1 and a2 (m− 1) are the inverse slopes of the retention curve. The
modeling of ϑ> νp is primarily used for numerical purposes.

At the top of the canopy, the boundary condition is the canopy transpiration (per ground area). The formula for
this is given in Appendix E3. At the bottom of the domain, we compute the flux from root extraction per cross
sectional area q = qre as

qre = − ∫
zsfc

zmin
P(z)∫

zsfc

z

∂q
∂zʹdzʹdz (36)
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where P(z) is the root distribution function (satisfying ∫zsfc
− ∞P(z)dz = 1) and where zmin is the bottom soil layer of

the simulation. The inner integral over zʹ computes the flux between the soil at z and the vegetation at the surface
zsfc, along the root path, and this is then weighted by the root density at that z. We then sum these contributions
over all soil depths.

The sink term of the soil is in terms of a volumetric fraction change, that is, a volume of water per volume of soil
per second. This is obtained as

Sre,w(z) = A(zsfc)P(z)∫
zsfc

z

∂q
∂zʹdzʹ . (37)

The sign change occurs in the expression for Sre,w because a positive value of q indicates flow from the soil to the
plant. This is a sink term for the soil.

The corresponding energy sink term is

Sre,e(z) = el(z)Sre,w(z), (38)

where el(z) is the specific internal energy of liquid water in the soil at z.

In practice, we discretize this following a finite difference scheme into two layers, a stem and a leaf. We thus
require a root area index Aroots (for computing Asfc), stem area index Astem, and leaf area index Aleaf . We use
harmonic averages for interpolating between the cell center and the cell face.We also ignore the time derivative of
A(z) appearing in Equation 32.

2.3.2. Canopy Energy

The equation for a bulk canopy temperature T can be derived by starting from a multi‐layer canopy model and
integrating in the vertical. Ignoring time derivatives in the canopy height and the area indices, and ignoring phase
changes in canopy water, this reduces to

(ρch)Acanopy
dT
dt
= Rn − LE − H +∫

zsfc

zmin
Sre,e(z)dz, (39)

where ρch is the bulk specific heat of the canopy per unit area,Acanopy = Aleaf + Astem is an above ground bulk
area index, LE is the latent heat flux between the canopy and the atmosphere (Appendix E3),H is the sensible heat
flux between the canopy and the atmosphere (Appendix E3), Rn is the net absorbed radiation in the canopy
(Appendix D2), and the last term is the energy flux due to extraction of water from soil by roots (required to
conserve energy).

3. Numerical Implementation
ClimaLand is written in the Julia programming language (Bezanson et al., 2017) and hosted in a public GitHub
repository (Deck et al., 2025). The Julia programming language was chosen for being high‐level, yet performant
and flexible. One of the goals of the CliMA project is to expand access and ease of use of climate models and
facilitate the incorporation of ML components; the streamlined installation and use provided by Julia contribute to
that goal.

3.1. Modularity

The ClimaLand model has been designed from the start for modularity. ClimaLand can be run as a single column,
suitable for modeling at a flux tower site; in a defined region bounded by latitude and longitude, suitable for
regional simulations; or at a global scale, suitable for integration into a full ESM. Beyond spatial flexibility,
ClimaLand supports various sets of equations. For example, one can simulate only soil, only snow, or only the
canopy by running a component model in standalone mode. One can also choose to simulate different combi-
nations of these components, including combining all of them in a fully integrated LSM. Examples of some of
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these various configurations will be demonstrated in Section 4. Furthermore, ClimaLand supports modularity in
terms of parameterizations, allowing for multiple options for soil hydraulics, photosynthesis, and snow physics.

This scientific flexibility is enabled by the software's design, which leverages Julia's multiple dispatch capability
—a feature where the behavior of a function is determined by the type of its input arguments. This approach is
central to how the model constructs its prognostic state vector (the set of variables to be predicted). A function,
prognostic_vars, is called on each component model (e.g., snow, soil), which is identified by a unique type.
Dispatch automatically selects the correct method to list that component's prognostic variables. This process is
hierarchical, allowing an integrated model to query its sub‐components, which in turn query their specific pa-
rameterizations. For example, a neural network snow model, with its own type, adds snow depth (zsnow) to the
state vector and provides a method for computing its time derivative (dzsnow/dt) by evaluating the network. Once
the complete state and its derivative function are assembled, the core time‐stepping algorithm handles the time
evolution, remaining entirely agnostic to the scientific components included in the model.

3.2. Performance Portability

ClimaLand is also designed for performance portability, allowing the same code to run efficiently on both CPUs
and GPUs, including in parallel across multiple cores. For the user, switching between these hardware archi-
tectures requires minimal configuration. This is possible because all architecture‐specific code, including data
structures and communication protocols, is abstracted away from the science model and managed by two backend
CliMA modules: ClimaComms.jl and ClimaCore.jl. This separation allows the core ClimaLand algo-
rithms to remain hardware‐agnostic, ensuring both flexibility and performance without requiring specialized code
from the model developer.

3.3. Temporal and Spatial Discretization

ClimaLand is able to access multiple timestepping algorithms, as implemented in the ClimaTimeSteppers.jl
package. Soil liquid water content, soil internal energy, and canopy temperature are treated implicitly in time,
while all other variables (soil CO2, soil ice, snow prognostic variables, and canopy water content) are stepped
explicitly. Therefore, when running the full integrated land model, or a standalone model with some implicitly‐
stepped prognostic variables, it is necessary to use an implicit‐explicit (IMEX) method to be able to solve both the
implicit and explicit components of the model's tendencies (see Appendix F for details). For most such runs, the
ARS111 method is used by default, which has 1 implicit stage, 1 explicit stage, and first‐order accuracy (also
known as forward–backward Euler). When running a standalone model that has only explicitly‐stepped prog-
nostic variables, the RK4 algorithm is typically used, which is a Runge–Kutta method with 4 stages and fourth‐
order accuracy.

In the vertical direction, a finite difference scheme is used to discretize the space. In both global and regional
simulations (3D domains), a spectral element spatial discretization is used in the horizontal directions. Note that
the land model does not currently include any lateral fluxes, and so the horizontal connectivity of the domain is
not used: columns are independent of each other.

3.4. Computational Performance

High computational performance is a requirement for LSMs, because repeated multi‐year simulations at one
degree resolution (or higher) are required for calibration of models, and because longer simulations are required
for scenario‐based modeling efforts. This section focuses on the computational performance of ClimaLand on
GPUs. The benchmark simulations carried out below do not include diagnostic output or forcing updates. We did
not include diagnostics primarily because the time taken for diagnostics depends on the number and frequency of
diagnostic output one needs. We did not include forcing because we do not currently have forcing at higher
resolutions than 1°, and so we cannot accurately convey how reading in the larger data would impact the per-
formance at the highest resolutions. All tests were performed on Nvidia A100 GPU with 32‐bit floating point
precision; all multi‐GPU simulations were carried out on the Derecho supercomputer (Computational and In-
formation Systems Laboratory, 2023). It is important to note that, despite GPU support being a key feature of
ClimaLand, we have not yet focused on extensive code optimization for GPU performance.
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3.4.1. Simulations on a Single GPU

When running the full land model, different components have computational costs that vary by orders of
magnitude, and one of the goals of this section is to highlight the relative costs. Given modularity of ClimaLand,
we assess performance in terms of the number of columns simulated and the wall time required to complete a
timestep. Using the number of columns as a metric abstracts the spatial configuration, as these columns can be
part of a global simulation or a focused regional simulation. Furthermore, expressing performance in terms of wall
time per timestep allows us to generalize across models that might have different maximum allowed timesteps.

We present benchmark results in Figure 1, illustrating the time required to complete a timestep as a function of the
number of simulated (independent) columns for various model combinations. In this evaluation, we began with
the fully integrated land model (soil, canopy, and snow) and then executed each component (soil, canopy, or
snow) in standalone mode. Additionally, we included two other models: a bucket model and a simpler soil model
solving only Richards' equation for a single prognostic variable, ϑl. To enhance the interpretability of the plot, we
have added two supplementary axes: the top x‐axis displays the effective resolution, calculated assuming all
columns are located on continents (each column covers 0.3 × 4π/Ncolumns square radians, where 0.3 represents
the global land fraction), and the right y‐axis indicates the equivalent number of simulated years per day, assuming
a timestep of Δt = 7.5min.

The curves in Figure 1 exhibit two distinct regimes: an initial plateau followed by a linear decrease, as visually
highlighted by the dash‐dotted linear function. The plateau at lower resolutions reflects the parallel nature of
GPUs, where all columns are processed concurrently, and the GPU is not yet fully utilized. However, as the
number of columns increases, the scaling transitions to linear. For simpler models like the bucket, canopy, or
snow model, this transition from constant to linear scaling occurs at a higher number of columns than for the full
model. Profiling analysis reveals that these models are largely latency‐bound, meaning the GPU cannot be kept
fully utilized with the available workload. This is partly attributed to known inefficiencies in ClimaLand's GPU

Figure 1. Performance and scaling of the ClimaLand models as a function of the resolution, measured in terms of time to
advance the model by one timestep. For a fair comparison, all runs used the same time‐stepper (ARS 111, with 3 N iterations)
and a fixed timestep. The top x axis shows the equivalent spatial resolution assuming all columns are on land, and the right y
axis indicates the number of simulated years per day assuming a timestep of Δt = 7.5 min. The dash‐dotted line shows linear
scaling with the number of columns. The performance plateau at low resolution arises when the number of columns is
insufficient to fully utilize the graphics processing unit (GPU). With enough columns, the scaling turns to linear. These results
demonstrate the feasibility of running high‐resolution land‐surface simulations on a single modern GPU.
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memory management, which forces the GPU to wait for new instructions. While this effect is more pronounced in
simpler models, it is also present in integrated models.

Figure 1 demonstrates that ClimaLand's full model can process 1–2 million columns per second, highlighting the
feasibility of simulating high‐resolution land‐surface models on a single modern GPU. At these high resolutions,
the soil component is the most computationally demanding, consuming over 90% of the total execution time. This
is expected, as the soil model involves solving partial differential equations, unlike other components that solve
ordinary differential equations. Conversely, the addition of the snow model has a negligible impact on runtime,
especially at higher resolution. We also note that the primary constraint on achieving even higher resolutions is
ClimaLand's memory footprint, as simulating more than 3 million columns exhausts the GPU memory. While
memory optimization has not been a primary focus thus far, there are clear avenues for improvement in this area
should one aim to accommodate even more columns on a single GPU. Finally, we tested the full land model on a
laptop GPU (Nvidia RTX A2000 Mobile) for a configuration with 10,584 columns, which resulted in a time per
step of 0.5 s, demonstrating that it is possible to performmedium‐scale simulations on readily available hardware.
To provide additional context about the meaning of the report metrics, one step in uELM (Ultrahigh‐Resolution
E3SM Land Model), with 36,000 grid cells, takes 1 s on one CPU node on Summit and one third of a second on 6
NVidia V100 GPUs (D. Wang et al., 2022).

3.4.2. Simulations on Multiple GPUs

The performance portability of ClimaLand enables simulations on multiple GPUs, which is essential for modeling
the land surface at high resolutions. To demonstrate this capability, we present the model's strong scaling per-
formance across various horizontal resolutions in Figure 2.

As shown in Figure 2, for a given resolution, the simulation speedup is linear with the number of GPUs. This
implies that doubling the horizontal resolution in each direction (a four‐fold increase in columns) requires four
times the number of GPUs to maintain the same time‐to‐solution. The performance plateaus when the number of
columns per GPU, and hence the arithmetic intensity, is too low for the hardware to be fully utilized (around
65,000 columns per GPU in this case). This linear scaling, an expected result given the independence of model
columns, demonstrates that ClimaLand is capable of kilometer‐scale simulations.

Figure 2. Parallelization performance and strong scaling of the ClimaLand integrated model as a function of the resolution
and the number of graphics processing units (GPUs). The x axis shows the number of GPUs used, the right y axis indicates the
number of simulated years per day assuming a timestep of Δt = 7.5 min, and the left y axis shows the wall time per step. For a
given number of GPUs, with high enough resolution, the scaling is linear, as indicated by the gray dashed line. These results
demonstrate the feasibility of running kilometer‐scale land‐surface simulations on modern GPUs with ClimaLand. The behavior
shown is expected since there is no communication between columns.
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4. Model Validation
In this section, we show the results of ClimaLand simulations, compared with observations, in various config-
urations: in columns and on the globe, with the standalone soil and snowmodels or the fully integrated ClimaLand
model. The primary goal is to demonstrate that the model, when run with realistic parameters, returns realistic
results. Tutorials running the following simulations are available (Deck et al., 2025).

4.1. Phase Changes in Soil

4.1.1. Freezing Front: Comparison to Laboratory Data

Mizoguchi (1990) conducted an experiment in which columns of Kanagawa sandy loam were frozen by removing
heat from above. The resulting total water content θi + θl was measured as a function of depth at three instances
after the experiment began. The data show the presence of a freezing front propagating into the soil, and the
phenomenon of cryosuction is observed, where (liquid) water below the front flows above the front, where it then
freezes. Many soil models are tested against this data set (Dall’Amico, 2011; Hansson et al., 2004; Painter, 2011).

The columns were 20 cm deep, and the initial volumetric water content was θl(t = 0, z) = 0.33, with no water
flux at the boundaries. The initial temperature was uniform at 279.85 K. Although the surface temperature was
held at 267.15 K via a circulating fluid and the bottomwas insulated, other groups have modified these boundaries
conditions in order to obtain a better fit to the data (Hansson et al., 2004; Dall’Amico, 2011; Painter, 2011),
hypothesizing that some heat loss occurred at the bottom and there was resistance between the fluid and the soil
surface. We set a Neumann condition of zero flux at the bottom, and a time‐varying surface flux of

F(z = 0, t) = 28 W m− 2 K− 1 × (Tsoil(t) − 267.15 K)

where Tsoil is value of the soil temperature in the top layer, following Hansson et al. (2004). The hydraulic
properties for the van Genuchten functions (see Appendix Equation A17 and A18) were νp = 0.535, θres = 0.05,
n = 1.48, α = 1.11 m− 1, and Ksat = 3.2 × 10− 6 m s− 1. Thermal properties were approximated using the fig-
ures in Hansson et al. (2004). We set νquartz, ss = 0.6, νminerals, ss = 0, νom, ss = 0.4, and νgravel, ss = 0. The res-
olution is Δz = 1cm.

In Figure 3, we show the comparison of the simulation with data. The agreement is comparable to that found by
Dall’Amico (2011), Hansson et al. (2004), Painter (2011), which we would expect, as ClimaLand's soil model is
similar to those models in many ways, but we do not have access to goodness of fit metrics from the other models.
The mean absolute error for ClimaLand was computed by interpolating the simulation output to the depths at
which the measurements were taken; the average value over the entire domain was 0.019 m3m− 3 after 12 hr, 0.013
m3m− 3 after 24 hr, and 0.018 m3m− 3 after 50 hr. Importantly, the phenomenon of cryosuction is observed: liquid
water is drawn toward and above the freezing front from deeper in the soil, where it then freezes. This results in a
higher water content above the front than below it, as shown in Figure 3.

We also compared the model to an analytic result for soil freezing, obtained under the assumption of Ksat = 0.
These results are presented in Appendix A7.

4.1.2. Bare Soil Evaporation

Lehmann et al. (2008) present experiments of a sand column undergoing evaporation. The sand starts fully
saturated, so that the Phase I evaporation is at the maximum rate, but it undergoes a transition to Phase II
evaporation after the surface becomes sufficiently dry. The data from the experiment was provided to us by the
authors and is shown in Figure 4, along with the predicted evaporation from two ClimaLand simulations. The
simulations are identical except for the vertical resolution. Both evaporation as a function of time and as a function
of water mass loss are shown.

To carry out the simulations, the standalone soil model was used (i.e., without a canopy or snow model).
Physical parameters for the soil were taken from Lehmann et al. (2008) with some modifications as follows, or
else representative values for sand were used. We used νp = 0.43, θres = 0.043, n = 8.91, α = 3 m− 1,
Ksat = 2.6 × 10− 6 m s− 1, and νss,quartz = 1.0. The values of α and n are similar to those inferred from the
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measured air entry potential and capillary width in Lehmann et al. (2008), 7.4 m− 1 and 6.34, respectively;
however, these parameters have a large effect on the timing of the transition so they have been adjusted for better
agreement with the data. To compute the turbulent fluxes, we set z0,m = z0,b = 0.01 m (see Appendix E2 for
definitions). The relative humidity and temperature of the air were taken as reported, air pressure was set to
atmospheric pressure, and we adjusted wind speed in order to match the potential evaporation rate at the start of
the experiment. The domain was 0.35 m deep, as reported, and we used 28 or 7 equally sized layers. The
timestep was 900 s for both simulations. The choice to run the simulation with two resolutions was in order to
test the resolution‐dependence of the evaporation scheme. As seen in Figure 4, both simulations accurately
reproduce a smoothed version of the measured evaporation rate, both as a function of time and a function of mass
loss. The mean absolute error for the high resolution simulation is 0.41 mm day− 1, while for the low resolution
simulation it is 0.48 mm day− 1; the Kling‐Gupta efficiency for the high‐resolution simulation is 0.79, and for the
low resolution simulation it is 0.74.

The evaporation scheme that we implement (Lehmann et al., 2018) has a smooth dependence on soil moisture.
This is different from a model such as Swenson et al. (2012), which has a “switch” in terms of a critical soil
moisture, above which the evaporation is at the maximal rate (soil resistance is zero), and below which the
evaporation rate steadily drops to a constant (soil resistance ramps up to constant). We found that the latter was
better able to match the experimental data under study here. However, it performed worse compared to our
adopted schemes in global runs. It is likely that calibration of the “switch” type model would enable it to perform
better; the Lehmann et al. (2018) model we adopted has no free parameters. This requires further study.

Figure 3. Comparison of Climate Modeling Alliance simulation (blue) with laboratory data (orange) of a column undergoing
freezing from above. The left, middle, and right panels show the total volumetric water content as a function of depth at 12,
24, and 50 hr after the experiment started, with a mean absolute error in each case of 0.019 m3m− 3, 0.01 3m3m− 3, and 0.018
m3m− 3, respectively. See text for a discussion.

Figure 4. Comparison of two ClimaLand standalone soil simulations (blue) with laboratory data (orange) of a column
undergoing evaporation. The dashed blue line and solid blue line indicate different model resolutions, as noted in the legend.
Left panel: evaporation rate as a function of time. Right panel: evaporation rate as a function of mass loss. The mean absolute
error for the high resolution simulation is 0.41 mm day− 1, while for the low resolution simulation it is 0.48 mm day− 1; the
Kling‐Gupta efficiency for the high‐resolution simulation is 0.79, and for the low resolution simulation it is 0.74.
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4.2. Site‐Level Data

4.2.1. Layered Soil: Fort McMurray Field Site

As reported by Zettl (2011), infiltration experiments were carried out at
several field sites near Fort McMurray in Alberta, Canada. During each
experiment, a constant ponding height between 5 and 10 cm was maintained,
and the resulting soil moisture as a function of depth into the soil was
measured at 10 cm intervals, every 4 min, down to 1.1 m. Once the experi-
ment was complete, each site was excavated, and soil properties (νp, θres, n, α,
Ksat) were determined at 2–10 cm intervals (Zettl, 2011). The values of Ksat
were refined in a followup study by Huang (2011), which used simulations of
the sites using the code Hydrus‐1D (Simunek et al., 2005). The final set of soil
hydraulic parameters, including the optimized Ksat, is reported in Table 1 of
Huang (2011).

We obtained the data and Hydrus‐1D simulation results for site SV62 from
the authors (Barbour, L., and Huang, M.) and published them (Deck
et al., 2025). Using the soil properties for each layer (16 in total) and the
boundary conditions reported in Huang (2011) (constant head at the top of the
profile, free drainage at the bottom), we carried out an infiltration simulation
with a 1.1 m deep heterogeneous soil column. The initial conditions were
taken from a linear interpolation of the data at the start of the experiment; all
measured soil parameters are also linearly interpolated to the model grid.

Results are shown in Figure 5. The simulation yields similar results as the
Hydrus‐1D simulation; both differ from the data in the sharpness of the
wetting front. This was noted in Huang (2011) and hypothesized to be due to
preferential flow, which is not modeled well by a single‐porosity model.
Although the soils at this site were all coarse‐textured, these results indicate

that the model can be used to model infiltration realistically in finely layered soils, given representative van
Genuchten parameters and Ksat.

4.2.2. Col de Porte

Col de Porte is an alpine snow monitoring site located in the French Chartreuse mountains at an elevation of
1325 m with decades of in situ data (Lejeune et al., 2019); the data from the site have been used as part of snow
model intercomparison projects (Krinner et al., 2018; Ménard et al., 2019). Wemodeled 3 years of snow evolution
(2010–2012, inclusive) using the ClimaLand standalone snow model. This version of the model ignores in-
teractions with soil and approximates the ground heat flux (Appendix Equation B3) asG = 0. The snow albedo is
set fixed to the median value observed at the site over the 3 years, and initial conditions for S, zsnow, and T are
taken from the measurements, assuming Sl = 0.

Figure 6 compares the model results for snowwater, snow depth, and surface temperature with observations at the
site. As mentioned in Section 2.2.2 and Appendix B1, the evolution of the three prognostic variables does not
guarantee that the temperature is below (or equal to) the freezing point. While the phase change flux acts to melt
snow when the temperature is predicted in an Euler step to be larger than the freezing temperature, our actual
time‐stepper is not forward Euler, and excursions above the freezing point are observed. This will require future
study. Despite this, for this particular location during these years, the uncalibrated ClimaLand snow model
realistically simulates the snow state as a function of time. The mean absolute error is 0.07 m (SWE), 0.11 m
(depth), and 4.2° K (temperature). Simulated snow water equivalent has a high bias, presumably because the
model approximates the snow surface temperature with the bulk temperature. This would lead to delayed melting
(observable in spring) as well as less melting overall, which in turn leads to less loss of water from the snowpack.

4.2.3. US‐Var Fluxtower Site

The Ameriflux US‐Var site is located at the Vaira ranch in the lower elevation foothills of the Sierra Nevada
mountain range (Ma et al., 2007). The vegetation consists mostly of C3 grasses up to 0.5 m high; the soil is 0.5 m

Figure 5. Comparison of a ClimaLand soil model simulation, a Hydrus‐1D
simulation, and measured data from an infiltration experiment at a field site
in Alberta, Canada, in a multi‐layered coarse textured soil column. The
different colors represent different times since the start of the experiment.
The points mark data, solid lines mark Climate Modeling Alliance
simulation results, and dashed lines represent the Hydrus‐1D results. This
demonstrates that the ClimaLand model can adequately represent the flow of
water in multi‐layered soils.
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deep rocky silt loam, with composition 30% sand, 57% silt, and 13% clay (Xu & Baldocchi, 2004). We simulated
the soil and vegetation at this location using ClimaLand during the year 2003; meteorological forcings were
provided in the Ameriflux data. Owing to the local climate at the site, the total reported precipitation was assumed
to be rain.

For the soil, we used parameters of νp = 0.5, θres = 0.0, n = 1.6, α = 2 m− 1, Ss = 10− 3 m− 1, and Ksat =
1.25 × 10− 6 m s− 1. The soil albedo in the NIR and PAR bands was taken to be independent of moisture, with a
value of 0.35 for both; the emissivity was 0.98, and the roughness lengths were z0m = z0b = 0.01 m.

We used g1 = 166 Pa1/2, Vcmax = 2.5 × 10− 5 molCO2 m− 2s− 1, and ρchcanopy = 745 J m− 2 K− 1. Radiative
parameters for the vegetation were a clumping index Ω = 0.75, a leaf angle distribution parameter of 0.5, an
albedo in the PAR band of 0.11, an albedo in the NIR band of 0.45, a transmissivity in the PAR band of 0.05, a
transmissivity in the NIR band of 0.34, and an emissivity of 0.97. Finally, for the plant hydraulics portion of the
code, we used moisture stress parameters of pc = − 3 × 105 Pa, sc = 4 × 10− 6 Pa− 1, hydraulic conductivity
parameters of Ksat, canopy = 2 × 10− 8 m s− 1, ψ63 = − 275 m, and a Weibull exponent of 4. For the retention

Figure 6. Comparison of a ClimaLand snow model simulation (blue) forced with meteorological data from Col de Porte, and
compared to data (orange) measured at the site. Top: snow water content as a function of time, middle: snow depth as a
function of time, bottom: snow temperature as a function of time. The mean absolute error is 0.07 m (SWE), 0.11 m (depth),
and 4.2°K (temperature). See text for discussion.
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curve, we used a1 = 4.9 × 10− 4 m− 1 and a2 = 9.8 × 10− 5 m− 1. The plant porosity was νp = 8.9 × 10− 3. For
the surface fluxes, we set z0m = 0.13hcanopy, with hcanopy = 0.5 m, and z0b = 0.1z0m. A timestep of 10 min was
used, with a vertical resolution at the surface of 3.5 cm.

Figure 7 compares the simulation results with the Ameriflux Fluxnet data provided by Ma et al. (2023). For the
soil moisture, we found that no single set of van Genuchten parameters, porosity, and residual fraction was able to
produce good fits at both the surface and at 20 cm depths; soil parameters that change with depth may be more
realistic. Soil temperature also proved challenging to match; the simulations generally show larger variation
compared to the data. As discussed in Appendix E3, we model the turbulent fluxes from vegetated surfaces as a
weighted average of fluxes from the canopy, bare soil, and bare snow. For heavily vegetated surfaces, this
approximation will be poorer, but, as this site is a grassland, we expect it to be adequate. For the monthly fluxes,
we found a mean absolute error of 7 W m− 2 (SWu), 11 W m− 2 (H), 6 W m− 2 (LE), and 0.8 μmol m− 2 s− 1 (gross
primary productivity).

4.3. Global Simulation

The ClimaLand model was used to simulate soil, snow, and canopy dynamics globally while forced by prescribed
atmospheric conditions. Atmospheric conditions at 1° resolution included wind speed at 10 m, dewpoint tem-
perature at 2 m, air temperature at 2 m, air pressure at 2 m, downwelling short and long wave radiative fluxes, and
precipitation (split into rain and snow) obtained from ERA5 reanalysis data for the years 2000–2020 (Hersbach
et al., 2023). Although the forcing data was available every hour, the actual atmospheric conditions applied to
ClimaLand at each timestep are computed using a linear interpolation between the conditions at intervals of
3 hours. The leaf area index was prescribed using a linear interpolation of MODIS data from the same time period
(Myneni et al., 2015; Y. Wang et al., 2022), with a native 8‐day interval. Linear interpolation in space was used to
create the forcing on the model grid.

The land model itself requires parameter maps of spatially varying (but assumed temporally constant) soil and
vegetation properties. These maps are interpolated to 1° resolution. The soil van Genuchten parameters, porosity,
residual water content, and saturated conductivity were obtained from Gupta et al. (2020, 2022). Soil composition
data was obtained from SoilGrids (Hengl et al., 2017). The parameters for the TOPMODEL runoff scheme were
derived from a high‐resolution map of topographic index (Marthews et al., 2015). The specific storativity was set
to a global constant of 0.001 m− 1. A map of soil color was obtained from P. J. Lawrence and Chase (2007); the
methodology for combining soil colors and soil parameters was obtained from Braghiere, Wang, et al. (2023). All
vegetation parameters maps were obtained from the Community Land Model surface parameters files (D. M.
Lawrence et al., 2019) by determining the dominant plant functional type (PFT) at each ClimaLand simulation
coordinate and using the vegetation parameter of that PFT; these parameters are described further in Appendix G.

Figure 7. ClimaLand simulations (blue) at the US‐Var Fluxtower site compared with observations made in 2003 (orange).
Left: monthly averages of fluxes, right: soil water content and temperature at different depths. Note that outgoing longwave
radiation is not measured at the site, so only the upwelling shortwave radiation is shown. For the monthly fluxes, we found a
mean absolute error of 7 W m− 2 (SWu), 11 W m− 2 (H), 6 W m− 2 (LE), and 0.8 μmol m− 2 s− 1 (gross primary productivity.
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Canopy height is treated as a constant, stem area index was set to zero, and root area index is treated as a con-
stant, Aroots = 1.

The ClimaLand simulation domain used has a resolution of 1° in each horizontal direction, with 15 layers in the
vertical. The top layer width is 5 cm, the domain depth is 50 m, and the layer widths increase with depth such that
the bottom layer is 10 m in width. The simulation was advanced in time using an ARS111 time‐stepper with a
timestep of 7.5 min; three N iterations were carried out during the implicit solve for soil water, soil energy, and
canopy temperature.

Calibration of land models has been a persistent challenge due to the number of free parameters within land
models and due to the cost of forward model runs. Ensemble Kalman inversion and variants thereof have been
developed and tested for solving inverse problems with computationally expensive forward models and noisy
data, without requiring derivatives (Dunbar et al., 2022; Huang, Schneider, & Stuart, 2022; Iglesias et al., 2013;
Kovachki & Stuart, 2019; Schneider et al., 2022). With these approaches, multiple members of an ensemble
simulate observations using the forward model, with different parameter values, and compare those with real
observations in a loss function. At the next iteration, a new set of parameter values is used, based on both the prior
distributions for these parameters as well as cross covariances among ensemble members, which approximate
derivatives of the loss function. A pipeline for calibrating the global ClimaLand model using ensemble Kalman
inversion methods is included in version 1 of ClimaLand. This pipeline was used to calibrate a subset of the free
parameters of the ClimaLand model. For this example, we used the P‐model parameterization for photosynthesis
and stomatal conductance, the piecewise soil moisture stress function, and a snow albedo parameterization, which
depends on zenith angle and snow bulk density.

4.3.1. Parameter Calibration

We calibrated the P‐model parameters c⋆, a unitless cost factor for electron transport, and β, the unitless ratio of
carboxylation to transpiration costs at standard temperature. Priors for these parameters were taken from reported
values of c⋆ = 0.41 ± 0.11 (H. Wang et al., 2017) and β = 141 ± 2.7 (Stocker et al., 2020); these values have
also been used in global simulations with the P‐model using the land model Noah‐MP Ren et al. (2025). We
calibrated the parameters of the snow albedo model depending on zenith angle and bulk snow density (Appen-
dix D1). Additionally, we calibrated the exponent c appearing in the soil moisture stress parameterization βm,
using a prior centered on a value of 1, corresponding to a linear increase from completely stressed to unstressed as
soil moisture θl increases from the residual (θr) to saturated (νp) water fractions, as

βm = min[∫ [
θl − θr
νp − θr

]

c

P(z)dz, 1] (40)

where P(z) is the root distribution function (Section 2.3.1). The calibration used a loss function proportional to the
mean squared error of the latent heat flux summed with a mean squared error of the upwelling shortwave flux. To
be more precise, the loss was computed as

L(θ)∝∑
t
∫ dλ∫ cos ϕdϕ[(LE(λ,ϕ, t; θ) − L̂E(λ,ϕ, t))2 + (SWu(λ,ϕ, t; θ) − ŜWu(λ,ϕ, t))

2
], (41)

where LE(λ,ϕ, t; θ)i is the model output of latent heat flux at longitude λ and latitude ϕ averaged over a 3 month
period starting at any time t corresponding to a day of year ∈ (1 December, 1 March, 1 June, 1 September), θ
indicates the model parameters, and L̂E(λ,ϕ, t) indicates the same quantity but from ERA5 reanalysis. In this
example, all observables at all locations in space are treated equally in the loss function, that is, the covariance
matrix is proportional to the identity matrix. Eight iterations of Unscented Kalman Inversion (Huang,
Schneider, & Stuart, 2022) were carried out, each consisting of a 27 month simulation, with the first 3 months
discarded as spinup. For example, iteration 0 used the data from 1 September 2000 to 31 November 2002, with the
first 3 months discarded. The final completed iteration used the same days of the year, for the years of 2014 and
2016. We assessed that calibration had converged by monitoring the value of the loss function. These simulations
were carried out on the Derecho supercomputer (Computational and Information Systems Laboratory, 2023)
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using 16 A100 GPUs (for 16 ensemble members), and took 12 hr to complete.
The resulting parameter values are given in Table 3.

4.3.2. Results

Figure 8 shows the simulated net radiative fluxes at the land surface, the
sensible heat flux at the land surface, and the latent heat flux at the land
surface. In each case, we show the global map of the fluxes averaged over the
period 1 March 2017–1 March 2020, the global map of the corresponding
ERA5 variable averaged over the same period, and the mean difference be-
tween the two (ClimaLand—ERA5). The root mean squared error and bias
computed using the time averages of the fluxes are (10.3, − 0.8) W m− 2

(SWn), (9.0,5.4) W m− 2 (LWn), (11.1, − 1.9) W m− 2 (LE), and
(14.7,7.8) W m− 2 (H). The Bowen ratio in many parts of the world is
incorrect (opposite sign bias in H and LE), and overall the land surface is too
bright, and not emitting enough longwave radiation. The errors seen are due to
a combination of structural error in the model and remaining uncalibrated
parameters.

Table 3
Calibrated Values for the P‐Model (Photosynthesis and Stomatal
Conductance Parameterization), Snow Albedo Parameterization, and Soil
Moisture Stress Parameterization

Parameters Calibrated value Parameterization

c⋆ 0.30 P‐model

β 192 P‐model

c 0.47 Piecewise soil moisture stress

α0 0.59 Snow albedo

Δα 0.40 Snow albedo

k 1.96 Snow albedo

β0 0.97 Snow albedo

Note. All parameters are unitless. Details of how the values were calibrated
are given in the main text.

Figure 8. Global output from ClimaLand compared with ERA5. Left: ClimaLand annual average of latent heat, sensible heat, net longwave radiation, and net shortwave
radiation (by row). Middle: ERA5 annual average of the same fluxes (by row). Right: Bias (ClimaLand—ERA5) in global averages for the same fluxes (by row). See
text for discussion.
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5. Discussion
ClimaLand is designed for flexibility. The model can be run with each component in standalone mode, for
example, the canopy model with prescribed soil state, or with components integrated into a single land model,
taking into account interactions between the components. This allows the use of the ClimaLand code for
simulating textbook examples, highly controlled lab experiments, site‐level studies (e.g., flux tower locations),
and global land dynamics.

5.1. Enabling Data‐Driven Parameterizations

The choice of the Julia programming language was originally motivated by Julia's unique (at the time) feature of
combining high‐level code, including easy integration with ML libraries, speed, and portability to different
computer architectures. Enabled by the latter, ClimaLand also supports a wide range of computing resources from
single CPUs to multi‐GPU setups, possibly distributed across multiple nodes. The superior energy efficiency of
GPUs compared to CPUs makes them a more sustainable choice for computationally intensive tasks.

As demonstrated by ClimaLand's snow depth model, it is straightforward to integrate parameterizations based on
neural networks into ClimaLand. These may be trained offline, if data exist for the specific process of interest, as
for the snow depth model (Charbonneau et al., 2025). However, it is also possible to calibrate these parame-
terizations online, that is, by carrying out forward runs and simulating an observed flux. Other areas where such
approaches can be taken to improve LSMs include land‐use changes (e.g., J. Wang et al., 2022), river‐modeling
(e.g., Lima et al., 2024), stomatal conductance parameterizations (e.g., ElGhawi et al., 2023; Saunders
et al., 2021), and subgrid contributions to runoff modeling. Calibration of seven parameters of ClimaLand using
Ensemble Kalman Inversion was described in Section 4.3.1; these calibration runs took collectively 12 hr on 16
A100 GPUs, running in parallel. The same approach can be used for calibration of ML model parameters within
ClimaLand.

5.2. Hydrological Modeling

M. P. Clark et al. (2015) reviewed the hydrological processes on land that affect large‐scale energy, water, and
carbon fluxes and which are not typically represented well in LSMs; the authors suggested specific model im-
provements that LSMs could implement to address these shortcomings. Here we discuss areas where ClimaLand
has incorporated these suggestions and where there is clear room for future work.

Saturated zone modeling: Many LSMs use a form of Richards' equation that does not permit modeling of
saturated soils. ClimaLand solves the mixed‐form of Richards' equation using the augmented liquid fraction
(Endrizzi et al., 2014; Woodward & Dawson, 2000), allowing it to simulate saturated soils. ELM is another land
model which solves for variably‐saturated soil (Bisht, Riley, Hammond, & Lorenzetti, 2018).

Groundwater flow modeling and lateral flow: LSMs generally solve Richards' equation in the vertical direction
only; alternatively, ELM is an example of an LSM which solves for three dimensional flow (Bisht, Riley,
Wainwright, et al., 2018; Qiu et al., 2024). Although simulations with ClimaLand currently set lateral flow to
zero, so that columns are independent of each other, the underlying numerical discretization of the equations is
3D. By building ClimaLand with this spatial discretization to begin with, the infrastructure for interconnectivity is
already established, allowing for future implementation of lateral energy and water flow in the soil.

Improving evapotranspiration: ClimaLand explicitly resolves hydraulic gradients within the soil‐plant‐
atmosphere system based on D. M. Lawrence et al. (2019) and treats canopy water content as a prognostic
variable.

Planned improvements include improving modeling of soil moisture by accounting for macropores and preferred
paths in soil with a dual‐porosity model (Gerke & Van Genuchten, 1993). Additionally, the runoff scheme will be
an active area of development, as it lacks realistic stream‐aquifer interactions, subgrid lateral flow, and surface
moisture effects on infiltration capacity (M. P. Clark et al., 2015; Entekhabi & Eagleson, 1989). This is an area
where data‐driven (machine learned) models may play a central role.
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5.3. Vegetation Modeling

Traditional LSMs rely on empirical parameterizations, often using fixed plant functional types (PFTs), to
represent vegetation traits (G. B. Bonan et al., 2002). While this approach simplifies the parameter space, it limits
the ability to capture the dynamic adaptation of vegetation to climate variability. Moreover, variability within a
single PFT often exceeds variability between different PFTs, leading to inaccuracies in model predictions
(Cranko Page et al., 2024; Y. Wang et al., 2025).

Recent advances, such as optimality‐based modeling frameworks (Franklin et al., 2020; Harrison et al., 2021),
offer an alternative by predicting plant traits as emergent properties of environmental constraints, improving
model generalization. These models enable vegetation to adjust key physiological traits, such as Vcmax, in
response to temperature, light, and water availability (H. Wang et al., 2017; Stocker et al., 2020). These ap-
proaches have shown success in simulating seasonal variations in leaf area index (Cai et al., 2025; Norton
et al., 2023) and stomatal conductance, as demonstrated in an early version of the ClimaLand model (Y. Wang
et al., 2021). Another benefit of such models is that they eliminate the need for high‐resolution parameter maps,
which may not always be available. ClimaLand currently implements an option for an optimality‐based model for
Vcmax and g1, based on Stocker et al. (2020). Future developments in ClimaLand will reduce reliance on static PFT
classifications using optimality models where applicable, while implementing learned functions of environmental
conditions in other cases.

Recent research also highlights the importance of spectral surface reflectance for radiative transfer (Braghiere,
Wang, et al., 2023). Most LSMs approximate reflectance using broadband values, but Braghiere, Wang,
et al. (2023) showed that this introduces biases, affecting energy fluxes and photosynthesis. ClimaLand will
incorporate hyperspectral surface albedo to improve energy balance simulations and better integrate remote
sensing data (Braghiere et al., 2021).

5.4. Carbon Pools

Terrestrial carbon is primarily distributed between two major pools: live biomass (comprising vegetation, where
carbon constitutes approximately half of the dry mass) and dead carbon (including soil organic matter, dead plant
material, and dissolved organic and inorganic carbon) (IPCC, 2023). The net carbon flux on land—the balance
between carbon uptake and release—is determined by changes in these pools over time. Vegetation carbon in
LSMs is further subdivided into functionally distinct compartments, including leaf, stem, root, and non‐structural
carbohydrates (Fatichi et al., 2019). Net Primary Productivity (NPP) is allocated among these compartments
according to species‐specific strategies, with each component exhibiting its own turnover rate. For soil carbon,
key inputs include leaf litter and root turnover, while the dominant output is microbial respiration (Tao
et al., 2023).

These processes are important to model because the global state of carbon pools is sensitive to climate change and
land use change. The current scientific consensus is that the land has been acting as a sink of carbon (Fried-
lingstein et al., 2025), but it remains unclear if this will persist in the future. Currently, ClimaLand prescribes these
carbon pools, but future iterations will incorporate prognostic carbon pools, enabling dynamic responses to
environmental changes. This transition will improve model accuracy by allowing carbon stocks to evolve in
response to climate drivers and land‐use changes.

6. Conclusions
We have presented the first version of ClimaLand, a new LSM. ClimaLand simulates the dynamics of water,
energy, and carbon fluxes on land and their interaction with the atmosphere. It is designed to overcome the
limitations of many existing LSMs by leveraging GPUs for computational efficiency and by providing a modular
architecture that enables integration with ML libraries. The development of ClimaLand was motivated by the
need for a computationally efficient LSM that can be used to simulate the land surface at high resolution and to
incorporate ML parameterizations. Its modularity also lends itself well to scientific experimentation and
exploration and makes the model easily extensible, for example, through the incorporation of optimality models.

The soil model simulates flow and phase changes of water in both saturated and unsaturated zones. The snow
model is a bulk model that simulates the accumulation and melt of snow, including an ML model for snow
thickness. The canopy model is a modified big‐leaf model that simulates the exchange of water, energy, and
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carbon between the canopy and the atmosphere. ClimaLand has been validated against benchmarks with known
behavior, experimental data, and field data. The model results are in good agreement with the data, demonstrating
that ClimaLand can realistically simulate many aspects of Earth's land surface.

Future versions of ClimaLand will include additional processes, such as lateral water and energy transport in the
soil and optimality‐based vegetation models. The model will also be extended with further ML components and
calibrated against observations to improve its accuracy.

Appendix A: A Soil Model
A1. Soil Composition

We take soil to consist of a dry soil matrix (composed of sand, clay, coarse fragments/gravel, etc.) with pore
spaces that may contain liquid water, ice, and gases (moist air). Because the primary constituents of soil are
essentially incompressible, the composition of soil is commonly expressed in terms of volume fractions (e.g.,
volume of liquid water per volume of soil), which we denote as (θl,θi,θg,θds), for liquid water, ice, gases, and dry
soil. These volumetric fractions satisfy

νp = θg + θl + θi = 1 − θds, (A1)

where νp is the porosity of the soil.

The dry soil portion of the bulk soil in turn consists of constituents that can have different thermodynamic and
hydraulic properties. Let νj indicate the dry volume fraction of constituent χj in the total volume of soil, with χj
labeling the constituents, for example,

χj ∈ {sand, clay, silt, gravel, organic matter, bedrock}.

We also let νss,j denote the volume fraction of each constituent of dry soil relative to the soil solids only. Then we
have

∑jνj
1 − νp

=∑
j
νss,j = 1.

The dry soil composition depends on a space coordinate, and it may also vary on long (decadal and longer)
timescales. In the ClimaLand model, the volume fractions νss,j of constituents of dry soil are prescribed parameter
fields. We denote the set {νss,j} as ν.

A2. Thermal Conductivity

The thermal conductivity κ(θ; ν) of soil varies depending on mineral composition, organic matter content,
porosity, and the water content of soils. We model the thermal conductivity as a weighted mean of the con-
ductivities of dry soil, κdry, and water saturated soil, κsat,

κ = Keκsat + (1 − Ke)κdry. (A2)

The weighting factor is the dimensionless Kersten number (0≤Ke ≤ 1), an empirical function that monotonically
increases with soil moisture content (Dai et al., 2019; Farouki, 1981).

Balland and Arp (2005) found the following formulation for the Kersten number through fits to empirical data:

Ke = Ke,unfrozen = S(1+νss,om − ανss,quartz − νss,gravel)/2r ×

([1 + e− βSr ]− 3 − (
1 − Sr
2

)

3

)

1− νss,om

if θi = 0.
(A3)

Journal of Advances in Modeling Earth Systems 10.1029/2025MS005118

DECK ET AL. 26 of 52

 19422466, 2026, 1, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2025M

S005118 by N
IC

E
, N

ational Institute for H
ealth and C

are E
xcellence, W

iley O
nline L

ibrary on [07/01/2026]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Ke = Ke,frozen = S1+νom,ssr if θi > 0. (A4)

Here,

Sr =
θl + θi
νp

(A5)

is the relative saturation. The scale parameters α ≈ 0.24 ± 0.04 and β ≈ 18.1 ± 1.1 are adjustable parameters
determined on the basis of soil measurements. Dai et al. (2019) found this formulation to perform well in
simulating soil temperatures across a range of locations.

This formulation is not continuous at θi = 0, and implementing a model that is (e.g., with simpler parametrized
models (Painter, 2011) or by combining Ke,frozen and Ke,unfrozen with continuous weights) will be investigated in
the future.

The dry thermal conductivity κdry(ν) is usually estimated on the basis of soil composition data and conductivity
models (Dai et al., 2019). In the Balland and Arp (2005) model, it is given as

κdry =
(aκsolid − κair)ρb + κairρds

ρds − (1 − a)ρb
, (A6)

where a = 0.053 is a unitless empirical constant,

ρb = (1 − νp)ρds (A7)

is the bulk density of the dry soil, and ρds is the particle density of the soil.

The thermal conductivity of the soil solids is given by

κsolid(ν) = κνss,omom κνss,quartzsand κνss,gravelgravel κ
1− νss,om − νss,quartz − νss,gravel
minerals . (A8)

The saturated thermal conductivity κsat is given as a geometric mean of the individual components. Following
Balland and Arp (2005),

κsat,frozen(ν,θ) = κ1− νpsolid κ
νp − θl
ice κθlliq (A9)

κsat,unfrozen(ν,θ) = κ1− νpsolid κ
νp
liq, (A10)

which we then combine using a geometric mean as

κsat(ν,θ) = κθi/νpsat, unfrozenκ
θl/νp
sat, unfrozen. (A11)

A3. Pressure Head

The prognostic variables of the soil hydrology model are the augmented liquid fraction ϑl and the ice fraction θi.
The pressure head ψ and the conductivity K need to be expressed in terms of these variables to close the model
equations.

In unsaturated soil, the pressure head is equal to the matric potential (suction head) ψm, while in saturated soils,
the pressure head can be solved for by inverting the definition of the augmented liquid fraction (3), assuming the
soil is saturated when θl = νeff , where νeff is the effective porosity defined as

νeff = νp − θi. (A12)
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We define the volumetric liquid fraction as

θl = {
ϑl for ϑl < νeff ,

νeff for ϑl ≥ νeff ,
(A13)

and the pressure head becomes

ψ(θ; ν) = {
ψm(θ; ν) for ϑl < νeff ,

(ϑl − νeff)/Ss for ϑl ≥ νeff .
(A14)

This formulation ensures that θl + θi ≤ νp and that the pressure change occurs when the soil is full of water (even
if some of that water is frozen).

The matric potential ψm(θ; ν) as a function of water content in the unsaturated zone remains to be specified. The
functional forms of ψm and of the hydraulic conductivity K(θ; ν) are related, so a hydraulic conductivity K can be
calculated once the matric potential ψm is known (Mualem, 1976). These functions typically are arguments of the
saturation, defined in terms of the porosity νp, volumetric water content θl, and θres = θres(ν), the residual water
fraction in inaccessible pore spaces:

Sl = (
θl − θres
νp − θres

). (A15)

When ice is present, this definition can be extended to the effective saturation

Sl,eff = (
θl − θres
νeff − θres

). (A16)

The van Genuchten (1980) formulation for the matric potential is

ψm(x) = − α− 1x− 1/(nm)(1 − x1/m)
1/n, (A17)

where, following Bear (2018) and Painter and Karra (2014), the argument x is set to Sl,eff . This is partly practical:
the matric potential function evaluated at an argument of unity should be zero, so if we use νp in the denominator
of the effective saturation, the pressure head would not be continuous at ν = νeff in partially frozen soil.
Additionally, Painter and Karra (2014) argue that capillary pressure Pgas − Pl should be related to the actual
available pore space, rather than the pore space that would exist if no ice were present. Therefore, this definition is
an attractive choice when ice is present, and if θi is zero, it reduces to the standard definition.

In addition to the parameters entering the effective saturation, this depends on two fitting parameters which reflect
the soil composition ν: (a) an exponent n, with m = 1 − 1/n; and (b) an inverse reference potential α> 0 (m− 1).

A4. Hydraulic Conductivity

A hydraulic conductivity that is consistent with the matric potential Equation A17 is

K(T,θi,x) = Θ(T)Γ(θi)Ksat ×
⎧⎨

⎩

x1/2[1 − (1 − x1/m)
m
]
2

for x< 1

1 for x≥ 1,
(A18)

where

• Ksat = Ksat(ν) is the hydraulic conductivity at saturation with liquid water when no ice is present;
• Θ(T) is a function that models the temperature dependence of the conductivity; and
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• Γ(θi) is an impedance factor that may be included to model reduced hydraulic conductivities in frozen soils
(Lundin, 1990).

Following Bear (2018), we use as the argument x = Sl, that is, the definition of saturation with the porosity νp
rather than the effective saturation Sl,eff , because Ksat is given for ice‐free soil.

Physically, the hydraulic conductivity is related to the kinematic viscosity of liquid water. Because the viscosity
varies with temperature—it decreases by about 65% from 0°C to 20°C—the hydraulic conductivity generally is an
increasing function of temperature. To model this temperature dependence, we represent the hydraulic con-
ductivity not only as a function of effective saturation Sl but also as an empirical function of temperature,

Θ(T) = exp[γ(T − Tref)]. (A19)

Here,

γ =
T1

(T2 − Tref)2
≈ 2.64 × 10− 2 K− 1 (A20)

is an empirical factor, with T1 = 507.88 K and T2 = 149.3 K, and Tref is the reference temperature at which
Θ = 1. The reference temperature Tref may be taken to be the annual‐mean temperature at the site in question
when tabulated values for the saturated hydraulic conductivity are used. The value γ ≈ 2.64 × 10− 2 K− 1 is
obtained with Tref = 288 K and implies a 30% increase in hydraulic conductivity for a 10 K temperature increase.

A more general expression for the temperature dependence of the hydraulic conductivity is

Θ(T) ∝ exp(−
T1

T − T2
)

with empirical constants T1 and T2. This derives from a standard expression for the temperature dependence of
the viscosity of water, neglecting the small (O(10− 3)) changes in the density of liquid water over typical soil
temperatures. The expression (A19) with the coefficient (A20) comes from a linearization of the exponent around
a reference temperature Tref , which should be within the range of typical soil temperatures, so that variations
around it are small.

The hydraulic conductivity K decreases as ice fraction increases. Even with Γ = 1, freezing decreases the
volumetric liquid fraction relative to porosity and hence decreases the conductivity (Watanabe & Flury, 2008).
This is consistent with treating freezing and drying as hydraulically equivalent. To further reduce the hydraulic
conductivity, an empirical impedance factor (Hansson et al., 2004; Lundin, 1990; Swenson et al., 2012)

Γ(θi) = 10− Ωθi/(θl+θi) (A21)

is sometimes employed, though there is debate about if such a factor is warranted (Kurylyk & Watanabe, 2013).
We follow Hansson et al. (2004) and use the impedance parameter Ω = 7.

A5. Runoff Parameterizations

Surface runoff of water occurs when the rate of water influx exceeds the capacity of the soil to take up the water
(Margulis, 2017). It is often discussed in terms of saturation excess (Dunne et al., 1975; Hewlett & Hibbert, 1967),
when any influx of water on saturated soil is taken to be runoff (zero infiltration) and of infiltration excess
(Freeze, 1974; Horton, 1933), when the rate of influx exceeds the rate of soil uptake but some water still infiltrates
the soil. The former fits into the latter definition assuming that the infiltration capacity of saturated soil is zero.
The challenge for coarse‐resolution land models is that the surface soil moisture, which governs the infiltration
capacity, has subgrid variations due to local topography, vegetation patterns, soil type, etc (Entekhabi &
Eagleson, 1989).
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Unresolved lateral subgrid‐scale water fluxes, in either the groundwater table or the unsaturated zone, also
produce loss of water from the soil (Margulis, 2017); for example, this occurs where the water table intersects the
surface, such as at a stream. This is referred to as subsurface runoff and also must be parametrized.

We have currently implemented a runoff parameterization for both surface and subsurface runoff that models
subgrid variability in topography (Niu et al., 2005), based on the work of Beven and Kirkby (1979) and Sivapalan
et al. (1987). According to Niu et al. (2005), the surface infiltration I and surface runoff Rs are given by

I = (1 − fsat)max(Fw,sfc, Ic), (A22)

Rs = Fw,sfc − I, (A23)

where Ic is the infiltration capacity (m s− 1), which we parameterize as

Ic = − Ksat,sfc, (A24)

and where

fsat = fmax exp (− foverd∇/2) (A25)

is the saturated fraction of the grid cell, where no infiltration is permitted, fover = 3.28 m− 1 is a parameter that can
be calibrated, and d∇ = z∇ − zsfc is the depth to the water table, with z = z∇ the location of the water table
closest to the surface. The quantity fmax is a spatially varying parameter computed from a map of the topographic
index at high resolution. It is the maximum saturated fraction of a grid cell, computed from the cumulative
distribution of the high resolution topographic index per low resolution grid cell. Improved parameterizations for
the infiltration capacity include its dependence on surface moisture (Entekhabi & Eagleson, 1989) but are not yet
implemented.

Note that fsat reaches a constant maximum value equal to fmax when the grid mean water table reaches the surface.
This corresponds to a saturated soil surface at the grid level. Because generally fmax < 1, the infiltration I does not
necessarily go to 0 as the soil saturates, that is, as θl,sfc + θi,sfc → νp,sfc. This reflects subgrid‐scale variations:
regions can be drier than the grid mean and hence take up water even if the grid mean is saturated. The mixed‐
form of Richards' equation is able to account for such effects since the augmented liquid fraction can be larger
than porosity.

Following Niu et al. (2005), the subsurface runoff Rss and sink terms Sss,w and Sss,e are parametrized as

Rss = Rsb exp (− foverd∇), (A26)

Sss,w = −
Rss

max(h∇,ϵ)
H(θi + θl − νp), (A27)

Sss,e = ρlelSss,w, (A28)

where Rsb = 1.48 × 10− 7 m s− 1 is an empirical and adjustable parameter and h∇ is the height of the water table
(m), defined as

h∇ =∫

zsfc

zmin
H(θi(z) + θl(z) − νp(z)) dz, (A29)

and

d∇ = zsfc − zmin − h∇, (A30)

with zmin and zsfc as the z coordinates of the bottom and top (surface) of the soil, respectively.
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A6. Heterotrophic Respiration

Carbon dioxide can be produced by respiration and diffuses in the porous air space of the soil. There are two
respiration sources for CO2 in the current version of ClimaLand's soil model: autotrophic root respiration (not
described) and heterotrophic microbial decomposition of soil organic carbon; the latter component is computed
from the Dual Arrhenius and Michaelis‐Menten (DAMM) kinetics model (Davidson et al., 2012), described in
what follows.

In the DAMM model, the heterotrophic respiration source term SC (kgC m− 3 s− 1) in Equation 15 depends on
two environmental drivers: soil temperature T and soil moisture (θl,θi). Additionally, it depends on the avail-
ability of soluble carbon, ρC,s (kgC m− 3) and oxygen, ρO,s (kgO m− 3).

The respiration rate SC is expressed as:

SC = Vpot ⋅
ρC,s

kMC,s + ρC,s
⋅

ρO,s
kMO,s + ρO,s

(A31)

where Vpot (kgC m− 3 s− 1) is the potential rate of respiration, and the second and third terms represent the
availability of soluble carbon and oxygen, respectively. The constants kMC,s (kgC m− 3) and kMO,s (kgO m− 3)
are the Michaelis constants for substrate and oxygen, respectively. The potential respiration rate Vpot is
expressed as

Vpot = Vmax exp(−
Ea

RT
), (A32)

where Vmax (kgC m− 3 s− 1) is the maximum, Ea ( Jmol− 1) is the activation energy of the reaction, and R is the gas
constant.

The mass per volume of soluble carbon substrates is affected by soil water content, and specifically by diffusion of
substrates through soil water films. Using these underlying principles, ρC,s is parameterized as

ρC,s = fC,sρC,somD̃C,s,liqθ
3
l (A33)

where ρC,som (kgC m− 3) is the total mass per volume of soil organic carbon (prescribed, currently temporally and
spatially constant); fC,s is the fraction of soil organic carbon that is soluble; and D̃C,s,liq is a dimensionless
diffusivity of the soluble carbon in liquid.

The mass per volume of soluble O2 is calculated as

ρO,s = D̃O,gρOθ4/3g , (A34)

where D̃O,g is a dimensionless diffusivity of O2 in air, ρO is the mass per volume of O2 in air in soil pores (currently
prescribed), and θg = νp − θl − θi is the volumetric fraction of gases in the pore space.

The parameterization for the diffusivity DC (m s− 2) appearing in Equation 15 is taken from Ryan et al. (2018):

DC = DC,0 ⋅ [2θ3g,100 + 0.04θg,100] ⋅ (
θg

θg,100
)

2+3b
, (A35)

where

DC,0 = DC,ref ⋅ (
T
Tref

)

1.75Pref
Pa
, (A36)
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with Tref = 273.15 K, Pref = 1013.25 hPa, Pa the (prescribed) atmospheric pressure at a height close to but
above the land surface. andDC,ref = 1.39 × 10− 5 m s− 2. The parameter b derives fromBrooks and Corey (1964)
and is estimated from the van Genuchten parameters (n,m) as b ≈ (1 + m)/ (nm2); θg,100 is the volumetric gas
fraction when the matric potential is ψ = − 1 m.

Finally, one of the predictions of the soil CO2 model is the flux of CO2 at the surface of the soil. Using a finite
difference approximation, this is given by

FC,sfc = − DC (zsfc − Δz/2)
ρC,a − ρC (zsfc − Δz/2)

Δz/2
, (A37)

where ρC,a is the mass per volume of carbon due to CO2 in the atmosphere, Δz is the width of the top layer of the
soil model, and zsfc − Δz/2 is the coordinate of the center of the first layer of the soil model. Variables and
parameters for the DAMM model are listed in Table A1.

A7. Freezing Front: Comparison to an Analytic Solution

Under certain assumptions, an analytic solution for a phase change front propagating into a medium exists (due to
Neumann; see, e.g., Carslaw and Jaeger (1959)). A semi‐infinite domain is split into two regions, one frozen and
one thawed, which are separated by a freezing (or thawing) interface that moves in time. Thermal properties are
discontinuous across the interface, but are assumed to be constant within each region. Any differences in density
between the frozen and melted states are ignored. Importantly, there is no flow within the medium. Assuming a

Table A1
Variables and Parameters of the Soil CO2 Model

Category Description Units Definition

Prognostic

ρC Mass per volume of carbon in the pore space of soil kgC m− 3

Diagnostic

SC Heterotrophic respiration kgC m− 3 s− 1 Equation A31

FC,sfc CO2 efflux at the soil surface kgC m− 2 s− 1 Equation A37

ρC,s Mass per volume of soluble carbon kgC m− 3 Equation A33

ρO,s Mass per volume of soluble oxygen kgO m− 3 Equation A34

Vpot Potential respiration rate kgC m− 3 s− 1 Equation A32

DC Diffusivity of CO2 in the pore space m s− 2 Equation A35

Parameters

Vmax Maximum respiration rate kgC m− 3 s− 1

Ea Activation energy J mol− 1

kMC,s Michaelis parameter for soil kgC m− 3

kMO,s Michaelis parameter for O2 kgO m− 3

fC,s Fraction soil organic carbon which is soluble –

θg,100 Volumetric air fraction when ψ = − 1m –

D̃C,s,liq Dimensionless diffusivity of soluble carbon in liquid –

D̃O,g Dimensionless diffusivity of oxygen in air –

Prescribed input

ρO Mass per volume of O2 in soil air space kgO m− 3

ρC,som Soil organic carbon kgC m− 3

ρC,a CO2 mass per volume in atmosphere above soil kgC m− 3
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spatially constant initial temperature and a temporally constant surface temperature, the temperature profile as a
function of time and depth can be derived. The solution is given in Appendix C of Dall’Amico (2011).

We simulated this problem using the following soil parameters: νss,quartz = 0.2, νss,minerals = 0.6, νss,om = 0.2,
Ksat = 0, νp = 0.535, and θres = 0. The initial temperature was 275.15 K, and the surface boundary condition is
263.15 K. The initial water profile was θl = 0.33. The domain is 3 m deep in order to mimic the semi‐infinite
domain of the problem on timescales of the simulation (20 days).

The results of the model are compared with the analytic solution in Figure A1. There is general agreement be-
tween the analytic and numerical solutions. In computing the analytic solution, we assumed that the water is
entirely frozen or in liquid form on either side of the front; the actual liquid content in phase equilibrium depends
on T, and hence will change within the region above and below the front, violating the assumption of constant
thermal properties.

Appendix B: Snow Model Parameterizations
B1. Phase Changes in Snow

Following Semtner (1976), we first compute the net energy flux for the snow; if the predicted energy after one
(Euler) timestep corresponds to a temperature larger than the freezing temperature, we compute the difference in
energy between the predicted energy and the energy at the freezing point. This difference divided by the timestep
and the energy per unit mass required to convert ice to liquid water is the phase change mass flux. Similarly, if
Sl > 0 and the predicted energy corresponds to a temperature colder than the phase change temperature, a phase
change mass flux is computed to allow for refreezing.

B2. Liquid Water Loss

Liquid water may be retained in the pores of the snowpack or lost as runoff at the bottom of the snowpack, where it
can infiltrate the soil. Following Bartelt and Lehning (2002), we parameterize the maximum volumetric fraction
of liquid water that a snowpack can hold as θl,c, corresponding to a mass fraction of ql,c = θl,cρl/ρsnow. We
assume that liquid water in excess of this will leave the snowpack on a timescale of

τ = max(Δt, zsnowK− 1sat,snow), (B1)

Figure A1. Temperature profile of a freezing front simulation under the assumption of zero water flow. Despite not meeting
all the assumptions of the analytic solution, the soil model produces a realistic temperature profile (blue) compared with an
analytic solution (orange).
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where Δt is the timestep of the model, zsnow is the snowpack depth and Ksat,snow is the saturated hydraulic con-
ductivity for the flow of liquid water through a porous snowpack. Thus, we model the liquid mass fraction as a
relaxation of ql to ql,c,

ρlRsnow = ρl
(ql − ql,c) S

τ
H(ql − ql,c). (B2)

B3. Snow/Soil Energy Flux

We assume that the energy flux at the snow/soil interface G is proportional to the difference in temperature
between the soil and snow near the interface, and we assume that the flux near the interface is continuous: G is
equal to the diffusive flux just interior to and within the snow and just interior to and within the soil. Then we can
show that

G = − κeff
T − Tsoil
Δzeff

(B3)

κeff =
κsoilκsnow

(κsnowΔzsoil/2 + κsoilzsnow/2)
Δzsoil + zsnow

2
(B4)

Δzeff =
Δzsoil + zsnow

2
, (B5)

where Δzsoil is taken to be the distance between the top layer center and the surface, and Tsoil is the temperature of
the soil in the top layer.

The thermal conductivity is modeled as in Jordan (1991) as

κsnow = κair + [0.07(
ρsnow
ρice

) + 0.93(
ρsnow
ρice

)

2

](κice − κair), (B6)

where the (unitless) coefficients are determined by an empirical fit, and we have κsnow = κice when ρsnow = ρice.

B4. Snow Cover Fraction

The snow cover fraction is parametrized, following Wu and Wu (2004), as

σ = min(1,
azʹ

zʹ + 1), (B7)

where zʹ = zsnow/c, and a (unitless) and c (m) are free parameters that depend on the horizontal resolution of the
simulation. For 1.5° resolution, c ≈ 0.1 m and a ≈ 2. Improving this parameterization is a goal for the next
version of ClimaLand.

Appendix C: P‐Model Implementation
To evaluate the P‐model and obtain gross primary production, net primary production, and the stomatal
conductance, the following input is required: absorbed canopy photosynthetic active radiation APAR (moles of
photons m− 2 s− 1), vapor pressure deficit VPD (Pa), canopy temperature T (K) and air pressure P (Pa). For a
derivation of the following, please see H. Wang et al. (2017).

C1. Core Photosynthesis Equations

As in the Farquhar‐von Caemmerer‐Berry model (Farquhar et al., 1980), we have
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Ac = Vcmaxmc (C1)

Aj =
J
4
mj (C2)

GPP = min(Ac,Aj) (C3)

An = GPP − Rd, (C4)

where Ac is the Rubisco‐limited assimilation (mol CO2 m− 2 s− 1), Vcmax is the maximum rate of carboxylation
(mol CO2 m− 2 s− 1), Aj is the light‐limited assimilation (mol CO2 m− 2 s− 1), J is the electron transport rate (mol
electrons m− 2 s− 1; the factor of 4 converts from moles of electrons to moles of CO2), GPP (mol CO2 m− 2 s− 1) is
the gross primary production, and An is the net primary production (mol CO2 m− 2 s− 1), which has been corrected
for dark respiration Rd (mol CO2 m− 2 s− 1). We also have

mc =

⎧⎪⎪⎨

⎪⎪⎩

ci − Γ⋆

ci + K
C3

1 C4

mj =

⎧⎪⎪⎨

⎪⎪⎩

ci − Γ⋆

ci + 2Γ⋆ C3

1 C4,

(C5)

where Γ⋆ is the CO2 compensation point (Pa), K is the Michelis‐Menton ratio (defined below; Pa), and ci is the
intercellular CO2 concentration (Pa); C3 and C4 indicate the photosynthesis mechanism.

In order to compute Γ⋆ and K, we use an Arrhenius function defined as

fArr(T; ΔH) = exp(ΔH(T − T25)/(T25RT)), (C6)

where T25 = 298.15K, R is the universal gas constant (J mol− 1K− 1), and ΔH is an activation energy (J mol− 1)
which depends on the rate being modified. We then compute

Γ⋆ = Γ⋆
25

P
101325Pa

fArr (T; ΔHΓ⋆)

Kc = Kc,25 fArr (T; ΔHKc)

Ko = Ko,25 fArr (T; ΔHKo)

K = Kc[1 +
oiP
Ko

],

(C7)

where oi is the intercellular oxygen concentration (mol mol− 1), treated as constant, and ΔHKc,ΔHKo,ΔHΓ⋆ are
all constants (J mol− 1).

The maximum rate of carboxylation Vcmax, the maximum rate of electron transport rate Jmax, and the dark
respiration Rd are also computed from values at T25 as

Vcmax = Vcmax,25 fÁrr (T; ΔHVcmax,ΔSVcmax,ΔHd,V) (C8)

Jmax = Jmax,25 fÁrr (T; ΔHJmax,ΔSJmax,ΔHd,J) (C9)

Rd = bVcmax,25 fRd (T; ΔHRd,ΔSRd,ΔHd,R), (C10)
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where b is a constant and fÁrr (T; ΔS,ΔHd) reflects activation and deactivation at higher temperature (Kattge &
Knorr, 2007; Leuning, 2002), with rate specific parameters:

fÁrr (T; ΔH,ΔS,ΔHd) = fArr(T; ΔH)
1 + exp[(T25ΔS − ΔHd)/(RT25)]
1 + exp[(TΔS − ΔHd)/(RT)]

, (C11)

and

fRd(T;) = exp[b(T − T25) + c(T2 − T225)], (C12)

with b = 0.1012K− 1,c = − 0.0005K− 2 given in Heskel et al. (2016). Currently, we do not distinguish between
C3 and C4 plants in the dark respiration term.

The intercellular CO2 concentration is computed in the P‐model as

ci =
ξca + Γ⋆

̅̅̅̅̅̅̅̅̅̅
VPD

√

ξ +
̅̅̅̅̅̅̅̅̅̅
VPD

√ , (C13)

where ca is the atmospheric CO2 pressure (Pa) and ξ (Pa) will be defined in the section below. Finally, the electron
transport rate J is

J =
4ϕ0APAR

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 + (4ϕ0APAR/Jmax)
2

√ , (C14)

where ϕ0 is the quantum yield defined as

Table C1
Parameters of the P‐Model

Parameter Value Equation Source

Γ⋆
25 4.332 Pa Equation C7 Stocker et al. (2020)

Kc,25 39.97 Pa Equation C7 Stocker et al. (2020)

Ko,25 27,480 Pa Equation C7 Stocker et al. (2020)

ΔHΓ⋆ 37,830 J mol− 1 Equation C7 Stocker et al. (2020)

ΔHKc 79,430 J mol− 1 Equation C7 Stocker et al. (2020)

ΔHKo 36,380J mol− 1 Equation C7 Stocker et al. (2020)

ΔHVcmax 71,513 J mol− 1 Equation C8 Kattge and Knorr (2007)

ΔSVcmax 649 J mol− 1K− 1 Equation C8 Kattge and Knorr (2007)

ΔHd,V 200,000 J mol− 1 Equation C8 Kattge and Knorr (2007)

ΔHJmax 49,884 J mol− 1 Equation C8 Kattge and Knorr (2007)

ΔSJmax 646 J mol− 1K− 1 Equation C8 Kattge and Knorr (2007)

ΔHd,J 200,000 J mol− 1 Equation C8 Kattge and Knorr (2007)

oi 0.2095 Equation C7 G. Bonan (2019)

b 0.015 Equation C10 G. Bonan (2019)

ϕa0 C3/C4 0.030624 Equation C15 Stocker et al. (2020)

ϕa1 C3/C4 0.001914 K− 1 Equation C15 Stocker et al. (2020)

ϕa2 C3/C4 − 0.00002958 K− 2 Equation C15 Stocker et al. (2020)

β 198 Equation C17 Calibrated

c⋆ 0.30 Equation C20 Calibrated
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ϕo = ϕa0 + ϕa1 (T − T25) + ϕa2(T − T25)2, (C15)

where ϕa0,ϕa1,ϕa2 are constants defined the same for C3 and C4 photosynthesis. Constant parameters for the P‐
model are defined in Table C1.

The canopy level stomatal conductance in units of mol H2O m2s− 1 is given as

gs =
1.6An

ca − ci
. (C16)

C2. Obtaining Vcmax,25,Jmax,25 and ξ

The optimal values of ξ, Vcmax,25, and Jmax,25 are computed at a given instant as

ξopt = [
β(K + Γ⋆)

1.6η⋆ ]

1/2

, (C17)

where β is a free parameter and η⋆ is the ratio of the viscosity of water at temperature T to its value at T25,

Vcmax,opt =
βmϕ0mʹAPAR

mc
,

Vcmax,25,opt =
Vcmax,opt

fÁrr (T; ΔHVcmax,ΔSVcmax,ΔHd,V)
,

(C18)

and

Jmax,opt =
4ϕ0APAR

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(mj/(βmmʹ))2 − 1
√ ,

Jmax,25,opt =
Jmax

fÁrr (T; ΔHJmax,ΔSJmax,ΔHd,J)
,

(C19)

where βm is a dimensionless moisture stress parameter and

mʹ = mj

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − (c⋆/mj)
2/3

√

, (C20)

with mj and mc given in Equation (C5), and c⋆ a free parameter. Note that the placement of βm in the Jmax,opt term
is required by enforcing Ac = Aj at the optimal point.

Because plants cannot immediately adjust to the optimal point, the values for ξ,Vcmax,25,Jmax,25 used in computing
photosynthesis at any given time are lagging the optimal values defined above. Currently, we follow Mengoli
et al. (2022) and use

ξi+1 = αξi+1opt + (1 − α)ξi (C21)

Vi+1
cmax,25 = αVi+1

cmax,25,opt + (1 − α)Vi
cmax,25 (C22)

Ji+1max,25 = αJi+1max,25,opt + (1 − α)Jimax,25, (C23)

where the update occurs at local noon, that is, once per day so that the index i indicates a day counter, and
α = 0.067, which corresponds to a memory timescale of 15 days.
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Appendix D: Radiative Transfer
D1. Soil and Snow Radiation

The net radiative energy flux for bare soil or snow is

Rn = SWd − SWu + LWd − LWu

= SWn + LWn,
(D1)

where SWn and LWn are the net shortwave (solar radiation) and longwave (thermal radiation) radiative energy
fluxes. In the energy flux boundary condition for soil Equation 19, the net radiative flux is weighted by the bare
soil area fraction (1 − σ), where σ is the snow cover fraction. For snow, the net radiation Rn is weighted by the
snow cover fraction (σ), in the flux in Equation 26.

The net shortwave radiation SWn at the bare ground surface is computed as

SWn =∫

∞

0
dλftrans(λ,… )uSW,d(λ,… )(1 − αground(λ,… )), (D2)

where λ indicates a wavelength of light, ftrans is the fraction transmitted by the canopy, uSW,d is the downwelling
radiative energy flux density (per wavelength increment) at the land surface above the canopy, and αground is the
soil or snow albedo. The quantities ftrans,uSW,d, and αground are all functions of wavelength. If no canopy is present,
ftrans = 1 (see D2).

In the above, we assume zero transmissivity of radiation into the soil or snow at depth. As the transmitted fraction
in snow is less than 5% for snowpacks of 10 cm depth (Perovich, 2007), this is a negligible effect.

The soil albedo is computed as a linear combination of a wet and dry soil albedo (D. M. Lawrence et al., 2019;
Braghiere, Wang, et al., 2023). We obtained maps of the soil color from NCAR (P. J. Lawrence & Chase, 2007),
and values of the soil albedo in the different wavelength bands for wet soil and dry soil, by soil color, following
Braghiere et al. (2021). Then, we approximate the soil albedo as

αsoil (λ,Sl) = Slαsoil,wet(λ) + (1 − Sl)αsoil,dry(λ), (D3)

where Sl is the effective saturation, defined in Equation A15. The snow albedo changes with wavelength, snow
morphology, impurities, and snow age (Flanner et al., 2021). In this first version of ClimaLand, it is approximated
as a global constant with a calibratable value or as a simple function of zenith angle and snow bulk density,

αsnow = f (ρsnow)[α0 + Δα exp(− kμ)], (D4)

where α0, Δα, and k are constants, μ = cosθs is the cosine of the zenith angle θs, and

f (ρsnow) = 1 − β(ρsnow/ρliq − ρsnow,min/ρliq), (D5)

where 0< β< 1 and ρsnow,min are constants. The net longwave radiation at the surface of the ground is

LWn = ϵground (LWd,canopy − σSBT4ground, sfc), (D6)

where again ground refers to soil or snow, ϵsoil = 0.96 is the emissivity of the soil (assumed constant),
ϵsnow = 0.97 is the emissivity of the snow (assumed constant)σSB is the Stefan‐Boltzmann constant, Tground,sfc is
the surface temperature of the soil or snow, and LWd,canopy is the downwelling longwave radiation underneath the
canopy (equal to the downwelling longwave radiation from the atmosphere if no vegetation is present). The term
ϵground is applied to the downwelling longwave radiation because absorptance is numerically equal to emissivity
through the Kirchhoff law. The downwelling longwave radiation is computed in D2.
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D2. Canopy Radiation

As with the soil and snow components, we model the radiative transfer in the canopy in shortwave and longwave
bands. The fraction of shortwave radiation that is transmitted by the canopy ftrans is a key output of this module, as
this dictates the shortwave radiation available for the ground components, soil and snow. The reflected shortwave
radiation, a fraction frefl of the incoming radiation, dictates the upwelling shortwave radiation from the land
surface, and the absorbed shortwave radiation, a fraction fabs affects what is available for photosynthesis and
heating of the canopy.

D2.1. Shortwave Radiation

The net shortwave radiation for the canopy is

SWn,canopy =∫

∞

0
dλfabs(λ,… )uSW,d(λ,… ), (D7)

where λ indicates a wavelength of light, fabs is the fraction absorbed by the canopy and uSW,d is the downwelling
radiative energy flux density (per wavelength increment) at the land surface above the canopy.

The net upwelling shortwave radiation from the land surface is

SWu =∫

∞

0
dλfrefl(λ,… )uSW,d(λ,… ), (D8)

where frefl is the fraction reflected by the land surface.

Currently, the radiation field is discretized into two bands: Photosynthetically Active Radiation (PAR, 400–
700 nm) and Near Infrared (NIR, 700–2,500 nm).

D2.2. Extinction Coefficient

The extinction coefficient is defined following Campbell (1998) in terms of the zenith angle θs as

K =
G(θs)

(cosθs + ϵ)
, (D9)

where G(θs) is the projection of leaf area in the direction of the solar beam (Ross, 1981), and the small value ϵ
prevents division by zero. In ClimaLand, one can either supply a constant value of G(θs), or use the semi‐
empirical Ross‐Goudriaan function (Goudriaan, 1977)

G(θs) = ϕ + 0.88(1 − 2ϕ)cosθs
ϕ = 0.5 − 0.63χl − 0.33χ2l ,

(D10)

where χl is the Ross index, which varies with vegetation type.

D2.3. Beer‐Lambert Law

The absorbed, transmitted, and reflected shortwave radiation fractions from the canopy, fabs, ftrans, frefl, in any
wavelength band, are calculated following the Beer‐Lambert law:

fabs, λ = (1 − αλ) (1 − e− KAleafΩ)

ftrans, λ = e− KAleafΩ

frefl,λ = 1 − fabs,λ − ftrans,λ (1 − αground,λ),

(D11)
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where λ indexes wavelength bands, αλ is the leaf albedo,K is the vegetation extinction coefficient,Aleaf is the leaf
area index, and Ω is the clumping index following Braghiere et al. (2021). The albedo of the ground is
computed as

αground,λ = αsoil,λ(1 − σ) + σαsnow,λ, (D12)

where σ is the snow cover fraction.

D2.4. Radiative Transfer in a Vertically Resolved Canopy

In the Beer‐Lambert scheme, the canopy is treated as a single bulk layer with certain physical properties
(Aleaf ,αλ). Following Sellers (1985), we also provide an option to resolve vertical structure in the canopy and
simulate the effects of multiple scattering by leaves, branches, and stems. As with the Beer‐Lambert scheme, this
involves the two‐stream approximation which splits the radiation into an upwelling and downwelling stream. The
radiation is further decomposed into a direct and diffuse component (Räisäenen, 2002). The scheme of
Sellers (1985) is adjusted to account for the clumping index following Braghiere et al. (2019, 2021).

As with the Beer‐Lambert scheme, the fraction of shortwave radiation absorbed, reflected, and transmitted to the
ground is computed per band, but also for diffuse and direct beams. The ground albedo is computed using
Equation (D12), but also for diffuse and direct radiation separately. The transmissivity of the leaves τl is also
required for each waveband.

D2.5. Longwave Radiation

The downward longwave radiation at the top of the canopy is denoted by LWd. Below the canopy, it is given by

LWd,canopy = (1 − ϵcanopy)LWd + ϵcanopyσSBT4canopy, (D13)

where ϵcanopy = 0.97(1 − e− A) is the emissivity of the canopy (D. M. Lawrence et al., 2019).

The upwelling longwave radiation above the soil or snow is given by

LWu,soil = ϵsoilσSBT4soil + (1 − ϵsoil)LWd,canopy (D14)

where the same equation holds for snow if soil variables are replaced by the equivalent snow variables. The net
LW radiation absorbed by the canopy is

LWn,canopy = ϵcanopy [LWd − 2σSBT4canopy + (1 − σ)LWu,soil + σLWu, snow] (D15)

so that the upwelling long wave radiation from the land surface is

LWu = (1 − ϵcanopy)[(1 − σ)LWu,soil + σLWu,snow] + ϵcanopyσSBT4canopy (D16)

From this, we can compute an effective surface temperature Teff for the land surface as

σSBT4eff ≡ LWu. (D17)

Appendix E: Turbulent Surface Fluxes
The boundary fluxes between the land surface and the atmosphere include turbulent exchange fluxes of energy
and water. When running with a prescribed atmosphere, we assume that the temporally and spatially varying
atmospheric temperature Ta (Δza), air density ρa (Δza), water vapor specific humidity qa (Δza), and wind speed
ua (Δza) tangential to the surface are prescribed at a height Δza close to but above the land surface. In reality, and
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when the land model is coupled to an atmosphere, the atmospheric conditions are determined through interactions
of the atmosphere with the land.

The surface fluxes of water, latent heat, and sensible heat are given by bulk exchange laws, which are first‐order
finite difference approximations of flux‐gradient relationships (Yatunin et al., 2025),

E = − ρs
qa − qs
rae

LE = Lv,0E

H = − ρs
DSEa − DSEs

rae
,

(E1)

where qs,DSEs and ρs are the surface specific humidity, dry static energy, and air density, with

DSE = cpm (T − T0) +Φ, (E2)

where cpm is the specific heat at constant pressure of moist air and Φ = gz is the gravitational potential energy of
the air.

The aerodynamic resistance rae ( sm− 1) is defined as

rae =
1

Chua
, (E3)

with Ch the (dimensionless) drag coefficient for heat transport as determined by Monin‐Obukhov Similarity
Theory. The drag coefficient Ch depends on the functional form of the similarity profile, as well as the roughness
lengths and displacement height of the surface, the height at which the wind speed reaches zero. Below, we will
see how the surface variables, roughness lengths, and displacement heights change for bare soil, bare snow, or
canopy covered land.

While ClimaLand tracks water content and energy, it does not explicitly model qs, ρs, or Ts (needed for the dry
static energy). For all components, the surface air density is approximated using adiabatic extrapolation as

ρs ≈ ρa (
Ts

Ta
)

cvm(qa)/Rm(qa)
, (E4)

where cvm is the specific heat at constant volume and Rm is the gas constant of the moist air in the atmosphere.
Further parameterizations are required for qs and Ts.

E1. Bare Snow

The bare snow roughness length for momentum is fixed at 0.01 m and the roughness length for scalars at 0.007 m.
The displacement height is set to zero.

We estimate the specific humidity at the surface of the snow qs by averaging the saturated specific humidity over
ice and water using the mass fraction of liquid water ql,

qs = qlqsat (Ts,ρs) + (1 − ql) qsat (Ts,ρs), (E5)

where the saturation specific humidity is computed over ice or liquid as appropriate.

The surface temperature is currently set to be equal to the bulk temperature,

Ts = T. (E6)
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This is a very coarse approximation, and in the future we will either solve for the surface temperature using a flux
balance approach or introduce additional prognostic variables (You et al., 2014).

E2. Bare Soil

The bare soil roughness length for momentum is fixed at 0.01 m and the roughness length for scalars at 0.007 m.
The displacement height is set to zero.

For the surface temperature, we use the value at the center of the top layer (a diagnostic variable of the model),
which is an acceptable approximation given that the vertical resolution is O(cm) near the surface: Ts = Tsoil,sfc.

For simplicity, we model the mass fluxes of water vapor due to sublimation Ei and evaporation El, but not both at
the same time.

E2.1. Sublimation

When the temperature is below the depressed freezing temperature T∗
f (Equation 13c), only sublimation is

considered. We model qs = qsat (Ts,ρs), the saturated specific humidity over ice at temperature Ts and in air of
density ρs, that is,

Ei = − ρs
qa − qsat (Ts,ρs)

rae
El = 0.

(E7)

E2.2. Evaporation

As the soil surface dries under evaporation, a hydraulic gradient is established between the surface and deeper,
wetter layers. Initially, this gradient drives Darcy flow of water to the surface, maintaining a maximum evapo-
ration rate (Phase I evaporation, where the surface is saturated); as more of the soil dries near the surface, these
flow paths cease and the evaporation is instead sustained by diffusion of water vapor from deeper in the soil to the
surface (Phase 2 evaporation, e.g., Or et al. (2013)). Lehmann et al. (2008, 2018) derived evaporation from soil
to be

El = El,max
ρlKeff ΔhΔz |cap

El,max + ρlKeff ΔhΔz
⃒
⃒
⃒
cap

, (E8)

where El,max is the maximum evaporation rate computed as if qs = qsat and the capillary flux magnitude which
drives this flow is

Keff
Δh
Δz

⃒
⃒
⃒
⃒
cap
= 4Ksfc[1 +

El,max
ρl4K(Sc)

]. (E9)

HereK(Sc) is the hydraulic conductivity evaluated at the critical saturation Sc below which the flow paths become
disconnected. This was derived (Lehmann et al., 2008) to be

Sc = (1 + (
n − 1
n

)

1− 2n

)

− m

. (E10)

In summary, then, when T > T∗
f (the depressed freezing point temperature), we have
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El =

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

El,max

ρlKeff
Δh
Δz
|cap

El,max + ρlKeff ΔhΔz
⃒
⃒
⃒
cap

qsat (Ts,ρs)> qa

− ρs
qa − qsat (Ts,ρs)

rae
otherwise

(E11)

Ei = 0. (E12)

The latent heat flux is computed using El, while the sensible heat flux is approximated using the solution to the
Monin‐Obukhov solve with qs = qsat (Ts,ρs).

E3. Vegetated Surfaces

To simulate turbulent surface exchange with the atmosphere from vegetated surfaces, at least two general ap-
proaches are possible. One treats each component of the land surface independently: bare soil and snow interact
with the atmosphere as described above, and the vegetation also interacts with the atmosphere in a similar fashion.
Three sets of surface fluxes are computed. This approach (referred to as parallel fluxes in G. Bonan (2019)) may
be sufficient for sparse vegetation where the vegetation does not alter the interactions between the soil/snow and
the atmosphere much from standard surface theory. A more realistic approach for vegetated surfaces models
fluxes between vegetation, soil, and snow between a common surface layer, and further accounting for the impact
of the canopy on soil and snow fluxes. In the common surface layer model, the fluxes between the surface layer
and the atmosphere are then equated with the sum of the fluxes between the land components and the surface
layer, implicitly determining the unknown surface layer temperature and humidity (G. Bonan, 2019; D. M.
Lawrence et al., 2019). ClimaLand version 1 uses parallel fluxes, but this scheme will be revisited as needed in the
future.

The net vapor flux magnitude is

Etotal = (1 − σ)Esoil + σEsnow + T, (E13)

where T, the canopy transpiration, already accounts for the leaf area index. Evaporation from water on leaves is
not modeled. The net heat flux is

(H + L)total = (1 − σ)(H + L)soil + σ(H + L)snow + (H + L)canopy, (E14)

where L is defined as in Equation E1 and Hcanopy already account for the stem and leaf area index.

Focusing on vapor fluxes from the canopy, we will assume that the specific humidity is known at some location
indicated with a prime, qʹ . We model the flux between this location and the canopy air (denoted with s) as a
diffusive flux with some known resistance rq́, that is,

Eʹ = − ρsqs − qʹ
rq́

. (E15)

Assuming that the fluxes are continuous, we set Eʹ = E and eliminate the unknown qs to find

E = − ρs
qa − qʹ
rq́ + rae

. (E16)

In Equation (E16), we set qʹ = qsat (Tcanopy,ρs) , and

rq́ = rstomata + rb, (E17)
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where rstomata is the inverse of the stomatal conductance upscaled to the canopy (weighted byAleaf ), and rb is the
leaf boundary layer resistance (D. M. Lawrence et al., 2019) also upscaled to the canopy,

rb =
1

Aleaf

1
Cv

(
u⋆

dleaf
)

− 1/2

, (E18)

with Cv (m s− 1/2) the turbulent transfer coefficient, assumed to be constant, and dleaf is a characteristic length-
scale (constant, 0.04 m). The two resistances are added in parallel, while the resistance from each unit of area is
added in series (hence the multiplicative factor of Aleaf ).

The same exact flux balance approach is carried out for sensible heat fluxes, that is,

H = − ρs
DSEa − DSEʹ

rT́ + rae
. (E19)

We compute DSEʹ using Tʹ = Tcanopy and upscale to the canopy instead as

rT́ = rb
Aleaf

A , (E20)

since both stem and leaf areas can contribute to the sensible heat flux.

Appendix F: Jacobian Approximation
As described in Section 3, we used a mixed implicit/explicit (IMEX) time‐stepping scheme to solve the land
system. To solve the implicit tendencies, we use Newton's method with an approximate Jacobian. Here we
describe the Jacobian approximation currently used in the model. Note that this section describes the Jacobian
used for the full, integrated land model. The approximations used for the standalone RichardsModel and
EnergyHydrology soil models and for the standalone CanopyModel are similar but contain only the terms
solved for in those models.

We begin with the general equations we solve for explicitly‐ and implicitly‐stepped variables in the model. These
arise from discretizing ordinary differential equations with respect to time; for simplicity, here, we consider only
implicit and explicit Euler steps, and focus on two scalar variables x and y. However, the Jacobian derived can also
be used in multi‐stage methods. We will denote the continuous time derivative terms, or tendencies, appearing on
the right‐hand side of a differential equation as either implicit or explicit, depending on howwe choose to timestep
them. Terms which require implicit stepping are also referred to as stiff.

Consider the following discrete equation for evolving a variable y, which only has an explicitly‐stepped ten-
dency Texp:

yn+1 = yn + Texp (xn,yn, tn)Δt, (F1)

where yn+ 1 indicates the value of y at time tn+ 1 = tn + Δt, and yn indicates the value of y at time tn. The latter is
assumed to be known.

The equivalent equation for a variable x with tendencies that are stepped both implicitly and explicitly is:

xn+1 − ΔtTimp ( xn+1,yn, tn) = xn + Texp (xn,yn, tn)Δt, (F2)

where we evaluate the implicit tendency Timp at the (unknown) value xn+ 1. We can rewrite Equation (F2) as

H( xn+1) = xn+1 − ΔtTimp ( xn+1,yn) − xn − Texp (xn,yn)Δt = 0; (F3)
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solving for xn+ 1 involves finding the root of this nonlinear Equation F3. We do this iteratively using Newton's
method:

H(xn+1,k) +
∂H
∂xn+1

⃒
⃒
⃒
⃒
xn+1,k

δxn+1,k+1 = 0, (F4)

where k refers to the Newton iteration, with xn+ 1,1 = xn and

∂H
∂xn+1

|xn+1,k = 1 − Δt
∂Timp
∂xn+1

|xn+1,k ≡ 1 − J( xn+1,k)Δt (F5)

δxn+1,k+1 = xn+1,k+1 − xn+1,k (F6)

Now we can plug these terms into (F4):

(1 − ΔtJ( xn+1,k))δxn+1,k+1 = − H( xn+1,k). (F7)

More generally, x and y become vectors. For the land model, we replace x with x, denoting the implicitly‐stepped
prognostic variables:

x = (ϑ1l ,… ,ϑNl ,ρe
1
int,… ,ρeNint,Tcanopy).

Here N is the number of vertical levels in the domain, so that the dimensionality of x is 2N + 1. We also have the
analogous vector of explicitly‐stepped variables y, with dimensionality 2N + 5:

y = (θ1i ,… θNi ,ρ
1
C,…ρNC,θstem,θleaf ,S,Sl,U).

In the vector case, J becomes a square matrix, with elements Ji,j defined as

Jij ( xn+1,k) =
∂Timp,i ( xn+1,k)

∂xj

⃒
⃒
⃒
⃒
xn+1,k

. (F8)

The indices i, j run from 1,… ,4N + 6, that is, over all variables in the model. Equation (F7) then becomes a
system of linear equations,

( Ii,j − ΔtJij ( xn+1,k))δx
n+1,k+1
j = − Hi ( xn+1,k), (F9)

where Ii,j = δi,j is an element of the identity matrix, and δi,j is the Kronecker delta.

Once the form of J is known for the problem at hand, each Newton iteration requires solving this system of linear
equations for δxn+ 1,k+ 1. The frequency at which the Jacobian is updated during the solve can be changed in the
code, but by default it is updated at every Newton iteration. The Jacobian in its exact form is a dense matrix, which
makes Equation (F9) expensive to solve for large N. It is numerically easier to solve if we approximate it to have a
simpler form, such as tridiagonal. However, this approximation, if poor, will affect convergence.

In the Jacobian approximation implemented for the full land model, we include the terms described below, and
exclude all other terms, approximating them as zero. Note that in component models without all of these prog-
nostic variables, terms containing the absent variables are not included in the Jacobian. The non‐zero terms are
evaluated by discretizing the following

∂Timp_ϑl
∂ϑl

=
∂
∂z
K

∂2ψ
∂z∂ϑl

(F10)

Journal of Advances in Modeling Earth Systems 10.1029/2025MS005118

DECK ET AL. 45 of 52

 19422466, 2026, 1, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2025M

S005118 by N
IC

E
, N

ational Institute for H
ealth and C

are E
xcellence, W

iley O
nline L

ibrary on [07/01/2026]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



∂Timp_ρeint
∂ρeint

=
∂
∂z
κ
∂
∂z

1
ρscs

(F11)

∂Timp_ρeint
∂ϑl

=
∂
∂z
Kρlel

∂2ψ
∂z∂ϑl

(F12)

∂Timp_Tcanopy
∂Tcanopy

=

∂Rn
∂Tcanopy

− ∂H
∂Tcanopy

− ∂L
∂qsat

⋅ ∂qsat
∂Tcanopy

ρch ⋅A (F13)

Here, Timp_x is the implicit tendency used to advance the prognostic variable x. The first 3 equations in this set are
part of the soil model, and the last equation comes from the canopy model. The variables on the right side of the
soil equations are defined in Table 1, and the variables in the canopy equation are defined in Section 2.3.2.
Exceptions are ρlel, which is the volumetric internal energy of liquid water, and qsat, which is the humidity over
water at a particular temperature and pressure (used in place of qcanopy here).

In terms of structure, the Jacobian matrix has one block for each term ∂Timp_xi
∂xj

, where xi,xj are any prognostic

variables. The blocks for the 3 nonzero equations from the soil model have a tridiagonal matrix structure, since the
value at each vertical layer in the soil depends on 3 layers of soil: itself, the layer directly above, and the layer
directly below. The block for the non‐zero equation from the canopy model has a diagonal structure, since the
canopy model does not have depth and is evaluated only at the surface. When these blocks are combined together,

the overall Jacobian is nearly a diagonal matrix, with the exception of the non‐zero off‐diagonal term ∂Timp_ρeint
∂ϑl

. The
sparsity of this matrix makes the equation Ax = b in Equation (F9) numerically easier to solve than if we were to
use the dense Jacobian without any approximations.

We currently ignore contributions to the Jacobian from surface boundary conditions of the soil except in the case
of Dirichlet conditions on ϑl. These contributions are straightforward to add and should improve the stability of
the timestepping, since most of the stiffness in the equations comes from the thin layers near the surface. For more
details about the timestepping and numerical methods used by CliMA models, see Yatunin et al. (2025).

Appendix G: Dimensionality and Source of Model Parameters
Model parameters are summarized in Tables G1–G3. The spatial dimensionality is stated from the point of view
of global simulations.

Table G1
Parameters of ClimaLand's Soil Model, Version 1

Parameter Spatial dimension Source

νp, θres, Ksat α, n 3 Fixed (Gupta et al., 2020, 2022)

ν 3 Fixed (Hengl et al., 2017)

Ss 0 To be calibrated

fover 0 To be calibrated

Rsb 0 To be calibrated

αsoil, wet,αsoil, dry 2 Fixed (D. M. Lawrence et al., 2019)

ϵsoil 0 To be calibrated

z0,m, z0,b,d 0 Fixed

dd,s 0 To be calibrated

α,β (Kersten model) 0 Fixed (Balland & Arp, 2005)

a (κdry model) 0 Fixed (Balland & Arp, 2005)

γ,Ω (factors adjusting K) 0 Fixed (Hansson et al., 2004)

Note. Physical constants, such as the density of water, will not be calibrated and are given in Table 1
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Data Availability Statement
All code used in the examples is available (Deck et al., 2025), and the required data will download automatically
when scripts are run, with the exception of hourly forcing data from ERA5 due to file size constraints and the

Table G2
Key Parameters of ClimaLand's Canopy Model, Version 1

Parameter Spatial dimension Source

g0 0 Fixed (G. Bonan, 2019)

g1 2 To be calibrated (D. M. Lawrence et al., 2019)

χ,αPAR,αNIR, τPAR, τNIR,ϵ,Ωcl 2 To be calibrated (D. M. Lawrence et al., 2019)

Vcmax,25 2 To be calibrated (D. M. Lawrence et al., 2019)

C3 versus C4 flag 2 Fixed (D. M. Lawrence et al., 2019)

sc,pc (moisture stress factors) 0 To be calibrated

θj 0 To be calibrated

ϕ 0 To be calibrated

Kc,25,Ko,25 0 Fixed (G. Bonan, 2019)

Γ∗
25 0 Fixed (G. Bonan, 2019)

ΔHkc,ko,Vcmax,Γ∗ ,Jmax,Rd 0 Fixed (G. Bonan, 2019)

oi 0 Fixed

f 0 Fixed

Jmax,25/Vcmax,25 0 Fixed

PFT map 2 Fixed (D. M. Lawrence et al., 2019)

ρch 0 To be calibrated

hstem,hleaf , SAI 0 Fixed

factor relating RAI to SAI and LAI 0 fixed

Rooting depth 2 Fixed (D. M. Lawrence et al., 2019)

Ksat,ψ63,c (Weibull permeability) 0 To be calibrated

a1,a2,ν,Ss (retention curve parameters) 0 To be calibrated

LAI 2 Prescribed (MODIS or ERA5)

Note. All 2D fields come from plant functional type maps.

Table G3
Parameters of ClimaLand's Snow Model, Version 1

Parameter Spatial dimension Source

Neural depth parameters 0 Fixed (Charbonneau et al., 2025)

z0,m, z0,b,d 0 Fixed

αsnow 0 To be calibrated

ϵsnow 0 Fixed

θr 0 To be calibrated

Ksat 0 To be calibrated

Note. Physical constants, such as the density of water, will not be calibrated and are given in Table 2.
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layered soil infiltration measurement data. The ERA5 data was obtained from Hersbach et al. (2023). The
measurement data used in the layered soil infiltration example is checked into the repository on a protected branch
of Deck et al. (2025): https://github.com/CliMA/ClimaLand.jl/tree/paper/layered_soil_plots.
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