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Abstract

Predictable modes of climate variability, such as the El Nifio Southern Oscillation (ENSO), have a major influence on
regional weather patterns, an important control on wildfire occurrence. Although these global climate modes have been
associated with historical variability in wildfire occurrence in the United States and are used to forecast seasonal wildfire
risk, precise information about the spatial pattern and magnitude of their influence is lacking and the satellite record of
wildfires is too short to address these issues. Here we use wildfire occurrence model with a large ensemble of 1600 simu-
lated years from EC-Earth3 in a recent climate (2000-2009) and a future climate corresponding to+2 °C global warming,
to characterise the impact of specific climate modes on wildfire occurrence in the contiguous US. We show that ENSO, the
Indian Ocean Dipole (IOD), and the 1-year lagged Tropical North Atlantic (TNA+1) have the greatest effect on annual fire
occurrence—strongly contributed by the effect of these modes on hot, dry conditions in the Great Plains and precipitation
in the southwestern US. El Nifio is not significantly associated with wildfire occurrence in the northwestern US, contrary
to expectation, but is associated with a later (earlier) wildfire season peak in the southwestern (southeastern) US. Under
future warming, the AMO and PNA become a significant influence over most of the US, and the magnitude of impact of
ENSO and TNA+1 increase strongly.

Keywords Wildfire - Climate modes - Teleconnections - Wildfire modelling - Climate variability

1 Introduction

With climate change, extreme wildfires are occurring at a
greater frequency and intensity (Cunningham et al. 2024).
Severe fire years often occur when synoptic-scale hot and
dry weather events cause extremely wildfire-prone condi-
tions (Gedalof et al. 2005; Barnes et al. 2025), resulting in
multiple large wildfire events; the Australian 2019-2020
(NSW EPA, 2021) and the Canadian 2023 (Pelletier et al.
2024) fire seasons are examples of this. Whilst the occur-
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rence of such conditions is generally increasing with cli-
mate change, there is a high variability in wildfire activity
and its climatic drivers between years (Abatzoglou et al.
2018). This interannual variability is a key property of the
wildfire regime, and in the United States (US)—the focus
of this study—there are strong geospatial patterns in annual
wildfire variability distinct from the mean rate of wildfire
(Keeping et al. 2025).

Global modes of climate variability, such as the El Nifio
Southern Oscillation (ENSO), have been linked to fire year
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variability. In additional to natural stochasticity in wildfire
outcomes, climate variability explains much of the interan-
nual variability in burnt area globally (Abatzoglou et al.
2018; Gincheva et al. 2024). Approximately half of global
burnt area is modulated by climate modes (Chen et al. 2016;
Cardil et al. 2023) through their influence on rainfall, tem-
perature and spring onset (Dai and Wigley 2000; Abram et
al. 2014; Schwartz et al. 2013). In the US, ENSO and other
climate modes have been shown to have a significant influ-
ence on wildfire danger (Mason et al. 2017). Climate modes
can be used to forecast seasonal wildfire danger (Shen et
al. 2019), and ENSO and the Pacific Decadal Oscillation
(PDO) are adopted in the published seasonal outlook by the
US government (NIFC 2024a).

There is an extensive tree-ring literature linking his-
toric wildfire events in the western US (west of the 100°W
meridian) and climate modes (see Supplementary Sect. 1 for
more details), primarily focusing on ENSO, the PDO, and
the Atlantic Multidecadal Oscillation (AMO). These stud-
ies often cover multiple centuries, correlating reconstructed
climate modes with tree-ring fire scars. The primary influ-
ence on wildfire in the southwestern US is ENSO: tree-ring
reconstructions (Kitzberger et al. 2007; Margolis and Swet-
nam 2013; Swetnam and Betancourt 1990; Westerling and
Swetnam 2003) link La Nifia years to drought and a higher
probability of wildfire. Reanalysis-based studies find the
same effect (Mason et al. 2017). Tree-ring reconstructions
also link El Nifio years to a later southwestern fire-season
peak (Kitzberger et al. 2001). In the northwestern US, tree-
ring studies link El Nifio years to higher wildfire activity
(Hessl et al. 2004; Johnston et al. 2017) through a reduction
in precipitation (Westerling and Swetnam 2003). This effect
is linked more strongly to wildfire size than to the rate of
occurrence (Heyerdahl et al. 2002). Recent data support the
link between El Nifio and very large wildfires in this region
(Barbero et al. 2015). However, a study of remotely sensed
burnt area covering a shorter period but a larger area found
that the influence of ENSO on wildfire in the western US is
weak compared to other key relationships between wildfire
and climate modes globally (Cardil et al. 2023).

The positive phase of the PDO (PDO+) has been linked
to greater burnt area in the northwestern US in tree-ring
analyses, especially when in conjunction with El Nifio
(Ascoli et al. 2020; Heyerdahl et al. 2002; Norman and Tay-
lor 2003; Schoennagel et al. 2005). However, reconstruc-
tions of the PDO vary significantly and the effects on US
wildfire depend on the specific reconstruction (Kipfmuel-
ler et al. 2012). Tree-ring reconstructions also associate the
warm AMO+ with increased burnt area in the West, with
studies primarily centred on the northwestern US (Ascoli
et al. 2020; Kitzberger et al. 2007; Trouet et al. 2010). The
positive Pacific/North American (PNA+) mode has also
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been associated with an earlier spring onset in the West
(Ault et al. 2011; Dannenberg et al. 2018).

Tree-ring scars have not been used to reconstruct rela-
tionships between wildfire and modes in the southeastern
and central US, but shorter timescale federal or state wild-
fire records have been used. In the southeastern US, state
fire records indicate an association between La Nifia years
and a reduction in precipitation and an increase in burnt area
in the early months of the year (Dixon et al. 2008; Goodrick
and Hanley 2009; Simard et al. 1985). Remote sensing data
support this finding (Cardil et al. 2021). The PNA- and
PDO+ have also been linked with a limited increase in wild-
fire in the southeastern US (Dixon et al. 2008; Goodrick
and Hanley 2009), whilst the North Atlantic Oscillation
(NAO); Arctic Oscillation (AO) and East Atlantic (EA) cli-
mate modes are linked to higher evaporative demand in the
Southeast—which can increase the likelihood of wildfire
(Martens et al. 2018; Cardil et al. 2023). La Nifia has also
been linked to severe wildfire danger in the southern Great
Plains (Lindley et al. 2014; NIFC 2024a) due to vegetation
becoming drier in response to droughts (Puxley et al. 2024)
associated with La Nifia events (Schubert et al. 2004). How-
ever, there are no studies based on long records that firmly
establish a link between wildfire and ENSO or any other
climate mode in the region.

Site-based tree-ring records can be used to identify
robust, long-term relationships between climate modes
and wildfire, but are limited in their geographical cover-
age. Remotely sensed burned area or state fire records pro-
vide more continuous geographical coverage but the small
sample size, given the highly stochastic nature of wildfire
events, both reduces the probability of obtaining statisti-
cally significant relationships between wildfire and climate
modes, and introduces a higher risk of spurious correla-
tions due to random variability, especially for longer period
modes.

The lack of statistically significant relationships between
wildfire and climate modes during the past three decades
either in observed (Short et al.,, 2022; Supplementary
Figs. 2.2, 2.4) or reanalysis-driven modelled wildfires
(Supplementary Figs. 2.1, 2.2) reflects the small sample
size. Large ensemble (LE) methods, widely used to study
other climate impacts (Coburn et al. 2024; Swain et al.
2020; Lopez et al. 2018), overcome the sample-size issue
and provide an alternative way of quantifying the relation-
ships between wildfire and climate modes. Thus, using an
LE together with a probabilistic model of wildfire occur-
rence facilitates an assessment of the geographical variation
in the relationship between climate modes and wildfire, the
strength of these relationships, and how they may be affected
by climate change. Here, we investigate the effect of climate
modes on US wildfire based on a 1600-year ensemble of
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modelled annual wildfire occurrence in the contiguous US
for two decade-long time slices: the recent (2000—2009)
climate and a future climate subject to an additional +2 °C
global warming. We first identify the most influential modes
based on their areal impact under recent climate conditions,
and show that their effect is physically plausible. Next, we
examine how the magnitude of their effect varies geographi-
cally and how they influence fire season length and timing.
We also test multivariate effects with ENSO. Finally, we
examine how future climate change reduces or increases the
area affected and the magnitude of that impact.

2 Data and methods
2.1 The wildfire occurrence model

We used a wildfire occurrence model (full description—
Keeping et al. 2024) trained on wildfire occurrence data
(Short et al. 2022) to model the daily probability of a wildfire
greater than 0.1 hectares in extent at 0.1° spatial resolution.
This model uses a generalised linear modelling framework
but employs a flexible variable selection algorithm to find
the optimal set of predictors from a suite of candidate vari-
ables related to climate, vegetation, and human factors influ-
encing wildfire, and then optimises the domain of influence
of each of the selected variables. In the original derivation
of the model 47 candidate predictors were used, but here
we retrained the model starting from 31 candidate predic-
tors for which temporally-varying data were available (per
Keeping et al. 2025).

The final selected predictors were cropland fraction,
needleleaf fraction, shrub fraction, gross primary produc-
tion (GPP) in the previous 50 days and the previous year,
rural population density, diurnal temperature range, pre-
cipitation on that day and in the previous five days, mean
daytime windspeed, snow cover fraction, mean daytime
vapour pressure deficit (VPD). Lightning ignitions were not
included in the model; including convective atmospheric
potential energy as a predictor of lightning was assessed
but not selected. Meteorological and vegetation proper-
ties influence both fuel availability and fuel drying. The
inclusion of two GPP terms takes account of both recent
and longer-term fuel accumulation. The inclusion of crop-
land fraction and population density implicitly account for
human impacts on wildfire occurrence through ignitions and
fragmentation. Although fuel removal or the legacies of fire
suppression on fuel accumulation are not taken into account
explicitly, these are implicit in so far as they are reflected
in the fire occurrence data on which the model was trained.
The domain over which each variable influences wildfire
likelihood was optimised separately. The outputs are then

power-law rescaled to minimise the tendency for gener-
alised linear models to underestimate wildfire extremes
(Forrest et al. 2024). The model is applied in the recent cli-
mate (overlapping with the training period) and in a future
climate subject to+2 °C global warming. At coarser spatial
and temporal resolutions, this could create bias due to out
of sample future conditions. However, because the model is
trained on daily data across all environments in the contigu-
ous US, almost all days and locations in the +2 °C time-slice
will have an analogue, or near analogue, in the training data.

The model was tested against wildfire occurrence data
(Short et al. 2022) and, when run using reanalysis data
(1992-2020), showed good discrimination in its predic-
tions of wildfire events. The reduced variable model per-
formed within the range of the Pareto superior subset of
original model training runs (Keeping et al. 2024) across
all benchmarks. The area under the receiver operating
curve (AUC) score is 0.89, substantially greater than the
0.8 value considered to indicate a good model (McCune
et al. 2002). It also reproduced the geographic patterns in
wildfire occurrence (Supplementary Fig. 3.1; normalised
mean error, NME=0.46), as well as the seasonal concentra-
tion (NME=0.78) and timing of the wildfire season (mean
phase difference=0.13) and the interannual variability
(NME=0.67) in the number of wildfires.

2.2 KNMI-LENTIS derived inputs and bias correction

KNMI-LENTIS (Muntjewerf et al. 2023) is a time-slice sin-
gle-model initial-condition large ensemble of the EC-Earth3
climate model (Ddscher et al. 2022). The pre-industrial
spin-up was sampled at 25-year intervals to obtain starting
points for 16 transient simulations that were run from the
pre-industrial (1850 CE) to the end of the twenty-first cen-
tury with historical and SSP2-4.5 forcings. Ensemble mem-
bers were then derived for 2000-2009 (referred to here as
recent) and 2075-2084 (referred to here as future and corre-
sponding to approximately +2 °C additional global warming
compared to the recent climate), by subjecting each of the
16 transient runs to nine micro-perturbations in global tem-
perature (<5-10-5 K) at the start of each decade. Together
with the original transient run, this yielded 10 decade-long
simulations, providing 160 ensemble members for each
time slice. The 25-year sampling of the macro-perturbations
ensures a good sampling of decadal to multidecadal climate
oscillations such as the AMO in each ensemble time-slice.
Shorter period oscillations such as ENSO are understood
to diverge based on initial conditions within a year (Neelin
2010). EC-Earth3 represents historical trends in precipita-
tion, land-surface temperature and blocking-frequency over
the contiguous US well (Doscher et al. 2022). The version
used in KNMI-LENTIS was further tuned to improve model
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performance in the northern hemisphere by reducing a cold
bias (Muntjewerf et al. 2023).

The climate predictors from KNMI-LENTIS needed for
the wildfire occurrence model were bias- corrected using
ERAS-Land reanalysis data (Mufoz-Sabater et al. 2021)
and downscaled to 0.1° following the methodology used in
Keeping et al. (2025) (Supplementary Sect. 4). GPP was pre-
dicted using a light-use efficiency model (the P modelWang
et al. 2017; Stocker et al. 2020) that simulates photosynthe-
sis, accounting for temporal acclimation of carboxylation
and stomatal conductance to environmental conditions. The
temperature, VPD, air pressure, incident photosynthetic flux
density, and CO, concentration inputs to the P model were
taken from the bias-corrected and downscaled KNMI-LEN-
TIS ensemble. The fraction of absorbed photosynthetically
active radiation (FAPAR) was derived using Beer’s law from
simulations of the seasonal cycle of leaf area index (LAI),
based on the reciprocity between LAI and GPP (Zhou et al.
2024). Annual antecedent GPP is used in the wildfire occur-
rence model; to calculate this for the first year, the first year
of each decade in the climate ensemble was repeated (fol-
lowing Van der Wiel et al. 2019).

2.3 Climate mode calculation

We initially considered all climate modes thought to influ-
ence wildfire danger or evaporative demand over the con-
tiguous US with an annual or longer oscillation timescale,
based on previous literature. Climate modes were derived
using monthly sea-level pressure (SLP) and sea surface
temperature (SST) fields from KNMI-LENTIS. Geopoten-
tial height is often used to calculate pressure-based climate
modes but was not available for KNMI-LENTIS, so SLP
was used instead. Climate mode indices were calculated
separately in the recent and+2 °C ensembles, in order to
represent the effects of variability within the two climates.
Modes derived using principal components were checked to
ensure they showed the correct sign of effect on their asso-
ciated SLP or SST trends. The phenomena associated with
each climate mode (as defined in Table 1) and their effect
on US meteorology are both well-represented compared to
observations—refer to Supplementary Sect. 5 for a com-
plete overview.

2.4 Comparison of climate mode effect on US
weather in LE and reanalysis

A high-resolution wildfire occurrence record is available in
the contiguous US from satellite data after 1984 (Eidenshink
et al. 2007) or from aggregated state and federal records
after 1992 (Short 2022). This short reanalysis period is not
sufficient to capture the major effects of each climate mode
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over the contiguous US (Fig. 1). The correlation coefficients
of climate mode indices and US temperature and precipita-
tion show that there is a large spread in the apparent correla-
tion when 30-year samples from the ensemble are drawn.
In most cases, the sign of the observed correlation could be
switched and it would still lie within the 95% confidence
interval of the model ensemble. The one clear exception is
ENSO (note that our ENSO index is the SO index, so the
sign is opposite to an SST-based index), where the sign is
clear although the magnitude is highly uncertain. This short
time period is therefore insufficient to robustly character-
ise the effect of each mode—justifying the use of modelled
wildfires driven by the LE. EC-Earth3 performs well in its
representation of ENSO, the NAO and the PNA (Ddoscher
et al. 2022) which are all key controls on North American
weather patterns. Comparison of annual US weather and
climate mode values between the reanalysis and ensemble
(Supplementary Fig. 6.2) shows no apparent discrepancies,
and strong associations between modes (the TNA, IOD and
ENSO) are equally present in the reanalysis and ensemble
data (Supplementary Fig. 6.1).

2.5 Relating climate modes to annual wildfires

The daily ensemble of modelled wildfire occurrence prob-
abilities was averaged annually for comparison with the
yearly phase of each climate mode—though seasonal
responses were also checked, see Supplementary Sect. 7.
The positive and negative phase of each climate mode was
defined as occurring when its annual-mean index value
was a half-standard deviation greater or lesser than zero,
respectively; and was otherwise considered to be neutral.
Simulated annual wildfire occurrence, aggregated to 0.5°,
was regressed against the numerical value of each climate
mode index. The relationship found by this regression was
only considered in the analysis if it passed a false discovery
rate corrected significance level of 0.01, per Wilks (2016).
The sign of the climate mode’s effect was determined from
the regression slope coefficient. The lagged effect of each
index on wildfire was also tested by using the index value
from the previous year. When mapping geographic patterns
in the magnitude of each mode’s association with wildfires,
the ratio between the number of modelled wildfires in each
phase of the mode relative to the mean number at that grid-
cell was plotted.

2.6 Definition of fire season peak and length

To determine the effect of climate modes on the peak timing
of the fire season, the seasonality was characterised accord-
ing to Kelley et al. (2013). The wildfire season’s mean phase
was determined for each grid-cell from the sum of monthly
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Table 1 An overview of the 11
modes considered in this analy-

Mode Index  Field

Monthly calculation method

Annual Index
calculation

sis, with the information given

on the variable used; the method EINifio South- - Equa-  SLP

by which each monthly mode is ?&2331 Hlation tSO(;liL-
calculated; and the method by
. ern
which the annual value of the :
Oscil-
mode was found lati
ation
Index
(SOD
Indian Ocean  Dipole SST
Dipole (IOD)  Mode
Index
(DMI)
Pacific Decadal PDO SST
Oscillation Index
(PDO)
Tropical North TNA  SST

Atlantic (TNA) Index

Tropical South TSA SST

Atlantic (TSA) Index

North Atlantic  NAO  SLP
Oscillation Index

(NAO)

East Atlantic EA SLP
(EA) Index

Arctic Oscilla- AO SLP

tion (AO) Index
Pacific/North ~ PNA SLP
American Index

(PNA)

Atlantic AMO SST
Multidecadal Index
Oscillation

(AMO)

Southern SAM  SLP
Annular Mode Index

(SAM)

The standardised difference between the West
[10°S-10°N, 50°E-70°E] and East [10°S-0°N,
90°E-110°E] Indian Ocean anomalies. Saji and
Yamagata (2003)

The leading principal component of the SST
anomaly over the North Pacific [20°N-70°N,
120°E-100°W]. Newman et al. (2016)

The monthly anomaly in the North Tropical
Atlantic [S°N-25°N, 55°W-15°W]. Enfield et al.
(1999)

The monthly anomaly in the South Tropical
Atlantic [20°S-0°N, 30°W-10°E]. Enfield et al.
(1999)

The leading principal component of the monthly
anomaly over the North Atlantic [20°N-80°N,
90°W-40°E]. Thornton et al. (2023)

90°W-40°E]. Thornton et al. (2023)

The leading principal component of the monthly
anomaly north of 20°N. NOAA (2025)

The leading principal component of the
DJF-mean of monthly anomalies over the
North Pacific and North America [20°-90°N,
120°E—120°W]. Mori et al. (2024)

The leading principal component of anomalised
SLP south of 20°S. NOAA (2025)

The difference between the monthly Indo-Pacific Monthly values
[5°S-5°N, 90°E-140°E] and Eastern Pacific [5°S- averaged annually
5°N, 80°W-130°W] standardised anomalies.

NOAA (2009)

Monthly values
averaged annually

The November to
March (NDJFM)
mean of the index
starting in the previ-
ous year

Monthly values
averaged annually

Monthly values
averaged annually

The December to
February (DJF)
mean of the index
starting in the previ-

ous year
The second principal component of the monthly ~ The November to
anomaly over the North Atlantic [20°N-80°N, January (NDJ) mean

of the index starting
in the previous year
The DJF mean of
the index starting in
the previous year
The calculation of
the DJF mean, start-
ing in the previous
year, was taken
before the leading
principal component
was calculated

The difference between the annual SST anoma-  N/A
lies of the Atlantic [0°N-60°N, 75°W-7.5°W] and
the rest of the global ocean. Enfield et al. (2001)

The June to August
(JJA) mean

vectors oriented in the complex plane with angles corre-
sponding to the time of year and magnitude proportional
to the number of wildfires. The seasonal concentration
was defined as the length of that resultant vector, varying
between 0 (wildfires equally spread between months) and
1 (all wildfires in one month). The effect on the timing of
the seasonal peak was calculated according to the difference
between the mean phase over all years and over years in the
positive or negative phase of each index. Locations with a

seasonal concentration of less than 0.15 were not considered
to have a distinct peak, so were excluded. The effect of cli-
mate modes on the length of the fire season was also deter-
mined relative to the average annual peak in the fire season,
or the ensemble mean of the maximum wildfire month at
each location. The mean number of months for which the
number of wildfires exceeded half of that average annual
peak was defined as the length of the fire season (per Jolly
et al. 2015; Abatzoglou et al. 2019).
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Correlation Coefficients From 30-Year Samples
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® Reanalysis
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Fig. 1 Boxplots of each quartile of the distribution of correlation coef-
ficients between climate mode indices and temperature (upper panel)
and precipitation (lower panel) over samples of the recent climate
ensemble, and the values from the reanalysis over 1990-2019 (pink
dots). To construct the distribution behind the box plots, random sam-

3 Results
3.1 Survey of the modes

The climate modes that show the greatest area of significant
(p-value 0f<0.01 after controlling for multiple testing) asso-
ciation with wildfire (Fig. 2, Table 2) are ENSO, the IOD
and annually lagged TNA (TNA+1). The La Nifia phase of
ENSO has a positive influence on wildfire probability over
91% of the contiguous US. The negative IOD and positive
TNA+1 have similarly large areas of significant influence,
affecting 90% and 85% respectively. Both of these modes
are correlated with (correlation coefficients of -0.61 and
-0.32 in the recent ensemble) and causally related to ENSO
(Ham et al. 2017; Jiang and Li 2019). The robustness of

@ Springer

NAO PNA AO AMO SAM EA

ples of 30 years were taken from the ensemble. The outer limits of
the boxplots represent the 2.5th and 97.5th percentiles, and the three
internal lines correspond to the 25th, 50th and 75th percentiles of the
bootstrapped distribution

the influence of these three modes on US wildfire (Supple-
mentary Sect. 7), taking a stricter significance threshold of
5.7x1077 (the 5-sigma p-value for a Gaussian distribution),
shows that the areal influence of ENSO, IOD and TNA+1 is
persistent over most of the US.

Other climate modes exert a significant influence on
wildfire but over more limited regions. Eleven modes have
a significant influence over an area>20% of the contigu-
ous US: ENSO, IOD, TNA+1, PDO+1, ENSO+1, TNA,
AMO+1, TSA, PDO, NAO, and NAO+1. At the stricter sig-
nificance threshold (Supplementary Sect. 7), the only modes
showing persistent areas of influence on wildfires other than
the TNA, IOD and ENSO are the PDO, AMO and NAO.
The PDO also has the next most significant control on the
distribution of the annual number of wildfires. Of the top
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Fig. 2 The area of the contiguous US significantly affected by each
climate mode. Significance was determined using an FDR corrected
significance threshold after Wilks (2016) to a control level of 0.01. The

sign of the relationship between the index and the annual number of
wildfires is given by the slope of the regression

Table 2 Percentage of contiguous US area significantly affected by each mode in the recent climate (2000-2009). Two asterisks indicate an area

over 50%, one asterisk an area over 20%

Mode Area of effect (Same Year) [%] Area of effect (Prior Year) [%]
N/A Positive Negative N/A Positive Negative

ENSO 9.0 **90.7 0.4 55.3 2.0 *42.7
10D 10.1 0.2 **89.8 83.7 3.5 12.8
PDO 64.5 *34.3 1.2 30.4 **69.6 0.0
TNA 55.5 0.6 *43.8 14.3 **85.3 0.4
TSA 53.8 *46.0 0.3 74.6 *25.4 0.1
NAO 67.2 *32.8 0.0 70.8 0.1 *29.1
PNA 77.8 0.0 *22.2 90.7 9.3 0.0
AO 92.1 7.9 0.0 94.5 0.0 5.5
AMO 100.0 0.0 0.0 54.7 *45.2 0.1
SAM 100.0 0.0 0.0 95.5 4.5 0.0
EA 100.0 0.0 0.0 100.0 0.0 0.0

eleven modes in areal significance, the TNA, PDO, NAO
and ENSO influence wildfire both in the same year and with
a one-year lag. For geographical analysis (Figs. 4 and 9) we
consider the top eight modes by areal influence in the recent
time-slice of the LE, eliminating the less influential of each
of the unlagged or lagged modes. The top eight modes were
ENSO, 10D, TNA+1, PDO+1, AMO+1, TSA, NAO, and
PNA. The area influenced by these modes is greatest in the
summer, June—August, except for the TSA which has the
greatest influence in the spring, March—-May (Supplemen-
tary Sect. 7). The AO only influences a small area (8%) and

the SAM+1 only influences 5% of the contiguous US. The
EA does not have a significant areal impact.

3.2 Effect of key modes

Given the plausibility of the effect of climate modes on US
weather in EC-Earth3 (Fig. 1, Supplementary Sect. 5) and
the considerable extent of the effect of those modes on US
wildfire (Fig. 2, Table 2), there is a pertinent question as to
the additional utility of the LE approach compared to reanal-
ysis or observed data. There is no location in the US where
a climate mode has a significant relationship with observed
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annual fire occurrences (Supplementary Fig. 2.3). Reanal-
ysis-driven modelled fire occurrences also show almost no
area of effect (Supplementary Fig. 2.1). Of the modes with
the largest areas of statistically significant effect, very few
climate mode phases result in an effect in the reanalysis sig-
nificantly outside the distribution of random noise (Fig. 3).
Only three mode phases are associated with annual wildfire
numbers outside of the 95% confidence interval of the boot-
strapped distribution from all years. In: La Nifa years (posi-
tive ENSO phase), El Nifio years (negative ENSO phase),
and when the prior year had a positive TNA phase. The
extent to which these phases exceed the confidence interval
is very low in comparison to the highly significant margin
provided by the LE (Supplementary Fig. 2.5), due to the dif-
ferent sample sizes.

ENSO has a positive effect on total annual US wildfires
in the La Nifia phase (Fig. 4), with the three areas of greatest
relative increase in wildfire occurrence rates being Medi-
terranean California, the central Great Plains, and southern
Florida. The only areas where ENSO has no significant
influence on annual wildfire occurrence are in the north-
western and northeastern US. The negative 10D and posi-
tive TNA+1 show a very similar association with wildfire
to La Nifia. The NAO and PNA havepositive and negative
impacts on annual wildfires in the southwestern and inland
northwestern US respectively. The PDO+1 has a positive
influence across the US. The AMO+1 affects a large area in
the West and has a localised influence in southern Florida.
ENSO+1 has a strong influence of wildfire occurrence along
the southern US border (Supplementary Sect. 7)—through
a control on GPP due to its association with precipitation in
this region (see Fig. 6). The TNA also shows a substantial

Fig. 3 The distribution of the
modelled annual number of
wildfires for the reanalysis o
(1990-2019) under different

1 Comparison Distribution o
Positive Phase Mean o

effect associated with an increased number of wildfires in
the West (including in the northwestern US) and in Florida.

La Nifia, the negative IOD and positive TNA+1 all show
a very similar association with wildfire. The positive phase
of the TNA+1 and negative phase of the IOD are associ-
ated with increased wildfire occurrences when considered
alone (Fig. 4). In these phases, the total number of wild-
fires in the contiguous US is found to increase by 14% and
12% respectively (Table 3). However, both modes are cor-
related to ENSO (Supplementary Sect. 6), and the effect of
both modes decreases substantially after controlling for the
phase of ENSO, from 14 to 5-8% for the positive phase of
the TNA+1 and from 12 to 2-3% for the negative phase
of the IOD. The biggest impact of both the negative phase
of the TNA+1 and positive phase of the IOD is on wildfire
in La Nifa years, where the mean number of wildfires is
decreased by 12% and 9% respectively.

A multilinear regression (MLR) of annual wildfires
(Fig. 5) against index values of ENSO, the IOD and TNA+1
finds that ENSO is the strongest pathway controlling inter-
annual variability for wildfires in the contiguous US. The
MLR slope coefficient for ENSO has the same pattern as
the association between ENSO and wildfires when not
controlling for the IOD or TNA+1. The TNA+1 also has
substantial influence, having an additional effect on wild-
fires in Mediterranean California, the southwestern US, the
southern Great Plains, and southern Florida. It follows a
similar pattern of effect to the single-mode association of
the TNA+1 and wildfires, though the magnitude of effect is
smaller compared to ENSO. The 10D has a much weaker
influence on wildfires, limited to low magnitude effects in
the southwestern US.

Neutral Phase Mean
Negative Phase Mean

mode phases compared to the
distribution of all years, per Shen
et al. (2025). The dots show the
actual mean value of modelled
annual fires. The boxplots show
the distribution of the mean
number of annual fires, drawn
from the distribution of years but
with the same sample size as the
number of years in that phase in
the reanalysis period—repeated
10,000 times. The outer limits

of the boxplots represent the
2.5th and 97.5th percentiles, and
the three internal lines corre-
spond to the 25th, 50th and 75th

45 A

40| [®

Mean Annual Fires (1000s)

'_;
v

percentiles of the bootstrapped T T
distribution
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Fig.4 Maps of the effect of each climate mode on annual wildfires rel-
ative to the mean. The sign and magnitude of the relationship is given
by the ratio between the annual number of wildfires in the positive
(upper panels) or negative (lower panels) phase—defined as beyond
plus or minus half a standard deviation from the mean respectively.
The effect of each mode is shown relative to the mean annual number

of wildfires—to account for any non-linearity in the effect between
phases that would not be captured by linear regression. The relation-
ship is only shown for locations where there is a significant relation-
ship, as identified by linear regression between the index and annual
number of wildfires at that location

Table 3 The effect of the TNA+1 and IOD climate modes on the number of wildfires in the contiguous US in each phase of ENSO and for all years,
in the recent climate time-slice of the ensemble. The sample size each percentage is based on is given in brackets

# Fires (3 s.f.) TNA+1 Phase 10D Phase
Positive Negative Positive Negative
ENSO Phase La Nifla 44,600 +7.7% (207) -11.9% (71) -8.8% (23) +3.2% (294)
Neutral 37,700 +4.9% (145) -6.1% (169) -1.4% (180) +2.2% (141)
El Niflo 32,800 +6.1% (69) -5.2% (210) -0.9% (273) +3.4% (72)
All Years 37,800 +13.6% (421) -10.1% (450) -8.4% (476) + 11.7% (507)

The association between ENSO and wildfire occurrences
reflects the influence of ENSO on VPD and precipitation,
where precipitation is also strongly linked to annual patterns
in vegetation growth and fuel accumulation (Fig. 6). The
region associated with a strong wildfire occurrence response
to ENSO in the Great Plains has a stronger VPD anomaly
while in the southwestern US, the impact of ENSO on wild-
fire is associated with a stronger precipitation anomaly.
Other modes also influence wildfires through their impacts
on VPD, precipitation and GPP (Supplementary Fig. 8.1).

The response of the statistical distribution of annual
wildfire occurrence to a climate mode varies geographically
(Fig. 7). The effect of ENSO on wildfires in the Great Basin,
for example, produces a shift in the distribution but has lim-
ited impact on the spread. In contrast, the effect of ENSO in
Southern California is to extend the spread of the distribu-
tion giving rise to an increase in the likelihood of extreme
fire-years relative to the mean. There are also distinct
geographic effects on wildfire distribution under ENSO,
TNA+1, PNA, PDO+1 and IOD (Supplementary Sect. 9).

Climate modes do not have a uniform effect on meteo-
rology, or consequent wildfire danger, throughout the year
(Supplementary Sect. 7). ENSO has a strong impact on the
length of the wildfire season (Fig. 8), with increased season
length in La Nifia years in Mediterranean California, the
Arizonan Mountains, the Great Plains and southern Florida.
This contributes to the high annual numbers of wildfires
in those regions (Fig. 4). The effect of ENSO on the peak
of the fire season is less uniform and shows an east/west
divide: El Nifio (La Nifia) results in an earlier (later) peak
to the fire season in areas to the east of the southern Great
Plains, but El Nifio (La Nifia) results in a later (earlier) peak
in the southwestern US. The effect of El Nifio on the timing
of the seasonal peak is stronger than that of La Nina, with
La Nifia increasing the frequency of wildfire occurrence in
both regions and bringing the early-spring (east) and late-
summer (west) fire season peaks closer together. The 10D
and TNA+1 have a very similar effect on fire seasonality
to ENSO, whilst the remaining modes have limited effects
on the fire seasonality (Supplementary Sect. 10), though the
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Fig. 5 Multilinear regression of the annual number of wildfires rela-
tive to the mean at each grid cell against standardised values of the
ENSO (SOI), IOD (DMI), and TNA+1 indices. The slope coefficients

ENSO Effect on VPD (Recent)

ENSO Effect on PR (Recent)

were separately calculated for each grid-cell, and are displayed for the
recent and+2°C ensemble climates

ENSO Effect on GPP (Recent)

B

i

1.2

r1.0

r1.0 r1.0

Vos

-
-5

e

T

TN »
‘0.8 . \ . («r\f 0.8
2

e

Fig. 6 the relative influence of ENSO on VPD, precipitation and GPP in the recent climate for the large ensemble

PDO+, PNA- and NAO+phases are associated with a half-
month earlier peak to the Californian fire season.

3.3 Changes in the effect of global climate modes in
a warmer climate

An additional 2°C increase in global mean temperature in
KNMI-LENTIS results in changes to the areal extent of
the significant influence of many of the climate modes on
wildfire occurrences (Fig. 9). There were only a few cases
when the influence of a mode on wildfire changed from
positive to negative, but cases where the impact of a mode
changed from insignificant to significant were widespread.
The AMO+1 and PNA show the greatest expansion in the
area of significant effect, increasing from 38 to 68% and
16 to 56% respectively (Supplementary Sect. 11). Some

@ Springer

other modes show a persistent influence in the areas they
affect under recent conditions with only a slight expansion:
ENSO (89 to 92%), the 10D (87 to 92%), and the TNA+1
(82 to 87%). There is also a significant expansion in the area
of significant influence on wildfire for the ENSO+1, TNA,
NAO+1, AMO and AO indices. However, the TSA has no
area of significant influence in the future climate, and the
area of influence of the NAO shifts from the western to the
central US (Supplementary Sect. 11).

There is a minor but statistically significant shift in the
skewness of the ENSO distribution in response to warming
(Supplementary Fig. 5.15). However, comparing the effect
on annual fires of the unaltered ENSO in the future climate,
and of the future distribution mapped to percentiles in the
recent climate revealed no substantial change in the effect
of ENSO on wildfire occurrences due to this shift. This
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Fig. 7 The frequency distribution of the modelled annual number of
wildfires per km? across the 1600 recent climate ensemble years in
the Great Basin and Southern California NIFC Geographic Area Coor-
dination Centres (GACC) defined regions (Supplementary Fig. 3.2).

Number of Fire Occurrences

The distributions are plotted separately for the positive (La Nifia) and
negative (El Niflo) phase of ENSO, with the neutral phase shown as a
dashed line for comparison
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Fig. 8 Top row: (left) the average seasonal phase across all locations
with a seasonal concentration>0.15; (central) the average seasonal
phase for all years subtracted from the average of years in the posi-
tive (La Nifa) phase; (right) the average seasonal phase for all years
subtracted from the average of years in the negative (El Nifio) phase.
Bottom row: (left) the length of the fire season in months (calculated as

suggests that ENSO’s projected effect on fire is mainly due
to an increase in the intensity of ENSO’s effect on rainfall
(Figs. 6 and 11) over North America, in line with consensus
expectations (IPCC 2021).

Despite some climate modes being substantial controls on
the internal variability in annual fire occurrences, the effect
of—for example—La Nifia in the present climate is signifi-
cantly less than the effect of a further+2°C global warming

the number of months over the mean annual half-maximum); (central)
the average season length for all years subtracted from the average of
years in the positive (La Nifia) phase; (right) the average season length
for all years subtracted from the average of years in the negative (El
Nifio) phase

(Supplementary Fig. 11.10). However, in the future cli-
mate the effect of La Nifia relative to the higher rate of fire
activity is nonetheless projected to increase. The change in
strength of the relationship between modes and the annual
number of wildfires varies geographically (Fig. 10). The
AMO+1 and TNA+1 show the most substantial increase in
the effect of their positive phase on the annual number of
wildfires; both strengthen most over the Great Plains and
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Fig. 9 Difference in the significant areal influence of each climate the effect of the mode in that area stays the same; if the colour changes,
mode in the same year and with a one-year lag between the recent this indicates that the effect of the mode in that area changes between
ensemble (R) and the+2°C ensemble (+2). The areas are given in Sup- the two ensemble climates

plementary Sect. 11. If the colour is the same in both R and+2, then
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Fig. 10 The strengthening or weakening of the effect of each climate the global climate mode relative to the mean at that location. Only
mode in both phases between the recent climate and+2°C climate regions where the effect of the mode is significant at 0 <0.01 according
time-slices. Each panel shows the ratio between recent climate and to linear regression in both time-slices are shown

the+2°C climate for the number of annual wildfires in that phase of
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Fig. 11 the relative influence of ENSO on VPD, precipitation and GPP in the+2°C climate for the large ensemble

in the West. The positive TNA+1 and La Nifia both show a
weakening in their influence on annual wildfire occurrences
along the southern border with Mexico, most substantially
in Texas. In contrast, the negative phase of the IOD has a
strengthened effect on wildfire occurrences along the south-
ern border, strongest in Arizona and New Mexico.

The PDO+1 strengthens in its association with wildfire
occurrences across its area of significant influence, with
the strengthening most over the Great Plains and in Cali-
fornia. The influence on the annual number of wildfires
relative to the mean, and the area of influence of the AO
and PNA (Supplementary Sect. 11) significantly increase,
with the greatest relative increase over the Great Plains.
The AMO+1, TNA+1, PNA, PDO+1, 10D, ENSO and AO
modes all strengthen in their influence over the majority of
the region they affected in the recent climate. As the effect
of the modes in the+2°C time-slice is calculated relative
to a higher mean rate of wildfire in the+2°C climate, this
means the control of these global climate modes on wildfire
increases even relative to the higher future interannual vari-
ability of wildfire.

Climate change drives a strong intensification of the
relative effect of ENSO on VPD over the Great Plains
(Fig. 11)—corresponding to where the greatest intensifi-
cation of ENSO is also modelled (Fig. 10). The effect of
ENSO on southwestern US precipitation is also projected
to intensify with climate change, however the association
with wildfire decreases in the same region. This could be
explained by the diminishing effect of annual-timescale
variability dryness on wildfire danger in an increasingly
arid and fuel-limited environment (Abatzoglou and Wil-
liams 2016).

4 Discussion

Our analyses have shown that ENSO, IOD and TNA+1 are
the global climate modes most associated with interannual
variability in wildfire occurrence in the contiguous US.
ENSO has a significant influence over 91% of the country,
consistent with its use in predicting wildfire severity across
the US (NIFC, 2024a; b). La Nifa strongly increases annual
wildfire probability over California, the interior southwest-
ern US, the Great Plains, and southern Florida. La Nina
years have been associated with increased wildfire activity
in the southwestern US due to reduced precipitation (Mar-
golis and Swetnam 2013; Mason et al. 2017; Westerling
and Swetnam 2003), as well as in the southeastern states of
Mississippi (Dixon et al. 2008) and Florida (Goodrick and
Hanley 2009). La Nifia has also been associated with severe
wildfires in the southern Great Plains (Lindley et al. 2014).
However, we only identify a moderate effect of La Nifia on
wildfire occurrence for most of the southeastern US, with
a highly localised effect over southern Florida. This could
be explained by the strength of the effect of ENSO on pre-
cipitation (and consequent higher GPP) in the southwestern
US and Florida, compared to a lesser effect over the wider
southeastern US. We also identify a well-defined hotspot for
the effect of La Nifna on wildfire in the Great Plains, where
ENSO has been linked qualitatively to wildfires (Lindley
et al. 2014). VPD shows a strong response to ENSO over
the Great Plains, with the increased hot, dry conditions in
La Nifia years therefore a likely primary contributor to the
enhanced wildfire likelihood. The effect of La Nifia relative
to the mean wildfire rate intensifies with climate change
over the Great Plains and California.

The negative IOD and positive TNA+1 show a very simi-
lar pattern of effect to La Nifia when considered indepen-
dently, with the TNA+1 having a greater effect. The TNA+1
and IOD are causally linked (Wang et al. 2021; Ham et al.
2013; Hameed et al. 2018; Jiang and Li 2019) and corre-
lated with ENSO; and the similarity of their influence on
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wildfire raises questions about the extent to which they are
simply proxies for the phase of ENSO. Our MLR analyses
show that while ENSO has the greatest influence on wildfire
variability, TNA+1 also has an independent though smaller
effect while the IOD has only a limited impact in the region
near the US-Mexico border. The correlation of the TNA+1
and the IOD with ENSO preclude a definite attribution of
the causal influence of each mode on wildfire occurrence.
However, our analyses suggest that the strongest apparent
pathway of influence is via ENSO and TNA+1. Although
the TNA and IOD have been closely associated with burnt
area at a global scale (Cardil et al. 2023), their impact of
wildfires in the US has been largely ignored.

ENSO creates a moisture dipole between the northwest-
ern and southwestern US through influencing the latitude
of the jet stream (Dettinger et al. 1998; Westerling and
Swetnam 2003). It has therefore been suggested that ENSO
increases wildfire activity in the northwestern US in El Nifio
years (Barbero et al. 2015; Johnston et al. 2017). However,
there is almost no statistically significant influence in this
region in our simulation of 1600 years of annual wildfire
occurrences in the recent and +2°C climates, with the posi-
tive effect of El Nifio on northwestern US wildfire only
statistically significant over a small region. There is a possi-
bility that this is due to an unknown bias in EC-Earth3’s rep-
resentation of ENSO over the region, however assessment
of the mode’s behaviour and effect over the US does not
reveal any obvious issues (Supplementary Sect. 5, Doscher
et al. 2022)—with the moisture dipole represented in the
model. Alternatively, this could be explained by most analy-
sis in this region having focussed on fire frequency or burnt
area. El Nifio has a greater effect on fire size (Heyerdahl
et al. 2002; Barbero et al. 2015), a distinct property from
occurrence likelihood, which could be sufficient to explain
the greater rates of fire frequency for El Nifio years in the
tree ring record. Links between wildfire occurrence and
the PDO+ (Ascoli et al. 2020; Heyerdahl et al. 2002; Nor-
man and Taylor 2003; Schoennagel et al. 2005) and AMO+
(Ascoli et al. 2020; and Kitzberger et al. 2007) in the north-
western US are also not significant in our analyses.

The AMO+1 is an important control on wildfire likeli-
hood over 38% of the contiguous US under recent condi-
tions, particularly in the West and southern Florida. The
impact of the AMO on wildfires in the+2 °C time-slice
increases considerably in the central US and along the East
Coast, with a>25% increase in annual wildfire occurrences
in the Great Plains and southern Florida.; the strengthened
effect of AMO+1 on US wildfire occurrence indicates that
the positive relationship between this mode and wildfire also
applies to higher amplitudes of the oscillation. The AMO+1
and TNA+1 show the greatest strengthening in their effect
with future warming, indicating that high Atlantic SSTs in
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the previous year are strongly associated with interannual
wildfire variability under climate warming. The AMO+ has
been linked to wildfire activity in the same year (Ascoli et
al. 2020; and Kitzberger et al. 2007), but our analysis shows
no significant effect in the recent climate and only a minor
area of influence with warming. This might seem contra-
dictory to its multidecadal effect, but when no low-pass fil-
tering is applied to the AMO, annual oscillations between
neutral and high positive or negative values occur in its mul-
tidecadal positive or negative phases respectively (Sutton
and Hodson 2007). Atlantic SSTs in the prior year have a
greater effect on US wildfire than in the same year.

The Great Plains is the region where wildfires show
the most sensitivity to variation in climate modes. There
is a>25% increase in annual wildfire occurrences under
recent conditions with La Nifia, the positive TNA+1 and the
negative I0OD. Wildfire is also increased to a similar extent
by the positive AMO+1 in the+2°C time-slice. The PDO+1,
PNA and AOQ, all anticipated to change with warming (Lit-
zow et al. 2020; Ning and Bradley 2016; Zhang et al. 2016;
Choi et al. 2010), also have a significant impact on wildfire
probability in this region. The sensitivity of the Great Plains
to climate variability is in part due to meteorological effects
on fire weather but also reflects the importance of vegeta-
tion type. Grassland and savanna vegetation have a strong
response to climate variability: higher-than-normal anteced-
ent precipitation increases fuel production and short-term
droughts cause rapid drying of grassy vegetation (Littell
et al. 2009; Archibald et al. 2009). The overall abundance
of the vegetation may also contribute to this sensitivity. In
the interior western US, for example, temperate sierras and
forested mountains have a higher sensitivity to climate vari-
ability than the surrounding desert.

The climate mode indices were derived according to
standard methods. The modes of variability in climate
models might differ from those in the observational record.
However, all the modes considered here are represented
in the recent and+2°C ensembles, and show reasonable
geographic patterns in terms of the associated SST or SLP
anomalies and the expected precipitation anomalies over
the contiguous US. The ensemble climate modes can there-
fore be considered phenomenologically similar to observa-
tions, and thus to have the same causal effects on wildfire
likelihood. The periodicity of multi-year oscillations can-
not be assessed from the decadal time-slices. However,
the transient EC-Earth3 runs from which the time-slices
were sourced show the expected periodicity for each mode,
including the longer periodicities of the PDO and AMO. The
PDO has much higher interannual variability than the AMO,
resulting in a tendency for sub-decadal oscillations within
a time slice. Whilst a low-pass filtering of the PDO (and
AMO) time-series might provide a better representation of
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decadal to multidecadal effects, both the SST and the meteo-
rological patterns associated with these modes was correct.

Climate modes are often correlated and can modulate the
effect of other climate modes. This means that the associa-
tion between a single climate mode and wildfire can also
embed information on other climate modes that may be
more directly causally linked to wildfire activity, as shown
by the analysis of the TNA, IOD and ENSO. The impact of a
particular mode on wildfires can be established through con-
sideration of the mean effect in different phases, as shown
for ENSO in the southwestern US. However, there may be
mechanisms that disrupt the expected patterns of climate
variability associated with a particular mode. One example
of this is the impact of years with exceptional atmospheric
river activity over the southwestern US which led to a rever-
sal of the expected precipitation patterns associated with La
Nifa and El Nifio (Luna-Nifio et al. 2025).

We used commonly used metrics (Jolly et al. 2015;
Abatzoglou et al. 2019) to characterise the peak timing and
length of the fire season. These were defined as the month
with the most fires and any months with over half the annual
maximum month respectively. However, it is difficult to
characterise the seasonal peak in this way when there is a
similar likelihood of wildfires across most of the year and
this approach also does not resolve the effect of climate
modes on bimodal fire seasons, such as in the Appalachian
Mountains (Lafon et al. 2005). Defining the length of the fire
season relative to the average value of the highest fire month
at a given location is appropriate for local comparisons but
makes it difficult to compare changes across regions with
very different baseline fire regimes. The similar increase in
the lengthening of the fire season in the Great Plains and
Mediterranean California, for example, will have different
consequences given that the occurrence of wildfires is lower
in the Great Plains.

We used a wildfire probability model to link climate
modes to annual wildfire occurrences. The model repre-
sents the probability of wildfire events over a (.1-hectare
threshold, but does not simulate other wildfire attributes
such as size or intensity. Thus, the impact of changes in
climate modes on wind patterns and storm tracks that can
lead to extreme wildfires are not accounted for in this
study. In addition to the climate drivers of wildfire prob-
ability, we included the impact of climate-driven changes
in GPP on wildfires. However, other factors that influence
the likelihood of wildfire occurrence such as fuel removal,
previous wildfires or lightning ignitions are not taken into
account. Some studies have identified different responses
to climate depending on environment—for example a dif-
ference in response to seasonal VPD in forested and non-
forested ecosystems in California (Williams et al. 2019).
However, such difference in response can be explained by

other environmental variables—for example the key limi-
tation of fuel production on wildfire in dry, southwestern
US ecosystems. Lightning was also not accounted for in
the final occurrence model, due to the poor predictability
of lightning from climate variables. Furthermore, while the
wildfire probability model also includes predictors related
to human activity, these were held constant in our analy-
ses. Despite these limitations, the wildfire occurrence model
used has good predictive capability (Keeping et al. 2024),
and is responsive to trends and variability in meteorological
drivers of wildfires whilst also accounting for other human
and vegetation related effects.

This paper presents strong evidence for the utility of
using multiple climate modes to supplement long-range fire
season forecasts, with high utility from a risk management
perspective. Recent progress in seasonal fire weather fore-
casting (Di Giuseppe et al., 2024) means that fire weather
anomalies can be predicted up to 1 month in advance glob-
ally. However, predictable modes provide additional infor-
mation on the likely wildfire season—giving enough time
for risk management interventions such as fuel removal and
prescribed burning. Such correlations have already been
found using observed data in a number of regional and local
studies (Chen et al. 2011, 2016; Fernandes et al. 2011; Shen
et al. 2019; Cardil et al. 2023). This is now supplemented in
the US by modelled evidence to a considerably higher level
of statistical significance.

5 Conclusions

Large wildfire ensembles allow the identification of high-
resolution geographical patterns of the impact of climate
modes on wildfire. We have identified the areal extent of
the influence of different modes on wildfire for the contigu-
ous US, their impact on the timing of the fire season, and
how the relative effect on annual wildfires varies geographi-
cally under recent and future climates. ENSO, the IOD, and
TNA+1 are found to be the principal climate modes associ-
ated with US wildfire variability under recent conditions,
affecting 91%, 90% and 82% of the contiguous US. La Nifia
increases the likelihood of wildfire in the southwestern US,
Great Plains and Florida. The IOD and TNA+1 have a more
limited effect on US wildfire when accounting for the simul-
taneous effect of ENSO. Nonetheless, the TNA+1 remains
a strong and widespread influence over the contiguous US
in the recent and+2°C climates, and the IOD emerges as a
substantial regional control in the southern US with future
warming. Contrary to expectations, no significant relation-
ship was found between El Nifio and wildfire occurrences in
the northwestern US. The strong association of ENSO and
its related modes on annual expected fires can be explained
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by ENSO’s strong effect on heat (VPD) and precipitation
(which contributes to GPP variability). ENSO has a very
strong effect on precipitation in the southwest, with a sta-
tistically significant effect on precipitation across the entire
southern US. ENSO also has a broad effect on VPD in most
of the US, strongest in the Great Plains.

An additional+2°C global warming strengthens the
effect of some climate modes on wildfire occurrence, par-
ticularly that of the TNA+1 and AMO+1 on wildfire in the
Great Plains and the West. The effect comes primarily from
changes in the impact of climate modes in a warmer climate,
rather than from changes in the modes themselves. The
Great Plains is the region where wildfire probability is most
sensitive to climate change and variability; wildfire in the
Great Plains is strongly controlled by ENSO, the IOD and
TNA+1 in the recent and +2°C time-slices, and additionally
by AMO+1 in the +2°C time-slice. Over the contiguous US,
the number of wildfires and the areal extent of influence of
the PNA, AO and PDO+1 also increase with warming. The
area significantly influenced by the PNA increased from 26
to 66% and by the AO from 10 to 37%.
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