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1  Introduction

With climate change, extreme wildfires are occurring at a 
greater frequency and intensity (Cunningham et al. 2024). 
Severe fire years often occur when synoptic-scale hot and 
dry weather events cause extremely wildfire-prone condi-
tions (Gedalof et al. 2005; Barnes et al. 2025), resulting in 
multiple large wildfire events; the Australian 2019–2020 
(NSW EPA, 2021) and the Canadian 2023 (Pelletier et al. 
2024) fire seasons are examples of this. Whilst the occur-
rence of such conditions is generally increasing with cli-
mate change, there is a high variability in wildfire activity 
and its climatic drivers between years (Abatzoglou et al. 
2018). This interannual variability is a key property of the 
wildfire regime, and in the United States (US)—the focus 
of this study—there are strong geospatial patterns in annual 
wildfire variability distinct from the mean rate of wildfire 
(Keeping et al. 2025).

Global modes of climate variability, such as the El Niño 
Southern Oscillation (ENSO), have been linked to fire year 
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Abstract
Predictable modes of climate variability, such as the El Niño Southern Oscillation (ENSO), have a major influence on 
regional weather patterns, an important control on wildfire occurrence. Although these global climate modes have been 
associated with historical variability in wildfire occurrence in the United States and are used to forecast seasonal wildfire 
risk, precise information about the spatial pattern and magnitude of their influence is lacking and the satellite record of 
wildfires is too short to address these issues. Here we use wildfire occurrence model with a large ensemble of 1600 simu-
lated years from EC-Earth3 in a recent climate (2000–2009) and a future climate corresponding to + 2 °C global warming, 
to characterise the impact of specific climate modes on wildfire occurrence in the contiguous US. We show that ENSO, the 
Indian Ocean Dipole (IOD), and the 1-year lagged Tropical North Atlantic (TNA+1) have the greatest effect on annual fire 
occurrence—strongly contributed by the effect of these modes on hot, dry conditions in the Great Plains and precipitation 
in the southwestern US. El Niño is not significantly associated with wildfire occurrence in the northwestern US, contrary 
to expectation, but is associated with a later (earlier) wildfire season peak in the southwestern (southeastern) US. Under 
future warming, the AMO and PNA become a significant influence over most of the US, and the magnitude of impact of 
ENSO and TNA+1 increase strongly.
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variability. In additional to natural stochasticity in wildfire 
outcomes, climate variability explains much of the interan-
nual variability in burnt area globally (Abatzoglou et al. 
2018; Gincheva et al. 2024). Approximately half of global 
burnt area is modulated by climate modes (Chen et al. 2016; 
Cardil et al. 2023) through their influence on rainfall, tem-
perature and spring onset (Dai and Wigley 2000; Abram et 
al. 2014; Schwartz et al. 2013). In the US, ENSO and other 
climate modes have been shown to have a significant influ-
ence on wildfire danger (Mason et al. 2017). Climate modes 
can be used to forecast seasonal wildfire danger (Shen et 
al. 2019), and ENSO and the Pacific Decadal Oscillation 
(PDO) are adopted in the published seasonal outlook by the 
US government (NIFC 2024a).

There is an extensive tree-ring literature linking his-
toric wildfire events in the western US (west of the 100˚W 
meridian) and climate modes (see Supplementary Sect. 1 for 
more details), primarily focusing on ENSO, the PDO, and 
the Atlantic Multidecadal Oscillation (AMO). These stud-
ies often cover multiple centuries, correlating reconstructed 
climate modes with tree-ring fire scars. The primary influ-
ence on wildfire in the southwestern US is ENSO: tree-ring 
reconstructions (Kitzberger et al. 2007; Margolis and Swet-
nam 2013; Swetnam and Betancourt 1990; Westerling and 
Swetnam 2003) link La Niña years to drought and a higher 
probability of wildfire. Reanalysis-based studies find the 
same effect (Mason et al. 2017). Tree-ring reconstructions 
also link El Niño years to a later southwestern fire-season 
peak (Kitzberger et al. 2001). In the northwestern US, tree-
ring studies link El Niño years to higher wildfire activity 
(Hessl et al. 2004; Johnston et al. 2017) through a reduction 
in precipitation (Westerling and Swetnam 2003). This effect 
is linked more strongly to wildfire size than to the rate of 
occurrence (Heyerdahl et al. 2002). Recent data support the 
link between El Niño and very large wildfires in this region 
(Barbero et al. 2015). However, a study of remotely sensed 
burnt area covering a shorter period but a larger area found 
that the influence of ENSO on wildfire in the western US is 
weak compared to other key relationships between wildfire 
and climate modes globally (Cardil et al. 2023).

The positive phase of the PDO (PDO+) has been linked 
to greater burnt area in the northwestern US in tree-ring 
analyses, especially when in conjunction with El Niño 
(Ascoli et al. 2020; Heyerdahl et al. 2002; Norman and Tay-
lor 2003; Schoennagel et al. 2005). However, reconstruc-
tions of the PDO vary significantly and the effects on US 
wildfire depend on the specific reconstruction (Kipfmuel-
ler et al. 2012). Tree-ring reconstructions also associate the 
warm AMO+ with increased burnt area in the West, with 
studies primarily centred on the northwestern US (Ascoli 
et al. 2020; Kitzberger et al. 2007; Trouet et al. 2010). The 
positive Pacific/North American (PNA+) mode has also 

been associated with an earlier spring onset in the West 
(Ault et al. 2011; Dannenberg et al. 2018).

Tree-ring scars have not been used to reconstruct rela-
tionships between wildfire and modes in the southeastern 
and central US, but shorter timescale federal or state wild-
fire records have been used. In the southeastern US, state 
fire records indicate an association between La Niña years 
and a reduction in precipitation and an increase in burnt area 
in the early months of the year (Dixon et al. 2008; Goodrick 
and Hanley 2009; Simard et al. 1985). Remote sensing data 
support this finding (Cardil et al. 2021). The PNA- and 
PDO+ have also been linked with a limited increase in wild-
fire in the southeastern US (Dixon et al. 2008; Goodrick 
and Hanley 2009), whilst the North Atlantic Oscillation 
(NAO); Arctic Oscillation (AO) and East Atlantic (EA) cli-
mate modes are linked to higher evaporative demand in the 
Southeast—which can increase the likelihood of wildfire 
(Martens et al. 2018; Cardil et al. 2023). La Niña has also 
been linked to severe wildfire danger in the southern Great 
Plains (Lindley et al. 2014; NIFC 2024a) due to vegetation 
becoming drier in response to droughts (Puxley et al. 2024) 
associated with La Niña events (Schubert et al. 2004). How-
ever, there are no studies based on long records that firmly 
establish a link between wildfire and ENSO or any other 
climate mode in the region.

Site-based tree-ring records can be used to identify 
robust, long-term relationships between climate modes 
and wildfire, but are limited in their geographical cover-
age. Remotely sensed burned area or state fire records pro-
vide more continuous geographical coverage but the small 
sample size, given the highly stochastic nature of wildfire 
events, both reduces the probability of obtaining statisti-
cally significant relationships between wildfire and climate 
modes, and introduces a higher risk of spurious correla-
tions due to random variability, especially for longer period 
modes.

The lack of statistically significant relationships between 
wildfire and climate modes during the past three decades 
either in observed (Short et al., 2022; Supplementary 
Figs.  2.2, 2.4) or reanalysis-driven modelled wildfires 
(Supplementary Figs.  2.1, 2.2) reflects the small sample 
size. Large ensemble (LE) methods, widely used to study 
other climate impacts (Coburn et al. 2024; Swain et al. 
2020; Lopez et al. 2018), overcome the sample-size issue 
and provide an alternative way of quantifying the relation-
ships between wildfire and climate modes. Thus, using an 
LE together with a probabilistic model of wildfire occur-
rence facilitates an assessment of the geographical variation 
in the relationship between climate modes and wildfire, the 
strength of these relationships, and how they may be affected 
by climate change. Here, we investigate the effect of climate 
modes on US wildfire based on a 1600-year ensemble of 
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modelled annual wildfire occurrence in the contiguous US 
for two decade-long time slices: the recent (2000–2009) 
climate and a future climate subject to an additional + 2 °C 
global warming. We first identify the most influential modes 
based on their areal impact under recent climate conditions, 
and show that their effect is physically plausible. Next, we 
examine how the magnitude of their effect varies geographi-
cally and how they influence fire season length and timing. 
We also test multivariate effects with ENSO. Finally, we 
examine how future climate change reduces or increases the 
area affected and the magnitude of that impact.

2  Data and methods

2.1  The wildfire occurrence model

We used a wildfire occurrence model (full description—
Keeping et al. 2024) trained on wildfire occurrence data 
(Short et al. 2022) to model the daily probability of a wildfire 
greater than 0.1 hectares in extent at 0.1° spatial resolution. 
This model uses a generalised linear modelling framework 
but employs a flexible variable selection algorithm to find 
the optimal set of predictors from a suite of candidate vari-
ables related to climate, vegetation, and human factors influ-
encing wildfire, and then optimises the domain of influence 
of each of the selected variables. In the original derivation 
of the model 47 candidate predictors were used, but here 
we retrained the model starting from 31 candidate predic-
tors for which temporally-varying data were available (per 
Keeping et al. 2025).

The final selected predictors were cropland fraction, 
needleleaf fraction, shrub fraction, gross primary produc-
tion (GPP) in the previous 50 days and the previous year, 
rural population density, diurnal temperature range, pre-
cipitation on that day and in the previous five days, mean 
daytime windspeed, snow cover fraction, mean daytime 
vapour pressure deficit (VPD). Lightning ignitions were not 
included in the model; including convective atmospheric 
potential energy as a predictor of lightning was assessed 
but not selected. Meteorological and vegetation proper-
ties influence both fuel availability and fuel drying. The 
inclusion of two GPP terms takes account of both recent 
and longer-term fuel accumulation. The inclusion of crop-
land fraction and population density implicitly account for 
human impacts on wildfire occurrence through ignitions and 
fragmentation. Although fuel removal or the legacies of fire 
suppression on fuel accumulation are not taken into account 
explicitly, these are implicit in so far as they are reflected 
in the fire occurrence data on which the model was trained. 
The domain over which each variable influences wildfire 
likelihood was optimised separately. The outputs are then 

power-law rescaled to minimise the tendency for gener-
alised linear models to underestimate wildfire extremes 
(Forrest et al. 2024). The model is applied in the recent cli-
mate (overlapping with the training period) and in a future 
climate subject to + 2 °C global warming. At coarser spatial 
and temporal resolutions, this could create bias due to out 
of sample future conditions. However, because the model is 
trained on daily data across all environments in the contigu-
ous US, almost all days and locations in the + 2 °C time-slice 
will have an analogue, or near analogue, in the training data.

The model was tested against wildfire occurrence data 
(Short et al. 2022) and, when run using reanalysis data 
(1992–2020), showed good discrimination in its predic-
tions of wildfire events. The reduced variable model per-
formed within the range of the Pareto superior subset of 
original model training runs (Keeping et al. 2024) across 
all benchmarks. The area under the receiver operating 
curve (AUC) score is 0.89, substantially greater than the 
0.8 value considered to indicate a good model (McCune 
et al. 2002). It also reproduced the geographic patterns in 
wildfire occurrence (Supplementary Fig.  3.1; normalised 
mean error, NME = 0.46), as well as the seasonal concentra-
tion (NME = 0.78) and timing of the wildfire season (mean 
phase difference = 0.13) and the interannual variability 
(NME = 0.67) in the number of wildfires.

2.2  KNMI-LENTIS derived inputs and bias correction

KNMI-LENTIS (Muntjewerf et al. 2023) is a time-slice sin-
gle-model initial-condition large ensemble of the EC-Earth3 
climate model (Döscher et al. 2022). The pre-industrial 
spin-up was sampled at 25-year intervals to obtain starting 
points for 16 transient simulations that were run from the 
pre-industrial (1850 CE) to the end of the twenty-first cen-
tury with historical and SSP2-4.5 forcings. Ensemble mem-
bers were then derived for 2000–2009 (referred to here as 
recent) and 2075–2084 (referred to here as future and corre-
sponding to approximately + 2 °C additional global warming 
compared to the recent climate), by subjecting each of the 
16 transient runs to nine micro-perturbations in global tem-
perature (< 5·10–5 K) at the start of each decade. Together 
with the original transient run, this yielded 10 decade-long 
simulations, providing 160 ensemble members for each 
time slice. The 25-year sampling of the macro-perturbations 
ensures a good sampling of decadal to multidecadal climate 
oscillations such as the AMO in each ensemble time-slice. 
Shorter period oscillations such as ENSO are understood 
to diverge based on initial conditions within a year (Neelin 
2010). EC-Earth3 represents historical trends in precipita-
tion, land-surface temperature and blocking-frequency over 
the contiguous US well (Döscher et al. 2022). The version 
used in KNMI-LENTIS was further tuned to improve model 
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over the contiguous US (Fig. 1). The correlation coefficients 
of climate mode indices and US temperature and precipita-
tion show that there is a large spread in the apparent correla-
tion when 30-year samples from the ensemble are drawn. 
In most cases, the sign of the observed correlation could be 
switched and it would still lie within the 95% confidence 
interval of the model ensemble. The one clear exception is 
ENSO (note that our ENSO index is the SO index, so the 
sign is opposite to an SST-based index), where the sign is 
clear although the magnitude is highly uncertain. This short 
time period is therefore insufficient to robustly character-
ise the effect of each mode—justifying the use of modelled 
wildfires driven by the LE. EC-Earth3 performs well in its 
representation of ENSO, the NAO and the PNA (Döscher 
et al. 2022) which are all key controls on North American 
weather patterns. Comparison of annual US weather and 
climate mode values between the reanalysis and ensemble 
(Supplementary Fig. 6.2) shows no apparent discrepancies, 
and strong associations between modes (the TNA, IOD and 
ENSO) are equally present in the reanalysis and ensemble 
data (Supplementary Fig. 6.1).

2.5  Relating climate modes to annual wildfires

The daily ensemble of modelled wildfire occurrence prob-
abilities was averaged annually for comparison with the 
yearly phase of each climate mode—though seasonal 
responses were also checked, see Supplementary Sect.  7. 
The positive and negative phase of each climate mode was 
defined as occurring when its annual-mean index value 
was a half-standard deviation greater or lesser than zero, 
respectively; and was otherwise considered to be neutral. 
Simulated annual wildfire occurrence, aggregated to 0.5°, 
was regressed against the numerical value of each climate 
mode index. The relationship found by this regression was 
only considered in the analysis if it passed a false discovery 
rate corrected significance level of 0.01, per Wilks (2016). 
The sign of the climate mode’s effect was determined from 
the regression slope coefficient. The lagged effect of each 
index on wildfire was also tested by using the index value 
from the previous year. When mapping geographic patterns 
in the magnitude of each mode’s association with wildfires, 
the ratio between the number of modelled wildfires in each 
phase of the mode relative to the mean number at that grid-
cell was plotted.

2.6  Definition of fire season peak and length

To determine the effect of climate modes on the peak timing 
of the fire season, the seasonality was characterised accord-
ing to Kelley et al. (2013). The wildfire season’s mean phase 
was determined for each grid-cell from the sum of monthly 

performance in the northern hemisphere by reducing a cold 
bias (Muntjewerf et al. 2023).

The climate predictors from KNMI-LENTIS needed for 
the wildfire occurrence model were bias- corrected using 
ERA5-Land reanalysis data (Muñoz-Sabater et al. 2021) 
and downscaled to 0.1° following the methodology used in 
Keeping et al. (2025) (Supplementary Sect. 4). GPP was pre-
dicted using a light-use efficiency model (the P modelWang 
et al. 2017; Stocker et al. 2020) that simulates photosynthe-
sis, accounting for temporal acclimation of carboxylation 
and stomatal conductance to environmental conditions. The 
temperature, VPD, air pressure, incident photosynthetic flux 
density, and CO2 concentration inputs to the P model were 
taken from the bias-corrected and downscaled KNMI-LEN-
TIS ensemble. The fraction of absorbed photosynthetically 
active radiation (fAPAR) was derived using Beer’s law from 
simulations of the seasonal cycle of leaf area index (LAI), 
based on the reciprocity between LAI and GPP (Zhou et al. 
2024). Annual antecedent GPP is used in the wildfire occur-
rence model; to calculate this for the first year, the first year 
of each decade in the climate ensemble was repeated (fol-
lowing Van der Wiel et al. 2019).

2.3  Climate mode calculation

We initially considered all climate modes thought to influ-
ence wildfire danger or evaporative demand over the con-
tiguous US with an annual or longer oscillation timescale, 
based on previous literature. Climate modes were derived 
using monthly sea-level pressure (SLP) and sea surface 
temperature (SST) fields from KNMI-LENTIS. Geopoten-
tial height is often used to calculate pressure-based climate 
modes but was not available for KNMI-LENTIS, so SLP 
was used instead. Climate mode indices were calculated 
separately in the recent and + 2  °C ensembles, in order to 
represent the effects of variability within the two climates. 
Modes derived using principal components were checked to 
ensure they showed the correct sign of effect on their asso-
ciated SLP or SST trends. The phenomena associated with 
each climate mode (as defined in Table 1) and their effect 
on US meteorology are both well-represented compared to 
observations—refer to Supplementary Sect.  5 for a com-
plete overview.

2.4  Comparison of climate mode effect on US 
weather in LE and reanalysis

A high-resolution wildfire occurrence record is available in 
the contiguous US from satellite data after 1984 (Eidenshink 
et al. 2007) or from aggregated state and federal records 
after 1992 (Short 2022). This short reanalysis period is not 
sufficient to capture the major effects of each climate mode 
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seasonal concentration of less than 0.15 were not considered 
to have a distinct peak, so were excluded. The effect of cli-
mate modes on the length of the fire season was also deter-
mined relative to the average annual peak in the fire season, 
or the ensemble mean of the maximum wildfire month at 
each location. The mean number of months for which the 
number of wildfires exceeded half of that average annual 
peak was defined as the length of the fire season (per Jolly 
et al. 2015; Abatzoglou et al. 2019).

vectors oriented in the complex plane with angles corre-
sponding to the time of year and magnitude proportional 
to the number of wildfires. The seasonal concentration 
was defined as the length of that resultant vector, varying 
between 0 (wildfires equally spread between months) and 
1 (all wildfires in one month). The effect on the timing of 
the seasonal peak was calculated according to the difference 
between the mean phase over all years and over years in the 
positive or negative phase of each index. Locations with a 

Mode Index Field Monthly calculation method Annual Index 
calculation

El Niño South-
ern Oscillation 
(ENSO)

Equa-
torial 
South-
ern 
Oscil-
lation 
Index 
(SOI)

SLP The difference between the monthly Indo-Pacific 
[5°S-5°N, 90°E-140°E] and Eastern Pacific [5°S-
5°N, 80°W-130°W] standardised anomalies. 
NOAA (2009)

Monthly values 
averaged annually

Indian Ocean 
Dipole (IOD)

Dipole 
Mode 
Index 
(DMI)

SST The standardised difference between the West 
[10°S-10°N, 50°E-70°E] and East [10°S-0°N, 
90°E-110°E] Indian Ocean anomalies. Saji and 
Yamagata (2003)

Monthly values 
averaged annually

Pacific Decadal 
Oscillation 
(PDO)

PDO 
Index

SST The leading principal component of the SST 
anomaly over the North Pacific [20°N-70°N, 
120°E-100°W]. Newman et al. (2016)

The November to 
March (NDJFM) 
mean of the index 
starting in the previ-
ous year

Tropical North 
Atlantic (TNA)

TNA 
Index

SST The monthly anomaly in the North Tropical 
Atlantic [5°N-25°N, 55°W-15°W]. Enfield et al. 
(1999)

Monthly values 
averaged annually

Tropical South 
Atlantic (TSA)

TSA 
Index

SST The monthly anomaly in the South Tropical 
Atlantic [20°S-0°N, 30°W-10°E]. Enfield et al. 
(1999)

Monthly values 
averaged annually

North Atlantic 
Oscillation 
(NAO)

NAO 
Index

SLP The leading principal component of the monthly 
anomaly over the North Atlantic [20°N-80°N, 
90°W-40°E]. Thornton et al. (2023)

The December to 
February (DJF) 
mean of the index 
starting in the previ-
ous year

East Atlantic 
(EA)

EA 
Index

SLP The second principal component of the monthly 
anomaly over the North Atlantic [20°N-80°N, 
90°W-40°E]. Thornton et al. (2023)

The November to 
January (NDJ) mean 
of the index starting 
in the previous year

Arctic Oscilla-
tion (AO)

AO 
Index

SLP The leading principal component of the monthly 
anomaly north of 20°N. NOAA (2025)

The DJF mean of 
the index starting in 
the previous year

Pacific/North 
American 
(PNA)

PNA 
Index

SLP The leading principal component of the 
DJF-mean of monthly anomalies over the 
North Pacific and North America [20°–90°N, 
120°E − 120°W]. Mori et al. (2024)

The calculation of 
the DJF mean, start-
ing in the previous 
year, was taken 
before the leading 
principal component 
was calculated

Atlantic 
Multidecadal 
Oscillation 
(AMO)

AMO 
Index

SST The difference between the annual SST anoma-
lies of the Atlantic [0°N-60°N, 75°W-7.5°W] and 
the rest of the global ocean. Enfield et al. (2001)

N/A

Southern 
Annular Mode 
(SAM)

SAM 
Index

SLP The leading principal component of anomalised 
SLP south of 20°S. NOAA (2025)

The June to August 
(JJA) mean

Table 1  An overview of the 11 
modes considered in this analy-
sis, with the information given 
on the variable used; the method 
by which each monthly mode is 
calculated; and the method by 
which the annual value of the 
mode was found
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the influence of these three modes on US wildfire (Supple-
mentary Sect. 7), taking a stricter significance threshold of 
5.7 × 10–7 (the 5-sigma p-value for a Gaussian distribution), 
shows that the areal influence of ENSO, IOD and TNA+1 is 
persistent over most of the US.

Other climate modes exert a significant influence on 
wildfire but over more limited regions. Eleven modes have 
a significant influence over an area > 20% of the contigu-
ous US: ENSO, IOD, TNA+1, PDO+1, ENSO+1, TNA, 
AMO+1, TSA, PDO, NAO, and NAO+1. At the stricter sig-
nificance threshold (Supplementary Sect. 7), the only modes 
showing persistent areas of influence on wildfires other than 
the TNA, IOD and ENSO are the PDO, AMO and NAO. 
The PDO also has the next most significant control on the 
distribution of the annual number of wildfires. Of the top 

3  Results

3.1  Survey of the modes

The climate modes that show the greatest area of significant 
(p-value of < 0.01 after controlling for multiple testing) asso-
ciation with wildfire (Fig. 2, Table 2) are ENSO, the IOD 
and annually lagged TNA (TNA+1). The La Niña phase of 
ENSO has a positive influence on wildfire probability over 
91% of the contiguous US. The negative IOD and positive 
TNA+1 have similarly large areas of significant influence, 
affecting 90% and 85% respectively. Both of these modes 
are correlated with (correlation coefficients of -0.61 and 
-0.32 in the recent ensemble) and causally related to ENSO 
(Ham et al. 2017; Jiang and Li 2019). The robustness of 

Fig. 1  Boxplots of each quartile of the distribution of correlation coef-
ficients between climate mode indices and temperature (upper panel) 
and precipitation (lower panel) over samples of the recent climate 
ensemble, and the values from the reanalysis over 1990–2019 (pink 
dots). To construct the distribution behind the box plots, random sam-

ples of 30 years were taken from the ensemble. The outer limits of 
the boxplots represent the 2.5th and 97.5th percentiles, and the three 
internal lines correspond to the 25th, 50th and 75th percentiles of the 
bootstrapped distribution
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the SAM+1 only influences 5% of the contiguous US. The 
EA does not have a significant areal impact.

3.2  Effect of key modes

Given the plausibility of the effect of climate modes on US 
weather in EC-Earth3 (Fig. 1, Supplementary Sect. 5) and 
the considerable extent of the effect of those modes on US 
wildfire (Fig. 2, Table 2), there is a pertinent question as to 
the additional utility of the LE approach compared to reanal-
ysis or observed data. There is no location in the US where 
a climate mode has a significant relationship with observed 

eleven modes in areal significance, the TNA, PDO, NAO 
and ENSO influence wildfire both in the same year and with 
a one-year lag. For geographical analysis (Figs. 4 and 9) we 
consider the top eight modes by areal influence in the recent 
time-slice of the LE, eliminating the less influential of each 
of the unlagged or lagged modes. The top eight modes were 
ENSO, IOD, TNA+1, PDO+1, AMO+1, TSA, NAO, and 
PNA. The area influenced by these modes is greatest in the 
summer, June–August, except for the TSA which has the 
greatest influence in the spring, March–May (Supplemen-
tary Sect. 7). The AO only influences a small area (8%) and 

Table 2  Percentage of contiguous US area significantly affected by each mode in the recent climate (2000–2009). Two asterisks indicate an area 
over 50%, one asterisk an area over 20%
Mode Area of effect (Same Year) [%] Area of effect (Prior Year) [%]

N/A Positive Negative N/A Positive Negative
ENSO 9.0 **90.7 0.4 55.3 2.0 *42.7
IOD 10.1 0.2 **89.8 83.7 3.5 12.8
PDO 64.5 *34.3 1.2 30.4 **69.6 0.0
TNA 55.5 0.6 *43.8 14.3 **85.3 0.4
TSA 53.8 *46.0 0.3 74.6 *25.4 0.1
NAO 67.2 *32.8 0.0 70.8 0.1 *29.1
PNA 77.8 0.0 *22.2 90.7 9.3 0.0
AO 92.1 7.9 0.0 94.5 0.0 5.5
AMO 100.0 0.0 0.0 54.7 *45.2 0.1
SAM 100.0 0.0 0.0 95.5 4.5 0.0
EA 100.0 0.0 0.0 100.0 0.0 0.0

Fig. 2  The area of the contiguous US significantly affected by each 
climate mode. Significance was determined using an FDR corrected 
significance threshold after Wilks (2016) to a control level of 0.01. The 

sign of the relationship between the index and the annual number of 
wildfires is given by the slope of the regression
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effect associated with an increased number of wildfires in 
the West (including in the northwestern US) and in Florida.

La Niña, the negative IOD and positive TNA+1 all show 
a very similar association with wildfire. The positive phase 
of the TNA+1 and negative phase of the IOD are associ-
ated with increased wildfire occurrences when considered 
alone (Fig.  4). In these phases, the total number of wild-
fires in the contiguous US is found to increase by 14% and 
12% respectively (Table 3). However, both modes are cor-
related to ENSO (Supplementary Sect. 6), and the effect of 
both modes decreases substantially after controlling for the 
phase of ENSO, from 14 to 5–8% for the positive phase of 
the TNA+1 and from 12 to 2–3% for the negative phase 
of the IOD. The biggest impact of both the negative phase 
of the TNA+1 and positive phase of the IOD is on wildfire 
in La Niña years, where the mean number of wildfires is 
decreased by 12% and 9% respectively.

A multilinear regression (MLR) of annual wildfires 
(Fig. 5) against index values of ENSO, the IOD and TNA+1 
finds that ENSO is the strongest pathway controlling inter-
annual variability for wildfires in the contiguous US. The 
MLR slope coefficient for ENSO has the same pattern as 
the association between ENSO and wildfires when not 
controlling for the IOD or TNA+1. The TNA+1 also has 
substantial influence, having an additional effect on wild-
fires in Mediterranean California, the southwestern US, the 
southern Great Plains, and southern Florida. It follows a 
similar pattern of effect to the single-mode association of 
the TNA+1 and wildfires, though the magnitude of effect is 
smaller compared to ENSO. The IOD has a much weaker 
influence on wildfires, limited to low magnitude effects in 
the southwestern US.

annual fire occurrences (Supplementary Fig. 2.3). Reanal-
ysis-driven modelled fire occurrences also show almost no 
area of effect (Supplementary Fig. 2.1). Of the modes with 
the largest areas of statistically significant effect, very few 
climate mode phases result in an effect in the reanalysis sig-
nificantly outside the distribution of random noise (Fig. 3). 
Only three mode phases are associated with annual wildfire 
numbers outside of the 95% confidence interval of the boot-
strapped distribution from all years. In: La Niña years (posi-
tive ENSO phase), El Niño years (negative ENSO phase), 
and when the prior year had a positive TNA phase. The 
extent to which these phases exceed the confidence interval 
is very low in comparison to the highly significant margin 
provided by the LE (Supplementary Fig. 2.5), due to the dif-
ferent sample sizes.

ENSO has a positive effect on total annual US wildfires 
in the La Niña phase (Fig. 4), with the three areas of greatest 
relative increase in wildfire occurrence rates being Medi-
terranean California, the central Great Plains, and southern 
Florida. The only areas where ENSO has no significant 
influence on annual wildfire occurrence are in the north-
western and northeastern US. The negative IOD and posi-
tive TNA+1 show a very similar association with wildfire 
to La Niña. The NAO and PNA havepositive and negative 
impacts on annual wildfires in the southwestern and inland 
northwestern US respectively. The PDO+1 has a positive 
influence across the US. The AMO+1 affects a large area in 
the West and has a localised influence in southern Florida. 
ENSO+1 has a strong influence of wildfire occurrence along 
the southern US border (Supplementary Sect. 7)—through 
a control on GPP due to its association with precipitation in 
this region (see Fig. 6). The TNA also shows a substantial 

Fig. 3  The distribution of the 
modelled annual number of 
wildfires for the reanalysis 
(1990–2019) under different 
mode phases compared to the 
distribution of all years, per Shen 
et al. (2025). The dots show the 
actual mean value of modelled 
annual fires. The boxplots show 
the distribution of the mean 
number of annual fires, drawn 
from the distribution of years but 
with the same sample size as the 
number of years in that phase in 
the reanalysis period—repeated 
10,000 times. The outer limits 
of the boxplots represent the 
2.5th and 97.5th percentiles, and 
the three internal lines corre-
spond to the 25th, 50th and 75th 
percentiles of the bootstrapped 
distribution
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Climate modes do not have a uniform effect on meteo-
rology, or consequent wildfire danger, throughout the year 
(Supplementary Sect. 7). ENSO has a strong impact on the 
length of the wildfire season (Fig. 8), with increased season 
length in La Niña years in Mediterranean California, the 
Arizonan Mountains, the Great Plains and southern Florida. 
This contributes to the high annual numbers of wildfires 
in those regions (Fig. 4). The effect of ENSO on the peak 
of the fire season is less uniform and shows an east/west 
divide: El Niño (La Niña) results in an earlier (later) peak 
to the fire season in areas to the east of the southern Great 
Plains, but El Niño (La Niña) results in a later (earlier) peak 
in the southwestern US. The effect of El Niño on the timing 
of the seasonal peak is stronger than that of La Niña, with 
La Niña increasing the frequency of wildfire occurrence in 
both regions and bringing the early-spring (east) and late-
summer (west) fire season peaks closer together. The IOD 
and TNA+1 have a very similar effect on fire seasonality 
to ENSO, whilst the remaining modes have limited effects 
on the fire seasonality (Supplementary Sect. 10), though the 

The association between ENSO and wildfire occurrences 
reflects the influence of ENSO on VPD and precipitation, 
where precipitation is also strongly linked to annual patterns 
in vegetation growth and fuel accumulation (Fig.  6). The 
region associated with a strong wildfire occurrence response 
to ENSO in the Great Plains has a stronger VPD anomaly 
while in the southwestern US, the impact of ENSO on wild-
fire is associated with a stronger precipitation anomaly. 
Other modes also influence wildfires through their impacts 
on VPD, precipitation and GPP (Supplementary Fig. 8.1).

The response of the statistical distribution of annual 
wildfire occurrence to a climate mode varies geographically 
(Fig. 7). The effect of ENSO on wildfires in the Great Basin, 
for example, produces a shift in the distribution but has lim-
ited impact on the spread. In contrast, the effect of ENSO in 
Southern California is to extend the spread of the distribu-
tion giving rise to an increase in the likelihood of extreme 
fire-years relative to the mean. There are also distinct 
geographic effects on wildfire distribution under ENSO, 
TNA+1, PNA, PDO+1 and IOD (Supplementary Sect. 9).

Table 3  The effect of the TNA+1 and IOD climate modes on the number of wildfires in the contiguous US in each phase of ENSO and for all years, 
in the recent climate time-slice of the ensemble. The sample size each percentage is based on is given in brackets

# Fires (3 s.f.) TNA+1 Phase IOD Phase
Positive Negative Positive Negative

ENSO Phase La Niña 44,600 + 7.7% (207) -11.9% (71) -8.8% (23) + 3.2% (294)
Neutral 37,700 + 4.9% (145) -6.1% (169) -1.4% (180) + 2.2% (141)
El Niño 32,800 + 6.1% (69) -5.2% (210) -0.9% (273) + 3.4% (72)

All Years 37,800 + 13.6% (421) -10.1% (450) -8.4% (476) + 11.7% (507)

Fig. 4  Maps of the effect of each climate mode on annual wildfires rel-
ative to the mean. The sign and magnitude of the relationship is given 
by the ratio between the annual number of wildfires in the positive 
(upper panels) or negative (lower panels) phase—defined as beyond 
plus or minus half a standard deviation from the mean respectively. 
The effect of each mode is shown relative to the mean annual number 

of wildfires—to account for any non-linearity in the effect between 
phases that would not be captured by linear regression. The relation-
ship is only shown for locations where there is a significant relation-
ship, as identified by linear regression between the index and annual 
number of wildfires at that location
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other modes show a persistent influence in the areas they 
affect under recent conditions with only a slight expansion: 
ENSO (89 to 92%), the IOD (87 to 92%), and the TNA+1 
(82 to 87%). There is also a significant expansion in the area 
of significant influence on wildfire for the ENSO+1, TNA, 
NAO+1, AMO and AO indices. However, the TSA has no 
area of significant influence in the future climate, and the 
area of influence of the NAO shifts from the western to the 
central US (Supplementary Sect. 11).

There is a minor but statistically significant shift in the 
skewness of the ENSO distribution in response to warming 
(Supplementary Fig. 5.15). However, comparing the effect 
on annual fires of the unaltered ENSO in the future climate, 
and of the future distribution mapped to percentiles in the 
recent climate revealed no substantial change in the effect 
of ENSO on wildfire occurrences due to this shift. This 

PDO+, PNA- and NAO+phases are associated with a half-
month earlier peak to the Californian fire season.

3.3  Changes in the effect of global climate modes in 
a warmer climate

An additional 2°C increase in global mean temperature in 
KNMI-LENTIS results in changes to the areal extent of 
the significant influence of many of the climate modes on 
wildfire occurrences (Fig. 9). There were only a few cases 
when the influence of a mode on wildfire changed from 
positive to negative, but cases where the impact of a mode 
changed from insignificant to significant were widespread. 
The AMO+1 and PNA show the greatest expansion in the 
area of significant effect, increasing from 38 to 68% and 
16 to 56% respectively (Supplementary Sect.  11). Some 

Fig. 6  the relative influence of ENSO on VPD, precipitation and GPP in the recent climate for the large ensemble

 

Fig. 5  Multilinear regression of the annual number of wildfires rela-
tive to the mean at each grid cell against standardised values of the 
ENSO (SOI), IOD (DMI), and TNA+1 indices. The slope coefficients 

were separately calculated for each grid-cell, and are displayed for the 
recent and + 2°C ensemble climates
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(Supplementary Fig.  11.10). However, in the future cli-
mate the effect of La Niña relative to the higher rate of fire 
activity is nonetheless projected to increase. The change in 
strength of the relationship between modes and the annual 
number of wildfires varies geographically (Fig.  10). The 
AMO+1 and TNA+1 show the most substantial increase in 
the effect of their positive phase on the annual number of 
wildfires; both strengthen most over the Great Plains and 

suggests that ENSO’s projected effect on fire is mainly due 
to an increase in the intensity of ENSO’s effect on rainfall 
(Figs. 6 and 11) over North America, in line with consensus 
expectations (IPCC 2021).

Despite some climate modes being substantial controls on 
the internal variability in annual fire occurrences, the effect 
of—for example—La Niña in the present climate is signifi-
cantly less than the effect of a further + 2°C global warming 

Fig. 8  Top row: (left) the average seasonal phase across all locations 
with a seasonal concentration > 0.15; (central) the average seasonal 
phase for all years subtracted from the average of years in the posi-
tive (La Niña) phase; (right) the average seasonal phase for all years 
subtracted from the average of years in the negative (El Niño) phase. 
Bottom row: (left) the length of the fire season in months (calculated as 

the number of months over the mean annual half-maximum); (central) 
the average season length for all years subtracted from the average of 
years in the positive (La Niña) phase; (right) the average season length 
for all years subtracted from the average of years in the negative (El 
Niño) phase

 

Fig. 7  The frequency distribution of the modelled annual number of 
wildfires per km2 across the 1600 recent climate ensemble years in 
the Great Basin and Southern California NIFC Geographic Area Coor-
dination Centres (GACC) defined regions (Supplementary Fig. 3.2). 

The distributions are plotted separately for the positive (La Niña) and 
negative (El Niño) phase of ENSO, with the neutral phase shown as a 
dashed line for comparison
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Fig. 10  The strengthening or weakening of the effect of each climate 
mode in both phases between the recent climate and + 2°C climate 
time-slices. Each panel shows the ratio between recent climate and 
the + 2°C climate for the number of annual wildfires in that phase of 

the global climate mode relative to the mean at that location. Only 
regions where the effect of the mode is significant at α < 0.01 according 
to linear regression in both time-slices are shown

 

Fig. 9  Difference in the significant areal influence of each climate 
mode in the same year and with a one-year lag between the recent 
ensemble (R) and the + 2°C ensemble (+ 2). The areas are given in Sup-
plementary Sect. 11. If the colour is the same in both R and + 2, then 

the effect of the mode in that area stays the same; if the colour changes, 
this indicates that the effect of the mode in that area changes between 
the two ensemble climates
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4  Discussion

Our analyses have shown that ENSO, IOD and TNA+1 are 
the global climate modes most associated with interannual 
variability in wildfire occurrence in the contiguous US. 
ENSO has a significant influence over 91% of the country, 
consistent with its use in predicting wildfire severity across 
the US (NIFC, 2024a; b). La Niña strongly increases annual 
wildfire probability over California, the interior southwest-
ern US, the Great Plains, and southern Florida. La Niña 
years have been associated with increased wildfire activity 
in the southwestern US due to reduced precipitation (Mar-
golis and Swetnam 2013; Mason et al. 2017; Westerling 
and Swetnam 2003), as well as in the southeastern states of 
Mississippi (Dixon et al. 2008) and Florida (Goodrick and 
Hanley 2009). La Niña has also been associated with severe 
wildfires in the southern Great Plains (Lindley et al. 2014). 
However, we only identify a moderate effect of La Niña on 
wildfire occurrence for most of the southeastern US, with 
a highly localised effect over southern Florida. This could 
be explained by the strength of the effect of ENSO on pre-
cipitation (and consequent higher GPP) in the southwestern 
US and Florida, compared to a lesser effect over the wider 
southeastern US. We also identify a well-defined hotspot for 
the effect of La Niña on wildfire in the Great Plains, where 
ENSO has been linked qualitatively to wildfires (Lindley 
et al. 2014). VPD shows a strong response to ENSO over 
the Great Plains, with the increased hot, dry conditions in 
La Niña years therefore a likely primary contributor to the 
enhanced wildfire likelihood. The effect of La Niña relative 
to the mean wildfire rate intensifies with climate change 
over the Great Plains and California.

The negative IOD and positive TNA+1 show a very simi-
lar pattern of effect to La Niña when considered indepen-
dently, with the TNA+1 having a greater effect. The TNA+1 
and IOD are causally linked (Wang et al. 2021; Ham et al. 
2013; Hameed et al. 2018; Jiang and Li 2019) and corre-
lated with ENSO; and the similarity of their influence on 

in the West. The positive TNA+1 and La Niña both show a 
weakening in their influence on annual wildfire occurrences 
along the southern border with Mexico, most substantially 
in Texas. In contrast, the negative phase of the IOD has a 
strengthened effect on wildfire occurrences along the south-
ern border, strongest in Arizona and New Mexico.

The PDO+1 strengthens in its association with wildfire 
occurrences across its area of significant influence, with 
the strengthening most over the Great Plains and in Cali-
fornia. The influence on the annual number of wildfires 
relative to the mean, and the area of influence of the AO 
and PNA (Supplementary Sect.  11) significantly increase, 
with the greatest relative increase over the Great Plains. 
The AMO+1, TNA+1, PNA, PDO+1, IOD, ENSO and AO 
modes all strengthen in their influence over the majority of 
the region they affected in the recent climate. As the effect 
of the modes in the + 2°C time-slice is calculated relative 
to a higher mean rate of wildfire in the + 2°C climate, this 
means the control of these global climate modes on wildfire 
increases even relative to the higher future interannual vari-
ability of wildfire.

Climate change drives a strong intensification of the 
relative effect of ENSO on VPD over the Great Plains 
(Fig.  11)—corresponding to where the greatest intensifi-
cation of ENSO is also modelled (Fig.  10). The effect of 
ENSO on southwestern US precipitation is also projected 
to intensify with climate change, however the association 
with wildfire decreases in the same region. This could be 
explained by the diminishing effect of annual-timescale 
variability dryness on wildfire danger in an increasingly 
arid and fuel-limited environment (Abatzoglou and Wil-
liams 2016).

Fig. 11  the relative influence of ENSO on VPD, precipitation and GPP in the + 2°C climate for the large ensemble
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the previous year are strongly associated with interannual 
wildfire variability under climate warming. The AMO+ has 
been linked to wildfire activity in the same year (Ascoli et 
al. 2020; and Kitzberger et al. 2007), but our analysis shows 
no significant effect in the recent climate and only a minor 
area of influence with warming. This might seem contra-
dictory to its multidecadal effect, but when no low-pass fil-
tering is applied to the AMO, annual oscillations between 
neutral and high positive or negative values occur in its mul-
tidecadal positive or negative phases respectively (Sutton 
and Hodson 2007). Atlantic SSTs in the prior year have a 
greater effect on US wildfire than in the same year.

The Great Plains is the region where wildfires show 
the most sensitivity to variation in climate modes. There 
is a > 25% increase in annual wildfire occurrences under 
recent conditions with La Niña, the positive TNA+1 and the 
negative IOD. Wildfire is also increased to a similar extent 
by the positive AMO+1 in the + 2°C time-slice. The PDO+1, 
PNA and AO, all anticipated to change with warming (Lit-
zow et al. 2020; Ning and Bradley 2016; Zhang et al. 2016; 
Choi et al. 2010), also have a significant impact on wildfire 
probability in this region. The sensitivity of the Great Plains 
to climate variability is in part due to meteorological effects 
on fire weather but also reflects the importance of vegeta-
tion type. Grassland and savanna vegetation have a strong 
response to climate variability: higher-than-normal anteced-
ent precipitation increases fuel production and short-term 
droughts cause rapid drying of grassy vegetation (Littell 
et al. 2009; Archibald et al. 2009). The overall abundance 
of the vegetation may also contribute to this sensitivity. In 
the interior western US, for example, temperate sierras and 
forested mountains have a higher sensitivity to climate vari-
ability than the surrounding desert.

The climate mode indices were derived according to 
standard methods. The modes of variability in climate 
models might differ from those in the observational record. 
However, all the modes considered here are represented 
in the recent and + 2°C ensembles, and show reasonable 
geographic patterns in terms of the associated SST or SLP 
anomalies and the expected precipitation anomalies over 
the contiguous US. The ensemble climate modes can there-
fore be considered phenomenologically similar to observa-
tions, and thus to have the same causal effects on wildfire 
likelihood. The periodicity of multi-year oscillations can-
not be assessed from the decadal time-slices. However, 
the transient EC-Earth3 runs from which the time-slices 
were sourced show the expected periodicity for each mode, 
including the longer periodicities of the PDO and AMO. The 
PDO has much higher interannual variability than the AMO, 
resulting in a tendency for sub-decadal oscillations within 
a time slice. Whilst a low-pass filtering of the PDO (and 
AMO) time-series might provide a better representation of 

wildfire raises questions about the extent to which they are 
simply proxies for the phase of ENSO. Our MLR analyses 
show that while ENSO has the greatest influence on wildfire 
variability, TNA+1 also has an independent though smaller 
effect while the IOD has only a limited impact in the region 
near the US-Mexico border. The correlation of the TNA+1 
and the IOD with ENSO preclude a definite attribution of 
the causal influence of each mode on wildfire occurrence. 
However, our analyses suggest that the strongest apparent 
pathway of influence is via ENSO and TNA+1. Although 
the TNA and IOD have been closely associated with burnt 
area at a global scale (Cardil et al. 2023), their impact of 
wildfires in the US has been largely ignored.

ENSO creates a moisture dipole between the northwest-
ern and southwestern US through influencing the latitude 
of the jet stream (Dettinger et al. 1998; Westerling and 
Swetnam 2003). It has therefore been suggested that ENSO 
increases wildfire activity in the northwestern US in El Niño 
years (Barbero et al. 2015; Johnston et al. 2017). However, 
there is almost no statistically significant influence in this 
region in our simulation of 1600 years of annual wildfire 
occurrences in the recent and + 2°C climates, with the posi-
tive effect of El Niño on northwestern US wildfire only 
statistically significant over a small region. There is a possi-
bility that this is due to an unknown bias in EC-Earth3’s rep-
resentation of ENSO over the region, however assessment 
of the mode’s behaviour and effect over the US does not 
reveal any obvious issues (Supplementary Sect. 5, Döscher 
et al. 2022)—with the moisture dipole represented in the 
model. Alternatively, this could be explained by most analy-
sis in this region having focussed on fire frequency or burnt 
area. El Niño has a greater effect on fire size (Heyerdahl 
et al. 2002; Barbero et al. 2015), a distinct property from 
occurrence likelihood, which could be sufficient to explain 
the greater rates of fire frequency for El Niño years in the 
tree ring record. Links between wildfire occurrence and 
the PDO+ (Ascoli et al. 2020; Heyerdahl et al. 2002; Nor-
man and Taylor 2003; Schoennagel et al. 2005) and AMO+ 
(Ascoli et al. 2020; and Kitzberger et al. 2007) in the north-
western US are also not significant in our analyses.

The AMO+1 is an important control on wildfire likeli-
hood over 38% of the contiguous US under recent condi-
tions, particularly in the West and southern Florida. The 
impact of the AMO on wildfires in the + 2  °C time-slice 
increases considerably in the central US and along the East 
Coast, with a > 25% increase in annual wildfire occurrences 
in the Great Plains and southern Florida.; the strengthened 
effect of AMO+1 on US wildfire occurrence indicates that 
the positive relationship between this mode and wildfire also 
applies to higher amplitudes of the oscillation. The AMO+1 
and TNA+1 show the greatest strengthening in their effect 
with future warming, indicating that high Atlantic SSTs in 
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other environmental variables—for example the key limi-
tation of fuel production on wildfire in dry, southwestern 
US ecosystems. Lightning was also not accounted for in 
the final occurrence model, due to the poor predictability 
of lightning from climate variables. Furthermore, while the 
wildfire probability model also includes predictors related 
to human activity, these were held constant in our analy-
ses. Despite these limitations, the wildfire occurrence model 
used has good predictive capability (Keeping et al. 2024), 
and is responsive to trends and variability in meteorological 
drivers of wildfires whilst also accounting for other human 
and vegetation related effects.

This paper presents strong evidence for the utility of 
using multiple climate modes to supplement long-range fire 
season forecasts, with high utility from a risk management 
perspective. Recent progress in seasonal fire weather fore-
casting (Di Giuseppe et al., 2024) means that fire weather 
anomalies can be predicted up to 1 month in advance glob-
ally. However, predictable modes provide additional infor-
mation on the likely wildfire season—giving enough time 
for risk management interventions such as fuel removal and 
prescribed burning. Such correlations have already been 
found using observed data in a number of regional and local 
studies (Chen et al. 2011, 2016; Fernandes et al. 2011; Shen 
et al. 2019; Cardil et al. 2023). This is now supplemented in 
the US by modelled evidence to a considerably higher level 
of statistical significance.

5  Conclusions

Large wildfire ensembles allow the identification of high-
resolution geographical patterns of the impact of climate 
modes on wildfire. We have identified the areal extent of 
the influence of different modes on wildfire for the contigu-
ous US, their impact on the timing of the fire season, and 
how the relative effect on annual wildfires varies geographi-
cally under recent and future climates. ENSO, the IOD, and 
TNA+1 are found to be the principal climate modes associ-
ated with US wildfire variability under recent conditions, 
affecting 91%, 90% and 82% of the contiguous US. La Niña 
increases the likelihood of wildfire in the southwestern US, 
Great Plains and Florida. The IOD and TNA+1 have a more 
limited effect on US wildfire when accounting for the simul-
taneous effect of ENSO. Nonetheless, the TNA+1 remains 
a strong and widespread influence over the contiguous US 
in the recent and + 2°C climates, and the IOD emerges as a 
substantial regional control in the southern US with future 
warming. Contrary to expectations, no significant relation-
ship was found between El Niño and wildfire occurrences in 
the northwestern US. The strong association of ENSO and 
its related modes on annual expected fires can be explained 

decadal to multidecadal effects, both the SST and the meteo-
rological patterns associated with these modes was correct.

Climate modes are often correlated and can modulate the 
effect of other climate modes. This means that the associa-
tion between a single climate mode and wildfire can also 
embed information on other climate modes that may be 
more directly causally linked to wildfire activity, as shown 
by the analysis of the TNA, IOD and ENSO. The impact of a 
particular mode on wildfires can be established through con-
sideration of the mean effect in different phases, as shown 
for ENSO in the southwestern US. However, there may be 
mechanisms that disrupt the expected patterns of climate 
variability associated with a particular mode. One example 
of this is the impact of years with exceptional atmospheric 
river activity over the southwestern US which led to a rever-
sal of the expected precipitation patterns associated with La 
Niña and El Niño (Luna-Niño et al. 2025).

We used commonly used metrics (Jolly et al. 2015; 
Abatzoglou et al. 2019) to characterise the peak timing and 
length of the fire season. These were defined as the month 
with the most fires and any months with over half the annual 
maximum month respectively. However, it is difficult to 
characterise the seasonal peak in this way when there is a 
similar likelihood of wildfires across most of the year and 
this approach also does not resolve the effect of climate 
modes on bimodal fire seasons, such as in the Appalachian 
Mountains (Lafon et al. 2005). Defining the length of the fire 
season relative to the average value of the highest fire month 
at a given location is appropriate for local comparisons but 
makes it difficult to compare changes across regions with 
very different baseline fire regimes. The similar increase in 
the lengthening of the fire season in the Great Plains and 
Mediterranean California, for example, will have different 
consequences given that the occurrence of wildfires is lower 
in the Great Plains.

We used a wildfire probability model to link climate 
modes to annual wildfire occurrences. The model repre-
sents the probability of wildfire events over a 0.1-hectare 
threshold, but does not simulate other wildfire attributes 
such as size or intensity. Thus, the impact of changes in 
climate modes on wind patterns and storm tracks that can 
lead to extreme wildfires are not accounted for in this 
study. In addition to the climate drivers of wildfire prob-
ability, we included the impact of climate-driven changes 
in GPP on wildfires. However, other factors that influence 
the likelihood of wildfire occurrence such as fuel removal, 
previous wildfires or lightning ignitions are not taken into 
account. Some studies have identified different responses 
to climate depending on environment—for example a dif-
ference in response to seasonal VPD in forested and non-
forested ecosystems in California (Williams et al. 2019). 
However, such difference in response can be explained by 
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tistically significant effect on precipitation across the entire 
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Great Plains and the West. The effect comes primarily from 
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Great Plains is the region where wildfire probability is most 
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Great Plains is strongly controlled by ENSO, the IOD and 
TNA+1 in the recent and + 2°C time-slices, and additionally 
by AMO+1 in the + 2°C time-slice. Over the contiguous US, 
the number of wildfires and the areal extent of influence of 
the PNA, AO and PDO+1 also increase with warming. The 
area significantly influenced by the PNA increased from 26 
to 66% and by the AO from 10 to 37%.
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