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Abstract

Cloud task scheduling faces significant challenges due to resource heterogeneity, conflicting optimization
objectives, and dynamic workload fluctuations. Traditional heuristic algorithms often necessitate comprehensive
knowledge of environmental parameters, significantly constraining their efficacy in dynamic cloud computing
environments. While Deep Reinforcement Learning (DRL) methods have shown promise in intelligent scheduling
via continuous environment interaction, they suffer from limited generalization to diverse cloud scenarios and
lack decision interpretability. To address these shortcomings, this paper proposes LarS, a scheduling framework
that employs Large Language Models (LLMs) as high-level decision agents for cloud task scheduling. In LarS, DRL
agents trained in carefully chosen representative cloud environments generate a high-quality dataset of scheduling
decisions, which is used to fine-tune an LLM. By jointly optimizing average response time, task success rate, and
average rental cost, LarS achieves strong generalization across heterogeneous cloud deployments. Experimental
results demonstrate that LarS surpasses current approaches in average response time, success rate, and average
cost, and maintains strong generalization performance under varied experimental settings.

Keywords Cloud computing, Task scheduling, Deep reinforcement learning, Large language models

Introduction

Cloud computing has emerged as a transformative para-
digm that enables a wide range of users, including enter-
prises and individual developers, to access a shared pool
of configurable computing resources such as servers,
storage, and networks on an on-demand basis. These
resources are dynamically allocated and virtualized,
allowing for scalable, cost-effective, and flexible ser-
vice delivery. With its inherent advantages in elasticity,
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reliability, scalability, and sustainability, cloud computing
not only reduces capital and operational costs but also
significantly simplifies system management and main-
tenance [1]. As a result, an increasing number of users
are choosing to deploy their applications and services in
cloud environments.]. As a result, an increasing number
of users are choosing to deploy their applications and
services in cloud environments.

Task scheduling plays a central role in cloud comput-
ing, as it determines how computational workloads
are allocated across virtualized resources. An effective
scheduling mechanism must maximize resource utiliza-
tion, reduce operational expenses, and improve diverse
Quality of Service (QoS) [2, 3]. However, meeting these
objectives is complicated by the inherently dynamic and
heterogeneous nature of cloud environments, which
comprise virtual machines (VMs) with varying process-
ing capabilities, fluctuating cost models, and irregular

©The Author(s) 2025. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and

@ Springer

the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.


http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1186/s13677-025-00822-0
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-025-00822-0&domain=pdf&date_stamp=2025-12-16

Pei et al. Journal of Cloud Computing (2025) 14:81

task arrival patterns [4—6]. Moreover, such variability
often leads to resource contention and uneven load dis-
tribution, degrading system responsiveness and service
reliability [2, 7]. Therefore, it is imperative to develop
intelligent and adaptive scheduling strategies to ensure
efficient and dependable cloud service delivery.

Traditional scheduling approaches, including heu-
ristic and rule-based methods, frequently fall short in
dynamic environments due to their inherent rigidity and
inability to adapt swiftly to evolving workloads or unex-
pected changes in resource states [4]. Recently, deep
reinforcement learning (DRL) has emerged as a promis-
ing alternative by enabling adaptive scheduling decisions
through interactions with the environment [8, 9]. DRL-
based scheduling has demonstrated substantial advan-
tages, automatically learning near-optimal strategies to
significantly improve metrics such as makespan, opera-
tional cost, and resource utilization compared to tradi-
tional heuristics [10, 11]. Despite these successes, DRL
still faces critical limitations. First, training DRL models
typically requires extensive computational resources and
large volumes of interaction data, making it computa-
tionally expensive and impractical for rapid deployment
[4]. Second, DRL schedulers are susceptible to overfit-
ting to specific training scenarios, severely restricting
their generalization to new or evolving environments [9].
Third, the performance of DRL models heavily depends
on manually crafted reward functions, and inappropri-
ate reward designs can lead to convergence to subopti-
mal solutions or slow convergence, limiting real-world
applicability.

Recent advancements in large language models (LLMs)
offer a complementary solution. Pretrained on vast text
corpora, LLMs provide powerful semantic reasoning
and deep contextual insight, enabling them to gener-
ate human-like heuristics and explanatory guidance for
complex scheduling decisions [12-14]. However, stand-
alone LLM-based scheduling solutions also face several
challenges: their outputs may sometimes lack reliability,
producing inaccurate or contextually inappropriate rec-
ommendations, thus undermining scheduling robustness
[15]. Moreover, directly translating linguistic reason-
ing to actionable scheduling decisions or quantitative
rewards remains non-trivial, limiting the direct applica-
bility of purely LLM-based approaches [12, 13].

To address these challenges, we propose LarS, a cloud
task scheduling framework that leverages an LLM as
a high-level decision agent. In LarS, GPT-40 gener-
ates scheduling decisions with reasoning trajectories
for given environments and states. Trained DRL agents
evaluate these trajectories, and only the validated ones
are retained to form a high-quality dataset. This dataset
is then used to fine-tune the LLM via LoRA, enhancing
its generalization capability and enabling optimization of
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cost and QoS across diverse cloud environments. In sum-
mary, the key contributions of this paper are as follows:

+ We introduce Lars$, an efficient framework that
integrates LLM-based reasoning with DRL-based
verification for intelligent cloud task scheduling.

+ We propose a hybrid data generation pipeline where
GPT-40 produces reasoning trajectories and DRL
agents serve as evaluators to curate high-quality
supervision data.

+ We present the detailed design and implementation
of LarS, and experimental results show that it
outperforms existing approaches while maintaining
strong generalization across diverse settings.

The remainder of this paper is organized as follows.
Section “Related work” reviews related work on cloud
scheduling methods. Section “System model and prob-
lem formulation” describes the system models and opti-
mization objectives. Section “The proposed LarS” details
the design and implementation of LarS. Section “Experi-
ments evaluation” presents the experimental evaluation
of LarS’s performance, and Section “Conclusion” con-
cludes the paper.

Related work

Conventional methods for cloud task scheduling
Traditional scheduling approaches in cloud comput-
ing rely heavily on heuristic and meta-heuristic algo-
rithms to find near-optimal solutions within reasonable
time. Evolutionary algorithms and swarm intelligence
techniques are prominent in this domain. For instance,
Ismayilov and Topcuoglu propose a dynamic workflow
scheduling method using a neural-network enhanced
evolutionary algorithm to handle multiple objectives
under changing conditions [16]. Similarly, Shukri et al.
introduce an enhanced Multi-Verse Optimizer that sig-
nificantly improves task scheduling performance in terms
of makespan and resource utilization [17]. On the swarm
intelligence side, researchers have leveraged algorithms
like Particle Swarm Optimization and Whale Optimiza-
tion. Nabi et al. present an adaptive PSO-based sched-
uling approach (AdPSO) which dynamically adjusts to
workload changes, achieving better load balancing and
reducing completion time [18]. Mangalampalli et al. pro-
pose a trust-aware task scheduler based on the Whale
Optimization algorithm to jointly minimize execu-
tion time and SLA violations, demonstrating superior
results over basic heuristics in cloud environments [19].
While these specialized solutions can optimize particu-
lar objectives, they typically focus on a restricted set of
requirements; consequently, their performance may
deteriorate when the cloud environment diverges from
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expected conditions or when additional objectives must
be incorporated.

DRL methods for cloud task scheduling
Deep reinforcement learning (DRL) has emerged as a
promising approach for cloud task scheduling due to its
ability to simultaneously optimize multiple objectives,
including cost efficiency, makespan minimization, and
QoS compliance [20]. Instead of relying on predefined
heuristic rules, DRL-based schedulers can adapt to com-
plex dynamics and optimize long-term rewards (such as
response time or cost). Siddesha et al. propose a DRL
scheme for cloud scheduling that learns to allocate tasks
to VMs, yielding improvements in makespan and energy
consumption compared to traditional algorithms [21].
In a similar vein, Islam et al. leverage deep Q-learning
techniques to develop a scheduling policy for Spark jobs
in cloud computing, achieving both performance gains
and cost efficiency over baseline scheduling strategies
[22]. Advanced variants of DRL have also been explored;
for example, Xiu et al. introduce a meta-reinforcement
learning framework (MRLCC) that enables a scheduler
to quickly adapt to new cloud environments by learning
a meta-policy, resulting in higher sample efficiency and
robust performance across varying conditions [23].

These works illustrate that DRL approaches can
dynamically learn from the cloud system’s state and feed-
back, often outperforming static heuristics especially in

Table 1 Summary of cloud task scheduling methods and main

features
Reference Method Suc-  Generalization Inter-
cess pret-
rate ability

[22] DON+Policy v - -
Gradient

[18] Adaptive PSO v - -

[21] DON+LSTM v - -

[20] Deep v - _
Q-Learning

[17] Enhanced - - -
Multi-Verse
Optimizer

[e] NN-based v v -
Evolutionary
Algorithm

[19] Whale v - -
Optimization

[23] Meta Rein- v - -
forcement
Learning

[14] LLM-guided - - v
SARSA

[24] LLM-assisted v - -
RL

LarS DQN+LLM Vv v v
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large-scale or non-stationary cloud scenarios. However,
current DRL approaches face several limitations. These
include limited generalization across diverse scenarios,
computationally expensive training procedures, and
policies that are susceptible to overfitting. As a result,
retraining is necessary when workload patterns or cloud
configurations change [4]. Furthermore, DRL models
often exhibit inadequate explainability, unpredictable
worst-case behavior, and difficulties in optimally balanc-
ing multiple competing objectives, highlighting the need
for more adaptive and robust scheduling paradigms that
extend beyond conventional DRL methods.

Large language models for cloud task scheduling

The rapid advancement of LLMs has created opportu-
nities for addressing complex optimization problems,
including scheduling tasks, by leveraging their powerful
sequence modeling and reasoning capabilities. Recent
studies demonstrate that LLMs, pretrained on extensive
corpora, can effectively learn intricate scheduling con-
straints and objectives. For example, Abgaryan et al. [25]
demonstrated that with minimal fine-tuning techniques
like LoRA, LLMs achieve competitive performance on
static job shop scheduling problems. Krishnamurthy and
Shiva propose an LLM-guided approach using a SARSA
reinforcement learning agent for dynamic task schedul-
ing in the cloud [14]. Similarly, Tang et al. [24] developed
a scheduling expert dataset to fine-tune a lightweight
LLM for task assignment decisions in multi-cloud envi-
ronments, showing that LLM-based agents can learn
effective scheduling policies from expert demonstrations.
However, current LLM-based schedulers primarily oper-
ate in offline or semi-static contexts, providing heuristic
guidance or refining existing solutions rather than par-
ticipating in the continuous, real-time decision-making
required for dynamic cloud environments [26].

We summarize the related works mentioned above
in Table 1. While task scheduling has been extensively
studied, traditional heuristic methods often lack flex-
ibility and adaptability to dynamic conditions. DRL-
based schedulers, though adaptive, suffer from limited
generalization and high computational costs. Existing
LLM-driven approaches exhibit strong generalization
capabilities, yet they have not fully demonstrated their
potential in handling online adaptive scheduling scenar-
ios with streaming workloads and evolving objectives. To
remedy these shortcomings, this paper proposes Lar§,
an effective framework that leverages LLM as cloud task
scheduling agent to achieve adaptive, explainable, and
efficient cloud task scheduling.
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Fig. 1 Task scheduling in cloud computing systems

System model and problem formulation

This section presents the formal mathematical frame-
work underlying our cost-aware cloud job scheduling
methodology. We provide definitions of the cloud envi-
ronment, job characteristics, VM configurations and the
job scheduling strategy.

The overall framework

We model a cloud computing environment comprising
VMs analogous to commercial IaaS offerings (such as
AWS EC2 instances and Google Compute Engine) that
operate on a pay-as-you-go pricing model. In this envi-
ronment, users submit computational jobs to applica-
tions hosted on these VMs, while the scheduling system
dynamically allocates incoming jobs to suitable VMs for
execution.

Fig. 1 illustrates the architecture of our cloud job sched-
uling framework. Upon job arrival from multiple applica-
tion users, each job initially enters the scheduling portal,
where it undergoes prompt engineering for proper input
formatting and parameter extraction. Subsequently, an
LLM combined with CoT reasoning executes decision-
making to assign each job optimally to an appropriate
VM. Each VM maintains a local queue and executes the
assigned jobs following a first-come, first-served (FCES)
scheduling policy. The resource manager performs three
key functions: processing job metadata, monitoring
cloud resource pool status and tracking job execution
states. For clarity of presentation, we summarize the key

Table 2 Notations used in our scheduling model

Notation Meaning

ID; The id of the -th job

aT; The arrival time of the -th job
reqCom; The required compute units by job
QoS; The QoS requirement by job

Type; The type of the -th job

Tirep The response time of the -th job

Tewe The runtime of the -th job

Tiwait The waiting time of the -th job

VID; Theid of the -th VM instance

VCPU; The number of virtual CPUs of VM
VType; The type of the -th VM instance

VSC; The start-up cost of the -th VM instance
VEC; The execution cost of VM per time unit

mathematical notations employed in our framework in
Table 2.

Job model

Our framework models dynamic workloads character-
ized by unpredictable job arrivals with heterogeneous
computational requirements. Formally, we define each
job; through the following parameters:

job; = {ID;, aT;,reqCom;, QoS;, Type; } (1)

where ID; denotes the job identifier, aT; represents
the arrival timestamp, reqCom; specifies the required
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computational units, QoS; defines the QoS requirement
and T'ype; indicates the job classification (I/O-intensive
or CPU-intensive).

Virtual machine model

Following the paradigm of commercial cloud providers
(such as AWS EC2’s memory-optimized and 1/O-opti-
mized instances), we characterize each cloud instance’s
computational capacity by its virtual CPU (vCPU)
count. Formally, each VM, is defined by the following
attributes:

VM; = {VID,,VCom,,VCPU;,VType;,VSC;,VEC;} (2)

where VID; denotes the VM identifier, VCom; rep-
resents the computational capacity per vCPU, VCPU;
indicates the total vCPU count and V' T'ype; specifies the
VMs type (I/O or CPU). The total execution cost for a job
on V M; comprises both a fixed startup cost V.SC; and a
time-based execution cost VEC}.

Problem formulation

The job scheduler dynamically assigns incoming jobs to
available VMs. Each job undergoes two phases: queueing
time in the VMs waiting queue and processing time on
the allocated VM. Formally, the response time 7, " for
job; is defined as:

T,L-Tep — Tiwait + Tieace (3)

The waiting time 7% for job; in V M;’s queue equals
the sum of execution times for all preceding jobs in the
queue:

, S Teme ifp >0
Tiwazt :{ k=1"k (4)

0, otherwise

where n denotes the number of jobs preceding job; in the
queue. When the instance’s queue is empty, the waiting
time becomes zero and the job executes immediately.

The execution time T*¢ of job; on V Mj is calculated
as:

reqCom; - (T'ype; © VType;) )
2VCom; - VCPU;

ere __
Teve =

where reqCom; is the required compute of the job;,
Type; is the type of the job;, VT'ype; is the type of the
assigned V' M, @ is the type matching operator, VCPU;
is the number of virtual CPUs of the VM; and VCom;
is the available compute of the V' M. The type matching
operator ® returns value of 1 when the T'ype; matches
the VT'ype;, and value of 2 when they do not match,
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effectively doubling the execution time when there is a
type mismatch between the job and VM.

Therefore, the total execution cost Cost; for processing
job; on V' Mj is computed as:

COStj = VSCJ =+ VECJ . Tieme (6)

Optimization objectives

To optimize cloud task scheduling, we establish two key
objectives: minimizing total costs and maximizing suc-
cess rate. We consider the ratio of execution time to
response time as QoS. The QoS of job; is calculated as:

exe

QOSi = TZ:rcp (7)

3

where T " is the response time of the job and 7°*° is the
execution time of the job. The success of a job is mea-
sured by the deadline requirements specified by the user:

1, if QoS; < QoS requirement
Success; = (8)

0, otherwise

The multi-objective optimization problem is formally
expressed as:

M
Minimize Z Cost;
j=1
LM ©)
Maximize SR = i Zl Success;
i—

where M denotes the total number of jobs in the sched-
uling process, SR represents the success rate of QoS
compliance across all jobs.

The proposed LarS

This section presents LarS, a cloud task scheduling
framework that enhances the generalization and inter-
pretability of the scheduling LLM by leveraging DRL-fil-
tered datasets and fine-tuning with LoRA.

Markov decision process formulation

Within our framework, the scheduling problem is for-
malized as a Markov Decision Process (MDP) with the
following components [27]:

State space (S)
In our system, the state space is defined by the combined
attributes of tasks and VMs. Accordingly, the system
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state at time ¢, upon the arrival of job job;, is represented
as:
S, = S;us™ (10)

where S; encodes the job-specific features and S;™
encodes the current state of all VMs. Concretely, we set:

Sy, = [requmi7 QoS;, Tt ..., Ti‘gmt, U Ti“[\?“] (11)

where reqCom, is the compute requirement of job;, QoS;
is its QoS metric and T;** is the waiting time of job; in
the queue of V' M.

Action space (A)

The action space 4 represents the set of all possible
actions available to the agent during the decision-making
process. In our scheduling environment, A corresponds
to the set of available VMs that can be selected for each
incoming job. Therefore, the action space is defined as:

A:{VM17VM2,...,VMN} (12)
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where each action corresponds to dispatching the job to
a particular VM.

Reward function (R)
The reward is designed to optimize the cost and QoS.
Assigning job; incurs a C'ost; and has QoS;. The reward
is defined as:

r=(14e 79 QoS, (13)
where £ > 0 is a hyperparameter used to balance the cost
and QoS. As the cost decreases, the reward increases,
reflecting a preference for lower-cost objection. Similarly,
as QoS; increases, indicating relatively fewer waiting
times and easier to meet QoS requirements, the reward
also increases.

Design and implementation of lars

To address the MDP formulation, we propose a two-stage
framework (Fig. 2). First, DRL agents are independently
trained for distinct cloud scenarios to acquire optimal
scheduling policies. Second, these agents filter schedul-
ing trajectories generated by GPT-40 through interac-
tion with the scenarios to create a high-quality dataset

/ Cloud \ 4 (a) DRL Agents Training N
Environments
> I reward(r)
6 next state(s”)
- I s ==
2 :> ﬁ inibach Target Q-Network
: 5 VMs random —
O sampling state(s) soft update I -
jo—bs store
transition Dﬁ:l S5 I:%D
, > = g
' 6 Eval Q-Network Epdetet chE .
O ﬁﬁlﬁ' \ | predicted @ /
C') 6 VMs 4 *, _--""7(b) Trajectory Filtering & LoRA Fine-Tuning N
l//
. jobs >
state(s) action (DRL) |
s DRL agents Cons%stent (p, st) 11‘
° action =)
action (GPT) | =]
= " Filtered dataset
8 preessSEsEssss e :
— P |i| o 5 5
o ¢ i '
o o LoRA merged |
: 65 VMs % t ) i i i H\:llzI Q 24_
{ jobs i e ! General LLM LoRA adapters !

Fig. 2 The proposed LarS architecture
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for fine-tuning a lightweight scheduling LLM via LoRA,
enabling robust generalization across diverse task sched-
uling scenarios.

DRL agents training for each scenario
DQN [28] extends traditional Q-learning by employing
neural networks to approximate Q-values in high-dimen-
sional state spaces, rendering them particularly suitable
for dynamic cloud scheduling applications [29, 30].

While we use the DQN algorithm as the core method,
our approach is not limited to a single DQN training. For
each cloud task scheduling scenario of varying scale, we
train a DRL agent. Each agent is responsible for making
scheduling decisions specific to its assigned environ-
ment and filters out the scheduling trajectories in that
scenario. These scheduling trajectories from different
scenarios are aggregated into a larger dataset, which is
then used for LoRA fine-tuning of the scheduling LLM.
This process allows the scheduling LLM to achieve stron-
ger generalization and robustness across different cloud
environments.

The data aggregation process can be expressed as
follows:

Dﬁnal = U Dj

j=1

(14)

where D, represents the dataset of filtered scheduling
trajectories from the DRL agent of scenario j, and Dgpal
is the final dataset aggregated from all scenarios, which is
used for LoRA fine-tuning of the scheduling LLM. And
the DRL agents’ training process is given as follows:

Firstly, we adopt prioritized experience replay [31] to
enhance learning efficiency by selectively replaying more
informative experiences during training. Specifically,
transitions are sampled from the replay buffer with prob-
abilities proportional to their temporal-difference (TD)
errors, thus prioritizing experiences that indicate larger
deviations between predicted and actual rewards.

Secondly, to stabilize the training of the Q-network and
mitigate variance in the Q-value estimations, we main-
tain a separate target network, updated periodically with
parameters derived from the primary evaluation net-
work. This periodic synchronization ensures stable target
estimations, significantly enhancing training consistency
in dynamic scheduling scenarios. The target value used in
training is computed as:

y =7+ ymax Q(se1,a5607) (15)
where v is the discount factor balancing immediate and
long-term rewards, and 6~ represents the target network
parameters. The primary network parameters (f) are
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optimized by minimizing the mean squared temporal-
difference loss:

L(0) =Eivpg) [(y — Q(st,ae:0))?] (16)
Lastly, to effectively balance exploration and exploitation
during policy learning, we employ a linear epsilon-greedy
strategy. In this strategy, the exploration probability e
gradually increases from an initial small value toward a
defined maximum, encouraging the agent to system-
atically explore scheduling decisions initially and pro-
gressively shift to exploiting learned policies as training
advances. This approach effectively prevents premature
convergence and ensures a comprehensive exploration of
diverse scheduling strategies.

Trajectory filtering and LLM fine-tuning

DRL agent-guided trajectory filtering: The GPT-4o
generates scheduling trajectories based on structured
environmental prompts. Concurrently, DRL agents inde-
pendently produce scheduling decisions for identical
states. The system retains only those prompt-trajectory
pairs (p, st) where the GPT-40’s proposed action (agpT)
matches the DRL agent’s action (apRrr).

LoRA-based fine-tuning of LLaMA-2: The filtered
scheduling trajectories are used to fine-tune a lightweight
LLM, with the 13-billion-parameter LLaMA-2 causal
language model serving as the foundation for the sched-
uling model, leveraging the parameter-efficient LoRA
technique [32]. This method drastically reduces the
number of trainable parameters, adapting only two pro-
jection matrices per attention head, resulting in less than
1% of total model parameters requiring updates during
fine-tuning.

Given a frozen pre-trained weight matrix
Wy € R4*¥ (such as the query projection matrix in atten-
tion layers), LoRA injects a low-rank trainable update
defined as:

W =Wy+BA, BeR™ AcR™* r< min(d k) (17)

Initially, we set B =0 and A = <1, ensuring the fine-
tuned model starts with identical behavior to the pre-
trained model (W = Wj). Throughout the fine-tuning
process, only matrices A and B receive gradient updates,
while the vast majority of original weights remain
unchanged.

To further enhance training efficiency, we apply INT8
quantization prior to LoRA insertion. This converts lin-
ear layers’ activations to 8-bit precision and maintains
FP16 accuracy through freezing LayerNorm statistics.
Such quantization reduces GPU memory requirements
by approximately fourfold, making single-GPU training
feasible.
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~
([Observation]
Current Task (Compute or I0), length, deadline, current time
Multiple VMs (Compute or |0), with different idle times, capacities, and costs
[Task Scenario Description]
A cloud computing scheduler assigns tasks (Compute or IO-intensive) to suitable virtual machines (VMs).
[Task Description]
Which VM should be selected to minimize cost and finish before the deadline?
[Commonsense Knowledge]
Match tasks to the appropriate VM type
Prefer VMs available sooner and with lower cost
[Scheduling Action Space]
\AII VMs )
(a) The prompt template
4 N
Step 1: Reasoning
[Task Comprehension]
Assign Compute-heavy tasks to Compute-type VMs.
Prioritize earlier availability and lower cost.
[Scheduling Condition Analysis]
VM 2, 4, and 9 available immediately.
VM 2 is Compute-type, lowest cost, and ready now.
VM 4 and VM 9 have higher cost, despite immediate availability.
VM 7 & 8 available too late , thus unsuitable.
Step 2: Action Execution
\ Optimal choice is VM ID 2 (Compute, lowest cost, immediate availability). )

(b) The reasoning and action execution process.

Fig 3 Prompt template used in LarS and an example of the reasoning process

Given the filtered dataset of prompt-response pairs
(,Y) € Thiltered, the fine-tuning minimizes the causal
language modeling cross-entropy loss defined as:

Laistitt(9) = E(s,a)~rarerea | — 108 Ps(als)]  (18)
where Pj(als) is the probability distribution over actions
produced by the LLM with parameters ¢. To avoid intro-
ducing irrelevant biases into the model, tokens cor-
responding to the Observation: fields are masked by
replacing their token IDs with —100, effectively excluding
these from gradient computations.

Through this combined approach, which leverages effi-
cient LoRA fine-tuning and INT8 quantization, we effec-
tively transfer the high-quality trajectories that align with
the DRL strategy to the scheduling LLM. The final fine-
tuned LLM not only preserves generalization capabili-
ties inherent in LLaMA-2 but also delivers significantly
enhanced practical applicability in cloud task scheduling
scenarios.

Prompt construction and reasoning strategy
LarS employs a prompt-driven decision-making method.
The framework constructs an enriched knowledge

prompt that comprehensively encodes the scheduling
problem state. Formally, we define:

X = PrOInpt(O, dscenarioa dtask7 dknowledge7 A) (19)

where o denotes the observed cloud environment state,
dscenario Characterizes the operational context, diask
specifies the scheduling objectives, dinowledge incorpo-
rates relevant domain knowledge, and A represents the
action space of scheduling decisions (such as task-to-VM
mappings).

The LLM processes the prompt using CoT reasoning to
generate scheduling trajectories, performing a two-phase
analysis: (1) evaluating the prompt content including
VM states, queued tasks and optimization objectives; (2)
selecting the optimal task-to-VM mapping. Importantly,
the LLM concurrently produces a natural language jus-
tification for each decision, enabling human operators to
verify and understand the scheduling choices. The spe-
cific prompt template and reasoning example are shown
in Fig. 3.

The detailed training process of LarS
The detailed algorithm is shown in Algorithm 1 which
comprises two phases, beginning with the DRL-guided
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Algorithm 1 DRL-Guided GPT Trajectory Filtering and Unified LoRA Fine-Tuning

. Initialize an empty list Taiterea < []
: for each environment env do
s+ envreset()
while not envterminated do
p <— GENERATEPROMPT(s)
st < GPT_40.GENERATETRAJECTORY (D)
apRL ¢ AGENT.CHOOSE_BEST_ACTION(s)
if aGPT — GDRL then
Tﬁltered-append((pa St))
end if
s + envstep(agpr)
13: end while
14: end for
15: // LoRA Fine-Tuning Phase
16: for each tuple (p, st) in Taiterea do

© ® ST W

_ e
N o~ O

17: input_text < p

18: target_text <— st

19: tokens;y < TOKENIZER(input_text)
20: tokensqyt, < TOKENIZER(target_text)
21: labels < copy(tokensqyt)

22: MASKTOKENS(tokensin, labels)

23: end for

: // DRL-Guided GPT Trajectory Filtering Phase

24: Fine-tune scheduling LLM parameters ¢ (with LoRA adapters) on the tokenized
examples by minimizing: Laistin = E(p, st)~rmierea [— log Py (st | p)]

GPT trajectory filtering phase. Initially, an empty fil-
tered trajectory set Tgitered iS created. For each environ-
ment scenario, the environment state s is reset. While
the environment has not terminated, the corresponding
prompt p encoding the current state is generated, and
GPT-40 generates the scheduling trajectory st including
CoT reasoning and action agpt based on the prompt
p. Subsequently, a DRL agent selects the optimal action
apry, for the given state. If the GPT-selected action agpr
matches the DRL agent’s action apry, the tuple compris-
ing the prompt p and trajectory st is stored into Titered.
The environment is then updated based on GPTs selected
action, advancing the state.

In the subsequent LoRA fine-tuning phase, each tuple
(p, st) from the filtered trajectory set Tgitered is utilized
for fine-tuning. Specifically, the prompt p serves as the
input text, and the corresponding full trajectory st,
including the selected action, functions as the target text.
Both texts are tokenized, converting the prompt and tra-
jectory into token IDs. During this phase, labels are gen-
erated by masking prompt tokens within the tokenized
labels to ensure only trajectory tokens contribute to the
loss calculation. Finally, the scheduling LLM param-
eters, enhanced with LoRA adapters, are fine-tuned by
minimizing the negative log-likelihood of the trajec-
tory tokens conditioned upon the prompt, thus refining
model behavior in alignment with DRL guidance.

In summary, LarS provides notable operational advan-
tages over conventional scheduling methods by effec-
tively integrating DRLs optimization precision with
GPT-40’s generalization capability, enhancing adaptabil-
ity across different scenarios, improving decision trans-
parency through structured prompting, and dynamically
optimizing multi-objective goals based on real-time
system states, thus significantly improving cost effi-
ciency, QoS compliance, operational scalability, and
explainability.

Experiments evaluation

In this section, we compare our approach with several
widely used scheduling methods and evaluate the gener-
alization performance of LarsS.

Environment setup

To ensure scheduler robustness, we designed training
environments encompassing diverse resource configura-
tions. And the job arrival process follows a Poisson distri-
bution, reflecting the stochastic nature of job arrivals in
real-world cloud environments. Figure 4 presents a scat-
ter plot of the 10 training environments, with the x-axis
and y-axis representing the counts of High CPU and
High I/O VMs, respectively. The distributed point pat-
tern demonstrates significant environmental heterogene-
ity, which is essential to prevent the the scheduling LLM
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Fig. 4 Scatter plot of the 10 DRL training environments

from overfitting and ensure reliable performance across
varied workload scenarios.

In our experiments, the DRL agents were trained using
DQN with the following parameters: replay buffer size
was set to 1600, batch size was 60, and the target network
update interval was configured to occur every 150 steps.
We adopted the RMSProp optimizer with a learning rate
of 5 x 1073, a discount factor (7) of 0.9, and employed an
adaptive epsilon-greedy exploration strategy, where epsi-
lon incrementally increased from 0.01 to 0.9 with incre-
ments of 0.003 per training step. For the LLM fine-tuning
stage, we utilized the LLaMA-2-13B model, applying
LoRA with r = 8, & = 16, and a dropout rate of 0.05. The
training was conducted for 30 epochs using the Adam
optimizer with a learning rate of 3 x 10~%, a batch size of
128, and a validation set comprising 5% of the data.

To conduct comprehensive experiments, we utilized a
computing environment equipped with an NVIDIA A800
GPU featuring 80 GB of memory, 14 virtual CPUs based
on Intel Xeon(R) Gold 6348 running at 2.60 GHz, and 100
GB RAM. Software-wise, our setup included Python 3.12
running on Ubuntu 22.04, PyTorch 2.3.0, and CUDA 12.1
to optimize neural network computations and ensure
efficient GPU utilization during training and evaluation.

Baselines

We evaluate nine scheduling strategies on an 11-VM test
environment consisting of 5 High CPU and 6 High I/O
VMs. The evaluated strategies comprise:

1. Random: Assigns tasks arbitrarily to VMs without
considering load, priority, or deadlines.

2. Round Robin: Cyclically assigns tasks across all
VMs in fixed order, ensuring equal distribution but
ignoring task complexity and urgency.

3. Earliest: Selects and dispatches tasks with nearest
deadlines first, greedily optimizing completion
time but potentially neglecting overall system load
balance.
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Table 3 Performance comparison of scheduling strategies on an
11-VM environment

Strategy Avg. Resp. (s) Success Rate (%) Cost
Naive Methods

Random 0.422 31.6 0.596
Round-Robin 0.290 47.0 0.602
Earliest 0.282 50.0 0.607
DRL-based Method

DQN 0.191 98.6 0.421
LLM-based Methods

GPT-40 0.252 79.4 0.400
LLaMA-2 (untrained) 9. 064 24.5 0.486
LLaMA-2 (+1000 samples)  0.245 74.3 0.437
LLaMA-2 (+2000 samples) 0.364 43.3 0.529
LLaMA-2 (+4700 samples) 0.211 88.0 0.439

4.  GPT-4o0: Leverages advanced LLM to predict
optimal scheduling decisions based on workload and
task requirements.

5.  DQN: Utilizes deep Q-learning to learn scheduling
policies by exploring state-action rewards,
continuously improving task allocation efficiency
through training.

6. LLaMA-2 (untrained): Applies pretrained
LLaMA-2 model without any task-specific fine-
tuning, using generic language capabilities for
scheduling decisions.

7. LLaMA-2 (+1000 samples): LLaMA-2 fine-tuned
with 1000 samples.

8. LLaMA-2 (+2000 samples): LLaMA-2 fine-tuned
with 2000 samples.

9. LLaMA-2 (+4700 samples): LLaMA-2 fine-tuned
with 4700 samples.

The performance of these strategies is evaluated using
three metrics:

Average Response Time : Lower values indicate faster
task completion.

Success Rate : The proportion of tasks meeting the
desired QoS requirements.

Cost : Reflects the average resource expenditure.

Results

As demonstrated in Table 3 and Fig. 5, the LLaMA-2
model fine-tuned with 4700 samples achieves strong
performance across all three evaluation metrics. The
Scheduling results of GPT-40 indicating that powerful
LLMs can deliver competitive performance even with-
out fine-tuning. In contrast, all naive methods exhibit
substantially inferior performance, characterized by pro-
longed response times and reduced success rates. While
DQN-based methods show significant improvements
over naive methods and even surpass some LLM-based
schedulers, their inherent limitations hinder effective
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Fig. 6 Comparison of the generalization performance of the fine-tuned LLaMA-2 scheduler (trained on 4700 samples) and baseline methods (random,
round-robin, earliest, and DQN) across three test environments with 8, 20, and 40 VMs: (a) average response time (log scale), (b) task success rate, and (c)

average execution cost

adaptation to dynamic cloud environments. These results
demonstrate that LLaMA-2, after appropriate fine-tun-
ing, significantly improves scheduling success rate and
efficiency, particularly as the sample size increases.

Evaluation of generalization performance

To comprehensively evaluate the generalization capabil-
ity of our proposed scheduler, we deployed the fine-tuned
LLaMA-2 model (+4700 samples) across three distinct
test environments with varying scales (8 VMs, 20 VMs
and 40 VMs). We compared its performance with four
baseline scheduling methods: Random, Round-Robin,
Earliest, and DQN. Performance was quantified through
three metrics: average response time, task success rate,
and average execution cost. It should be noted that for
the DQN model, we trained it in an 11-VM environment
and then applied it directly to the three environments
without retraining.

As shown in Fig. 6(a), the scheduling LLM shows
excellent performance in terms of average response
time across environments. However, the DQN sched-
uler exhibits extremely poor performance in medium

and large environments (20 and 40 VMs), which can be
attributed to overfitting of its training strategy. The DQN
scheduler develops a specialized strategy for its specific
training scenario, resulting in significant response delays
(over 200seconds) when encountering larger-scale sce-
narios. In stark contrast, our scheduling LLM maintained
consistently low response times, demonstrating robust
generalization due to effective semantic knowledge trans-
fer from the pre-trained language model.

The results in Fig. 6(b) further demonstrate the gen-
eralization strengths of the scheduling LLM. Our pro-
posed method achieved the highest success rate in three
environments, clearly surpassing all baseline methods.
Although the success rate drops in the largest test envi-
ronment (40 VMs), the scheduling LLM still maintains
slightly better performance than the traditional baseline
method. This reduction in success rate at the largest scale
indicates potential challenges in scalability and adapta-
tion to substantially more complex resource allocation
contexts. However, even in this challenging scenario,
our scheduler did not exhibit catastrophic performance
degradation as observed with DQN, whose success rate
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dramatically plummeted due to its inability to generalize
beyond the narrow training regime.

Finally, in terms of average cost (Fig. 6(c)), our sched-
uler consistently delivered the lowest resource utilization
costs in three environments, highlighting its capabil-
ity to effectively optimize the cost. The scheduling LLM
achieved a cost nearly 20% lower than the closest com-
peting naive method in the 8 VMs environment and
maintained competitive efficiency in the medium-scale
environment. At the 20 and 40 VMs scale, although the
cost of the scheduling model is narrowing compared to
other methods, it still outperforms them.

In summary, these results affirm that the LLaMA-2
model, fine-tuned with a dataset of 4700 samples, pos-
sesses significant generalization advantages. It demon-
strates exceptional efficiency and adaptability in low-scale
and medium-scale environments, balancing low response
times, high success rates, and cost efficiency. While fac-
ing scalability challenges at larger scales, the scheduling
LLM continues to outperform naive methods and DQN
approach, underscoring the robustness and practical util-
ity of integrating LLM-based semantic reasoning into
cloud scheduling strategies.

Conclusion

In this paper, we propose LarS, a DRL-enhanced sched-
uling LLM tailored for cloud task scheduling. LarS
integrates the decision-making capability of deep rein-
forcement learning with the generalization and reasoning
capabilities of large language models. By combining these
complementary strengths, LarS enhances scheduling
performance while overcoming the limited generalization
typically observed in standalone DRL approaches. Exper-
imental results show that LarS outperforms both naive
baselines and standalone DRL methods across diverse
cloud environments. Future work will focus on extend-
ing LarS to cloud—edge environments and improving its
adaptability under few-shot learning conditions.
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