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reliability, scalability, and sustainability, cloud computing 
not only reduces capital and operational costs but also 
significantly simplifies system management and main-
tenance   [1]. As a result, an increasing number of users 
are choosing to deploy their applications and services in 
cloud environments.]. As a result, an increasing number 
of users are choosing to deploy their applications and 
services in cloud environments.

Task scheduling plays a central role in cloud comput-
ing, as it determines how computational workloads 
are allocated across virtualized resources. An effective 
scheduling mechanism must maximize resource utiliza-
tion, reduce operational expenses, and improve diverse 
Quality of Service (QoS)  [2, 3]. However, meeting these 
objectives is complicated by the inherently dynamic and 
heterogeneous nature of cloud environments, which 
comprise virtual machines (VMs) with varying process-
ing capabilities, fluctuating cost models, and irregular 

Introduction
Cloud computing has emerged as a transformative para-
digm that enables a wide range of users, including enter-
prises and individual developers, to access a shared pool 
of configurable computing resources such as servers, 
storage, and networks on an on-demand basis. These 
resources are dynamically allocated and virtualized, 
allowing for scalable, cost-effective, and flexible ser-
vice delivery. With its inherent advantages in elasticity, 
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Abstract
Cloud task scheduling faces significant challenges due to resource heterogeneity, conflicting optimization 
objectives, and dynamic workload fluctuations. Traditional heuristic algorithms often necessitate comprehensive 
knowledge of environmental parameters, significantly constraining their efficacy in dynamic cloud computing 
environments. While Deep Reinforcement Learning (DRL) methods have shown promise in intelligent scheduling 
via continuous environment interaction, they suffer from limited generalization to diverse cloud scenarios and 
lack decision interpretability. To address these shortcomings, this paper proposes LarS, a scheduling framework 
that employs Large Language Models (LLMs) as high-level decision agents for cloud task scheduling. In LarS, DRL 
agents trained in carefully chosen representative cloud environments generate a high-quality dataset of scheduling 
decisions, which is used to fine-tune an LLM. By jointly optimizing average response time, task success rate, and 
average rental cost, LarS achieves strong generalization across heterogeneous cloud deployments. Experimental 
results demonstrate that LarS surpasses current approaches in average response time, success rate, and average 
cost, and maintains strong generalization performance under varied experimental settings.
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task arrival patterns   [4–6]. Moreover, such variability 
often leads to resource contention and uneven load dis-
tribution, degrading system responsiveness and service 
reliability   [2, 7]. Therefore, it is imperative to develop 
intelligent and adaptive scheduling strategies to ensure 
efficient and dependable cloud service delivery.

Traditional scheduling approaches, including heu-
ristic and rule-based methods, frequently fall short in 
dynamic environments due to their inherent rigidity and 
inability to adapt swiftly to evolving workloads or unex-
pected changes in resource states   [4]. Recently, deep 
reinforcement learning (DRL) has emerged as a promis-
ing alternative by enabling adaptive scheduling decisions 
through interactions with the environment  [8, 9]. DRL-
based scheduling has demonstrated substantial advan-
tages, automatically learning near-optimal strategies to 
significantly improve metrics such as makespan, opera-
tional cost, and resource utilization compared to tradi-
tional heuristics   [10, 11]. Despite these successes, DRL 
still faces critical limitations. First, training DRL models 
typically requires extensive computational resources and 
large volumes of interaction data, making it computa-
tionally expensive and impractical for rapid deployment   
[4]. Second, DRL schedulers are susceptible to overfit-
ting to specific training scenarios, severely restricting 
their generalization to new or evolving environments  [9]. 
Third, the performance of DRL models heavily depends 
on manually crafted reward functions, and inappropri-
ate reward designs can lead to convergence to subopti-
mal solutions or slow convergence, limiting real-world 
applicability.

Recent advancements in large language models (LLMs) 
offer a complementary solution. Pretrained on vast text 
corpora, LLMs provide powerful semantic reasoning 
and deep contextual insight, enabling them to gener-
ate human-like heuristics and explanatory guidance for 
complex scheduling decisions  [12–14]. However, stand-
alone LLM-based scheduling solutions also face several 
challenges: their outputs may sometimes lack reliability, 
producing inaccurate or contextually inappropriate rec-
ommendations, thus undermining scheduling robustness  
[15]. Moreover, directly translating linguistic reason-
ing to actionable scheduling decisions or quantitative 
rewards remains non-trivial, limiting the direct applica-
bility of purely LLM-based approaches  [12, 13].

To address these challenges, we propose LarS, a cloud 
task scheduling framework that leverages an LLM as 
a high-level decision agent. In LarS, GPT-4o gener-
ates scheduling decisions with reasoning trajectories 
for given environments and states. Trained DRL agents 
evaluate these trajectories, and only the validated ones 
are retained to form a high-quality dataset. This dataset 
is then used to fine-tune the LLM via LoRA, enhancing 
its generalization capability and enabling optimization of 

cost and QoS across diverse cloud environments. In sum-
mary, the key contributions of this paper are as follows:

 	• We introduce LarS, an efficient framework that 
integrates LLM-based reasoning with DRL-based 
verification for intelligent cloud task scheduling.

 	• We propose a hybrid data generation pipeline where 
GPT-4o produces reasoning trajectories and DRL 
agents serve as evaluators to curate high-quality 
supervision data.

 	• We present the detailed design and implementation 
of LarS, and experimental results show that it 
outperforms existing approaches while maintaining 
strong generalization across diverse settings.

The remainder of this paper is organized as follows. 
Section “Related work” reviews related work on cloud 
scheduling methods. Section “System model and prob-
lem formulation” describes the system models and opti-
mization objectives. Section “The proposed LarS” details 
the design and implementation of LarS. Section “Experi-
ments evaluation” presents the experimental evaluation 
of LarS’s performance, and Section “Conclusion” con-
cludes the paper.

Related work
Conventional methods for cloud task scheduling
Traditional scheduling approaches in cloud comput-
ing rely heavily on heuristic and meta-heuristic algo-
rithms to find near-optimal solutions within reasonable 
time. Evolutionary algorithms and swarm intelligence 
techniques are prominent in this domain. For instance, 
Ismayilov and Topcuoglu propose a dynamic workflow 
scheduling method using a neural-network enhanced 
evolutionary algorithm to handle multiple objectives 
under changing conditions [16]. Similarly, Shukri et al. 
introduce an enhanced Multi-Verse Optimizer that sig-
nificantly improves task scheduling performance in terms 
of makespan and resource utilization [17]. On the swarm 
intelligence side, researchers have leveraged algorithms 
like Particle Swarm Optimization and Whale Optimiza-
tion. Nabi et al. present an adaptive PSO-based sched-
uling approach (AdPSO) which dynamically adjusts to 
workload changes, achieving better load balancing and 
reducing completion time [18]. Mangalampalli et al. pro-
pose a trust-aware task scheduler based on the Whale 
Optimization algorithm to jointly minimize execu-
tion time and SLA violations, demonstrating superior 
results over basic heuristics in cloud environments [19]. 
While these specialized solutions can optimize particu-
lar objectives, they typically focus on a restricted set of 
requirements; consequently, their performance may 
deteriorate when the cloud environment diverges from 
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expected conditions or when additional objectives must 
be incorporated.

DRL methods for cloud task scheduling
Deep reinforcement learning (DRL) has emerged as a 
promising approach for cloud task scheduling due to its 
ability to simultaneously optimize multiple objectives, 
including cost efficiency, makespan minimization, and 
QoS compliance [20]. Instead of relying on predefined 
heuristic rules, DRL-based schedulers can adapt to com-
plex dynamics and optimize long-term rewards (such as 
response time or cost). Siddesha et al. propose a DRL 
scheme for cloud scheduling that learns to allocate tasks 
to VMs, yielding improvements in makespan and energy 
consumption compared to traditional algorithms [21]. 
In a similar vein, Islam et al. leverage deep Q-learning 
techniques to develop a scheduling policy for Spark jobs 
in cloud computing, achieving both performance gains 
and cost efficiency over baseline scheduling strategies 
[22]. Advanced variants of DRL have also been explored; 
for example, Xiu et al. introduce a meta-reinforcement 
learning framework (MRLCC) that enables a scheduler 
to quickly adapt to new cloud environments by learning 
a meta-policy, resulting in higher sample efficiency and 
robust performance across varying conditions [23].

These works illustrate that DRL approaches can 
dynamically learn from the cloud system’s state and feed-
back, often outperforming static heuristics especially in 

large-scale or non-stationary cloud scenarios. However, 
current DRL approaches face several limitations. These 
include limited generalization across diverse scenarios, 
computationally expensive training procedures, and 
policies that are susceptible to overfitting. As a result, 
retraining is necessary when workload patterns or cloud 
configurations change [4]. Furthermore, DRL models 
often exhibit inadequate explainability, unpredictable 
worst-case behavior, and difficulties in optimally balanc-
ing multiple competing objectives, highlighting the need 
for more adaptive and robust scheduling paradigms that 
extend beyond conventional DRL methods.

Large language models for cloud task scheduling
The rapid advancement of LLMs has created opportu-
nities for addressing complex optimization problems, 
including scheduling tasks, by leveraging their powerful 
sequence modeling and reasoning capabilities. Recent 
studies demonstrate that LLMs, pretrained on extensive 
corpora, can effectively learn intricate scheduling con-
straints and objectives. For example, Abgaryan et al. [25] 
demonstrated that with minimal fine-tuning techniques 
like LoRA, LLMs achieve competitive performance on 
static job shop scheduling problems. Krishnamurthy and 
Shiva propose an LLM-guided approach using a SARSA 
reinforcement learning agent for dynamic task schedul-
ing in the cloud [14]. Similarly, Tang et al. [24] developed 
a scheduling expert dataset to fine-tune a lightweight 
LLM for task assignment decisions in multi-cloud envi-
ronments, showing that LLM-based agents can learn 
effective scheduling policies from expert demonstrations. 
However, current LLM-based schedulers primarily oper-
ate in offline or semi-static contexts, providing heuristic 
guidance or refining existing solutions rather than par-
ticipating in the continuous, real-time decision-making 
required for dynamic cloud environments [26].

We summarize the related works mentioned above 
in Table 1. While task scheduling has been extensively 
studied, traditional heuristic methods often lack flex-
ibility and adaptability to dynamic conditions. DRL-
based schedulers, though adaptive, suffer from limited 
generalization and high computational costs. Existing 
LLM-driven approaches exhibit strong generalization 
capabilities, yet they have not fully demonstrated their 
potential in handling online adaptive scheduling scenar-
ios with streaming workloads and evolving objectives. To 
remedy these shortcomings, this paper proposes LarS, 
an effective framework that leverages LLM as cloud task 
scheduling agent to achieve adaptive, explainable, and 
efficient cloud task scheduling.

Table 1  Summary of cloud task scheduling methods and main 
features
Reference Method Suc-

cess 
rate

Generalization Inter-
pret-
ability

[22] DQN + Policy 
Gradient

✓ - -

[18] Adaptive PSO ✓ - -

[21] DQN + LSTM ✓ - -

[20] Deep 
Q-Learning

✓ - -

[17] Enhanced 
Multi-Verse 
Optimizer

- - -

[16] NN-based 
Evolutionary 
Algorithm

✓ ✓ -

[19] Whale 
Optimization

✓ - -

[23] Meta Rein-
forcement 
Learning

✓ - -

[14] LLM-guided 
SARSA

- - ✓

[24] LLM-assisted 
RL

✓ - -

LarS DQN + LLM ✓ ✓ ✓
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System model and problem formulation
This section presents the formal mathematical frame-
work underlying our cost-aware cloud job scheduling 
methodology. We provide definitions of the cloud envi-
ronment, job characteristics, VM configurations and the 
job scheduling strategy.

The overall framework
We model a cloud computing environment comprising 
VMs analogous to commercial IaaS offerings (such as 
AWS EC2 instances and Google Compute Engine) that 
operate on a pay-as-you-go pricing model. In this envi-
ronment, users submit computational jobs to applica-
tions hosted on these VMs, while the scheduling system 
dynamically allocates incoming jobs to suitable VMs for 
execution.

Fig. 1 illustrates the architecture of our cloud job sched-
uling framework. Upon job arrival from multiple applica-
tion users, each job initially enters the scheduling portal, 
where it undergoes prompt engineering for proper input 
formatting and parameter extraction. Subsequently, an 
LLM combined with CoT reasoning executes decision-
making to assign each job optimally to an appropriate 
VM. Each VM maintains a local queue and executes the 
assigned jobs following a first-come, first-served (FCFS) 
scheduling policy. The resource manager performs three 
key functions: processing job metadata, monitoring 
cloud resource pool status and tracking job execution 
states. For clarity of presentation, we summarize the key 

mathematical notations employed in our framework in 
Table 2.

Job model
Our framework models dynamic workloads character-
ized by unpredictable job arrivals with heterogeneous 
computational requirements. Formally, we define each 
jobi through the following parameters: 

	 jobi = {IDi, aTi, reqComi, QoSi, T ypei}� (1)

where IDi denotes the job identifier, aTi represents 
the arrival timestamp, reqComi specifies the required 

Table 2  Notations used in our scheduling model
Notation Meaning
IDi The id of the -th job

aTi The arrival time of the -th job

reqComi The required compute units by job 

QoSi The QoS requirement by job 

T ypei The type of the -th job

T rep
i

The response time of the -th job

T exe
i The runtime of the -th job

T wait
i

The waiting time of the -th job

V IDi The id of the -th VM instance

V CP Ui The number of virtual CPUs of VM 

V T ypei The type of the -th VM instance

V SCi The start-up cost of the -th VM instance

V ECi The execution cost of VM  per time unit

Fig. 1  Task scheduling in cloud computing systems
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computational units, QoSi defines the QoS requirement 
and Typei indicates the job classification (I/O-intensive 
or CPU-intensive).

Virtual machine model
Following the paradigm of commercial cloud providers 
(such as AWS EC2’s memory-optimized and I/O-opti-
mized instances), we characterize each cloud instance’s 
computational capacity by its virtual CPU (vCPU) 
count. Formally, each V Mj  is defined by the following 
attributes: 

	 V Mj = {V IDj , V Comj , V CPUj , V Typej , V SCj , V ECj}� (2)

where V IDj  denotes the VM identifier, V Comj  rep-
resents the computational capacity per vCPU, V CPUj  
indicates the total vCPU count and V Typej  specifies the 
VMs type (I/O or CPU). The total execution cost for a job 
on V Mj  comprises both a fixed startup cost V SCj  and a 
time-based execution cost V ECj .

Problem formulation
The job scheduler dynamically assigns incoming jobs to 
available VMs. Each job undergoes two phases: queueing 
time in the VMs waiting queue and processing time on 
the allocated VM. Formally, the response time T rep

i  for 
jobi is defined as: 

	 T rep
i = T wait

i + T exe
i � (3)

The waiting time T wait
i  for jobi in V Mj ’s queue equals 

the sum of execution times for all preceding jobs in the 
queue: 

	
T wait

i =

{∑n
k=1 T exe

k , if n > 0

0, otherwise
� (4)

where n denotes the number of jobs preceding jobi in the 
queue. When the instance’s queue is empty, the waiting 
time becomes zero and the job executes immediately.

The execution time T exe
i  of jobi on V Mj  is calculated 

as: 

	
T exe

i = reqComi · (Typei ⊙ V Typej)
2V Comj · V CPUj

� (5)

where reqComi is the required compute of the jobi, 
Typei is the type of the jobi, V Typej  is the type of the 
assigned V Mj , ⊙ is the type matching operator, V CPUj  
is the number of virtual CPUs of the V Mj  and V Comj  
is the available compute of the V Mj . The type matching 
operator ⊙ returns value of 1 when the Typei matches 
the V Typej , and value of 2 when they do not match, 

effectively doubling the execution time when there is a 
type mismatch between the job and VM.

Therefore, the total execution cost Costj  for processing 
jobi on V Mj  is computed as: 

	 Costj = V SCj + V ECj · T exe
i � (6)

Optimization objectives
To optimize cloud task scheduling, we establish two key 
objectives: minimizing total costs and maximizing suc-
cess rate. We consider the ratio of execution time to 
response time as QoS. The QoS of jobi is calculated as: 

	
QoSi = T exe

i

T rep
i

� (7)

where T rep
i  is the response time of the job and T exe

i  is the 
execution time of the job. The success of a job is mea-
sured by the deadline requirements specified by the user: 

	
Successi =

{
1, if QoSi ≤ QoS requirement

0, otherwise
� (8)

The multi-objective optimization problem is formally 
expressed as: 

	

Minimize
M∑

j=1

Costj

Maximize SR = 1
M

M∑
i=1

Successi

� (9)

where M  denotes the total number of jobs in the sched-
uling process, SR represents the success rate of QoS 
compliance across all jobs.

The proposed LarS
This section presents LarS, a cloud task scheduling 
framework that enhances the generalization and inter-
pretability of the scheduling LLM by leveraging DRL-fil-
tered datasets and fine-tuning with LoRA.

Markov decision process formulation
Within our framework, the scheduling problem is for-
malized as a Markov Decision Process (MDP) with the 
following components  [27]:

State space (S)
In our system, the state space is defined by the combined 
attributes of tasks and VMs. Accordingly, the system 
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state at time t, upon the arrival of job jobi, is represented 
as: 

	 Sti
= Si ∪ Svm

ti � (10)

where Si encodes the job-specific features and Svm
ti

 
encodes the current state of all VMs. Concretely, we set: 

	 Sti
=

[
reqComi, QoSi, T wait

i1 , . . . , T wait
ij , . . . , T wait

iN

]
�(11)

where reqComi is the compute requirement of jobi, QoSi 
is its QoS metric and T wait

ij  is the waiting time of jobi in 
the queue of V Mj .

Action space (A)
The action space A represents the set of all possible 
actions available to the agent during the decision-making 
process. In our scheduling environment, A corresponds 
to the set of available VMs that can be selected for each 
incoming job. Therefore, the action space is defined as: 

	 A = {VM1, VM2, . . . , VMN }� (12)

where each action corresponds to dispatching the job to 
a particular VM.

Reward function (R)
The reward is designed to optimize the cost and QoS. 
Assigning jobi incurs a Costj  and has QoSi. The reward 
is defined as: 

	 r =
(
1 + e−k Costi

)
QoSi� (13)

where k > 0 is a hyperparameter used to balance the cost 
and QoS. As the cost decreases, the reward increases, 
reflecting a preference for lower-cost objection. Similarly, 
as QoSi increases, indicating relatively fewer waiting 
times and easier to meet QoS requirements, the reward 
also increases.

Design and implementation of lars
To address the MDP formulation, we propose a two-stage 
framework (Fig. 2). First, DRL agents are independently 
trained for distinct cloud scenarios to acquire optimal 
scheduling policies. Second, these agents filter schedul-
ing trajectories generated by GPT-4o through interac-
tion with the scenarios to create a high-quality dataset 

Fig. 2  The proposed LarS architecture
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for fine-tuning a lightweight scheduling LLM via LoRA, 
enabling robust generalization across diverse task sched-
uling scenarios.

DRL agents training for each scenario
DQN  [28] extends traditional Q-learning by employing 
neural networks to approximate Q-values in high-dimen-
sional state spaces, rendering them particularly suitable 
for dynamic cloud scheduling applications  [29, 30].

While we use the DQN algorithm as the core method, 
our approach is not limited to a single DQN training. For 
each cloud task scheduling scenario of varying scale, we 
train a DRL agent. Each agent is responsible for making 
scheduling decisions specific to its assigned environ-
ment and filters out the scheduling trajectories in that 
scenario. These scheduling trajectories from different 
scenarios are aggregated into a larger dataset, which is 
then used for LoRA fine-tuning of the scheduling LLM. 
This process allows the scheduling LLM to achieve stron-
ger generalization and robustness across different cloud 
environments.

The data aggregation process can be expressed as 
follows: 

	
Dfinal =

n∪
j=1

Dj � (14)

where Dj  represents the dataset of filtered scheduling 
trajectories from the DRL agent of scenario j, and Dfinal 
is the final dataset aggregated from all scenarios, which is 
used for LoRA fine-tuning of the scheduling LLM. And 
the DRL agents’ training process is given as follows:

Firstly, we adopt prioritized experience replay   [31] to 
enhance learning efficiency by selectively replaying more 
informative experiences during training. Specifically, 
transitions are sampled from the replay buffer with prob-
abilities proportional to their temporal-difference (TD) 
errors, thus prioritizing experiences that indicate larger 
deviations between predicted and actual rewards.

Secondly, to stabilize the training of the Q-network and 
mitigate variance in the Q-value estimations, we main-
tain a separate target network, updated periodically with 
parameters derived from the primary evaluation net-
work. This periodic synchronization ensures stable target 
estimations, significantly enhancing training consistency 
in dynamic scheduling scenarios. The target value used in 
training is computed as: 

	
y = rt + γ max

a′
Q(st+1, a′; θ−)� (15)

where γ is the discount factor balancing immediate and 
long-term rewards, and θ− represents the target network 
parameters. The primary network parameters (θ) are 

optimized by minimizing the mean squared temporal-
difference loss: 

	 L(θ) = Ei∼P (i)
[
(y − Q(st, at; θ))2]

� (16)

Lastly, to effectively balance exploration and exploitation 
during policy learning, we employ a linear epsilon-greedy 
strategy. In this strategy, the exploration probability ε 
gradually increases from an initial small value toward a 
defined maximum, encouraging the agent to system-
atically explore scheduling decisions initially and pro-
gressively shift to exploiting learned policies as training 
advances. This approach effectively prevents premature 
convergence and ensures a comprehensive exploration of 
diverse scheduling strategies.

Trajectory filtering and LLM fine-tuning
DRL agent-guided trajectory filtering: The GPT-4o 
generates scheduling trajectories based on structured 
environmental prompts. Concurrently, DRL agents inde-
pendently produce scheduling decisions for identical 
states. The system retains only those prompt-trajectory 
pairs (p, st) where the GPT-4o’s proposed action (aGPT) 
matches the DRL agent’s action (aDRL).

LoRA-based fine-tuning of LLaMA-2: The filtered 
scheduling trajectories are used to fine-tune a lightweight 
LLM, with the 13-billion-parameter LLaMA-2 causal 
language model serving as the foundation for the sched-
uling model, leveraging the parameter-efficient LoRA 
technique   [32]. This method drastically reduces the 
number of trainable parameters, adapting only two pro-
jection matrices per attention head, resulting in less than 
1% of total model parameters requiring updates during 
fine-tuning.

Given a frozen pre-trained weight matrix 
W0 ∈ Rd×k (such as the query projection matrix in atten-
tion layers), LoRA injects a low-rank trainable update 
defined as: 

	 W = W0 + BA, B ∈ Rd×r, A ∈ Rr×k, r ≪ min(d, k)�(17)

Initially, we set B = 0 and A = α
r I , ensuring the fine-

tuned model starts with identical behavior to the pre-
trained model (W = W0). Throughout the fine-tuning 
process, only matrices A and B receive gradient updates, 
while the vast majority of original weights remain 
unchanged.

To further enhance training efficiency, we apply INT8 
quantization prior to LoRA insertion. This converts lin-
ear layers’ activations to 8-bit precision and maintains 
FP16 accuracy through freezing LayerNorm statistics. 
Such quantization reduces GPU memory requirements 
by approximately fourfold, making single-GPU training 
feasible.
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Given the filtered dataset of prompt-response pairs 
(x, y) ∈ τfiltered, the fine-tuning minimizes the causal 
language modeling cross-entropy loss defined as: 

	 Ldistill(ϕ) = E(s,a)∼τfiltered

[
− log Pϕ(a|s)

]
� (18)

where Pϕ(a|s) is the probability distribution over actions 
produced by the LLM with parameters ϕ. To avoid intro-
ducing irrelevant biases into the model, tokens cor-
responding to the Observation: fields are masked by 
replacing their token IDs with −100, effectively excluding 
these from gradient computations.

Through this combined approach, which leverages effi-
cient LoRA fine-tuning and INT8 quantization, we effec-
tively transfer the high-quality trajectories that align with 
the DRL strategy to the scheduling LLM. The final fine-
tuned LLM not only preserves generalization capabili-
ties inherent in LLaMA-2 but also delivers significantly 
enhanced practical applicability in cloud task scheduling 
scenarios.

Prompt construction and reasoning strategy
LarS employs a prompt-driven decision-making method. 
The framework constructs an enriched knowledge 

prompt that comprehensively encodes the scheduling 
problem state. Formally, we define: 

	X = Prompt(o, dscenario, dtask, dknowledge, A) �(19)

where o denotes the observed cloud environment state, 
dscenario characterizes the operational context, dtask 
specifies the scheduling objectives, dknowledge incorpo-
rates relevant domain knowledge, and A represents the 
action space of scheduling decisions (such as task-to-VM 
mappings).

The LLM processes the prompt using CoT reasoning to 
generate scheduling trajectories, performing a two-phase 
analysis: (1) evaluating the prompt content including 
VM states, queued tasks and optimization objectives; (2) 
selecting the optimal task-to-VM mapping. Importantly, 
the LLM concurrently produces a natural language jus-
tification for each decision, enabling human operators to 
verify and understand the scheduling choices. The spe-
cific prompt template and reasoning example are shown 
in Fig. 3.

The detailed training process of LarS
The detailed algorithm is shown in Algorithm 1 which 
comprises two phases, beginning with the DRL-guided 

Fig 3  Prompt template used in LarS and an example of the reasoning process
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GPT trajectory filtering phase. Initially, an empty fil-
tered trajectory set τfiltered is created. For each environ-
ment scenario, the environment state s is reset. While 
the environment has not terminated, the corresponding 
prompt p encoding the current state is generated, and 
GPT-4o generates the scheduling trajectory st including 
CoT reasoning and action aGPT based on the prompt 
p. Subsequently, a DRL agent selects the optimal action 
aDRL for the given state. If the GPT-selected action aGPT 
matches the DRL agent’s action aDRL, the tuple compris-
ing the prompt p and trajectory st is stored into τfiltered. 
The environment is then updated based on GPTs selected 
action, advancing the state.

In the subsequent LoRA fine-tuning phase, each tuple 
(p, st) from the filtered trajectory set τfiltered is utilized 
for fine-tuning. Specifically, the prompt p serves as the 
input text, and the corresponding full trajectory st, 
including the selected action, functions as the target text. 
Both texts are tokenized, converting the prompt and tra-
jectory into token IDs. During this phase, labels are gen-
erated by masking prompt tokens within the tokenized 
labels to ensure only trajectory tokens contribute to the 
loss calculation. Finally, the scheduling LLM param-
eters, enhanced with LoRA adapters, are fine-tuned by 
minimizing the negative log-likelihood of the trajec-
tory tokens conditioned upon the prompt, thus refining 
model behavior in alignment with DRL guidance.

In summary, LarS provides notable operational advan-
tages over conventional scheduling methods by effec-
tively integrating DRLs optimization precision with 
GPT-4o’s generalization capability, enhancing adaptabil-
ity across different scenarios, improving decision trans-
parency through structured prompting, and dynamically 
optimizing multi-objective goals based on real-time 
system states, thus significantly improving cost effi-
ciency, QoS compliance, operational scalability, and 
explainability.

Experiments evaluation
In this section, we compare our approach with several 
widely used scheduling methods and evaluate the gener-
alization performance of LarS.

Environment setup
To ensure scheduler robustness, we designed training 
environments encompassing diverse resource configura-
tions. And the job arrival process follows a Poisson distri-
bution, reflecting the stochastic nature of job arrivals in 
real-world cloud environments. Figure 4 presents a scat-
ter plot of the 10 training environments, with the x-axis 
and y-axis representing the counts of High CPU and 
High I/O VMs, respectively. The distributed point pat-
tern demonstrates significant environmental heterogene-
ity, which is essential to prevent the the scheduling LLM 
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from overfitting and ensure reliable performance across 
varied workload scenarios.

In our experiments, the DRL agents were trained using 
DQN with the following parameters: replay buffer size 
was set to 1600, batch size was 60, and the target network 
update interval was configured to occur every 150 steps. 
We adopted the RMSProp optimizer with a learning rate 
of 5 × 10−3, a discount factor (γ) of 0.9, and employed an 
adaptive epsilon-greedy exploration strategy, where epsi-
lon incrementally increased from 0.01 to 0.9 with incre-
ments of 0.003 per training step. For the LLM fine-tuning 
stage, we utilized the LLaMA-2-13B model, applying 
LoRA with r = 8, α = 16, and a dropout rate of 0.05. The 
training was conducted for 30 epochs using the Adam 
optimizer with a learning rate of 3 × 10−4, a batch size of 
128, and a validation set comprising 5% of the data.

To conduct comprehensive experiments, we utilized a 
computing environment equipped with an NVIDIA A800 
GPU featuring 80 GB of memory, 14 virtual CPUs based 
on Intel Xeon(R) Gold 6348 running at 2.60 GHz, and 100 
GB RAM. Software-wise, our setup included Python 3.12 
running on Ubuntu 22.04, PyTorch 2.3.0, and CUDA 12.1 
to optimize neural network computations and ensure 
efficient GPU utilization during training and evaluation.

Baselines
We evaluate nine scheduling strategies on an 11-VM test 
environment consisting of 5 High CPU and 6 High I/O 
VMs. The evaluated strategies comprise:

1.	 Random: Assigns tasks arbitrarily to VMs without 
considering load, priority, or deadlines.

2.	 Round Robin: Cyclically assigns tasks across all 
VMs in fixed order, ensuring equal distribution but 
ignoring task complexity and urgency.

3.	 Earliest: Selects and dispatches tasks with nearest 
deadlines first, greedily optimizing completion 
time but potentially neglecting overall system load 
balance.

4.	 GPT-4o: Leverages advanced LLM to predict 
optimal scheduling decisions based on workload and 
task requirements.

5.	 DQN: Utilizes deep Q-learning to learn scheduling 
policies by exploring state-action rewards, 
continuously improving task allocation efficiency 
through training.

6.	  LLaMA-2 (untrained): Applies pretrained 
LLaMA-2 model without any task-specific fine-
tuning, using generic language capabilities for 
scheduling decisions.

7.	 LLaMA-2 (+1000 samples): LLaMA-2 fine-tuned 
with 1000 samples.

8.	 LLaMA-2 (+2000 samples): LLaMA-2 fine-tuned 
with 2000 samples.

9.	  LLaMA-2 (+4700 samples): LLaMA-2 fine-tuned 
with 4700 samples.

The performance of these strategies is evaluated using 
three metrics:

Average Response Time : Lower values indicate faster 
task completion.

Success Rate : The proportion of tasks meeting the 
desired QoS requirements.

Cost : Reflects the average resource expenditure.

Results
As demonstrated in Table 3 and Fig. 5, the LLaMA-2 
model fine-tuned with 4700 samples achieves strong 
performance across all three evaluation metrics. The 
Scheduling results of GPT-4o indicating that powerful 
LLMs can deliver competitive performance even with-
out fine-tuning. In contrast, all naive methods exhibit 
substantially inferior performance, characterized by pro-
longed response times and reduced success rates. While 
DQN-based methods show significant improvements 
over naive methods and even surpass some LLM-based 
schedulers, their inherent limitations hinder effective 

Table 3  Performance comparison of scheduling strategies on an 
11-VM environment
Strategy Avg. Resp. (s) Success Rate (%) Cost
Naive Methods
Random 0. 422 31. 6 0. 596

Round-Robin 0. 290 47. 0 0. 602

Earliest 0. 282 50. 0 0. 607

DRL-based Method
DQN 0. 191 98. 6 0. 421

LLM-based Methods
GPT-4o 0. 252 79. 4 0. 400

LLaMA-2 (untrained) 9. 064 24. 5 0. 486

LLaMA-2 (+1000 samples) 0. 245 74. 3 0. 437

LLaMA-2 (+2000 samples) 0. 364 43. 3 0. 529

LLaMA-2 (+4700 samples) 0. 211 88. 0 0. 439

Fig. 4  Scatter plot of the 10 DRL training environments
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adaptation to dynamic cloud environments. These results 
demonstrate that LLaMA-2, after appropriate fine-tun-
ing, significantly improves scheduling success rate and 
efficiency, particularly as the sample size increases.

Evaluation of generalization performance
To comprehensively evaluate the generalization capabil-
ity of our proposed scheduler, we deployed the fine-tuned 
LLaMA-2 model (+4700 samples) across three distinct 
test environments with varying scales (8 VMs, 20 VMs 
and 40 VMs). We compared its performance with four 
baseline scheduling methods: Random, Round-Robin, 
Earliest, and DQN. Performance was quantified through 
three metrics: average response time, task success rate, 
and average execution cost. It should be noted that for 
the DQN model, we trained it in an 11-VM environment 
and then applied it directly to the three environments 
without retraining.

As shown in Fig. 6(a), the scheduling LLM shows 
excellent performance in terms of average response 
time across environments. However, the DQN sched-
uler exhibits extremely poor performance in medium 

and large environments (20 and 40 VMs), which can be 
attributed to overfitting of its training strategy. The DQN 
scheduler develops a specialized strategy for its specific 
training scenario, resulting in significant response delays 
(over 200 seconds) when encountering larger-scale sce-
narios. In stark contrast, our scheduling LLM maintained 
consistently low response times, demonstrating robust 
generalization due to effective semantic knowledge trans-
fer from the pre-trained language model.

The results in Fig. 6(b) further demonstrate the gen-
eralization strengths of the scheduling LLM. Our pro-
posed method achieved the highest success rate in three 
environments, clearly surpassing all baseline methods. 
Although the success rate drops in the largest test envi-
ronment (40 VMs), the scheduling LLM still maintains 
slightly better performance than the traditional baseline 
method. This reduction in success rate at the largest scale 
indicates potential challenges in scalability and adapta-
tion to substantially more complex resource allocation 
contexts. However, even in this challenging scenario, 
our scheduler did not exhibit catastrophic performance 
degradation as observed with DQN, whose success rate 

Fig. 6  Comparison of the generalization performance of the fine-tuned LLaMA-2 scheduler (trained on 4700 samples) and baseline methods (random, 
round-robin, earliest, and DQN) across three test environments with 8, 20, and 40 VMs: (a) average response time (log scale), (b) task success rate, and (c) 
average execution cost

 

Fig. 5  Performance comparison of 9 scheduling strategies in the 11-VM environment in terms of: (a) average response time, (b) success rate, and (c) cost
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dramatically plummeted due to its inability to generalize 
beyond the narrow training regime.

Finally, in terms of average cost (Fig. 6(c)), our sched-
uler consistently delivered the lowest resource utilization 
costs in three environments, highlighting its capabil-
ity to effectively optimize the cost. The scheduling LLM 
achieved a cost nearly 20% lower than the closest com-
peting naive method in the 8 VMs environment and 
maintained competitive efficiency in the medium-scale 
environment. At the 20 and 40 VMs scale, although the 
cost of the scheduling model is narrowing compared to 
other methods, it still outperforms them.

In summary, these results affirm that the LLaMA-2 
model, fine-tuned with a dataset of 4700 samples, pos-
sesses significant generalization advantages. It demon-
strates exceptional efficiency and adaptability in low-scale 
and medium-scale environments, balancing low response 
times, high success rates, and cost efficiency. While fac-
ing scalability challenges at larger scales, the scheduling 
LLM continues to outperform naive methods and DQN 
approach, underscoring the robustness and practical util-
ity of integrating LLM-based semantic reasoning into 
cloud scheduling strategies.

Conclusion
In this paper, we propose LarS, a DRL-enhanced sched-
uling LLM tailored for cloud task scheduling. LarS 
integrates the decision-making capability of deep rein-
forcement learning with the generalization and reasoning 
capabilities of large language models. By combining these 
complementary strengths, LarS enhances scheduling 
performance while overcoming the limited generalization 
typically observed in standalone DRL approaches. Exper-
imental results show that LarS outperforms both naive 
baselines and standalone DRL methods across diverse 
cloud environments. Future work will focus on extend-
ing LarS to cloud–edge environments and improving its 
adaptability under few-shot learning conditions.
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