
LLM-based cost-aware task scheduling for
cloud computing systems
Article

Published Version

Creative Commons: Attribution 4.0 (CC-BY)

Open Access

Pei, H., Gu, Y., Sun, Y., Wang, Q., Liu, C., Chen, X. ORCID:
https://orcid.org/0000-0001-9267-355X and Cheng, L. (2025)
LLM-based cost-aware task scheduling for cloud computing
systems. Journal of Cloud Computing, 14. 81. ISSN 2192-
113X doi: 10.1186/s13677-025-00822-0 Available at
https://centaur.reading.ac.uk/127770/

It is advisable to refer to the publisher’s version if you intend to cite from the
work. See Guidance on citing .

To link to this article DOI: http://dx.doi.org/10.1186/s13677-025-00822-0

Publisher: Springer Nature

All outputs in CentAUR are protected by Intellectual Property Rights law,
including copyright law. Copyright and IPR is retained by the creators or other
copyright holders. Terms and conditions for use of this material are defined in
the End User Agreement .

www.reading.ac.uk/centaur

CentAUR

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence

Central Archive at the University of Reading
Reading’s research outputs online

R E S E A R C H Open Access

© The Author(s) 2025. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a copy of this licence, visit ​h​t​t​p​​:​/​/​​c​r​e​a​​t​i​​v​e​c​​o​m​m​​o​n​s​.​​o​r​​g​/​l​i​c​e​n​s​e​s​/​b​y​/​4​.​0​/.

Pei et al. Journal of Cloud Computing (2025) 14:81
https://doi.org/10.1186/s13677-025-00822-0

reliability, scalability, and sustainability, cloud computing
not only reduces capital and operational costs but also
significantly simplifies system management and main-
tenance [1]. As a result, an increasing number of users
are choosing to deploy their applications and services in
cloud environments.]. As a result, an increasing number
of users are choosing to deploy their applications and
services in cloud environments.

Task scheduling plays a central role in cloud comput-
ing, as it determines how computational workloads
are allocated across virtualized resources. An effective
scheduling mechanism must maximize resource utiliza-
tion, reduce operational expenses, and improve diverse
Quality of Service (QoS) [2, 3]. However, meeting these
objectives is complicated by the inherently dynamic and
heterogeneous nature of cloud environments, which
comprise virtual machines (VMs) with varying process-
ing capabilities, fluctuating cost models, and irregular

Introduction
Cloud computing has emerged as a transformative para-
digm that enables a wide range of users, including enter-
prises and individual developers, to access a shared pool
of configurable computing resources such as servers,
storage, and networks on an on-demand basis. These
resources are dynamically allocated and virtualized,
allowing for scalable, cost-effective, and flexible ser-
vice delivery. With its inherent advantages in elasticity,

Journal of Cloud Computing

*Correspondence:
Yajuan Sun
syj@ncepu.edu.cn
1School of Control and Computer Engineering, North China Electric
Power University, Beijing, China
2Network and Information Office, North China Electric Power University,
Beijing, China
3NOVA Information Management School, Nova University of Lisbon,
Lisbon, Portugal
4Department of Computer Science, University of Reading, Reading, UK

Abstract
Cloud task scheduling faces significant challenges due to resource heterogeneity, conflicting optimization
objectives, and dynamic workload fluctuations. Traditional heuristic algorithms often necessitate comprehensive
knowledge of environmental parameters, significantly constraining their efficacy in dynamic cloud computing
environments. While Deep Reinforcement Learning (DRL) methods have shown promise in intelligent scheduling
via continuous environment interaction, they suffer from limited generalization to diverse cloud scenarios and
lack decision interpretability. To address these shortcomings, this paper proposes LarS, a scheduling framework
that employs Large Language Models (LLMs) as high-level decision agents for cloud task scheduling. In LarS, DRL
agents trained in carefully chosen representative cloud environments generate a high-quality dataset of scheduling
decisions, which is used to fine-tune an LLM. By jointly optimizing average response time, task success rate, and
average rental cost, LarS achieves strong generalization across heterogeneous cloud deployments. Experimental
results demonstrate that LarS surpasses current approaches in average response time, success rate, and average
cost, and maintains strong generalization performance under varied experimental settings.

Keywords  Cloud computing, Task scheduling, Deep reinforcement learning, Large language models

LLM-based cost-aware task scheduling
for cloud computing systems
Haoran Pei1, Yan Gu1, Yajuan Sun2*, Qingle Wang1, Cong Liu3, Xiaomin Chen4 and Long Cheng1,2

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1186/s13677-025-00822-0
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-025-00822-0&domain=pdf&date_stamp=2025-12-16

Page 2 of 13Pei et al. Journal of Cloud Computing (2025) 14:81

task arrival patterns [4–6]. Moreover, such variability
often leads to resource contention and uneven load dis-
tribution, degrading system responsiveness and service
reliability [2, 7]. Therefore, it is imperative to develop
intelligent and adaptive scheduling strategies to ensure
efficient and dependable cloud service delivery.

Traditional scheduling approaches, including heu-
ristic and rule-based methods, frequently fall short in
dynamic environments due to their inherent rigidity and
inability to adapt swiftly to evolving workloads or unex-
pected changes in resource states [4]. Recently, deep
reinforcement learning (DRL) has emerged as a promis-
ing alternative by enabling adaptive scheduling decisions
through interactions with the environment [8, 9]. DRL-
based scheduling has demonstrated substantial advan-
tages, automatically learning near-optimal strategies to
significantly improve metrics such as makespan, opera-
tional cost, and resource utilization compared to tradi-
tional heuristics [10, 11]. Despite these successes, DRL
still faces critical limitations. First, training DRL models
typically requires extensive computational resources and
large volumes of interaction data, making it computa-
tionally expensive and impractical for rapid deployment
[4]. Second, DRL schedulers are susceptible to overfit-
ting to specific training scenarios, severely restricting
their generalization to new or evolving environments [9].
Third, the performance of DRL models heavily depends
on manually crafted reward functions, and inappropri-
ate reward designs can lead to convergence to subopti-
mal solutions or slow convergence, limiting real-world
applicability.

Recent advancements in large language models (LLMs)
offer a complementary solution. Pretrained on vast text
corpora, LLMs provide powerful semantic reasoning
and deep contextual insight, enabling them to gener-
ate human-like heuristics and explanatory guidance for
complex scheduling decisions [12–14]. However, stand-
alone LLM-based scheduling solutions also face several
challenges: their outputs may sometimes lack reliability,
producing inaccurate or contextually inappropriate rec-
ommendations, thus undermining scheduling robustness
[15]. Moreover, directly translating linguistic reason-
ing to actionable scheduling decisions or quantitative
rewards remains non-trivial, limiting the direct applica-
bility of purely LLM-based approaches [12, 13].

To address these challenges, we propose LarS, a cloud
task scheduling framework that leverages an LLM as
a high-level decision agent. In LarS, GPT-4o gener-
ates scheduling decisions with reasoning trajectories
for given environments and states. Trained DRL agents
evaluate these trajectories, and only the validated ones
are retained to form a high-quality dataset. This dataset
is then used to fine-tune the LLM via LoRA, enhancing
its generalization capability and enabling optimization of

cost and QoS across diverse cloud environments. In sum-
mary, the key contributions of this paper are as follows:

 	• We introduce LarS, an efficient framework that
integrates LLM-based reasoning with DRL-based
verification for intelligent cloud task scheduling.

 	• We propose a hybrid data generation pipeline where
GPT-4o produces reasoning trajectories and DRL
agents serve as evaluators to curate high-quality
supervision data.

 	• We present the detailed design and implementation
of LarS, and experimental results show that it
outperforms existing approaches while maintaining
strong generalization across diverse settings.

The remainder of this paper is organized as follows.
Section “Related work” reviews related work on cloud
scheduling methods. Section “System model and prob-
lem formulation” describes the system models and opti-
mization objectives. Section “The proposed LarS” details
the design and implementation of LarS. Section “Experi-
ments evaluation” presents the experimental evaluation
of LarS’s performance, and Section “Conclusion” con-
cludes the paper.

Related work
Conventional methods for cloud task scheduling
Traditional scheduling approaches in cloud comput-
ing rely heavily on heuristic and meta-heuristic algo-
rithms to find near-optimal solutions within reasonable
time. Evolutionary algorithms and swarm intelligence
techniques are prominent in this domain. For instance,
Ismayilov and Topcuoglu propose a dynamic workflow
scheduling method using a neural-network enhanced
evolutionary algorithm to handle multiple objectives
under changing conditions [16]. Similarly, Shukri et al.
introduce an enhanced Multi-Verse Optimizer that sig-
nificantly improves task scheduling performance in terms
of makespan and resource utilization [17]. On the swarm
intelligence side, researchers have leveraged algorithms
like Particle Swarm Optimization and Whale Optimiza-
tion. Nabi et al. present an adaptive PSO-based sched-
uling approach (AdPSO) which dynamically adjusts to
workload changes, achieving better load balancing and
reducing completion time [18]. Mangalampalli et al. pro-
pose a trust-aware task scheduler based on the Whale
Optimization algorithm to jointly minimize execu-
tion time and SLA violations, demonstrating superior
results over basic heuristics in cloud environments [19].
While these specialized solutions can optimize particu-
lar objectives, they typically focus on a restricted set of
requirements; consequently, their performance may
deteriorate when the cloud environment diverges from

Page 3 of 13Pei et al. Journal of Cloud Computing (2025) 14:81

expected conditions or when additional objectives must
be incorporated.

DRL methods for cloud task scheduling
Deep reinforcement learning (DRL) has emerged as a
promising approach for cloud task scheduling due to its
ability to simultaneously optimize multiple objectives,
including cost efficiency, makespan minimization, and
QoS compliance [20]. Instead of relying on predefined
heuristic rules, DRL-based schedulers can adapt to com-
plex dynamics and optimize long-term rewards (such as
response time or cost). Siddesha et al. propose a DRL
scheme for cloud scheduling that learns to allocate tasks
to VMs, yielding improvements in makespan and energy
consumption compared to traditional algorithms [21].
In a similar vein, Islam et al. leverage deep Q-learning
techniques to develop a scheduling policy for Spark jobs
in cloud computing, achieving both performance gains
and cost efficiency over baseline scheduling strategies
[22]. Advanced variants of DRL have also been explored;
for example, Xiu et al. introduce a meta-reinforcement
learning framework (MRLCC) that enables a scheduler
to quickly adapt to new cloud environments by learning
a meta-policy, resulting in higher sample efficiency and
robust performance across varying conditions [23].

These works illustrate that DRL approaches can
dynamically learn from the cloud system’s state and feed-
back, often outperforming static heuristics especially in

large-scale or non-stationary cloud scenarios. However,
current DRL approaches face several limitations. These
include limited generalization across diverse scenarios,
computationally expensive training procedures, and
policies that are susceptible to overfitting. As a result,
retraining is necessary when workload patterns or cloud
configurations change [4]. Furthermore, DRL models
often exhibit inadequate explainability, unpredictable
worst-case behavior, and difficulties in optimally balanc-
ing multiple competing objectives, highlighting the need
for more adaptive and robust scheduling paradigms that
extend beyond conventional DRL methods.

Large language models for cloud task scheduling
The rapid advancement of LLMs has created opportu-
nities for addressing complex optimization problems,
including scheduling tasks, by leveraging their powerful
sequence modeling and reasoning capabilities. Recent
studies demonstrate that LLMs, pretrained on extensive
corpora, can effectively learn intricate scheduling con-
straints and objectives. For example, Abgaryan et al. [25]
demonstrated that with minimal fine-tuning techniques
like LoRA, LLMs achieve competitive performance on
static job shop scheduling problems. Krishnamurthy and
Shiva propose an LLM-guided approach using a SARSA
reinforcement learning agent for dynamic task schedul-
ing in the cloud [14]. Similarly, Tang et al. [24] developed
a scheduling expert dataset to fine-tune a lightweight
LLM for task assignment decisions in multi-cloud envi-
ronments, showing that LLM-based agents can learn
effective scheduling policies from expert demonstrations.
However, current LLM-based schedulers primarily oper-
ate in offline or semi-static contexts, providing heuristic
guidance or refining existing solutions rather than par-
ticipating in the continuous, real-time decision-making
required for dynamic cloud environments [26].

We summarize the related works mentioned above
in Table 1. While task scheduling has been extensively
studied, traditional heuristic methods often lack flex-
ibility and adaptability to dynamic conditions. DRL-
based schedulers, though adaptive, suffer from limited
generalization and high computational costs. Existing
LLM-driven approaches exhibit strong generalization
capabilities, yet they have not fully demonstrated their
potential in handling online adaptive scheduling scenar-
ios with streaming workloads and evolving objectives. To
remedy these shortcomings, this paper proposes LarS,
an effective framework that leverages LLM as cloud task
scheduling agent to achieve adaptive, explainable, and
efficient cloud task scheduling.

Table 1  Summary of cloud task scheduling methods and main
features
Reference Method Suc-

cess
rate

Generalization Inter-
pret-
ability

[22] DQN + Policy
Gradient

✓ - -

[18] Adaptive PSO ✓ - -

[21] DQN + LSTM ✓ - -

[20] Deep
Q-Learning

✓ - -

[17] Enhanced
Multi-Verse
Optimizer

- - -

[16] NN-based
Evolutionary
Algorithm

✓ ✓ -

[19] Whale
Optimization

✓ - -

[23] Meta Rein-
forcement
Learning

✓ - -

[14] LLM-guided
SARSA

- - ✓

[24] LLM-assisted
RL

✓ - -

LarS DQN + LLM ✓ ✓ ✓

Page 4 of 13Pei et al. Journal of Cloud Computing (2025) 14:81

System model and problem formulation
This section presents the formal mathematical frame-
work underlying our cost-aware cloud job scheduling
methodology. We provide definitions of the cloud envi-
ronment, job characteristics, VM configurations and the
job scheduling strategy.

The overall framework
We model a cloud computing environment comprising
VMs analogous to commercial IaaS offerings (such as
AWS EC2 instances and Google Compute Engine) that
operate on a pay-as-you-go pricing model. In this envi-
ronment, users submit computational jobs to applica-
tions hosted on these VMs, while the scheduling system
dynamically allocates incoming jobs to suitable VMs for
execution.

Fig. 1 illustrates the architecture of our cloud job sched-
uling framework. Upon job arrival from multiple applica-
tion users, each job initially enters the scheduling portal,
where it undergoes prompt engineering for proper input
formatting and parameter extraction. Subsequently, an
LLM combined with CoT reasoning executes decision-
making to assign each job optimally to an appropriate
VM. Each VM maintains a local queue and executes the
assigned jobs following a first-come, first-served (FCFS)
scheduling policy. The resource manager performs three
key functions: processing job metadata, monitoring
cloud resource pool status and tracking job execution
states. For clarity of presentation, we summarize the key

mathematical notations employed in our framework in
Table 2.

Job model
Our framework models dynamic workloads character-
ized by unpredictable job arrivals with heterogeneous
computational requirements. Formally, we define each
jobi through the following parameters:

	 jobi = {IDi, aTi, reqComi, QoSi, T ypei}� (1)

where IDi denotes the job identifier, aTi represents
the arrival timestamp, reqComi specifies the required

Table 2  Notations used in our scheduling model
Notation Meaning
IDi The id of the -th job

aTi The arrival time of the -th job

reqComi The required compute units by job

QoSi The QoS requirement by job

T ypei The type of the -th job

T rep
i

The response time of the -th job

T exe
i The runtime of the -th job

T wait
i

The waiting time of the -th job

V IDi The id of the -th VM instance

V CP Ui The number of virtual CPUs of VM

V T ypei The type of the -th VM instance

V SCi The start-up cost of the -th VM instance

V ECi The execution cost of VM per time unit

Fig. 1  Task scheduling in cloud computing systems

Page 5 of 13Pei et al. Journal of Cloud Computing (2025) 14:81

computational units, QoSi defines the QoS requirement
and Typei indicates the job classification (I/O-intensive
or CPU-intensive).

Virtual machine model
Following the paradigm of commercial cloud providers
(such as AWS EC2’s memory-optimized and I/O-opti-
mized instances), we characterize each cloud instance’s
computational capacity by its virtual CPU (vCPU)
count. Formally, each V Mj is defined by the following
attributes:

	 V Mj = {V IDj , V Comj , V CPUj , V Typej , V SCj , V ECj}� (2)

where V IDj denotes the VM identifier, V Comj rep-
resents the computational capacity per vCPU, V CPUj
indicates the total vCPU count and V Typej specifies the
VMs type (I/O or CPU). The total execution cost for a job
on V Mj comprises both a fixed startup cost V SCj and a
time-based execution cost V ECj .

Problem formulation
The job scheduler dynamically assigns incoming jobs to
available VMs. Each job undergoes two phases: queueing
time in the VMs waiting queue and processing time on
the allocated VM. Formally, the response time T rep

i for
jobi is defined as:

	 T rep
i = T wait

i + T exe
i � (3)

The waiting time T wait
i for jobi in V Mj ’s queue equals

the sum of execution times for all preceding jobs in the
queue:

	
T wait

i =

{∑n
k=1 T exe

k , if n > 0

0, otherwise
� (4)

where n denotes the number of jobs preceding jobi in the
queue. When the instance’s queue is empty, the waiting
time becomes zero and the job executes immediately.

The execution time T exe
i of jobi on V Mj is calculated

as:

	
T exe

i = reqComi · (Typei ⊙ V Typej)
2V Comj · V CPUj

� (5)

where reqComi is the required compute of the jobi,
Typei is the type of the jobi, V Typej is the type of the
assigned V Mj , ⊙ is the type matching operator, V CPUj
is the number of virtual CPUs of the V Mj and V Comj
is the available compute of the V Mj . The type matching
operator ⊙ returns value of 1 when the Typei matches
the V Typej , and value of 2 when they do not match,

effectively doubling the execution time when there is a
type mismatch between the job and VM.

Therefore, the total execution cost Costj for processing
jobi on V Mj is computed as:

	 Costj = V SCj + V ECj · T exe
i � (6)

Optimization objectives
To optimize cloud task scheduling, we establish two key
objectives: minimizing total costs and maximizing suc-
cess rate. We consider the ratio of execution time to
response time as QoS. The QoS of jobi is calculated as:

	
QoSi = T exe

i

T rep
i

� (7)

where T rep
i is the response time of the job and T exe

i is the
execution time of the job. The success of a job is mea-
sured by the deadline requirements specified by the user:

	
Successi =

{
1, if QoSi ≤ QoS requirement

0, otherwise
� (8)

The multi-objective optimization problem is formally
expressed as:

	

Minimize
M∑

j=1

Costj

Maximize SR = 1
M

M∑
i=1

Successi

� (9)

where M denotes the total number of jobs in the sched-
uling process, SR represents the success rate of QoS
compliance across all jobs.

The proposed LarS
This section presents LarS, a cloud task scheduling
framework that enhances the generalization and inter-
pretability of the scheduling LLM by leveraging DRL-fil-
tered datasets and fine-tuning with LoRA.

Markov decision process formulation
Within our framework, the scheduling problem is for-
malized as a Markov Decision Process (MDP) with the
following components [27]:

State space (S)
In our system, the state space is defined by the combined
attributes of tasks and VMs. Accordingly, the system

Page 6 of 13Pei et al. Journal of Cloud Computing (2025) 14:81

state at time t, upon the arrival of job jobi, is represented
as:

	 Sti
= Si ∪ Svm

ti � (10)

where Si encodes the job-specific features and Svm
ti

encodes the current state of all VMs. Concretely, we set:

	 Sti
=

[
reqComi, QoSi, T wait

i1 , . . . , T wait
ij , . . . , T wait

iN

]
�(11)

where reqComi is the compute requirement of jobi, QoSi
is its QoS metric and T wait

ij is the waiting time of jobi in
the queue of V Mj .

Action space (A)
The action space A represents the set of all possible
actions available to the agent during the decision-making
process. In our scheduling environment, A corresponds
to the set of available VMs that can be selected for each
incoming job. Therefore, the action space is defined as:

	 A = {VM1, VM2, . . . , VMN }� (12)

where each action corresponds to dispatching the job to
a particular VM.

Reward function (R)
The reward is designed to optimize the cost and QoS.
Assigning jobi incurs a Costj and has QoSi. The reward
is defined as:

	 r =
(
1 + e−k Costi

)
QoSi� (13)

where k > 0 is a hyperparameter used to balance the cost
and QoS. As the cost decreases, the reward increases,
reflecting a preference for lower-cost objection. Similarly,
as QoSi increases, indicating relatively fewer waiting
times and easier to meet QoS requirements, the reward
also increases.

Design and implementation of lars
To address the MDP formulation, we propose a two-stage
framework (Fig. 2). First, DRL agents are independently
trained for distinct cloud scenarios to acquire optimal
scheduling policies. Second, these agents filter schedul-
ing trajectories generated by GPT-4o through interac-
tion with the scenarios to create a high-quality dataset

Fig. 2  The proposed LarS architecture

Page 7 of 13Pei et al. Journal of Cloud Computing (2025) 14:81

for fine-tuning a lightweight scheduling LLM via LoRA,
enabling robust generalization across diverse task sched-
uling scenarios.

DRL agents training for each scenario
DQN [28] extends traditional Q-learning by employing
neural networks to approximate Q-values in high-dimen-
sional state spaces, rendering them particularly suitable
for dynamic cloud scheduling applications [29, 30].

While we use the DQN algorithm as the core method,
our approach is not limited to a single DQN training. For
each cloud task scheduling scenario of varying scale, we
train a DRL agent. Each agent is responsible for making
scheduling decisions specific to its assigned environ-
ment and filters out the scheduling trajectories in that
scenario. These scheduling trajectories from different
scenarios are aggregated into a larger dataset, which is
then used for LoRA fine-tuning of the scheduling LLM.
This process allows the scheduling LLM to achieve stron-
ger generalization and robustness across different cloud
environments.

The data aggregation process can be expressed as
follows:

	
Dfinal =

n∪
j=1

Dj � (14)

where Dj represents the dataset of filtered scheduling
trajectories from the DRL agent of scenario j, and Dfinal
is the final dataset aggregated from all scenarios, which is
used for LoRA fine-tuning of the scheduling LLM. And
the DRL agents’ training process is given as follows:

Firstly, we adopt prioritized experience replay [31] to
enhance learning efficiency by selectively replaying more
informative experiences during training. Specifically,
transitions are sampled from the replay buffer with prob-
abilities proportional to their temporal-difference (TD)
errors, thus prioritizing experiences that indicate larger
deviations between predicted and actual rewards.

Secondly, to stabilize the training of the Q-network and
mitigate variance in the Q-value estimations, we main-
tain a separate target network, updated periodically with
parameters derived from the primary evaluation net-
work. This periodic synchronization ensures stable target
estimations, significantly enhancing training consistency
in dynamic scheduling scenarios. The target value used in
training is computed as:

	
y = rt + γ max

a′
Q(st+1, a′; θ−)� (15)

where γ is the discount factor balancing immediate and
long-term rewards, and θ− represents the target network
parameters. The primary network parameters (θ) are

optimized by minimizing the mean squared temporal-
difference loss:

	 L(θ) = Ei∼P (i)
[
(y − Q(st, at; θ))2]

� (16)

Lastly, to effectively balance exploration and exploitation
during policy learning, we employ a linear epsilon-greedy
strategy. In this strategy, the exploration probability ε
gradually increases from an initial small value toward a
defined maximum, encouraging the agent to system-
atically explore scheduling decisions initially and pro-
gressively shift to exploiting learned policies as training
advances. This approach effectively prevents premature
convergence and ensures a comprehensive exploration of
diverse scheduling strategies.

Trajectory filtering and LLM fine-tuning
DRL agent-guided trajectory filtering: The GPT-4o
generates scheduling trajectories based on structured
environmental prompts. Concurrently, DRL agents inde-
pendently produce scheduling decisions for identical
states. The system retains only those prompt-trajectory
pairs (p, st) where the GPT-4o’s proposed action (aGPT)
matches the DRL agent’s action (aDRL).

LoRA-based fine-tuning of LLaMA-2: The filtered
scheduling trajectories are used to fine-tune a lightweight
LLM, with the 13-billion-parameter LLaMA-2 causal
language model serving as the foundation for the sched-
uling model, leveraging the parameter-efficient LoRA
technique [32]. This method drastically reduces the
number of trainable parameters, adapting only two pro-
jection matrices per attention head, resulting in less than
1% of total model parameters requiring updates during
fine-tuning.

Given a frozen pre-trained weight matrix
W0 ∈ Rd×k (such as the query projection matrix in atten-
tion layers), LoRA injects a low-rank trainable update
defined as:

	 W = W0 + BA, B ∈ Rd×r, A ∈ Rr×k, r ≪ min(d, k)�(17)

Initially, we set B = 0 and A = α
r I , ensuring the fine-

tuned model starts with identical behavior to the pre-
trained model (W = W0). Throughout the fine-tuning
process, only matrices A and B receive gradient updates,
while the vast majority of original weights remain
unchanged.

To further enhance training efficiency, we apply INT8
quantization prior to LoRA insertion. This converts lin-
ear layers’ activations to 8-bit precision and maintains
FP16 accuracy through freezing LayerNorm statistics.
Such quantization reduces GPU memory requirements
by approximately fourfold, making single-GPU training
feasible.

Page 8 of 13Pei et al. Journal of Cloud Computing (2025) 14:81

Given the filtered dataset of prompt-response pairs
(x, y) ∈ τfiltered, the fine-tuning minimizes the causal
language modeling cross-entropy loss defined as:

	 Ldistill(ϕ) = E(s,a)∼τfiltered

[
− log Pϕ(a|s)

]
� (18)

where Pϕ(a|s) is the probability distribution over actions
produced by the LLM with parameters ϕ. To avoid intro-
ducing irrelevant biases into the model, tokens cor-
responding to the Observation: fields are masked by
replacing their token IDs with −100, effectively excluding
these from gradient computations.

Through this combined approach, which leverages effi-
cient LoRA fine-tuning and INT8 quantization, we effec-
tively transfer the high-quality trajectories that align with
the DRL strategy to the scheduling LLM. The final fine-
tuned LLM not only preserves generalization capabili-
ties inherent in LLaMA-2 but also delivers significantly
enhanced practical applicability in cloud task scheduling
scenarios.

Prompt construction and reasoning strategy
LarS employs a prompt-driven decision-making method.
The framework constructs an enriched knowledge

prompt that comprehensively encodes the scheduling
problem state. Formally, we define:

	X = Prompt(o, dscenario, dtask, dknowledge, A) �(19)

where o denotes the observed cloud environment state,
dscenario characterizes the operational context, dtask
specifies the scheduling objectives, dknowledge incorpo-
rates relevant domain knowledge, and A represents the
action space of scheduling decisions (such as task-to-VM
mappings).

The LLM processes the prompt using CoT reasoning to
generate scheduling trajectories, performing a two-phase
analysis: (1) evaluating the prompt content including
VM states, queued tasks and optimization objectives; (2)
selecting the optimal task-to-VM mapping. Importantly,
the LLM concurrently produces a natural language jus-
tification for each decision, enabling human operators to
verify and understand the scheduling choices. The spe-
cific prompt template and reasoning example are shown
in Fig. 3.

The detailed training process of LarS
The detailed algorithm is shown in Algorithm 1 which
comprises two phases, beginning with the DRL-guided

Fig 3  Prompt template used in LarS and an example of the reasoning process

Page 9 of 13Pei et al. Journal of Cloud Computing (2025) 14:81

GPT trajectory filtering phase. Initially, an empty fil-
tered trajectory set τfiltered is created. For each environ-
ment scenario, the environment state s is reset. While
the environment has not terminated, the corresponding
prompt p encoding the current state is generated, and
GPT-4o generates the scheduling trajectory st including
CoT reasoning and action aGPT based on the prompt
p. Subsequently, a DRL agent selects the optimal action
aDRL for the given state. If the GPT-selected action aGPT
matches the DRL agent’s action aDRL, the tuple compris-
ing the prompt p and trajectory st is stored into τfiltered.
The environment is then updated based on GPTs selected
action, advancing the state.

In the subsequent LoRA fine-tuning phase, each tuple
(p, st) from the filtered trajectory set τfiltered is utilized
for fine-tuning. Specifically, the prompt p serves as the
input text, and the corresponding full trajectory st,
including the selected action, functions as the target text.
Both texts are tokenized, converting the prompt and tra-
jectory into token IDs. During this phase, labels are gen-
erated by masking prompt tokens within the tokenized
labels to ensure only trajectory tokens contribute to the
loss calculation. Finally, the scheduling LLM param-
eters, enhanced with LoRA adapters, are fine-tuned by
minimizing the negative log-likelihood of the trajec-
tory tokens conditioned upon the prompt, thus refining
model behavior in alignment with DRL guidance.

In summary, LarS provides notable operational advan-
tages over conventional scheduling methods by effec-
tively integrating DRLs optimization precision with
GPT-4o’s generalization capability, enhancing adaptabil-
ity across different scenarios, improving decision trans-
parency through structured prompting, and dynamically
optimizing multi-objective goals based on real-time
system states, thus significantly improving cost effi-
ciency, QoS compliance, operational scalability, and
explainability.

Experiments evaluation
In this section, we compare our approach with several
widely used scheduling methods and evaluate the gener-
alization performance of LarS.

Environment setup
To ensure scheduler robustness, we designed training
environments encompassing diverse resource configura-
tions. And the job arrival process follows a Poisson distri-
bution, reflecting the stochastic nature of job arrivals in
real-world cloud environments. Figure 4 presents a scat-
ter plot of the 10 training environments, with the x-axis
and y-axis representing the counts of High CPU and
High I/O VMs, respectively. The distributed point pat-
tern demonstrates significant environmental heterogene-
ity, which is essential to prevent the the scheduling LLM

Page 10 of 13Pei et al. Journal of Cloud Computing (2025) 14:81

from overfitting and ensure reliable performance across
varied workload scenarios.

In our experiments, the DRL agents were trained using
DQN with the following parameters: replay buffer size
was set to 1600, batch size was 60, and the target network
update interval was configured to occur every 150 steps.
We adopted the RMSProp optimizer with a learning rate
of 5 × 10−3, a discount factor (γ) of 0.9, and employed an
adaptive epsilon-greedy exploration strategy, where epsi-
lon incrementally increased from 0.01 to 0.9 with incre-
ments of 0.003 per training step. For the LLM fine-tuning
stage, we utilized the LLaMA-2-13B model, applying
LoRA with r = 8, α = 16, and a dropout rate of 0.05. The
training was conducted for 30 epochs using the Adam
optimizer with a learning rate of 3 × 10−4, a batch size of
128, and a validation set comprising 5% of the data.

To conduct comprehensive experiments, we utilized a
computing environment equipped with an NVIDIA A800
GPU featuring 80 GB of memory, 14 virtual CPUs based
on Intel Xeon(R) Gold 6348 running at 2.60 GHz, and 100
GB RAM. Software-wise, our setup included Python 3.12
running on Ubuntu 22.04, PyTorch 2.3.0, and CUDA 12.1
to optimize neural network computations and ensure
efficient GPU utilization during training and evaluation.

Baselines
We evaluate nine scheduling strategies on an 11-VM test
environment consisting of 5 High CPU and 6 High I/O
VMs. The evaluated strategies comprise:

1.	 Random: Assigns tasks arbitrarily to VMs without
considering load, priority, or deadlines.

2.	 Round Robin: Cyclically assigns tasks across all
VMs in fixed order, ensuring equal distribution but
ignoring task complexity and urgency.

3.	 Earliest: Selects and dispatches tasks with nearest
deadlines first, greedily optimizing completion
time but potentially neglecting overall system load
balance.

4.	 GPT-4o: Leverages advanced LLM to predict
optimal scheduling decisions based on workload and
task requirements.

5.	 DQN: Utilizes deep Q-learning to learn scheduling
policies by exploring state-action rewards,
continuously improving task allocation efficiency
through training.

6.	 LLaMA-2 (untrained): Applies pretrained
LLaMA-2 model without any task-specific fine-
tuning, using generic language capabilities for
scheduling decisions.

7.	 LLaMA-2 (+1000 samples): LLaMA-2 fine-tuned
with 1000 samples.

8.	 LLaMA-2 (+2000 samples): LLaMA-2 fine-tuned
with 2000 samples.

9.	 LLaMA-2 (+4700 samples): LLaMA-2 fine-tuned
with 4700 samples.

The performance of these strategies is evaluated using
three metrics:

Average Response Time : Lower values indicate faster
task completion.

Success Rate : The proportion of tasks meeting the
desired QoS requirements.

Cost : Reflects the average resource expenditure.

Results
As demonstrated in Table 3 and Fig. 5, the LLaMA-2
model fine-tuned with 4700 samples achieves strong
performance across all three evaluation metrics. The
Scheduling results of GPT-4o indicating that powerful
LLMs can deliver competitive performance even with-
out fine-tuning. In contrast, all naive methods exhibit
substantially inferior performance, characterized by pro-
longed response times and reduced success rates. While
DQN-based methods show significant improvements
over naive methods and even surpass some LLM-based
schedulers, their inherent limitations hinder effective

Table 3  Performance comparison of scheduling strategies on an
11-VM environment
Strategy Avg. Resp. (s) Success Rate (%) Cost
Naive Methods
Random 0. 422 31. 6 0. 596

Round-Robin 0. 290 47. 0 0. 602

Earliest 0. 282 50. 0 0. 607

DRL-based Method
DQN 0. 191 98. 6 0. 421

LLM-based Methods
GPT-4o 0. 252 79. 4 0. 400

LLaMA-2 (untrained) 9. 064 24. 5 0. 486

LLaMA-2 (+1000 samples) 0. 245 74. 3 0. 437

LLaMA-2 (+2000 samples) 0. 364 43. 3 0. 529

LLaMA-2 (+4700 samples) 0. 211 88. 0 0. 439

Fig. 4  Scatter plot of the 10 DRL training environments

Page 11 of 13Pei et al. Journal of Cloud Computing (2025) 14:81

adaptation to dynamic cloud environments. These results
demonstrate that LLaMA-2, after appropriate fine-tun-
ing, significantly improves scheduling success rate and
efficiency, particularly as the sample size increases.

Evaluation of generalization performance
To comprehensively evaluate the generalization capabil-
ity of our proposed scheduler, we deployed the fine-tuned
LLaMA-2 model (+4700 samples) across three distinct
test environments with varying scales (8 VMs, 20 VMs
and 40 VMs). We compared its performance with four
baseline scheduling methods: Random, Round-Robin,
Earliest, and DQN. Performance was quantified through
three metrics: average response time, task success rate,
and average execution cost. It should be noted that for
the DQN model, we trained it in an 11-VM environment
and then applied it directly to the three environments
without retraining.

As shown in Fig. 6(a), the scheduling LLM shows
excellent performance in terms of average response
time across environments. However, the DQN sched-
uler exhibits extremely poor performance in medium

and large environments (20 and 40 VMs), which can be
attributed to overfitting of its training strategy. The DQN
scheduler develops a specialized strategy for its specific
training scenario, resulting in significant response delays
(over 200 seconds) when encountering larger-scale sce-
narios. In stark contrast, our scheduling LLM maintained
consistently low response times, demonstrating robust
generalization due to effective semantic knowledge trans-
fer from the pre-trained language model.

The results in Fig. 6(b) further demonstrate the gen-
eralization strengths of the scheduling LLM. Our pro-
posed method achieved the highest success rate in three
environments, clearly surpassing all baseline methods.
Although the success rate drops in the largest test envi-
ronment (40 VMs), the scheduling LLM still maintains
slightly better performance than the traditional baseline
method. This reduction in success rate at the largest scale
indicates potential challenges in scalability and adapta-
tion to substantially more complex resource allocation
contexts. However, even in this challenging scenario,
our scheduler did not exhibit catastrophic performance
degradation as observed with DQN, whose success rate

Fig. 6  Comparison of the generalization performance of the fine-tuned LLaMA-2 scheduler (trained on 4700 samples) and baseline methods (random,
round-robin, earliest, and DQN) across three test environments with 8, 20, and 40 VMs: (a) average response time (log scale), (b) task success rate, and (c)
average execution cost

Fig. 5  Performance comparison of 9 scheduling strategies in the 11-VM environment in terms of: (a) average response time, (b) success rate, and (c) cost

Page 12 of 13Pei et al. Journal of Cloud Computing (2025) 14:81

dramatically plummeted due to its inability to generalize
beyond the narrow training regime.

Finally, in terms of average cost (Fig. 6(c)), our sched-
uler consistently delivered the lowest resource utilization
costs in three environments, highlighting its capabil-
ity to effectively optimize the cost. The scheduling LLM
achieved a cost nearly 20% lower than the closest com-
peting naive method in the 8 VMs environment and
maintained competitive efficiency in the medium-scale
environment. At the 20 and 40 VMs scale, although the
cost of the scheduling model is narrowing compared to
other methods, it still outperforms them.

In summary, these results affirm that the LLaMA-2
model, fine-tuned with a dataset of 4700 samples, pos-
sesses significant generalization advantages. It demon-
strates exceptional efficiency and adaptability in low-scale
and medium-scale environments, balancing low response
times, high success rates, and cost efficiency. While fac-
ing scalability challenges at larger scales, the scheduling
LLM continues to outperform naive methods and DQN
approach, underscoring the robustness and practical util-
ity of integrating LLM-based semantic reasoning into
cloud scheduling strategies.

Conclusion
In this paper, we propose LarS, a DRL-enhanced sched-
uling LLM tailored for cloud task scheduling. LarS
integrates the decision-making capability of deep rein-
forcement learning with the generalization and reasoning
capabilities of large language models. By combining these
complementary strengths, LarS enhances scheduling
performance while overcoming the limited generalization
typically observed in standalone DRL approaches. Exper-
imental results show that LarS outperforms both naive
baselines and standalone DRL methods across diverse
cloud environments. Future work will focus on extend-
ing LarS to cloud–edge environments and improving its
adaptability under few-shot learning conditions.

Authors’ contributions
H.P.: Software, Validation, Writing original draft, G.Y.: Writing original
draft, Writing-review & editing, S.Y.: Formal analysis, Validation, Q.W.:
Conceptualization, Validation, C.L.: Supervision, X.C.: Software, Validation,
L.C.: Conceptualization, Methodology, Writing-review & editing, Validation,
Supervision.

Funding
This research was supported by the Fundamental Research Funds for the
Central Universities (2025JC002).

Data availability
No datasets were generated or analysed during the current study.

Declartions

Competing interests
The authors declare no competing interests.

Received: 17 June 2025 / Accepted: 23 November 2025

References
1.	 Cheng L, He H, Gu Y, Liu Q, Zhao Z, Fang F (2024) Mars: multi-agent deep

reinforcement learning for real-time workflow scheduling in hybrid clouds
with privacy protection. In 2024 IEEE 30th International Conference on Paral-
lel and Distributed Systems, pp 657–666

2.	 Devi N, Dalal S, Solanki K, Dalal S, Lilhore UK, Simaiya S, Nuristani N (2024)
A systematic literature review for load balancing and task scheduling tech-
niques in cloud computing. Artif Intel Rev 57(10):276

3.	 Gu Y, Liu Z, Dai S, Liu C, Wang Y, Wang S, Theodoropoulos G, Cheng L (2025)
Deep reinforcement learning for job scheduling and resource manage-
ment in cloud computing: an algorithm-level review. arXiv preprint
arXiv:2501.01007

4.	 Zhou G, Tian W, Buyya R, Xue R, Song L (2024) Deep reinforcement learning-
based methods for resource scheduling in cloud computing: a review and
future directions. Artif Intel Rev 57(5):124

5.	 Gu Y, Cheng F, Yang L, Xu J, Chen X, Cheng L (2024) Cost-aware cloud work-
flow scheduling using drl and simulated annealing. Digit Commun Networks
10(6):1590–1599

6.	 Fan W, Zhao L, Liu X, Su Y, Li S, Wu F, Liu Y (2022) Collaborative service place-
ment, task scheduling, and resource allocation for task offloading with edge-
cloud cooperation. IEEE Trans Mob Comput 23(1):238–256

7.	 Ali A, Shah SAA, Al Shloul T, Assam M, Ghadi YY, Lim S, Zia A (2024) Multi-
objective harris hawks optimization-based task scheduling in cloud-fog
computing. IEEE Internet Things J 11(13):24334–24352

8.	 Lu J, Yang J, Li S, Li Y, Jiang W, Dai J, Hu J (2024) A2C-DRL: dynamic scheduling
for stochastic edge-cloud environments using A2C and deep reinforcement
learning. IEEE Internet Things J

9.	 Mangalampalli S, Karri GR, Ratnamani M, Mohanty SN, Jabr BA, Ali YA, Ali
S, Abdullaeva BS (2024) Efficient deep reinforcement learning based task
scheduler in multi cloud environment. Sci Rep 14(1):21850

10.	 Zhang Z, Zhang F, Xiong Z, Zhang K, Chen D (2024) LSIA3CS: deep reinforce-
ment learning-based cloud-edge collaborative task scheduling in large-scale
IIoT. In IEEE Internet of Things Journal

11.	 Xing Y (2024) Work scheduling in cloud network based on deep Q-LSTM
models for efficient resource utilization. J Grid Comput 22(1):36

12.	 Raza M, Jahangir Z, Riaz MB, Saeed MJ, Sattar MA (2025) Industrial applica-
tions of large language models. Sci Rep 15(1):13755

13.	 Vasileiou SL, Yeoh W (2025) TRACE-CS: a synergistic approach to explainable
course scheduling using LLMs and logic. Proc AAAI Conf Artif Intell, vol 39. pp
29706–29708

14.	 Krishnamurthy B, Shiva SG (2025) Large language model-guided SARSA
algorithm for dynamic task scheduling in cloud computing. Mathematics
13(6):926

15.	 Tambwekar P, A (2024) Towards explainable task scheduling using large
language models. Comput Operations Res 160:106323. ​h​t​t​p​s​:​​​/​​/​d​o​​i​.​​o​r​​g​​/​​1​0​​.​1​0​​​
1​​​6​/​j​.​​c​o​r​.​​2​0​2​3​.​1​0​6​3​2​3

16.	 Ismayilov G, Topcuoglu HR (2020) Neural network based multi-objective evo-
lutionary algorithm for dynamic workflow scheduling in cloud computing.
Future Gener Comput Syst 102:307–322

17.	 Shukri SE, Al-Sayyed R, Hudaib A, Mirjalili S (2021) Enhanced multi-verse
optimizer for task scheduling in cloud computing environments. Expert Syst
With Appl 168:114230

18.	 Nabi S, Ahmad M, Ibrahim M, Hamam H (2022) Adpso: adaptive pso-based
task scheduling approach for cloud computing. Sensors 22(3):920

19.	 Mangalampalli S, Karri GR, Kose U (2023) Multi objective trust aware task
scheduling algorithm in cloud computing using whale optimization. J King
Saud Univ-Comput Inf Sci 35(2):791–809

20.	 Tong Z, Chen H, Deng X, Li K, Li K (2020) A scheduling scheme in the cloud
computing environment using deep Q-learning. Inf Sci 512:1170–1191

21.	 Siddesha K, Jayaramaiah G, Singh C (2022) A novel deep reinforcement
learning scheme for task scheduling in cloud computing. Cluster Comput
25(6):4171–4188

22.	 Islam MT, Karunasekera S, Buyya R (2021) Performance and cost-efficient
spark job scheduling based on deep reinforcement learning in cloud com-
puting environments. IEEE Trans Parallel And Distrib Syst 33(7):1695–1710

23.	 Xiu X, Li J, Long Y, Wu W (2023) Mrlcc: an adaptive cloud task scheduling
method based on meta reinforcement learning. J Cloud Comput 12(1):75

https://doi.org/10.1016/j.cor.2023.106323
https://doi.org/10.1016/j.cor.2023.106323

Page 13 of 13Pei et al. Journal of Cloud Computing (2025) 14:81

24.	 Tang X, Liu F, Xu D, Jiang J, Tang Q, Wang B, Wu Q, Chen CP (2025) Llm-
assisted reinforcement learning: leveraging lightweight large language
model capabilities for efficient task scheduling in multi-cloud environment.
In IEEE Transactions on Consumer Electronics

25.	 Abgaryan H, Harutyunyan A, Cazenave T (2024) Llms can schedule. arXiv
preprint arXiv:2408.06993

26.	 Pallagani V, Muppasani BC, Roy K, Fabiano F, Loreggia A, Murugesan K, Sriv-
astava B, Rossi F, Horesh L, Sheth A (2024) On the prospects of incorporating
large language models (LLMs) in automated planning and scheduling (APS).
In Proceedings of the International Conference on Automated Planning and
Scheduling, vol 34. pp 432–444

27.	 Cheng F, Huang Y, Tanpure B, Sawalani P, Cheng L, Liu C (2022) Cost-aware job
scheduling for cloud instances using deep reinforcement learning. Cluster
Comput 1–13

28.	 Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, Graves
A, Riedmiller M, Fidjeland AK, Ostrovski G et al. (2015) Human-level control
through deep reinforcement learning. Nature 518(7540):529–533

29.	 Li T, Ying S, Zhao Y, Shang J (2023) Batch jobs load balancing scheduling in
cloud computing using distributional reinforcement learning. IEEE Trans On
Parallel And Distrib Syst 35(1):169–185

30.	 He H, Gu Y, Hu Y, Fang F, Ning X, Chen X, Cheng L (2025) Real-time workflow
scheduling in hybrid clouds with privacy and security constraints: a deep
reinforcement learning approach. Expert Syst Appl 278:127376

31.	 Schaul T, Quan J, Antonoglou I, Silver D (2015) Prioritized experience replay.
arXiv preprint arXiv:1511.05952

32.	 Hu EJ, Shen Y, Wallis P, Allen-Zhu Z, Li Y, Wang S, Wang L, Chen W et al. (2022)
Lora: low-rank adaptation of large language models. ICLR 1(2):3

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

	﻿LLM-based cost-aware task scheduling for cloud computing systems
	﻿Abstract
	﻿Introduction
	﻿﻿Related work
	﻿Conventional methods for cloud task scheduling
	﻿DRL methods for cloud task scheduling
	﻿Large language models for cloud task scheduling

	﻿﻿System model and problem formulation
	﻿The overall framework
	﻿Job model
	﻿Virtual machine model
	﻿Problem formulation
	﻿Optimization objectives

	﻿﻿The proposed LarS
	﻿Markov decision process formulation
	﻿State space (﻿﻿￼﻿﻿)﻿
	﻿Action space (﻿﻿￼﻿﻿)﻿
	﻿Reward function (﻿﻿￼﻿﻿)﻿

	﻿Design and implementation of lars
	﻿DRL agents training for each scenario
	﻿Trajectory filtering and LLM fine-tuning
	﻿Prompt construction and reasoning strategy

	﻿The detailed training process of LarS
	﻿﻿Experiments evaluation
	﻿Environment setup
	﻿Baselines
	﻿Results
	﻿Evaluation of generalization performance

	﻿﻿Conclusion
	﻿References

