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Abstract—Accurate segmentation of carcinoma in situ and
invasive carcinoma in Whole Slide Images (WSIs) is crucial for
improving breast cancer diagnostics in smart healthcare systems.
Existing methods that rely solely on Hematoxylin and Eosin
(H&E) staining lack molecular boundary-specific markers and
struggle with resolution limitations. To address these challenges,
we propose a breast cancer segmentation framework that fuses
multi-resolution semantic features from H&E images with edge
information from Cytokeratin 5/6 (CK5/6) immunohistochemical
staining. The model integrates three modules: a multi-resolution
semantic segmentation branch, an edge detection module aligned
with H&E images, and a multi-scale fusion module. By
combining multi-modal information and selectively zooming in
on key regions, the method enhances the diagnostic process of
medical practitioners, making the system more accurate and
suitable for deployment in an Internet of Medical Things (IoMT)
platform. Evaluations on the Breast Cancer Semantic
Segmentation (BCSS) and the Chinese People's Liberation Army
(PLA) General Hospital datasets show segmentation similarity
coefficients of 81.28% and 93.16%, respectively. This approach
offers an effective solution for user-facing digital pathology
systems and supports clinical decision-making in consumer-
centric smart healthcare.
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[. INTRODUCTION

HE distinction between carcinoma in situ and invasive

carcinoma is an important task in pathological

diagnosis within the breast cancer diagnosis and
treatment system. With the rapid development of digital case
technologies, Whole Slide Images (WSIs) have provided new
technical support for breast cancer diagnosis [1]. To accurately
differentiate between carcinoma in situ and invasive
carcinoma, medical practitioners need to comprehensively
analyze WSIs stained with various techniques, such as the
commonly used H&E stain, CK5/6 stain, and Smooth Muscle
Myosin Heavy Chain (SMMHC) stain. Fig. 1 shows the
characteristics of slides stained with different methods. Each
staining technique provides different pathological information,
which complements one another and plays a crucial role in
tumor segmentation [2]. However, analyzing WSIs is a tedious
and time-consuming task that relies heavily on the clinical
experience and expertise of pathologists. Therefore, there is
an urgent need for an automated system to distinguish between
invasive carcinoma and carcinoma in situ regions in WSIs
with a single click.

Due to the increasing incidence of breast cancer worldwide,
the demand for professional medical services is growing,
particularly in regions with limited healthcare resources. This
has driven the development of telemedicine technologies. The
Internet of Medical Things (IoMT) combines traditional
healthcare services with emerging artificial intelligence
technologies, creating a new model for breast cancer diagnosis
[3], [4]. Through this model, medical professionals can obtain
accurate delineation results of invasive and carcinoma in situ
in WSIs, eliminating the cumbersome diagnostic process of
the past, saving both time and effort. At the same time,
specialists around the world can collaborate to analyze data
and provide remote treatment for patients [5]. However, many
deep learning models, especially black-box models, suffer
from a lack of transparency, making the interpretability and
reliability of these models a challenge [6]. Therefore, there is
an urgent need for a medical image segmentation model with
high accuracy and interpretability in consumer IoMT-based
breast cancer diagnostic systems.
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Currently, most tumor segmentation tasks in WSI primarily
rely on H&E-stained slides. However, the determination of
whether cancer cells have infiltrated is mainly based on the
absence of myoepithelial cells. Due to the limited color
richness of H&E staining, myoepithelial cells are easily
confused with other cells. Therefore, in actual clinical
diagnosis, doctors typically need to observe both H&E-stained
slides and various immunohistochemical (IHC) stained slides.
In situ carcinoma typically preserves the integrity of
myoepithelial cells, and IHC slides can specifically highlight
the boundaries of in situ carcinoma, which are absent in
invasive carcinoma. This boundary information not only
assists in the precise localization of tumors but also
significantly improves segmentation accuracy on H&E-stained
images. Additionally, traditional single-resolution methods
often struggle to capture the fine features of breast cancer cells
and the global characteristics of tumors.

This paper proposes a multimodal WSI fusion segmentation
method, which simulates the pathologist's analysis workflow
of multiple stained slides and integrates H&E semantic
information with CKS5/6 edge information to improve
segmentation accuracy. Specifically, the method consists of
three core modules: the semantic branch module, the edge
detection module, and the multi-scale fusion module. The
semantic segmentation module uses a multi-resolution
structure to achieve collaborative learning of both global and
local features of the H&E image. Attention heatmaps are used
to magnify high-resolution details of key regions, simulating
the pathologist's focused observation of suspicious areas,
thereby enhancing the model's interpretability. The edge
detection module extracts edge features from CKS5/6-stained
images aligned with the H&E images, combining CK5/6
molecular expression information as a basal cell biomarker to
enhance the recognition of tissue boundaries. Finally, the
multi-scale fusion module guides the edge information from
CK5/6 images to optimize the segmentation results of the
H&E images. This method not only improves the accuracy of
tumor boundary identification but also visualizes key regions
through heatmaps, enhancing diagnostic transparency and
reliability.

Fig. 2 illustrates the framework of our consumer IoMT-
based breast cancer diagnostic system. Tissue samples are
obtained from patients/consumers via biopsy, then stained and
digitally scanned to generate pathological slide data, which are
uploaded to the cloud through smart devices. The tumor
segmentation model processes the WSIs and outputs the lesion
segmentation results. Medical practitioners can remotely
access the visual interface for diagnosis via devices such as
tablets, PCs, or AR glasses. The attention heatmap generated
by the model highlights the boundary regions of tissue,
visually demonstrating the model’s focus on lesion boundary
segmentation, which validates the model’s learning accuracy
and enhances trust in the model from both doctors and

SMMHC P63

Invasive carcinoma CK5/6

Fig. 1. CK5/6 marks the basal cell layer, defining carcinoma
in situ boundaries; SMMHC highlights smooth muscle
components at the invasive edge; P63 emphasizes
myoepithelial cell distribution, aiding in tumor-normal tissue
boundary differentiation.
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consumers. Consumers can interact with medical practitioners
via a mobile app or web interface, improving the remote
healthcare experience. The system provides remote
connectivity and support services for consumer electronic
devices, enabling these devices to access the healthcare system
via the internet, facilitating remote monitoring, diagnosis, and
interaction with doctors, thereby having a profound impact on
the consumer electronics industry.

The main contributions of this work are: (1) A novel
multimodal  segmentation framework based on the
collaborative analysis of H&E and CKS5/6 staining is
developed, extracting biomarker-driven edge features from the
registered CK5/6 images. (2) An interpretable multi-resolution
H&E semantic segmentation module is proposed employing a
multi-resolution structure design to enable collaborative
learning of global and local features from H&E images.

II. RELATED WORK
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In early studies, WSI tissue segmentation was mainly
achieved using more traditional classifiers [7]. However, these
methods showed significant limitations when dealing with
Complex tissue images make it difficult to accurately segment
the target tissues. In recent years, with the rapid development
of Convolutional Neural Networks (CNNs), such as UNet [8],
SegNet [9], and DeepLabv3+ [10], researchers have gradually
applied them to the field of WSI tissue image segmentation.

The U-Net architecture proposed by Ronneberger et al. [8],
with its distinctive encoder-decoder design and skip
connection mechanism, has achieved remarkable results in
medical image segmentation tasks. Consequently, many
researchers have adopted the U-Net as a baseline model for
WSI tissue segmentation. For instance, Saltz et al. [11]
utilized U-Net to map tumor-infiltrating lymphocytes in H&E
images across 13 TCGA cancer types, demonstrating U-Net's
strong capability in capturing multi-scale features and
preserving spatial details in the images. However, despite the
advantages of the U-Net structure, it still faces challenges in
handling complex textures and fine details.

In recent years, various modifications to the U-Net
architecture have been proposed. Zhao et al. [12] introduced
SCAU-Net, which integrates both spatial and channel
attention modules, enhancing the model’s ability to capture
gland boundaries. Building on this, Wen et al. [13] further
fused traditional image processing techniques by combining
Gabor filters with a cascaded squeeze-attention module,
enabling the network to explicitly learn texture features at
different scales and orientations, addressing the limitations of
the original U-Net in texture information extraction. To further
optimize target region localization accuracy, Lu et al. [14]
proposed a two-stage framework, BreasTDLUSeg, based on a
multi-scale attention mechanism, which achieves precise
localization and segmentation of breast terminal duct lobular
units.

While these modifications have enhanced the model's
ability to capture texture features, most of the existing
methods rely on single-resolution inputs, making it difficult to
effectively balance global context with local details. As a
result, researchers have started exploring multi-level
information from WSI images. For example, Abdel-Nabi et al.
[15] and Schmitz et al. [16] proposed Ms3LcU-Net and msY-
Net, respectively, which use multi-branch path designs to fuse
multi-scale features. To address the spatial alignment issue in
multi-resolution fusion, Van Rijthoven et al. [17] introduced
HookNet, which integrates multi-resolution features through a
hook mechanism. Furthermore, to mitigate the problem of
interference from irrelevant information in multi-resolution
fusion, Dong et al. [18] employed a recursive zoom-in
strategy. This method filters suspicious regions at an initial

resolution and then zooms in on these regions to acquire
finer local details. Considering that different tissue types
require optimal magnification at varying levels, Deng et al.
[19] proposed Omni-Seg, which utilizes scale-aware and
class-aware controllers to adaptively adjust feature extraction
and segmentation strategies based on tissue type and

magnification.

III. METHODS

In this section, we introduce our proposed method and the
definition of the loss function. The overall framework of our
proposed model is illustrated in Fig. 3. It consists of three
main branches: a semantic segmentation branch, an edge
detection branch, and a multi-scale fusion branch. Through the
[IoMT platform, the automatic segmentation of invasive and
carcinoma in situ in WSIs is achieved.

The H&E semantic branch enables collaborative learning of
global and local features through multi-resolution. This branch
consists of two encoder-decoder sub-branches: the target
branch and the detail branch. (1) The target branch processes
H&E-stained slides at 10x magnification. (2) The detail
branch processes H&E-stained slides at 40x magnification. By
zooming in on key regions in the 10x magnification slides it
provides high-resolution, fine-grained information.

The CK5/6 edge detection branch is designed to learn edge
features. This branch consists of two encoder-decoder sub-
branches: the semantic segmentation branch and the edge
detection branch. (1) The semantic segmentation branch
segments CK5/6-stained slides, providing cross-modal
semantic information for the aligned H&E images. (2) The
edge detection branch extracts edge structure features from the
CK5/6 slides, converted to grayscale, offering complementary
edge guidance for H&E segmentation.

The multi-scale fusion branch integrates features from
different modalities to guide H&E image segmentation with
CK5/6 edge information. During the training phase, precise
segmentation is achieved by adjusting the loss weight

1
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semantic ‘!
segmentation branch
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A[%ﬂﬂﬂf%

edge detection branch
Fig. 3 The tumor semantic segmentation model consists of
the H&E semantic segmentation module, the CK5/6 edge
detection module, and the multi-modal fusion module. EDFM
is used to fuse the CKS5/6 dual-branch information in the
CK5/6 edge detection module, while EFFM is used to fuse
H&E semantic information and CKS5/6 edge information,
enabling effective integration of multimodal information.
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parameters of the CK5/6 branch.

A. H&E semantic segmentation branch

In the H&E semantic segmentation branch, we employed a
multi-resolution input strategy to enhance model performance.
Specifically, 10x magnification H&E-stained slides are first
processed using the VGG-UNet network to generate an initial
semantic segmentation result. Then, Grad-CAM is used to
generate a saliency heatmap S € [0,1]7*" where each pixel
value S(i, ) represents the importance of the corresponding
region to the model's decision. we use a sliding window
(128x128 pixels) to search for significant peak regions R =
{Cxe, y), (e, yp) }-

Fig. 4 compares different zoom strategies. (a) concentric
zoom, where the central region is zoomed in concentrically;
(b) global zoom, where the entire field is zoomed in and
segmented; (c) our strategy, which selectively zooms into key
regions, avoiding irrelevant areas and focusing on regions
most important for detailed feature extraction. Fig.5
illustrates the multi-resolution fusion module. Finally, the
tissue regions corresponding to R are extracted from the
original WSI and zoomed in 40x for subsequent detailed
feature extraction.

The H&E semantic segmentation module consists of two
main branches: the target branch and the detail branch. The
input to the target branch is X,;,,, € RE*¥*W and the input to
the detail branch is Xp;gn, € R*¥*W, where H X Wrepresents
the size of the feature map, and C represents the number of
channels, with all having three channels. The resolution of the
target branch is 7y;,,, and the resolution of the detail branch is
Thign- The encoder parts of both branches use the VGG-UNet.

To ensure alignment between the target and detail branches,
an appropriate fusion layer is selected. During the encoder
downsampling process, the resolution changes as SRF = 2%r,
where d represents the downsampling depth of the encoder,
and r is the resolution of the input patch (in pm/px). During
the decoder process, the resolution changes as SRF = 2%e~%f -
7, where d, represents the encoder depth and d; represents the
decoder depth. To ensure proper fusion at the same resolution,
the SRF ratio between the two branches must satisfy:

SRFim

 _dy. ., Thigh
= Zdalm dpign . M9 (1)
SRFhign

Taim
When both branches have the same resolution, the ratio must
satisfy:

SRFypm
SRFnign

(2)

To fuse features from different resolutions, a multi-resolution
fusion module is employed. Since the target and detail
branches operate at different depths in the decoder, we
employed a Squeeze-and-Excitation (SE) module to adjust the
channel numbers.

Considering that the key regions are determined based on
the resolution of the original input features, it is necessary to

©)

Fig. 4. illustrates three different zoom-in strategies. (a) high-
magnification zoom of the central region to match the
original view; (b) global zoom followed by region division
for analysis; (c¢) our method, selectively zooming in on key
regions to maintain the original field of view.

| (T,
H W . H W
Kaim g X7 %0 pi X—X €
44 Conv+ReLU+Norm 4 r
Feature Cropping SE
_Fsa‘ure_’ r

Fusion

Xoim:HxXW X G Xm-.ixjkﬁ'-

Fig. 5. Fusion module of the target and detail branches. The
detail branch is first processed with a Squeeze-and-Excitation
(SE) block and then fused with the target branch within the
key region.

rescale the coordinates of these regions during fusion, as
Xgim and Xpgn are at different scales. The rescaled
coordinates of the key region are given as (top left x,
top_left y, bottom right x, bottom right y). Then, the
corresponding region is cropped from X,;,,, and fused with the
channel-reduced Xp;4, to obtain the fused features. These
fused features are then smoothed, and the updated result is
used to refine X,;,, , completing the feature fusion process.

B. Edge Detection Branch for CK5/6

The C/K56 edge detection branch consists of two main
inputs: Xge,, € R¥¥W representing the three-channel H&E-
stained slides, and Xoqg5. € R¥#*W | the grayscale-converted
C/K56 image. Both inputs are processed using an encoder-
decoder architecture.

To fully exploit the semantic information and edge
characteristics of C/K56-stained slides, we propose an edge
feature fusion module. As shown in Fig. 6. C/K56 staining
exhibits significant coloring properties at the edges of
carcinoma in situ regions, while the shallow features of the
encoder contain rich low-level information (e.g., textures,
edges). Therefore, we perform cross-modal fusion of features
from the semantic segmentation branch and the edge detection
branch during the encoding phase. This module comprises a
channel attention mechanism, a gated attention mechanism,
and a depthwise separable convolution.

The four encoder features from the semantic segmentation
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Fig. 6. Edge detection fusion module. The four encoding
layers from the CK5/6 semantic branch and the edge branch
are first refined using a Channel Attention mechanism. Then,
they are fused through a Gating Mechanism. Finally, the four
fused features are concatenated with the upsampled features
from the decoder of the semantic branch.

branch {Xs(é)m_enc}f:l and the edge detection branch
{ F®

edge_enc
mechanism to filter important feature channels, generating
! I
enhanced features Xgep, and Xeqge-

Y, are first passed through a channel attention

Then, the enhanced features Xgom, and Xgqg. are
concatenated along the channel dimension to form a new
feature representation F,;,.q:- This combined feature is then
fed into an attention gating mechanism, which adaptively
adjusts spatial weights, highlighting critical regions such as
the edges of carcinoma in situ, while suppressing background
noise.

H&E image palches

(a)

Finally, a depthwise separable convolution is applied to
reduce computational complexity while maintaining feature
representation capability. The fusion module generates fused

features {F, o

fusion
recursively fused with the decoder of the C/K56 semantic
segmentation branch through skip connections:

+_, at four encoder levels. These features are

dec

o _ @1+1) )
Fdec - Up(F ) + Ffusion (3)

Where Up denotes bilinear upsampling. Through multi-level
fusion, the model leverages both shallow detail information
and deep semantic information, enhancing edge detection
capabilities. The semantic segmentation branch generates the
C/K56 semantic segmentation result Y;,,,, € R®*W_ while the
edge detection branch produces the grayscale C/K56 semantic
segmentation result Y, 4, € R**W.

C. Multi-Scale Feature Fusion Branch

The branch aims to integrate the semantic segmentation
information of H&E-stained slices with the edge detection
information of C/K56-stained slices. This branch designs a
cross-modal feature fusion module with a hierarchical
progressive structure, as shown in Fig.7. The module utilizes
feature maps from four different scales of the H&E semantic

denoted as {X o

sem_dec}?=1 >
corresponding scale feature maps from the C/K56 edge

detection decoder, denoted as {X, ggg_d cc

segmentation decoder, and

/-1, Through iterative
fusion with the upper-level fusion result Fflljslion multi-scale
features are refined layer by layer.

To effectively fuse the aforementioned two sets of features,
we propose a multi-scale feature fusion module that includes a
spatial ~attention mechanism, an axial cross-attention
mechanism, and a feature concatenation channel attention
mechanism.  First, the spatial attention mechanism
dynamically adjusts the input feature maps Xsem gec €

@ Additon 7

Vertical Attention Map

Uiem

!
T OO
X, dec

sem dac Keay

Fig. 7. The left panel (a) illustrates the multi-modal fusion module, where H&E semantic features and CK5/6 edge features are
used to learn key tumor regions through a spatial attention mechanism. Meanwhile, the axial attention mechanism learns the
interaction between the two modalities. Finally, the three features are weighted and fused with the results from the previous
layer. The right panel (b) demonstrates the axial attention mechanism, where H&E semantic features are used as Q, and CK5/6
edge features as K and V, with computations performed in the axial and horizontal directions, respectively.
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REHW and Xoqge gec € RH*W to obtain the attention-
weighted feature maps Xiem gec € R and Xlgge gec €
REXHXW

The multi-head attention mechanism in Transformer models
incurs high computational costs. Additionally, global self-
attention lacks directional bias, making it prone to interference
from irrelevant areas, which hinders fine-grained alignment.
To address these issues and improve tumor segmentation
accuracy, we adopted the axial attention mechanism to fuse
multimodal data. This process involves attention calculations
in both horizontal and vertical directions. The horizontal
attention weight is calculated as follows:

Ahor =0 ((Xslem_dec ' WQhor)(Xé‘dge_dec ' W[?or)T) /\/d_l((4)

Fror = Apor * (Xeldge_dec ’ W‘;wr) (5)
F/{CA = Fror + Fper (6)

The horizontally weighted feature map Fy,, € RE*W and

vertically weighted feature map E,,, € RE#*W are obtained
through horizontal and vertical attention. The W[}°", W°",
WRT | are the linear projection matrices for the Query, Key,
and Value, respectively These two feature maps are then
summed to produce the final output of the Axial Cross
Attention module, denoted as Fl.,

Finally, the spatially attention-weighted feature maps
Xsem aec ad Xgqge gec» the axial cross-attention output Fycy,
and the upper-level fusion result Ffl;}ion are concatenated. The

F}usion is obtained through a channel attention mechanism.

D. Loss Function
To train the model proposed in this paper, we used three
loss functions: Lgeg, Leqge @and Lygion, to ensure that semantic
segmentation and edge detection can learn collaboratively.
First, the loss function L, for the H&E semantic
segmentation branch is primarily used to optimize the
semantic segmentation performance of H&E images:

Lseg = (0-5 ' Laim_dice +0.5- Laim_CE) +0.5- Lhigh_CE (7)

Here, Lgim_gice 15 the Dice loss function for the target branch,
Both Lgim_gice and Lp;gn_cg are cross-entropy losses, used to
measure the accuracy of class predictions.

Next, the loss function Lgg4, for the CK5/6 edge detection
branch is designed to enhance the accurate localization of
tumor boundaries, and it is defined as:

Ledge =05 Lsem_ce + 0.5- Ledge,dice (8)

where Lgem cg and Legge gice Tepresent the cross-entropy loss
for the CK5/6 semantic segmentation branch and the Dice loss
for the CK5/6 edge semantic segmentation, respectively.

Finally, we combine the semantic segmentation and edge
detection losses to construct the final semantic segmentation
network loss function Lgyion:

qusion = Lseg ty: Ledge C))

Here, y is a hyperparameter used to control the impact of the
edge detection loss on the overall training process, ensuring
that both semantic segmentation and edge information are
optimized collaboratively.

IV. EXPERIMENTAL RESULTS

In this chapter, we will present our experiments from six
aspects: Datasets, Parameter analysis, Evaluation metrics,
Comparison with other methods, Ablation study, and Model
Complexity Analysis.

A. Datasets

We used two WSI breast cancer tumor datasets to evaluate
our model: the Breast Cancer Semantic Segmentation (BCSS)
Dataset and a breast cancer dataset collected from the Chinese
PLA General Hospital.

1) Our breast cancer dataset: We collected whole-slide
imaging (WSI) data from 73 breast cancer patients at the
Chinese PLA General Hospital. This dataset includes H&E
staining, CK5/6 staining, and SMMHC staining WSIs for each
patient. All slides were prepared following the standardized
procedures of the PLA Pathology Department and digitized
using a Jiangfeng scanner (model KFPBL00500108015) at a
spatial resolution of 0.25 pm/px under consistent scanning
parameters.

The dataset spans patients aged 25 to 72, with an average
age of 46.6 years, primarily concentrated between 30 and 50
years old. It covers various tumor types, including invasive
carcinoma, DCIS (ductal carcinoma in situ), mixed types,
lobular carcinoma, mucinous carcinoma, and papillary
carcinoma, with a ratio of invasive carcinoma to carcinoma in
situ of approximately 1.2:1. Among invasive carcinomas,
grade I accounts for 2.4%, grade II for 76.2%, and grade III
for 4.8%. Annotation work was performed by a team of expert
doctors at the PLA General Hospital using QuPath software.
From the H&E-stained slides of the 73 breast cancer patients,
we extracted 1,201 regions of interest (ROIs), with a similar
number (1,201) of ROIs extracted from the CKS5/6-stained
WSIs. Two categories were annotated: carcinoma in situ and
invasive carcinoma.

We evaluated the performance of our model by splitting the
dataset into training, validation, and test sets in a 6:2:2 ratio.

2) BCSS dataset: The BCSS dataset is a large-scale dataset
annotated based on breast cancer WSIs from The Cancer
Genome Atlas (TCGA). It includes annotations from
pathologists, pathology residents, and medical students,
covering over 20,000 annotated regions of breast cancer
tissue. All slides were digitized at a spatial resolution of 0.25
pm/px. The dataset includes five annotated classes: Tumor,
Stroma, Inflammatory, Necrosis, and Other (e.g., ducts,
lobules, and other specific tissue types). We applied the same
preprocessing steps as those used for the H&E branch of the
PLAGH dataset, generating 1,484 H&E patches for validating
the performance of the H&E semantic segmentation branch.
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B. Parameter Analysis

In this subsection, we discuss the adjustable parameter y. y
is used in Equ. (9) to balance the loss between the semantic
segmentation branch and the edge detection branch, ensuring
that both branches contribute maximally when working
together. To evaluate the impact of y on model performance,
in our experiments, we set y to 0.75, 0.5, 0.25, and 0.1. The
experiments were conducted using our dataset as the baseline,
and the corresponding evaluation results are shown in Table I.

From the results in Table I, it can be observed that as y
increases from 0.1 to 0.5, both the Dice and mloU values
improve, indicating that appropriately increasing the weight of
the edge detection branch provides valuable edge information
to the semantic segmentation branch, thereby enabling more
accurate tumor boundary localization. However, when y
continues to increase, the performance metrics begin to
decline. This suggests that excessively high values of y cause
the model to overly rely on the edge detection branch during
training, weakening the learning of global semantic features
and resulting in worse semantic segmentation performance.

Based on this analysis, we set the default value of y to 0.5
in our method to ensure that the edge detection branch
effectively assists the semantic segmentation branch,
significantly improving the semantic segmentation results.

C. Implementation Details

We evaluated the performance of our model on the breast
cancer tumor semantic segmentation task using both the BCSS
dataset and our dataset. To comprehensively assess the
model's performance, we first calculated the true positives
(TP), false positives (FP), false negatives (FN), and true
negatives (TN) for each class. Based on these statistics, we
further computed three key evaluation metrics: accuracy
(ACC), mean Intersection over Union (mloU), and Dice
coefficient.

In the BCSS dataset, we considered five categories: Tumor,
Stroma, Lymphocytes, Necrosis, and Other. In our dataset,
two categories were considered: carcinoma in situ and
invasive carcinoma.

TABLE I
TEST THE SEMANTIC SEGMENTATION PERFORMANCE OF THE
MODEL UNDER DIFFERENT VALUES OF THE PARAMETER ¥

Acc(%) Dice(%) mloU(%)
v=0.75 94.30 92.89 88.81
v=0.5 95.01 93.16 89.89
v=0.25 95.20 93.52 89.58
v=0.1 94.90 92.85 89.81
TABLE I

EVALUATION RESULTS OF DIFFERENT MULTI-RESOLUTION
METHODS ON THE BCSS DATASET AND OUR DATASET

Dataset Method Acc(%) Dice(%) mloU(%) p-value
BCSS HookNet 88.89+0.24 69.79+0.55 63.41+0.36 P<0.001
msY-Net 86.18+0.31 65.41+0.51 59.20+0.64 P<0.001

H&E branch  90.48+0.23 81.28+0.26 70.64+0.34 P<0.001

Our dataset HookNet 92.85+0.27 84.38+0.44 78.07+0.42 P<0.001
msY-Net 92.52+0.31 83.41+0.39 75.01+0.51 P<0.001

H&E branch  94.54+0.22 87.01+0.21 88.34+0.35 P<0.001

We implemented all the models proposed in this paper
using the PyTorch framework and trained them on an NVIDIA
RTX 3090 24GB GPU. The Adam optimizer was used to train
both the proposed and comparative methods, with an initial
learning rate set to 0.0001. The learning rate was dynamically
adjusted using the CosineAnnealingLR strategy, smoothly
decaying from the initial value to the minimum value. The
batch size was set to 2.

D. Comparison with Other Methods

To validate the effectiveness of our method, we compared it
with several state-of-the-art semantic segmentation approaches
on both the BCSS dataset and our collected dataset. Each
model was independently run five times under identical
experimental conditions. These methods include CNN-based
semantic segmentation models such as UNet [8], UNet++
[20], and Attention UNet [21]; hybrid models combining
Transformer and UNet, such as Swin-UNet [22], UCTransNet
[23], and nnWNet [24]; and models that integrate state space
models with UNet, such as VM-UNet [25]. We also compared
with methods specifically designed for multi-resolution H&E
semantic segmentation, such as HooKNet [17] and msY-Net
[11].

In Table II, we compare different multi-resolution methods
with our proposed H&E semantic segmentation branch (H&E
branch). Both HookNet [17] and msY-Net [16] perform
semantic segmentation at 40x resolution and enhance their
results by incorporating global information from 10x. In
contrast, our method conducts semantic segmentation at 10x
and selectively zooms into key regions at 40% to supplement
fine-grained details. The experimental results show that our
method achieves Dice scores of 81.28% and 87.01% on the
BCSS dataset and our collected dataset, respectively. On the
BCSS dataset, our method outperforms other methods by
approximately 11.49% and 15.87%, and on the collected

U-Net
Dice:64.65

msY-Net

HookNet
Dice:69.79 Dice:81.28
S vw

H&E branch

Input Image Ground Truth

Dice:65.41

| eand s
@ lymphocytic_infiltrate
Dice:77.49  Dice:84.38

() Stroma

Dice:83.41

@ Other
Dice:87.01

Invasive Carcinoma Carcinoma in Situ

Fig. 8. Visualization of results for different Multi-resolution
Methods on the BCSS dataset and Our dataset. The first two
rows correspond to the BCSS dataset, while the last two rows

correspond to the collected dataset.
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dataset by 2.63% and 3.60%, respectively. The visual results
in Fig. 8 also confirm that our semantic segmentation results
are more accurate. When semantic segmentation is performed
at high resolution (40x), global context can be supplemented
by 10x inputs, but the abundance of fine details may introduce
noise and artifacts, making semantic segmentation more
challenging. Our method, by segmenting at 10x and refining
key regions with 40x details, not only significantly reduces
computational cost but also achieves a better balance between
global context and local detail.

In Table III, we present the evaluation results of single-
resolution methods and our proposed multi-modal semantic
segmentation model on both datasets. Table IV reports the
per-class evaluation results of different semantic segmentation
methods across both datasets. First, we compare the semantic
segmentation performance of the UNet model at 40 and 10x
resolutions. The results show that at 10x%, the Dice scores
improve by 9.93% and 4.97% on the BCSS dataset and our
collected dataset, respectively, confirming the challenges of
semantic segmentation at high resolution. Therefore, we
choose to perform semantic segmentation at 10x. Specifically,
under 10x resolution, our method achieves Dice scores of
81.28% and 93.16% on the BCSS and collected datasets,
respectively. Compared with CNN-based methods (UNet,
UNet++, Attention UNet), our method improves Dice scores
by 6.70%, 5.95%, and 1.86% on the BCSS dataset, and by

10.70%, 7.89%, and 7.35% on the collected dataset,
respectively. Compared with transformer-based hybrid
methods (Swin-Unet, UCTransNet), our method shows

improvements of 5.91% and 11.87%. On BCSS, and 7.01%
and 7.80% on the collected dataset. Compared to VM-UNet,
which combines state-space models and UNet, our method
outperforms it by 7.15% on BCSS and 7.78% on the collected
dataset. As shown in Fig. 9, with the help of CK5/6 edge
information, our tumor semantic segmentation boundaries

become more precise, further confirming the effectiveness of
edge features in improving semantic segmentation accuracy.

To further validate the effectiveness of the proposed
method, we conducted statistical significance analysis on the
tumor segmentation task for breast cancer by comparing it
with state-of-the-art models, using Dice and mloU metrics.
Paired t-tests were used to assess the significance of
performance differences. The experimental results show that
the p-values for the Dice and mloU score differences between
the proposed method and the comparative models are both less
than 0.001, indicating highly significant improvements with
strong clinical application potential.

E. Ablation study

To validate the effectiveness of the proposed core
components, we conducted an ablation study, evaluating the
contributions of the Multi-Resolution Fusion Module
(MRFM), the Edge Detection Module (EDM), and the Multi-
Scale Feature Fusion Module (MSFFM). Using UNet as the
baseline, we incrementally incorporated these components and
compared five models:

1) UNet: The baseline model performing
segmentation on 10x images.

2) UNet + MRCFM: A variant with the center region at 40x
magnification concatenated with features from the 10x image.

3) UNet + MRFM: The baseline model with the proposed
Multi-Resolution Fusion Module for fusing 40x and 10x
features.

4) UNet + MRFM + EDM: This model incorporates the
Edge Detection Module with the UNet + MRFM architecture
but without deeper integration of edge information.

5) Proposed model: The complete model integrating UNet,
MRFM, EDM, and the Multi-Scale Feature Fusion Module
(MSFFM).

semantic

TABLE III
EVALUATION RESULTS OF DIFFERENT SINGLE RESOLUTION METHODS ON THE BCSS DATASET AND OUR DATASET

Method BCSS Our dataset
etho Acc(%) Dice(%) mloU(%) Acc(%) Dice(%) mloU(%) p-value
U-Net_40x 86.06+0.31 64.65+0.37 58.97+0.54 86.07+0.26 77.49+0.28 74.2420.48 P<0.001
U-Net_10x 88.17+0.23 74.58+0.29 61.72+0.28 92.01+0.24 82.46+0.33 82.72:0.32 P<0.001
UNet+ 83.0940.17 75.33+0.35 63.23+0.37 92.2140.21 85.18+0.46 85.76:0.28 P<0.001
AttenUNet 84.8740.19 79.42+0.24 66.64=0.28 92.4320.19 85.81£0.45 83.8120.26 P<0.001
Swin-Unet 89.68+0.24 75.37+0.36 65.62+0.32 93.14=0.18 86.15-0.26 83.110.34 P<0.001
UCTransNet 80.120.26 69.4120.31 58.18+0.42 90.09+0.22 85.36:0.23 79.87:0.26 P<0.001
VM-UNet 81.48+0.29 74.13£0.30 60.07+0.46 92.45:0.21 85.38+0.36 82.68:0.41 P<0.001
nnWNet 85.16+0.12 78.69+0.18 65.37+0.35 92.83+0.16 85.49+0.38 85.480.24 P<0.001
Proposed 90.48+0.23 81.28+0.26 70.64+0.34 95.010.13 93.16:0.27 89.89:0.26 P<0.001

TABLE IV

EVALUATION RESULTS OF DIFFERENT SEMANTIC SEGMENTATION METHODS FOR EACH CATEGORY ON THE TWO DATASETS

Method BCSS Our dataset
etho Tumor Stroma Inflammator Necrosis Other Carcinoma in situ Invasive carcinoma

U-Net_40x 89.56+0.39 81.67+0.60 55.54+0.65 50.34+0.59 46.12+0.72 67.51£0.26 87.47+0.24
HookNet 84.70+0.32 73.86+0.51 68.84+0.58 81.00+0.51 40.54+0.68 82.16+0.55 86.60 +0.38
msY-Net 84.08+0.29 69.40+0.47 64.41+0.55 76.14+0.47 33.03+0.63 83.44+0.45 83.38+0.39
U-Net_10x 89.23+0.25 81.15+0.38 72.90+0.42 66.72+0.36 62.96+0.48 73.80+0.36 91.12+0.39
UNet++ 88.89+0.34 81.72+0.35 75.6140.51 66.64+0.39 63.80:+0.47 78.93+0.57 91.43+0.40
AttenUNet 90.59+0.17 84.12+0.54 78.72+0.72 73.34+0.50 70.34+0.67 81.94£0.34 89.68+0.20
Swin-Unet 88.16+0.26 80.98+0.34 75.37+0.52 63.54+0.39 68.82+0.50 81.44£0.39 91.18+0.22
UCTransNet 87.2120.31 77.47+0.29 64.83+0.52 65.16+0.46 52.39+0.49 81.49+0.27 89.24+0.30
VM-UNet 88.29+0.30 80.54+0.29 72.91+0.47 67.13+0.45 61.76+0.43 80.29 +0.42 90.47+0.39
nnWNet 90.27+0.21 83.16+0.22 81.33+0.37 66.91+0.60 71.79+0.37 79.13£0.69 91.83+0.11
H&E branch 92.02+0.25 84.23+0.24 77.74+0.42 81.02+0.22 71.43+0.37 85.75+0.36 88.26+0.14
Proposed 92.12+0.34 94.21:0.14
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Fig. 9. Visualization of results for different single-resolution Methods on the BCSS dataset and our dataset. The first two rows
correspond to the BCSS dataset, while the last two rows correspond to the collected dataset.

TABLE V
EVALUATION RESULTS OF ABLATION EXPERIMENTS ON OUR
DATASET.

Method Acc(%)  Dice(%)  mloU(%)
UNet 92.03 82.53 82.74
UNet+MRCFM 94.18 85.65 85.25
UNettMRFM 94.54 87.01 88.34
UNettMRFM+EDM 94.74 91.11 89.01
Proposed 95.01 93.16 89.89

Table V shows the ablation study results, emphasizing each
module’s contribution. Compared to direct segmentation on
10x H&E images, UNet + MRFM improves local feature
representation with added 40x details. UNet + MRCFM uses
region-guided zoom-in, focusing on challenging areas and
outperforming concentric cropping. Edge information
enhances boundary precision, and the proposed model
surpasses UNet + MRFM + EDM, confirming the
effectiveness of CK5/6 edge guidance and our multimodal
fusion strategy.

The confusion matrix in Fig. 10 further demonstrates that,
in the baseline model (U-Net), the limited resolution at low
magnification makes it difficult to capture the overall structure
and spatial distribution of cancer cells, leading to confusion
between in situ carcinoma and invasive carcinoma. While
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.......................................
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Fig. 10. Confusion matrices for the models UNet, H&E
branch, and Proposed model.

(b) H&E branch (c) Proposed

TABLE VI
THE COMPLEXITY ANALYSIS OF THE PROPOSED METHOD
COMPARED TO OTHER METHODS

Method Params(M)  FLOPs(G)  InferenceTime(s)
U-Net 7.85 112.81 0.0410
UNet++ 8.59 203.49 0.0409
AttenUNet 8.73 116.04 0.0570
Swin-Unet 27.14 131.51 0.0294
UCTransNet  33.79 558.24 0.1455
VM-UNet 7.56 94.98 0.0296
nnWNet 7.04 171.27 0.0165
H&E branch  35.31 452.58 0.0844
Proposal 78.50 1064.96 0.1484

UNet+MRFM incorporates high-resolution details and low-
resolution global context, enhancing its ability to identify
tumor regions, the absence of edge information guidance
results in blurred tumor boundaries, often confusing them with
surrounding normal tissue or background, thus affecting
segmentation accuracy.

F. Model Complexity Analysis

To analyze the model complexity, we compared the
proposed model with other state-of-the-art models in terms of
parameter count (Params), floating-point operations (FLOPs),
and inference time on an NVIDIA RTX 3090 GPU. Table VI
shows the results of the complexity analysis. Among CNN-
based models, U-Net had the smallest Params, FLOPs, and
inference time. In contrast, Transformer-based models
generally had longer inference times. Compared to existing
methods, our proposed model has the longest inference time,
mainly due to its more complex structural design: in addition
to processing multi-resolution information through a dual-
branch structure, it also integrates two branches for edge-
guided information, achieving optimal segmentation
performance. Despite the longer inference time, it remains
within an acceptable and reasonable range, demonstrating its
feasibility for clinical application.
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V. CONCLUSION

This paper presents a computationally efficient multimodal
tumor segmentation method tailored for IoMT platforms. By
fusing multi-resolution semantic features from H&E-stained
images with edge information from spatially aligned CK5/6-
stained slides, the method improves boundary delineation and
segmentation precision. The architecture integrates three
lightweight modules: a dual-branch H&E semantic
segmentation module that focuses on diagnostically
challenging regions, an edge detection module leveraging
CK5/6 images, and a multi-scale fusion module for refined
prediction. Experimental results on the Breast Cancer
Semantic Segmentation dataset and images from the Chinese
People's Liberation Army General Hospital dataset
demonstrate superior performance compared to state-of-the-art
methods.

Looking ahead, we aim to deploy this method on IoMT
platforms to enhance the efficiency of hospital resource
utilization and improve the work efficiency of healthcare
professionals, further contributing to the promotion of patient
health. Despite the significant advancements in segmentation
performance achieved by our model, two challenges remain:
(1) Future research will explore the integration of additional
modalities, such as radiological data or pathology reports, to
broaden its application in consumer-centric smart healthcare
systems; (2) The complexity of the model needs to be further
simplified to better meet the needs of portable medical
services in hospitals. To enhance the scalability and privacy
protection of the system, we plan further optimizations based
on a cloud-edge collaborative architecture. By employing
federated learning, we aim to store and train data on edge
devices, with the locally trained model weights being
uploaded to the cloud for aggregation. The resulting global
model will then be distributed back to the nodes, enabling the
automatic segmentation of medical images.
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