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 Abstract—Accurate segmentation of carcinoma in situ and 

invasive carcinoma in Whole Slide Images (WSIs) is crucial for 

improving breast cancer diagnostics in smart healthcare systems.  

Existing methods that rely solely on Hematoxylin and Eosin 

(H&E) staining lack molecular boundary-specific markers and 

struggle with resolution limitations. To address these challenges, 

we propose a breast cancer segmentation framework that fuses 

multi-resolution semantic features from H&E images with edge 

information from Cytokeratin 5/6 (CK5/6) immunohistochemical 

staining. The model integrates three modules: a multi-resolution 

semantic segmentation branch, an edge detection module aligned 

with H&E images, and a multi-scale fusion module. By 

combining multi-modal information and selectively zooming in 

on key regions, the method enhances the diagnostic process of 

medical practitioners, making the system more accurate and 

suitable for deployment in an Internet of Medical Things (IoMT) 

platform. Evaluations on the Breast Cancer Semantic 

Segmentation (BCSS) and the Chinese People's Liberation Army 

(PLA) General Hospital datasets show segmentation similarity 

coefficients of 81.28% and 93.16%, respectively. This approach 

offers an effective solution for user-facing digital pathology 

systems and supports clinical decision-making in consumer-

centric smart healthcare. 
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I. INTRODUCTION 

HE distinction between carcinoma in situ and invasive 

carcinoma is an important task in pathological 

diagnosis within the breast cancer diagnosis and 

treatment system. With the rapid development of digital case 

technologies, Whole Slide Images (WSIs) have provided new 

technical support for breast cancer diagnosis [1]. To accurately 

differentiate between carcinoma in situ and invasive 

carcinoma, medical practitioners need to comprehensively 

analyze WSIs stained with various techniques, such as the 

commonly used H&E stain, CK5/6 stain, and Smooth Muscle 

Myosin Heavy Chain (SMMHC) stain. Fig. 1 shows the 

characteristics of slides stained with different methods. Each 

staining technique provides different pathological information, 

which complements one another and plays a crucial role in 

tumor segmentation [2]. However, analyzing WSIs is a tedious 

and time-consuming task that relies heavily on the clinical 

experience and expertise of pathologists.  Therefore, there is 

an urgent need for an automated system to distinguish between 

invasive carcinoma and carcinoma in situ regions in WSIs 

with a single click. 

Due to the increasing incidence of breast cancer worldwide, 

the demand for professional medical services is growing, 

particularly in regions with limited healthcare resources. This 

has driven the development of telemedicine technologies. The 

Internet of Medical Things (IoMT) combines traditional 

healthcare services with emerging artificial intelligence 

technologies, creating a new model for breast cancer diagnosis 

[3], [4]. Through this model, medical professionals can obtain 

accurate delineation results of invasive and carcinoma in situ 

in WSIs, eliminating the cumbersome diagnostic process of 

the past, saving both time and effort. At the same time, 

specialists around the world can collaborate to analyze data 

and provide remote treatment for patients [5]. However, many 

deep learning models, especially black-box models, suffer 

from a lack of transparency, making the interpretability and 

reliability of these models a challenge [6]. Therefore, there is 

an urgent need for a medical image segmentation model with 

high accuracy and interpretability in consumer IoMT-based 

breast cancer diagnostic systems. 

T 
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Currently, most tumor segmentation tasks in WSI primarily 

rely on H&E-stained slides. However, the determination of 

whether cancer cells have infiltrated is mainly based on the 

absence of myoepithelial cells. Due to the limited color 

richness of H&E staining, myoepithelial cells are easily 

confused with other cells. Therefore, in actual clinical 

diagnosis, doctors typically need to observe both H&E-stained 

slides and various immunohistochemical (IHC) stained slides. 

In situ carcinoma typically preserves the integrity of 

myoepithelial cells, and IHC slides can specifically highlight 

the boundaries of in situ carcinoma, which are absent in 

invasive carcinoma. This boundary information not only 

assists in the precise localization of tumors but also 

significantly improves segmentation accuracy on H&E-stained 

images. Additionally, traditional single-resolution methods 

often struggle to capture the fine features of breast cancer cells 

and the global characteristics of tumors. 

This paper proposes a multimodal WSI fusion segmentation 

method, which simulates the pathologist's analysis workflow 

of multiple stained slides and integrates H&E semantic 

information with CK5/6 edge information to improve 

segmentation accuracy. Specifically, the method consists of 

three core modules: the semantic branch module, the edge 

detection module, and the multi-scale fusion module. The 

semantic segmentation module uses a multi-resolution 

structure to achieve collaborative learning of both global and 

local features of the H&E image. Attention heatmaps are used 

to magnify high-resolution details of key regions, simulating 

the pathologist's focused observation of suspicious areas, 

thereby enhancing the model's interpretability. The edge 

detection module extracts edge features from CK5/6-stained 

images aligned with the H&E images, combining CK5/6 

molecular expression information as a basal cell biomarker to 

enhance the recognition of tissue boundaries. Finally, the 

multi-scale fusion module guides the edge information from 

CK5/6 images to optimize the segmentation results of the 

H&E images. This method not only improves the accuracy of 

tumor boundary identification but also visualizes key regions 

through heatmaps, enhancing diagnostic transparency and 

reliability. 

Fig. 2 illustrates the framework of our consumer IoMT-

based breast cancer diagnostic system. Tissue samples are 

obtained from patients/consumers via biopsy, then stained and 

digitally scanned to generate pathological slide data, which are 

uploaded to the cloud through smart devices. The tumor 

segmentation model processes the WSIs and outputs the lesion 

segmentation results. Medical practitioners can remotely 

access the visual interface for diagnosis via devices such as 

tablets, PCs, or AR glasses. The attention heatmap generated 

by the model highlights the boundary regions of tissue, 

visually demonstrating the model’s focus on lesion boundary 

segmentation, which validates the model’s learning accuracy 

and enhances trust in the model from both doctors and 

consumers. Consumers can interact with medical practitioners 

via a mobile app or web interface, improving the remote 

healthcare experience. The system provides remote 

connectivity and support services for consumer electronic 

devices, enabling these devices to access the healthcare system 

via the internet, facilitating remote monitoring, diagnosis, and 

interaction with doctors, thereby having a profound impact on 

the consumer electronics industry. 

The main contributions of this work are: (1) A novel 

multimodal segmentation framework based on the 

collaborative analysis of H&E and CK5/6 staining is 

developed, extracting biomarker-driven edge features from the 

registered CK5/6 images. (2) An interpretable multi-resolution 

H&E semantic segmentation module is proposed employing a 

multi-resolution structure design to enable collaborative 

learning of global and local features from H&E images. 

II. RELATED WORK 

 
Fig. 1. CK5/6 marks the basal cell layer, defining carcinoma 

in situ boundaries; SMMHC highlights smooth muscle 

components at the invasive edge; P63 emphasizes 

myoepithelial cell distribution, aiding in tumor-normal tissue 

boundary differentiation. 

 

 
Fig. 2. The framework for medical image segmentation in 

IoMT-based diagnostic systems. 
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In early studies, WSI tissue segmentation was mainly 

achieved using more traditional classifiers [7]. However, these 

methods showed significant limitations when dealing with 

Complex tissue images make it difficult to accurately segment 

the target tissues. In recent years, with the rapid development 

of Convolutional Neural Networks (CNNs), such as UNet [8], 

SegNet [9], and DeepLabv3+ [10], researchers have gradually 

applied them to the field of WSI tissue image segmentation. 

The U-Net architecture proposed by Ronneberger et al. [8], 

with its distinctive encoder-decoder design and skip 

connection mechanism, has achieved remarkable results in 

medical image segmentation tasks. Consequently, many 

researchers have adopted the U-Net as a baseline model for 

WSI tissue segmentation. For instance, Saltz et al. [11] 

utilized U-Net to map tumor-infiltrating lymphocytes in H&E 

images across 13 TCGA cancer types, demonstrating U-Net's 

strong capability in capturing multi-scale features and 

preserving spatial details in the images. However, despite the 

advantages of the U-Net structure, it still faces challenges in 

handling complex textures and fine details. 

In recent years, various modifications to the U-Net 

architecture have been proposed. Zhao et al. [12] introduced 

SCAU-Net, which integrates both spatial and channel 

attention modules, enhancing the model’s ability to capture 

gland boundaries. Building on this, Wen et al. [13] further 

fused traditional image processing techniques by combining 

Gabor filters with a cascaded squeeze-attention module, 

enabling the network to explicitly learn texture features at 

different scales and orientations, addressing the limitations of 

the original U-Net in texture information extraction. To further 

optimize target region localization accuracy, Lu et al. [14] 

proposed a two-stage framework, BreasTDLUSeg, based on a 

multi-scale attention mechanism, which achieves precise 

localization and segmentation of breast terminal duct lobular 

units. 

While these modifications have enhanced the model's 

ability to capture texture features, most of the existing 

methods rely on single-resolution inputs, making it difficult to 

effectively balance global context with local details. As a 

result, researchers have started exploring multi-level 

information from WSI images. For example, Abdel-Nabi et al. 

[15] and Schmitz et al. [16] proposed Ms3LcU-Net and msY-

Net, respectively, which use multi-branch path designs to fuse 

multi-scale features. To address the spatial alignment issue in 

multi-resolution fusion, Van Rijthoven et al. [17] introduced 

HookNet, which integrates multi-resolution features through a 

hook mechanism. Furthermore, to mitigate the problem of 

interference from irrelevant information in multi-resolution 

fusion, Dong et al. [18] employed a recursive zoom-in 

strategy. This method filters suspicious regions at an initial  

resolution and then zooms in on these regions to acquire 

finer local details. Considering that different tissue types 

require optimal magnification at varying levels, Deng et al. 

[19] proposed Omni-Seg, which utilizes scale-aware and 

class-aware controllers to adaptively adjust feature extraction 

and segmentation strategies based on tissue type and 

magnification. 

III. METHODS 

In this section, we introduce our proposed method and the 

definition of the loss function. The overall framework of our 

proposed model is illustrated in Fig. 3. It consists of three 

main branches: a semantic segmentation branch, an edge 

detection branch, and a multi-scale fusion branch. Through the 

IoMT platform, the automatic segmentation of invasive and 

carcinoma in situ in WSIs is achieved.  

The H&E semantic branch enables collaborative learning of 

global and local features through multi-resolution. This branch 

consists of two encoder-decoder sub-branches: the target 

branch and the detail branch. (1) The target branch processes 

H&E-stained slides at 10x magnification. (2) The detail 

branch processes H&E-stained slides at 40x magnification. By 

zooming in on key regions in the 10x magnification slides it 

provides high-resolution, fine-grained information.  

The CK5/6 edge detection branch is designed to learn edge 

features. This branch consists of two encoder-decoder sub-

branches: the semantic segmentation branch and the edge 

detection branch. (1) The semantic segmentation branch 

segments CK5/6-stained slides, providing cross-modal 

semantic information for the aligned H&E images. (2) The 

edge detection branch extracts edge structure features from the 

CK5/6 slides, converted to grayscale, offering complementary 

edge guidance for H&E segmentation.  

The multi-scale fusion branch integrates features from 

different modalities to guide H&E image segmentation with 

CK5/6 edge information. During the training phase, precise 

segmentation is achieved by adjusting the loss weight 

 
Fig. 3 The tumor semantic segmentation model consists of 

the H&E semantic segmentation module, the CK5/6 edge 

detection module, and the multi-modal fusion module. EDFM 

is used to fuse the CK5/6 dual-branch information in the 

CK5/6 edge detection module, while EFFM is used to fuse 

H&E semantic information and CK5/6 edge information, 

enabling effective integration of multimodal information. 
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parameters of the CK5/6 branch. 

 

A. H&E semantic segmentation branch 

In the H&E semantic segmentation branch, we employed a 

multi-resolution input strategy to enhance model performance. 

Specifically, 10x magnification H&E-stained slides are first 

processed using the VGG-UNet network to generate an initial 

semantic segmentation result. Then, Grad-CAM is used to 

generate a saliency heatmap 𝑆 ∈ [0,1]𝐻×𝑊  where each pixel 

value 𝑆(𝑖, 𝑗) represents the importance of the corresponding 

region to the model's decision. we use a sliding window 

(128×128 pixels) to search for significant peak regions 𝑅 =
{(𝑥𝑡 , 𝑦𝑡), (𝑥𝑏 , 𝑦𝑏)}.  

Fig. 4 compares different zoom strategies. (a) concentric 

zoom, where the central region is zoomed in concentrically; 

(b) global zoom, where the entire field is zoomed in and 

segmented; (c) our strategy, which selectively zooms into key 

regions, avoiding irrelevant areas and focusing on regions 

most important for detailed feature extraction. Fig. 5 
illustrates the multi-resolution fusion module. Finally, the 

tissue regions corresponding to 𝑅  are extracted from the 

original WSI and zoomed in 40x for subsequent detailed 

feature extraction.  

The H&E semantic segmentation module consists of two 

main branches: the target branch and the detail branch. The 

input to the target branch is 𝑋𝑎𝑖𝑚 ∈ R𝐶×𝐻×𝑊, and the input to 

the detail branch is 𝑋ℎ𝑖𝑔ℎ ∈ R𝐶×𝐻×𝑊, where 𝐻 × 𝑊represents 

the size of the feature map, and 𝐶 represents the number of 

channels, with all having three channels. The resolution of the 

target branch is 𝑟𝑎𝑖𝑚, and the resolution of the detail branch is 

𝑟ℎ𝑖𝑔ℎ. The encoder parts of both branches use the VGG-UNet.  

To ensure alignment between the target and detail branches, 

an appropriate fusion layer is selected. During the encoder 

downsampling process, the resolution changes as 𝑆𝑅𝐹 = 2𝑑𝑟, 

where 𝑑  represents the downsampling depth of the encoder, 

and 𝑟 is the resolution of the input patch (in μm/px). During 

the decoder process, the resolution changes as 𝑆𝑅𝐹 = 2𝑑𝑒−𝑑𝑓 ∙
𝑟, where 𝑑𝑒  represents the encoder depth and 𝑑𝑓 represents the 

decoder depth. To ensure proper fusion at the same resolution, 

the SRF ratio between the two branches must satisfy:  

𝑆𝑅𝐹𝑎𝑖𝑚

𝑆𝑅𝐹ℎ𝑖𝑔ℎ

= 2𝑑𝑎𝑖𝑚−𝑑ℎ𝑖𝑔ℎ ∙
𝑟ℎ𝑖𝑔ℎ

𝑟𝑎𝑖𝑚

(1) 

When both branches have the same resolution, the ratio must 

satisfy: 

𝑆𝑅𝐹𝑎𝑖𝑚

𝑆𝑅𝐹ℎ𝑖𝑔ℎ

= 1 (2) 

To fuse features from different resolutions, a multi-resolution 

fusion module is employed. Since the target and detail 

branches operate at different depths in the decoder, we 

employed a Squeeze-and-Excitation (SE) module to adjust the 

channel numbers. 

Considering that the key regions are determined based on 

the resolution of the original input features, it is necessary to 

rescale the coordinates of these regions during fusion, as 

𝑋𝑎𝑖𝑚 and  𝑋ℎ𝑖𝑔ℎ  are at different scales. The rescaled 

coordinates of the key region are given as (top_left_x, 

top_left_y, bottom_right_x, bottom_right_y). Then, the 

corresponding region is cropped from 𝑋𝑎𝑖𝑚 and fused with the 

channel-reduced 𝑋ℎ𝑖𝑔ℎ  to obtain the fused features. These 

fused features are then smoothed, and the updated result is 

used to refine 𝑋𝑎𝑖𝑚 , completing the feature fusion process.  

 

B. Edge Detection Branch for CK5/6 

The C/K56 edge detection branch consists of two main 

inputs: 𝑋𝑠𝑒𝑚 ∈ R3×𝐻×𝑊 ,representing the three-channel H&E-

stained slides, and 𝑋𝑒𝑑𝑔𝑒 ∈ R2×𝐻×𝑊 , the grayscale-converted 

C/K56 image. Both inputs are processed using an encoder-

decoder architecture. 

To fully exploit the semantic information and edge 

characteristics of C/K56-stained slides, we propose an edge 

feature fusion module. As shown in Fig. 6. C/K56 staining 

exhibits significant coloring properties at the edges of 

carcinoma in situ regions, while the shallow features of the 

encoder contain rich low-level information (e.g., textures, 

edges). Therefore, we perform cross-modal fusion of features 

from the semantic segmentation branch and the edge detection 

branch during the encoding phase. This module comprises a 

channel attention mechanism, a gated attention mechanism, 

and a depthwise separable convolution. 

The four encoder features from the semantic segmentation 

 

Fig. 4. illustrates three different zoom-in strategies. (a) high-

magnification zoom of the central region to match the 

original view; (b) global zoom followed by region division 

for analysis; (c) our method, selectively zooming in on key 

regions to maintain the original field of view. 

 

 
Fig. 5. Fusion module of the target and detail branches. The 

detail branch is first processed with a Squeeze-and-Excitation 

(SE) block and then fused with the target branch within the 

key region. 
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branch {𝑋𝑠𝑒𝑚_𝑒𝑛𝑐
(𝑙)

}𝑙=1
4  and the edge detection branch 

{𝐹𝑒𝑑𝑔𝑒_𝑒𝑛𝑐
(𝑙)

}𝑙=1
4  are first passed through a channel attention 

mechanism to filter important feature channels, generating 

enhanced features x𝑠𝑒𝑚
′  and x𝑒𝑑𝑔𝑒

′ . 

Then, the enhanced features x𝑠𝑒𝑚
′  and x𝑒𝑑𝑔𝑒

′  are 

concatenated along the channel dimension to form a new 

feature representation 𝐹𝑐𝑜𝑛𝑐𝑎𝑡 . This combined feature is then 

fed into an attention gating mechanism, which adaptively 

adjusts spatial weights, highlighting critical regions such as 

the edges of carcinoma in situ, while suppressing background 

noise. 

Finally, a depthwise separable convolution is applied to 

reduce computational complexity while maintaining feature 

representation capability. The fusion module generates fused 

features {𝐹𝑓𝑢𝑠𝑖𝑜𝑛
(𝑙)

}𝑙=1
4  at four encoder levels. These features are 

recursively fused with the decoder of the C/K56 semantic 

segmentation branch through skip connections: 

𝐹𝑑𝑒𝑐
(𝑙)

= 𝑈𝑝(𝐹𝑑𝑒𝑐
(𝑙+1)

) + 𝐹𝑓𝑢𝑠𝑖𝑜𝑛
(𝑙) (3) 

Where 𝑈𝑝 denotes bilinear upsampling. Through multi-level 

fusion, the model leverages both shallow detail information 

and deep semantic information, enhancing edge detection 

capabilities. The semantic segmentation branch generates the 

C/K56 semantic segmentation result 𝑌𝑠𝑒𝑚 ∈ 𝑅𝐻×𝑊, while the 

edge detection branch produces the grayscale C/K56 semantic 

segmentation result 𝑌𝑒𝑑𝑔𝑒 ∈ 𝑅𝐻×𝑊. 

 

C. Multi-Scale Feature Fusion Branch 

The branch aims to integrate the semantic segmentation 

information of H&E-stained slices with the edge detection 

information of C/K56-stained slices. This branch designs a 

cross-modal feature fusion module with a hierarchical 

progressive structure, as shown in Fig.7. The module utilizes 

feature maps from four different scales of the H&E semantic 

segmentation decoder, denoted as {𝑋𝑠𝑒𝑚_𝑑𝑒𝑐
(𝑙)

}𝑙=1
4 , and 

corresponding scale feature maps from the C/K56 edge 

detection decoder, denoted as {𝑋𝑒𝑑𝑔_𝑑𝑒𝑐
(𝑙)

}𝑙=1
4 , Through iterative 

fusion with the upper-level fusion result 𝐹𝑓𝑢𝑠𝑖𝑜𝑛
𝑙−1  multi-scale 

features are refined layer by layer. 

To effectively fuse the aforementioned two sets of features, 

we propose a multi-scale feature fusion module that includes a 

spatial attention mechanism, an axial cross-attention 

mechanism, and a feature concatenation channel attention 

mechanism. First, the spatial attention mechanism 

dynamically adjusts the input feature maps 𝑋𝑠𝑒𝑚_𝑑𝑒𝑐 ∈

 
Fig. 6. Edge detection fusion module. The four encoding 

layers from the CK5/6 semantic branch and the edge branch 

are first refined using a Channel Attention mechanism. Then, 

they are fused through a Gating Mechanism. Finally, the four 

fused features are concatenated with the upsampled features 

from the decoder of the semantic branch. 

 

 
Fig. 7. The left panel (a) illustrates the multi-modal fusion module, where H&E semantic features and CK5/6 edge features are 

used to learn key tumor regions through a spatial attention mechanism. Meanwhile, the axial attention mechanism learns the 

interaction between the two modalities. Finally, the three features are weighted and fused with the results from the previous 

layer. The right panel (b) demonstrates the axial attention mechanism, where H&E semantic features are used as Q, and CK5/6 

edge features as K and V, with computations performed in the axial and horizontal directions, respectively. 
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R𝐶×𝐻×𝑊  and 𝑋𝑒𝑑𝑔𝑒_𝑑𝑒𝑐 ∈ R𝐶×𝐻×𝑊 ,to obtain the attention-

weighted feature maps 𝑋𝑠𝑒𝑚_𝑑𝑒𝑐
𝑙 ∈ R𝐶×𝐻×𝑊  and 𝑋𝑒𝑑𝑔𝑒_𝑑𝑒𝑐

𝑙 ∈

R𝐶×𝐻×𝑊. 

The multi-head attention mechanism in Transformer models 

incurs high computational costs. Additionally, global self-

attention lacks directional bias, making it prone to interference 

from irrelevant areas, which hinders fine-grained alignment. 

To address these issues and improve tumor segmentation 

accuracy, we adopted the axial attention mechanism to fuse 

multimodal data. This process involves attention calculations 

in both horizontal and vertical directions. The horizontal 

attention weight is calculated as follows:  

𝐴ℎ𝑜𝑟 = 𝜎 ((𝑋𝑠𝑒𝑚_𝑑𝑒𝑐
𝑙 ∙ 𝑊𝑄

ℎ𝑜𝑟)(𝑋𝑒𝑑𝑔𝑒_𝑑𝑒𝑐
𝑙 ∙ 𝑊𝐾

ℎ𝑜𝑟)
𝑇

) /√𝑑𝐾(4) 

𝐹ℎ𝑜𝑟 = 𝐴ℎ𝑜𝑟 ∙ (𝑋𝑒𝑑𝑔𝑒_𝑑𝑒𝑐
𝑙 ∙ 𝑊𝑉

ℎ𝑜𝑟) (5) 

𝐹𝐴𝐶𝐴
𝑙 = 𝐹ℎ𝑜𝑟 + 𝐹𝑣𝑒𝑟 (6) 

The horizontally weighted feature map 𝐹ℎ𝑜𝑟 ∈ R𝐶×𝐻×𝑊  and 

vertically weighted feature map 𝐹𝑣𝑒𝑟 ∈ R𝐶×𝐻×𝑊  are obtained 

through horizontal and vertical attention. The 𝑊𝑄
ℎ𝑜𝑟 , 𝑊𝐾

ℎ𝑜𝑟 , 

𝑊𝑉
ℎ𝑜𝑟 , are the linear projection matrices for the Query, Key, 

and Value, respectively These two feature maps are then 

summed to produce the final output of the Axial Cross 

Attention module, denoted as 𝐹𝐴𝐶𝐴
𝑙  

Finally, the spatially attention-weighted feature maps  

𝑋𝑠𝑒𝑚_𝑑𝑒𝑐
′  and 𝑋𝑒𝑑𝑔𝑒_𝑑𝑒𝑐

′ , the axial cross-attention output 𝐹𝐴𝐶𝐴 , 

and the upper-level fusion result 𝐹𝑓𝑢𝑠𝑖𝑜𝑛
𝑙−1  are concatenated. The 

𝐹𝑓𝑢𝑠𝑖𝑜𝑛
𝑙  is obtained through a channel attention mechanism. 

 

D. Loss Function 

To train the model proposed in this paper, we used three 

loss functions: 𝐿𝑠𝑒𝑔, 𝐿𝑒𝑑𝑔𝑒  and 𝐿𝑓𝑢𝑠𝑖𝑜𝑛 , to ensure that semantic 

segmentation and edge detection can learn collaboratively. 

First, the loss function 𝐿𝑠𝑒𝑔  for the H&E semantic 

segmentation branch is primarily used to optimize the 

semantic segmentation performance of H&E images: 

𝐿𝑠𝑒𝑔 = (0.5 ∙ 𝐿𝑎𝑖𝑚_𝑑𝑖𝑐𝑒  + 0.5 ∙ 𝐿𝑎𝑖𝑚_𝐶𝐸) + 0.5 ∙ 𝐿ℎ𝑖𝑔ℎ_𝐶𝐸 (7) 

Here, 𝐿𝑎𝑖𝑚_𝑑𝑖𝑐𝑒  is the Dice loss function for the target branch, 

Both 𝐿𝑎𝑖𝑚_𝑑𝑖𝑐𝑒  and 𝐿ℎ𝑖𝑔ℎ_𝐶𝐸  are cross-entropy losses, used to 

measure the accuracy of class predictions. 

Next, the loss function 𝐿𝑒𝑑𝑔𝑒  for the CK5/6 edge detection 

branch is designed to enhance the accurate localization of 

tumor boundaries, and it is defined as: 

𝐿𝑒𝑑𝑔𝑒 = 0.5 ∙ 𝐿𝑠𝑒𝑚_𝐶𝐸 + 0.5 ∙ 𝐿𝑒𝑑𝑔𝑒_𝑑𝑖𝑐𝑒 (8) 

where 𝐿𝑠𝑒𝑚_𝐶𝐸  and 𝐿𝑒𝑑𝑔𝑒_𝑑𝑖𝑐𝑒  represent the cross-entropy loss 

for the CK5/6 semantic segmentation branch and the Dice loss 

for the CK5/6 edge semantic segmentation, respectively. 

Finally, we combine the semantic segmentation and edge 

detection losses to construct the final semantic segmentation 

network loss function 𝐿𝑓𝑢𝑠𝑖𝑜𝑛: 

𝐿𝑓𝑢𝑠𝑖𝑜𝑛 = 𝐿𝑠𝑒𝑔 + 𝛾 ∙ 𝐿𝑒𝑑𝑔𝑒 (9) 

Here, 𝛾 is a hyperparameter used to control the impact of the 

edge detection loss on the overall training process, ensuring 

that both semantic segmentation and edge information are 

optimized collaboratively.  

IV. EXPERIMENTAL RESULTS 

In this chapter, we will present our experiments from six 

aspects: Datasets, Parameter analysis, Evaluation metrics, 

Comparison with other methods, Ablation study, and Model 

Complexity Analysis.  

A. Datasets 

We used two WSI breast cancer tumor datasets to evaluate 

our model: the Breast Cancer Semantic Segmentation (BCSS) 

Dataset and a breast cancer dataset collected from the Chinese 

PLA General Hospital. 

1) Our breast cancer dataset: We collected whole-slide 

imaging (WSI) data from 73 breast cancer patients at the 

Chinese PLA General Hospital. This dataset includes H&E 

staining, CK5/6 staining, and SMMHC staining WSIs for each 

patient. All slides were prepared following the standardized 

procedures of the PLA Pathology Department and digitized 

using a Jiangfeng scanner (model KFPBL00500108015) at a 

spatial resolution of 0.25 μm/px under consistent scanning 

parameters. 

The dataset spans patients aged 25 to 72, with an average 

age of 46.6 years, primarily concentrated between 30 and 50 

years old. It covers various tumor types, including invasive 

carcinoma, DCIS (ductal carcinoma in situ), mixed types, 

lobular carcinoma, mucinous carcinoma, and papillary 

carcinoma, with a ratio of invasive carcinoma to carcinoma in 

situ of approximately 1.2:1. Among invasive carcinomas, 

grade I accounts for 2.4%, grade II for 76.2%, and grade III 

for 4.8%. Annotation work was performed by a team of expert 

doctors at the PLA General Hospital using QuPath software. 

From the H&E-stained slides of the 73 breast cancer patients, 

we extracted 1,201 regions of interest (ROIs), with a similar 

number (1,201) of ROIs extracted from the CK5/6-stained 

WSIs. Two categories were annotated: carcinoma in situ and 

invasive carcinoma. 

We evaluated the performance of our model by splitting the 

dataset into training, validation, and test sets in a 6:2:2 ratio.  

2) BCSS dataset: The BCSS dataset is a large-scale dataset 

annotated based on breast cancer WSIs from The Cancer 

Genome Atlas (TCGA). It includes annotations from 

pathologists, pathology residents, and medical students, 

covering over 20,000 annotated regions of breast cancer 

tissue. All slides were digitized at a spatial resolution of 0.25 

μm/px. The dataset includes five annotated classes: Tumor, 

Stroma, Inflammatory, Necrosis, and Other (e.g., ducts, 

lobules, and other specific tissue types). We applied the same 

preprocessing steps as those used for the H&E branch of the 

PLAGH dataset, generating 1,484 H&E patches for validating 

the performance of the H&E semantic segmentation branch. 
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B. Parameter Analysis 

In this subsection, we discuss the adjustable parameter 𝛾. 𝛾 

is used in Equ. (9) to balance the loss between the semantic 

segmentation branch and the edge detection branch, ensuring 

that both branches contribute maximally when working 

together. To evaluate the impact of 𝛾 on model performance, 

in our experiments, we set 𝛾 to 0.75, 0.5, 0.25, and 0.1. The 

experiments were conducted using our dataset as the baseline, 

and the corresponding evaluation results are shown in Table Ⅰ. 

From the results in Table Ⅰ, it can be observed that as 𝛾 

increases from 0.1 to 0.5, both the Dice and mIoU values 

improve, indicating that appropriately increasing the weight of 

the edge detection branch provides valuable edge information 

to the semantic segmentation branch, thereby enabling more 

accurate tumor boundary localization. However, when 𝛾 

continues to increase, the performance metrics begin to 

decline. This suggests that excessively high values of 𝛾 cause 

the model to overly rely on the edge detection branch during 

training, weakening the learning of global semantic features 

and resulting in worse semantic segmentation performance. 

Based on this analysis, we set the default value of 𝛾 to 0.5 

in our method to ensure that the edge detection branch 

effectively assists the semantic segmentation branch, 

significantly improving the semantic segmentation results. 

 

C. Implementation Details 

We evaluated the performance of our model on the breast 

cancer tumor semantic segmentation task using both the BCSS 

dataset and our dataset. To comprehensively assess the 

model's performance, we first calculated the true positives 

(TP), false positives (FP), false negatives (FN), and true 

negatives (TN) for each class. Based on these statistics, we 

further computed three key evaluation metrics: accuracy 

(ACC), mean Intersection over Union (mIoU), and Dice 

coefficient. 

In the BCSS dataset, we considered five categories: Tumor, 

Stroma, Lymphocytes, Necrosis, and Other. In our dataset, 

two categories were considered: carcinoma in situ and 

invasive carcinoma. 

We implemented all the models proposed in this paper 

using the PyTorch framework and trained them on an NVIDIA 

RTX 3090 24GB GPU. The Adam optimizer was used to train 

both the proposed and comparative methods, with an initial 

learning rate set to 0.0001. The learning rate was dynamically 

adjusted using the CosineAnnealingLR strategy, smoothly 

decaying from the initial value to the minimum value. The 

batch size was set to 2. 

D. Comparison with Other Methods 

To validate the effectiveness of our method, we compared it 

with several state-of-the-art semantic segmentation approaches 

on both the BCSS dataset and our collected dataset. Each 

model was independently run five times under identical 

experimental conditions. These methods include CNN-based 

semantic segmentation models such as UNet [8], UNet++ 

[20], and Attention UNet [21]; hybrid models combining 

Transformer and UNet, such as Swin-UNet [22], UCTransNet 

[23], and nnWNet [24]; and models that integrate state space 

models with UNet, such as VM-UNet [25]. We also compared 

with methods specifically designed for multi-resolution H&E 

semantic segmentation, such as HooKNet [17] and msY-Net 

[11]. 

In Table Ⅱ, we compare different multi-resolution methods 

with our proposed H&E semantic segmentation branch (H&E 

branch). Both HookNet [17] and msY-Net [16] perform 

semantic segmentation at 40× resolution and enhance their 

results by incorporating global information from 10×. In 

contrast, our method conducts semantic segmentation at 10× 

and selectively zooms into key regions at 40× to supplement 

fine-grained details. The experimental results show that our 

method achieves Dice scores of 81.28% and 87.01% on the 

BCSS dataset and our collected dataset, respectively. On the 

BCSS dataset, our method outperforms other methods by 

approximately 11.49% and 15.87%, and on the collected 

TABLE I 

TEST THE SEMANTIC SEGMENTATION PERFORMANCE OF THE 

MODEL UNDER DIFFERENT VALUES OF THE PARAMETER 𝛾 
 Acc(%) Dice(%) mIoU(%) 

γ=0.75 94.30 92.89 88.81 

γ=0.5 95.01 93.16 89.89 

γ=0.25 95.20 93.52 89.58 

γ=0.1 94.90 92.85 89.81 

 

 
TABLE Ⅱ 

EVALUATION RESULTS OF DIFFERENT MULTI-RESOLUTION 

METHODS ON THE BCSS DATASET AND OUR DATASET 
Dataset Method Acc(%) Dice(%) mIoU(%) p-value 

BCSS HookNet 

msY-Net 

H&E branch 

88.89±0.24 69.79±0.55 63.41±0.36 P<0.001 

86.18±0.31 65.41±0.51 59.20±0.64 P<0.001 

90.48±0.23 81.28±0.26 70.64±0.34 P<0.001 

Our dataset HookNet 92.85±0.27 84.38±0.44 78.07±0.42 P<0.001 

 msY-Net 92.52±0.31 83.41±0.39 75.01±0.51 P<0.001 

 H&E branch 94.54±0.22 87.01±0.21 88.34±0.35 P<0.001 

 

 
Fig. 8. Visualization of results for different Multi-resolution 

Methods on the BCSS dataset and Our dataset. The first two 

rows correspond to the BCSS dataset, while the last two rows 

correspond to the collected dataset. 
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dataset by 2.63% and 3.60%, respectively. The visual results 

in Fig. 8 also confirm that our semantic segmentation results 

are more accurate. When semantic segmentation is performed 

at high resolution (40×), global context can be supplemented 

by 10× inputs, but the abundance of fine details may introduce 

noise and artifacts, making semantic segmentation more 

challenging. Our method, by segmenting at 10× and refining 

key regions with 40× details, not only significantly reduces 

computational cost but also achieves a better balance between 

global context and local detail. 

In Table Ⅲ, we present the evaluation results of single-

resolution methods and our proposed multi-modal semantic 

segmentation model on both datasets. Table Ⅳ reports the 

per-class evaluation results of different semantic segmentation 

methods across both datasets. First, we compare the semantic 

segmentation performance of the UNet model at 40× and 10× 

resolutions. The results show that at 10×, the Dice scores 

improve by 9.93% and 4.97% on the BCSS dataset and our 

collected dataset, respectively, confirming the challenges of 

semantic segmentation at high resolution. Therefore, we 

choose to perform semantic segmentation at 10×. Specifically, 

under 10× resolution, our method achieves Dice scores of 

81.28% and 93.16% on the BCSS and collected datasets, 

respectively. Compared with CNN-based methods (UNet, 

UNet++, Attention UNet), our method improves Dice scores 

by 6.70%, 5.95%, and 1.86% on the BCSS dataset, and by 

10.70%, 7.89%, and 7.35% on the collected dataset, 

respectively. Compared with transformer-based hybrid 

methods (Swin-Unet, UCTransNet), our method shows 

improvements of 5.91% and 11.87%. 0n BCSS, and 7.01% 

and 7.80% on the collected dataset. Compared to VM-UNet, 

which combines state-space models and UNet, our method 

outperforms it by 7.15% on BCSS and 7.78% on the collected 

dataset. As shown in Fig. 9, with the help of CK5/6 edge 

information, our tumor semantic segmentation boundaries 

become more precise, further confirming the effectiveness of 

edge features in improving semantic segmentation accuracy. 

To further validate the effectiveness of the proposed 

method, we conducted statistical significance analysis on the 

tumor segmentation task for breast cancer by comparing it 

with state-of-the-art models, using Dice and mIoU metrics. 

Paired t-tests were used to assess the significance of 

performance differences. The experimental results show that 

the p-values for the Dice and mIoU score differences between 

the proposed method and the comparative models are both less 

than 0.001, indicating highly significant improvements with 

strong clinical application potential. 

 

E. Ablation study 

To validate the effectiveness of the proposed core 

components, we conducted an ablation study, evaluating the 

contributions of the Multi-Resolution Fusion Module 

(MRFM), the Edge Detection Module (EDM), and the Multi-

Scale Feature Fusion Module (MSFFM). Using UNet as the 

baseline, we incrementally incorporated these components and 

compared five models: 

1) UNet: The baseline model performing semantic 

segmentation on 10× images. 

2) UNet + MRCFM: A variant with the center region at 40× 

magnification concatenated with features from the 10× image. 

3) UNet + MRFM: The baseline model with the proposed 

Multi-Resolution Fusion Module for fusing 40× and 10× 

features. 

4) UNet + MRFM + EDM: This model incorporates the 

Edge Detection Module with the UNet + MRFM architecture 

but without deeper integration of edge information. 

5) Proposed model: The complete model integrating UNet, 

MRFM, EDM, and the Multi-Scale Feature Fusion Module 

(MSFFM). 

TABLE Ⅲ 

EVALUATION RESULTS OF DIFFERENT SINGLE RESOLUTION METHODS ON THE BCSS DATASET AND OUR DATASET 

Method 
BCSS  Our dataset 

Acc(%) Dice(%) mIoU(%) Acc(%) Dice(%) mIoU(%) p-value 

U-Net_40x 86.06±0.31 64.65±0.37 58.97±0.54  86.07±0.26 77.49±0.28 74.24±0.48 P<0.001 

U-Net_10x 

UNet++ 

AttenUNet 

Swin-Unet 

UCTransNet 

88.17±0.23 74.58±0.29 61.72±0.28  92.01±0.24 82.46±0.33 82.72±0.32 P<0.001 

83.09±0.17 75.33±0.35 63.23±0.37 92.21±0.21 85.18±0.46 85.76±0.28 P<0.001 

84.87±0.19 79.42±0.24 66.64±0.28 92.43±0.19 85.81±0.45 83.81±0.26 P<0.001 

89.68±0.24 75.37±0.36 65.62±0.32 93.14±0.18 86.15±0.26 83.11±0.34 P<0.001 

80.12±0.26 69.41±0.31 58.18±0.42 90.09±0.22 85.36±0.23 79.87±0.26 P<0.001 

VM-UNet 81.48±0.29 74.13±0.30 60.07±0.46 92.45±0.21 85.38±0.36 82.68±0.41 P<0.001 

nnWNet 85.16±0.12 78.69±0.18 65.37±0.35 92.83±0.16 85.49±0.38 85.48±0.24 P<0.001 

Proposed 90.48±0.23 81.28±0.26 70.64±0.34  95.01±0.13 93.16±0.27 89.89±0.26 P<0.001 

 

TABLE Ⅳ 

EVALUATION RESULTS OF DIFFERENT SEMANTIC SEGMENTATION METHODS FOR EACH CATEGORY ON THE TWO DATASETS 

Method 
BCSS  Our dataset 

Tumor Stroma Inflammatory Necrosis Other  Carcinoma in situ Invasive carcinoma 

U-Net_40x 89.56±0.39 81.67±0.60 55.54±0.65 50.34±0.59 46.12±0.72  67.51±0.26 87.47±0.24 

HookNet 84.70±0.32 73.86±0.51 68.84±0.58 81.00±0.51 40.54±0.68  82.16±0.55 86.60 ±0.38 

msY-Net 84.08±0.29 69.40±0.47 64.41±0.55 76.14±0.47 33.03±0.63  83.44±0.45 83.38±0.39 

U-Net_10x 89.23±0.25 81.15±0.38 72.90±0.42 66.72±0.36 62.96±0.48  73.80±0.36 91.12±0.39 

UNet++ 88.89±0.34 81.72±0.35 75.61±0.51 66.64±0.39 63.80±0.47  78.93±0.57 91.43±0.40 

AttenUNet 90.59±0.17 84.12±0.54 78.72±0.72 73.34±0.50 70.34±0.67  81.94±0.34 89.68±0.20 

Swin-Unet 88.16±0.26 80.98±0.34 75.37±0.52 63.54±0.39 68.82±0.50  81.44±0.39 91.18±0.22 

UCTransNet 87.21±0.31 77.47±0.29 64.83±0.52 65.16±0.46 52.39±0.49  81.49±0.27 89.24±0.30 

VM-UNet 88.29±0.30 80.54±0.29 72.91±0.47 67.13±0.45 61.76±0.43  80.29 ±0.42 90.47±0.39 

nnWNet 90.27±0.21 83.16±0.22 81.33±0.37 66.91±0.60 71.79±0.37  79.13±0.69 91.83±0.11 

H&E branch 92.02±0.25 84.23±0.24 77.74±0.42 81.02±0.22 71.43±0.37  85.75±0.36 88.26±0.14 

Proposed   92.12±0.34 94.21±0.14 
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Table Ⅴ shows the ablation study results, emphasizing each 

module’s contribution. Compared to direct segmentation on 

10× H&E images, UNet + MRFM improves local feature 

representation with added 40× details. UNet + MRCFM uses 

region-guided zoom-in, focusing on challenging areas and 

outperforming concentric cropping. Edge information 

enhances boundary precision, and the proposed model 

surpasses UNet + MRFM + EDM, confirming the 

effectiveness of CK5/6 edge guidance and our multimodal 

fusion strategy. 

The confusion matrix in Fig. 10 further demonstrates that, 

in the baseline model (U-Net), the limited resolution at low 

magnification makes it difficult to capture the overall structure 

and spatial distribution of cancer cells, leading to confusion 

between in situ carcinoma and invasive carcinoma. While 

UNet+MRFM incorporates high-resolution details and low-

resolution global context, enhancing its ability to identify 

tumor regions, the absence of edge information guidance 

results in blurred tumor boundaries, often confusing them with 

surrounding normal tissue or background, thus affecting 

segmentation accuracy. 

F. Model Complexity Analysis 

To analyze the model complexity, we compared the 

proposed model with other state-of-the-art models in terms of 

parameter count (Params), floating-point operations (FLOPs), 

and inference time on an NVIDIA RTX 3090 GPU. Table Ⅵ 

shows the results of the complexity analysis. Among CNN-

based models, U-Net had the smallest Params, FLOPs, and 

inference time. In contrast, Transformer-based models 

generally had longer inference times. Compared to existing 

methods, our proposed model has the longest inference time, 

mainly due to its more complex structural design: in addition 

to processing multi-resolution information through a dual-

branch structure, it also integrates two branches for edge-

guided information, achieving optimal segmentation 

performance. Despite the longer inference time, it remains 

within an acceptable and reasonable range, demonstrating its 

feasibility for clinical application. 

 
Fig. 9. Visualization of results for different single-resolution Methods on the BCSS dataset and our dataset. The first two rows 

correspond to the BCSS dataset, while the last two rows correspond to the collected dataset. 

 

TABLE Ⅴ 

EVALUATION RESULTS OF ABLATION EXPERIMENTS ON OUR 

DATASET. 
Method Acc(%) Dice(%) mIoU(%) 

UNet 

UNet+MRCFM 
UNet+MRFM 

UNet+MRFM+EDM 

92.03 82.53 82.74 

94.18 85.65 85.25 

94.54 87.01 88.34 

94.74 91.11 89.01 

Proposed 95.01 93.16 89.89 

 

 
Fig. 10. Confusion matrices for the models UNet, H&E 

branch, and Proposed model. 

TABLE Ⅵ 

THE COMPLEXITY ANALYSIS OF THE PROPOSED METHOD 

COMPARED TO OTHER METHODS 
Method Params(M) FLOPs(G) InferenceTime(s) 

U-Net 7.85 112.81 0.0410 

UNet++ 8.59 203.49 0.0409 

AttenUNet 8.73 116.04 0.0570 

Swin-Unet 27.14 131.51 0.0294 

UCTransNet 33.79 558.24 0.1455 

VM-UNet 7.56 94.98 0.0296 

nnWNet 7.04 171.27 0.0165 

H&E branch 35.31 452.58 0.0844 

Proposal 78.50 1064.96 0.1484 
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V. CONCLUSION 

This paper presents a computationally efficient multimodal 

tumor segmentation method tailored for IoMT platforms. By 

fusing multi-resolution semantic features from H&E-stained 

images with edge information from spatially aligned CK5/6-

stained slides, the method improves boundary delineation and 

segmentation precision. The architecture integrates three 

lightweight modules: a dual-branch H&E semantic 

segmentation module that focuses on diagnostically 

challenging regions, an edge detection module leveraging 

CK5/6 images, and a multi-scale fusion module for refined 

prediction. Experimental results on the Breast Cancer 

Semantic Segmentation dataset and images from the Chinese 

People's Liberation Army General Hospital dataset 

demonstrate superior performance compared to state-of-the-art 

methods. 

Looking ahead, we aim to deploy this method on IoMT 

platforms to enhance the efficiency of hospital resource 

utilization and improve the work efficiency of healthcare 

professionals, further contributing to the promotion of patient 

health. Despite the significant advancements in segmentation 

performance achieved by our model, two challenges remain: 

(1) Future research will explore the integration of additional 

modalities, such as radiological data or pathology reports, to 

broaden its application in consumer-centric smart healthcare 

systems; (2) The complexity of the model needs to be further 

simplified to better meet the needs of portable medical 

services in hospitals. To enhance the scalability and privacy 

protection of the system, we plan further optimizations based 

on a cloud-edge collaborative architecture. By employing 

federated learning, we aim to store and train data on edge 

devices, with the locally trained model weights being 

uploaded to the cloud for aggregation. The resulting global 

model will then be distributed back to the nodes, enabling the 

automatic segmentation of medical images. 
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