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Abstract. Transatlantic aviation is a major industry and even small flight time changes have major economic
and environmental implications. While our ability to optimise these flights for background wind variations at
day-to-day scales is excellent, at the longer timescales needed for sustainability planning and fuel cost hedging
these capabilities are more limited. Here, we quantify the association between four climate indices (the El Nifio-
Southern Oscillation, the North Atlantic Oscillation, the Quasi-Biennial Oscillation and solar irradiance) and
transatlantic flight times using thirty years of commercial flight data. This allows us to identify whether these
indices can be used to identify systematic flight time shifts. We find that ENSO and the NAO are associated
with statistically-significant changes in one-way flight times of up to 82.2 4= 3.5 min, and changes in round-trip
times of 4.8 £0.5 and 4.0 £ 0.8 min respectively, while the QBO and TSI have weaker but significant effects.
Together, these indices plus a linear trend explain up to 27 % of variation depending on season and direction,
and are associated with month-to-month fuel cost & CO, emission variations of up to 27MUSD & 120kT for
one-way trips and USD 5 million & 23 kT for round trips. We also show that westward, round-trip and non-
winter-eastward flight times have increased by several minutes per decade since the 1990s. Our results provide
the first observational quantitative basis for aviation fuel and carbon cost management at monthly and longer

timescales.

1 Introduction

Commercial flights in the transatlantic corridor between Eu-
rope and North America are a major component in the global
trade and travel network, with hundreds of individual flights
transiting the region every day. Due to the large number of
these flights and the significant expense of operating them in
both financial and climate terms, even small changes in tran-
sit times have very significant economic and environmental
implications (e.g. Kim et al., 2020; Lee et al., 2021; Wells
et al., 2021, 2022, 2023).

The winds through which a plane flies are a major factor in
flight times. In the Atlantic sector, the dominant wind pattern
is the northern midlatitude jet stream (hereafter the “jet”),
and accordingly modern flight planning uses forecasts of jet

location and speed to optimise flight times, particularly in
winter when the jet is strongest. Routes are optimised on the
basis of assimilative numerical weather prediction (NWP)
forecasts made at the start of a flying day, and due to the high
quality of modern NWP systems these flights now typically
operate with only a few percent of deviation from the perfect
route (Wells et al., 2021; Boucher et al., 2023).

At longer timescales, however, the accurate prediction of
flight-level winds remains highly challenging, with major
uncertainties and biases remaining in most models of the
upper troposphere and lower stratosphere (UTLS) at lead
times longer than a few days (e.g. Lawrence et al., 2022).
Such timescales are not important for day-to-day route op-
timisation, but predicting systematic flight time changes at
these long timescales is important for longer-term opera-
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tional choices and strategies such as fuel price hedging,
choosing whether to deploy a specific plane to one route ver-
sus another, and broader corporate sustainability planning.

Since numerical weather predictions of wind speed and
jet morphology at these timescales are challenging to pro-
duce, an alternative approach is to study climate processes
that have been shown to teleconnect with and drive the jet
and its surrounding winds, such as the El Nifio-Southern Os-
cillation (ENSO) or the stratospheric quasi-biennial oscilla-
tion (QBO) (e.g. Hall et al., 2014; Domeisen et al., 2019;
Anstey et al., 2021b; Kumar et al., 2022; Alizadeh, 2023).
While their effects on the jet are weaker and more uncertain
than those of day-to-day weather variations, the time taken
for them to influence the jet means that they can provide use-
ful information on statistically-likely shifts in wind speeds,
and hence travel times, with a large lead time. Similarly, the
North Atlantic Oscillation (NAO), a pressure pattern index
which is linked to the jet, has been shown to be predictable
at scales of a month or more (Strommen, 2020; Collingwood
etal., 2024) and thus can also act as a source of predictability,
while solar irradiance has been suggested by several studies
to play a role in Atlantic winds (e.g. Hall et al., 2014; Gray
et al., 2013) and is predictable at the decadal timescale.

Accordingly, we here quantify the association between
real measured transatlantic flight times obtained from air-
craft data and four climate system indices, i.e. (a) ENSO,
(b) the NAO, (c) the QBO, and (d) the 11-year solar out-
put cycle, together with (e) a linear trend and (f) a sinu-
soidal annual cycle. Our aircraft data are obtained from the
In-Service Aircraft for a Global Observing System (IAGOS)
program (Boulanger et al., 2019), which has operated mea-
surement equipment on commercial aircraft since 1994. Af-
ter quality control and regional subsetting our dataset con-
tains 16327 flights spread across 10835 d between August
1994 and March 2024, providing a long time series and al-
lowing us to study these the role of these four indices over
multiple full cycles. This provides a measurement-grounded
comparator to the previous model work of Kim et al. (2020),
who previously studied delays associated with the NAO and
ENSO for for wind-optimal routes derived from the ERA-
Interim reanalysis, and whose results we discuss in Sect. 7.

Section 2 describes the flight track and climate index data
we use and Sect. 3 our selection, standardisation and qual-
ity control procedures, including how we estimate round-trip
times based on pairs of closely-spaced flights. In Sect. 4 we
then assess the data at a broad level, including estimating 30-
year linear trends and the bulk differences between climate
index extrema. In Sect. 5 we apply multilinear regression
techniques to quantify relative travel times at the individual
flight level, and then use the results of this to estimate the cost
impacts of these changed to travel time in terms of additional
emissions of carbon dioxide and financial costs in Sect. 6.
Finally, we contextualise our results and draw conclusions in
Sects. 7 and 8.
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2 Data

2.1 1AGOS

We use data from TAGOS (Boulanger et al., 2019), which
fits instruments to commercial aircraft to measure UTLS
chemistry. In this study, we use only their metadata, specif-
ically the times, latitudes, and longitudes recorded by the
aircraft during each flight. We analyse all data available as
of 1 September 2024 in the period from 1 August 1994 to
30 March 2024. The full dataset contains 67 289 flights, of
which we analyse a subset of 16327 individual flights se-
lected as described in Sect. 3.1. Figure la shows the num-
ber of flights per month, made by a total of thirteen unique
aircraft. We also show “round trips”, which we define in
Sect. 3.3 below.

There are some key advantages to using this dataset. These
include (1) that the data are fully open-access' and hence our
approach can be easily reproduced and modified for the study
of other regions and processes, (2) that a multi-decadal time
series of flight data is available and is expected to extend into
the future, (3) that the data are traceable to specific aircraft
allowing for robust consistency checking and quantitive as-
sessment of their fuel use, and (4) that we have access to
colocated measurements of wind and chemistry from the air-
craft to support future investigations into related processes.

There are however some disadvantages, the most signifi-
cant of which is that we are unable to control for operational
choices affecting flight time, for example aircraft speeding
up or slowing down to meet a schedule. For the purposes of
this study we assume that such effects cancel over a suffi-
ciently long time series and varied set of routes and condi-
tions, but this is unlikely to be completely true. Furthermore,
it is critically important to note that, though well-controlled,
this dataset is small relative to the total number of flights
made on this route: when controlled for comparable flights
as outlined in Appendix E2 (discussed below), we estimate
that our sample represents approximately 0.43 % of the ac-
tual number of flights flown.

In terms of flight optimality, Boucher et al. (2023) used
recorded IAGOS tracks and ERAS reanalysis winds for the
period 2018-2019 to demonstrate that flight tracks in the IA-
GOS dataset were on average only around 1 % longer than
a computational optimum for transatlantic routes. To pro-
duce this estimate, while they used the actual trajectories
flown, they did not use the recorded flight times but instead
re-estimated these under assumptions of constant airspeed
(240 ms~!) at the mean cruising altitude level of the specific
flight, thus removing the impact of operational choices.

1Speciﬁcally, the data we use are licensed as CC-BY 4.0 at time
of writing, i.e. free for sharing and adaptation subject to attribution.
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Figure 1. (a) Number of flights per month in the dataset. Each row represents an individual plane, identified by tail number at far left, with
bubble sizes showing total flights by that plane each month, summed at right. The top dataset, labelled “round”, is the number of round trips
each month as defined in Sect. 3.3 (remaining panels) Time series of normalised indices used in our analyses. Date ticks indicate first day of
year, and the original full range of the data is indicated at the right-hand side of each panel, with units indicated at right-centre of each panel

where appropriate.

2.2 Climate Indices

We compare these flight metadata to six climate-system in-
dices, in order to quantify any relationship between the pro-
cesses these indices characterise and IAGOS flight times.
The indices are all defined as one-dimensional time series
with a single value for each day. They are:

— “ENSOQO”, the Nino3.4 index (Trenberth and Stepaniak,
2001) characterising the El Nifo-Southern Oscillation.
ENSO is well-known to have global effects on wind pat-
terns, and has been shown to be associated with grav-
ity wave variability over the North Atlantic in IAGOS
data (Wright and Banyard, 2020), and to impact upon
simulated trans-Pacific flight times estimated using re-
analysis wind fields (Kim et al., 2020). Large values are
defined as EI Nifio and small values as La Nifia.

- “NAQO”, the North Atlantic Oscillation (Hurrell et al.,
2003). The NAO is the dominant mode of surface-
level pressure variability in the North Atlantic, and a
positive NAO is associated with poleward shifting of

https://doi.org/10.5194/acp-25-18267-2025

the polar front jet. A positive NAO is also associated
with higher jet speed, but there is only a weak cor-
relation between jet latitude and jet speed themselves
(Woollings and Blackburn, 2012). The NAO is thus ex-
pected to directly and strongly affect flight times, as
both such mechanisms would have direct effects on the
wind speeds experienced by aircraft. It was also shown
to impact reanalysis-inferred transatlantic flight times in
the reanalysis-based study of Kim et al. (2020), who dis-
cuss in detail the physical mechanisms by which such
interactions occur. Large positive values are defined as
NAO+ and large negative values as NAO-.

“QBO”, representing the equatorial Quasi Biennial Os-
cillation. The QBO is the dominant source of interan-
nual variability in the tropical stratosphere, and acts on
North Atlantic jet speeds by confining planetary wave
activity to the tropics. We use a time series of monthly-
mean zonal-mean zonal wind speeds within &£ 5° of the
Equator at the 50 hPa level derived from ERAS reanal-

Atmos. Chem. Phys., 25, 18267-18290, 2025
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ysis output (Hersbach et al., 2020). Since we lag our
indices (discussed below) and the QBO descends in al-
titude in a regular temporal pattern, the choice of the
50hPa level should not strongly affect our results, as a
change in level would simply lead to a corresponding
change in our optimal-lag calculation. Large positive
values are defined as QBO-westerly and large negative
values as QBO-easterly.

— “TSI”, representing the total irradiance of the Sun as
received by the Earth (Coddington et al., 2015). Previ-
ous work suggests that solar-driven changes in upper-
stratospheric ozone can propagate downwards and mod-
ulate the stratospheric polar night jet (Kodera and
Kuroda, 2002), albeit at significant lead times (e.g. Gray
et al., 2013; Scaife et al., 2013), and thus may play a
role in flight times. Note that, as the input TSI data are
extremely noisy at the daily level and we expect any in-
fluence to be slow, we have removed a single large neg-
ative outlier in 2003 and smoothed the remaining data
using a 15d boxcar filter. Large values are defined as
solar maximum and small values as solar minimum.

— “Time”, a linear trend through the period studied. In
Sect. 4.1 we demonstrate that the dataset exhibits sig-
nificant linear trends. Consequently, we include this as
an index in our other analyses to regress out linear-trend
effects. This index may include some signal due to cli-
mate change, which we do not investigate separately.

— “Annual”, a sinusoid with a maximum of 1 on 1 January
and a minimum of —1 on 1 July. This acts as a simple
estimate of the seasonal cycle, and is only used in anal-
yses where we do not explicitly subdivide the data into
seasons.

For greater depth on the above, we refer the reader to Hall
et al. (2014), who discuss in detail the physical processes
these indices characterise and how they act on jet speeds in
the North Atlantic corridor.

Figure 1b—g show these indices over the period 1994-
2024. Each has been normalised to the range —1 to +1,
where —1 is the lowest value reached and +1 the largest; the
original range is shown at the right of each panel. All indices
except Time exhibit multiple complete cycles and, addition-
ally, all indices except TSI vary multiple times within the
lifetime of individual aircraft contributing to the dataset.

We do not expect the physical processes associated with
these indices to act instantaneously on winds and hence flight
times, and accordingly we lag the indices. To identify the
most appropriate lag for each index, Appendix A1l describes
a cross-correlation analysis carried out for lags of up to one
year. Based on these results, we lag as follows:

— NAO: 0d for westward-bound and eastward-bound
flights, and 1 d for round-trip flights

Atmos. Chem. Phys., 25, 18267—18290, 2025
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— ENSO: 11d westward, 0d eastward, 35 d round-trips

— QBO: 187d westward, 270d eastward, 190d round-
trips

— TSI: 362 d westward, 258 d eastward, 360 d round-trips

Lagging the coefficients in this way is a methodological
choice, and in the Supplement we include an analysis without
any lag applied, discussed in Sect. 5 below.

In Appendix A2 we quantify index independence statisti-
cally against three metrics, concluding that the combination
we use is sufficiently free of multicollinearity and autocorre-
lation. We also considered the following indices, but do not
use them in our study: (i) deseasonalised sea ice cover and
sea surface temperature, both of which exhibit large multi-
collinearity with other variables, (ii) wind speeds at 10 hPa
and 60° N, which act as a metric of polar vortex strength in
winter but otherwise often closely trace the annual cycle, and
(iii) the hypothesised Atlantic Multidecadal Oscillation, dis-
cussed in Appendix B.

Additionally, in Appendix C we consider and quantify the
effects of (i) the jet latitude index of Woollings et al. (2010)
and (ii) the associated wind speed at jet maximum. Adding
these two indices to our analysis leads to the combined
dataset passing two of our Appendix A2 statistical tests, but
brings the combination very close to the point where con-
cern would be warranted on our third test. Accordingly, we
describe our results with these two additional indices added
separately, allowing us to retain a higher degree of confidence
in our primary results.

3 Methods

3.1 Data Selection and Subsetting

IAGOS records data globally (see e.g. Fig. 2 of Wright and
Banyard, 2020). Accordingly, to investigate the North At-
lantic sector only, we must subset the flights.

We begin by identifying airports which are either the ori-
gin or destination of any IAGOS flight. We hand-classify
each airport as being in western Europe (EUR), eastern North
America (NA), or elsewhere, discarding the third set. We
then further filter by identifying all records originating in ei-
ther the NA or EUR airport list and travelling to the other,
again discarding all other flights, i.e. those internal to NA or
Eur.

For the remaining records, we discard data within 10km
of the origin and destination to remove delays due to takeoff
and landing; the sensitivity test used to select this value is dis-
cussed in Appendix D1. We then quality-control the data by
sequentially applying filters to remove flights with disconti-
nuities > 15 min (408 flights), > 10° of latitude (1 flight) and
> 10° of longitude (96 flights) respectively.

We next split the data into individual “routes”, defined as
flights from a specific departure airport to a specific arrival

https://doi.org/10.5194/acp-25-18267-2025
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Figure 2. (a-b) Maps of arrival and departure airports meeting our selection criteria in (a) Eastern North America and (b) Western Europe.
Three-letter identifying codes are shown geographically centred at the location of the airport; note that “EWR” and “JFK” (41°N, 71° W)
overlap closely. (c-1) Maps of paths taken by flights in our analysed subset of the data, in the (c—g) westward and (h-l) eastward direction, for
(c, h) the full dataset and seasons (d, i) DJF, (e, j) MAM, (f, k) JJA and (g, 1) SON. Values are shown as the number of flight-minutes recorded
in each 0.2° box by all flights in that direction and season. (m—p) maps of climatological (ERAS averaged over the period 1991-2020) zonal
winds at 250 hPa for each season. In panels (¢)—(p), overlaid blue and black lines indicate the median latitude of all flights in the dataset at
each longitude between 75 and 5° W, shown in black for westward flights and blue for eastward.

airport in one direction. Several routes have only a small
number of flights, and to prevent these from skewing our re-
sults we remove any routes with <10 flights; this choice is
sensitivity-tested in Appendix D2.

Figure 2a—b shows the 27 airports which remain after these
filters, identified by IATA codes. For full context, Supple-
ment Table S1 shows the number of flights between each
airport-pair; the most common routes each way are between
ATL and FRA, with 1139 ATL-to-FRA flights and 1132
FRA-to-ATL flights. We have separately tested all analyses
using only these two routes, and our results remain broadly
consistent but with larger statistical uncertainties, i.e. the
choice to composite all routes does not significantly affect
our results.

Figure 2c-1 show the distribution of paths taken, for both
the complete dataset and the four seasons DJF (boreal win-
ter), MAM (boreal spring), JJA (boreal summer) and SON

https://doi.org/10.5194/acp-25-18267-2025

(boreal autumn). The data have been subdivided into east-
ward and westward flights, then binned onto a one-second
scale and summed onto a 0.2° grid to give a total flight time
spent in each box* For context Fig. 2m—p shows seasonal-
mean 250 hPa ERAS zonal winds over the period 1991-2020,
with median flight traces in each direction overlaid.

Local maxima can be seen near individual airports such
as FRA, ATL and JFK, consistent with the large fraction
of flights using them. Away from airports, in general west-
ward flights traverse a wide range of latitudes whilst east-
ward flights have a narrower meridional distribution, and the
median path in every season is consistently further south and
nearer the jet centre for eastward flights. We see a fine mesh
of overlapping lines, representing the North Atlantic Organ-

ZNote that the area of each box varies as as the cosine of latitude,
and hence maps of (e.g.) flights per square kilometre would show
systematic differences from Fig. 2¢c-1.

Atmos. Chem. Phys., 25, 18267—18290, 2025
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ised Track System (NAT-OTS). The data are consistent with
aircraft taking advantage of high wind jet speeds in the east-
ward (i.e. downstream) direction and avoiding the jet cen-
tre in the westward (i.e. upstream) direction, in turn driven
by management of NAT-OTS using daily numerical weather
forecasts.

3.2 Travel Time Standardisation

The above preprocessing provides the actual time taken by
each flight. However, such data is hard to compare between
different airport-pairs due to the different distances involved.
We have considered two possible solutions to this problem
which allow standardisation while still retaining the broad
perspective on transatlantic aviation available from consider-
ing multiple airport-pairs.

One solution would be to remove all sections of a flight
outside of the central component, e.g. from 60-20° W. This
would remove travel time to inland airports, but not address
the problem of comparability. For example, flights from Eu-
rope to ORD (O’Hare International Airport, 42°N, 88° W)
flying great-circle routes closer to the pole will spent a
smaller proportion of their flight time within this range than
flights to ATL (34°N, 84° W).

Instead, we normalise flight times within each route, as
defined above. To do so, we compute the median travel time
for each route, then normalise each flight to this. To avoid
outliers, we remove any flight with a travel time < 85 % or
> 115 % of the route-median; in practice this only removes
1 flight. To aid interpretation, we then scale our results to the
median flight over all 16 327 flights, which is 509.92 min. To
do so, we multiply each normalised flight time by this me-
dian, then subtract the median value again to give a time de-
viation. We refer to this normalised deviation as the “delay”
of the flight relative to the overall median.

As an example of the “delay” calculation, consider a flight
from AAA to BBB which takes 550 min against a median
travel time from AAA to BBB of 500 min. We first normalise
the travel time to produce a relative time of 1.10, then scale
by the all-dataset median of 509.92 min to produce a notional
delay of 50.92 min, i.e. 10 % of the all-flights median time.
This delay of 50.92 min is the value used in our subsequent
analyses, rather than the true 50 min difference in flight time.

A possible side-effect of this approach is that the wide
range of latitudes experienced could confound our results due
to higher-latitude flights spending a larger fraction of flight
time in the stratosphere. To test this, we have performed cor-
relation analyses between flight delays and (a) the maximum
latitude reached by each flight and (b) the proportion of each
flight spent in the stratosphere, the latter using tropopause
heights computed from ERAS5 data following the method of
Reichler et al. (2003). For latitudes, Pearson linear corre-
lations with delay range between 0.06 and 0.08, while for
stratopause fractions they range between 0.07 and 0.08. This

Atmos. Chem. Phys., 25, 18267—18290, 2025
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relatively small correlations suggests that this issue is rela-
tively minor as a factor in our analysis.

3.3 Round-Trip Time

In some Sections we discuss “round-trip” delays, i.e. net
delays across a trip travelling across the Atlantic and back
again. Such round-trip-residual delays can arise due to dif-
ferences in routing or wind speeds in each direction, but still
arise even in the case of an identical route through steady
winds as described by Williams (2016). Characterising these
round-trip delays is useful for identifying fuel use and CO,
impacts of climate-process-delayed flights, since over a suf-
ficient time-average aircraft will tend to return to their home
base.

To estimate these, we generate a set of synthetic round
trips from one-way IAGOS records using the following pro-
cedure:

1. We first identify flights with a North American airport
of arrival. This choice is largely arbitrary, but is consis-
tent with most aircraft in our analysis being European-
registered.

2. For each such flight, we identify the European origin
airport.

3. We then find the temporally-closest flight in our record
flying back from the North American airport to the same
European origin and treat this pair of flights as a round-
trip, including computing a net delay across the two
legs.

We impose a one-day limit between arrival and departure
at the North American airport; in practice the vast majority
are separated by less than half a day. To maximise the number
of such round trips, we (a) permit negative time differences,
i.e. a “round-trip” could “return” before it “arrives”, and (b)
allow the same flight to contribute to multiple synthetic round
trips.

An important note when interpreting these round-trip
times is that, for a given synoptic state, the round-trip flight
time will always increase over a route-distance if there is a
non-zero background wind speed in either direction. Com-
pared to flying in still air a uniform background eastward
wind will always decrease the eastward flight time and in-
crease the westward flight time (and vice versa for a uniform
westward wind), but the total round-trip flight time will nev-
ertheless increase according to the relation

D D

= >2D (D
T u—Av

v+Av T v

T

where T is the total travel time, D the one-way distance trav-
elled, v the flight airspeed and Av the uniform change in
background wind speed, with the first term representing one
leg of the trip and the second term the other. While actual

https://doi.org/10.5194/acp-25-18267-2025
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route optimisation corrects for this to some degree the effect
usually cannot be fully eliminated, and is a factor in inter-
preting our results.

4 High-Level Analyses

4.1 Linear Trends

Figure 3 shows estimated linear trends separated by direc-
tion of travel and including round-trips as a third direction.
Significant caution is urged in interpreting the meaning un-
derlying these trends: while they could arise from physical
drivers such as climate change, the commercial nature of the
datasets means they could also arise due to (e.g.) adjustments
to improve fuel economy and manage congestion, legisla-
tive changes around compensation due for delays relative to
schedule (e.g. EC261 regulations), or more advanced opera-
tional weather modelling to e.g. avoid predicted turbulence
patches.

Data after August 2023 have been removed to ensure that
computed trends start and end on the same calendar month.
Linear trends have then been computed from monthly me-
dian data for each season individually and for the full dataset.
The magnitude of the linear trend, in units of minutes of de-
lay per decade, is overlaid in text at the bottom of each panel.

In both the westward and round-trip directions we see a
positive trend, ranging from 1.0 min per decade for westward
flights in JJA up to 5.6 min per decade for westward flights in
SON. Eastward trends are more mixed, with positive trends
of similar magnitude to those for the westward and round
trip time series in JJA and SON, but zero trend in MAM and
a moderate negative trend in DJF. The full-year trend is small
and positive.

4.2 Comparison of Extrema

We next consider measured delays for flights made when our
indices are at extreme maximal or minimal values. This acts
as a plausibility check on whether the indices are associated
with measurable flight-time signatures at all before we move
to more mathematically-derived analyses presented below.
Figure 4 shows the results of this assessment.

We first identify all flights in each season and flight direc-
tion, then associate them with daily index values. For each
index we then identify flights associated with the 5 % highest
and the 5 % lowest values of each index, in all cases apply-
ing the lags identified in Sect. A1l. We have tested this 5 %
cutoff value over the range 1 %-33 %, which results in nu-
merical changes consistent with our discussion below but no
major structural changes in the relative form or directionality
of our results.

We next use a kernel density estimation (KDE) approach
to assess our results, by computing a kernel density function
(KDF) for each distribution on a time delay scale from —60—
460 min at a spacing of one minute using a Gaussian kernel.
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Almost identical results can be produced using Epachnikov
or triangular kernels, while a simple probability distribution
function (PDF) applied to the raw data gives the same results
but requires wider time bins to reduce noise. For each index
in each direction, we show the high-index KDF in red, and
the low-index KDF in blue.

Finally, to determine statistical significance we carry out a
two-sample Kolmogorov-Smirnoff (K S) test on the underly-
ing data, shown at the top right of each panel marked “PK”.
Values < 0.001 are numerically truncated, as results for very
different distributions can be numerically very small. Panels
which are statistically significantly different at the 5 % level
have the overlap between the blue and red kernels shaded in
dark grey, and those not significant at this level in light grey.
A K S test is chosen to avoid the assumption that the data are
normally distributed; we also show 7-test results computed
on the same data marked as “PT”, and in no case do the two
tests disagree on whether a significance level falls below 5 %.

We first consider the annual cycle and the linear time trend.
For the annual cycle (Fig. 4a, g, m), the sinusoid used max-
imises on the 1 January and minimises on the 1 July (Fig. 1),
and hence this analysis compares midwinter flight times to
midsummer ones. We see large differences, with westward
flights (Fig. 4a, blue KDF) taking 17 min more and east-
ward flights 15min less time (Fig. 4a, red KDF) at mid-
summer than midwinter, both with a significant spread. Mid-
winter round-trips average 5 min longer than at midsummer
(Fig. 4g), but with a narrower distribution than for either in-
dividual direction.

As discussed in Sect. 4.1, the full dataset exhibits a small
linear trend. Our results here (Fig. 4e, k, q) are consistent
with that, with a difference of 5 min in median round-trip
delay between August 1994 and March 2024, agreeing well
with our estimated trend of 2 min/decade from the monthly-
median data used in Sect. 4.1 when allowing for seasonal
differences and the use of individual-flight data here. These
differences are statistically significant in all three directional
cases for both variables.

Considering next our climate system indices, we see large
differences between extreme NAO+ and NAO- conditions in
both directions (Fig. 4c, o), and smaller differences between
strong El Nifio and strong La Nifia conditions (Fig. 4b, n).
Round trips take slightly longer at maximum NAO+ than at
minimum NAO- and slightly longer at minimum La Nifia
than at maximum El Nifio (Fig. 4h, i), but the differences
are small. The small effect sizes here are to some degree a
product of compositing all seasons together for this analysis,
and later analyses below split by season (Sect. 5) show larger
effect sizes for ENSO in particular.

Finally, we consider the QBO and TSI, Fig. 44, f, j, L, p,
1. We see statistically-significant differences for eastward and
westward trips, but not for round trips. The differences in me-
dian delay between strong QBO-westerly and strong QBO-
easterly are comparable to those seen for ENSO and the an-
nual cycle for flights in the eastward direction, at around nine
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Figure 3. Linear trend analysis for flights in the (a) westward (b)
median delay for that month, with thin vertical grey lines showing

round-trip and (c) eastward directions. Black circles indicate monthly-
the range between the 18th and 82nd percentiles of the data, equivalent

to one standard deviation for normally-distributed data. Overlaid lines show linear trends in monthly medians for each season and for the

full dataset, with the full dataset trend shown in black, DJF in pink,

MAM in orange, JJA in brown and SON in green. The magnitude of the

linear trend, in minutes of delay per decade, is overlaid at the bottom of each panel, with both colour and order corresponding to the key at

the bottom of the figure.

minutes, but the westward difference is smaller. Since flights
typically travel near the jet centre when eastbound but not
when westbound (Fig. 2m—p), this may suggest a relation-
ship between the QBO and the speed of the jet-centre winds,
but an absence of such a relationship for wind speeds away
from the jet.

5 Regression Analysis of Flight Delays

Multilinear Regression

To characterise the relative impacts of the processes asso-
ciated with our indices on individual flights, Fig. 5 shows
the results of a multilinear regression analysis, subdivided
by direction and season. We remind the reader that an al-
ternate seven-index version of this analysis (i.e. the same
five as here, plus a jet latitude index and jet speed index) is
presented in Appendix C. The seven-index version exhibits
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marginally higher explanatory power than the five-index ver-
sion, but must be interpreted cautiously due to much higher
multicollinearity than the five-index version, and we do not
discuss it further in the main narrative.

Delay estimates have in each case been regressed against
the —1—+1 normalised indices shown in Fig. 1b—g and then
doubled; this means that the results represent the change in
flight time between the maximal and minimal value of the
index, e.g. between maximal NAO+ and minimal NAO-. The
choice to use the full range was made due to the asymmetry
of some indices used, particularly TSI where it is not mean-
ingful to define a central value in time (see Fig. 1g).

Since we use library code to compute the regressions it is
non-trivial to apply a K § test. As such, error bars represent
the standard error on the value; this is a parametric test which
assumes normality, but since our results in Sect. 4.2 using the
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Figure 4. Kernel density functions (KDFs) for the top (red) and bottom (blue) 5 % of flights by each index, with panels (c), (k), (m) annotated
to aid interpretation. KDFs are shown for flights in the (a—f) westwards and (m-r) eastwards directions and for (g-1) composite round trips.
Columns from left to right show results split on the basis of (a, g, m) Annual, (b, h, n) ENSO, (¢, i, 0) NAO, (d, j, p) QBO, (e, k, q) Time and
(£, 1, r) TSI indices. Overlap between the two KDFs are shown in dark grey if the difference between the two KDFs is statistically significant
at the 5 % level on a two-sample Kolmogorov-Smirnoff test and light grey otherwise, with the numeric K-S test result shown at top right
marked as “PK”. The results of a two-sampled 7-test are also shown, marked as “PT”. Triangle markers on the horizontal axis indicate the
median value in each subset of the data, using the same red/blue colour coding.

We first consider time. Consistent with Sect. 4.1 and 4.2,
for all seasons and directions we see increasing flight times>;

K S test were consistent with results from a parametric ¢-test
we do not expect this to affect our conclusions.

While we do not expect perfect quantitative agreement
between the results derived here and those presented in
Sect. 4.2 above due to (a) the inclusion of 10x as much
data spanning the full range of each index and (b) the cross-
linked nature of the analysis across indices, the results we
see using this approach agree with those seen above in terms
of direction and statistical significance with two exceptions,
specifically that the delays associations between (i) west-
wards flights time and TSI and (ii) eastward flight times and
the QBO are no longer statistically significant
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in the full dataset, this averages around 8.3 +0.8, 2.4 +£0.8
and 5.8 + 0.5 min for the westward, eastward and round-trip
directions respectively over the data record.

We next consider the NAO. Consistent with Sect. 4.2, this
has by far the largest effect. For the all-dataset case, peak
NAO+ is associated with a 43.9 4= 1.5 min increase in west-
ward and a 41.9 & 1.4 min decrease in eastward flight times
relative to minimum NAO-, netting out to a round-trip de-
lay of 4.0+£0.8 min?. In all three cases, the uncertainty is

3With one exception, JJA eastwards, which is not inconsistent
with zero to within error bars, but is also not statistically significant.
4The small deviation between the round-trip estimate and the
simple difference between eastward and westward trips here is (a)
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Figure 5. Delay regression coefficients computed over all flights in (a—c) our dataset, (d—f) DJF, (g-i) MAM, (j-1) JJA and (m-p) SON,
for flights in the (a, d, g, j, m) westward, (b, e, h, k, n) round-trip and (c, f, i, 1, p) eastward direction. Within each panel, rows shows
the regression coefficient estimated over all flights against the climate index marked at the end of the row, with bars to either side of the
symbol indicating the uncertainty on that coefficient. Coloured markers with bold outlines indicate estimates significant at the 5 % level, and
white markers with narrower outlines non-significant estimates. Coefficients are given as delays in minutes on a typical flight duration, with
negative values indicating earlier-than-average arrival. The adjusted R? of the fit combining all indices is indicated at the bottom right of
each panel as text. Horizontal axis ranges have been selected to optimise for visibility of all values, and accordingly some estimates for the
NAO fall off the edge of their panel; these are indicated by an arrow and numeric indicator at the end of the relevant row showing the central
value, but with the marker and error bars shown as if the estimate was centred at the edge of the panel.

small relative to signal size and the results are statistically
significant. There is also large seasonal variability in NAO-
associated changes, with absolute one-way effects maximis-
ing at an 82.2 +3.5min reduction in eastward DJF flight
times and minimising at a 21.3 & 2.2 min increase in west-
ward flight times in JJA. In seasonal subsets of the data how-
ever, the round trip effect is less than 5 min and not statis-
tically significant. This indicates that the large changes in
flight times associated with the NAO are strongly directional
and have only a small residual effect on round-trips. Since
our optimal lag for the NAO was found to be at or near zero
in all cases, this effect is effectively instantaneous.

within error bars and (b) not inconsistent with the data analysis ap-
proach, since not all one-way flights will contribute to a composite
round-trip.

Atmos. Chem. Phys., 25, 18267—18290, 2025

The next largest all-dataset effect is seen for ENSO, for
which we estimate that peak El Nifio is associated with
westward flights 11.8 £ 0.9 min longer and eastward flights
7.4 £ 0.9 min slower relative to minimum La Nifia, allowing
for the lags described above. Autumn and winter effects of
ENSO are small and to within standard error bounds consis-
tent with zero in all three directional cases, perhaps with the
exception of autumn round-trips, and the largest effects asso-
ciated with ENSO are instead seen in spring and summer.

A positive QBO index (i.e. strong QBO-westerly) is as-
sociated with small but significant flight time increases in
the westward directions at the all-dataset level and in SON,
for round-trips in all seasons except SON, and in the east-
wards direction in DJF. It is also associated with flight-time
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decreases in the eastward direction in SON, explaining the
zero association with round-trips in this season.

Finally, TSI effects are associated with only small and
non-significant changes for westward and round-trip flights
when considering the full dataset, but solar maximum is as-
sociated with a reduction in eastward flight times relative
to solar minimum of 2.7+ 1.1 min. At the seasonal level
the solar cycle is also associated with flight times reduc-
tions in the westwards direction of 7.5 2.3 min in DJF and
7.6 & 2.7 min in MAM, and increased flight times in the east-
ward direction in MAM of 6.3 & 2.5 min, with all other asso-
ciations falling below our chosen threshold of statistical sig-
nificance, i.e. 0.05 on a ¢-test.

The adjusted R? estimator suggests that our indices can
describe as much as a quarter of the total variance, max-
imising at 0.27 for eastward flights in DJF primarily due to
NAO+ being associated with > 80 min longer flights rela-
tive to NAO-. However, in some cases, particularly round-
trips, it can fall very low, explaining as little as 2 % of the
variance for DJF round-trips. A best-case value of 0.27 ini-
tially seems low relative to a perfect prediction value of 1, but
given the large number of other processes operating on flight
durations is arguable quite large and this difference is con-
sistent with both the nature of the climate system and with
our measurements being made by active piloted platforms
rather than passive atmospheric tracers. Climate-dynamical
processes at distant locations inherently have only indirect
effects on wind speeds, while routing decisions by pilots and
air traffic control can have large direct effects that are both
dependent on inherently limited forecast estimates of mean-
flow wind speeds far away from land and will also will be
made for a diverse range of other reasons.

6 Fuel and CO5 Cost Implications

We next estimate the fuel cost and CO, emission impli-
cations of our index-associated delay estimates relative to
index-median flights. For clarity of prose, we will refer to
both CO; and fuel-price implications as “costs” throughout.

We first estimate the fuel-use characteristics of each spe-
cific IAGOS aircraft (Appendix El) and scale them up to
represent US-Europe aviation as a whole using historical
flight volumes (Appendix E2). A large assumption here is
that these aircraft are typical for transatlantic flights; in prac-
tice, our dataset consists entirely of Airbus A340 and A330
aircraft in the range of 230-350 seats versus an average for
all flights included in our Appendix E2 calculations of 227
seats, so our final values may slightly overestimate the true
values for both fuel use and CO; production. However, the
magnitude of any under-or overestimate cannot be properly
quantified without more information on the relative fuel burn
characteristics of the other aircraft included in this scaling
factor.
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To convert these values to total cost estimates, we first as-
sociate each flight with the index values for the day it took
place, then use the regression-derived estimates of effect size
from Sect. 5 to scale from the full range presented there to
a flight-specific index-associated delay for each flight and,
by averaging between the two legs, each round-trip. We then
scale this flight-specific delay by the fuel use of the spe-
cific aircraft which made that flight, and then by the total
number of transatlantic flights in that direction using passen-
ger aircraft with > 150 seats on routes of > 4000km (Ap-
pendix E2). Finally, we convert this to cost estimates in CO»
and in US dollars based on this fuel use. We also compute a
summed estimate of the total associated with all indices for
each flight. We remind the reader that the proportion of total
flights in our dataset is small relative to total flight volume
(around 0.4 %), and thus that these scaling factors carry sig-
nificant weight when interpreting these results.

In the below discussion (i.e. Sects. 6.1-8) we use constant
May 2023 flight volumes and fuel prices, allowing us to focus
on climate process effects. May is chosen as the approximate
midpoint in annual flight volumes, and 2023 as the last May
in our dataset. For this specific month, these values were (a)
a total of 199 flights meeting the above criteria each way per
day, and (b) a price of USD 2.21 per gallon of fuel. For his-
torical context on real costs incurred since 1994, Supplement
Figs. S1 and S2 reproduce Fig. 7 at real prevailing prices and
monthly-mean flight volumes for CO, and financial costs re-
spectively, but we do not discuss these figures further. Cli-
mate index values are always taken from the real calendar
day in both the main and Supplement figures.

For brevity of analysis, we use our all-flights regression es-
timates, i.e. those in Fig. Sa—c, and do not consider individual
seasonal estimates. Note that, as discussed in Sect. 2.2, our
climate indices are normalised to a range of —1 to 1 rather
than to a mean of zero. As a result of this choice, our cost esti-
mates are not zero-centred, since the mean of a given index is
usually offset slightly from the midpoint of the range. Since
our conversion from regression-estimated delays per flight to
a total monthly cost involves several significant assumptions,
we also do not propagate our uncertainty analysis through
this section to avoid implying certainty in these bounds.

6.1 Cost Distributions

Figure 6 shows the results of this analysis against the cost in
CO» (top axis) and in monetary terms (bottom axis) at con-
stant May 2023 flight volumes and fuel prices. Due to the
larger data volume here compared to Sect. 4.2, we use sim-
ple PDFs rather than KDFs, defined using 100 bins evenly
distributed across the full range of each dataset and with no
smoothing. Since the relative spread of costs per plane is
narrow, our estimates in this section near-directly scale as
a simple linear combination of the regression estimates from
Sect. 5 and the time-distribution of the index cycles visu-
alised in Fig. 1, but presenting them in this combined form
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Figure 6. Estimated costs of climate-index-associated delays in (top axes) kilotonnes of CO, (bottom axes) millions of US dollars, using
constant May 2023 flight volumes and fuel prices. Data are computed using the round-trip regression estimates shown in Fig. 5, and are shown
for (a—e) westward flights (f-j) round-trip flights and (k-o0) eastward flights, computed separately for delays associated (b, g, 1) ENSO, (c,
h, m) the NAO, (d, i, n) the QBO, (e, j, 0) TSI and (a, f, k) the instantaneous sum of these for each flight. Each panel shows the relative
distribution of costs for each individual flight (coloured violins), as well as the distribution median (thick black line, by definition zero in
all cases), 18th—82nd percentile range (box, equivalent to the one standard deviation range for normally-distributed data), and 2.5th-97.5th
percentile range (whiskers, equivalent to two standard deviations). Red stars indicate that the regressors used were found to be statistically

significant in Sect. 5.

allows for a direct visual interpretation of the temporal spread
of cost implications.

We consider first the NAO (Fig. 6¢, h, m). We see a well-
centred PDF with slight positive skew for westward/round-
trip flights and negative skew for eastward flights. The distri-
bution is broad: for one-way flights, the 2.5th and 97.5th per-
centiles have a range > 100kT of CO, or USD 20 million per
month. The more central 18 %—82 % (1 standard deviation)
spread of estimates is associated with changes in monthly
flight costs of up to 40kT CO; or USD 10 million. The over-
all distribution when summed over all indices (Fig. 6a, f, k)
is very similar in form and magnitude to that for the domi-
nant NAO index, consistent with this being by far the largest
individual cost driver.

We next consider ENSO, Fig. 6b, g, 1. Unlike the NAO, the
distribution is quite spiky, with notable secondary maxima at
large positive and negative costs. A skew is also present in
both directional subsets, with the distribution extending to
much larger additional cost extrema for westward flights and
larger cost reduction extrema for eastward flights, and local
minima are present near the centre of the distribution.

Results associated with the QBO and TSI must be inter-
preted more cautiously, since the regression estimates used
to compute them were not statistically significant for round-
trips and only reached the chosen significance threshold for
the QBO-westward TSI-eastward associations. Bearing this
in mind, for the QBO and round-trip pair we see a very strong
skew, with the spread going to very large negative values (i.e.
reduced flight costs) and to only relatively small increased
costs. Individual directional estimates are consistent with this
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in both directions. TSI estimates show similar skew for sim-
ilar reasons. In all QBO and TSI cases, peak costs are small
due to the very small regression coefficients estimated for the
effects associated with these indices in Sect. 5.

6.2 Cost Patterns

While the distribution of each index over a long time-average
is inherently zero-centred, in combination they can differ
very significantly from the median for extended periods
while also self-cancelling over relatively short periods. This
means that meaingful long-term patterns can be seen at the
bulk level. To quantify these bulk variations, Fig. 7 shows
monthly estimated CO, and fuel costs at May 2023 values
for (a) westward (b) round-trip (c) eastward journeys over
the study period. As mentioned above, versions of this fig-
ure at real-date flight volumes and fuel prices are shown in
Figs. S1 and S2.

These estimates have been produced by first computing
individual delay-cost estimates for each flight, then averaging
to produce a monthly mean. This two-step process should
reduce any effect of flights clumping within a given month,
while still implicitly weighting our analysis to the actual mix
of aircraft used. Each figure is shown as a stacked histogram
to the total cost over all indices, with indices stacked in order
of the speed at which they vary moving away from the central
axis and with a black line overlaid to show net monthly costs
over all four indices.
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Figure 7. Estimated monthly costs due to climate-index-associated delays from June 1994 to March 2024, in (left axis) kilotonnes of CO»
and (right axis) millions of US dollars for (a) westwards (b) round-trip (c) eastwards flights at fixed May 2023 costs and flight volumes. Data
are shown as stacked histograms, i.e. the total effect due to a specific index is the difference between that and the next index in the direction
of the zero axis. Indices have been ordered for this process such that the slowest-varying (TSI) is closest to the axis and the fastest-varying
(NAO) is furthest from the axis. A thin black line shows the net cost summed over all indices for each month.

6.2.1 Westward and Eastward Flights

As seen above, westward and eastward estimates (Fig. 7a, c)
are dominated by the fast-varying NAO, the rapid cycle of
which lead to frequent switches between it being associated
with positive and negative costs. Peak values are lower than
those seen in Sect. 6.1 due to the use of monthly-mean values
which smooth out the rapidly-varying NAO signal.

The second largest one-directional contributions are as-
sociated with ENSO, which varies more slowly and thus in
many periods (e.g. 1999, 2007, 2015) is associated with cost
changes comparable to the NAO in magnitude. QBO- and
TSI-associated contributions are much smaller, but provide a
slowly-varying baseline which is potentially of practical use
as it possesses significant long-timescale predicability, and in
particular TSI plays a small but meaningful role in eastward
flight costs.

6.2.2 Round Trips

For round-trips, the extremely large variations in the NAO
largely cancel out, although it can still play a large role in
specific periods, for example during 2007, 2011, 2015 and
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2017. Due to this cancellation, the dominant factor in round-
trip costs is instead ENSO. While the effect size associated
with ENSO for any specific flight is roughly equivalent to the
NAO (Fig. 5b), the slower temporal cycle of ENSO means
that its effects do not cancel at the monthly level, and accord-
ingly most of the large long-term changes we see in costs
over are associated with ENSO, both increases (e.g. 1998-
2000, 2020-2022) and decreases (e.g. 1997-1998, 2015-
2016).

Similarly, the QBO plays a much larger role for round
trips. It is regularly associated with as much as 10 %-20 %
of the change in monthly costs, and in cases where the NAO
and ENSO are both weak (e.g. 2023) can act with a similar
magnitude as the usually-dominant ENSO-associated signal.
It is important to note though that our estimate of delay for
the QBO — round trip association was not found to be sta-
tistically significant (Fig. 5b), and this must be interpreted
accordingly. Finally, TSI (again caveated) is associated with
only a negligible role in monthly round-trip costs.

These results have important implications for practi-
cal management of flight costs at seasonal to multi-year
timescales, which we discuss in Sect. 8.
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7 Discussion

7.1  Previous Work

In general interactions of this type have not been widely stud-
ied, but some reports do exist. The two most relevant studies
are those of Kim et al. (2020) and Karnauskas et al. (2015).
Kim et al. (2020) used ERA-Interim winds from peak NAO+
and El Nifio years to simulate 810 wind-optimal London-
New York and, separately, mainland US-Hawai’i (hereafter
“East Pacific”) routes under extreme NAO and ENSO con-
ditions respectively; Karnauskas et al. (2015), meanwhile,
used total (i.e. takeoff to landing) flight times obtained from
a dataset of 250 000 flights over the East Pacific corridor be-
tween 1995 and 2013

In the transatlantic corridor, our results agree with Kim
et al. (2020) closely: specifically, they found that NAO+ in-
creased transatlantic round-trip flight time by 4.2-9.4 min
relative to NAO-, consistent within uncertainty range with
our estimate of 4.0 + 0.8 min. Given the very different nature
of the two studies, this is encouraging.

To compare results for the East Pacific corridor, we have
also analysed the IAGOS dataset for flights between Hon-
olulu and all airports in the latitude range 30-70°N and
longitude range 130-115°E, i.e. the US and Canadian west
coast. Figure S4a—r and s reproduce Figs. 4 and 1a respec-
tively for these data, with the modification that we include
the top and bottom 20 % of data for Fig. S4a-r due to lower
flight volumes.

However, the results obtained (a round-trip decrease in
travel times of ~ 7 min at El Nifio vs La Nifia) disagree with
both previous studies. Specifically, Kim et al. (2020) esti-
mated an increase of 5-9-8.7 min, while Karnauskas et al.
(2015) did not estimate a direct value in the same terms
but instead demonstrated that round-trip times along this
route increased by 0.57 4 0.11 min per ms~! of wind speed
change at the 300 hPa level, with the 300 hPa winds in turn
positively correlated with ENSO, i.e. an agreement of sign
with Kim et al. (2020).

A likely reason for this discrepancy is the much lower vol-
ume of data on this route relative to the transatlantic route
in the IAGOS dataset. After quality filtering, this corridor
contains only 432 round-trip flights, all from the same in-
dividual plane and centred in three temporal windows be-
tween late 2017 and early 2024 (Fig. S4s). This is both a very
small number for our analysis, and is also predominantly dis-
tributed within ENSO+ periods (Fig. 1¢). This strongly sug-
gests that we cannot fully trust this result. Consistent with
this, a linear regression analysis (not shown) produces results
which are both not significantly significant and not inconsis-
tent with the results presented by Kim et al. (2020) to within
error bars.
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7.2 Limitations of our Analysis

Our results inherently have several limitations. The most im-
portant of these are (1) the lagging schema chosen, (2) the
large fraction of uncontrolled variability, (3) uneven data
coverage, (4) the assumption of index independence, and (5)
total data volume.

1. The applied lagging is determined by a cross-correlation
analysis at the full-dataset level. These choice was made
to constrain the variable space, but could affect our re-
sults. We investigate this in Appendix A3, concluding
that this choice, while important, is not a critically-
important factor in our analysis.

2. Due to the many operational factors involved in com-
mercial aviation, these four climate processes describe
only a fraction of total variability. We quantify this in
Sect. 2.2, but due to the imbalance between explained
effect size and the full variance space it is likely that
(a) some errors leak through to our results and (b) the
quantification itself likely contains some error.

3. On average our dataset contains slightly over 1.5 flights
per day for the period studied, but this is not even in time
(Fig. 1a), and 50 % of the flights included are before
February 2004, i.e. half of the data describes one third
of the time. This is partly due to a very large pandemic-
driven reduction in flights in 2020-2021 when only two
of the 13 aircraft in the dataset continued to fly, and
coverage does return from 2022 onwards. This should
not significantly affect our results for the annual cycle,
NAO, ENSO and time due to the many cycles the early
period covers, but could in particular impact our results
for slow-varying TSI

4. Our regression analysis assumes that the flight time re-
sponse to each index of the winds controlling flight
times is linear and independent, i.e. the indices do
not interact. While we quantified this effect in Ap-
pendix A2, many studies (e.g Salby and Callaghan,
2000; Hansen et al., 2016; Scaife et al., 2024) have
shown that the climate processes these indices de-
scribe can and do project on each other over both long
and short timescales via various teleconnecting mecha-
nisms.

5. Finally, the data volume used is lower than in some
other studies; as discussed above, our data represent
only ~ 0.4 % of total flight volumes. However, the na-
ture of our dataset gives us countervailing benefits. Kar-
nauskas et al. (2015) used 250 000 flight durations, but
as the dataset only consisted of arrival and departure
times were unable to apply flight-level quality-control
filters and sensitivity tests. Tenenbaum et al. (2022),
meanwhile, used 3.2 x10° data points (compared to a
total of ~ 0.1 x 10° in this study) across an unspecified
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number of flights to assess jet speed changes in the At-
lantic, but over a shorter period (2002-2020) and along
a single route (JFK-LHR).

8 Conclusions and Implications

8.1 Conclusions

In this study, we have used 16327 real IAGOS flight traces
collected over the period 1994-2024 to quantify the change
in transatlantic flight times associated with several key cli-
mate processes, specifically the El Nifio-Southern Oscillation
(ENSO), the North Atlantic Oscillation (NAO), the Quasi-
Biennial Oscillation (QBO), the 11-year Solar cycle (TSI)
and a linear time trend.
We conclude that:

1. ENSO and the NAO are associated with strong and sig-
nificant changes in flight times. At the full-dataset level,
peak NAO+ is associated with an 43.9+ 1.5min de-
crease in eastward flight times and 41.7 & 1.4 min in-
crease in westward flight times relative to minimum
NAO-, increasing when considering winter only to an
82.2 £ 3.5 min decrease eastward and 69.9 £ 3.6 min in-
crease westward. At the full-dataset level maximum EI
Nifio is associated with an 11.8 £0.9 min decrease in
westward flight times and a 7.4 + 0.9 min increase in
eastward flight times relative to minimum La Nifia.

2. TSI and the QBO are associated with smaller but still
meaningful and significant effects. High TSI is associ-
ated with decreased flight times for westward flights in
winter and spring and increased flight times for east-
ward flights in spring, while strong QBO-westerly is as-
sociated with slower eastward flights in winter and au-
tumn and with faster westward flights in autumn. All of
these values are in the order of 5-10 min range across
the full cycle of the climate process.

3. Strong residual effects are seen for round-trips even de-
spite significant cancellation. At the full-dataset level,
maximum El Nifio is significantly associated with a
4.8 £0.5 min decrease in round-trip flight times rela-
tive to minimum La Nifia and maximum NAO+ with
a 4.0 = 0.8 increase relative to minimum NAO-

4. Depending on season and flight direction, these four cli-
mate indices plus a linear time trend since 1994 can de-
scribe up a third of the observed flight time variability.
Explanatory power is lowest for round-trip flight times
(£5%) and highest for flights in winter (21 % west-
ward, 27 % eastward) and spring (15 % westward, 16 %
eastward). The majority of this signal is driven by the
NAO.

5. Flight times have been getting consistently longer for
westward and round-trip flights, by between 1 and
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5.6 min per decade depending on season with the largest
increases measured in autumn. This is also true for sum-
mer and autumn flights in the eastward direction. This
slowing effect could be due to physical drivers such as
climate change but could also be an operational choice,
and we do not distinguish between these causes.

8.2 Cost-Planning Implications

Our results have potentially significant implications: despite
explaining < 5 % of the total round-trip variance in measured
flight times (althoguh up to 27 % of one-way flight times), we
show that for a single aviation corridor the combined impact
of these climate processes is associated with a USD27M
or 120kT-CO; range in monthly one-way flight costs, and
a USD5M or 23 kT-CO; range for round-trip flights. Since
our results connect these estimates directly to simple, specific
and widely-measurable climate system metrics, our results
hence provide the quantitive evidence needed to facilitate ef-
fective hedging of fuel prices (reducing costs) and/or better
time planning for non-essential flights (reducing CO, pro-
duction). This planning benefit arises both from the direct lag
effects we have measured and from the inherent predictabil-
ity of the Earth system processes they describe.

Considering first the direct impacts once the climate pro-
cess state is measured, our estimates of lag-lead time (Ap-
pendix Al) suggest that the time taken for flight times to be
affected can be quite large. While for the NAO effects ap-
pear to be near-instant, we estimate that the lead time be-
tween measurement and impact for ENSO is ~ 0-30d, for
the QBO is 6-9 months, and for TSI is of order a year. Thus,
even absent the ability to predict these processes, their direct
lead time is sufficient to allow significant planning.

In practice however, the available lead time is likely signif-
icantly longer than these estimates, due to the baseline pre-
dictability of these processes and broader scientific interest
in enhancing this predictability:

— While TSI only weakly affects costs, it can be predicted
to some degree a decade or more in advance.

— More usefully the QBO, which is associated with round-
trip costs of several million USD or tens of millions of
KT of CO, yr~! (Fig. 7b) is a highly-regular and slowly-
evolving process which can be predicted many years in
advance (Scaife et al., 2014), albeit with some unusual
hiccups in the last decade (Osprey et al., 2016; Anstey
etal., 2021a).

— For ENSO, recent work suggests that it may be pre-
dictable at multi-year scales (Zhao et al., 2024), and due
to its broad influence on many other climate processes
extending this is a major target of active research.

— Finally, the NAO is harder to predict than the above
processes and also acts more quickly, but is currently
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predictable at timescales of 1-3 months and due to its
broader impacts on northern hemisphere weather is a
perennial and major research target (e.g. Collingwood
et al., 2024, and references therein).

Therefore, our results provide the information needed to
support flight cost planning at increasingly long lead times
as our ability to predict climate system variability continues
to advance.

Appendix A: Climate Index Stability

A1 Index Lag

To identify the appropriate lag for each index, we have car-
ried out a cross-correlation analysis of the full flight times
dataset with each index for lags of up to one year, shown in
Fig. Al.

Each panel shows the cross-correlation between daily val-
ues of each index and daily-median flight times in each di-
rection of travel, with each index tested independently. For
each comparison, we identify the maximum absolute cross-
correlation value as the optimal lag for the dataset and use
this in our analyses; the choice of absolute values is to per-
mit strong anticorrelations. We do not test or lag the annual
cycle or linear time trend.

For the NAO, the optimal lag in both directions is zero,
consistent with the local process this index describes. The
best-fit for round trips peaks at one day, but this is not incon-
sistent since our definition of a round-trip allows for up to a
day of difference between the two legs. The magnitude of the
peak NAO cross-correlation is larger than for our other in-
dices for eastwards and westwards flights, reaching absolute
values > 0.3 compared to maximal absolute values < 0.2 for
all other indices, and is positive for westward and negative
for eastward flights, netting out to a small positive value for
round-trips.

ENSO (blue lines) is also consistent for the three direc-
tions and also shows a fast response, with a twelve-day lead
for westward flights, 35d lead for round-trips, and zero-
day lead for eastward flights. This is perhaps an unexpect-
edly small lag in all three cases given the large distance to
the ENSO source region, and differs for example from the
relationship between gravity waves over this region in IA-
GOS data and ENSO studied by Wright and Banyard (2020),
which peaked at 7 months. However, we do see a secondary
maximum in the absolute ENSO cross-correlation results for
both eastward and westward flights at around 200-250d lead
time consistent with this earlier work. Maximal values are
again reversed between the eastward and westward directions
of flight.

Results for the QBO (yellow lines) suggest long lead times
are involved, with maximal correlations obtained at lags of
199d for westward flights, 196d for round-trips, and 276 d
for eastward flights. The relatively large deviation for east-
ward flights is consistent with previous studies.
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Finally, TSI (red lines) exhibits the strongest correlation
at very large lags, with best-fit values found at 362, 355 and
258 d for the westward, round-trip and eastward directions
respectively. We note that tests at longer lags (omitted for
brevity) suggest that this relationship may maximise at even
longer periods; however, for consistency of analysis and to
maximise available data when shifting the input time series,
we limit our analysis to one year here.

A2 Index Independence

In Sect. 5, we use multilinear regression techniques, and ac-
cordingly must ensure that the indices are sufficiently in-
dependent. Building on our previous work in Noble et al.
(2024), we do this in three ways:

1. To assess multicollinearity, we estimate the Variance In-
flation Factor (VIF, e.g. Montgomery et al., 2012). Over
the period studied, the VIFs of each of our indices rela-
tive to the others all lie between 1.0073—-1.0418, where
1 is the minimum possible value, 5 a typical bench-
mark for concern and over 10 indicates significant mul-
ticollinearity.

2. To assess autocorrelation, we apply the statistical test
described by Durbin and Watson (1950). For this test,
output values are between 0 and 4, where 2 indicates
no autocorrelation and values within the range 1.5-2.5
are considered acceptable. Analysis of combined east-
ward and westward flights gives an estimate of 2.0017,
of westward-only flights 1.7271 and for eastward flights
1.7067, all well within the safe range for assuming our
inputs are not lag-autocorrelated.

3. Finally, and distinctly from Noble et al. (2024), we
apply the multiple collinearity diagnostics of Bels-
ley et al. (1980) to the indices. These tests return
near-dependency values between 0.0012-0.6412; for
this test, values of ~5-10 represent weak cross-
dependencies and above 10 high.

Based on these tests, we conclude that these indices should
be sufficiently independent for multilinear regression use.

A3 Index Lag Effects

The lagging we apply to our indices is entirely determined
via a simple cross-correlation analysis (Appendix Al) and
applied uniformly at the full-dataset level. This choice was
made to constrain the variable space, but could affect our re-
sults. To assess the impact of this choice, Fig. S3 shows the
same analysis as that shown in Fig. 5 but with zero lag ap-
plied to all datasets. We see that:

— NAO and Time results are near-identical as zero lag was
applied in the main analysis. Small numerical differ-
ences are seen due to internal interactions in the regres-
sion analysis.
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Figure A1. Results of a cross-correlation analysis of daily-mean flight times against four climate indices for (a) westwards (b) round-trip (c)
eastwards flights. In each case, the maximum absolute value of the cross-correlation, which we take as the optimal lag for analysis for that

dataset, is indicated by a circular marker.

— ENSO results are very similar in both form and magni-
tude. This is reassuring given the major role of ENSO
in driving our cost estimates, and is conceptually con-
sistent with the relatively small lag used (0-35 d) com-
bined with the relatively long timescales of ENSO
changes (Fig. 1c.)

— Results for the QBO are usually reversed in sign but of
broadly similar magnitude. This may be an effect of the
steadily-descending morphology form of the QBO and
the applied lags being in the range of 22 %—32 % of the
typical QBO cycle.

— Finally, TSI results differ in magnitude to Fig. 5 and are
much less likely to reach statistical significance, but in
most cases agree in sign.

Thus, we conclude that the effects of the lagging process,
while important, do not dominate our results.

Appendix B: The Atlantic Multidecadal Oscillation

Tenenbaum et al. (2022) suggested a role for the theorised
Atlantic Multidecadal Oscillation (AMO) in transatlantic
flight times, although they were unable to draw quantitative
conclusions due to the end date of their data relative to AMO
variability. However, recent work by Mann et al. (2021) sug-
gests that the signature ascribed to the AMO may be an arte-
fact of pre-industrial volcanic activity rather than a true met-
ric of climate system variability. Accordingly, we do not in-
clude the AMO in our primary analyses.

However, to address the question raised by Tenenbaum
et al. (2022), we have also repeated our regression analy-
ses including the AMO index as described by Enfield et al.
(2001). The results of this analysis, not shown, suggest a
moderate effect size slightly larger than ENSO, increasing
round-trip flight times by approximately six minutes, but
with much stronger effects on eastward flights (~ 20 min
with statistical significance) than westward (~ 5min but
without statistical significance). Total adjusted R? marginally
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increases for round-trips in SON (from 0.03 to 0.05) and east-
ward trips in JJA and SON (by 0.01 in both cases), but in
all other cases the adjusted R? is unchanged to two decimal
places.

Appendix C: Jet Latitude and Jet Speed

Jet latitude and jet speed are potentially very significant
drivers of flight speeds, and inclusion of these properties is
therefore important to consider. A commonly-used set of in-
dices describing these two properties are those introduced by
Woollings et al. (2010), who used ten-day-smoothed data to
identify the peak latitude and speed at that latitude of the jet
when zonally averaged over the region 60-0° W.

Accordingly, we have computed and applied these indices
to our analyses. Unfortunately, due to their close physical
relationship with the NAO, their inclusion significantly in-
creases the VIF of the data combination used (from a max-
imum of 1.0418 with the four “main” indices used in this
study to a maximum of 4.211 is jet latitude and jet speed
are added), and also slightly increases the maximal Durbin-
Watson and Belsley indices (from 2.001 to 2.002 and from
0.641 to 0.924 respectively). While the Durbin-Watson and
Belsley values are well within the standard range considered
safe, the new VIF is potentially a flag for concern, and ac-
cordingly including these indices in the primary study could
cause issues with the multilinear regression analyses.

However, as the VIF is borderline-risky rather than defi-
nitely a risk, it is useful to show the results obtained if these
additional indices are included in the regression, hence leav-
ing the choice of whether to accept their inclusion or not to
the reader. Accordingly, Fig. C1 reproduces Fig. 5 but with
the inclusion of these two jet indices.
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Figure C1. Delay regression coefficients computed over all flights in (a—c) our dataset, (d—f) DJF, (g-i) MAM, (j-1) JJA and (m—p) SON, for
flights in the (a, d, g, j, m) westward, (b, e, h, k, n) round-trip and (c, f, i, 1, p) eastward direction, with the inclusion of jet latitude (“JetLat”)
and jet speed (“JetSpeed”) indices derived following the method of Woollings et al. (2010). Within each panel, rows shows the regression
coefficient estimated over all flights against the climate index marked at the end of the row, with bars to either side of the symbol indicating
the uncertainty on that coefficient. Coloured markers with bold outlines indicate estimates significant at the 5 % level, and white markers
with narrower outlines non-significant estimates. Coefficients are given as delays in minutes on a typical flight duration, with negative values
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indicating earlier-than-average arrival. The adjusted R2 of the fit combining all indices is indicated at the bottom right of each panel as text.

Horizontal axis ranges have been selected to optimise for visibility of all values, and accordingly some estimates for the NAO fall off the
edge of their panel; these are indicated by an arrow and numeric indicator at the end of the relevant row showing the central value, but with

the marker and error bars shown as if the estimate was centred at the edge of the panel.

Relative to the original results, we see small increases
in R? for westward flights in MAM, eastward flights in
DJF, MAM and the all-flights composite, and round-trips in
MAM, with no decreases seen in any subset. The jet indices
both have a statistically-significant relationship with the data
for eastward flights in DJF and for westward and round-trip
flights in MAM, while jet latitude (but not speed) also does
for westward flights in SON and jet speed (but not latitude)
does for eastward fights in JJA. In the periods when they
are statistically significantly associated, the relationshops are
usually of intermediate strength: for all cases except west-
eard flights in SON they have the same sign and a smaller
magnitude than the result for the NAO, while for westward
flights in SON they reduce flight times by about ten minutes
but with a wide uncertainty range.
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Appendix D: IAGOS Sensitivity Testing

D1 Airport Exclusion Radius

Aircraft near an airport can take quite varied routes depend-
ing on local conditions, and this may affect our results. How-
ever, it is also plausible for this to have no effect, as the re-
maining flight time could be adapted to compensate for ex-
perienced and/or expected delays. To assess this effect, we
carried out a sensitivity test by excluding data within a given
radius of the arrival or departure airport, which we refer to as
the “airport exclusion radius” (AER).

The AER was varied systematically over the range 0—
1000 km, and the adjusted data passed through our standard
analysis chain to produce normalised flight time estimates.
For each AER, we computed the variance of the remaining
normalised flight times, taking 10 000 bootstrapped estimates
of this variance as an estimate of uncertainty. Figure Dla
shows the results of this analysis.

When the AER is very low (< 1 km, i.e. the left side of the
figure), we see extreme variations in estimated flight times,
with both a large variance across the dataset and an extremely
wide confidence interval on the variance, both indicating
very noisy data. At AERs > 50 km, meanwhile, we also see
increasing variance and decreasing confidence. However, in
the range between 0.5-30km, the variance in flight time is
low with high confidence, indicative of a more stable dataset.
On this basis, we set our AER to 10 km.

D2 Minimum Flights Per Route

Since our analysis normalises all flight durations to the route-
median, it may be sensitive to the cutoff value chosen for the
minimum number of flights required to include a given route.
To take an extreme case, a route with a single flight will by
definition have no delay, pulling our overall result towards
the median.

To assess the impact of this choice, we have systematically
varied the minimum number of flights over the range 0-50,
assessing our results in the same way as the above AER test-
ing. These results are shown in Fig. D1b, and show our anal-
yses are almost completely insensitive to the value chosen,
presumably due to the dominance of frequently-flown routes
on the overall dataset. We arbitrarily choose a value of 10,
primarily to restrict the set of included airports to a easily-
interpretable number of cases in Table S1 and Fig. 2a, b.

D3 Modal Altitude Validity

In our analysis of the relationship between flight altitude and
climate index values, we use the modal 200 m band within
which each flight track was recorded as flying and assume
this adequately characterises the altitude of the flight as a
whole.

To contextualise this assumption, Fig. D1c shows the pro-
portion of time for each flight spent in the modal altitude bin.
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This is represented as a histogram with 1% bin size (pink
shading, left axis) and as a line plot (solid black line, right
axis) showing the proportion of flights which spend this frac-
tion or more of their flight time in the modal altitude bin.

Overlaid on the line plot are three vertical dashed lines
representing, in order from left to right, the 25th, 50th and
75th percentiles of the data. From left to right, these dashed
lines show that (41 %, 51 %, 65 %) of flights spend at least
(75 %, 50 %, 25 %) of their duration outside their modal alti-
tude bin. The central value tells us that approximately half of
all flights spend half their flight time or more in their modal
height bin, while the two other values tell us that a quarter of
flights spend 65 % or more of their time in their modal bin,
but that another quarter of flights spend at most 41 % of time
in the modal bin.

41 % seems a reasonable proportion to support the as-
sumption that the modal altitude characterises the flight du-
ration well, since it still implies almost half of the flight
duration being spent at a single altitude, which is likely to
be enough time for the physical processes our climate in-
dices describe to act upon the plane. However, the histogram
does show some very low values, with five percent of flights
spending less than a third of their duration at modal altitude.
Thus, while the modal altitude assumption adequately char-
acterises a large fraction of the data, it should be treated with
some caution.

D4 Correlations between Tropopause and Aircraft
Altitude

A possible source of the apparent dependence of aircraft al-
titude on the climate indices we consider could be due to air-
craft adjusting their height in response to tropopause height
changes also driven by the climate indices. To test this, we
have computed an estimate of the tropopause height at ev-
ery point in every IAGOS flight using ERAS temperature
data, following the method of Reichler et al. (2003). ERAS
data are assumed to be suitable for this purpose as a sepa-
rate assessment (omitted for brevity) comparing ERAS5 winds
to IAGOS-measured winds shows correlations > 0.95 for al-
most all flights. This is expected, and is consistent with the
assimilation of the aircraft data into ERAS.

For every flight, we use these estimates to compute a Pear-
son linear correlation coefficient between tropopause height
and flight altitude over the middle third of each flight. The re-
sults of this assessment are shown as a histogram in Fig. D1d.
The distribution of measured correlations peaks strongly at
zero with only small wings at high correlations and anticorre-
lations, consistent with a lack of strong relationship between
flight altitude and tropopause altitude in the IAGOS dataset.

Atmos. Chem. Phys., 25, 18267—18290, 2025
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Figure D1. Results of the sensitivity tests for (a) airport exclusion radius, with sample radii on the horizontal axis, (b) minimum flights
per route, with the minimum number of flights on the horizontal axis, (¢) fractions of each flight at the modal altitude, with fraction on the
horizontal axis, and (d) computed Pearson correlation between tropopause height and flight altitude, with correlation on the horizontal axis.
In (a) and (b), the vertical axis shows the variance of the remaining dataset, with the central variance estimate plotted as a solid line and
bootstrapped confidence intervals on this variance plotted as shading and dotted lines. Filled black dots indicate sampling points where values
were computed. In (a), due to the use of a logarithmic horizontal axis, the estimated variance and confidence range for an airport exclusion
radius of 0 km has been plotted at a value of 0.1 km, with gridlines removed between these value and the first true value of 0.5 km to highlight

this distinction. In (c), the black curve shows the cumulative density function of the data, inverted to maximise at zero flight fraction.

Appendix E: Cost Scaling Factors

E1 CO» and Fuel Price Calculations

In Sect. 6, we calculate the extra CO, emitted and financial
costs incurred due to measured delays. These calculations are
carried out for the specific aircraft and flights included in our
dataset, identified using aircraft tail numbers.

We first identify the model of each plane via the crowd-
sourced data available at Planespotter.net (2024), and using
this information obtain the maximum take-off weight, max-
imum zero-fuel weight, typical passenger load range and
maximum fuel weight for each model (Airbus, 2024).

Using these weights and the midpoint passenger load value
for each model, we then use the theoretical approach de-
scribed by Burzlaff (2017a) (as implemented by the spread-
sheet of Burzlaff, 2017b) to estimate fuel use per kilometre
at the midpoint of a transatlantic cruise, which we take to
represent an average across the cruise phase of the flight.

Atmos. Chem. Phys., 25, 18267—18290, 2025

We assume a per-passenger net weight including luggage
of 95kg, an aircraft speed of 250ms~!, and a flight dis-
tance of 7500 km. The flight speed was estimated by calcu-
lating the average speed over the middle third of each flight
(249 +3ms~!, with the uncertainty representing a range of
one standard deviation), and the flight distance as the length
of the modal route travelled in our dataset, i.e. FRA to ATL.
This calculation produces fuel use estimates in the range of
109-208 L per flight-minute depending on the specific air-
craft model.

To compute additional CO;, emissions, we use a scaling
factor of 3.15kg-CO, per kg of jet fuel (European Envi-
ronment Agency, 2023; US Energy Administration, 2024a).
This gives estimates of additional CO; emissions in the range
281-537kg of CO, per additional flight-minute depending
on the specific model.

Separately, to compute fuel costs we use a monthly-mean
time series of Gulf Coast Kerosene-Type Jet Fuel Spot Prices

https://doi.org/10.5194/acp-25-18267-2025
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Figure E1. Estimated number of seats per flight by aircraft (a) with
more than 150 seats per plane on each monthly-summed route in
the full US Bureau of Transport Statistics (2024) dataset and (b) in
our dataset.

since 1991 (US Energy Administration, 2024b). In practice
airlines will hedge their fuel costs, and hence this is an ap-
proximation. By calculating the speed of each flight and us-
ing the price per minute for each plane as computed above,
this allows us to directly estimate the additional fuel price in
US dollars for a specific aircraft on a specific day due to the
effects of the climate processes our indices characterise.

E2 Total Flight Estimates

In Sect. 6, we estimate the total impact of these climate in-
dices over all flights. To do so, we use the total number of
transatlantic flights as recorded by US Bureau of Transport
Statistics (2024). Specifically, we use monthly data for jet
aircraft (aircraft groups 6-8) which primarily carry passen-
gers (aircraft configuration 1), have at least 150 seats on av-
erage for each flight along the route, and travel along a route
of at least 4000 km.

The BTS dataset includes all international flight segments
originating from or arriving into the United States, but does
not include data for flights between Canada and Europe. Due
to the global nature of the dataset some geographic filtering
is required to be useful for our purposes, and accordingly
we restrict the data to all flights with an origin/destination in
the contiguous United States (World Area Codes 10-99) and
a corresponding destination/origin in Europe (World Area
Codes 900-999).

On the North American side this is a poor match for the
study region used in other sections of this study, as it includes
many regions we do not study in the western United States
but does not include our Canadian destinations. While these
two errors will compensate to some degree, the results should
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nevertheless be taken as an approximation rather than an ab-
solute value.

Finally, to assess how typical these aircraft are for this
route, we have computed the number of seats per plane on
each route considered in this analysis. Figure E1 shows a
histogram of these results; we see a distribution skewed to
relatively small aircraft, but with a mean of 227 seats per
plane. This suggests that our IAGOS aircraft, with capacities
of order 230-370, are larger than average.

Code and data availability. IAGOS data are available from the
IAGOS Data Portal https://doi.org/10.25326/20 (Boulanger et al.,
2019). All climate indices used are either publicly available (NAO,
TSI, ENSO) or can be computed directly from publicly-available
data (QBO, Annual, Time); their source or computation method is
described at first mention in the text. All analysis and plotting code
are available in their form as at time of final journal acceptance
as the v1.0 release at https://doi.org/10.5281/zenodo.17908777
(Wright, 2025).
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