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ABSTRACT

Ensembles provide a wealth of information to aid forecasters in their day-to-day operations, but with increasing ensemble size
and complexity, there is rarely time to fully interrogate their outputs. Clustering ensemble members into distinct scenarios
based on the co-location of hazardous weather features has previously shown promise when applied to global ensemble outputs.
However, it is currently unclear whether further value can be gained when applying clustering to convection-permitting ensem-
ble (CPE) outputs. This study compares precipitation clusters between the operational MOGREPS-G driving ensemble and the
nested MOGREPS-UK CPE run at the (UK) Met Office during summer 2023. When applied over the UK domain, CPE clustering
does not provide clear value compared to global ensemble clustering. Instead, clusters become increasingly similar with leadtime,
strongly indicating that CPE clusters are most sensitive to the synoptic forcing common between the two ensembles and that
the presence of convective-scale detail has little influence. However, when focussed on a region impacted by hazardous convec-
tion, CPE clustering identified distinct precipitation scenarios and provided improved probabilistic value compared to driving-
ensemble clustering. Finally, by comparing clusters with radar observations, it is demonstrated that the fraction of members
supporting a particular scenario is a reliable quantitative prediction of the probability that the given scenario will be the most
accurate. We recommend that global ensemble clustering is sufficient over larger domains, while CPE clustering is most useful
when applied at regional scales.

1 | Introduction outputs. While some benefits can be provided using common

aggregation methods like ensemble means, these smoothed

Ensembles are commonly used to quantify forecast uncertainty
by running repeated simulations with different initial condi-
tions and model parameters (e.g., Palmer 2019; Zhou et al. 2022;
Inverarity et al. 2023). In theory, each member of a well-tuned
ensemble can be interpreted as an equally-likely realisation of
the upcoming weather that could be inspected without further
processing. But with the strict deadlines imposed on forecasters
and the common production of additional convection-permitting
ensemble (CPE) data sets, forecasters rarely have the time to
perform these individual member examinations (Young and
Grahame 2024; Pagano et al. 2024). These restrictions motivate
the need for methods that can intelligently summarise forecast

fields represent unphysical outcomes that can mask important
spatial variability. It is therefore desirable to produce methods
that can extract sets of unmodified members that represent the
distinct forecast scenarios contained within the ensemble. While
these methods have been previously trialled on global ensemble
outputs (Atger 1999; Brill et al. 2015; Boykin 2022; Lamberson
et al. 2023), only a few studies have examined the utility of these
methods with CPEs (Brankovi¢ et al. 2008; Johnson, Wang,
Kong, and Xue 2011), and none have performed a systematic
comparison between the two ensemble types. Here, we perform
such a comparison for precipitation forecasts using the opera-
tional ensemble from the (UK) Met Office.
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In the early days of limited-area model design, clustering meth-
ods were explored as a way of selecting driving members that
could provide the most spread for running a reduced number
of computationally expensive simulations (Molteni et al. 2001;
Marsigli et al. 2001). These trials showed that the probability
density function (pdf) of the high-resolution forecasts driven
by cluster-informed representative members was a faithful
recreation of the pdf from the driving ensemble. More recent
studies have further confirmed the spread benefits when repre-
sentative members are selected using clustering techniques over
random subsampling (Nuissier et al. 2012; Weidle et al. 2013;
Bouttier and Raynaud 2018; Serafin et al. 2019), such that this
method has been used for driving the COSMO-LEPS (Montani
etal. 2011), ALADIN-LAEF (Weidle et al. 2013) and HARMON-
EPS (Frogner et al. 2019) CPEs. It is noted, however, that these
spread benefits typically only manifest when clustering is ap-
plied after leadtimes of approximately 48h (termed T+48),
when driving ensemble pdfs are more likely to be multimodal.

Clustering methods are also used for the objective identification
of weather patterns at the medium range (Fereday et al. 2008;
Ferranti and Corti 2011). Here, climatological sets of mean
sea-level pressure or geopotential height regimes are produced
based on the occurrence of those regimes over multi-decadal
timescales. Each regime represents a distinct circulation pattern
and weather type. New forecasts are analysed using the same
decomposition and assigned to the closest matching regime, pro-
viding a broad overview of the upcoming weather and its his-
torical occurrence. These methods have been very successful at
categorising and communicating synoptic-scale uncertainty out
to multiple weeks, with separate schemes in use covering Europe
at the European Centre for Medium-Range Weather Forecasts
(ECMWEF, Ferranti and Corti 2011; Ferranti et al. 2015) and the
UK Met Office (UKMO, Neal et al. 2016, 2024), as well as over
North America (Lee et al. 2023; Lee and Messori 2024).

Until recently, regime-based clustering was too broad to classify
differences between individual features within high-resolution
forecasts, limiting its usefulness for short leadtimes. Machine
learning methods can now efficiently and accurately categorise
regimes in CPEs, and can effectively reduce the dimensionality of
their skewed precipitation distributions in a way that other statis-
tical methods struggle with (Mounier et al. 2025). Other work has
focused on applying clustering techniques in a more dynamic way,
whereby groups of members are found directly from the ensemble
and do not need to be compared to predetermined climatological
clusters. Case study analysis has shown promise by successfully
identifying distinct forecast scenarios when applied to limited
areas from global ensemble outputs (Brill et al. 2015; Boykin 2022;
Lamberson et al. 2023). Cluster verification has been more mixed
however, as the largest clusters have been found to be both more
skilful (Lamberson et al. 2023) and less skilful (Brill et al. 2015)
than the ensemble mean. It is likely that the performance of any
clustering method depends strongly on the modality of the ensem-
ble pdf. For instance, attempting to classify a Gaussian distribu-
tion (as would be anticipated from the ensemble at early leadtimes)
into multiple sets will likely yield weakly defined clusters that are
ambiguous and of limited use (Atger 1999). It will likely be more
instructive to perform clustering after the pdf has deviated signifi-
cantly from Gaussianity, which may be more common in sum-
mertime convective cases (e.g., Hohenegger and Schar 2007; Lean

et al. 2008). These pdf transitions have been well demonstrated in
recent work analysing sampling uncertainties in large ensembles
(Craig et al. 2022; Tempest et al. 2023, 2024). Therefore, one of the
important aspects to consider concerns the timing of this pdf tran-
sition: is there any use applying clustering to CPEs, especially in
the short term? Or, does the CPE pdf maintain Gaussianity until
the lateral boundary conditions become dominant, after which
the ensemble is likely to follow a similar trajectory to the global
ensemble providing the boundary information (e.g., Gebhardt
et al. 2011; Kiihnlein et al. 2014; Zhang et al. 2023).

The results from a few existing studies can shed some light on this
question. Brankovié et al. (2008) compared clusters between a CPE
and its driving ensemble to assess the added value from running
ensembles at the convective scale. They found large differences
between the ensemble clusterings: only a third of driving ensem-
ble and CPE clusters possessed common representative members,
and only half of the CPE clusters were closest to the expected driv-
ing ensemble cluster. Additionally, (Johnson, Wang, Kong, and
Xue 2011; Johnson, Wang, Xue, and Kong 2011) developed clus-
tering techniques using object tracking and neighbourhood-based
smoothing that account for the double-penalty problem com-
monly experienced when verifying high-resolution precipitation
fields (Gilleland et al. 2009). Neighbourhood techniques provided
more appropriate clusters than those that used raw model outputs.
Finally, Boykin (2022) showed that clustering using a distance
metric that directly incorporated neighbourhood smoothing could
identify distinct frontal development scenarios and provide value
to operational forecasters. The method used by Boykin (2022) is
particularly useful since it is a purely spatial method and can be
applied to any input field regardless of heterogeneity, while also
not relying on separate object-tracking algorithms to compute
displacements.

In this study, we build upon the feature-based clustering work
of Boykin (2022) to explore the potential benefits of applying
clustering to CPEs. Of all the parameters that CPEs represent
more accurately than global ensembles, precipitation forecasts
benefit the most from the increase in resolution due to the ex-
plicit representation of convection (e.g., Hanley et al. 2011; Clark
et al. 2016; Woodhams et al. 2018; Cafaro et al. 2019). As such,
we focus on analysing cluster differences that emerge when ap-
plied to precipitation accumulations, and emphasise that the
methods used here classify by spatial similarity, not intensity.
We investigate the potential benefits of CPE clustering by an-
swering three research questions. First, do the bulk cluster sta-
tistics (cluster sizes, medoids, cluster memberships) demonstrate
differences between convection-permitting and driving ensem-
bles? Second, are clusters produced by the CPE more reliable
than those produced by the global ensemble? Lastly, does CPE
clustering provide better guidance in specific cases? Given the
expected dependence of cluster quality on ensemble modality,
it is likely that the answers to these questions will display some
sensitivity to leadtime and regime.

The rest of the manuscript is organised as follows. Section 2
describes the ensembles and clustering methods used in the
study. Additional analysis presented in the first section of the
Supporting Information compares different spatial methods
for estimating distances between members in each ensemble.
Then, Section 3 compares statistics between the cluster sets
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generated by the two ensembles. Section 4 then assesses clus-
ter accuracy and reliability for both sets of clusters. Section 5
discusses the performance of clustering for a case of hazard-
ous convection, and Section 6 summarises the main findings
and recommendations.

2 | Methods

In Section 2.1, the models and trial period used in this study
are described. Then, in Section 2.2, the feature-based clustering
procedure is described.

2.1 | MOGREPS and Trial Period

For this study, we use data from the Met Office Global and
Regional Ensemble Prediction System (MOGREPS): an op-
erational ensemble configuration run at the (UK) Met Office
comprised of a global ensemble, MOGREPS-G and a nested en-
semble run over the UK, MOGREPS-UK.

MOGREPS-G has a grid spacing of approximately 20km in
the midlatitudes, with 70 hybrid height vertical levels and a
parametrization scheme to represent convection. It has initial-
isation cycles every 6h at 00Z, 06Z, 12Z and 18Z, producing
17 perturbed members plus a control member from a global
analysis, with each perturbed member separately initialised
using a hybrid 4D ensemble variational data assimilation sys-
tem (Inverarity et al. 2023). MOGREPS-G runs out to 8days
and outputs three-hourly precipitation accumulations, and so
we use 3h as the accumulation window for both ensembles
throughout this work.

MOGREPS-UK is an 18-member lagged ensemble with 2.2km
grid spacing that runs out to 5days (Hagelin et al. 2017).
MOGREPS-UK has initialisation cycles every hour producing
three new members that are combined with the 15 members
from the previous five cycles to produce the full time-lagged
18-member set (Porson et al. 2020). For brevity and convenience,
when referring to MOGREPS-UK leadtimes, we will ignore the
different initialisation times between members and instead only
quote the leadtime of the members from the most recent ini-
tialisation. This lagged setup allows each hourly three-member
set to be recentered around the latest convective-scale analysis,
with perturbations and boundary conditions provided by corre-
sponding MOGREPS-G members.

We use operational ensembles in this study since the cluster-
ing tool is designed to facilitate forecast guidance production.
Each ensemble is clustered on its native grid since we aim to
understand the potential value provided by the inclusion of
convective-scale detail. However, with any operational ensem-
ble system, there are production delays between running the
driving ensemble and using these outputs to drive the nested
ensemble. In other words, the driving and nested ensemble
forecasts that share a common initialisation time do not share
common boundary conditions and/or perturbations. To properly
compare clustering outputs between the two ensembles, consis-
tent forcings must be used between the ensembles. Therefore,
we use a ‘member-aligned’ comparison setup which offsets the

initialisation times between the ensembles to ensure the same
sets of members are being compared between both ensembles.
In the MOGREPS system, the MOGREPS-UK forecast that in-
cludes the same members as the driving ensemble is initialised
10h after the MOGREPS-G forecast (Porson et al. 2020; Gainford
et al. 2024). So, a MOGREPS-G forecast initialised at 00 Z on
a given day will be compared with the lagged MOGREPS-UK
forecast with the most recent members initialised at 10 Z on
that same day. By construction, each member is used exactly
once. However, it is also important that the same events are
being compared in each cluster set. Therefore, the clusters for
a given MOGREPS-G forecast are compared to the clusters of
a MOGREPS-UK forecast initialised 10h later and with 10h
shorter leadtimes (see Figure 2 for further details).

We apply clustering to operational forecasts run from June to
August 2023. This period included a greater frequency of con-
vective activity compared to climatology (UKMO 2023), which
provided a large sample of events that have the potential to pro-
duce broad differences between the two ensembles. The start of
June 2023 was largely fine and dry due to a persistent block over
the United Kingdom. A switch to more unsettled conditions oc-
curred around the middle of June, with frequent thundery ac-
tivity recorded. July 2023 was one of the wettest on record, with
a predominantly westerly, mobile flow bringing a succession
of weather systems from the Atlantic. August 2023 was more
mixed than June and July, with wet periods interspersed with
more settled conditions.

2.2 | Clustering Procedure

The clustering workflow uses K-Medoids clustering with a
distance metric that quantifies the average spatial displace-
ment between features in different ensemble members. These
methods have been integrated into an experimental tool run
at the Met Office and are largely based on those developed in
Boykin (2022), however, two important differences have been
implemented:

» The clustering window is now a user choice or free parame-
ter, rather than defining it diagnostically,

» Clustering is now applied to all leadtimes within the clus-
tering window, rather than to each leadtime separately.

Additionally, here, we use the Precipitation Smoothing Distance
rather than the Fractions Skill Score Displacement to estimate
spatial displacement, since this has been shown to provide more
accurate estimates in idealised and real-world tests (Skok 2022).
This is described further in Section 2.2.2.

An example of the steps involved in the clustering workflow is
depicted in Figure 1 and described in the following subsections.

2.2.1 | Steps1and 2: Leadtime Window Selection
and Feature Identification

First, a spatial field (e.g., gridded precipitation data), region
and clustering window are chosen. The spatial field can in
principle be any meteorological parameter: here we choose
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Step 1: Choose Parameter  Step 2: Identify Features  Step 3: Calculate Distance Step 4: Average Distances  Step 5: Apply K-Medoids
and Clustering Window Using Threshold Between Members Across Leadtimes to Find Clusters

T+12-24h T+12-24h

¢ T+12-15h (&

T+18-21h

Member
Member

Member

Member

[ eee—|

0.00 0.25 1.00 4.00 16.0064.00 Feature 50 100 150 200 250 50 100 150 200 250 50 100 150 200 250
3-Hourly Precipitation (mm) Distance (km) Distance (km) Distance (km)
FIGURE 1 | Schematic showing clustering workflow. Step 1 shows the choice of parameter used in this work and the first clustering window
mentioned in Figure 2. Step 2 shows the identification of features using a threshold. Step 3 shows the production of distance matrices between each
member at each leadtime. Step 4 averages these distance matrices across each leadtime, before being used in K-Medoids clustering in Step 5 (which
shows members reordered by their assigned clusters, where yellow borders denote clusters and black dots denote medoids). Each step is explained
further in the text.

Invalid for Member-Aligned

Comparisons
il
RS
L]

~

| !
:
Sl
w~I

0 3 6 9 12 15
Member-Aligned Offset
T T

21 24 27 30 33 36
MOGREPS-G Leadtime (hours)

T
0 2 5

—T1 - T T 1
1 14 17 20 23 26
MOGREPS-UK Leadtime (hours)

FIGURE 2 | Leadtime window structure and comparison between ensembles accounting for 10h member-aligned leadtime offset. Clustering is

applied over each leadtime window to produce a set of consistent clusters valid for that window.

three-hourly precipitation accumulations. We cluster over
the MOGREPS-UK domain and extract this region from the
MOGREPS-G fields. For the clustering windows, Figure 2
shows an overview of the leadtime window structure used
in this work. We use a smaller 12h leadtime window rather
than the 48h window used by (Boykin 2022) since we wish
to cluster on timescales similar to those of convective storms.
As mentioned in Section 2.1, we use member-aligned com-
parisons between the ensembles to ensure that a common set
of members is available for clustering. This alignment choice
imposes a leadtime offset between the windows, as demon-
strated by the inclusion of multiple axes in the figure. Thus,
window 1 of MOGREPS-G will always be compared to win-
dow 1 of MOGREPS-UK, but the MOGREPS-UK window will
use a 10 h earlier leadtime range.

Spatial fields at each leadtime are then converted to a bi-
nary feature field by setting values above and below a chosen
threshold to 1 and 0, respectively. Clustering on the feature
field ensures that distances in the next step are calculated
purely based on spatial displacements and do not consider in-
tensities. The threshold used can either be an absolute value
or a centile value. We use a centile value since this accounts
for coverage bias between members and is the recommended
approach for neighbourhood-based evaluation (Roberts and
Lean 2008; Mittermaier 2021). We choose a 90th percentile
for use throughout this work since initial sensitivity tests
showed the clustering produced more consistent results with
more populated feature fields. For context, the 90th centile
corresponds to 0.74 mm/3 h on average for MOGREPS-UK and
0.72mm/3h on average for MOGREPS-G. In an operational
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setting, this choice of centile may not result in clusters that are
focused on the areas of hazardous weather, and we would gen-
erally recommend a larger value be used provided it produced
sufficient feature coverage.

2.2.2 | Steps 3 and 4: Member Distance Calculation

Once features have been identified, a matrix of member-member
distances is constructed at each leadtime and then averaged
across those leadtimes. We use the Precipitation Smoothing
Distance (PSD) to quantify member-member distances, which
has been shown to estimate displacements more accurately
compared to other spatial distance metrics (Skok 2022). The
PSD operates first by normalising each input field, A, B, (here,
the thresholded three-hourly accumulation) by the area average
to remove biases. Then, the similarity between input fields is
assessed using the Precipitation Smoothing Score, PSS, calcu-
lated as:

Nx Ny
2
PSS, (A,B)=1-— A — Bl 1
(A4, B) QN.N, i; j=21| @ ~ B @

where Q is the fraction of non-overlapping points between input
fields, N, N, are the number of grid points in x and y direc-
tions, and r is a smoothing radius. For the initial calculation,
no smoothing is applied and r = 0. However, if the PSS does not
exceed a score of 0.5, the input fields are smoothed using circu-
lar kernels of successively larger radii until the score condition
is reached. Additionally, for comparisons at scales larger than
the gridscale (i.e., r > 1), overlapping points between each input
field are removed in A, and B, since these can lead to severe
underestimations (Skok and Roberts 2018). The radius at which
the PSS exceeds 0.5, Fpgs- 5> is then used to calculate PSD as:

PSD,,, = 0.808 - Q - Fpssz35- @

Tests presented in the first section of the Supporting Information
demonstrate that the estimated distances between MOGREPS-G
members are much larger than those for MOGREPS-UK mem-
bers, and that this bias occurs for all smoothing-based displace-
ment metrics. This bias is likely reflective of the additional
convective-scale detail in MOGREPS-UK, since the floor for
feature distances is smaller than for the coarser global ensemble.
These distance biases may contribute to clustering differences in
subsequent results.

2.2.3 | Step 5: K-Medoids Clustering

For the final clustering step, the leadtime-averaged distance
matrix is grouped using K-medoids clustering. K-medoids is a
partitional clustering method that determines clusters by first
finding a set of k distinct central medoid members, where k is
the desired number of clusters chosen by the user. We impose a
maximum of 4 clusters, since this number was found to explain
approximately 95% of the explained variance within the ensem-
ble (Brankovi¢ et al. 2008; Serafin et al. 2019). The medoids are
found by iterating over all possible combinations of members as
trial medoids. Each other member is then assigned to the closest

trial medoid to create a set of trial clusters. The set of trial clus-
ters that minimises the distance between each member and its
medoid is chosen as the optimal set. Since the distance matrices
are small in our case (18 X18), each search process is exhaus-
tive and finds the global minimum, giving the greatest likeli-
hood that each medoid provides a distinct forecast scenario.
Compared to other clustering techniques such as K-means, K-
medoids has a distinct advantage that the central point is itself
a physical solution, and can therefore be considered a suitable
representation of all members within the cluster.

Occasionally, some members may have empty feature fields at a
particular leadtime (e.g., no precipitation exceeding the thresh-
old value at any point) which requires special consideration. In
such cases, we assign a distance of 0km between two members
that both do not have features, since they have identical fields.
We also assert that it is impossible to estimate a physical dis-
tance between members with and without features at a given
leadtime, and therefore treat such distances as undefined so
they do not contribute to the leadtime-averaged value. If the
distance is undefined across all leadtimes in the 12h window,
the leadtime average is then undefined. For the clustering step,
any undefined leadtime-averaged distances are replaced by an
arbitrarily large value of 9999km so that all members without
features are separated into an isolated cluster. For context, unde-
fined values occur at least once in 7.9% of MOGREPS-G cluster
windows, and at least once in 1.8% of MOGREPS-UK windows.

An example of the clustering outputs is shown in Figures 10, 11
and 12.

3 | Cluster Similarity

To understand the similarity between MOGREPS-UK and
MOGREPS-G clusters, the following three subsections present
findings comparing trends in the size distributions, medoids and
cluster memberships from the two ensembles.

3.1 | Cluster Sizes

Inspecting the cluster size distributions produced by each en-
semble highlights the degree of heterogeneity within those
members. For instance, a set of clusters in which each cluster
contains a similar number of members can be interpreted as the
forecast providing more diverse outcomes, since each forecast
scenario has support from multiple members. Conversely, clus-
ters with large disparities in size usually indicate that one solu-
tion is more strongly preferred than the others.

Figure 3 shows the average cluster sizes across the trial period
at different leadtimes. Four clusters are enforced in this anal-
ysis, but the trends are broadly similar with fewer clusters.
The clearest differences between cluster sizes occur during
the first leadtime window, with the largest MOGREPS-UK
cluster containing approximately two more members on av-
erage than the largest MOGREPS-G cluster. Consequently,
the other three MOGREPS-UK clusters at this leadtime win-
dow contain slightly fewer members than MOGREPS-G.
The difference in cluster sizes between the two ensembles
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diminishes with increasing leadtime and the sizes become
largely equivalent by the sixth leadtime window (T +42-54h
in MOGREPS-G). Clusters typically remain at a consistent
size for all subsequent leadtimes, with eight, five, three and
two members.

These distributions indicate that MOGREPS-UK members
are initially slightly more homogenous than MOGREPS-G
members. This difference is not caused by the leadtime offset
used in the member-aligned comparison setup; it is also pres-
ent when leadtime consistency is enforced between the two
ensembles. This finding is somewhat counter-intuitive given
the time-lagged construction of the MOGREPS-UK ensem-
ble, which promotes larger spread compared to MOGREPS-G
during early periods (Porson et al. 2020). Instead, it is likely
that this trend emerges from a combination of two fac-
tors. Firstly, ensemble pdfs are typically unimodal at these
early leadtimes, and the medoid associated with the largest

MOGREPS- UK

Cluster Size
=
o

O N B O 0

cluster is often the most central member within the Gaussian.
Secondly, there is a substantial reduction in the member dis-
placements when evaluation is performed on finer grids, as
discussed in the first section of the Supporting Information.
These displacement biases, combined with the modality ar-
gument, favour the production of more homogenous mem-
bers in MOGREPS-UK, since each member is evaluated as
being closer to the Gaussian medoid. This behaviour also
explains the transition to more consistent cluster sizes from
T +42-54h, as more distinct ensemble modes are likely to de-
velop after this period.

Interrogating the behaviour of the clustering through the lens of
ensemble modality can also provide insight into the frequency
of singleton clusters observed across the data sets. Figure 4a
shows the frequency that at least one cluster is produced con-
taining only a single member: the medoid. Likewise, Figure 4b
shows the frequency that at least two singleton clusters are

MOGREPS-G
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FIGURE3 | Histogram of average MOGREPS-UK and MOGREPS-G cluster sizes for k = 4.
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FIGURE4 | Frequency with which (a) 1 singleton cluster, (b) 2 singleton clusters and (c) 3 singleton clusters occur in MOGREPS-UK (solid) and

MOGREPS-G (dashed) cluster sets for the first seven leadtime windows.
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bars for the first leadtime window (T +12-24h in MOGREPS-G, T+2-14h in MOGREPS-UK) and by outline for the eleventh window (T +72-84h
in MOGREPS-G, T+ 62-74h in MOGREPS-UK). MOGREPS-UK members are coloured by the time-lagged initialisation cycle, as explained further

in text.

produced, while Figure 4c shows the frequency that exactly
three singleton clusters are produced (forming a 15-1-1-1
cluster structure). Note that it is not possible for two single-
ton clusters to exist for k = 2 (or three singletons to exist for
k = 3), since all members must be assigned to a cluster. As with
the size distributions presented in Figure 3, there is a clear dif-
ference in the number of singleton clusters produced from the
two ensembles. MOGREPS-UK produces substantially more
singleton clusters than MOGREPS-G at early leadtimes, espe-
cially at the earliest T+ 12-24h window. Almost 60% of k = 3
MOGREPS-UK clusters include a singleton at this leadtime,
compared with only 38% of k =3 MOGREPS-G clusters. In
fact, MOGREPS-UK produces three singleton clusters 10 times
more often than MOGREPS-G within this earliest window. By
T +42-54h, however, both ensembles typically produce single-
tons at a consistent rate, but also at a much lower frequency
than during earlier leadtimes.

These trends, including the reduction in the number of single-
tons with leadtime, can be understood by considering the clus-
tering method in more detail. There are two main mechanisms
that can generate singleton clusters. Intuitively, we would expect
a singleton to emerge when one ensemble member provides a
drastically different forecast to all other members such that it
does not belong with any other grouping. However, this scenario
is less likely to occur at earlier leadtimes when ensemble mem-
bers are still normally distributed about the control member.
Instead, it is likely that the presence of singleton clusters at early
leadtimes arises from a sub-optimal number of clusters being
forced onto the data sets. Consider an example of an ensemble
pdf containing three distinct modes. When this data set is clus-
tered with k = 3, the outputs will ideally reflect these distinct
modes. If this data set is instead forced into k = 4, the new set
of clusters that minimises the total member-medoid distance is
simply the optimal set produced using k = 3 but with the mem-
ber that is furthest from its medoid placed into its own cluster.
By ‘peeling away’ this single member, the clustering retains the
optimal minimisation produced using k = 3 as much as possible.
Hence, the presence of singleton clusters can either indicate an
inappropriate number of clusters or can identify unique forecast
scenarios.

The larger number of singleton clusters at early periods in
MOGREPS-UK compared to MOGREPS-G is consistent with
the previous interpretation of cluster size distributions. These
findings demonstrate that MOGREPS-UK members are more
homogenous at early leadtimes (up to T+ 54h), but become
similarly diverse at the leadtimes when we typically expect
clustering to be more useful to forecasters. We also note that
the signal at early leadtimes is not an effect of the different
leadtimes used in the member-aligned comparison setup; it is
also present when leadtime consistency is enforced between
the two ensembles (not shown). However, these findings do
not tell us about the similarity of the clusters themselves (i.e.,
medoids and membership), which is the focus of the next
subsections.

3.2 | Cluster Medoids

To understand the similarity of the cluster medoids found by
clustering MOGREPS-UK and MOGREPS-G data, it is first in-
structive to inspect the typical distribution of medoids for par-
ticular leadtime windows. Figure 5 shows the frequency with
which each member is chosen as a k = 4 medoid for an early and
late leadtime window. Member 0 is the control in each set, and
colours on the MOGREPS-UK panel indicate the members that
were initialised in the same time-lagged cycle.

For the earliest leadtime window, the control member is much
more likely to be chosen as the medoid than any other member.
This preference is to be expected given the fact that the perturbed
members should still be centered around the control at this earli-
est leadtime window;, so it is encouraging to see this trend in the
data. It is also encouraging, though slightly more unexpected,
to observe structural differences between the perturbed medoid
distributions of the two ensembles. In MOGREPS-G, each per-
turbed member is approximately equally likely to be chosen as
a medoid, while there is a clear bias towards certain perturbed
MOGREPS-UK members being chosen. In the time-lagged
construction of a MOGREPS-UK ensemble, members 6, 7 and
8 (blue) are consistently the oldest and consequently are more
likely to be chosen as representing distinct outcomes. In general,
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FIGURE 6 | Conditional probability of finding a given medoid in MOGREPS-UK given it is also a medoid in MOGREPS-G. Perturbed trends are
average over probabilities for each perturbed member individually. Dashed lines without markers are the probabilities of finding the same medoid in
each ensemble by chance (e.g., for k = 1thisis1 /18, for k = 2 thisis1 — (17 /18"16 / 17), etc.).

the more recently a MOGREPS-UK member is initialised, the
less likely it will be chosen as a medoid for this early leadtime
window. At the later leadtime window, the disparity between
control and perturbed members has substantially reduced, al-
though it is not completely eliminated.

This analysis motivates the need to consider the medoid sim-
ilarity for control and perturbed members separately. To un-
derstand the degree of similarity between medoids, Figure 6
shows the conditional probabilities of finding a given me-
doid in MOGREPS-UK clusters given its existence as a me-
doid in MOGREPS-G clusters. There is a decreasing chance
of finding a control member medoid in MOGREPS-UK given
its existence in MOGREPS-G as leadtime increases, reflect-
ing the lower frequency with which control members are
selected as medoids as spread develops in each ensemble.
Conversely, the probability that a given perturbed member is
chosen as a medoid in each ensemble increases with leadtime,
and at all times is larger than expected by random chance.
This finding is reflective of the ensembles falling into distinct
modes, but also suggests that these modes are consistent be-
tween the two ensembles. This consistency is perhaps partly
explained by the influence of the lateral boundary conditions,
which largely determine the evolution of each MOGREPS-UK
member after the first day, and are provided by correspond-
ing members of MOGREPS-G. By the final leadtime window,
there is large parity between control and perturbed medoid
probabilities.

These findings demonstrate a large degree of similarity in the
central members chosen in each ensemble. Notably, this similar-
ity increases with leadtime as the ensembles are more likely to
develop distinct modes within the distribution. Hence, we may
also expect to find larger similarity between cluster member-
ships in each ensemble as leadtime progresses.

3.3 | Cluster Memberships

While simple methods can be used to compare cluster sizes and
medoids, understanding similarities between cluster member-
ship requires the use of slightly more involved methods. A pop-
ular choice for comparing two different cluster sets (here from
MOGREPS-G and MOGREPS-UK) is the Adjusted Rand Index
(ARI, Rand 1971; Vinh et al. 2010). The ARI operates by selecting a
pair of members (e.g., members 1 and 5) and determining whether
they are in the same cluster or different clusters in both sets by
classifying each pair comparison into one of four categories:

« Nj;: The number of pairs in the same cluster in both sets
(e.g., member 1 and 5 are both in cluster 1 in MOGREPS-G
and both in cluster 2 in MOGREPS-UK or both in cluster 1
in both ensembles),

« Ny, The number of pairs in different clusters in both sets
(e.g., member 1 and 5 are in clusters 1 and 2, respectively, in
MOGREPS-G, but are in clusters 2 and 1in MOGREPS-UK),

» N, The number of pairs in the same cluster in the first set,
but in different clusters in the second set (e.g., member 1
and 5 are both in cluster 1 in MOGREPS-G, but are in clus-
ters 1 and 2 in MOGREPS-UK),

« N,;: The number of pairs in different clusters in the first set,
but in the same cluster in the second set (e.g., members 1
and 5 are in clusters 1 and 2 in MOGREPS-G, but are both
in cluster 1 in MOGREPS-UK).

The ARI is then calculated as:

2(NOONH _N01N10)
(Noo +N01)(N01 +N11) + (Noo +Nlo) (NIO +N11)’
3

ARI =
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FIGURE 7 | Average Adjusted Rand Index between ensemble clus-
ters evaluating similarity of ensemble membership.

where scores close to 0 indicate that clusters are no more similar
than a random permutation of labels, and scores of 1 indicate
perfect agreement between cluster sets. Negative scores indicate
large dissimilarity.

Figure 7 shows the ARI calculated between the two ensembles
for different k. As with the conditional medoid probabilities in
Figure 6, there is a clear leadtime trend whereby clusters are ini-
tially evaluated as being similar only by chance, but progressively
become more similar for later periods. Once again, this evolution
is likely a reflection of the modality of the ensembles at these
times, where clusters applied to normally distributed members are
less likely to be similar than clusters applied to multimodally dis-
tributed members. However, even by the final leadtime window,
these scores are still relatively small, indicating that there are still
large differences in the exact memberships between ensembles.
Whether these differences are meaningful or just reflective of
large sensitivity to specific clustering parameters (domain, feature
threshold, etc.) is difficult to determine from this data. After all, it
is unlikely that distinct clusters will always be present, and so we
should expect some degree of uncertainty about the optimal clus-
ter arrangements associated with the choice of inputs to the tool
(Brill et al. 2015). Also note that there is little dependence on the
value of k within these scores, which arises due to the normalisa-
tion of the Rand Index when accounting for random chance.

3.4 | Cluster Similarity Summary

Taken together, the results in this section indicate that the simi-
larity between clusters is most responsive to the modality of the
ensemble distributions. While there is never complete agreement
between the clusters, the clear trends with leadtime suggest that
the clustering in both ensembles is largely being driven by the
modes that exist at the common scales within the domains. Any
clustering differences can be readily explained by fundamental
uncertainties in the placement of members, caused by the fact that
the ensemble modes may not always be entirely distinct or that
a given member may be an appropriate fit for multiple clusters.
This uncertainty is even more pronounced when clustering over

leadtime windows, rather than clustering on each leadtime sepa-
rately. However, within this uncertainty there is the potential for
a given set of clusters to provide better guidance than the other.
The next section will explore whether this is the case by evaluating
typical cluster skill and reliability for both ensembles.

4 | Cluster Skill and Reliability

In this section, we determine the extent to which cluster size
acts as a predictor of the likelihood of verification, with larger
clusters indicating a more likely event. To investigate this, we
calculate the PSD Equations (1) and (2) between each medoid
and the NIMROD radar (Golding 1998) three-hourly accumu-
lations across the trial period. We focus on medoid skill in this
section rather than cluster average skill to alleviate sampling
differences that may occur with clusters of different sizes. To
enable these comparisons, each radar field is interpolated to the
corresponding model grid using a nearest-neighbour algorithm
that masks extrapolated points. For each ensemble cycle, we
then average the radar-medoid PSD across each leadtime win-
dow, consistent with the main clustering procedure.

Figure 8 shows the average PSD between the radar and the clus-
ter medoids (using k = 4). For comparison, Figure 8 also plots
the mean PSD between the radar and each ensemble member, as
well as the PSD between the radar and the k = 1 medoid, as two
representations of the average distance from the full ensemble
to the radar. The first trend to note is the segmentation between
the two ensembles. We observe this same trend when using any
smoothing-based displacement measure, and studies in the first
section of the Supporting Information link this to the grid resolu-
tion. Therefore, Figure 8 should not be interpreted as evidence that
MOGREPS-UK is drastically more skilful than MOGREPS-G.

However, there is a clear separation in each ensemble between
the medoid-radar PSD associated with different cluster sizes. The
most populated cluster medoid is consistently closer to the radar
than other medoids. In fact, all medoid distances are ranked by
the size of the cluster they represent. Additionally, there is a nota-
ble offset between the medoid distances of the smallest cluster and
the distances of all other medoids, especially at later leadtimes.
Indeed, the least populated cluster medoid can be as much as 50%
further from the radar than the most populated cluster medoid.
This result is not too surprising given the frequency with which
this smallest cluster is singleton (Figures 3 and 4a), as well as the
associated singleton arguments discussed in Section 3.1.

In comparison with the ensemble average, the largest and sec-
ond largest cluster medoids are both typically closer to the radar
than the ensemble mean. For context, Figure 3 shows that these
two cluster medoids combined typically represent 13-15 of the 18
members included in the ensembles, depending on the leadtime
window. However, when compared to the k = 1 medoid (the mem-
ber which has the smallest total distance from all other members),
the largest cluster medoid is usually slightly further from the radar.
So, despite the impressive separation of medoids by skill, the tech-
nique for finding the most likely ensemble mode selects a repre-
sentative member that is less accurate compared to just finding the
central state of the ensemble. Indeed, further interrogation reveals
that the largest cluster medoid for k = 4 is the same as the k =1
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medoid approximately 70%-80% of the time at early windows, but
falls to under 50% of the time at the latest leadtime windows, ex-
plaining the growing disparity between the two.

Overall, these findings demonstrate that the medoids associated
with larger clusters are consistently more skilful than those as-
sociated with smaller clusters. However, these findings do not
provide insight into the reliability of the clusters, i.e., does the
size of a cluster provide a useful quantitative estimate of the like-
lihood that the verifying observation will be closer to that clus-
ters' medoid than any other medoid. Note that this verification
is not estimating the absolute skill of the cluster medoid, only
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the probability that it is closest to the observation compared to
all other medoids. To determine this, we use the radar-medoid
PSDs to assign the radar to a cluster. There are two ways that
this process can be implemented. One approach is to include
the radar as an ‘extra ensemble member’ and apply the full K-
medoids workflow to these 18 + 1 members. However, due to the
underspread nature of these ensembles, this often leads to the
radar being placed into its own separate cluster and does not
provide information about the cluster reliability. Therefore, we
instead manually assign the radar to the cluster with the min-
imum medoid-radar PSD, thereby ensuring that the radar is
placed into a cluster containing at least one ensemble member.
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a member without features and the radar is undefined (NaN).

Figure 9 shows cluster reliability diagrams averaged over the
first and last six leadtime windows. Here, forecast probability
is determined by the radar cluster size normalised by the total
number of ensemble members (18), while the observed fre-
quency is determined by the fraction of instances that the radar
is placed into a cluster of that size. As an example, if clustering
is a reliable tool, we should expect the radar to be placed into
a cluster of size 12 approximately two-thirds of the time. It is
also worth emphasising at this stage that we assign the radar to
a cluster based on the closest medoid, not based on the closest
member. This approach ensures that the radar is not preferen-
tially placed into larger clusters by chance and is also consistent
with the K-medoids procedure.

Broadly speaking, the data in Figure 9 follows the 1:1 perfect
reliability line reasonably well, especially at later leadtime

windows. The reduced reliability during early periods is
likely reflective of members being distributed more normally
at these leadtimes, which does not favour robust classifica-
tion into distinct groups. Across all leadtimes, however, clus-
ters with smaller k are typically more reliable than larger k.
These differences may be related to symmetries in the reli-
ability curves that emerge from the designation of the radar
to a particular cluster. For instance, for k =2, if the radar is
placed into a cluster of size 12 approximately 75% of the time
(as opposed to two-thirds of the time for perfect reliability), by
construction, this necessitates the radar being placed into a
cluster of size 6 only 25% of the time. Hence, any displayed un-
derconfidence at one end of the 1:1 line and will be reflected as
overconfidence at the other end. Following the same logic, we
should expect to find perfect reliability for k = 2 at 50% prob-
ability, and indeed this is observed. We might anticipate that

Meteorological Applications, 2025

11 of 17

Ie /O ‘88N JO'S3INJ 10} ARq1T 8UIIUO /B]IM UO (SUORIPUOD-PU.-SLLBY/WOYAB| 1M AReIq 1/oU 1 UO//SdNY) SUORIPUOD PUe SWd L U 89S *[5Z02/2T/2T] uo Ariqrauliuo Al * n'e Buipesid equew-<UwIoqqIus> - PIOJURS WepY AQ 6ETOL /20T OT/I0PALI0D A3 |1 ARe.q 1 jeul U0 STeLU//SARY WoJ) pepeojumoq ‘9 ‘S2Z ‘080869+T

0B

aup Aq pa

35S0 SUOLULLIOD BAIERID



these arguments could be extended to larger values of k, and in
general, the reliability curves appear to cross the 1:1 line at ap-
proximately 1/k. However, the neatness of these symmetries
will be unavoidably broken compared to k = 2 by the addition
of more clusters for the radar to be placed into.

In summary, we have found that clustering is a reliable tool, and
the number of members that supports each medoid is a useful
measure of the probability that the medoid will verify most accu-
rately. While there is certainly scope for improvements at the ex-
treme ends, this is likely reflective of the underspread nature of
the ensembles. However, these findings have also demonstrated
that neither ensemble is more reliable than the other. Together
with the results from the previous section, we are forced to
conclude that clustering on the CPE does not add value com-
pared to clustering on the driving ensemble, at least over these
scales. Therefore, it is likely that the tool is most sensitive to the
synoptic-scale variability that exists across the UK domain and is
not affected by the smaller scale detail included in the CPE. This
conclusion is supported by findings in Section 3 of the Supporting
Information, showing a case where large-scale variability is well
represented in clusters at the expense of smaller-scale variability.
However, it is still possible that CPE clustering can provide value
when used on a more ad-hoc basis, by isolating specific regions
that will be impacted by extreme weather. Therefore, the final
section of this study analyses the clustering performance in each
ensemble for an impactful event within the trial period.

5 | Convective Case Study

The event discussed in this section concerns a case of hazardous
convection that impacted Wales and central England on 12 June
2023. This event was characterised by an area of high wet-bulb
potential temperature over western areas of the United Kingdom
with strong diurnal forcing providing the initiation. Slack pres-
sure and slow winds prolonged the potential hazards, and an
amber weather warning was issued over the affected regions.
Impacts from surface-water flooding, hail, and thunderstorms
were reported (UKMO 2023).

To assess clustering performance, each ensemble is clustered
over the region identified by forecasters as most at risk in guid-
ance produced that day. The 12h clustering period runs from
1200Z 12 June to 0000Z 13 June, which covers the formation
and dissipation of convection. Clusters were produced using the
shortest leadtimes (Window 1) available with the setup outlined
in Figure 2. Therefore, the MOGREPS-G forecast used here was
initialised at 0000Z 12 June using leadtimes T+ 12-24h, while
the MOGREPS-UK forecast was initialised at 1000Z 12 June
using leadtimes T +2-14 h. For each ensemble, four sets of three-
hourly precipitation accumulations are used to produce clusters.
As with the rest of the study, features are selected using the 90th
percentile, which corresponds here to 2.00mm in MOGREPS-G
and 1.47mm in MOGREPS-UK. The outputs from using k =3
are shown for each ensemble, as these were subjectively evalu-
ated as giving the best clusters (all forecast scenarios represented
without any being repeated).

Figure 10 shows clusters from MOGREPS-G for the second
and third accumulation periods used for clustering, which are

chosen to highlight the main trends for this ensemble (data
from the entire period is shown in Section 2 of the supplement
for completeness). From 1500Z to 1800Z, the radar shows a
peak of precipitation intensity as outbreaks of convection con-
tinued across Wales and central England. At the same time,
MOGREPS-G presents much lower intensities, as is typical of
these coarse grids. However, even accounting for the differences
in resolution, MOGREPS-G clusters do not offer useful guidance
for forecasting the locations that will be impacted by convection.
Clusters 2 and 3 both predict the impacts will be largest across
northern areas of the domain, while cluster 1 does not show a
clear signal anywhere. Then, in the next three-hour period, pre-
cipitation in MOGREPS-G has largely dissipated, despite heavy
radar returns being recorded across north Wales for the same
period. In summary, MOGREPS-G has produced a poor forecast
for this event, and while the accuracy of the underlying data will
inevitably limit the potential of the clustering to add value, it is
also clear the clustering has had limited success in distinguish-
ing different outcomes.

Figures 11 and 12 between them show MOGREPS-UK clus-
ters for all four accumulation periods used in clustering. In
contrast to the MOGREPS-G clusters, each MOGREPS-UK
cluster shows a distinct outcome, with clusters 2 and 3 show-
ing northerly and southerly shifts in the impacted areas, and
cluster 1 being between the two. MOGREPS-UK cluster sizes
are also more unequal, with the scenario presented in cluster
1 being favoured by 13 members, while cluster 3 is only a sin-
gleton. In terms of forecast evolutions, most MOGREPS-UK
members initialise convection too early and clear it too quickly.
For the first accumulation period, the medoid for the cluster
which shows a southerly bias (cluster 2) verifies closest to the
radar. However, this southerly bias remains throughout all
accumulation periods in this cluster, despite impacts pushing
further to the northwest at later times. Subsequently, at the
times when convection is heaviest (the second and third peri-
ods), cluster 2 does not verify as well at these times. Instead,
the medoid representing the largest cluster verifies most ac-
curately. Additionally, the probabilistic guidance from feature
density plots is subjectively a better fit to the radar for clus-
ter 1 than clusters 2 and 3, and the mean cluster PSD largely
reflects this. For the final accumulation period, members in
cluster 1 have all dissipated the convection too quickly, while
some members from other clusters do a better job of retaining
impacts for this period.

It is clear, then, that MOGREPS-UK clustering has provided
more appropriate guidance than MOGREPS-G clusters for
this event. While MOGREPS-G clustering was hampered by
a poor forecast, it is also the case that clustering did not suc-
cessfully highlight distinct scenarios within this poor fore-
cast. Conversely, even though no individual MOGREPS-UK
member fully resembled the verified event across all periods,
clustering revealed useful probabilistic trends. Additionally,
the medoids chosen for each cluster were representative of
the trends highlighted by those clusters. Further, the medoid
for the largest cluster verified most accurately of all medoids
when all periods were taken into account. Inspecting other
members within the ensemble revealed that one member from
the largest cluster verified more accurately throughout all four
accumulation periods than the largest cluster medoid. Apart
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from this member, the largest cluster medoid provided the best
forecast for this event.

6 | Discussion and Conclusions

Ensembles are becoming an ever more important part of a
forecaster's toolkit, such that some meteorological services
are retiring their deterministic models entirely and transition-
ing to an ensembles-only approach. With increasing ensemble
importance, complexity and size comes the need to produce
methods that can intelligently summarise these large data
sets. Feature-based clustering has previously shown value for
identifying distinct frontal development areas in global en-
sembles (Boykin 2022). Here, we determine whether there is
additional value to be gained from systematically applying clus-
tering to convection-permitting ensembles (CPEs) compared to
the global ensembles that drive them. We use the operational
MOGREPS-G driving ensemble and MOGREPS-UK CPE for

MOGREPS-UK Cluster 1 (72%)
Mean PSD to Radar = 52.0 km

these comparisons and apply clustering to the 90th percentile
of three-hourly precipitation accumulations over a three-month
period. Note also that the tool used in this study clusters only
on positional similarity of precipitation features; it does not con-
sider magnitude differences.

In a routinely running configuration, with both ensembles set
up to cluster over the United Kingdom in 12-hourly windows,
CPE clustering did not add clear value compared to driving-
ensemble clustering. The leadtime trends of the representative
member and cluster membership statistics strongly indicate
that clusters are most sensitive to large-scale features. A
separate case study presented in Section 3 of the Supporting
Information reinforces this conclusion by highlighting a situ-
ation where large-scale variability is well represented within
the clusters while small-scale variability is largely neglected.
This finding is consistent with previous interpretations of
the behaviour of spatial verification methods (Roberts and
Lean 2008).
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FIGURE 11 | As with Figure 10 but for MOGREPS-UK clusters showing the first two case study accumulation periods.
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FIGURE 12 | Aswith Figure 11 but for the final two case study accumulation periods.

Additionally, it is expected that clustering will perform more
reliably and predictably when multiple distinct modes are
present in the ensemble pdf. Here, we see that ensemble clus-
ters are more similar at the leadtimes that are more likely to
present multiple synoptic-scale modes than at earlier lead-
times, when ensemble members are still normally distributed
about the control. Some differences between cluster sets are
evident (e.g., there is only approximately a one-third chance
of finding the same medoid in both cluster sets at the longest
leadtimes tested). This is due in part to unavoidable sensitiv-
ity to the clustering parameters when the ensembles do not
fully capture the distributions they are attempting to repre-
sent (Brill et al. 2015).

This study also performs a systematic verification of feature-
based clustering to determine the reliability of identified fore-
cast scenarios. In each ensemble, the medoids representing the
largest and second largest clusters are typically more skilful
than the ensemble average. Furthermore, the medoid represent-
ing the smallest cluster (when forced into four clusters) can be
substantially less skilful than other medoids. However, when

analysed from a reliability perspective, the smallest cluster can
occasionally verify more accurately than other clusters. In fact,
clustering demonstrated reasonable reliability in each ensemble,
particularly for later leadtimes. Forecasters should therefore be
confident that the number of ensemble members supporting a
particular outcome is a reliable quantitative prediction of the
probability that the given outcome will verify most accurately
compared to the other identified outcomes. Of course, within
underspread ensembles, this outcome may still be reasonably
far from the verification, but this is not an issue that clustering
can address.

While CPE clustering did not demonstrate consistent value when
used at synoptic scales, it did demonstrate clear value when tar-
geted over a region impacted by hazardous convection for a case
study. While no CPE member fully resembled the event across
all three-hourly accumulation periods contained in the 12h
window, clustering revealed distinct scenarios and useful proba-
bilistic trends. Additionally, the medoid representing the largest
cluster verified most accurately compared to the other cluster
medoids. In contrast, the driving ensemble performed poorly,
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and clustering was not able to identify distinct scenarios. This
case study reveals that CPE clustering is most useful when ap-
plied on an ad-hoc basis over more targeted domains. Therefore,
a fully on-demand process would greatly enhance the appeal of
the tool for use with forecasting mesoscale features.

When issuing guidance, it is also common practice for forecast-
ers to compare outputs from other meteorological centres to
judge the broader multi-model agreement. Given the persistent
problem of underdispersion in ensembles, multi-model distri-
butions can provide a wider range of possible outcomes. This
technique is driving efforts to formalise these processes into
methods that produce a consistent probabilistic output, whether
it be at the short-to-medium range (Roberts et al. 2023) or at the
medium-to-extended range (Neal et al. 2024). It may also be
useful to apply feature-based clustering to multi-model ensem-
bles, where there has previously been limited success in testing
methods that are willing to mix members from different ensem-
bles (Alhamed et al. 2002; Yussouf et al. 2004; Brill et al. 2015;
Lamberson et al. 2023). Additionally, it may also be useful to
apply clustering to multiple parameters at once to identify self-
consistent, multi-hazard scenarios, such as those associated
with freezing temperatures and heavy precipitation.

Finally, the clustering process described in this study requires
the user to decide ahead of time on the desired number of clus-
ters, k, which may not always be known. In an operational
setting, a forecaster is likely only concerned with the num-
ber of clusters needed to provide the best guidance, i.e., the
clusters that display all of the possible scenarios without any
of those scenarios being repeated between clusters. In such
cases, k is more useful as an indication of the number of dis-
tinct modes contained in the ensemble, rather than as a free
parameter. Therefore, it is desirable to produce additional pro-
cessing methods that can decide on a ‘suggested’ or ‘optimal’
k to present to the user. Developing a method that can reliably
identify the optimal outputs will require extensive testing and
verification.
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