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ABSTRACT
Ensembles provide a wealth of information to aid forecasters in their day-to-day operations, but with increasing ensemble size 
and complexity, there is rarely time to fully interrogate their outputs. Clustering ensemble members into distinct scenarios 
based on the co-location of hazardous weather features has previously shown promise when applied to global ensemble outputs. 
However, it is currently unclear whether further value can be gained when applying clustering to convection-permitting ensem-
ble (CPE) outputs. This study compares precipitation clusters between the operational MOGREPS-G driving ensemble and the 
nested MOGREPS-UK CPE run at the (UK) Met Office during summer 2023. When applied over the UK domain, CPE clustering 
does not provide clear value compared to global ensemble clustering. Instead, clusters become increasingly similar with leadtime, 
strongly indicating that CPE clusters are most sensitive to the synoptic forcing common between the two ensembles and that 
the presence of convective-scale detail has little influence. However, when focussed on a region impacted by hazardous convec-
tion, CPE clustering identified distinct precipitation scenarios and provided improved probabilistic value compared to driving-
ensemble clustering. Finally, by comparing clusters with radar observations, it is demonstrated that the fraction of members 
supporting a particular scenario is a reliable quantitative prediction of the probability that the given scenario will be the most 
accurate. We recommend that global ensemble clustering is sufficient over larger domains, while CPE clustering is most useful 
when applied at regional scales.

1   |   Introduction

Ensembles are commonly used to quantify forecast uncertainty 
by running repeated simulations with different initial condi-
tions and model parameters (e.g., Palmer 2019; Zhou et al. 2022; 
Inverarity et al. 2023). In theory, each member of a well-tuned 
ensemble can be interpreted as an equally-likely realisation of 
the upcoming weather that could be inspected without further 
processing. But with the strict deadlines imposed on forecasters 
and the common production of additional convection-permitting 
ensemble (CPE) data sets, forecasters rarely have the time to 
perform these individual member examinations (Young and 
Grahame 2024; Pagano et al. 2024). These restrictions motivate 
the need for methods that can intelligently summarise forecast 

outputs. While some benefits can be provided using common 
aggregation methods like ensemble means, these smoothed 
fields represent unphysical outcomes that can mask important 
spatial variability. It is therefore desirable to produce methods 
that can extract sets of unmodified members that represent the 
distinct forecast scenarios contained within the ensemble. While 
these methods have been previously trialled on global ensemble 
outputs (Atger 1999; Brill et al. 2015; Boykin 2022; Lamberson 
et al. 2023), only a few studies have examined the utility of these 
methods with CPEs (Branković et  al.  2008; Johnson, Wang, 
Kong, and Xue  2011), and none have performed a systematic 
comparison between the two ensemble types. Here, we perform 
such a comparison for precipitation forecasts using the opera-
tional ensemble from the (UK) Met Office.
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In the early days of limited-area model design, clustering meth-
ods were explored as a way of selecting driving members that 
could provide the most spread for running a reduced number 
of computationally expensive simulations (Molteni et al. 2001; 
Marsigli et  al.  2001). These trials showed that the probability 
density function (pdf) of the high-resolution forecasts driven 
by cluster-informed representative members was a faithful 
recreation of the pdf from the driving ensemble. More recent 
studies have further confirmed the spread benefits when repre-
sentative members are selected using clustering techniques over 
random subsampling (Nuissier et  al.  2012; Weidle et  al.  2013; 
Bouttier and Raynaud 2018; Serafin et al. 2019), such that this 
method has been used for driving the COSMO-LEPS (Montani 
et al. 2011), ALADIN-LAEF (Weidle et al. 2013) and HARMON-
EPS (Frogner et al. 2019) CPEs. It is noted, however, that these 
spread benefits typically only manifest when clustering is ap-
plied after leadtimes of approximately 48 h (termed T + 48), 
when driving ensemble pdfs are more likely to be multimodal.

Clustering methods are also used for the objective identification 
of weather patterns at the medium range (Fereday et al. 2008; 
Ferranti and Corti  2011). Here, climatological sets of mean 
sea-level pressure or geopotential height regimes are produced 
based on the occurrence of those regimes over multi-decadal 
timescales. Each regime represents a distinct circulation pattern 
and weather type. New forecasts are analysed using the same 
decomposition and assigned to the closest matching regime, pro-
viding a broad overview of the upcoming weather and its his-
torical occurrence. These methods have been very successful at 
categorising and communicating synoptic-scale uncertainty out 
to multiple weeks, with separate schemes in use covering Europe 
at the European Centre for Medium-Range Weather Forecasts 
(ECMWF, Ferranti and Corti 2011; Ferranti et al. 2015) and the 
UK Met Office (UKMO, Neal et al. 2016, 2024), as well as over 
North America (Lee et al. 2023; Lee and Messori 2024).

Until recently, regime-based clustering was too broad to classify 
differences between individual features within high-resolution 
forecasts, limiting its usefulness for short leadtimes. Machine 
learning methods can now efficiently and accurately categorise 
regimes in CPEs, and can effectively reduce the dimensionality of 
their skewed precipitation distributions in a way that other statis-
tical methods struggle with (Mounier et al. 2025). Other work has 
focused on applying clustering techniques in a more dynamic way, 
whereby groups of members are found directly from the ensemble 
and do not need to be compared to predetermined climatological 
clusters. Case study analysis has shown promise by successfully 
identifying distinct forecast scenarios when applied to limited 
areas from global ensemble outputs (Brill et al. 2015; Boykin 2022; 
Lamberson et al. 2023). Cluster verification has been more mixed 
however, as the largest clusters have been found to be both more 
skilful (Lamberson et al. 2023) and less skilful (Brill et al. 2015) 
than the ensemble mean. It is likely that the performance of any 
clustering method depends strongly on the modality of the ensem-
ble pdf. For instance, attempting to classify a Gaussian distribu-
tion (as would be anticipated from the ensemble at early leadtimes) 
into multiple sets will likely yield weakly defined clusters that are 
ambiguous and of limited use (Atger 1999). It will likely be more 
instructive to perform clustering after the pdf has deviated signifi-
cantly from Gaussianity, which may be more common in sum-
mertime convective cases (e.g., Hohenegger and Schar 2007; Lean 

et al. 2008). These pdf transitions have been well demonstrated in 
recent work analysing sampling uncertainties in large ensembles 
(Craig et al. 2022; Tempest et al. 2023, 2024). Therefore, one of the 
important aspects to consider concerns the timing of this pdf tran-
sition: is there any use applying clustering to CPEs, especially in 
the short term? Or, does the CPE pdf maintain Gaussianity until 
the lateral boundary conditions become dominant, after which 
the ensemble is likely to follow a similar trajectory to the global 
ensemble providing the boundary information (e.g., Gebhardt 
et al. 2011; Kühnlein et al. 2014; Zhang et al. 2023).

The results from a few existing studies can shed some light on this 
question. Branković et al. (2008) compared clusters between a CPE 
and its driving ensemble to assess the added value from running 
ensembles at the convective scale. They found large differences 
between the ensemble clusterings: only a third of driving ensem-
ble and CPE clusters possessed common representative members, 
and only half of the CPE clusters were closest to the expected driv-
ing ensemble cluster. Additionally, (Johnson, Wang, Kong, and 
Xue 2011; Johnson, Wang, Xue, and Kong 2011) developed clus-
tering techniques using object tracking and neighbourhood-based 
smoothing that account for the double-penalty problem com-
monly experienced when verifying high-resolution precipitation 
fields (Gilleland et al. 2009). Neighbourhood techniques provided 
more appropriate clusters than those that used raw model outputs. 
Finally, Boykin  (2022) showed that clustering using a distance 
metric that directly incorporated neighbourhood smoothing could 
identify distinct frontal development scenarios and provide value 
to operational forecasters. The method used by Boykin (2022) is 
particularly useful since it is a purely spatial method and can be 
applied to any input field regardless of heterogeneity, while also 
not relying on separate object-tracking algorithms to compute 
displacements.

In this study, we build upon the feature-based clustering work 
of Boykin  (2022) to explore the potential benefits of applying 
clustering to CPEs. Of all the parameters that CPEs represent 
more accurately than global ensembles, precipitation forecasts 
benefit the most from the increase in resolution due to the ex-
plicit representation of convection (e.g., Hanley et al. 2011; Clark 
et al. 2016; Woodhams et al. 2018; Cafaro et al. 2019). As such, 
we focus on analysing cluster differences that emerge when ap-
plied to precipitation accumulations, and emphasise that the 
methods used here classify by spatial similarity, not intensity. 
We investigate the potential benefits of CPE clustering by an-
swering three research questions. First, do the bulk cluster sta-
tistics (cluster sizes, medoids, cluster memberships) demonstrate 
differences between convection-permitting and driving ensem-
bles? Second, are clusters produced by the CPE more reliable 
than those produced by the global ensemble? Lastly, does CPE 
clustering provide better guidance in specific cases? Given the 
expected dependence of cluster quality on ensemble modality, 
it is likely that the answers to these questions will display some 
sensitivity to leadtime and regime.

The rest of the manuscript is organised as follows. Section 2 
describes the ensembles and clustering methods used in the 
study. Additional analysis presented in the first section of the 
Supporting Information compares different spatial methods 
for estimating distances between members in each ensemble. 
Then, Section  3 compares statistics between the cluster sets 

 14698080, 2025, 6, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/m
et.70139 by A

dam
 G

ainford - <
Shibboleth>

-m
em

ber@
reading.ac.uk , W

iley O
nline L

ibrary on [12/12/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense
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generated by the two ensembles. Section 4 then assesses clus-
ter accuracy and reliability for both sets of clusters. Section 5 
discusses the performance of clustering for a case of hazard-
ous convection, and Section 6 summarises the main findings 
and recommendations.

2   |   Methods

In Section  2.1, the models and trial period used in this study 
are described. Then, in Section 2.2, the feature-based clustering 
procedure is described.

2.1   |   MOGREPS and Trial Period

For this study, we use data from the Met Office Global and 
Regional Ensemble Prediction System (MOGREPS): an op-
erational ensemble configuration run at the (UK) Met Office 
comprised of a global ensemble, MOGREPS-G and a nested en-
semble run over the UK, MOGREPS-UK.

MOGREPS-G has a grid spacing of approximately 20 km in 
the midlatitudes, with 70 hybrid height vertical levels and a 
parametrization scheme to represent convection. It has initial-
isation cycles every 6 h at 00Z, 06Z, 12Z and 18Z, producing 
17 perturbed members plus a control member from a global 
analysis, with each perturbed member separately initialised 
using a hybrid 4D ensemble variational data assimilation sys-
tem (Inverarity et al. 2023). MOGREPS-G runs out to 8 days 
and outputs three-hourly precipitation accumulations, and so 
we use 3 h as the accumulation window for both ensembles 
throughout this work.

MOGREPS-UK is an 18-member lagged ensemble with 2.2 km 
grid spacing that runs out to 5 days (Hagelin et  al.  2017). 
MOGREPS-UK has initialisation cycles every hour producing 
three new members that are combined with the 15 members 
from the previous five cycles to produce the full time-lagged 
18-member set (Porson et al. 2020). For brevity and convenience, 
when referring to MOGREPS-UK leadtimes, we will ignore the 
different initialisation times between members and instead only 
quote the leadtime of the members from the most recent ini-
tialisation. This lagged setup allows each hourly three-member 
set to be recentered around the latest convective-scale analysis, 
with perturbations and boundary conditions provided by corre-
sponding MOGREPS-G members.

We use operational ensembles in this study since the cluster-
ing tool is designed to facilitate forecast guidance production. 
Each ensemble is clustered on its native grid since we aim to 
understand the potential value provided by the inclusion of 
convective-scale detail. However, with any operational ensem-
ble system, there are production delays between running the 
driving ensemble and using these outputs to drive the nested 
ensemble. In other words, the driving and nested ensemble 
forecasts that share a common initialisation time do not share 
common boundary conditions and/or perturbations. To properly 
compare clustering outputs between the two ensembles, consis-
tent forcings must be used between the ensembles. Therefore, 
we use a ‘member-aligned’ comparison setup which offsets the 

initialisation times between the ensembles to ensure the same 
sets of members are being compared between both ensembles. 
In the MOGREPS system, the MOGREPS-UK forecast that in-
cludes the same members as the driving ensemble is initialised 
10 h after the MOGREPS-G forecast (Porson et al. 2020; Gainford 
et al. 2024). So, a MOGREPS-G forecast initialised at 00 Z on 
a given day will be compared with the lagged MOGREPS-UK 
forecast with the most recent members initialised at 10 Z on 
that same day. By construction, each member is used exactly 
once. However, it is also important that the same events are 
being compared in each cluster set. Therefore, the clusters for 
a given MOGREPS-G forecast are compared to the clusters of 
a MOGREPS-UK forecast initialised 10 h later and with 10 h 
shorter leadtimes (see Figure 2 for further details).

We apply clustering to operational forecasts run from June to 
August 2023. This period included a greater frequency of con-
vective activity compared to climatology (UKMO 2023), which 
provided a large sample of events that have the potential to pro-
duce broad differences between the two ensembles. The start of 
June 2023 was largely fine and dry due to a persistent block over 
the United Kingdom. A switch to more unsettled conditions oc-
curred around the middle of June, with frequent thundery ac-
tivity recorded. July 2023 was one of the wettest on record, with 
a predominantly westerly, mobile flow bringing a succession 
of weather systems from the Atlantic. August 2023 was more 
mixed than June and July, with wet periods interspersed with 
more settled conditions.

2.2   |   Clustering Procedure

The clustering workflow uses K-Medoids clustering with a 
distance metric that quantifies the average spatial displace-
ment between features in different ensemble members. These 
methods have been integrated into an experimental tool run 
at the Met Office and are largely based on those developed in 
Boykin (2022), however, two important differences have been 
implemented:

•	 The clustering window is now a user choice or free parame-
ter, rather than defining it diagnostically,

•	 Clustering is now applied to all leadtimes within the clus-
tering window, rather than to each leadtime separately.

Additionally, here, we use the Precipitation Smoothing Distance 
rather than the Fractions Skill Score Displacement to estimate 
spatial displacement, since this has been shown to provide more 
accurate estimates in idealised and real-world tests (Skok 2022). 
This is described further in Section 2.2.2.

An example of the steps involved in the clustering workflow is 
depicted in Figure 1 and described in the following subsections.

2.2.1   |   Steps 1 and 2: Leadtime Window Selection 
and Feature Identification

First, a spatial field (e.g., gridded precipitation data), region 
and clustering window are chosen. The spatial field can in 
principle be any meteorological parameter: here we choose 
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4 of 17 Meteorological Applications, 2025

three-hourly precipitation accumulations. We cluster over 
the MOGREPS-UK domain and extract this region from the 
MOGREPS-G fields. For the clustering windows, Figure  2 
shows an overview of the leadtime window structure used 
in this work. We use a smaller 12 h leadtime window rather 
than the 48 h window used by (Boykin  2022) since we wish 
to cluster on timescales similar to those of convective storms. 
As mentioned in Section  2.1, we use member-aligned com-
parisons between the ensembles to ensure that a common set 
of members is available for clustering. This alignment choice 
imposes a leadtime offset between the windows, as demon-
strated by the inclusion of multiple axes in the figure. Thus, 
window 1 of MOGREPS-G will always be compared to win-
dow 1 of MOGREPS-UK, but the MOGREPS-UK window will 
use a 10 h earlier leadtime range.

Spatial fields at each leadtime are then converted to a bi-
nary feature field by setting values above and below a chosen 
threshold to 1 and 0, respectively. Clustering on the feature 
field ensures that distances in the next step are calculated 
purely based on spatial displacements and do not consider in-
tensities. The threshold used can either be an absolute value 
or a centile value. We use a centile value since this accounts 
for coverage bias between members and is the recommended 
approach for neighbourhood-based evaluation (Roberts and 
Lean  2008; Mittermaier  2021). We choose a 90th percentile 
for use throughout this work since initial sensitivity tests 
showed the clustering produced more consistent results with 
more populated feature fields. For context, the 90th centile 
corresponds to 0.74 mm/3 h on average for MOGREPS-UK and 
0.72 mm/3 h on average for MOGREPS-G. In an operational 

FIGURE 1    |    Schematic showing clustering workflow. Step 1 shows the choice of parameter used in this work and the first clustering window 
mentioned in Figure 2. Step 2 shows the identification of features using a threshold. Step 3 shows the production of distance matrices between each 
member at each leadtime. Step 4 averages these distance matrices across each leadtime, before being used in K-Medoids clustering in Step 5 (which 
shows members reordered by their assigned clusters, where yellow borders denote clusters and black dots denote medoids). Each step is explained 
further in the text.

FIGURE 2    |    Leadtime window structure and comparison between ensembles accounting for 10 h member-aligned leadtime offset. Clustering is 
applied over each leadtime window to produce a set of consistent clusters valid for that window.
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setting, this choice of centile may not result in clusters that are 
focused on the areas of hazardous weather, and we would gen-
erally recommend a larger value be used provided it produced 
sufficient feature coverage.

2.2.2   |   Steps 3 and 4: Member Distance Calculation

Once features have been identified, a matrix of member-member 
distances is constructed at each leadtime and then averaged 
across those leadtimes. We use the Precipitation Smoothing 
Distance (PSD) to quantify member-member distances, which 
has been shown to estimate displacements more accurately 
compared to other spatial distance metrics (Skok  2022). The 
PSD operates first by normalising each input field, A,B, (here, 
the thresholded three-hourly accumulation) by the area average 
to remove biases. Then, the similarity between input fields is 
assessed using the Precipitation Smoothing Score, PSS, calcu-
lated as:

where Q is the fraction of non-overlapping points between input 
fields, Nx ,Ny are the number of grid points in x and y direc-
tions, and r is a smoothing radius. For the initial calculation, 
no smoothing is applied and r = 0. However, if the PSS does not 
exceed a score of 0.5, the input fields are smoothed using circu-
lar kernels of successively larger radii until the score condition 
is reached. Additionally, for comparisons at scales larger than 
the gridscale (i.e., r > 1), overlapping points between each input 
field are removed in A(r) and B(r), since these can lead to severe 
underestimations (Skok and Roberts 2018). The radius at which 
the PSS exceeds 0.5, rPSS≥0.5, is then used to calculate PSD as:

Tests presented in the first section of the Supporting Information 
demonstrate that the estimated distances between MOGREPS-G 
members are much larger than those for MOGREPS-UK mem-
bers, and that this bias occurs for all smoothing-based displace-
ment metrics. This bias is likely reflective of the additional 
convective-scale detail in MOGREPS-UK, since the floor for 
feature distances is smaller than for the coarser global ensemble. 
These distance biases may contribute to clustering differences in 
subsequent results.

2.2.3   |   Step 5: K-Medoids Clustering

For the final clustering step, the leadtime-averaged distance 
matrix is grouped using K-medoids clustering. K-medoids is a 
partitional clustering method that determines clusters by first 
finding a set of k distinct central medoid members, where k is 
the desired number of clusters chosen by the user. We impose a 
maximum of 4 clusters, since this number was found to explain 
approximately 95% of the explained variance within the ensem-
ble (Branković et al. 2008; Serafin et al. 2019). The medoids are 
found by iterating over all possible combinations of members as 
trial medoids. Each other member is then assigned to the closest 

trial medoid to create a set of trial clusters. The set of trial clus-
ters that minimises the distance between each member and its 
medoid is chosen as the optimal set. Since the distance matrices 
are small in our case (18 × 18), each search process is exhaus-
tive and finds the global minimum, giving the greatest likeli-
hood that each medoid provides a distinct forecast scenario. 
Compared to other clustering techniques such as K-means, K-
medoids has a distinct advantage that the central point is itself 
a physical solution, and can therefore be considered a suitable 
representation of all members within the cluster.

Occasionally, some members may have empty feature fields at a 
particular leadtime (e.g., no precipitation exceeding the thresh-
old value at any point) which requires special consideration. In 
such cases, we assign a distance of 0 km between two members 
that both do not have features, since they have identical fields. 
We also assert that it is impossible to estimate a physical dis-
tance between members with and without features at a given 
leadtime, and therefore treat such distances as undefined so 
they do not contribute to the leadtime-averaged value. If the 
distance is undefined across all leadtimes in the 12 h window, 
the leadtime average is then undefined. For the clustering step, 
any undefined leadtime-averaged distances are replaced by an 
arbitrarily large value of 9999 km so that all members without 
features are separated into an isolated cluster. For context, unde-
fined values occur at least once in 7.9% of MOGREPS-G cluster 
windows, and at least once in 1.8% of MOGREPS-UK windows.

An example of the clustering outputs is shown in Figures 10, 11 
and 12.

3   |   Cluster Similarity

To understand the similarity between MOGREPS-UK and 
MOGREPS-G clusters, the following three subsections present 
findings comparing trends in the size distributions, medoids and 
cluster memberships from the two ensembles.

3.1   |   Cluster Sizes

Inspecting the cluster size distributions produced by each en-
semble highlights the degree of heterogeneity within those 
members. For instance, a set of clusters in which each cluster 
contains a similar number of members can be interpreted as the 
forecast providing more diverse outcomes, since each forecast 
scenario has support from multiple members. Conversely, clus-
ters with large disparities in size usually indicate that one solu-
tion is more strongly preferred than the others.

Figure 3 shows the average cluster sizes across the trial period 
at different leadtimes. Four clusters are enforced in this anal-
ysis, but the trends are broadly similar with fewer clusters. 
The clearest differences between cluster sizes occur during 
the first leadtime window, with the largest MOGREPS-UK 
cluster  containing approximately two more members on av-
erage than the largest MOGREPS-G cluster. Consequently, 
the other three MOGREPS-UK clusters at this leadtime win-
dow contain slightly fewer members than MOGREPS-G. 
The difference in cluster sizes between the two ensembles 

(1)PSS(r)(A,B) = 1 −
2

QNxNy

Nx∑

i= 1

Ny∑

j= 1

|||
A(r) − B(r)

|||
,

(2)PSD(r) = 0.808 ⋅ Q ⋅ rPSS≥0.5.
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diminishes with increasing leadtime and the sizes become 
largely equivalent by the sixth leadtime window (T + 42–54 h 
in MOGREPS-G). Clusters typically remain at a consistent 
size for all subsequent leadtimes, with eight, five, three and 
two members.

These distributions indicate that MOGREPS-UK members 
are initially slightly more homogenous than MOGREPS-G 
members. This difference is not caused by the leadtime offset 
used in the member-aligned comparison setup; it is also pres-
ent when leadtime consistency is enforced between the two 
ensembles. This finding is somewhat counter-intuitive given 
the time-lagged construction of the MOGREPS-UK ensem-
ble, which promotes larger spread compared to MOGREPS-G 
during early periods (Porson et al. 2020). Instead, it is likely 
that this trend emerges from a combination of two fac-
tors. Firstly, ensemble pdfs are typically unimodal at these 
early leadtimes, and the medoid associated with the largest 

cluster is often the most central member within the Gaussian. 
Secondly, there is a substantial reduction in the member dis-
placements when evaluation is performed on finer grids, as 
discussed in the first section of the Supporting Information. 
These displacement biases, combined with the modality ar-
gument, favour the production of more homogenous mem-
bers in MOGREPS-UK, since each member is evaluated as 
being closer to the Gaussian medoid. This behaviour also 
explains the transition to more consistent cluster sizes from 
T + 42–54 h, as more distinct ensemble modes are likely to de-
velop after this period.

Interrogating the behaviour of the clustering through the lens of 
ensemble modality can also provide insight into the frequency 
of singleton clusters observed across the data sets. Figure  4a 
shows the frequency that at least one cluster is produced con-
taining only a single member: the medoid. Likewise, Figure 4b 
shows the frequency that at least two singleton clusters are 

FIGURE 3    |    Histogram of average MOGREPS-UK and MOGREPS-G cluster sizes for k = 4.

FIGURE 4    |    Frequency with which (a) 1 singleton cluster, (b) 2 singleton clusters and (c) 3 singleton clusters occur in MOGREPS-UK (solid) and 
MOGREPS-G (dashed) cluster sets for the first seven leadtime windows.
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produced, while Figure  4c shows the frequency that exactly 
three singleton clusters are produced (forming a 15–1–1-1 
cluster structure). Note that it is not possible for two single-
ton clusters to exist for k = 2 (or three singletons to exist for 
k = 3), since all members must be assigned to a cluster. As with 
the size distributions presented in Figure 3, there is a clear dif-
ference in the number of singleton clusters produced from the 
two ensembles. MOGREPS-UK produces substantially more 
singleton clusters than MOGREPS-G at early leadtimes, espe-
cially at the earliest T + 12–24 h window. Almost 60% of k = 3 
MOGREPS-UK clusters include a singleton at this leadtime, 
compared with only 38% of k = 3 MOGREPS-G clusters. In 
fact, MOGREPS-UK produces three singleton clusters 10 times 
more often than MOGREPS-G within this earliest window. By 
T + 42–54 h, however, both ensembles typically produce single-
tons at a consistent rate, but also at a much lower frequency 
than during earlier leadtimes.

These trends, including the reduction in the number of single-
tons with leadtime, can be understood by considering the clus-
tering method in more detail. There are two main mechanisms 
that can generate singleton clusters. Intuitively, we would expect 
a singleton to emerge when one ensemble member provides a 
drastically different forecast to all other members such that it 
does not belong with any other grouping. However, this scenario 
is less likely to occur at earlier leadtimes when ensemble mem-
bers are still normally distributed about the control member. 
Instead, it is likely that the presence of singleton clusters at early 
leadtimes arises from a sub-optimal number of clusters being 
forced onto the data sets. Consider an example of an ensemble 
pdf containing three distinct modes. When this data set is clus-
tered with k = 3, the outputs will ideally reflect these distinct 
modes. If this data set is instead forced into k = 4, the new set 
of clusters that minimises the total member-medoid distance is 
simply the optimal set produced using k = 3 but with the mem-
ber that is furthest from its medoid placed into its own cluster. 
By ‘peeling away’ this single member, the clustering retains the 
optimal minimisation produced using k = 3 as much as possible. 
Hence, the presence of singleton clusters can either indicate an 
inappropriate number of clusters or can identify unique forecast 
scenarios.

The larger number of singleton clusters at early periods in 
MOGREPS-UK compared to MOGREPS-G is consistent with 
the previous interpretation of cluster size distributions. These 
findings demonstrate that MOGREPS-UK members are more 
homogenous at early leadtimes (up to T + 54 h), but become 
similarly diverse at the leadtimes when we typically expect 
clustering to be more useful to forecasters. We also note that 
the signal at early leadtimes is not an effect of the different 
leadtimes used in the member-aligned comparison setup; it is 
also present when leadtime consistency is enforced between 
the two ensembles (not shown). However, these findings do 
not tell us about the similarity of the clusters themselves (i.e., 
medoids and membership), which is the focus of the next 
subsections.

3.2   |   Cluster Medoids

To understand the similarity of the cluster medoids found by 
clustering MOGREPS-UK and MOGREPS-G data, it is first in-
structive to inspect the typical distribution of medoids for par-
ticular leadtime windows. Figure  5 shows the frequency with 
which each member is chosen as a k = 4 medoid for an early and 
late leadtime window. Member 0 is the control in each set, and 
colours on the MOGREPS-UK panel indicate the members that 
were initialised in the same time-lagged cycle.

For the earliest leadtime window, the control member is much 
more likely to be chosen as the medoid than any other member. 
This preference is to be expected given the fact that the perturbed 
members should still be centered around the control at this earli-
est leadtime window, so it is encouraging to see this trend in the 
data. It is also encouraging, though slightly more unexpected, 
to observe structural differences between the perturbed medoid 
distributions of the two ensembles. In MOGREPS-G, each per-
turbed member is approximately equally likely to be chosen as 
a medoid, while there is a clear bias towards certain perturbed 
MOGREPS-UK members being chosen. In the time-lagged 
construction of a MOGREPS-UK ensemble, members 6, 7 and 
8 (blue) are consistently the oldest and consequently are more 
likely to be chosen as representing distinct outcomes. In general, 

FIGURE 5    |    Frequency with which each member in MOGREPS-UK and MOGREPS-G clusters is chosen as a k = 4 medoid, displayed by filled 
bars for the first leadtime window (T + 12–24 h in MOGREPS-G, T + 2–14 h in MOGREPS-UK) and by outline for the eleventh window (T + 72–84 h 
in MOGREPS-G, T + 62–74 h in MOGREPS-UK). MOGREPS-UK members are coloured by the time-lagged initialisation cycle, as explained further 
in text.
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8 of 17 Meteorological Applications, 2025

the more recently a MOGREPS-UK member is initialised, the 
less likely it will be chosen as a medoid for this early leadtime 
window. At the later leadtime window, the disparity between 
control and perturbed members has substantially reduced, al-
though it is not completely eliminated.

This analysis motivates the need to consider the medoid sim-
ilarity for control and perturbed members separately. To un-
derstand the degree of similarity between medoids, Figure 6 
shows the conditional probabilities of finding a given me-
doid in MOGREPS-UK clusters given its existence as a me-
doid in MOGREPS-G clusters. There is a decreasing chance 
of finding a control member medoid in MOGREPS-UK given 
its existence in MOGREPS-G as leadtime increases, reflect-
ing the lower frequency with which control members are 
selected  as  medoids as spread develops in each ensemble. 
Conversely, the probability that a given perturbed member is 
chosen as a medoid in each ensemble increases with leadtime, 
and at all times is larger than expected by random chance. 
This finding is reflective of the ensembles falling into distinct 
modes, but also suggests that these modes are consistent be-
tween the two ensembles. This consistency is perhaps partly 
explained by the influence of the lateral boundary conditions, 
which largely determine the evolution of each MOGREPS-UK 
member after the first day, and are provided by correspond-
ing members of MOGREPS-G. By the final leadtime window, 
there is large parity between control and perturbed medoid 
probabilities.

These findings demonstrate a large degree of similarity in the 
central members chosen in each ensemble. Notably, this similar-
ity increases with leadtime as the ensembles are more likely to 
develop distinct modes within the distribution. Hence, we may 
also expect to find larger similarity between cluster member-
ships in each ensemble as leadtime progresses.

3.3   |   Cluster Memberships

While simple methods can be used to compare cluster sizes and 
medoids, understanding similarities between cluster member-
ship requires the use of slightly more involved methods. A pop-
ular choice for comparing two different cluster sets (here from 
MOGREPS-G and MOGREPS-UK) is the Adjusted Rand Index 
(ARI, Rand 1971; Vinh et al. 2010). The ARI operates by selecting a 
pair of members (e.g., members 1 and 5) and determining whether 
they are in the same cluster or different clusters in both sets by 
classifying each pair comparison into one of four categories:

•	 N11: The number of pairs in the same cluster in both sets 
(e.g., member 1 and 5 are both in cluster 1 in MOGREPS-G 
and both in cluster 2 in MOGREPS-UK or both in cluster 1 
in both ensembles),

•	 N00: The number of pairs in different clusters in both sets 
(e.g., member 1 and 5 are in clusters 1 and 2, respectively, in 
MOGREPS-G, but are in clusters 2 and 1 in MOGREPS-UK),

•	 N10: The number of pairs in the same cluster in the first set, 
but in different clusters in the second set (e.g., member 1 
and 5 are both in cluster 1 in MOGREPS-G, but are in clus-
ters 1 and 2 in MOGREPS-UK),

•	 N01: The number of pairs in different clusters in the first set, 
but in the same cluster in the second set (e.g., members 1 
and 5 are in clusters 1 and 2 in MOGREPS-G, but are both 
in cluster 1 in MOGREPS-UK).

The ARI is then calculated as:

(3)

ARI =
2
(
N00N11 − N01N10

)

(
N00 + N01

)(
N01 + N11

)
+
(
N00 + N10

)(
N10 + N11

) ,

FIGURE 6    |    Conditional probability of finding a given medoid in MOGREPS-UK given it is also a medoid in MOGREPS-G. Perturbed trends are 
average over probabilities for each perturbed member individually. Dashed lines without markers are the probabilities of finding the same medoid in 
each ensemble by chance (e.g., for k = 1 this is 1∕18, for k = 2 this is 1 − (17∕18∗16∕17), etc.).
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where scores close to 0 indicate that clusters are no more similar 
than a random permutation of labels, and scores of 1 indicate 
perfect agreement between cluster sets. Negative scores indicate 
large dissimilarity.

Figure  7 shows the ARI calculated between the two ensembles 
for different k. As with the conditional medoid probabilities in 
Figure 6, there is a clear leadtime trend whereby clusters are ini-
tially evaluated as being similar only by chance, but progressively 
become more similar for later periods. Once again, this evolution 
is likely a reflection of the modality of the ensembles at these 
times, where clusters applied to normally distributed members are 
less likely to be similar than clusters applied to multimodally dis-
tributed members. However, even by the final leadtime window, 
these scores are still relatively small, indicating that there are still 
large differences in the exact memberships between ensembles. 
Whether these differences are meaningful or just reflective of 
large sensitivity to specific clustering parameters (domain, feature 
threshold, etc.) is difficult to determine from this data. After all, it 
is unlikely that distinct clusters will always be present, and so we 
should expect some degree of uncertainty about the optimal clus-
ter arrangements associated with the choice of inputs to the tool 
(Brill et al. 2015). Also note that there is little dependence on the 
value of k within these scores, which arises due to the normalisa-
tion of the Rand Index when accounting for random chance.

3.4   |   Cluster Similarity Summary

Taken together, the results in this section indicate that the simi-
larity between clusters is most responsive to the modality of the 
ensemble distributions. While there is never complete agreement 
between the clusters, the clear trends with leadtime suggest that 
the clustering in both ensembles is largely being driven by the 
modes that exist at the common scales within the domains. Any 
clustering differences can be readily explained by fundamental 
uncertainties in the placement of members, caused by the fact that 
the ensemble modes may not always be entirely distinct or that 
a given member may be an appropriate fit for multiple clusters. 
This uncertainty is even more pronounced when clustering over 

leadtime windows, rather than clustering on each leadtime sepa-
rately. However, within this uncertainty there is the potential for 
a given set of clusters to provide better guidance than the other. 
The next section will explore whether this is the case by evaluating 
typical cluster skill and reliability for both ensembles.

4   |   Cluster Skill and Reliability

In this section, we determine the extent to which cluster size 
acts as a predictor of the likelihood of verification, with larger 
clusters indicating a more likely event. To investigate this, we 
calculate the PSD Equations  (1) and (2) between each medoid 
and the NIMROD radar (Golding  1998) three-hourly accumu-
lations across the trial period. We focus on medoid skill in this 
section rather than cluster average skill to alleviate sampling 
differences that may occur with clusters of different sizes. To 
enable these comparisons, each radar field is interpolated to the 
corresponding model grid using a nearest-neighbour algorithm 
that masks extrapolated points. For each ensemble cycle, we 
then average the radar-medoid PSD across each leadtime win-
dow, consistent with the main clustering procedure.

Figure 8 shows the average PSD between the radar and the clus-
ter medoids (using k = 4). For comparison, Figure  8 also plots 
the mean PSD between the radar and each ensemble member, as 
well as the PSD between the radar and the k = 1 medoid, as two 
representations of the average distance from the full ensemble 
to the radar. The first trend to note is the segmentation between 
the two ensembles. We observe this same trend when using any 
smoothing-based displacement measure, and studies in the first 
section of the Supporting Information link this to the grid resolu-
tion. Therefore, Figure 8 should not be interpreted as evidence that 
MOGREPS-UK is drastically more skilful than MOGREPS-G.

However, there is a clear separation in each ensemble between 
the medoid-radar PSD associated with different cluster sizes. The 
most populated cluster medoid is consistently closer to the radar 
than other medoids. In fact, all medoid distances are ranked by 
the size of the cluster they represent. Additionally, there is a nota-
ble offset between the medoid distances of the smallest cluster and 
the distances of all other medoids, especially at later leadtimes. 
Indeed, the least populated cluster medoid can be as much as 50% 
further from the radar than the most populated cluster medoid. 
This result is not too surprising given the frequency with which 
this smallest cluster is singleton (Figures 3 and 4a), as well as the 
associated singleton arguments discussed in Section 3.1.

In comparison with the ensemble average, the largest and sec-
ond largest cluster medoids are both typically closer to the radar 
than the ensemble mean. For context, Figure 3 shows that these 
two cluster medoids combined typically represent 13–15 of the 18 
members included in the ensembles, depending on the leadtime 
window. However, when compared to the k = 1 medoid (the mem-
ber which has the smallest total distance from all other members), 
the largest cluster medoid is usually slightly further from the radar. 
So, despite the impressive separation of medoids by skill, the tech-
nique for finding the most likely ensemble mode selects a repre-
sentative member that is less accurate compared to just finding the 
central state of the ensemble. Indeed, further interrogation reveals 
that the largest cluster medoid for k = 4 is the same as the k = 1 

FIGURE 7    |    Average Adjusted Rand Index between ensemble clus-
ters evaluating similarity of ensemble membership.
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medoid approximately 70%–80% of the time at early windows, but 
falls to under 50% of the time at the latest leadtime windows, ex-
plaining the growing disparity between the two.

Overall, these findings demonstrate that the medoids associated 
with larger clusters are consistently more skilful than those as-
sociated with smaller clusters. However, these findings do not 
provide insight into the reliability of the clusters, i.e., does the 
size of a cluster provide a useful quantitative estimate of the like-
lihood that the verifying observation will be closer to that clus-
ters' medoid than any other medoid. Note that this verification 
is not estimating the absolute skill of the cluster medoid, only 

the probability that it is closest to the observation compared to 
all other medoids. To determine this, we use the radar-medoid 
PSDs to assign the radar to a cluster. There are two ways that 
this process can be implemented. One approach is to include 
the radar as an ‘extra ensemble member’ and apply the full K-
medoids workflow to these 18 + 1 members. However, due to the 
underspread nature of these ensembles, this often leads to the 
radar being placed into its own separate cluster and does not 
provide information about the cluster reliability. Therefore, we 
instead manually assign the radar to the cluster with the min-
imum medoid-radar PSD, thereby ensuring that the radar is 
placed into a cluster containing at least one ensemble member.

FIGURE 8    |    Average PSD between radar and ensemble medoids for each k = 4 cluster. Ensemble mean represents the mean PSD between each 
ensemble member and the radar.

FIGURE 9    |    Cluster reliability diagrams for (a) the first 6 leadtime windows and (b) the last 6 leadtime windows. Forecast probability is the cluster 
size, observed frequency is the frequency with which the radar is placed into a cluster of that size.
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Figure  9 shows cluster reliability diagrams averaged over the 
first and last six leadtime windows. Here, forecast probability 
is determined by the radar cluster size normalised by the total 
number of ensemble members (18), while the observed fre-
quency is determined by the fraction of instances that the radar 
is placed into a cluster of that size. As an example, if clustering 
is a reliable tool, we should expect the radar to be placed into 
a cluster of size 12 approximately two-thirds of the time. It is 
also worth emphasising at this stage that we assign the radar to 
a cluster based on the closest medoid, not based on the closest 
member. This approach ensures that the radar is not preferen-
tially placed into larger clusters by chance and is also consistent 
with the K-medoids procedure.

Broadly speaking, the data in Figure 9 follows the 1:1 perfect 
reliability line reasonably well, especially at later leadtime 

windows. The reduced reliability during early periods is 
likely reflective of members being distributed more normally 
at these leadtimes, which does not favour robust classifica-
tion into distinct groups. Across all leadtimes, however, clus-
ters with smaller k are typically more reliable than larger k. 
These differences may be related to symmetries in the reli-
ability curves that emerge from the designation of the radar 
to a particular cluster. For instance, for k = 2, if the radar is 
placed into a cluster of size 12 approximately 75% of the time 
(as opposed to two-thirds of the time for perfect reliability), by 
construction, this necessitates the radar being placed into a 
cluster of size 6 only 25% of the time. Hence, any displayed un-
derconfidence at one end of the 1:1 line and will be reflected as 
overconfidence at the other end. Following the same logic, we 
should expect to find perfect reliability for k = 2 at 50% prob-
ability, and indeed this is observed. We might anticipate that 

FIGURE 10    |    MOGREPS-G clusters for case study accumulation periods 2 (top) and 3 (bottom). NIMROD three-hourly verification is shown in 
the left column, using the same scale as the other precipitation plots but with grey regions indicating areas of insufficient returns (more than 10 min of 
missing data in a 1-h period). Other columns show MOGREPS-G clusters. Feature density plots show the cluster-wide agreement of finding a feature 
at that location. Representative member (RM) plots beneath this show the three-hourly accumulation for the medoid of that cluster. The PSD between 
a member without features and the radar is undefined (NaN).
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these arguments could be extended to larger values of k, and in 
general, the reliability curves appear to cross the 1:1 line at ap-
proximately 1∕k. However, the neatness of these symmetries 
will be unavoidably broken compared to k = 2 by the addition 
of more clusters for the radar to be placed into.

In summary, we have found that clustering is a reliable tool, and 
the number of members that supports each medoid is a useful 
measure of the probability that the medoid will verify most accu-
rately. While there is certainly scope for improvements at the ex-
treme ends, this is likely reflective of the underspread nature of 
the ensembles. However, these findings have also demonstrated 
that neither ensemble is more reliable than the other. Together 
with the results from the previous section, we are forced to 
conclude that clustering on the CPE does not add value com-
pared to clustering on the driving ensemble, at least over these 
scales. Therefore, it is likely that the tool is most sensitive to the 
synoptic-scale variability that exists across the UK domain and is 
not affected by the smaller scale detail included in the CPE. This 
conclusion is supported by findings in Section 3 of the Supporting 
Information, showing a case where large-scale variability is well 
represented in clusters at the expense of smaller-scale variability. 
However, it is still possible that CPE clustering can provide value 
when used on a more ad-hoc basis, by isolating specific regions 
that will be impacted by extreme weather. Therefore, the final 
section of this study analyses the clustering performance in each 
ensemble for an impactful event within the trial period.

5   |   Convective Case Study

The event discussed in this section concerns a case of hazardous 
convection that impacted Wales and central England on 12 June 
2023. This event was characterised by an area of high wet-bulb 
potential temperature over western areas of the United Kingdom 
with strong diurnal forcing providing the initiation. Slack pres-
sure and slow winds prolonged the potential hazards, and an 
amber weather warning was issued over the affected regions. 
Impacts from surface-water flooding, hail, and thunderstorms 
were reported (UKMO 2023).

To assess clustering performance, each ensemble is clustered 
over the region identified by forecasters as most at risk in guid-
ance produced that day. The 12 h clustering period runs from 
1200Z 12 June to 0000Z 13 June, which covers the formation 
and dissipation of convection. Clusters were produced using the 
shortest leadtimes (Window 1) available with the setup outlined 
in Figure 2. Therefore, the MOGREPS-G forecast used here was 
initialised at 0000Z 12 June using leadtimes T + 12–24 h, while 
the MOGREPS-UK forecast was initialised at 1000Z 12 June 
using leadtimes T + 2–14 h. For each ensemble, four sets of three-
hourly precipitation accumulations are used to produce clusters. 
As with the rest of the study, features are selected using the 90th 
percentile, which corresponds here to 2.00 mm in MOGREPS-G 
and 1.47 mm in MOGREPS-UK. The outputs from using k = 3 
are shown for each ensemble, as these were subjectively evalu-
ated as giving the best clusters (all forecast scenarios represented 
without any being repeated).

Figure  10 shows clusters from MOGREPS-G for the second 
and third accumulation periods used for clustering, which are 

chosen to highlight the main trends for this ensemble (data 
from the entire period is shown in Section 2 of the supplement 
for completeness). From 1500Z to 1800Z, the radar shows a 
peak of precipitation intensity as outbreaks of convection con-
tinued across Wales and central England. At the same time, 
MOGREPS-G presents much lower intensities, as is typical of 
these coarse grids. However, even accounting for the differences 
in resolution, MOGREPS-G clusters do not offer useful guidance 
for forecasting the locations that will be impacted by convection. 
Clusters 2 and 3 both predict the impacts will be largest across 
northern areas of the domain, while cluster 1 does not show a 
clear signal anywhere. Then, in the next three-hour period, pre-
cipitation in MOGREPS-G has largely dissipated, despite heavy 
radar returns being recorded across north Wales for the same 
period. In summary, MOGREPS-G has produced a poor forecast 
for this event, and while the accuracy of the underlying data will 
inevitably limit the potential of the clustering to add value, it is 
also clear the clustering has had limited success in distinguish-
ing different outcomes.

Figures  11 and 12 between them show MOGREPS-UK clus-
ters for all four accumulation periods used in clustering. In 
contrast to the MOGREPS-G clusters, each MOGREPS-UK 
cluster shows a distinct outcome, with clusters 2 and 3 show-
ing northerly and southerly shifts in the impacted areas, and 
cluster 1 being between the two. MOGREPS-UK cluster sizes 
are also more unequal, with the scenario presented in cluster 
1 being favoured by 13 members, while cluster 3 is only a sin-
gleton. In terms of forecast evolutions, most MOGREPS-UK 
members initialise convection too early and clear it too quickly. 
For the first accumulation period, the medoid for the cluster 
which shows a southerly bias (cluster 2) verifies closest to the 
radar. However, this southerly bias remains throughout all 
accumulation periods in this cluster, despite impacts pushing 
further to the northwest at later times. Subsequently, at the 
times when convection is heaviest (the second and third peri-
ods), cluster 2 does not verify as well at these times. Instead, 
the medoid representing the largest cluster verifies most ac-
curately. Additionally, the probabilistic guidance from feature 
density plots is subjectively a better fit to the radar for clus-
ter 1 than clusters 2 and 3, and the mean cluster PSD largely 
reflects this. For the final accumulation period, members in 
cluster 1 have all dissipated the convection too quickly, while 
some members from other clusters do a better job of retaining 
impacts for this period.

It is clear, then, that MOGREPS-UK clustering has provided 
more appropriate guidance than MOGREPS-G clusters for 
this event. While MOGREPS-G clustering was hampered by 
a poor forecast, it is also the case that clustering did not suc-
cessfully highlight distinct scenarios within this poor fore-
cast. Conversely, even though no individual MOGREPS-UK 
member fully resembled the verified event across all periods, 
clustering revealed useful probabilistic trends. Additionally, 
the medoids chosen for each cluster were representative of 
the trends highlighted by those clusters. Further, the medoid 
for the largest cluster verified most accurately of all medoids 
when all periods were taken into account. Inspecting other 
members within the ensemble revealed that one member from 
the largest cluster verified more accurately throughout all four 
accumulation periods than the largest cluster medoid. Apart 
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from this member, the largest cluster medoid provided the best 
forecast for this event.

6   |   Discussion and Conclusions

Ensembles are becoming an ever more important part of a 
forecaster's toolkit, such that some meteorological services 
are retiring their deterministic models entirely and transition-
ing to an ensembles-only approach. With increasing ensemble 
importance, complexity and size comes the need to produce 
methods that can intelligently summarise these large data 
sets. Feature-based clustering has previously shown value for 
identifying distinct frontal development areas in global en-
sembles (Boykin  2022). Here, we determine whether there is 
additional value to be gained from systematically applying clus-
tering to convection-permitting ensembles (CPEs) compared to 
the global ensembles that drive them. We use the operational 
MOGREPS-G driving ensemble and MOGREPS-UK CPE for 

these comparisons and apply clustering to the 90th percentile 
of three-hourly precipitation accumulations over a three-month 
period. Note also that the tool used in this study clusters only 
on positional similarity of precipitation features; it does not con-
sider magnitude differences.

In a routinely running configuration, with both ensembles set 
up to cluster over the United Kingdom in 12-hourly windows, 
CPE clustering did not add clear value compared to driving-
ensemble clustering. The leadtime trends of the representative 
member and cluster membership statistics strongly indicate 
that clusters are most sensitive to large-scale features. A 
separate case study presented in Section 3 of the Supporting 
Information reinforces this conclusion by highlighting a situ-
ation where large-scale variability is well represented within 
the clusters while small-scale variability is largely neglected. 
This finding is consistent with previous interpretations of 
the behaviour of spatial verification methods (Roberts and 
Lean 2008).

FIGURE 11    |    As with Figure 10 but for MOGREPS-UK clusters showing the first two case study accumulation periods.
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Additionally, it is expected that clustering will perform more 
reliably and predictably when multiple distinct modes are 
present in the ensemble pdf. Here, we see that ensemble clus-
ters are more similar at the leadtimes that are more likely to 
present multiple synoptic-scale modes than at earlier lead-
times, when ensemble members are still normally distributed 
about the control. Some differences between cluster sets are 
evident (e.g., there is only approximately a one-third chance 
of finding the same medoid in both cluster sets at the longest 
leadtimes tested). This is due in part to unavoidable sensitiv-
ity to the clustering parameters when the ensembles do not 
fully capture the distributions they are attempting to repre-
sent (Brill et al. 2015).

This study also performs a systematic verification of feature-
based clustering to determine the reliability of identified fore-
cast scenarios. In each ensemble, the medoids representing the 
largest and second largest clusters are typically more skilful 
than the ensemble average. Furthermore, the medoid represent-
ing the smallest cluster (when forced into four clusters) can be 
substantially less skilful than other medoids. However, when 

analysed from a reliability perspective, the smallest cluster can 
occasionally verify more accurately than other clusters. In fact, 
clustering demonstrated reasonable reliability in each ensemble, 
particularly for later leadtimes. Forecasters should therefore be 
confident that the number of ensemble members supporting a 
particular outcome is a reliable quantitative prediction of the 
probability that the given outcome will verify most accurately 
compared to the other identified outcomes. Of course, within 
underspread ensembles, this outcome may still be reasonably 
far from the verification, but this is not an issue that clustering 
can address.

While CPE clustering did not demonstrate consistent value when 
used at synoptic scales, it did demonstrate clear value when tar-
geted over a region impacted by hazardous convection for a case 
study. While no CPE member fully resembled the event across 
all three-hourly accumulation periods contained in the 12 h 
window, clustering revealed distinct scenarios and useful proba-
bilistic trends. Additionally, the medoid representing the largest 
cluster verified most accurately compared to the other cluster 
medoids. In contrast, the driving ensemble performed poorly, 

FIGURE 12    |    As with Figure 11 but for the final two case study accumulation periods.
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and clustering was not able to identify distinct scenarios. This 
case study reveals that CPE clustering is most useful when ap-
plied on an ad-hoc basis over more targeted domains. Therefore, 
a fully on-demand process would greatly enhance the appeal of 
the tool for use with forecasting mesoscale features.

When issuing guidance, it is also common practice for forecast-
ers to compare outputs from other meteorological centres to 
judge the broader multi-model agreement. Given the persistent 
problem of underdispersion in ensembles, multi-model distri-
butions can provide a wider range of possible outcomes. This 
technique is driving efforts to formalise these processes into 
methods that produce a consistent probabilistic output, whether 
it be at the short-to-medium range (Roberts et al. 2023) or at the 
medium-to-extended range (Neal et  al.  2024). It may also be 
useful to apply feature-based clustering to multi-model ensem-
bles, where there has previously been limited success in testing 
methods that are willing to mix members from different ensem-
bles (Alhamed et al. 2002; Yussouf et al. 2004; Brill et al. 2015; 
Lamberson et  al.  2023). Additionally, it may also be useful to 
apply clustering to multiple parameters at once to identify self-
consistent, multi-hazard scenarios, such as those associated 
with freezing temperatures and heavy precipitation.

Finally, the clustering process described in this study requires 
the user to decide ahead of time on the desired number of clus-
ters, k, which may not always be known. In an operational 
setting, a forecaster is likely only concerned with the num-
ber of clusters needed to provide the best guidance, i.e., the 
clusters that display all of the possible scenarios without any 
of those scenarios being repeated between clusters. In such 
cases, k is more useful as an indication of the number of dis-
tinct modes contained in the ensemble, rather than as a free 
parameter. Therefore, it is desirable to produce additional pro-
cessing methods that can decide on a ‘suggested’ or ‘optimal’ 
k to present to the user. Developing a method that can reliably 
identify the optimal outputs will require extensive testing and 
verification.
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