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Abstract Aerosol particles from both natural and anthropogenic sources play a critical role in the Earth's
climate by interacting with solar radiation and clouds. Anthropogenic aerosol and precursor emissions have
historically exerted a global cooling effect, which has partially offset the warming from concurrent greenhouse
gas emissions. Recent reductions and shifts in aerosol and precursor emission patterns may reduce this offset
and introduce spatially and temporarily varying climate impacts. Investigating aerosol-climate effects is
typically done with computationally expensive Earth System Models, which include complex representations of
physical, chemical, biological, and geological processes and their coupled interactions for the entire global
climate system. In this study, we develop a machine-learning climate emulator using Gaussian processes, called
AeroGP, that can be used to quickly assess, for example, the impact of different policy decisions on future
climate mitigation strategies. The emulator is trained on a unique data set from the Norwegian Earth System
Model (NorESM), analyzed as an ensemble here for the first time. AeroGP accounts for the joint spatial
covariance of the output variables and captures the complex, heterogeneous impacts of aerosols on surface
temperature using coregionalization. We believe this is the first time this method has been used to account for
the spatial correlation of such climate data. We show that AeroGP retains the spatial complexity of NorESM at a
fraction of the computational cost and demonstrate its usefulness to assess the sensitivity of temperature to
idealized future aerosol emission scenarios.

Plain Language Summary Aerosols—airborne particles from both natural and human sources—
play a crucial role in Earth's climate. Historically, anthropogenic aerosols have had a cooling effect, partially
offsetting greenhouse gas-induced warming. However, reductions and geographic shifts in aerosol sources may
weaken this offset and introduce regionally varied climate impacts. Climate models used to study these impacts
are either highly detailed but computationally expensive or highly simplified and lacking in spatial complexity.
This study presents AeroGP, a machine-learning emulator based on Gaussian processes that captures the spatial
pattern of the temperature response to aerosols while significantly reducing computational costs. Such machine-
learning tools can enable more efficient assessments of future aerosol emission scenarios, supporting climate
mitigation policy decisions.

1. Introduction

Aerosol-cloud-climate interactions are one of the largest sources of uncertainty in future climate projections due
to the complexity of processes involved, from microphysical to large-scale dynamics, and due to uncertainties in
future aerosol emission pathways (Boucher et al., 2013; Forster et al., 2021; Polonik et al., 2021; Szopa
etal., 2021; Watson-Parris & Smith, 2022). Aerosols are small particles suspended within the atmosphere that are
emitted directly from natural and anthropogenic sources or formed from gases within the air. They interact with
climate both locally and remotely: directly via the absorption and scattering of solar radiation and indirectly
through interactions with clouds and the hydrological cycle, therefore impacting cloud radiative effects and
precipitation patterns (Albrecht, 1989; Boucher et al., 2013; Hansen et al., 1997; Li et al., 2022; Stier et al., 2024;
Twomey, 1977).
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Unlike long-lived greenhouse gases, aerosols are not well mixed in the atmosphere. They produce heterogeneous
radiative forcing patterns and regional climate responses which depend on both the type of aerosol and the
emission location. For example: black carbon induces shortwave heating through the atmospheric column, which
can impact monsoon variability close to emission locations and suppress precipitation globally (Richardson
et al., 2018; Samset, 2022). Sulfur dioxide emissions in Asia have been shown to have teleconnections across the
Northern Hemisphere, primarily via impacting circulation patterns and the resulting cloud fields (Lewinschal
etal., 2019; L. Wilcox et al., 2019). The climate impact of aerosol processes across scales, from optical properties
impacting microphysics to large-scale teleconnections (Persad, 2023; Stier et al., 2024), remains uncertain, and
therefore aerosols are continually highlighted in climate assessment reports as a major source of uncertainty in
climate projections (Boucher et al., 2013; Forster et al., 2021).

The process-level uncertainties in aerosol-cloud-climate interactions, radiative forcing, and dynamical responses
are compounded by uncertainty in emissions policy decisions and therefore potential future emission scenarios.
These decisions are driven by a range of factors including economic development, technological advancements,
and societal choices ranging from international climate agreements to regional air quality regulations (Lund
et al., 2019; Szopa et al., 2021). Recently, global anthropogenic aerosol emission rates have fallen, due to a
combination of reductions resulting from, for example, air quality targets and climate goals (Aas et al., 2019;
Crippa et al., 2016; Elguindi et al., 2020). There have also been geographical shifts in emissions from changes in
industrial production and transport (Elguindi et al., 2020; Quaas et al., 2022). The global mean effect of
anthropogenic aerosols in the industrial era has been a net cooling of —0.5°C (—0.22 to —0.95)°C (Forster
et al., 2021), which has masked some of the warming from concurrent greenhouse gas (GHG) emissions (Forster
etal.,2021; Szopa et al., 2021). A continued future reduction in aerosol and precursor emissions is likely to reduce
this cooling in the global mean (Hodnebrog et al., 2024) and to produce spatially complex trends in temperature,
precipitation, air quality, and extreme events (Dong et al., 2017; Persad, 2023; Persad & Caldeira, 2018; Samset
et al., 2016; Westervelt et al., 2020). This study is motivated by the need to assess the climate response to these
potential future emission scenarios, to improve understanding of regional patterns of aerosol-climate interactions,
and to develop a tool for policymakers.

Typically, global climate is studied using physics-based Earth System Models (ESMs), which are composed of
various submodels representing the different parts of the Earth system and how they interact: atmospheric and
ocean models (for simulating, e.g., weather, ocean biogeochemistry, atmospheric chemistry, winds, ocean cur-
rents, and thermodynamics), land surface models (for vegetation, hydrology, and soil processes), ice models (for
glaciers and sea ice), and geological models (for long-term geochemical processes). These models are designed to
capture interactions, teleconnections, and feedbacks between these components, at as high a spatial and temporal
resolution as possible, and to be stable for long-term simulations of past, current, and possible future climate
scenarios. Due to this complexity, ESMs are computationally very costly and require specialized supercomputing
resources for both running simulations and managing data. Therefore, a limited number of future scenarios can be
simulated with fully coupled ESMs, and the models cannot be easily used by nonexpert stakeholders such as
policymakers.

Machine learning (ML) emulators can address these resource limitations and therefore explore more of the
scenario space than is possible with ESMs. Emulators do not explicitly resolve all the physical dynamics of an
ESM but instead focus on learning the patterns driving a limited subset of variables, making them computa-
tionally efficient while retaining spatial and temporal complexity. Emulators can be used to explore more
emission scenarios than are computationally feasible with ESMs, allowing a broader exploration of potential
future pathways and of the range of uncertainty in future projections. In this study, we develop an emulator to
predict the spatially resolved temperature response to regional perturbations of anthropogenic aerosols in order to
facilitate a rapid assessment of the local and remote responses to regional policy and air quality decisions. We
refer to this emulator as AeroGP.

To build AeroGP, we use Gaussian processes (GPs), which is a machine learning methodology that is well suited
to Earth-system problems because it can incorporate prior physical knowledge and inherently produce uncertainty
estimates (Camps-Valls et al., 2016). GPs have been used for global spatially resolved climate emulation for
scenarios including both GHG and aerosol forcing (e.g., ClimateBench (Watson-Parris et al., 2022) or FairGP
(Bouabid et al., 2024)) and for limited area spatio-temporal modeling such as predicting air quality or regional
downscaling (Axen et al., 2022; Hamelijnck et al., 2021; Krock et al., 2023; Tazi et al., 2024). These studies
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typically had relatively poor performance when trying to predict the signal to aerosol-only perturbations, due to
the dominance of the GHG response. Here, we predict the global spatially resolved temperature response to only
aerosol perturbations, which previous ML-emulators have struggled to do. This is a more complex problem due to
the short-lived nature of aerosols compared to GHGs, and due to spatial and temporal heterogeneity in the forcing
and the rate of change of emissions as well as the sign of that change. To our knowledge, we are also the first to use
coregionalization to account for the joint spatial covariance of surface temperature. We show that the performance
of AeroGP is comparable to that of the parent model NorESM and then use it to assess the sensitivity to scales of
potential future emission scenarios.

Our aim is to provide an example that machine-learning techniques can be useful within climate science seen from
both the view of climate scientists and experts on machine learning. For those with a background in climate
science, we show that our machine learning emulator can achieve comparable accuracy to traditional tools for a
fraction of the computational cost and is therefore well suited to problems such as extending or constraining ESM
results, exploring novel emission scenarios, and providing projections for impact and policy assessments. An
inexpensive climate emulator which can provide spatially resolved projections such as AeroGP could be
particularly useful for end-users of climate products, such as in policy development or insurance. For those with a
machine learning background, we highlight the unique data structures and physical considerations to keep in mind
when dealing with spatially and temporally resolved climate data and suggest some methods for working with a
large amount of climate model output as training data.

In the remainder of this paper, we first give a brief overview of aerosol-climate interactions (aimed at nonexperts
in climate science) in Section 2. We then describe the development of the training data set and give an overview of
Gaussian processes in Section 3. We evaluate the performance of AeroGP and test it on potential future aerosol
perturbations in Section 4 and finally present a discussion of our results in Section 5 and conclusions in Section 6.

2. Anthropogenic Aerosols and Their Climate Impacts

In this study, we are interested in the climate impact of anthropogenic emissions of three aerosol species or aerosol
precursors which are known to impact climate: sulfur dioxide (SO, the precursor for sulfate, SO,, acrosols), black
carbon (BC), and organic carbon (OC). Sulfate aerosols form in the atmosphere via gas-phase oxidation and
aqueous-phase (in-cloud) oxidation of SO, (Seinfeld & Pandis, 2016). SO, is primarily emitted from fossil fuel
combustion but also has natural sources, for example, from the ocean and volcanoes (Boucher et al., 2013; Szopa
et al., 2021). Sulfate influences climate via scattering incoming solar radiation as well as increasing cloud albedo
and contributes to a majority of the anthropogenic aerosol forcing globally (Haywood & Boucher, 2000). The
cooling impact of sulfate aerosols has masked a significant portion of the warming due to greenhouse gas
emissions in the industrial era. As clean-air policies have improved and industrial production has shifted
geographically, the resulting reduction in sulfate has begun to reveal this warming (Szopa et al., 2021).

BC is a primary aerosol emitted during incomplete combustion of, for example, fossil fuels and biomass. It
impacts the climate primarily via absorbing incoming solar radiation and therefore acts to warm the surface
through exerting positive radiative forcing. Additionally, however, BC also changes atmospheric heating rates,
humidity, and cloudiness (so-called “rapid adjustments”), which impact both temperature and precipitation
locally and remotely (Bond et al., 2013; Quaas et al., 2024; Samset et al., 2016). BC also contributes to indirect
aerosol effects (i.e., changing cloud microphysical properties) as BC particles typically are coated by hydrophilic
materials in the atmosphere, for example, sulfuric acid, and thereby contribute to the cloud condensation nuclei
(CCN) population (Bond et al., 2013; Haywood & Boucher, 2000; Twomey, 1977). BC can also modify the
surface albedo after deposition on the surface, which is especially important at high latitudes (Sand et al., 2013).
The vertical distribution of BC also controls its climate impacts: Ban-Weiss et al., 2012 showed that BC in the
lower troposphere warms the surface and increases precipitation, whereas BC in the upper troposphere cools the
surface and suppresses precipitation. BC can also have nonlocal impacts via the transport of heat (Sand
et al., 2020; Stjern et al., 2017).

OC is emitted as a primary aerosol both from anthropogenic combustion (fossil fuels and biomass) and natural
sources (e.g., pollen and algae). It is also formed in the atmosphere (secondary production) via gas oxidation and
subsequent condensation (Haywood & Boucher, 2000). OC impacts the climate mainly via scattering incoming
solar radiation as well as via indirect aerosol-cloud interactions and generally cools the surface and reduces
evaporation (Boucher et al., 2013).
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Table 1
Summary of Aerosol Perturbation Experiments

Aerosol Years (ensemble
MIP or project species Experiments (baseline) members) NorESM v. Reference
DAMIP SO,, BC, OC hist-aer, ssp245-aer, (piControl) 1850-2020 (3), NorESM2-LM Gillett et al. (2016),

2021-2100 (1) Seland et al. (2020)

AerChemMIP SO,, BC, OC ssp370-lowNTCF, (SSP3-7.0) 2015-2055 (3) NorESM2-LM Collins et al. (2017)
RAMIP SO,, BC, OC  ssp370-126aer, ssp370-EAS126aer, 2015-2065 (10) NorESM2-LM L. J. Wilcox et al. (2023)

AeroGP (NorESM)
Regional SO,

Regional BC

Global simultaneous
removal

Global individual removal

ssp370-SAS126aer, ssp370-AFR126aer,
ssp370-NAE126aer, (SSP3-7.0)

BC126-S0,370, SO,126-BC370, (SSP2-4.5) 2015-2055 (2) NorESM2-LM This work
0xEU, EA, SA, NA; 7xEU; 150; 110 (1) NorESM1 Lewinschal et al. (2019)
5xNA; 5xEA; 10xSA; (year 2000)
S5xEA; 10xEU; 10xSA; 10xNA; (year 2000) 80 (3) NorESM1 Sand et al. (2020)
SO,, BC, OC 0xGlobal, (year 2000) 50 (1) NorESM 1 Samset et al. (2018)
SO,, BC, OC 0xGlobal, (year 2008) 50 (2) NorESM1 Baker et al. (2015)

Note. Columns are (from left to right): the model intercomparison project (MIP) or study, the aerosol species that are changed (with the baseline indicated in brackets),
the region and amount of aerosol perturbation, the years available (in the case of transient experiments) or the number of years after spin-up (in the case of equilibrium
experiments) (with the number of ensemble members in brackets), the NorESM model version, and the main reference. Region abbreviations are EU—Europe, EA—
East Asia, SA—South Asia, NA—North America, AF—Africa, NAE—North America and Europe together. See the main text for all MIP abbreviations and experiment

details.

In the global mean, anthropogenic aerosols have historically cooled the planet by —0.5°C (—0.22 to —0.95)°C
over the industrial era (Forster et al., 2021). Future reductions in anthropogenic emissions could therefore cause
an apparent warming of about the same magnitude if all emissions were stopped, see Figure 2 and (Samset
et al., 2018). However, because aerosols generally have a short atmospheric residence time (days to a few years,
depending on location within in the atmosphere (Prospero et al., 1983)), the effects of increases or reductions as
well as geographic shifts in emissions actually result in a spatially heterogeneous forcing pattern (Persad &
Caldeira, 2018; Westervelt et al., 2020), and the resulting temperature patterns are less well-understood than the
global mean impacts and one of the key motivations for this study. A fast ML-model can facilitate the testing and
exploration of many more regional perturbation scenarios than would be possible with a traditional physics-based
ESM, allowing for the exploration of how future aerosol-induced warming or cooling may evolve.

3. Data and Methods

AeroGP is trained on a unique set of aerosol perturbation experiments from NorESM. This data set is compiled
here for the first time from many different sources, including new simulations run specifically for this study, with
the aim of capturing the broad state-space of potential emission scenarios and regional patterns of the response to
aerosol forcing. In this section, we will first describe NorESM and the creation of the training data set (which is
also summarized in Table 1). We then present an overview of GPs, how we apply this method to build AeroGP,
and the metrics we use to validate its performance. In the following sections, we will show the results of the
validation and some initial results using AeroGP for emulating climate impacts. This entire process is summarized
in Figure 1.

3.1. NorESM Model Description

AeroGP is trained on output from the Norwegian Earth System model (NorESM), an ESM based on the Com-
munity Earth System Model (CESM) (Danabasoglu et al., 2020; Hurrell et al., 2013), extended with a custom
ocean dynamics model (Bentsen et al., 2013; Seland et al., 2020) and relatively advanced aerosol-chemistry-
cloud-radiation modules (Kirkevag et al., 2013, 2018; Seland et al., 2020). In order to create a data set that en-
compasses a large range of plausible anthropogenic aerosol emission scenarios, we have compiled a set of ex-
periments run with two versions: NorESM1-M (Bentsen et al., 2013; Iversen et al., 2013) and NorESM2.0-LM
(Seland et al., 2020), both of which have relatively complex descriptions of aerosols and aerosol-cloud
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02 emissions (Tglyr), hist-aer 2000

35
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3 Repeat leave-one-out validation

with each of 24 experimentsin
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Train GP model
(optimize hyperparameters)
3
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(compare to NorESM, y*) e
~ =
Final AeroGP (trained on all
data) with performance
estimates from validation

AeroGP prediction, hist-aer 2000

2

ATO(K)
Prediction GP(x*): Annual mean
temperature anomaly (K)

Figure 1. Workflow diagram showing the development of AeroGP.

interactions compared to other ESMs, which we outline below. In the sections following this model description,
we will refer to both versions simply as NorESM.

NorESM1 was the model version used for the World Climate Research Program's Coupled Model Intercom-
parison Project Phase 5 (CMIP5) and the Intergovernmental Panel on Climate Change's 5th Assessment Report
(IPCC ARS). It is based on the Community Climate System Model (CCSM4.0) (Gent et al., 2010) and the
Community Earth System Model (CESM1.0.3) (Hurrell et al., 2013), with the latest code released in 2018. The
ocean component is the Bergen version of the Miami Isopycnic Coordinate Ocean Model (MICOM), the land

—— DAMIP hist — aer
DAMIP ssp245-aer
7XEU SO2 only
5XEA SO2 only
5xNA SO2 only
10xSA SO2 only
Global BC removal only
AeroGP1
RAMIP AFR

14 0xSA SO2 only

0xNA SO2 only

q RAMIP SAS

0xEU SO2 only

0XEA SO2 only

- 10xSA BC only
f\_\/ RAMIP EAS
RAMIP NAE

10xNA BC only

5XEA BC only

Global OC removal only

10xEU BC only

ssp370-lowNTCF

AT (K)

—— AeroGP2
-2 —— Global SO2 removal only
T T T T T T T T T —— RAMIP global
-80 —-60 -40 =20 0 20 40 60 80
Latitude —— Global Anthro Removal

Figure 2. Zonal mean temperature change for the last 20 years of all experiments in the training data set compared to their
respective baselines. Color indicates global mean temperature change and corresponds to the dots on the left-side axis, with
red being the warmest experiment (complete removal of all anthropogenic aerosols, +0.56°C) and blue the coldest (historical
aerosol and precursor emissions, —0.84°C). The two experiments where we explore the validation results in detail are
highlighted in bold.
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surface component is the Community Land Model version 4 (CLM4), and the sea ice component is CICE4
(Bentsen et al., 2013). The atmospheric component is CAM4-Oslo, which is based on the Community Atmo-
sphere Model (CAM4: (Neale et al., 2013)) and extended with a custom aerosol module (OsloAero4.0) that
includes prognostic double moment cloud microphysics, direct aerosol-radiation interactions, and aerosol-cloud
interactions (Kirkevag et al., 2013). The aerosol module calculates the mass concentrations of five different
aerosols: sulfate, black carbon, organic matter, sea salt, and mineral dust. The primary aerosol emissions follow
log-normal size distributions. There is also secondary aerosol formation through clear-sky and in-cloud gas phase
and aqueous phase chemical reactions. Aerosol mass concentrations, size distributions, and optical properties are
continuously updated during the simulations (and not required to remain log-normal) via lookup tables calculated
offline with a size-resolving model which accounts for processes such as condensation, coagulation, hygroscopic
growth, gas-phase chemistry, and cloud processing. NorESM1 produces a global aerosol effective radiative
forcing (ERF: including both aerosol-radiation interactions (ARI) and aerosol-cloud interactions (ACI)) of —1.0
W/m? in the year 2000 compared with preindustrial conditions, which is slightly weaker than the CMIP5
multimodel mean of —1.17 #+ 0.30W/m? (Kirkevag et al., 2018; Zelinka et al., 2014). NorESM1 has an equi-
librium climate sensitivity of around 2.9 K, which is average compared to other CMIPS models (Iversen
et al., 2013).

NorESM2 is the second generation model including updates to the parent model (CESM2.1 (Danabasoglu
et al., 2020)), the ocean component (BLOM (Seland et al., 2020) and iHAMOCC (Tjiputra et al., 2020)), the
atmospheric component (CAM6-Nor (Seland et al., 2020)), and the aerosol module (OsloAero6 (Kirkevag
et al., 2018; Seland et al., 2020)). Pertinent updates to the aerosol treatments compared to NorESM1 include
improved emissions, nucleation, and coagulation processes, and updated aerosol-cloud interactions via new cloud
schemes in CAMG6 (Seland et al., 2020). There are also key improvements for the production of secondary organic
aerosols, the microphysical properties of black carbon and mineral dust, and wind-driven sea salt and dimethyl
sulfide emissions (Kirkevag et al., 2018). CAM6-Nor produces a global mean aerosol ERF of —1.36 W/m? for
2014 compared to preindustrial conditions, which is slightly stronger than the CMIP6 multimodel mean for 2014
(=1.01 £0.23W/m?) (Kirkevag et al., 2018; Smith et al., 2020). NorESM2 produces an equilibrium climate
sensitivity of 2.5 K, which is toward the low end of CMIP6 estimates and is primarily due to a slow long-term
ocean response (Bock & Lauer, 2024; Seland et al., 2020).

The aerosol module in NorESM (OsloAero) is a production-tagged mode, which includes an online life-cycling
component and a set of offline size-resolved lookup tables for size distribution parameters and interpolations
related to aerosol-radiation and aerosol-cloud interactions (called AeroTab). Aerosol tracers are divided into
“background” tracers, which are primary aerosol emissions with log-normal modes, and “process” tracers which
modify the shape and chemical composition of the initial background modes. Examples of background tracers
include accumulation-mode sulfate and nucleation-, Aitken-, and accumulation-mode BC. Examples of process
tracers include sulfate condensate and sulfate from cloud processing (aqueous-phase chemistry within cloud
droplets). A full list of the aerosol tracers used can be found in Kirkevég et al. (2018). Once process tracers are
applied to an initial distribution, the resulting mixture is not required to remain log-normal. The mass of the
mixtures is tracked and the resulting aerosol size distributions and optical properties are derived from the lookup
tables.

Both NorESM versions used here have an atmospheric horizontal resolution of 1.9° (latitude) by 2.5° (longitude).
NorESMI has 26 vertical pressure levels up to 2.9 hPa (Bentsen et al., 2013), while NorESM2 has 32 vertical
pressure levels up to 3.6 hPa (Seland et al., 2020). NorESM2 has reduced troposphere and near-surface tem-
perature biases and improved spatial precipitation bias compared with its predecessor (Seland et al., 2020). We
use experiments from both versions in our training data ensemble to ensure that we have enough diversity of
aerosol perturbation experiments to cover the required state-variable-space for training. We find that the
advantage of having more training data and better coverage of the input space outweighs the potential disad-
vantage of differences in aerosol treatment (chemistry, transport, etc.) and the resulting forcing between the two
NorESM versions.

3.2. Data Set Description

We created the training data set from a diverse set of NorESM aerosol perturbation experiments, which span a
large range of possible anthropogenic emissions scenarios: from complete global removal to as much as 10x
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current emission levels in some regions (see Figures S2 and S3 in Supporting Information S1). These results are
from seven previously published aerosol perturbation studies and two additional experiments simulated specif-
ically for this study, all of which are summarized in Table 1 as well as Figure 2 and Figure S2 in Supporting
Information S1. The experiments were chosen because (a) they have perturbation experiments varying only
anthropogenic aerosol and precursor emissions, while other anthropogenic forcings (such as GHG emissions) are
kept constant relative to a baseline experiment and (b) they use a version of NorESM where the atmospheric
module is coupled to a dynamical ocean module. The first requirement means we can regress out any nonaerosol
forcing and learn only aerosol impacts on climate, and the second means that the full range of climate system
feedbacks is included (and therefore realistic remote impacts and teleconnection patterns).

Four sets of experiments in our training data set are transient runs, meaning that the emissions are continuously
perturbed throughout the experiment so the climate system follows a plausible scenario. The scenarios are based
on the Shared Socioeconomic Pathways (SSPs) defined in the sixth IPCC assessment report (AR6), which outline
different possible future anthropogenic emission pathways, depending on different political and socioeconomic
policies for greenhouse gas emission reductions (Forster et al., 2021; Gidden et al., 2019; O’Neill et al., 2014,
2017). This includes two sets of experiments from the Detection and Attribution Model Intercomparison Project
(DAMIP) (Gillett et al., 2016): hist-aer, which is forced with anthropogenic aerosol and precursor emissions for
the historical period (1850-2020), and ssp245-aer, which is an extension of the hist-aer simulation through the
21st century (2021-2100) forced with SSP2-4.5 (an intermediate forcing scenario) emissions. Both perturbations
are relative to the preindustrial control (piControl) baseline, which is a quasi-equilibrium simulation represen-
tative of conditions before widespread industrialization (Eyring et al., 2016). From the Aerosol Chemistry Model
Intercomparison Project (AerChemMIP) (Collins et al., 2017), we include the ssp370-lowNTCF experiment,
which reproduces strong levels of air quality control measures in the beginning of the 21st century (2015-2055)
and has SSP3-7.0 (strong warming scenario) as a baseline which is a future scenario without strong climate
mitigation policies. We include Tier 1 transient experiments performed with NorESM from the Regional Aerosol
Model Intercomparison Project (RAMIP), which have a baseline of SSP3-7.0 with aerosol and precursor emis-
sions reduced following SSP1-2.6 globally (ssp370-126aer) or in specific regions (i.e., East Asia: ssp370-
EASI26aer, South Asia: ssp370-SAS126aer, Africa and the Middle East: ssp370-AFRI126aer, and North
American and Europe together: ssp370-NAE126aer) for the first half of the 21st century (2015-2065) (L. J.
Wilcox et al., 2023). The final sets of transient experiments were run with NorESM?2 specifically for this study
(referred to as AeroGP (NorESM) in Table 1) in order to have a set of experiments in which SO, and BC
emissions vary in opposite directions. These experiments were conducted with SSP2-4.5 as the baseline scenario;
one with SO, increasing according to a continuation of current policies while BC decreased according to
maximum mitigation and one with the opposite configuration.

The other four sets of experiments included in our data set are equilibrium simulations, meaning that emissions
are changed abruptly and then held constant while the model is run to quasi-equilibrium with the new forcing. We
use all eight experiments from Lewinschal et al. (2019) where anthropogenic SO, emissions in a specific region
(Europe, East Asia, South Asia, or North America, as defined by Task Force on Hemispheric Transport of Air
Pollution (HTAP) (Janssens-Maenhout et al., 2015)) are either removed completely or increased in order to
achieve a global radiative forcing of —0.45 W/m?, compared to a baseline of constant year 2000 emissions. From
Sand et al. (2020), we use four experiments where BC emissions are increased in the four HTAP regions to give a
global direct radiative forcing of ~1 W/m?, also compared to a year 2000 baseline. We also have two sets of
global perturbation equilibrium experiments: complete simultaneous global removal of anthropogenic aerosols in
1.5°C warming world (with 430 ppm CO,) from Samset et al. (2018) and experiments where global anthropo-
genic emissions of each of the three aerosol species are removed individually from Baker et al. (2015).

These experiments span a wide range of plausible future changes in anthropogenic aerosols and the corresponding
temperature responses, from completely stopping all emissions and inducing warming globally (Global Anthro
Removal in Figure 2) to maximum historical levels of industrial emissions causing cooling globally (hist-aer in
Figure 2). Current emissions are in between these two and are being reduced (at differing rates) in most regions of
the world (Quaas et al., 2022). Globally, this trend is likely to continue; however, there may be regional increases
as manufacturing and industrial production increases in regions such as Africa and South-East Asia (Lund
et al., 2019; Myhre et al., 2017). Including experiments with both increasing and decreasing regional emissions
for individual aerosol species, which cause more regionally heterogeneous temperature impacts, is also important
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for spanning the potential emission-space and for accurate training of the emulator. In the simulations included
here, the temperature response is much more pronounced in the Northern Hemisphere than in the south (Figure 2),
especially in the midlatitudes (where the emission changes primarily happen) and in the Arctic.

While there are substantial differences between the two generations of NorESM used here (see Section 3.1), we
find it more important to span as large a range as possible of potential emission scenarios and in general find
improved performance of the emulator as more diverse data are included in the training data set. Indeed, this could
be considered similar to including multiple models, which is a common method for increasing the representation
of climate internal variability.

The aerosol emission data and NorESM model output are preprocessed into a consistent format for training the
emulator. The inputs (X) to our emulator are the annual cumulative emissions of SO,, BC, and OC in Tg/yr for six
box regions (see Figure 1), as well as the global total. We do not use spatial information as inputs (latitude and
longitude) because of the number of perturbation experiments we use. If the input data for all three aerosol species
were used at native NorESM spatial resolution, and latitude and longitude were included as inputs, the size of the
input data set would be intractable. The spatial resolution of NorESM is roughly 2° (96 X 144, latitude by
longitude), resulting in 13,824 data pixels for one global map, and therefore using every pixel at annual resolution
would result in roughly 83 million data points, which is intractable for GP methods. Previous studies have used
data reduction methods such as empirical orthogonal functions (EOFs) to reduce the input data sets for global
spatially resolved emulators (e.g., Watson-Parris et al., 2022) of climate scenarios primarily forced by greenhouse
gas emission changes. Because we use aerosol and precursor emissions which are much more heterogeneous, and
include many smaller regional perturbations in our training data set, we found there was no small set of spatial
EOFs which described the variance of the training data set. We also wanted to retain regional forcing information,
so therefore we sum the gridded emissions into eight regions: Europe, Russia, East Asia, South Asia, North
America, and Africa (Figure 1). We also include the global sum as a training input and therefore end up with seven
inputs for each aerosol species and a total of 21 input data dimensions for each year.

The target data for emulation (Y) is the annual mean change in temperature induced by the emission perturbation,
calculated as the difference in surface temperature in degrees Kelvin between the perturbation experiment and the
corresponding baseline simulation, at the native spatial resolution of NorESM. By regressing out the baseline
experiment, we remove the impact of greenhouse gases such as CO, on temperature and emulate only the
response driven by changes in aerosols. This is possible because the temperature response to single-forcing
experiments tend to combine linearly, so subtracting the baseline from the perturbation experiment reveals the
single-forcing response (Bone et al., 2023; Marvel et al., 2015). We leave the targets at the native NorESM spatial
resolution and predict the temperature response at each grid point. For the transient experiments, an ensemble of
NorESM outputs is available. In these cases, we average all ensemble members together for each experiment and
predict the ensemble mean response. For the equilibrium experiments, we treat the years after spin-up as the
ensemble and predict the mean response. Therefore, the posterior prediction (Y) of the emulator is a roughly 2°
(96 x 144, latitude by longitude) resolution map of the temperature change for a given year. The resulting training
data set consists of 621 input-output (perturbation-response) pairs.

3.3. Gaussian Process Model Description

Here, we give a brief overview of the theory behind GPs (Rasmussen & Williams, 2006) and the specific setup
used in AeroGP. GPs are a probabilistic and nonparametric machine learning approach for modeling functions,
well suited to climate science problems: they involve noisy data with strong temporal and spatial (co-)variability
driven by systems for which we have some underlying prior knowledge (such as physical equations) as well as
complex sources of uncertainty. GPs have been used for many years in geostatistics where the method is known as
kriging (Chilés & Desassis, 2018; Cressie & Wikle, 2011; Matheron, 1963) and have been applied to a wide range
of nonlinear regression and emulation studies within climate science (Camps-Valls et al., 2016; Glassmeier
et al., 2019; Hamelijnck et al., 2021).

In general, a GP model is a distribution of functions such that the joint distribution of every finite subset of
function values is also multivariate Gaussian. The model can be fully described by a mean function,

E[f(0)] = u(x) 1
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and a kernel (or covariance matrix),
E[(f(x) = p))F (") = u(x")] = Cov[f(x),f(x")] = k(x,x") @)
such that

J) ~ GP(u(x). k(x.x")) 3)

The kernel describes the similarity between two values in the input space x,x’ and therefore the covariance
between the output GP values at those inputs (f(x),f(x’)). The mean p(x) can be set to any function which de-
scribes the average behavior of the system; however, it is common to center in the training data and set the prior
mean to zero, such that

J() ~ GP(0,k(x,x")) 4)

This does not restrict the mean of the posterior process or predictions of the model to zero, and uncertainty about
the mean function can be taken into account by adding a noise term to the kernel. In the case of a zero mean
function, the physical knowledge about the system, and therefore the behavior of the GP, is determined by the
choice of kernel. The kernel describes the correlation between any two output values (f(x),f(x’)) and therefore
restricts the properties of the functions which are possible under a given GP prior, for example, their smoothness
or stationarity. A commonly used type of kernel in machine learning is the Matérn family, which we will use in
this study, and is given by

®)

k,(x,x') =0

209 (@u—x'l)”K (mx—xq)
v 1

I TW) [

where [ is the length-scale hyperparameter, sz is the variance hyperparameter, K, is a modified Bessel function, I

is the gamma function, and v is a smoothness parameter which is typically v € (1,2, 3) such that the kernel
becomes the product of an exponential function and a polynomial. Kernels can be defined over multidimensional
inputs (where x is then a vector), either sharing hyperparameters (such as /) across dimensions or with different
length scales for each input dimension in which case the kernel is anisotropic. In AeroGP, we use an anisotropic
Matérn;,, kernel for the regional aerosol response to each aerosol species, with a different length scale for each
emission region. A GP which uses the Matérn;,, kernel is continuous and once differentiable, which balances

smoothness and local variability.

Training a GP model is done by conditioning the GP prior on a given set of training data: inputs X = {xy} and
outputs (or targets) y = {yN}. If the target data are created by a noisy process, then

y=fx)+e (6)
where e ~ N/ (0, 0}2,1 ) is independent Gaussian noise, and f(x) is modeled with a Gaussian prior as in Equation 4

with kernel hyperparameters 6, then for a finite set of input data X the marginal likelihood, which is the probability
density of the data given the parameter is

p(X,6) ~ N(Y|ﬂvKXX + I"?) )

where Kyy is the covariance matrix evaluated at training inputs X. The kernel hyperparameters 6 and the noise
variance 03 can be learned by maximizing the log marginal likelihood,

arg max log p(y|X, 6) ®)

Finally, the posterior predictive model over possible functions given the training data is derived via Bayes
theorem:
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p(f1X.y) x pOIf. X)p(f1X) ©)

The posterior predictive distribution for new test inputs X, is
p(fi|Xe. X,y.0) = N(u,.K.) (10)

and the posterior mean and covariance can be calculated analytically as

-1
po = n+ Ky x[Kxx +16°] (v — ) (11)
-1
K.=Kxx, — KX*X[KXX + [02] Kxx, (12)

where K y is the cross-covariance between training and new inputs, and Ky y is the covariance matrix evaluated
at the new inputs. The above is the general case for a single output GP, which can also be driven by multidi-
mensional inputs.

For climate-science problems, we are often interested in modeling variables which depend on spatial locations as
well as some physical driving parameters. Typically for geospatial GP modeling, that means latitude, longitude,
and sometimes other physical variables are used as inputs to the model. This works well for limited area studies
(e.g., modeling air quality in a city (Hamelijnck et al., 2021) or precipitation in a particular basin (Lalchand
et al., 2023)), where the Euclidean distance metric |x — x’| used in most kernel functions is an approximately
valid metric between locations. However, this does not work for global problems because it is not a valid distance
metric on a sphere, and additionally it assumes that correlation decays with distance and therefore does not
necessarily capture teleconnections. The solution is to either transform the coordinates to some alternative space,
define a new distance metric which is valid for spherical coordinates, or simply not use latitude and longitude as
predictors. Here, we choose the latter, which also keeps the input data set at a reasonable size. We do retain
regional forcing information by using regional emission totals as our inputs directly.

However, we do not want to ignore the spatial nature of our data entirely, and we are especially interested in the
spatial covariability of surface temperature. Previous spatially resolved global emulation studies (Bouabid
et al., 2024; Watson-Parris et al., 2022) assume each grid point is independent and model them with independent
samples from the GP prior for each location. Here, we extend the basic GP model described above to a multioutput
case which considers the correlation between outputs, called the intrinsic model of coregionalization (IMC)
(Journel & Huijbregts, 1976; van der Wilk et al., 2020). We model the covariability of each grid point by
expressing each output as a combination of shared latent GPs, weighted by a coregionalization matrix, which
dictates how the latent functions influence the outputs. This setup enables the modeling of complex dependencies
among outputs and takes into account the fact that temperatures at each grid point will be in some way correlated
with those around them, rather than treating each grid point as independent. Mathematically, this is equivalent to
weighting the kernel function by a coregionalization matrix B such that

k(x,x’) = k(x,x’) ® BBT (13)

Standard GP regression can become computationally prohibitive for ICM, especially with large data sets or many
outputs (such as in our case), because of the need to invert the kernel k. Therefore, we use the sparse variational
GP (SVGP, (Hensman et al., 2013, 2015)) method to implement IMC for our model. SVGP approximates the full
GP by using a subset of the full training data set, called inducing points Z = z,, with corresponding inducing
variables u = f(Z) where M is the number of inducing points, N is the number of original training data points, and
M < N. These act as a compressed representation of the GP prior so that the full function f(x) is expressed
conditionally on u as

P(f|“= 0) = N(KNMKA}}W% Kyy — KNMK&}WKMN) (14)

The posterior distribution over u is given by a variational distribution
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q(u) = N'(m.S) 15)

such that the posterior over the function values becomes
o9 = [ Pt (16)

which is optimized to be as close as possible to the true posterior (Titsias, 2009; Titsias & Lawrence, 2010). The
variational parameters m, S, the kernel hyperparameters 6, and the inducing point locations Z are all learned during
optimization, which is done by maximizing the evidence lower bound (ELBO), given by

L =Ellogp(y|f)] — Dx. g p(w)] 17)

which balances the likelihood of the observed data given the inducing points and a regularization term (Dg;, the
Kullback-Leibler divergence) that measures how closely the variational distribution matches the GP prior.

Here, we find a good balance between training time and emulator performance with 100 inducing points, which
are taken in the time dimension (so this is a randomized subset of 100 years from the training data set). The
locations of the inducing variables within the input data space are treated as latent variables and learned during
optimization. The ELBO is maximized using natural gradients (Salimbeni et al., 2018) to optimize the variational
parameters and the Adam algorithm to optimize the kernel hyperparameters (Kingma & Ba, 2017).

Here, we use one latent GP, with a kernel that is a sum of linear kernels for the global response and Matérn;,
kernels for the regional dependence of each aerosol species. Combinations of linear and Matérn kernels have been
shown to work well in other atmospheric modeling contexts, that is, Lamminpéi et al. (2025). Temperature can be
thought of as a diffusion process in that closer locations should be more highly correlated than more distant
locations, but with the potential for remote teleconnections. Adding kernels together allows for these nonlocal
interactions and improved extrapolation away from the training data because the additive combination can ac-
count for covariance between function values which are similar in any subset of dimensions. We also add a white
noise kernel for modeling internal variability and set the initial likelihood variance (or nugget) to 0.5, which is
also optimized during training. AeroGP is implemented with the Python package GPflow (Matthews et al., 2017,
van der Wilk et al., 2020).

3.4. Metrics for Emulator Validation

We evaluate the performance of AeroGP by comparing the predictions to that of NorESM in a set of leave-one-out
experiments, where the exact same emulator architecture is trained on the full set of training data except one
experiment, which is then used for validation.

We use four common metrics to evaluate the performance of the emulator. In all equations in this section, x is the
posterior mean prediction from AeroGP and y is the target NorESM prediction. The global mean is denoted by <>,
which is weighted by latitude to account for the decreasing grid size toward the poles by

1 Niat Nion '
(x;j) = mz Z cos(lar(i))x; ; (18)

i

where i and j are the indices for latitude and longitude, respectively.

The first metric is the normalized, global mean root mean square error (NRMSE), calculated as

NRMSE(x.5) = /({3 = yiial)* )/ () (19

which is the global mean RMSE normalized by the standard deviation of the NorESM prediction. An NRMSE < 1
implies that the error between AeroGP and NorESM is less than the internal variability in NorESM, and therefore
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the AeroGP prediction could be considered to have some skill compared to natural internal variability. An
NRMSE > 1 would imply the prediction error between AeroGP and NorESM is larger than the natural variability
within NorESM itself.

The second metric is the global mean bias, defined as

BIAS(x,y) = <xi,/’ — iy (20)
This is simply the global mean of the difference between the AeroGP and NorESM predictions, and therefore a
lower score (closer to zero) indicates better performance.

For the transient experiments, these metrics are calculated using the average across the last 20 years of the
experiment for both AeroGP and the target NorESM output (which itself is an average across all available
ensemble members). For the equilibrium runs, the target NorESM output is averaged across all years after model
spin-up (as defined in the original publications) and compared to the single posterior map predicted by the
emulator.

The third metric is the generalized continuous ranked probability score (CRPS) (Gneiting et al., 2005;
Wilks, 2019), which can be considered as a probabilistic extension of the RMSE that compares the posterior
distribution from AeroGP to the NorESM target. CRPS is defined as

CRPS(F.y) = / ((F5(0) = (Fy ()P 1)

where F(x) is the camulative distribution function (CDF) of the prediction (x) or target (y). This measures the area
between the two CDFs so that smaller values indicate better performance. The CDFs can be approximated over
finite ensembles using quadrature or direct integration if the PDFs can be assumed to be Gaussian. CRPS is often
used in evaluation of probabilistic weather forecasts (e.g., Hersbach, 2000) and a better score (closer to zero)
indicates both an accurate prediction of the mean as well as good calibration of the variance.

The fourth metric is the confidence interval-based Expected Calibration Error (ECE) (Kuleshov et al., 2018),
which checks the calibration of the posterior variance by calculating which percentage of the predictions falls
within a set of predictive intervals. It is defined as the mean of the absolute difference between the nominal and
empirical coverage in each of the M bins:

1
ECE = MZ |Covemp (am) - am' (22)

m

where the empirical coverage in each bin is given by

Covemp (am) = ]%]2 [yiepli (am)] (23)

i

and where y; is the AeroGP posterior mean, o; is the AeroGP posterior standard deviation, y; is the NorESM
target,  is the nominal coverage level (i.e., 0.9 for 90%), and

PIL(a) = [H; = 2401 4 + 207] (24)

is the predictive interval where z,, is the quantile that corresponds to the central a coverage. A lower ECE score
(closer to zero) indicates better calibration of the posterior variance.

In addition to these single-valued metrics, we also present maps comparing the spatial patterns of the NorESM
target and the AeroGP posterior mean prediction. In some regions, and especially for small aerosol perturbations,
the resulting temperature response signal may be obscured by internal variability within NorESM (Tebaldi &
Knutti, 2007), making it difficult to predict. We therefore measure the significance of the response in the original
NorESM training data by comparing the perturbation experiment to the baseline using the two-sided Welch's #-
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test (Welch, 1947), which is a version of the Student's 7-test that allows the two populations to have different
variances and sample sizes. The NorESM signal is considered significant in grid boxes where p <0.05. For
AeroGP, we define the significant response according to the posterior credible interval, which does not include
Zero:

| — i
significant = 1,(u — 26 >0 or y + 26 <0), z= ¢! ( > Cl) (25)

A significant result indicates that the posterior predictive mean is distinct from zero at the given percentage and
the signal is unlikely to be due to internal variability alone. For example, if zero lies outside the 95% credible
interval, the posterior probability that the mean change equals zero is less than 5%, which is the Bayesian analog
of rejecting the null hypothesis used in the #-test at the p < 0.05 level. When comparing NorESM to AeroGP, we
also test for significance with the two-sided Welch's ¢-test and use the same threshold (p < 0.05). Whenever we
use the 7-test, we control the false discovery rate with the Benjamini-Hochberg procedure (Benjamini & Hoch-
berg, 1995). In all maps, hatching shows where the response is significant according to these thresholds.

4. Results
4.1. Emulator Validation

To validate AeroGP, we conduct leave-one-out tests, where the emulator is trained on the full training data set
excluding one scenario, which is then used for validation. This means that when AeroGP is evaluated with a
certain scenario, it has not been seen in the training data. Good performance, especially across multiple scenarios,
implies that the emulator architecture is well suited to the problem (predicting aerosol-temperature impacts) and
that the training data used capture the required range of regional patterns of the response to aerosol forcing. Poor
performance on a particular scenario could mean that the target signal is weak or that the experiment is at the edge
of the input state-space where the emulator may struggle to extrapolate. The results for all scenarios are sum-
marized in Figure 4 and a full table of performance metrics is included in Supporting Information S1 (see Figure
S1). In general, we find that AeroGP performs well (NRMSE < 1.0) on a wide range of emission scenarios
including both increasing and decreasing aerosol and precursor emissions, changes in only one, simultaneous
changes in multiple aerosol species, and global as well as regional perturbations. It performs less well on ex-
periments where there is a weak temperature anomaly in NorESM. In the remainder of this section, we will
evaluate the performance of AeroGP in more detail focusing on two transient global experiments (RAMIP
ssp370-126aer and DAMIP hist-aer), which together cover increasing and decreasing anthropogenic aerosol
emission perturbations and either end of the spectrum of surface temperature responses (cf. Figure 2).

AeroGP performs best when tested on the RAMIP global scenario ssp370-126aer, where anthropogenic aerosol
and precursor emissions are reduced according to an aggressive mitigation scenario and the global mean surface
temperature increases (NRMSE = 0.47, ECE = 0.35, and the mean global temperature response is +0.44°C in
AeroGP and +0.47°C in NorESM averaged over the last 20 years, see Figure S1 in Supporting Information S1).
We also evaluate AeroGP's performance on DAMIP hist-aer where emissions increase from preindustrial to
present-day levels and the global mean surface temperature decreases (NRMSE = 0.52, ECE = 0.11, and the
global mean temperature response is —0.67°C in AeroGP and —0.84°C in NorESM averaged over the last
20 years, see Figure S1 in Supporting Information S1). AeroGP underestimates the global mean response slightly
as compared to NorESM in both cases; however, the difference between them is not significant for much of the
globe, especially over land surfaces. AeroGP produces a significant signal over the much of the same regions as
NorESM and predicts realistic spatial patterns of response for both experiments (Figure 3).

In the case of RAMIP ssp370-126aer, aerosol and precursor emissions are reduced globally, primarily through
large reductions in East and South Asia, and to a lesser extent in Africa and North America. The result is large
local temperature anomalies in those areas, and additional nonlocal impacts in both North America and the Arctic
via teleconnections. AeroGP creates realistic patterns of temperature anomalies for this scenario and therefore is
able to emulate both these local and nonlocal effects, especially over land. The only region of significant dif-
ference between AeroGP and NorESM is in the North Atlantic where AeroGP underestimates both the magnitude
of cooling in the “warming hole” (Keil et al., 2020) and the anomaly pattern across the North Atlantic. The
combination results in an underestimation of the North Atlantic mean response: between 40° and 65° latitude and
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Figure 3. Time mean temperature response for RAMIP global ssp370-126aer (2045-2064) and DAMIP hist-aer (1995-2014). The left column shows the NorESM target
(a, d), the center shows the AeroGP posterior mean prediction (b, e), and the right column shows the difference between the two (c, f). For NorESM and the differences,
the shading indicates a significant response according to the Welch's r-test (p < 0.05). Shaded areas are where the AeroGP posterior mean is credibly different from zero
at the 95% level for DAMIP hist-aer, corresponding to ~2¢ and at the 68% level for RAMIP global ssp370-126aer, corresponding to ~ 1o (see Section 3.4 for the
calculation of credible intervals).

300° to 360° longitude, the mean response in NorESM is +0.48°C and in AeroGP is +0.38°C. AeroGP also
underestimates the magnitude of the response in some parts of the North Pacific.

In the case of DAMIP hist-aer, aerosol and precursor emissions are increased according to a historical industrial
emission scenario, while other climate forcers such as GHGs remain at preindustrial levels. Emissions increase
primarily in Europe, Asia, and North America, and the result is a global cooling, particularly in the Northern
Hemisphere over land. AeroGP is able to emulate the resulting spatial pattern in temperature anomalies and again
performs best over land, although there are significant differences between AeroGP and NorESM in parts of
Central Africa and Eastern Europe. The strongest temperature anomalies in AeroGP are found in the higher
northern latitudes, particularly in North America, Russia, Scandinavia, and the Arctic, which is similar to the
pattern of response in NorESM. AeroGP again underestimates the magnitude of the temperature anomaly in the
North Atlantic and predicts a slightly weaker global mean response than NorESM.
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Figure 4. Normalized root mean square error (NRMSE) between NorESM targets and AeroGP predictions (using all years for
equilibrium experiments and the last 20 years of all ensemble members for transient experiments), compared to how much of
the globe has a significant signal in the NorESM target (in % so that 100% means a significant response everywhere,
normalized by the grid area), with color of the markers indicating the global mean temperature change in the NorESM targets
and the shape of the marker indicating the version of NorESM.
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Figure 5. Global mean temperature change for the top two leave-one-out tests. AeroGP posterior mean predictions in solid
lines, NorESM targets in dotted, and the other training data in dashed.

Five of the top six best-performing experiments are all global perturbations (emissions change by large amounts
over most of the globe, see Figures S2 and S3 in Supporting Information S1), although they include both
increasing and decreasing aerosol emission trends which differ regionally, as well as individual removal (e.g., the
sixth best NRMSE is for the global removal of only SO,: NRMSE = 0.68). Generally, we find that AeroGP
emulates the temperature response more accurately when there is a strong signal to learn: when there is a sig-
nificant response in the original NorESM targets and when the magnitude of the global mean temperature
response is larger. A significant target signal in NorESM is a result of both a strong aerosol forcing and enough
simulation years or ensemble members to have a significant signal (Figure 4). AeroGP has comparable perfor-
mance to NorESM (NRMSE below 1.0) for 17 out of 24 experiments, with only one experiment having an
NRMSE above 2.0. The performance does not seem to depend on the particular version of NorESM (Figure 4).

Both RAMIP ssp370-126aer and DAMIP hist-aer are transient experiments, meaning that aerosol and precursor
emissions are changing throughout the simulation. We make the assumption that the annual mean temperature
responses can be considered independently, and therefore AeroGP predicts each annual mean response inde-
pendently from the previous years and does not take previous time steps into account. However, it is able to
capture the long-term trend in the global mean temperature change for both experiments and produce some year-
to-year variability around that trend, although less so compared to the internal variability in NorESM and in the
real climate system (Figure 5).

In most experiments in our training data, the emission perturbations and resulting temperature changes are in the
Northern Hemisphere, and there is generally a weak and nonsignificant response in the Southern Hemisphere.
AeroGP captures this zonally dependent behavior so that variability in the mean response and the predicted
standard deviation both increase toward the north and show evidence of Arctic amplification in the temperature
response, as shown in Figure 6.

4.2. Sensitivity to Scaled Emissions

We now explore the sensitivity of the emulator to the magnitude and spatial extent of the aerosol perturbations by
conducting three sensitivity experiments to test if the pattern of the temperature response differs depending on the
magnitude and location of the emissions. We choose cases that are relevant for policy assessment and where
AeroGP showed relatively good performance (see Figure S1 in Supporting Information S1): DAMIP hist-aer,
RAMIP EAS126aer (where East Asian aerosols are reduced), and 5xEA SO, (where East Asian SO, is increased).
AeroGP is used to predict the temperature change from four idealized scaled versions of the input emissions: 0.1x,
0.5x, 1x, and 2x. By scaling the aerosol emission change in DAMIP hist-aer, we test the sensitivity to increasing
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Figure 6. Zonal mean temperature response for RAMIP ssp370-126aer (top) and DAMIP hist-aer (bottom). The Southern
Hemisphere in green (—90° to —30°), the Tropics in yellow (—30° to +30°), the Northern Hemisphere midlatitudes in red
(30° to 60°), and the Arctic in blue (60° to 90°). AeroGP posterior mean predictions are in solid lines and NorESM targets are in
dashed lines, with shading showing the posterior standard deviation (i.e., AeroGP predicted variability).

emissions globally, particularly in North America and Europe before 1975, and in Asia and Africa after 1980.
Scaling RAMIP EAS126aer and 5xEA SO, tests the sensitivity to a regional perturbation that is either a reduction
in all aerosol and precursor emissions or an increase in one particular aerosol. It is important to know the scale of
the emission change that is required to produce a significant signal for the motivation and assessment of potential
emission policy changes. In each case, we use the validation version of AeroGP where the original experiment is
held out of the training data set.

The rate and location at which the signal emerges depend on the magnitude of the emission perturbation.
Figures 7a-7d show the posterior predictions for scaled DAMIP hist-aer emission changes. A significant
response is predicted for much of the Northern Hemisphere at 0.5x emissions, with the strongest response in
eastern North America and the Scandinavian Arctic. At the original level of emission change, the AeroGP pattern
is similar to that predicted by NorESM (see Figure 3) and a significant response is found over all continents. At 2x
original emissions, the response is strong (cooler than —3.0°C) across most of the Northern Hemisphere land-
masses and a significant response is found almost globally, including a strong pattern in the Southern Ocean and
the tropical Pacific. Figures 7e—7h show the posterior predictions for RAMIP EAS126aer, where all three aerosol
species are reduced only in East Asia. When the emissions are scaled down (0.5 X the original emission change),
there is no significant response predicted by AeroGP. At the original level of emission change, a significant
response is predicted across the Arctic, Eastern Europe, East Asia, and eastern North America. At 2X the emission
perturbation (very strong reductions in East Asia), there is a significant response across the Northern Hemisphere
and the temperature impact is large (>+40.5°C) on most northern continents including Europe as well as in the
Arctic. Figures 7i—71 show the posterior predictions for 5xEA SO,, where Eastern Asia sulfur dioxide emissions
are increased 5x compared to the year 2000. Again, no significant response is predicted when the emission change
is scaled down (0.1x and 0.5x). At the original level, there is only a significant response in a small part of Asia and
some of the Tropics. At 2x emissions, there is a much stronger and significant response over Europe, Asia, and
most of North America. Although both hist-aer and 5xEA SO, produce cooling in the Northern Hemisphere,
AeroGP distinguishes the difference in effect between increasing all three aerosol species globally in Aist-aer and

DEWEY ET AL.

16 of 26

85U8017 SUOWILIOD BAE81D 3(edl|dde 3y} Aq peusenob ale sspive YO ‘@SN JO S9N 1o AReIq1T 3UIIUO A8]IA LD (SUORIPUCO-PUR-SULBILI0D™A8| 1M AReIq 1[u U0/ SA1Y) SUORIPUOD PUe SWL | 38U} 88S *[5202/2T/0T] Uo ArIdiTaulluo A8]1M ‘80Ue|poX3 818D pue U esH Jojaimiisul euoteN ‘301N Aq T2000HCSZ0Z/620T OT/I0pAuoo A8 i Areiqiieutjuo'sandnfey/sdny wouy pepeojumod ‘f ‘5202 ‘0T2SE662



N\\I JGR: Machine Learning and Computation 10.1029/2025JH000741

ADVANCING EARTH
AND SPACE SCIENCES

RAMIP EAS x0.5

& =73 Z
‘! 0' o 05
= s

2 -1.6-0.50.0 0.5 1.0 -1.6-0.50.0 0.5 1.0
AT (K) AT (K)

Figure 7. AeroGP predicted temperature response for scaled emission perturbations. Shaded areas are where the AeroGP posterior mean is credibly different from zero at

the 68% level, corresponding to ~ lo.

SO, only in 5xEA SO,. The pattern and the magnitude of the response in each are distinct: the global mean
response in hist-aer is —0.66°C, whereas the global mean response in 5xEA SO, is —0.15°C. We also find that the
posterior prediction from AeroGP is not the same response pattern scaled up or down as the input emissions are
scaled up or down, but rather a distinct spatial pattern that depends on the magnitude of the emission perturbation
(See Figures S4-S6 in Supporting Information S1, which show the differences between the predicted responses to
the scaled inputs and the baseline response scaled by the same amount).

4.3. Arctic Aerosol Impacts

The Arctic is a very climatically sensitive region, warming at more than two times the global average (Boucher
etal., 2013; Constable et al., 2022). It is also sensitive to aerosol forcing, both from remote temperature responses
(i.e., teleconnections) (Conley et al., 2018; Sand et al., 2013, 2020; Westervelt et al., 2020; von Salzen et al., 2022)
and long-range transport of aerosols into the Arctic (Backman et al., 2021). These impacts are of particular
relevance to policymakers globally, including those from Arctic-adjacent countries who may have direct eco-
nomic and political consequences from a warming Arctic as well as those from other regions who are concerned
about mitigating climate change and Arctic amplification. Understanding the impact from remote regional
emission changes on a region like the Arctic is an excellent use case for AeroGP, which can resolve the spatial
heterogeneity of the temperature response.

We investigate the Arctic response to an increase in aerosol and precursor emissions by doubling the year 2025
emissions of each aerosol type individually in all seven regions used as input to AeroGP. This tests the Arctic
sensitivity to both the magnitude and location of the perturbations; for example, doubling current European SO,
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Figure 8. Area-weighted mean temperature change above 60°N for individual aerosol perturbations of 2x 2025 emissions in
each region. Smaller numbers in brackets show the total regional perturbation of each aerosol type in teragrams. Regional
labels are af = Africa, ea = East Asia/China, eu = Europe, na = North America, ru = Russia, sa = South Asia/India.

emissions corresponds to an increase of +6.8 Tg, whereas doubling current South Asia emissions corresponds to
an increase of +42.0 Tg. Figure 8 shows the mean temperature response above 60°N for each regional aerosol
perturbation. Increasing BC emissions produces Arctic warming no matter where the emissions originate,
however, the strongest Arctic warming coming from increased African (+3.4 Tg) and Asian (+4.9 Tg and
+2.9 Tg) emissions, that is, the regions with the largest emission changes. This is likely primarily due to remote
temperature responses from heat transport (Sand et al., 2013, 2020), although there is some evidence for long-
range transport of BC through Central Asia and Europe which could cause local radiative forcing (Backman
et al., 2021; Liu et al., 2015). Increasing OC emissions produces a weak warming response for source regions,
which are directly adjacent to the Arctic (North America, Europe, and Russia), although the response is
nonsignificant in the whole Arctic regardless of the source region or magnitude of perturbation (+0.6 to
+11.4 Tg). Increasing SO, emissions produces strong cooling in the Arctic when the emissions are from Africa
(+30.2 Tg) and Asia (+39.3 and +42.0 Tg), most likely due to long-range teleconnections (Lewinschal
et al., 2019), and a weak cooling when emissions are from North America (+12.2 Tg) and Russia (+9.2 Tg).
Increasing SO, emissions from Europe (46.8 Tg) produces a nonsignificant warming response, although this is
due to a persistent warming feature east of Greenland, which washes out the cooling response in the European
Arctic (see Figure 9).

Figure 9 shows the spatial pattern of the temperature response to emission perturbations in Europe and South Asia
(primarily India). The response to European emissions is warming for all three aerosols, but the response is not
significantly different from zero across the entire region, even using a very relaxed credible interval of half a
standard deviation. Other studies have found a strong Arctic cooling response to a much larger magnitude of
increasing European SO, emissions, for example, Lewinschal et al., 2019 find significant Arctic cooling with an
increase of 7xEU SO, compared to the year 2000, (roughly +100 Tg), so it is likely that the perturbation here is
too small to produce a significant response. The mean Arctic response is also dominated by a persistent warming
feature present east of Greenland. The response to increased Asian emissions is much stronger because doubling
emissions result in a much larger total perturbation. The response to increased Asian SO, is a significant cooling
across the whole Arctic. The response to an increase in OC emissions is a weak warming that is not significant
anywhere. The response to increased BC emissions is a warming which is only significant in the Canadian Arctic
archipelago.

5. Discussion

Accurate regional climate projections are critical for quantifying near-term climate change and informing
adaptation and mitigation efforts. Understanding the impact of anthropogenic aerosol emission changes is a key
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Figure 9. Maps of the Arctic temperature change for individual aerosol perturbations of 2x 2025 emissions in Europe (top
row) and in South Asia/India (bottom row). Shaded areas are where the AeroGP posterior mean is credibly different from
zero at the 38% level, corresponding to ~0.56.

part of understanding regional climate change because of aerosol impacts on atmospheric processes (Persad
et al., 2022; L. Wilcox et al., 2019), the hydrological cycle (e.g., impacting Asian monsoon dynamics (Bartlett
et al., 2018; L. J. Wilcox et al., 2020; Xie et al., 2020) and European precipitation patterns (Lopez-Romero
et al., 2021)), and ocean heat and circulation (Hassan et al., 2021; Wang et al., 2024). It is also critical to un-
derstand the relationship between clean air policies and the resulting climate forcing for informing policy de-
cisions and for impact assessment and attribution studies. Here, we describe the development of a machine
learning model (AeroGP) for predicting the spatially resolved temperature response to regional aerosol emission
changes. Our model produces accurate estimates of the global mean response and the spatial distribution of the
response for a wide range of global and regional emission scenarios.

Non-machine learning climate emulators and simplified climate models have been a key part of understanding
climate change for many years; before the fifth IPCC assessment report (ARS), they were the main tool used to
assess the climate response to potential future emission scenarios (Randall et al., 2007), and emulators have
continued to complement the results from ESMs participating in CMIPs by, for example, exploring and con-
straining climate scenarios beyond the SSPs and determining the attribution of individual forcers to observed and
future warming (Nicholls et al., 2021; Pirani et al., 2024; van Vuuren et al., 2011). Typically, climate model
emulators take anthropogenic emissions as inputs and produce predictions of the resulting global mean radiative
forcing or temperature (Meinshausen et al., 2011; Millar et al., 2017). These models often underestimate (or do
not even include) aerosol forcing (Harmsen et al., 2015; Schwarber et al., 2019; van Vuuren et al., 2011), and in
particular often miss the complex regional heterogeneity of aerosol impacts (Persad et al., 2022). Here, AeroGP
predicts the spatial patterns of the temperature response to aerosol emission changes directly from training data,
without imposed assumptions of the nature of the spatial pattern of the response, and without the dominant and
confounding influence of including GHGs.

Because GHGs are long-lived and well mixed in the atmosphere, the temperature response to anthropogenic
climate change is dominated by GHG forcing and the aerosol response is difficult to untangle. This is because of
the combination of local rapid responses and remote impacts through transport, teleconnections, and aerosol-
cloud interactions, which are unique to aerosol-climate forcing (Forster et al., 2021). Our results show that
AeroGP can learn these impacts, for example, reproducing significant teleconnections from East Asian SO,
emissions in regions such as Europe and the Arctic. Machine learning methods can learn the outcomes of such
complex combination of processes for much less computational cost than a traditional ESM. The initial training of
the ML model is possible on a standard laptop computer and once trained, inference is possible in a matter of
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seconds. Nevertheless, the quality of AeroGP depends on the availability of a comprehensive training data set and
therefore does not replace the need for physics-based models but rather builds upon the foundational data pro-
vided by ESMs.

AeroGP also provides a significant improvement over traditional ESMs in terms of the computational resources
required. The two simulations run with NorESM2 for this study (referred to as AeroGP in Table 1) required on
average 1060 core hours per simulated year, performed on the supercomputer Tetralith from the National Aca-
demic Infrastructure for Supercomputing in Sweden (NAISS). Extrapolating, roughly 2 million core hours were
used to create the entire training data set used in this study. In comparison, AeroGP takes less than an hour to train
on a conventional PC laptop and is almost instantaneous to run.

The computational expense is part of the motivation for constructing the training data set for AeroGP from an
ensemble of opportunity, primarily from preexisting ESM experiments conducted for other studies. This approach
allows us to leverage a wide diversity of aerosol perturbations without incurring the computational cost of running
a dedicated suite of simulations. However, this does introduce heterogeneity in the experiment design across the
data set, for example, differences in perturbation location and scales, ensemble size, and background climate state
for both transient and equilibrium runs. These choices in the experimental design are often motivated by the desire
to have a clear signal distinct from natural internal variability; for example, idealized equilibrium perturbation
experiments (e.g., Lewinschal et al., 2019) typically have very large emission changes and long simulation pe-
riods after model spin-up which are averaged together, whereas transient experiments (e.g., L. J. Wilcox
et al., 2023) require multiple ensemble members disentangle natural variability from aerosol forcing. We
consistently find that AeroGP learns the pattern and scale of the response better for experiments with larger
signal-to-noise ratio (see Figure 4).

Internal climate variability can also be accounted for by using a multimodel ensemble; however, AeroGP is
trained and tested using output from multiple generations of a single climate model, NorESM. This choice has its
advantages, for example, NorESM?2 incorporates relatively advanced aerosol treatment compared to other ESMs
(Kirkevag et al., 2018), and by only using one model, we retain a good understanding of the underlying physics
which AeroGP learns from. There are differences between the two generations of NorESM, but we find it ad-
vantageous to have a larger and more diverse training data set that spans more of the range of potential emission
scenarios; indeed if AeroGP is trained only on the available experiments from NorESM2, it performs worse, for
example, at predicting the RAMIP global ssp370-126aer scenario. Including two generations of NorESM also
increases the climate variability represented in the training data set, compared to using a single version. The
results of our leave-one-out validation indicate that experiments on the edge of the input state-space are important
for learning; when these unique experiments are left out of the training data set, the performance notably de-
creases (see Figure S1 in Supporting Information S1). For example, we have only one experiment which perturbs
BC emissions only and only one experiment which perturbs African emissions. Including more parent models
could broaden the training state space, but may at the same time wash out certain physical signals due to model
structural differences such as differences in numerical schemes, physical modules, and parameter uncertainty,
which are especially important for aerosol-related processes across CMIP6 models (Pathak et al., 2023; L.
Wilcox, 2025). Differences across CMIP6 models include one-moment versus two-moment microphysics
schemes, whether the aerosol-cloud interactions include both the first and second indirect effects, and whether
chemistry is interactive or prescribed. This diversity means that the multimodel signal for small perturbations like
regional aerosol changes is more washed out and harder to distinguish from the baseline climatology (which may
also be different across different models). In addition, not all experiments included in our training data set were
conducted by multiple models; multimodel output is mainly available for transient simulations which perturb
multiple aerosols simultaneously (see Table 1). The choice between single-model and multimodel training
therefore depends on prioritizing model-specific process fidelity and input-space sampling, compared to
potentially undersampling natural variability, and here we choose the former as a first step.

The set of aerosol species represented in the training data also constrains AeroGP's applicability. The present data
set includes perturbations to sulfate, black carbon, and organic carbon, and omits other potentially important
aerosol species such as nitrate and ammonium. Nitrate aerosols in particular have radiative and cloud-interaction
properties similar to sulfate and are projected to become increasingly important contributors to anthropogenic
aerosol forcing by the end of the 21st century; however, they are not currently included in many ESMs including
both NorESM1 and NorESM?2 (Kirkevag et al., 2013; Seland et al., 2020; L. Wilcox, 2025). AeroGP predictions
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therefore cannot account for their potential climatic impact. Inclusion of these aerosols in future training data sets
would improve the physical completeness of the emulator and extend its applicability to more policy-relevant
emission scenarios involving coemitted species.

The spatial distribution of aerosol perturbation regions and the choice of background climate state are also
important considerations in designing a bespoke training data set for an aerosol-climate emulator such as AeroGP.
To maximize policy relevance across the globe, such a data set should include emission perturbations across
different regions at different stages of industrial development and consider how this heterogeneity is expected to
change into the future. For example, including both industrialized regions which have undergone strong air
quality improvements that result in reduced emissions and increased warming, such as East Asia (Samset
et al., 2025), as well regions currently undergoing increased industrialization such as Africa, that may see in-
creases in aerosol forcing before similar transitions occur (Lund et al., 2019). Such a data set should also address
systematic biases such as the consistent undersampling of the Southern Hemisphere. It would also be interesting
to consider sector-based sources, natural sources, and the interactions between natural and anthropogenic aerosol
emissions, for example, as forest fires and biomass burning are expected to become increasingly prominent
sources of aerosol emissions under climate change (Allen et al., 2024). These interactions also depend on the
background climate state, as do smaller scale aerosol processes such as aging, transport, and deposition. To
minimize potential sources of uncertainty in forcing in a bespoke data set, the background climate should be the
same across all experiments and should reflect reasonable assumptions about future emission scenarios (Riahi
et al., 2017).

In order to include a wide range of emission scenarios in the training data set but still keep the total number of
inputs manageable, the spatial and temporal resolution of the input data was limited: we sum emissions over six
large regions and consider only annual total emission changes. Therefore, AeroGP cannot resolve spatial emission
perturbations that are located within the same region (e.g., the difference between emission changes in Scandi-
navia and in Spain), and it does not predict rapid (subannual) responses to emission perturbations. It predicts
annual mean temperature responses based on annual total emissions for that year. Given the residence time of
aerosols in the atmosphere, this temporal averaging should account for most aerosol effects, but we cannot say
anything about the persistence of the response to a temporary emission increase or decrease, or about the different
timescales of local versus nonlocal responses. For example, we may miss preconditioning impacts on the
monsoon (Dong et al., 2019) or decadal response lags for the AMOC (Robson et al., 2022). Additionally, while
our results suggest that large perturbations in emissions lead to more significant signals, it remains unclear
whether the temperature response saturates as the scale of the emission change increases in AeroGP. From
physics, we expect a nonlinear response, with maximum sensitivity to aerosols occurring for intermediate
perturbation magnitudes, beyond which the impact of additional aerosol emission changes may diminish due to
the saturation of radiative forcing (Bellouin et al., 2020).

Looking ahead, there are several directions for future work. One promising extension is using multioutput GP
methods to jointly learn temperature and precipitation responses, which would broaden the applicability of
AeroGP for policy assessment and impact studies. Additionally, incorporating a heteroskedastic likelihood,
which could vary by latitude, could improve both spatial and temporal internal variability. Non-Gaussian like-
lihoods could also help in modeling precipitation, where the distributions are skewed and we are particularly
interested in the impact of aerosol perturbations on extreme events, such as heatwaves or heavy rainfall.

6. Conclusions

In this study, we have developed a machine learning emulator (AeroGP) using Gaussian processes (GP) to predict
the spatially resolved temperature response to regional aerosol-only emission perturbations, trained on output
from the Norwegian Earth System Model (NorESM). AeroGP is uniquely capable of predicting the spatially
resolved temperature response at ESM-resolution, which allows for a more detailed exploration of regional
temperature impacts than is possible with most climate emulators that provide global mean responses, and
AeroGP can additionally provide uncertainty estimates of that response. We have shown that AeroGP captures
distinct patterns of temperature change influenced by the scale, aerosol type, magnitude, and location of emis-
sions. Our results show that AeroGP performs comparably to NorESM in a series of leave-one-out validation
experiments, demonstrating its sensitivity to realistic emission changes and ability to predict both global and
regional temperature responses effectively. We have also demonstrated multiple potential use cases for AeroGP,
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including testing the global sensitivity to scaled emissions and investigating the Arctic response to regional in-
creases in individual aerosol species. Detailed spatially resolved temperature predictions are a particular
improvement over spatially averaged values for end-users of climate information, for example, policy-making,
impact assessment, and economic evaluations such as for insurance.

We present a novel approach from a GP-architecture perspective, as we believe this is the first time that cor-
egionalization has been used as a method to account for the spatial correlation of climate data. We hope this
provides a step toward using machine learning methods for studying the global impacts of regional climate change
and for developing tools that can be used for the evaluation of policy-relevant climate scenarios.
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