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Abstract 

This thesis addresses the three fundamental challenges for enhancing the performance of 

Machine Learning (ML) models. Despite their evolving predictive capabilities, MLs still present 

significant limitations in generalisability, particularly in high-dimensional settings, 

interpretability, and high data requirements. These issues require methodologies that reduce 

input data dimensionality, enhance transparency, and utilise prior knowledge to moderate 

the scale of data requirements, thereby improving the performance, reliability, and efficiency 

of machine learning solutions in practical applications.  

Accordingly, this thesis introduces three independent methods responsive to the 

above main limitations that need to be overcome to enhance the performance and 

transparency of models in complex task domains. First, two filter-based feature selection 

techniques—one correlation-driven and the other clustering-based—are developed to reduce 

redundancy and enhance generalisability in high-dimensional data. The correlation-based 

technique outperforms the state-of-the-art (as represented by ReliefF) in both internal and 

external validations. Second, an ensemble explainability framework integrates Shapley 

Additive Explanations (SHAP) values with Sobol indices, combining their rankings to yield 

stable and interpretable attributions. Third, a multi-stage algorithm couples transfer learning 

with an autoencoder to minimise labelled data requirements without adversely affecting 

performance. 

All proposed methods yielded quantifiable improvements. The feature selection 

techniques reduced input dimensionality while enhancing accuracy and generalisability 

compared to ReliefF. The ensemble explainability framework produced consistent attributions 

under varying data distributions and reliably identified informative input features. The multi-

stage algorithm achieved enhanced classification performance with reduced reliance on 

labelled data. 

Case-Study: The proposed methods were validated in the context of medical diagnosis 

for early-stage prediction of dementia, utilising a structural Alzheimer’s MRI dataset. In this 

application, optimising the feature selection, as described above, enhanced the cross-cohort 

accuracy and decreased the data dimensionality. The explainability framework consistently 

identified clinically relevant regions, such as hippocampal subfields (W. Zhao et al., 2019) and 
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the temporal horn (Vernooij and van Buchem, 2020), supporting the credibility of feature 

relevance. The data-efficient multi-stage pipeline achieved an accuracy of 73.26%, exceeding 

prior baselines (Li et al., 2015; Oh et al., 2019). 

This thesis concludes that the proposed correlation and clustering-based feature 

selection, ensemble explainability combining SHAP and Sobol, and transfer learning with 

autoencoders have led to enhanced accuracy, robustness, and transparency of the 

performance of the machine learning models. Although this was validated for the Alzheimer’s 

validation task, these methods are domain-agnostic and provide scalable, reliable, and 

resource-efficient approaches for high-dimensional, data-limited real-world applications. 
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1. INTRODUCTION 

Artificial Intelligence (AI) has impacted daily routines, such as work, education, 

communication and socialising, by imitating human intelligence to perform tasks and make 

decisions. Sophisticated AI models utilising Deep Learning (DL) can analyse large quantities of 

varied data, inherently grasp complex nonlinear connections between dependent and 

independent variables and provide accurate decisions. Therefore, AI models can address 

numerous real-world issues. Their deployment spans many applications, such as 

smartphones, autonomous vehicles, and vital services such as banking, healthcare, law 

enforcement, and the military. AI models excel in speech, image recognition, translation, 

natural language processing, computer vision, and autonomous driving.  

AI is essential in modern industry, as advanced AI models can analyse vast amounts 

of complex, high-dimensional data. Developing AI-based classifiers facilitates accurate pattern 

recognition, anomaly detection, and performance forecasting across various domains. AI 

models assist experts in decision-making, system optimisation, and delivering tailored 

solutions, demonstrating predictive accuracy comparable to traditional expert-driven 

methods. However, despite these advancements, the adoption of AI in critical real-world 

applications remains challenging.  

Although AI models perform excellently, industry practitioners often hesitate to 

deploy these models in operational pipelines. The primary concern is the lack of transparent 

explanations for model behaviour, primarily due to the black-box nature of DL models. In high-

stakes environments, decisions must be explainable, reliable, and trustworthy. Additionally, 

regulatory frameworks require organisations to provide accountability for decisions made by 

their algorithms. These challenges have sparked research efforts to advance eXplainable AI 

(XAI) techniques through Sensitivity Analysis (SA) (Arrieta et al., 2020).  

Developing precise and interpretable AI models, particularly for complex 

classification and decision-making tasks, requires addressing challenges related to data 

dimensionality, quality, and availability. Feature Selection (FS) is key to improving AI model 

performance by identifying the most relevant features while minimising irrelevant or noisy 

data. Many real-world datasets, such as those collected from sensors, logs, or transactional 

records, are high-dimensional, making FS essential for improving model accuracy, 
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interpretability, and computational efficiency. Techniques such as Pearson correlation, 

Recursive Feature Elimination (RFE), and LASSO regression help refine predictive models by 

selecting the most discriminative features and enhancing pattern recognition. 

Despite advancements in AI, a significant challenge in real-world applications is the 

scarcity of large, labelled datasets, often due to privacy constraints, data sensitivity, or the 

high cost of expert annotations. Transfer Learning (TL) helps to overcome this issue by utilising 

pre-trained models on large, publicly available datasets and adapting them to smaller, 

domain-specific datasets. By fine-tuning DL models on large multi-source datasets, TL 

enhances predictive accuracy, accelerates training, and reduces overfitting. In monitoring and 

predictive modelling, TL enables AI systems to efficiently analyse evolving patterns, forecast 

critical changes, and integrate diverse information sources. 

This chapter analyses the relative merits and demerits of various AI methodologies. 

It also aims to explain key concepts, challenges, and model behaviours in complex, high-

dimensional environments, including their broader impact on model reliability and 

performance. The chapter discusses the integration of AI with real-world applications, with 

particular emphasis on its use in high-stakes decision-making tasks. This review examines 

Feature Selection (FS) methods, Sensitivity Analysis (SA) techniques, and Transfer Learning 

(TL) approaches, providing a foundation for this research. It then sets the stage for an in-depth 

investigation of these methodologies in the subsequent chapters by explaining how they 

enhance model accuracy, enhance explainability, and utilise existing knowledge for efficient 

learning. Additionally, overcoming these challenges is crucial to enhancing the understanding 

of complex systems, which can lead to the development of effective, trustworthy, and scalable 

AI applications. 

1.1. Artificial Intelligence 

Artificial Intelligence (AI) is a branch of computer science that focuses on designing algorithms 

enabling machines to perform tasks requiring intelligent behaviour. It involves computational 

models for perception, reasoning, learning, and decision-making. Building on the widespread 

influence of AI in various sectors, this section explores the fundamental principles, learning 

methods, and functionalities that define AI systems. The rapid rise in processing capabilities 

and data accessibility has driven AI to the forefront of its advancement (Duan et al., 2019). 
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This field of research has undergone a significant transformation, with researchers rigorously 

evaluating its advantages and current challenges. AI has enhanced several sectors, such as 

banking, manufacturing, and healthcare, by effectively managing various complex tasks. 

Machine Learning (ML) is a subfield of AI that focuses on developing algorithms that 

enable systems to learn patterns from data. It involves statistical modelling, optimisation, and 

generalisation to improve performance on tasks without explicit programming. ML has three 

main learning approaches: supervised, semi-supervised, and unsupervised learning, as shown 

in Figure 1- 1. 

 

Figure 1- 1 Machine Learning Approaches 

Supervised learning is crucial in classification and prediction tasks, as models train on 

labelled data with known input-output pairs. This approach is effective in scenarios involving 

historical data, providing precise predictions of results (Cunningham et al., 2008). Semi-

supervised learning utilises both labelled and unlabelled data to optimise model performance, 

particularly in scenarios where acquiring labelled data is resource-intensive. This approach 

enhances the decision boundary by incorporating the structure of the unlabelled data 

distribution, improving generalisation and reducing reliance on limited labelled samples (Y. 

C.A.P.Reddy et al., 2018) . 



 

   

 

©University of Reading 2025      Page 22 

On the other hand, unsupervised learning models independently discover hidden 

patterns, correlations, and underlying influences using data without predetermined labels 

(Barlow, 1989). These approaches provide flexible resources for retrieving valuable data 

insights, each designed for various industries such as finance, healthcare, and marketing. AI 

learning methods provide powerful tools for data-driven decision-making, but their real-world 

impact depends on their strengths and limitations.  

1.1.1. Recent Advances and Outstanding Challenges in Machine Learning 

AI provides numerous advantages, leading to significant progress in transforming different 

sectors. An important benefit is its capacity to simplify everyday tasks, improving productivity 

and enabling the workforce to focus on complex and innovative endeavours. Additionally, 

different industries, such as manufacturing, healthcare, finance, chatbots, virtual assistants, 

e-commerce, scientific research, drug development, and climate research, use AI models. 

AI-powered robots in manufacturing are capable of carrying out assembly line duties 

with accuracy and speed, resulting in decreased production expenses and enhanced output 

quality (Grau et al., 2021). AI analyses large data sets, recognises patterns and insights, and 

swiftly makes accurate decisions. This ability is crucial in domains such as healthcare, where 

AI can significantly impact the identification of illnesses, forecasting of patient outcomes, and 

personalisation of treatment strategies (Panesar, 2021). AI, when applied in the financial 

sector, can examine market patterns and identify fraudulent activities instantly, leading to 

increased profitability and security (Hafez et al., 2025). Adam et al. (2021) state that AI-

powered chatbots and virtual assistants enhance customer satisfaction by offering immediate 

assistance and tailored interactions.  

Within scientific research, AI accelerates discovery by effectively analysing large 

datasets, recognising complex patterns, and creating predictive models. These innovations in 

climate science have resulted in significant advancements in accurately predicting 

environmental changes (Huntingford et al., 2019). Integrating AI into education enables 

adaptive systems that model individual cognitive processes and personalise content. 

Techniques such as reinforcement learning and intelligent tutoring systems support diverse 

learning styles and promote autonomy. The systems offer real-time feedback and detailed 

analysis of student engagement and progress (Zhai et al., 2021). 
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Although AI offers numerous benefits, it also has several significant disadvantages 

and limitations. Among the many challenges of AI, one of the most pressing issues in critical 

applications such as finance and healthcare is the ‘black box’ nature of DL models, which raises 

concerns about transparency and trustworthiness (Rudin, 2019). Moreover, AI systems often 

require substantial amounts of data to operate efficiently. Collecting, storing, and analysing 

this data can require significant resources and potentially raise privacy concerns (Philip Chen 

and Zhang, 2014). Violating or breaching regulations concerning this information may result 

in substantial ethical and legal complications, weakening confidence in AI technologies (Stahl, 

2021).  

A significant drawback of AI is its reliance on the quality of the data it is trained on. 

When trained on biased or incomplete data, AI can reinforce biases and produce inequitable 

results. This can significantly affect individuals and communities in sensitive domains such as 

hiring, law enforcement, and lending (Martin, 2019). It is crucial to acknowledge and address 

the downsides and limitations of AI, such as privacy issues, biased algorithms, and inadequate 

transparency. This strategy is vital for ensuring the responsible and beneficial use of AI 

technology.  

1.1.2. Blackbox Behaviour 

Despite the significant potential of AI systems, there remains a reluctance to adopt DL and 

Deep Neural Network (DNN) models in critical sectors such as medical diagnostics, defence, 

automobile automation, financial prediction, and the justice system.  Deep Learning, a subset 

of machine learning, refers to the use of multilayered artificial neural networks to learn 

hierarchical feature representations from large-scale data. The black-box nature of DL models 

poses a significant challenge to their implementation. DNNs often operate using complex, 

hidden internal mechanisms that are challenging for humans to comprehend, raising concerns 

about the transparency and reliability of their decision-making. In the healthcare industry, 

unexplainable systems can cause distrust among clinicians making life-changing decisions, 

leading to hesitation in trusting or understanding the reasoning of the model (Rosenbacke et 

al., 2024). 

In this context, the concepts of explainability and interpretability become crucial 

(Nassar et al., 2020). Interpretability focuses on providing clear reasons why an AI model 
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makes specific predictions or decisions, aiming to make the underlying mechanisms and logic 

of the model understandable to users. Understanding model decisions is critical in complex 

models, such as DNNs, where outcomes may not be visible or intuitive. On the other hand, 

explainability refers to how easily a human can comprehend the relationship between the 

input and output of the model. Classic models, such as decision trees and linear regression, 

are inherently explainable because their decision-making processes are straightforward. 

Nevertheless, as model complexity increases, preserving explainability becomes challenging. 

Despite their high accuracy, DNNs have limited explainability, hindering their application in 

real-world settings. 

1.1.3. Explainability and Accuracy Trade-Off 

Enhancing explainability highlights an inherent challenge in AI development—the trade-off 

between model accuracy and explainability. When developing and implementing Machine 

Learning (ML) models, a common performance trade-off arises between precision and 

explainability (Wanner et al., 2021). Linear regression and decision trees are easy to 

understand, explain, and validate, even for those with limited AI knowledge (Izza et al., 2020). 

This simplicity fosters greater trust in these models because their decision-making processes 

are transparent and understandable. Users can easily trace how these models arrived at a 

particular decision or prediction, making them particularly appealing when trust and 

accountability are crucial. 

Nevertheless, as research goals become complex, the limitations of these models 

become evident, frequently requiring the utilisation of advanced DL models. Nonlinear models 

can manage higher complexity and generate precise outcomes but typically trade off 

transparency in explanations. One optimal illustration of this compromise is evident in 

Convolutional Neural Networks (CNNs) (Jung et al., 2021). Although CNNs have shown 

outstanding results in domains such as image recognition, understanding their internal 

operations proves challenging, even for experts. The lack of transparency due to this opacity 

hinders the ability to justify the reasoning behind a particular prediction outcome by the 

model.  

Hence, there is a conflict between models that are understandable yet less precise 

and those that are accurate yet less interpretable. Basic models are easier to understand, yet 
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they may not possess the sophistication, i.e., the learning capability needed to achieve 

maximum predictive precision. Conversely, while yielding enhanced results, complex models 

often obscure the decision-making process, eroding trust among users, particularly in high-

stakes domains. In law, finance, and healthcare, predictive accuracy is of paramount 

importance for validation. In these domains, the success of the model depends primarily on 

its ability to produce precise and reliable results. However, despite the emphasis on accuracy, 

the need for explainability remains critical, particularly from the end user’s perspective.  

The increased significance of explainability requires AI systems to balance precise 

predictions and understandable explanations. Despite their exceptional predictive accuracy, 

complex models such as CNNs and other DNN techniques must provide transparency. This 

approach has led to the development of XAI methods using SA techniques that focus on 

making complex models explainable so that experts can trust the decisions of AI models. 

In recent years, several diverse domains have embraced the explainability 

component of AI, prioritising trustworthiness and transparency over pure accuracy. The right 

balance between accuracy and explainability is crucial for the successful adoption of AI in 

critical domains. Researchers and domain experts can ensure that DL models provide precise 

predictions and generate explanations that foster trust and enable informed decision-making 

by incorporating techniques that enhance explainability, such as XAI frameworks. 

1.1.4. Explainability in Artificial Intelligence and Frameworks 

To address these obstacles, it is crucial to develop DL models that are both precise and offer 

clear explanations. This helps experts to understand results, make informed choices, and trust 

AI-based systems. Realising the full potential of DL in critical domains requires dedicated 

efforts to develop easily understood and explainable AI (D. Kaur et al., 2023). 

Researchers have developed XAI frameworks to address the challenges posed by 

black-box AI models, thereby enhancing transparency and trust. These frameworks provide 

insights into how AI generates predictions, making them interpretable for practitioners and 

researchers. Sensitivity Analysis (SA) is a key technique within XAI that investigates how 

variations in input features influence model outputs, thereby revealing the internal decision-

making process of complex models.  By quantifying feature relevance, SA enhances model 

interpretability and facilitates the identification of inputs that most significantly drive 
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predictions. SA directly advances the objectives of XAI by enhancing the transparency, 

interpretability, and trustworthiness of opaque models—such as deep neural networks. XAI 

frameworks are crucial for generating explanations and enhancing the transparency of DNNs, 

thereby fostering user confidence in AI-driven decisions. 

SHapley Additive exPlanations (SHAP) is a critical framework that utilises game 

theory, mainly focusing on Shapley values (Lundberg and Lee, 2017). SHAP assigns a weight to 

each feature based on its contribution to the prediction made by the model by considering all 

possible feature combinations. This method ensures a fair distribution of feature importance, 

providing both local and global insights into the model. SHAP is applicable across various ML 

and DL models, offering accurate and consistent explanations.  

Figure 1- 2Error! Reference source not found. presents various XAI frameworks. The 

techniques discussed in this section represent only a small subset of the complete range of 

available methods. 

 

Figure 1- 2 Current eXplainability in AI (XAI) Frameworks 
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Methods such as Sobol, Morris, and Fourier Amplitude Sensitivity Testing (FAST) are 

vital for comprehending AI model predictions by assessing feature importance. The Sobol 

method, a variance-based approach, breaks down the model output variance into 

contributions from input variables and their interactions, thereby providing a comprehensive 

global view of feature importance (Sobol, 2001). In contrast, the Morris method is a practical 

One-At-a-Time (OAT) technique that approximates the elementary effects of input variables 

through small perturbations and measurement of the resulting output changes. This makes it 

effective for identifying key features without heavy computational demand (Morris, 1991). 

The FAST method, which operates in the frequency domain, derives sensitivity indices by 

transforming input variables and analysing variance across different frequencies, serving as a 

computationally efficient alternative to the Sobol approach (Saltelli et al., 1999). These XAI 

frameworks that use SA techniques provide valuable insights into model behaviour by 

providing global interpretability and fostering trust in AI-driven solutions and decision-making.  

For models requiring visual explanations, Individual Conditional Expectations (ICE) 

extend the Partial Dependence Plot (PDP) method by providing individual-level plots 

(Friedman, 2001; Goldstein et al., 2015). While PDP provides the average effect of a feature 

on predictions, ICE generates disaggregated plots for specific data points by altering one 

feature while keeping others constant. This approach provides a granular understanding of 

how feature changes affect individual predictions. ICE is model-agnostic and can be applied to 

many black-box models, making it a valuable tool for local and global interpretability. 

XAI frameworks, such as SHAP, Sobol, Morris, FAST, PDP, and ICE, help make AI 

models interpretable and trustworthy. These frameworks utilise SA to quantify the impact of 

input features on predications and provide various explanation forms, from visual heatmaps 

to textual and numerical outputs, suitable for different user needs (Viswan et al., 2024). 

Whether used for local instance-based explanations or global insights into model-wide 

behaviour, these tools help bridge the gap between complex AI systems and human 

understanding, ensuring that AI-driven decisions are transparent and explainable across 

different domains. 

1.2. Neurodegenerative Diseases  
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As the primary dataset utilised in this research is derived from Alzheimer’s Disease (AD) 

research, this section provides a brief overview of Neurodegenerative Diseases (NDD), with a 

particular emphasis on AD, to provide contextual understanding for the experimental work. 

The AD dataset serves as a critical benchmark for validating the proposed methodologies, such 

as feature selection, sensitivity analysis, and transfer learning techniques. While the core 

focus of this thesis lies in advancing AI strategies, it is essential to introduce AD to justify its 

relevance as a complex, high-dimensional, and real-world dataset that presents unique 

challenges in classification and model interpretability. 

NDD is an umbrella term that refers to a range of conditions that involve the 

progressive loss of neurons in the brain, spinal cord, and central and peripheral nervous 

systems. Most diseases typically stem from a combination of lifestyle, environmental, and 

genetic factors. Despite their distinct pathologies, each of the NDDs originates from abnormal 

protein buildup (Ross and Poirier, 2004). Most NDDs are irreversible; however, proactive 

management can help mitigate their impact. Treatment aims to control symptoms and slow 

the progression of the disease. Healthcare providers use various therapies and medications to 

enhance the patient’s quality of life. An ageing global population increases NDD prevalence, 

presenting a significant public health challenge. Although they have different mechanisms, 

most NDDs exhibit common traits, such as progressive neurodegeneration and cognitive or 

motor decline.  

1.2.1. Changes in the brain for progression to AD  

AD has several clinical forms and is one of the NDDs which progresses in stages, affecting an 

individual's cognitive abilities and daily living activities (Zhang and Jiang, 2015). AD presents 

itself in patients at distinct times and with different severities. The symptoms gradually 

progress in severity and take several years before reaching their peak. Nonetheless, the pace 

of the disease and the set of symptoms manifesting may vary remarkably from one person to 

another.  

Researchers usually simplify the progression to Alzheimer’s Disease (AD) into three 

phases: the Cognitively Normal (CN) stage, the Mild Cognitive Impairment (MCI) stage, and 

the Alzheimer’s Disease (AD) stage. The literature often uses various designations for subjects 
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in the preclinical period with no apparent cognitive symptoms, such as the early stage of CN, 

No Dementia (ND), Normal Condition (NC), and Healthy Controls (HC).  

In the Cognitively Normal (CN) or preclinical stage, individuals show no overt 

symptoms of AD. However, evidence suggests AD symptoms can begin affecting the brain up 

to 20 years before clinical diagnosis (Rajan et al., 2015). Signs of change, such as beta-amyloid 

plaques and tau neurofibrillary tangles, are visible in the brain during this stage- both are 

diagnostic features of Alzheimer’s (Paula et al., 2009). These neurotoxic proteins damage 

neurons and disrupt brain connectivity, even in the absence of clinical symptoms. To detect 

brain changes, Doctors may diagnose preclinical AD through cerebrospinal fluid (CSF) analysis 

or advanced imaging techniques, such as MRI and PET scans (Blennow et al., 2015). This 

condition is commonly caused by excessive lipid accumulation and marks the final stage of AD, 

where patients show measurable cognitive symptoms.  

Figure 1- 3 presents typical MRI images corresponding to different stages of 

Alzheimer's disease, such as normal, very mild, mild, and moderate stages adapted from 

Battineni et al. (2021). 

 

Figure 1- 3 MRI Images presenting different AD Stages. a. non-demented; b. very mild dementia; c mild 

dementia; d moderate dementia Battineni et al. (2021) 

As the pathology progresses to Mild Cognitive Impairment (MCI), noticeable 

cognitive impairments emerge, but they are not severe enough to significantly disrupt daily 

activities. MCI often signals AD, linked to memory declines, articulation issues, and executive 

dysfunction, such as planning or reasoning difficulties, which become evident to individuals 

and families. The key brain structures affected include the hippocampus, amygdala, and 
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entorhinal cortex, which are crucial for memory formation and spatial orientation. In this 

degeneration, the affected regions shrink, while the ventricles enlarge. Early memory deficits, 

particularly the shrinking of the hippocampus, indicate the onset of these stages (Apostolova 

et al., 2012). 

Figure 1- 4 illustrates a brain cross-sectional image highlighting the differences 

between a healthy brain and one affected by Alzheimer's disease (Tamanini et al., 2009). 

 

Figure 1- 4 Difference in the structure of the brain between the normal and Alzheimer’s (Tamanini et al., 2009) 

As the condition progresses to the stage of Alzheimer’s Disease (AD), the individual 

experiences a severe cognitive decline, and their ability to perform typical daily activities 

significantly deteriorates. At this level, the individual faces extreme memory problems, 

disorientation, and a failure to recognise people, places, and things that are otherwise 

familiar. There are still significant structural changes in the brain, in addition to the existing 

condition, which represents a further advancement in the shrinkage of both the hippocampus 

and the cerebral cortex, along with an increase in the size of the ventricles. The entorhinal 

cortex, which plays a role in language, reasoning, and social interaction, undergoes significant 

atrophy. As a result, many people lose these skills, experience personality changes, and 

struggle with declining reasoning abilities. The illness progresses through acute exacerbation 

before being categorised into three stages: mild, moderate, and severe. 

AD ultimately causes a total breakdown of cognitive and physical functions, 

preventing patients from performing basic activities. Its progressive nature makes AD one of 
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the most challenging NDDs for both patients and caregivers. Progression to the severe stage 

signifies a decline in cognitive abilities but also creates a heavy emotional burden on 

caregivers and the healthcare system.  

1.2.2. Early diagnosis and its impact 

Early diagnosis has enormous potential to enhance the quality of life for those affected by 

NDDs. In addition to benefiting patients, this proactive approach significantly benefits the 

economy, society, and families by decreasing social, financial, and emotional burdens. Even 

though these diseases may not currently have a cure, early diagnosis can make all the 

difference in managing NDDs. Primarily, it facilitates prompt intervention and access to 

existing treatments and therapies that have the potential to decelerate the progression of the 

illness and enhance symptom management.  

Furthermore, an early diagnosis enables patients and their families to make plans. It 

offers a chance to make well-informed decisions about financial arrangements, legal issues, 

and care while actively enabling the person with NDD to participate in these discussions. By 

taking this proactive measure, the patient and their family can experience less stress and 

uncertainty, which enhances their emotional health and facilitates a seamless transition into 

care arrangements. In addition to these individual advantages, early diagnosis extends to 

broader financial impacts. 

Early diagnosis additionally has significant economic implications. Early detection of 

NDDs makes outpatient care and support services cost-effective, whereas later diagnosis can 

often require expensive hospital stays and long-term care. Early diagnosis can lessen the 

financial stress on individuals, insurance companies, and healthcare systems. It could also 

enable patients to work longer to contribute significantly to society, reducing the burden on 

disability support services. 

Early diagnosis enables targeted healthcare policies and resource allocation. 

Government organisations can establish screening programs, fund research, and create 

infrastructure to meet the needs of NDD patients. These initiatives reflect a commitment to 

public health and enhance care standards. An early diagnosis also has emotional impacts on 

families. Caring for someone with an NDD can be exhausting, but early diagnosis enables 

families to plan and adapt. It offers opportunities to build support networks, seek counselling, 
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and explore local resources, ultimately empowering families to enhance emotional and 

medical care, improving their quality of life. While early diagnosis offers many benefits, it also 

relies heavily on technological advancements. AI methods have shown considerable promise 

in improving the speed and accuracy of diagnosis for NDDs such as Alzheimer’s. 

1.2.3 Brief of Stages of AD and MMSE Scores 

AD is a severe neurological disorder with global consequences, affecting millions of people 

and their families. AD and other NDDs create complex health challenges that significantly 

impact healthcare systems. Individuals diagnosed with AD go through different phases, such 

as MCI, EMCI, and LMCI. Every phase shows specific clinical signs of deterioration, requiring 

accurate diagnostic standards and careful observation. 

Diagnosis of MCI is vital because it marks the beginning stage of cognitive 

deterioration and provides a chance for prompt intervention, which could help slow down the 

progression of the disease. AD progresses from MCI through mild, moderate, and severe 

stages before reaching the terminal phase. Precise categorisation and forecasting of disease 

advancement are crucial in creating successful treatment strategies. 

The MMSE is commonly used as a screening tool to assess cognitive function and 

detect any impairment. It evaluates various cognitive domains such as orientation, 

registration, attention, calculation, recall, language, and visuospatial abilities. A perfect score 

on the MMSE is 30 points, indicating higher or normal cognitive capability (Joshi et al., 2019). 

The MMSE plays a crucial role in differentiating cognitive impairments in AD diagnosis 

and distinguishing between normal ageing and pathological decline. MMSE scores decrease 

gradually as AD advances, which is helpful for both diagnosing and monitoring the progression 

of the disease. MCI can result in minor decreases in scores, whereas substantial drops suggest 

the early, moderate, or late phases of AD. 

The MMSE is crucial for detecting cognitive impairment and tracking the progression 

of AD. This assists in prompt intervention, customised treatment plans, and assessing 

treatment results. Observing the different stages of AD results in personalised care plans for 

individuals, improving their quality of life and advancing the development of treatment for 

neurodegenerative conditions. 
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1.2.4     AI methods for AD diagnosis 

The healthcare sector is increasingly utilising AI for its exceptional ability to detect hidden 

patterns within complex and large datasets. This is essential for identifying diseases that 

display slight changes, such as AD. This type of NDD poses a significant challenge in early 

detection due to its subtle initial symptoms, such as minor reductions in brain volume. 

Traditional diagnostic methods, which heavily rely on expert analysis, are often time-

consuming and limited by the availability of skilled radiologists. The ability of AI to detect 

subtle changes in brain structure plays a crucial role in early diagnosis. ML and DL models 

efficiently diagnose AD by processing large datasets, significantly reducing reliance on skilled 

human intervention. These technologies are essential for diagnosing AD promptly by 

identifying subtle alterations in brain structure. 

Researchers widely apply ML in diagnosing AD at different stages using various input 

types, such as MRI scans, cognitive tests, and electronic health records. Early attempts to use 

AI for AD diagnosis centred on supervised ML techniques, such as decision trees, random 

forests, SVM, and ANN (Salvatore et al., 2016; Song et al., 2021). These ML models view 

disease diagnosis, staging, and prognosis as classification problems, where medical experts 

select discriminative features to achieve adequate disease classification (Moreno-Ibarra et al., 

2021). Among the various ML algorithms, ANN algorithms have shown enhanced performance 

in similar tasks because of their capability to capture complex, nonlinear correlations present 

in the data. 

Recently, ML techniques have been overshadowed by the emergence of DL models. 

While ML models rely on manually selected features, DL models can automatically extract 

essential features from complex data sets, offering enhanced performance. In comparison, DL 

models, specifically DNNs, have become valuable tools for examining high-resolution brain 

scans using different imaging methods such as structural MRI (sMRI), functional MRI (fMRI), 

and Positron Emission Tomography (PET) scans. In contrast to traditional ML models, DNNs 

can automatically discover important features from raw input data, avoiding the necessity of 

manual feature selection and minimising the risk of human error (LeCun et al., 2015). This is 

particularly advantageous in cases of AD, as the heterogeneous nature of the disease and the 

subtle early signs demand precise image analysis.  
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The ability of DL models to process and understand high-dimensional data is a 

significant factor in their success in AD detection. For instance, DL models can detect detailed 

brain atrophy patterns related to the early stages of AD from MRI scans. Additionally, studies 

have demonstrated that DL models surpass ML algorithms in terms of accuracy and precision, 

particularly in research comparing the two methods for AD diagnosis (Asl et al., 2018; Sarraf 

and Tofighi, 2017). Techniques such as stochastic gradient descent (SGD) and dropout are 

advantageous in improving optimisation processes. Implementing these methods has 

enhanced the ability of DL models to generalise effectively, enabling them to perform 

exceptionally well on diverse and complex datasets (Srivastava et al., 2014). These methods 

help avoid overfitting, ensuring the accurate prediction of AD stages across diverse patient 

groups. 

Although DL models outperform traditional ML methods, critical domains have 

restricted the use of DL technologies. The primary cause of this hesitancy is the ambiguity 

surrounding the decision-making process of these models. While ML models are transparent 

and interpretable, DL models are often perceived as opaque “black boxes,” posing challenges 

for understanding the reasoning behind a particular prediction. 

The consequences of this lack of explainability are widespread. Clinicians and patients 

may be reluctant to trust the predictions of a DL model for essential healthcare decisions if 

they do not fully understand how the model reaches its conclusions. This reluctance may delay 

the adoption of advanced tools, limit the use of life-saving technologies, and perpetuate 

continued dependence on less precise methods.  

1.3. Overview of the Focus of Research  

The overall objective of this research is to enable the use of AI in critical real-world 

applications, particularly within MRI-driven healthcare investigative processes  such as 

predicting Alzheimer’s Disease (AD) stages onset. Despite advancements in the field, 

challenges remain, such as complex models that lack explainability and interpretability, 

dealing with high-dimensional data and the need for substantial amounts of data. This thesis 

investigates three main disciplines to tackle these problems: Feature selection (FS), sensitivity 

analysis (SA), transfer learning (TL), and Autoencoder. Choosing the right features enhances 

model performance by determining the most important features, simplifying complexity, and 
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boosting explainability and computational efficiency. SA enhances comprehension of factors 

influencing DNN predictions, which is critical for their explainability and acceptability in real-

world applications. TL, in combination with Autoencoder, enables the use of information from 

larger and related tasks, improving the robustness of the model with a smaller dataset and 

reducing the time required for training. This research aims to address a crucial gap in 

explainability and enhance the accuracy of models. Therefore, in line with the central focus of 

this study, a brief overview of the three topics—feature selection, sensitivity analysis, and 

transfer learning—is presented in the upcoming sections. 

1.3.1. Feature Selection 

Feature selection is a crucial preprocessing step in data analysis, particularly significant in MRI-

based Alzheimer's disease research, where datasets are high-dimensional. It involves choosing 

a specific group of important features from all available features to train a model. FS seeks to 

enhance model performance by decreasing dataset dimensionality and eliminating irrelevant 

or noisy data that may cause overfitting and diminish generalisation capacity. The main goal 

is to enhance model precision, reduce computational complexity, and ensure an explainable 

model.  

FS provides various advantages in AI applications. Enhanced model performance by 

decreasing the number of irrelevant features with FS enhances model accuracy and predictive 

power. Reducing overfitting is achieved by selecting only the most important features, which 

prevents the model from learning noise and forces it to focus on the true underlying data 

patterns. Lower computational costs and quicker training times with fewer features benefit 

large datasets and real-time applications. Reduced features enhance model interpretability, 

crucial in scientific domains for understanding feature impacts.  

Although FS has its benefits, it also has potential drawbacks, such as the loss of 

valuable information. This challenge is frequently encountered in Alzheimer's Disease (AD) 

research due to wide-ranging heterogeneous biomarkers. Removing seemingly irrelevant 

features may result in discarding interactions that could enhance model performance. 

Additionally, computationally intensive wrapper methods involve retraining the model for 

various feature subsets. The indiscriminate inclusion of features, particularly in high-

dimensional datasets, can lead to sub-optimal model performance, increasing the risk of 
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overfitting or underfitting. Applying dimensionality reduction and feature engineering 

techniques is essential to optimise the feature set, ensuring the model learns meaningful 

patterns rather than noise. This is particularly critical in domains with naturally imbalanced 

data distributions, where careful FS directly impacts model reliability and generalisability.  

Several studies have explored strategies to identify the most informative features 

from high-dimensional data, highlighting that robust FS is central to improving MRI-based AD 

classification. Gallego-Jutglà et al. (2015) proposed a hybrid FS approach using synchrony 

measures and frequency-relative power derived from EEG signals. This demonstrates that 

multi-feature classifiers significantly outperform single-feature systems, achieving up to 100% 

classification accuracy in Mild AD detection. Similarly, Faisal.F.U.R. et al. (2021) introduced a 

combined FS technique, integrating Principal Component Analysis (PCA) with Recursive 

Feature Elimination (RFE) to reduce dimensionality while retaining crucial structural MRI 

features. Their method achieved high classification accuracies (over 95%) across different AD 

subtypes using Support Vector Machines (SVM). In a broader context, Rado et al. (2019) 

assessed multiple classification and FS methods across varied datasets, highlighting that 

optimal feature selection enhances predictive performance and reduces model complexity 

while improving discriminative efficiency.  

The selection of features continues to be a crucial research area, particularly in the 

realm of explainability in DL, as there is a rising concern about model transparency. 

Furthermore, it is crucial for enhancing model accuracy, decreasing overfitting, and improving 

interpretability, particularly in cases involving large datasets. Nevertheless, applying feature 

engineering techniques should be undertaken cautiously, as the selection of non-informative 

features could result in either loss of valuable information or underfitting, highlighting the 

importance of ongoing exploration into resilient techniques. 

1.3.2. Sensitivity Analysis 

XAI frameworks utilise Sensitivity Analysis (SA) techniques for evaluating the impact of 

variations in input variables on the resultant output, a crucial requirement when analysing 

MRI data, where transparency in decision-making is essential. The primary objective of SA is 

to determine the input variables that significantly influence the predictions made by the 
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model. This approach will provide a deeper understanding of model performance and help 

develop robust and reliable models.  

SA is essential for interpreting models, particularly in medical applications, where 

input-output relationships are usually nonlinear and challenging to comprehend. It helps 

identify the key attributes and assesses the robustness of the model by analysing how slight 

variations in input data can affect results. 

SA provides numerous important advantages, including enhanced model 

interpretability by understanding how input features influence model predictions. SA can 

guide the FS procedures by pinpointing the input variables that have the most significant 

impact. This approach can simplify the model and enhance its ability to generalise. SA enables 

the assessment of the robustness of a model by examining its sensitivity to minor 

perturbations in input data. It helps ensure that the model performs consistently across 

various scenarios. Model assumption validation through SA assists in validating assumptions 

made in model development. It ensures the model functions correctly with varying inputs and 

identifies areas for possible improvement. 

Although SA has numerous benefits, it has some drawbacks, such as computational 

complexity, which is a significant consideration when dealing with high-dimensional MRI-

derived data. Global Sensitivity Analysis (Global SA) evaluates the impact of input variations 

on the output across the entire input space, providing a comprehensive measure of feature 

importance. Specific techniques, such as global SA, require substantial computational 

resources and may not be feasible for extensive datasets or complex models. Local SA assumes 

that linear relationships between input features and output exist in local methods, but may 

not apply to nonlinear models, as small changes in input may not result in proportional 

changes in output. SA can demonstrate which inputs affect outputs without causality, but it 

does not provide causal relationships. Researchers may need to examine further, as variations 

in the output do not always link to a sensitive input. The effectiveness of SA relies on the 

quality of the underlying model. If there are errors in the model, the conclusions drawn from 

the analysis could be incorrect. 

De Santi et al., (2023) proposed an explainable convolutional neural network using 

18f-FDG PET images to enhance early diagnosis while offering insight into the decision-making 
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process of the model. El-Sappagh et al. (2021) developed a multilayer, multimodal model that 

integrated 11 data types and utilised random forests alongside SHAP and fuzzy rule-based 

systems to generate both global and patient-specific explanations. Similarly, Chun et al. (2022) 

used interpretable ML techniques to predict conversion from amnestic mild cognitive 

impairment (aMCI) to AD, employing SHAP and ICE to identify key risk factors per individual. 

Across these studies, SA techniques such as SHAP have proven essential for elucidating the 

contribution of individual features, supporting model transparency. These approaches 

demonstrate how interpretability and performance can be jointly optimised to enhance trust 

and applicability in real-world practice. 

SA is a valuable tool for understanding the behaviour of DL models, offering insights 

into which input features most influence the output. SA plays a critical role in model 

development and validation by enhancing explainability, guiding feature selection, and 

evaluating robustness. Despite challenges such as computational complexity and the 

assumption of linearity in some methods, the field continues to evolve. As SA becomes 

integrated with complex models such as DNN, its importance in ensuring reliable and 

interpretable AI systems will only increase. 

1.3.3. Transfer learning with autoencoders. 

Transfer Learning (TL) involves taking a model trained for one task and adjusting it to carry out 

a different but related task. This approach is especially advantageous in MRI-based AD 

classification, where data scarcity is commonly observed.   

The concept involves utilising knowledge gained by a model through being trained on the 

dataset from one domain and implementing the model in another related domain. This 

approach is particularly valuable when the new task has a small amount of data. TL enables 

the model to utilise knowledge from a larger, related dataset, enhancing performance with 

reduced training data.  

Autoencoders, an unsupervised technique used in NN, reduce dimensionality by 

compressing data and extracting features. They consist of two components: an encoder that 

compresses input data and a decoder that reconstructs it. An autoencoder learns a compact 

representation of input data while minimising the reconstruction error. Researchers widely 

use autoencoders in applications such as anomaly detection, image denoising, and 
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dimensionality reduction. The latent space representations learnt by autoencoders are 

particularly valuable in transfer learning scenarios, where they can serve as feature extractors 

for downstream tasks. 

Using autoencoders with TL offers numerous advantages. The main advantage of this 

approach is enhanced generalisation with small datasets, as it utilises representations gained 

from a larger dataset. This approach can significantly decrease overfitting and enhance model 

performance. Autoencoders reduce dimensionality by compressing data into a lower-

dimensional latent space, simplifying the model, and improving training efficiency. This 

approach primarily benefits tasks with high-dimensional input data and limited labelled data. 

The encoder component extracts valuable features that can be utilised in tasks further down 

the line. The acquired features are insightful than the original data, enhancing the 

performance of the model in classification, regression, or clustering activities. Autoencoders 

can undergo unsupervised pretraining, which enables them to train without needing labelled 

data. This approach enables them to learn from vast quantities of unlabelled data, which is 

typically easier to acquire than labelled data. These acquired characteristics can support 

supervised tasks with limited labelled data. When combined with autoencoders, transfer 

learning is flexible and applicable across various domains, such as computer vision, natural 

language processing, and medical imaging.  

Although TL using autoencoders has its benefits, it also has some drawbacks. TL is 

most effective when the source and target tasks have a strong connection. If the source data 

differs vastly from the task, the Autoencoder may not learn transferable features, resulting in 

poor performance. Training an autoencoder on a large dataset can require many 

computational resources, mainly when using a complex model architecture. Using pre-trained 

models or utilising cloud computing resources can reduce this issue. Although TL helps with 

limited datasets, inadequate fine-tuning can still lead to overfitting. The model might be 

memorising the limited dataset instead of generalising from the transferred characteristics. It 

can be challenging to optimise performance on a smaller dataset when fine-tuning the 

encoder and decoder of an autoencoder for a new task, necessitating meticulous 

hyperparameter tuning and experimentation.  

Nanni et al. (2020) compared TL with traditional ML using structural MRI, finding that 

while ensemble TL models performed well—achieving an AUC of 90.2% for AD vs CN—classical 
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methods with careful feature engineering often outperformed them in some classification 

tasks. However, TL remained competitive in distinguishing MCI converters from non-

converters. Gao et al., (2020) introduced AD-NET, a TL-based model incorporating age 

adjustment as a surrogate biomarker, which significantly enhanced MCI-to-AD conversion 

prediction across age groups, outperforming eight other models. This approach underscored 

the value of combining demographic knowledge with feature transfer. Meanwhile, Duc et al., 

(2020) used resting-state fMRI data and a 3D CNN to classify AD and predict MMSE scores, 

achieving strong results by combining group ICA features with SVM-RFE. The study 

demonstrated the potential of TL in enhancing DNNs models, particularly when paired with 

effective feature selection.  

TL combined with autoencoders is a powerful technique for improving model 

performance on small datasets by utilising the representational power of large datasets. 

Autoencoders offer a robust method for extracting significant features from data, whereas 

transfer learning applies these characteristics to new tasks that have limited data. Despite 

domain mismatch and high computational cost, this approach has proven flexible and 

successful in various domains, generative modelling, and multimodal learning. As the field 

advances, sophisticated techniques and applications arise, creating new opportunities for 

domains with limited data. 

1.4. Problem statement and its proposed solution 

This section sets out the primary problem statement and motivation for this research, with a 

particular emphasis on MRI-based applications. It then discusses the existing research gaps in 

the methods, leading to proposed solutions and research objectives. It provides a 

comprehensive overview of AI-driven solutions, particularly in real-world applications.  

1.4.1. Problem statement 

The research addresses the problem of effectively analysing high-dimensional datasets such 

as MRI data. These datasets often contain a vast number of features, many of which may be 

irrelevant, making it challenging to extract meaningful insights. Diminishing the size of these 

data sets is essential in enhancing the interpretability of AI models, enabling them to focus on 

the most significant features and offering precise, actionable insights. Through sophisticated 
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algorithms, AI can effectively manage these high-dimensional datasets by highlighting 

significant features, improving model performance, and ensuring reliable solutions in real-

world settings. 

Nevertheless, despite enhanced performance, a significant challenge remains in 

adopting AI models in critical environments, where model accountability is paramount 

essential. Many professionals hesitate to adopt these technologies due to a lack of 

explainability, as they need to trust and understand how a model arrives at its predictions. 

Without this transparency, the potential of AI remains underutilised. Therefore, developing 

models that reduce complexity and offer clear, explainable outcomes is vital for gaining 

confidence. The absence of explainability in AI-driven models increases the risk of 

misinterpretation, which can affect decision-making, particularly in critical domains. 

Moreover, limited datasets, a common scenario, compound the challenge. It is 

necessary to enable models to utilise knowledge from larger, robust datasets to enhance 

predictive accuracy.  

1.4.2. Motivation 

The growing complexity and scale of high-dimensional data present significant challenges in 

ML, particularly in developing models that are efficient, interpretable, and generalisable. As 

dimensionality increases, computational costs, training time, and the risk of overfitting 

escalate, making advanced feature selection and explainability techniques essential. These 

methods not only improve model robustness but also ensure transparency in critical decision-

making contexts where black-box models are unacceptable. 

Despite the success of DNNs, limited interpretability continues to hinder the broader 

adoption of complex models, particularly in expert-driven domains where explainability is key 

to trust and accountability. This thesis is driven by the need to develop computationally 

efficient, explainable AI solutions capable of handling high-dimensional datasets while 

delivering clear, reproducible, and trustworthy insights. 

An additional motivation is addressing the challenge of small-sample datasets, 

common in many critical domains. This research integrates transfer learning with 
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autoencoders to enhance predictive performance in data-scarce scenarios by utilising 

knowledge from larger datasets. 

Although the methods proposed are domain-agnostic, they are validated on 

Alzheimer’s Disease and arrhythmia datasets. The shortage of radiologists exacerbates delays 

in diagnosing AD, potentially missing opportunities for early intervention, which could 

drastically enhance patient outcomes (Konstantinidis, 2024). The use of AD datasets offers a 

relevant test case due to their high dimensionality, limited sample sizes, and the practical need 

for model interpretability. Addressing these challenges in the AD domain further 

demonstrates the applicability and impact of the proposed techniques in real-world, high-

stakes environments. 

1.4.3. Research Gap 

This research addresses critical gaps in merging AI and healthcare, focusing on interpretability, 

explainability, and model performance. Improving model performance and interpretability 

through feature selection is essential in real-world applications. Effective feature selection 

strikes a balance between model complexity and predictive power, improving both accuracy 

and interpretability. While existing literature highlights the need for algorithms that reduce 

dimensionality while preserving informative features (Jia et al., 2022), a significant research 

gap exists in validating these algorithms on external datasets to ensure their generalisability. 

Explainability is increasingly important due to its influence on decision-making and 

the necessity of trust in AI systems. Despite the use of sensitivity analysis techniques to assess 

the impacts of individual features, there is a lack of systematic comparisons to identify 

commonalities and integrate these methods into a robust, ensemble-based approach. This 

gap highlights the need for standardised metrics to evaluate explainability and ensure 

responsible AI deployment. 

The combination of transfer learning and autoencoders is also crucial in advancing 

research in applications involving small datasets. Grasping the trade-offs in interpretability, 

computational complexity, and generalisability in this context is essential. Transfer learning 

offers a promising solution by enabling models to utilise knowledge from larger, 

comprehensive datasets, enhancing performance on smaller, specialised datasets. Despite its 
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potential, research lacks the best approach to applying transfer learning with autoencoders 

to maximise accuracy and reliability. 

Without addressing these issues, the potential of predictive models to address real-

world problems, remains limited. This study aims to fill these gaps by developing and 

validating advanced feature selection algorithms, systematically comparing sensitivity analysis 

techniques, and creating a multi-stage algorithm that utilises transfer learning with 

autoencoders to enhance predictive accuracy in datasets with limited samples. This research 

is critical for enhancing the interpretability, explainability, and performance of models used in 

critical application research, ultimately contributing to DNNs adoptability. 

1.4.4. Proposed solution 

The proposed solution focuses on developing advanced algorithms to tackle key challenges in 

analysing real-world datasets and is validated on AD datasets to ensure domain relevance. 

The first component involves designing and developing feature selection algorithms to reduce 

these dataset dimensionalities effectively. By focusing on the most relevant features, these 

algorithms not only streamline the data for efficient processing but also enhance the 

interpretability of the resulting models. This enhanced interpretability will provide precise 

insights into the underlying data patterns, enabling researchers to understand the factors 

contributing to the prediction. The generalisability of these algorithms will be validated using 

an external dataset, ensuring that the solutions are robust across different contexts and not 

merely tailored to a specific dataset. 

The second component focuses on developing and systematically comparing various 

sensitivity analysis techniques. Understanding the influence of individual features on model 

output is crucial. Comparing different techniques will help identify commonalities and unique 

strengths among them. This knowledge will help develop an ensemble approach that 

combines similar results from various methods, enhancing the reliability of the model 

outcomes. This method enhances the explainability of the decision-making process of the 

model, increasing transparency and reliability.  

The last component includes designing, developing, and testing a multi-step 

algorithm that combines transfer learning with autoencoders, particularly relevant for MRI 

applications constrained by small patient cohorts. This algorithm enhances the performance 
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of models trained on datasets with fewer samples, a common issue in critical research 

domains. By transferring knowledge from larger datasets, the algorithm will enhance the 

predictive capabilities of the model, leading to accurate predictions. This sequential method 

will provide a detailed comprehension of model development for such scenarios.  

1.4.5. Objectives 

a) Design and develop feature selection algorithms to reduce the dimensionality of 

high-dimensional datasets with validation on AD datasets to ensure clinical applicability. 

These algorithms will be validated on external datasets to demonstrate their generalisability. 

Effectively reducing the number of features enhances the interpretability of the models, 

offering precise insights into the underlying data patterns.  

b) Develop and systematically compare various XAI frameworks. This comparison will 

identify commonalities among the techniques, enabling the creation of an ensemble 

approach. Integrating similar results enhances the robustness and generalisability of the 

model outputs, enhancing the explainability of the model in the decision-making process.  

c) Design, develop, and validate a multi-stage algorithm that uses transfer learning 

with autoencoders for AD datasets where the sample size is limited. This algorithm enhances 

model performance on datasets with limited samples by transferring knowledge from larger, 

relevant datasets. 

1.5. Structure of the Thesis 

This section presents a meticulously structured framework that encapsulates the core 

elements of the research. The aim is to enhance the explainability and performance of deep 

neural networks in healthcare applications with limited data. This research follows a 

meticulously crafted and structured approach, encompassing six distinct chapters that 

contribute to a comprehensive understanding of the research. 

Chapter 2 presents a comprehensive survey of the related research domains. The first 

section provides an extensive literature review of feature selection (FS), sensitivity analysis 

(SA), and transfer learning (TL) in the context of DNNs. Subsequently, the chapter provides an 

in-depth examination of explainability and interpretability techniques in machine learning, 
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with particular attention to their significance for AI-driven systems. The discussion 

systematically categorises key explainable AI (XAI) approaches based on explanation timing, 

scope, model dependency, and methodological type. This structured review establishes the 

theoretical foundation for the methodologies proposed in the subsequent chapters and 

situates the current research within the broader context of contemporary AI advancements. 

Chapter 3 explores the dataset used in this research, delving deeply into its sources 

and elucidating their essential contributions to the research scope. Explore the complex 

process of dataset preprocessing using the FreeSurfer tool, describing the steps in 

transforming raw MRI scans into a structured tabular format. Moreover, it provides insights 

into the post-processing activities applied to the dataset and discusses the resulting refined 

dataset. This chapter incorporates various visualisation charts to enhance understanding of 

the dataset, offering valuable insights into its statistics, general trends, and any novel findings.  

Chapter 4 explores feature selection techniques applied in the research. The first part 

presents a comprehensive literature review of existing techniques, providing a comprehensive 

understanding of their content and methodologies. Next, the methodology section presents 

two novel feature selection techniques based on correlation and clustering. The method 

developed was subsequently evaluated using an external dataset and a benchmark algorithm 

known as ReliefF. The correlation-based method produced a simplified feature set, leading to 

straightforward interpretability with enhanced accuracy. In contrast, the clustering-based 

approach produced four features, retaining accuracy similar to the complete feature set. 

These dimensionality reductions enhanced model robustness and interpretability, ultimately 

unveiling deeper insights into variable relationships. 

Chapter 5 focuses on the SA techniques used in the research. The initial segment of 

this chapter involves an exhaustive literature review of SA within the domain of DNN. It also 

offers critical assessments of the current methods and their respective approaches. 

Subsequently, the thesis sets out to the methodology section, which centres on the novel 

ensemble SA approach and its design and offers comprehensive insights into its 

implementation. The chapter culminates in a comprehensive analysis of the results produced 

through these methodologies, highlighting their significance and discussing their role in 

enhancing the explainability of the models. The results indicate that the hippocampal sub-

regions, fissure/sulcus, and temporal horn of the lateral ventricle can be considered the most 
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important features in predicting AD. The findings are consistent with earlier results from 

medical experts, underscoring the impact of the research. 

Chapter 6 presents a dedicated examination of the transfer learning and autoencoder 

models employed in the research. The chapter begins with a comprehensive review of the 

literature, shedding light on the importance of using transfer learning within the scope of the 

research and evaluating the existing architectures. The methodology section presents a 

detailed explanation of the innovative multi-stage algorithm developed. It then delves into 

discussing its architecture and implementation. The chapter concludes with a rigorous analysis 

of the results obtained from these methodologies, emphasising their significance within the 

research context and discussing their contributions to the overall research focus. This 

approach resulted in around 73.26% accuracy with a standard deviation of 3.92%, with an 

improvement of approximately an accuracy of 12.18% in comparison to a basic regression 

model. 

Chapter 7, the final chapter of this thesis, presents the conclusion of the summary 

findings from the previous chapters. This chapter rigorously summarises the conclusions 

arrived at through each approach discussed. It emphasises the associations between these 

approaches, highlights their joint contributions to the research goal, and provides a robust 

approach to support the diagnosis and monitoring of DNN progression in healthcare. This joint 

viewpoint enables a deeper comprehension of the importance of the research findings. 

Further, the chapter discusses the limitations and future directions of the research. 
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2. Related Work  

2.1 Literature Review for Feature Selection 

Faisal. F.U.R. et al. (2021) explore the early diagnosis of AD using sMRI and traditional ML 

approaches, focusing on model complexity and feature redundancy challenges. The paper 

targets the differentiation between AD, Mild Cognitive Impairment (MCI), and Healthy Control 

(HC) populations using T1-weighted images, a widely used imaging modality in 

neurodegenerative research. 

The study utilises data from the ADNI dataset, comprising 308 subjects with 

combined subcortical and cortical features. Three binary classification experiments are 

conducted: AD versus Early MCI, AD versus Late MCI, and AD versus Healthy Cohorts. The 

authors propose an improvised FS that combines Principal Component Analysis with Recursive 

Feature Elimination to address the high dimensionality inherent to neuroimaging data. This 

dual approach serves a twofold purpose: reducing the size of the dataset and selecting the 

most discriminative features, thereby simplifying the model while maintaining predictive 

power. The experimental results indicate that the SVM classifier performs best, with 

impressive accuracies of 97.87% for AD versus EMCI, 95.83% for AD versus LMCI, and 97.83% 

for AD versus HC. These high classification accuracies demonstrate the potential of the 

combined FS method in enhancing the diagnostic performance of traditional ML models for 

AD identification. 

A significant advantage of the study lies in its practical solution to the dimensionality 

challenge frequently encountered in neuroimaging analysis. The approach reduces 

computational complexity by integrating PCA and RFE while preserving crucial diagnostic 

information. This is particularly valuable when dealing with limited datasets, as is often the 

case in clinical studies. However, the modest sample size of 308 subjects may restrict the 

generalisability of the findings. Additionally, while traditional ML methods such as SVM have 

shown high performance, the study does not compare their approach with modern DL 

techniques that have become increasingly prevalent in this domain. Further validation on 

larger, independent cohorts is also necessary to fully establish the clinical utility of the 

proposed framework. In summary, the research provides a robust framework for AD diagnosis 
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using sMRI by effectively addressing feature redundancy and model complexity through a 

combined PCA-RFE method, yielding high accuracy and promising diagnostic potential. 

Farouk and Rady (2020) investigate the potential of unsupervised ML for the early 

diagnosis of AD, highlighting a key challenge in the field, the frequent lack of or inaccuracy of 

labelled data in medical datasets. Rather than relying on traditional supervised classification 

methods, the research employs clustering algorithms to differentiate between stages of brain 

deterioration using MRI data. 

The authors focus on two widely used unsupervised learning techniques, k-means 

and k-medoids, to cluster subjects based on Voxel-Based Morphometry (VBM) features 

extracted from structural MRI scans. These features reflect local differences in brain anatomy 

and are particularly useful for identifying subtle atrophic patterns associated with early-stage 

AD. A crucial methodological comparison is drawn between two levels of anatomical analysis: 

whole-brain global features and region-of-interest-based local features. This comparison 

helps evaluate whether focusing on specific brain regions enhances diagnostic performance. 

The best-performing approach in the study achieves an accuracy of 76%, demonstrating that 

even without labelled data, clustering methods can provide meaningful groupings that may 

align with disease progression. While this accuracy is lower than that reported in supervised 

models, the value of the research lies in exploring alternative diagnostic methods when 

labelled data is unreliable or unavailable.  

The study is commendable for challenging the conventional classification-based 

pipeline in AD diagnosis and presenting unsupervised learning as a viable alternative in low-

resource or early-stage research settings. However, it also reflects the limitations of clustering 

in clinical applications, particularly regarding diagnostic precision and interpretability. Overall, 

this work contributes a novel angle to the literature by advocating for label-free approaches 

in early AD diagnosis and emphasising the utility of VBM features in distinguishing AD-related 

brain changes, even in an unsupervised context. 

Graña et al. (2011) present a computer-aided diagnosis (CAD) system for AD that 

utilises features derived from diffusion tensor imaging (DTI), specifically focusing on fractional 

anisotropy (FA) and mean diffusivity (MD) metrics. The study aims to identify discriminative 
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features from these scalar measures to train classifiers capable of distinguishing AD patients 

from healthy controls.  

The methodology involves computing correlation using the Pearson method between 

FA or MD values across subjects and the corresponding class labels at each voxel. Voxels 

exhibiting high absolute correlation values are selected as features for classification. An SVM 

classifier, particularly with a linear kernel, is trained and tested using these selected features. 

The dataset comprises anatomical T1-weighted MRI volumes and DTI data collected from 

healthy control subjects and AD patients at the Hospital de Santiago Apostol.  

The results demonstrate that using FA features with a linear SVM classifier achieves 

perfect accuracy, sensitivity, and specificity in several cross-validation studies. This 

underscores the potential of DTI-derived features as effective imaging biomarkers for AD and 

supports the feasibility of developing CAD systems based on these metrics. This study 

contributes to the field by highlighting the efficacy of combining DTI-derived features with ML 

techniques for early and accurate diagnosis of AD. The approach offers a promising avenue 

for enhancing diagnostic tools and potentially aiding clinicians in assessing AD. 

Karegowda et al. (2010) explore the importance of feature subset selection in data 

mining, particularly for high-dimensional data, which makes training and testing classification 

models challenging. The paper compares two FS methods: Gain Ratio and Correlation-based 

FS (CFS). These methods are used to identify the most relevant features for classifying the 

Pima Indian Diabetes Dataset (PIDD), which is commonly used for evaluating ML algorithms in 

the medical domain. 

 The paper uses the decision tree algorithm with Gain Ratio to split the data and 

select the most informative features. Additionally, a Genetic Algorithm (GA) is employed as a 

search method, with CFS being used as the evaluation mechanism for feature subsets. The 

resulting feature subsets are then tested with two supervised classification methods: the 

Backpropagation Neural Network (BPNN) and the Radial Basis Function Network (RBFN). 

These classifiers were chosen for their ability to model non-linear relationships in the data, 

making them suitable for a wide range of classification tasks.  

The experimental results demonstrate that the CFS method, which uses correlation 

to assess feature relevance, significantly enhances classification accuracy as compared to the 
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Gain Ratio method. Both methods reduce the features needed for effective classification, but 

CFS yields an accurate classification model for both BPNN and RBFN classifiers. These findings 

highlight the importance of feature subset selection in improving the performance of 

classification algorithms, particularly when dealing with high-dimensional data. The paper also 

suggests that using a Genetic Algorithm for a feature subset search enhances the FS process, 

leading to classification accuracy. 

 The study concludes that CFS is effective than the gain ratio method in selecting 

feature subsets that enhance classification accuracy. It also demonstrates the significance of 

combining FS techniques with search algorithms such as Genetic Algorithms to enhance ML 

models. The results underline the potential of feature subset selection in simplifying complex 

datasets and improving the performance of ML models, particularly for tasks such as medical 

diagnosis, where FS can play a crucial role in obtaining accurate predictions. 

Chormunge and Jena, (2018) address the dimensionality problem in data mining 

tasks, particularly focusing on FS, a critical technique for handling high-dimensional data. 

Traditional FS algorithms often struggle to scale efficiently when dealing with large datasets, 

leading to the need for effective methods.  

The authors propose a novel approach integrating clustering with correlation-based 

FS to enhance feature subset selection. The method works in two key stages. First, irrelevant 

features are eliminated using the k-means clustering algorithm. This clustering approach 

groups the features based on similarity, enabling the algorithm to identify and remove those 

features that do not contribute significantly to the classification task. Once the irrelevant 

features are eliminated, the next step involves selecting relevant features within each cluster 

using a correlation measure. This step ensures that only the most informative features are 

retained, minimising redundancy and improving the efficiency of the model. To evaluate the 

effectiveness of the proposed method, the authors test it on Microarray and Text datasets, 

which are commonly used in ML research. The performance of the method is compared with 

several well-known FS techniques, and the Naïve Bayes classifier is employed to assess the 

classification accuracy. A percentage-wise criterion is used to measure the accuracy of the 

proposed method across different numbers of relevant features, enabling an objective 

comparison. 
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The experimental results show that the proposed method significantly outperforms 

traditional FS methods in terms of efficiency and accuracy. By effectively reducing 

dimensionality and selecting the most relevant features, the approach enhances the 

performance of classification tasks, particularly when dealing with high-dimensional data. 

Combining clustering with correlation-based selection enables the model to handle large 

datasets efficiently, a common challenge in many real-world applications. In conclusion, the 

paper demonstrates that combining clustering techniques with correlation-based FS 

effectively solves the dimensionality problem in data mining. The proposed method proves to 

be a robust approach to identifying and selecting relevant as distinct from non-redundant 

features, thereby improving the efficiency and accuracy of classification models. 

Yu and Liu (2003) propose a novel approach for FS in high-dimensional data. They 

introduce the "predominant correlation" concept to identify relevant features and reduce 

duplication among them. This method aims to overcome the limitations of traditional FS 

approaches, which rely on pairwise correlation analysis, making the process slower and less 

scalable.  

The paper presents a fast correlation-based filter method that identifies relevant 

features and removes redundancy without the computational overhead of pairwise 

correlation analysis. The technique is designed to efficiently handle datasets with large 

numbers of features, making it particularly suited to high-dimensional data where traditional 

methods struggle. The authors demonstrate the efficacy of their method through extensive 

comparisons with other FS techniques. The proposed method outperforms existing methods 

in both speed and accuracy, utilising real-world high-dimensional datasets. This approach 

significantly reduces computational time while maintaining or improving the accuracy of 

feature selection, making it a viable solution for large-scale ML tasks.  

The proposed fast correlation-based filter method effectively addresses the 

challenges of high-dimensional data in FS. By introducing the concept of predominant 

correlation, the method enables efficient FS that reduces redundancy and enhances model 

performance, offering a valuable tool for ML tasks involving large datasets. 

Trambaiolli et al. (2017) explored the role of FS in improving the performance of 

electroencephalogram (EEG)-based classification systems for diagnosing AD. In decision 
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support systems, irrelevant features in the data can lead to model complexity and decrease 

classification accuracy. This is particularly crucial in AD diagnosis, where EEG spectral features 

often contain relevant and irrelevant information. Therefore, effective FS is essential to 

enhance the performance of the model by identifying the most informative features while 

eliminating noise and redundancy.  

The paper investigates eight FS algorithms for EEG spectral data collected from 22 AD 

patients and 12 healthy age-matched controls. The authors focus on determining how these 

FS algorithms affect the accuracy of SVM classifiers. SVM is known for its robust performance 

in high-dimensional data classification, making it an ideal choice for this study. The authors 

use a leave-one-subject-out cross-validation strategy to assess the FS methods. This helps 

reduce the potential bias from small sample sizes and provides a generalisable model 

evaluation of the performance.  

The results indicate that the Filtered Subset Evaluator method produced the best 

performance improvements. This method achieved an impressive accuracy of 91.18% on a 

per-patient basis and 85.29 ± 21.62% on a per-epoch basis, demonstrating the positive impact 

of FS on model performance. Furthermore, applying FS led to a substantial reduction in the 

number of features—88.76 ± 1.12% of the original features were removed—without 

compromising the accuracy of the classification task. This reduction in feature space can 

significantly enhance the computational efficiency of the diagnostic system, making it feasible 

for clinical settings. 

A key finding was that all FS algorithms recognised alpha and beta frequency bands 

as crucial for distinguishing AD patients from healthy controls. This concurs with prior clinical 

studies, emphasising these frequency bands in AD diagnosis. Alpha and beta waves are known 

to be impacted in NDD, such as Alzheimer’s, which displays changes in brain activity, 

particularly in the prefrontal and temporal regions. The ability of the research to replicate 

these findings further confirms the relevance of these frequency bands in EEG-based AD 

diagnostic systems.  

In summary, this paper highlights the significance of FS as a pre-processing step in 

EEG-based AD diagnosis. By applying FS techniques, the researchers were able to enhance the 

classification accuracy, reduce computational complexity, and enhance the interpretability of 
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the model. The study demonstrates that biologically relevant EEG data, when combined with 

effective FS methods, can significantly boost the performance of diagnostic systems. This 

could pave the way for accurate, efficient, and interpretable AD detection systems, ultimately 

contributing to clinical decision-making in the early stages of the disease. 

Sadiq et al. (2021) propose a novel approach for distinguishing AD patients from 

healthy controls using resting-state functional magnetic resonance imaging (rs-fMRI) data, 

focusing on brain connectivity patterns. The study underscores the significance of 

understanding the functional organisation of the brain, particularly in NDD, such as AD. Since 

rs-fMRI captures spontaneous brain activity during rest, it has become a valuable tool in 

assessing intrinsic functional connectivity and alterations associated with neurological 

conditions. 

The authors combine Pearson correlation connectivity (PCC) and the ReliefF FS 

algorithm to enhance classification accuracy. PCC is a well-established statistical method used 

to quantify the degree of linear correlation between different brain regions, effectively 

creating a functional connectivity matrix that serves as a high-dimensional feature set. 

However, due to the large number of features typically generated from such matrices, FS 

becomes crucial to mitigate the curse of dimensionality and reduce model overfitting. 

The study employs ReliefF, a popular algorithm for its robustness in identifying 

relevant features in high-dimensional datasets, to address this. ReliefF evaluates the 

importance of features based on how well their values differentiate between instances near 

each other, thus identifying informative attributes. The integration of PCC with ReliefF enables 

the extraction of connectivity features that are statistically meaningful and diagnostically 

relevant. For classification, a K-Nearest Neighbour (KNN) algorithm is used. KNN, being a non-

parametric and instance-based learning technique, classifies new data based on the majority 

label of its closest neighbours in the training set. Despite its simplicity, KNN is particularly 

effective when combined with well-selected features, as in this study. 

The proposed method achieves a classification accuracy of 93.5%, which indicates a 

strong potential for this combined approach in clinical AD diagnosis. The high performance 

also highlights the effectiveness of combining a connectivity-based feature extraction method 

(PCC) with a robust FS mechanism (ReliefF) to reduce dimensionality and retain informative 
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biomarkers. The study contributes to the growing body of research on ML applications in 

neuroimaging by offering a method that effectively utilises functional connectivity and 

intelligent FS. The work demonstrates that targeted use of statistical and algorithmic tools can 

result in high diagnostic accuracy, potentially aiding the development of early detection 

systems for AD. This is particularly important given the progressive nature of AD and the 

clinical emphasis on early intervention. 

In conclusion, FS techniques remain central to addressing high-dimensionality 

challenges in neuroimaging and medical datasets. Filter-based methods are particularly 

prevalent due to their efficiency and ability to identify relevant features before model training. 

Among these, methods such as Gain Ratio, CFS, and ReliefF are frequently employed as they 

serve as a baseline for comparison. However, existing approaches often fail to effectively 

capture deeper inter-feature dependencies, particularly when relying solely on pairwise 

correlations. To address this limitation, this research chapter introduces two complementary 

FS methods that integrate correlation analysis with clustering principles, offering a structured 

approach to reducing feature redundancy and improving model interpretability in AD 

classification. 

2.2 Literature Review for Sensitivity Analysis 

El-Sappagh et al. (2021) introduced a multilayer, multimodal model designed for both the 

early diagnosis and progression prediction of AD, emphasising explainability. The paper 

targets key shortcomings in the existing literature, such as the over-reliance on unimodal data, 

separation of diagnosis and progression tasks, and the general lack of model transparency. 

The proposed model aims to bridge the gap between high-performance AI systems and clinical 

usability. 

The study uses data from the ADNI, incorporating 11 modalities across 1,048 

subjects. The cohort includes CN individuals, stable MCI (sMCI), progressive MCI (pMCI), and 

AD patients. The model is structured in two layers: the first performs multi-class classification 

(CN, sMCI, pMCI, AD), while the second focuses on the binary classification to predict MCI-to-

AD conversion within three years. A random forest classifier is employed in both layers, with 

FS tailored to optimise performance. Importantly, the model integrates explainability at global 

and instance levels using SHAP, complemented by 22 additional explanation modules based 
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on decision trees and fuzzy rule-based systems. These explanations are also translated into 

natural language, enhancing interpretability for clinical users. The model achieves high-

performance metrics, with a cross-validation accuracy of 93.95% and an F1-score of 93.94% 

in the diagnosis layer and 87.08% accuracy and 87.09% F1-score in the progression layer. 

Strengths of the work include its multimodal approach, unified handling of diagnosis and 

progression, and comprehensive commitment to explainability. 

Despite these merits, certain limitations remain. The use of a random forest, while 

interpretable, may not fully exploit the temporal and spatial complexities present in 

neuroimaging data. Additionally, while 11 modalities are integrated, the generalisability of the 

model and scalability in real-world clinical settings are not explicitly validated across 

independent cohorts or sites. Furthermore, potential biases introduced during feature 

selection and explainer design are not critically addressed. Nonetheless, the study represents 

a significant step toward clinically viable AI in AD, offering diagnostic precision and trust-

enhancing interpretability. The approach aligns well with current calls for transparent, 

actionable, and patient-centred medical AI systems. 

Chun et al. (2022) present an interpretable ML approach to predict the conversion of 

patients with aMCI to AD. The study addresses a clinically pressing need, as not all individuals 

with aMCI progress to AD, and accurate risk stratification could significantly enhance early 

intervention efforts. Traditional parametric models, such as logistic regression, often fall short 

in capturing complex, non-linear relationships among predictors; this research aimed to 

overcome such limitations by integrating modern ML algorithms with interpretability 

techniques. 

The study prospectively analysed a cohort of 705 aMCI patients from the Samsung 

Medical Center, with a minimum of three years of follow-up data. Key features included 

neuropsychological test results and an apolipoprotein E (APOE) genotype. The dataset was 

split into a model-building set (n=565) and a validation set (n=140). Four algorithms were 

evaluated: logistic regression, random forest, support vector machine, and XGBoost. The 

XGBoost model achieved the highest performance with an AUC of 0.852 and an accuracy of 

0.807. Crucially, the study enhances model transparency through global and local 

interpretability methods. SHAP and ICE were used to identify the most influential features per 



 

   

 

©University of Reading 2025      Page 56 

patient. Key predictors included age, education level, memory and visuospatial scores, Clinical 

Dementia Rating (CDR) sum of boxes, MMSE, and APOE status. 

Strengths of the study include the use of a relatively large, well-characterised 

prospective cohort, the combination of high-performance modelling with explainability tools, 

and the focus on individualised risk interpretation. However, the model relies primarily on 

neuropsychological and genetic data, excluding neuroimaging and biomarkers that may 

further enhance predictive accuracy. Additionally, external validation using diverse 

populations is lacking, which limits generalisability. Overall, the study demonstrates a practical 

and interpretable framework for predicting dementia conversion in aMCI patients. By 

balancing predictive power with clinical interpretability, the proposed model supports 

informed, patient-specific decision-making and offers a template for future applications in 

cognitive decline prediction. 

De Santi et al. (2023) introduce a 3D CNN framework intended for the early diagnosis 

of AD through volumetric 18F-FDG PET scans. The model effectively addresses a notable 

challenge in neuroimaging-based AI diagnostics, specifically the lack of transparency inherent 

in black-box DL models. To enhance interpretability, the authors integrate two post hoc 

explanation techniques, Sensitivity Map (SM) and Layer-wise Relevance Propagation (LRP) to 

visualise the significance of various brain regions in the classification process.  

The study uses a large dataset of 2552 PET scans sourced from the ADNI, representing 

three diagnostic classes: CN, MCI, and AD. A 3D CNN is trained for multiclass classification, 

with the model achieving Area Under the Curve (AUC) scores of 0.81 for CN, 0.63 for MCI, and 

0.77 for AD. The relatively lower performance on MCI classification highlights the ongoing 

difficulty in detecting this transitional phase. 

A significant strength of this study is the integration of explainability tools, 

particularly the application of LRP, which has been demonstrated to generate heatmaps with 

greater anatomical relevance than SM. The authors further enhance their analytical approach 

by aligning these heatmaps with the Talairach brain atlas, facilitating region-specific 

quantitative evaluations. Nevertheless, the study indicates an absence of a definitive 

correlation between the explanation provided by the heatmaps and the intensity of the PET 

signal. This observation suggests a possible disconnection between the attention mechanisms 
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of the model and its biological plausibility. Although the model exhibits performance 

comparable to that reported in the existing literature, several limitations are noted. The 

relatively modest AUC for MCI diminishes the clinical applicability of the model in the context 

of early intervention. 

Furthermore, the absence of external validation utilising independent datasets 

restricts the generalisability of the findings. Although visually informative, the explainability 

methods lack clinical validation or expert review to verify their compatibility with established 

neuroanatomical biomarkers of AD. In conclusion, this study presents a methodologically 

rigorous and explainability-oriented approach to AD classification through PET imaging. It 

significantly contributes to initiatives promoting transparent AI in the context of AD research. 

Nevertheless, it would benefit from an extensive clinical evaluation, enhanced detection of 

prodromal stages, and a stronger connection between model outputs and biological 

interpretation. 

Bogdanovic et al. (2022) present a comprehensive application of explainable ML to 

investigate AD, utilising an extensive dataset of over 12,000 individuals. In contrast to 

numerous studies focusing on prediction, this research emphasises the extraction of clinically 

significant insights and the validation of existing hypotheses concerning the risk and diagnosis 

of AD through the interpretability of models. 

The dataset includes various features encompassing medical, cognitive, and lifestyle 

variables. The study applies a meticulous preprocessing pipeline, addressing missing data, 

feature redundancy, data imbalance, and inter-feature correlations. After this rigorous data 

preparation, the authors employ the XGBoost algorithm, a gradient-boosted decision tree 

ensemble known for its robustness and performance. The model achieves an F1-score of 0.84, 

placing it among the top-performing models in the domain. However, the authors frame this 

metric as secondary to their central aim: deriving interpretable, clinically actionable insights. 

The SHAP framework generates both global and local interpretations of feature 

importance. Notably, the study presents a unified influence scheme that illustrates the 

directionality, positive or negative, of each significant effect of a feature on AD diagnosis. This 

scheme functions as evidence-based guidance for clinicians, potentially aiding in the 

interpretation of individual patient profiles. 
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A key strength of the study is its emphasis on hypothesis testing through 

interpretability rather than treating ML as purely predictive. The scale of the dataset also lends 

credibility to the derived conclusions. However, the study is limited by the absence of detailed 

information regarding the external validation of the model across distinct populations or 

clinical settings. Additionally, while SHAP enhances transparency, it remains sensitive to the 

training data and model structure, which may influence the consistency of the interpretations. 

The paper contributes meaningfully to explainable AI in NDD research. Prioritising insight over 

accuracy showcases a paradigm shift towards interpretable, hypothesis-driven ML 

applications. The results ensure to enhance early diagnosis and reshape how complex clinical 

data is utilised in uncovering patterns behind AD. 

Varghese et al. (2023) propose a transparent diagnostic framework for AD 

classification using XAI. The primary goal is to bridge the gap between model performance 

and clinical interpretability by embedding explanation mechanisms into a non-linear neural 

network model, specifically focusing on early detection through MCI classification. 

The study recognises a key barrier in AD diagnosis—delayed identification due to 

subtle early-stage symptoms and reliance on non-transparent, high-performing models that 

lack clinical trust. To address this, the authors develop an NN classifier that differentiates 

between demented and non-demented individuals. The novelty lies in enhancing this black-

box model with local post hoc explanation techniques SHAP and LIME to transform it into a 

glass-box system. These XAI tools enable interpretability by highlighting feature contributions 

to individual predictions. Model evaluation indicates that CDR, age, and Atlas Scaling Factor 

(ASF) are strongly positively associated with dementia prediction, aligning with established 

clinical understanding. Conversely, features such as normalised Whole Brain Volume (nWBV), 

MMSE, and estimated Total Intracranial Volume (eTIV) contributed towards identifying non-

demented individuals. The dual application of LIME and SHAP adds robustness by offering 

individual and global insights into model behaviour. 

A key strength of this study is its focus on building clinician trust through 

interpretability without compromising classification accuracy. Including features clinically 

relevant to AD enhances the practical utility of the system. Additionally, two complementary 

XAI techniques provide a richer and reliable interpretative framework. However, whether the 

system was validated across external or independent cohorts remains unclear, which is crucial 
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for assessing generalisability. The study contributes to AD research by combining performance 

with interpretability. Incorporating XAI techniques fosters transparency, trust, and potential 

for clinical adoption in early-stage AD diagnosis and monitoring. 

Alatrany et al. (2024) present an explainable ML approach tailored to address the 

challenges of AD classification, focusing on predictive performance and model interpretability. 

Recognising the complexity and high dimensionality of AD datasets, the study utilises data 

from the National Alzheimer’s Coordinating Center, encompassing 169,408 records and 1024 

features—a notably large dataset in the AD research domain. 

The central aim is to enhance classification performance and extract interpretable 

rules to support clinical understanding. The researchers implement dimensionality reduction 

techniques to manage data complexity and employ SVM for classification tasks. SVMs are 

evaluated on external validation data and demonstrate strong performance, with an F1-score 

of 98.9% in binary classification (Normal Control vs AD) and 90.7% in multiclass settings. 

Additionally, the model predicts AD progression over a four-year period, achieving F1-scores 

of 88% (binary) and 72.8% (multiclass), highlighting its temporal predictive capability. To 

address the explainability challenge, the authors incorporate two rule-extraction methods, 

class Rule Mining and a Stable and Interpretable Rule Set approach. These generate 

transparent, human-readable decision rules, offering insight into the most influential features 

for classification. Key predictors identified include MEMORY, JUDGMENT, COMMUN 

(communication abilities), ORIENT (orientation), and the CDR score. These features were 

further validated using SHAP and LIME, ensuring consistency between rule-based and feature 

attribution perspectives. 

A notable strength of the study is the integration of high-performing predictive 

models with interpretation mechanisms, offering both accuracy and clinical transparency. 

Using a large, real-world dataset enhances generalisability, while validation on external data 

sets supports robustness. However, while multiple explainability tools were used, the clinical 

utility of the extracted rules in a real-world diagnostic workflow remains underexplored. In 

conclusion, the study makes a meaningful contribution by combining high accuracy with 

interpretable outputs. It demonstrates how explainable ML can support early AD diagnosis 

and risk stratification in ways that align with clinical reasoning and evidence. 
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Amoroso et al. (2023) present a novel XAI approach for understanding how AD 

impacts brain connectivity, utilising both graph theory and interpretability methods. Their 

work addresses a central challenge in clinical AI applications: the black-box nature of many 

high-performing models, which impedes clinical adoption and trust. The study uses structural 

brain data from the ADNI, encompassing 432 T1-weighted MRI scans: 92 from AD patients, 

126 from CN individuals, and 214 from those with MCI. Graph-based models are constructed 

to represent brain connectivity networks, enabling for topological analysis of structural brain 

changes across diagnostic groups. 

ML models trained on these graph features successfully distinguish between AD, MCI, 

and NC groups. Crucially, the study integrates Shapley values to provide insight into the 

contribution of individual brain regions to the classification decisions. This enhances 

interpretability by quantifying the influence of specific nodes in the connectivity network. The 

interpretability results are biologically and clinically meaningful. The hippocampus and 

amygdala are shown to be highly relevant in AD classification—a finding that aligns well with 

established neurodegenerative patterns. For MCI subjects, the posterior cingulate and 

precuneus emerged as important, supporting the hypothesis that these regions are early 

markers of disruption. Interestingly, putamen and temporal gyri were highlighted as playing a 

role across the spectrum. 

Strengths of the paper lie in its methodological innovation, combining graph theory 

with XAI tools, and its clinical relevance. By pinpointing disease-relevant regions in an 

interpretable way, the approach supports diagnosis, disease tracking, and intervention design. 

The study could explore whether such graph-based explainable frameworks can generalise 

across imaging modalities or cohorts. In conclusion, the paper contributes a compelling 

framework that links structural connectivity with explainability, bridging the gap between 

computational neuroscience and clinical neurology. 

Raghupathy et al. (2025) present an ensemble-based ML approach combined with 

explainability techniques for the accurate diagnosis of AD. Their work emphasises the growing 

importance of XAI, particularly in clinical settings where model transparency is as essential as 

accuracy. 
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The study focuses on boosting ensemble classifiers, specifically XGBoost, LightGBM, 

and Gradient Boosting, which are known for their robustness and efficiency, particularly with 

structured data. A key contribution is the integration of SHAP into the modelling pipeline—

not only to interpret the model outputs but also to guide feature selection. This dual role of 

SHAP enhances the transparency and the performance of the system. The authors report an 

accuracy exceeding 94%, achieved with a reduced set of features, demonstrating the 

effectiveness of using SHAP for dimensionality reduction without compromising performance. 

This study aligns with current trends in medical AI research, prioritising interpretable, high-

performing models that can be used in real-world diagnostic settings. While boosting methods 

are already well-regarded for their predictive power, their black-box nature often limits their 

clinical use. By using SHAP, the authors enable local and global explanations, helping identify 

which features most influence individual and overall predictions. 

Strengths of the paper include its focus on ensemble model robustness, efficiency 

with minimal feature sets, and the explicit use of XAI for explainability and trust-building. It 

contributes to the growing literature advocating for hybrid pipelines that merge model 

performance with interpretability. This work effectively demonstrates the power of 

combining boosting ensembles with SHAP for accurate and explainable AD classification, 

supporting clinical utility and trust in ML-based diagnostics. 

(Jahan et al., 2023) propose an explainable ML framework for predicting and 

managing AD using a multimodal dataset. The paper responds to two key limitations in current 

AD prediction research: the over-reliance on neuroimaging alone and the lack of transparency 

in ML models that inhibits trust among end-users, particularly clinicians. 

The authors use a data fusion strategy that combines clinical, MRI segmentation, and 

psychological data, enabling a holistic understanding of the disease. This multimodal 

integration is applied to a five-class classification task, distinguishing between AD, cognitively 

normal individuals, non-Alzheimer's dementia, uncertain dementia, and others. This goes 

beyond the common binary or three-class classification approaches in much of the literature. 

Nine machine learning models were evaluated, with RF emerging as the top performer. It 

achieved a cross-validated accuracy of 98.81%, suggesting strong discriminative capability and 

robustness. The choice of models, ranging from classifiers such as logistic regression and 

decision trees to complex ones such as MLP and ensemble techniques, adds credibility to the 
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comparative aspect of their methodology. Explainability is addressed through SHAP, which 

interprets model predictions and identifies influential features. A unique contribution of this 

study is also the inclusion of a proposed patient management architecture.  

The main strength of the study lies in its novel use of multimodal data for five-way 

classification, which aligns well with the heterogeneity of dementia presentations in clinical 

reality. Using OASIS-3, a well-regarded open-access dataset, adds reproducibility value to the 

work. Additionally, incorporating explainability directly into the pipeline is a necessary step 

toward trusted, clinically applicable AI systems. The paper would benefit from discussion 

around the clinical validity of the most predictive features. Furthermore, while the proposed 

management architecture is a forward-thinking addition, its practical utility must be assessed 

in real-world deployment scenarios. In summary, this study makes a valuable contribution by 

demonstrating how integrating diverse data types and explainability methods can enhance 

performance and transparency in AD diagnosis and management. 

P..A.Menon and R.Gunasundari (2024) presents an explainable ML framework for 

early AD classification that balances accuracy and interpretability. The key novelty lies in 

integrating SHAP for feature selection and model explainability and utilising PyCaret, a low-

code automated ML tool, for rapid model evaluation and deployment. 

The study uses the OASIS dataset and explores various classifiers for AD prediction. 

Among them, Naive Bayes achieves the highest classification accuracy of 96%. While this 

model is relatively basic, its performance suggests that with appropriate feature selection and 

preprocessing, even basic models can perform competitively. SHAP is used post hoc for 

interpretation and to identify and retain the most impactful features, effectively acting as a 

filter for feature importance. PyCaret simplifies model comparison and tuning, which may 

appeal to researchers or clinicians with limited coding experience. This low-code approach 

also aligns well with the push for democratising AI in healthcare. The use of SHAP adds 

transparency by showing which features drive predictions. However, there is limited 

discussion about class imbalance, model robustness, or external validation, which would be 

crucial for deployment in real-world settings. 

In terms of contribution, this work shows the potential of combining automated ML 

tools with explainable AI to build interpretable and clinically relevant prediction models 
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efficiently. It demonstrates how methodological simplicity and strong interpretability coexist, 

particularly in early diagnostic tasks. discussion on the clinical meaning of selected features 

and a comparison with complex models, such as XGBoost or ensemble learners, would have 

been valuable to strengthen the study. Still, the approach provides a strong, practical 

foundation for building transparent AD classification systems that are easier to understand 

and implement. 

2.3  Literature Review for Transfer Learning 

Choe et al. (2020) aim to evaluate sub-scores from the MMSE to predict the progression from 

MCI to AD. The research used data from 306 people with MCI obtained from the ADNI 

database, including various standardised clinical and neuropsychological tests conducted at 

baseline and a two-year follow-up. 

The researchers employed logistic regression analysis to investigate how MMSE total 

and subscale scores were related to the risk of developing AD. The analysed MMSE subscale 

scores comprised memory, orientation, construction, attention, and language. The research 

also accounted for possible factors, such as demographic and clinical variables, ensuring a 

robust data analysis. The results indicated a greater likelihood of developing AD, which was 

linked to decreased MMSE scores in memory, orientation, and construction subscales. In 

particular, the delayed memory recall section and the time aspect of the orientation section 

(specifically focusing on the week and day) were significant indicators of disease progression. 

However, the relationship between the attention and language subscales and AD conversion 

was not statistically significant. 

This research utilises the MMSE cognitive evaluation tool and examines subscale 

results, guiding healthcare professionals. Using a large cohort from the ADNI database 

enhances the reliability and generalisability of the results. However, focusing on a single 

assessment tool may be a drawback since other biomarkers may be overlooked alongside 

neuroimaging data that could enhance predictive accuracy. Overall, the study underscores the 

significance of MMSE subscale scores, particularly in memory and orientation, as early 

indicators of AD progression in MCI patients. It advocates integrating accessible clinical 

evaluations into routine assessments to identify high-risk individuals. 
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Nanni et al. (2020) investigate the effectiveness of TL versus traditional models in 

diagnosing and predicting AD through structural MRI scans. The goal was to identify which 

method performed best in differentiating stages of cognitive decline. The study involved over 

600 participants from the ADNI database, including individuals with AD, MCI converters to AD 

(MCIc), MCI non-converters (MCInc), and CN patients. Three methods were evaluated: an 

ensemble of five DL models fine-tuned for MRI tasks, training a 3D CNN model from scratch, 

and combining two conventional ML models with feature extraction and SVM. Performance 

was assessed in binary classifications: AD vs. CN, MCIc vs. CN, and MCIc vs. MCInc. 

The ensemble TL model achieved an AUC of 90.2% for AD vs CN, 83.2% for MCIc vs 

CN, and 70.6% for MCIc vs MCInc. Traditional ML techniques outperformed TL in AD vs CN and 

MCI vs CN comparisons, with AUCs of 93.1% and 89.6%. However, MCIc and MCInc results 

varied, with AUCs from 69.1% to 73.3%. The CNN trained from scratch underperformed due 

to the small dataset. Using an ensemble of pre-trained models is a notable innovation in TL. A 

limitation is the small dataset, which may hinder DL model performance, particularly for CNNs 

that require large data volumes  

This research highlights TL in medical diagnosis without extensive labelled datasets. 

Even with training on non-medical images, TL models achieved impressive results, indicating 

room for further investigation. The findings show that traditional ML techniques, combined 

with careful feature development, can still compete with or surpass DL methods, emphasising 

the ongoing relevance of classic approaches in medical contexts. The study provides insights 

into the effectiveness of TL compared to traditional methods for early detection and 

prediction of AD, stressing the importance of ensemble methods and interdisciplinary 

strategies in advancing medical diagnostics. 

Jha and Kwon (2017) introduce a technique using sparse autoencoders (SAE) to 

identify AD in its early stages. This technique combines scale conjugate gradient (SCG) 

optimisation with a SoftMax output layer for patient categorisation. The main objective of this 

study was to develop an accurate and efficient algorithm for distinguishing AD patients from 

individuals with normal cognitive function.  

The research utilised OASIS neuroimaging data, employing a sparse autoencoder to 

extract key input features. This was combined with SCG, an optimisation algorithm that 
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efficiently fine-tuned NN by minimising loss functions than traditional methods. The model 

included a stacked autoencoder with a SoftMax layer for classification, converting outputs 

into probability distributions. It was refined to enhance accuracy, sensitivity, and specificity, 

addressing overfitting and feature redundancy. The model achieved 91.6% accuracy, 98.09% 

sensitivity, and 84.09% specificity, demonstrating reliable detection of both positive and 

negative AD cases for early diagnosis. 

Using sparse autoencoders helps the model focus on the most important 

characteristics, decreasing the likelihood of overfitting. The SCG optimisation enhances the 

ability of the model to learn from the data. In general, this research provides significant 

knowledge on employing autoencoders for detecting AD, particularly through the unique 

integration of sparse autoencoders and SCG. 

Bhatkoti and Paul (2016) present a novel DL method for AD detection that uses brain 

MRI scan data, CSF, and PET images. They develop a framework that employs a modified k-

sparse autoencoder and a multi-class classification model. The model distinguishes between 

various stages of AD, including MCI and advanced AD.  

The approach uses a k-sparse autoencoder to enhance feature extraction from input 

MRI data. This model is combined with a DL classifier for multi-class classification. The 

autoencoder incorporates a sparsity constraint, activating only a limited number of neurones 

and improving feature learning. The classifier uses these features to distinguish between 

healthy, MCI, and AD phases, significantly improving accuracy. The research highlights that 

the k-sparse autoencoder boosts model resilience and precision, which is crucial for early-

stage MCI detection and vital for prompt intervention.  

The main advantage is its use of the k-sparse autoencoder, improving feature 

extraction and classification accuracy. Multiple classes provide a breakdown of Alzheimer's 

stages, enhancing diagnostics with nuanced information. However, relying on a single data set 

may limit the applicability of the results. Additionally, significant modifications and 

computational resources are required due to the complexity of the model, including the 

sparsity constraint. The study offers a promising approach for detecting early Alzheimer's 

through advanced ML methods and neuroimaging data. 
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Mehmood et al. (2021) explore a new method to enhance early AD detection by 

applying TL methods to MRI images from ADNI. This approach focuses on using CNNs pre-

trained on large image datasets, specifically the VGG19 architecture, fine-tuning them for MRI 

scans of AD patients to differentiate stages of the disease. Data augmentation was essential 

in artificially expanding the training set, preventing overfitting and improving model 

generalisability. The study also incorporated batch normalisation and dropout layers for 

enhanced performance, adjusting only the final layers of pre-trained networks for the AD 

classification task while retaining the general features from earlier layers.  

The TL models accurately distinguished normal controls from MCI and AD patients. 

The VGG-based model outperformed traditional techniques reliant on manually selected 

features regarding accuracy. This suggests that pre-trained CNNs, tailored for specific medical 

imaging, can greatly enhance diagnostic accuracy. The innovative use of TL in addressing 

complex medical issues highlights the promise of DL in healthcare. However, the research is 

limited to one imaging technique (MRI) and lacks additional data such as genetic information 

or clinical evaluations for a comprehensive diagnostic approach. However, it significantly 

contributes to AD diagnosis, showcasing the effectiveness of advanced ML methods in medical 

imaging. 

C. Wu et al. (2018) aim to develop a CNN model for accurate classification of MCI and 

prediction of its progression to AD, addressing the need for early and reliable diagnostic tools. 

The study employed MRI data from the ADNI dataset to differentiate between MCI and normal 

cognitive function and predict the progression from MCI to AD. The dataset included structural 

MRI and clinical information, ensuring a comprehensive approach to training and validating 

the model. 

The research used a 3D CNN model to analyse MRI data, extracting spatial features 

to recognise patterns linked to cognitive states. The model integrated TL and data 

augmentation methods to enhance effectiveness and generalisation. It also explored various 

DL structures and optimisation techniques to enhance accuracy in classifying MCI and 

predicting progression to AD. The CNN model achieved high accuracy in both classification 

and prediction, indicating its potential to predict the transition from MCI to AD and providing 

insights into cognitive decline progression.  
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The strength is its advanced DL structure that captures specific MRI spatial details. 

Using TL enables the model to utilise pre-trained networks, enhancing accuracy and 

robustness. However, a limitation is its reliance on a single imaging modality, potentially 

overlooking important biomarkers for AD progression. The research contributes by applying 

CNNs to MCI classification and conversion prediction tasks. While results show promise, 

dependence on MRI data limits usefulness in contexts where this imaging is not feasible. 

Spasov et al. (2019) seek to develop a DL model that is efficient in terms of 

parameters to predict the transition of individuals from MCI to AD. The study employed data 

from the ADNI dataset, including MRI images, demographic data, genetic details, and cognitive 

evaluations. The dataset contained stable MCI patients as well as individuals who progressed 

to AD during a specified follow-up period.  

The study employed an efficient CNN method that reduced parameters while 

maintaining accuracy. It introduced a new 3D CNN model integrating spatial and temporal 

data, addressing high computational demands. This structure effectively captured spatial 

aspects of brain atrophy related to AD progression. A feature extraction technique identified 

the most predictive biomarkers, enabling accurate MCI to AD transition predictions, achieving 

86% accuracy. The model effectively distinguishes between sMCI and pMCI, serving as a 

valuable tool for early detection.  

This research emphasises an efficient model, enhancing applicability in resource-

limited clinical settings. Combining multi-modal data with advanced feature extraction boosts 

robustness and predictive power. However, its reliance on a single dataset (ADNI) limits 

generalisability across diverse populations. Although the model demonstrates a reasonable 

level of accuracy, there exists significant potential for enhancement, particularly regarding the 

specificity of predictions. This work significantly advances neuroimaging and predictive 

modelling for AD, addressing common challenges in deep learning model deployment by 

utilising a model with fewer parameters. 

Fouladvand et al. (2019) focused on creating a DL algorithm for forecasting the 

progression from MCI to AD using the Mayo Clinic Study on Ageing (MCSA). The emphasis was 

on utilising longitudinal data to enhance predictive accuracy, enabling earlier and precise 

interventions for high-risk patients. The dataset contained 558 electronic health records (EHR) 
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of individuals with MCI, including details on personal information, clinical notes, diagnoses, 

lab results, medications, and cognitive scores.  

The research used a DL system that integrated various EHR data. It focused on 

temporal aspects, recognising that changes in clinical and cognitive markers over time are 

crucial for forecasting disease progression. The RNN architecture used was the LSTM network, 

which handled the sequential nature of EHR data. The LSTM was trained to predict the 

progression of MCI to AD in patients over a period of time. The results were promising, 

demonstrating a robust predictive capability for identifying patients with MCI who are likely 

to progress to AD. The study found LSTMs enhanced to random forests in F1 scores and 

compared the DL approach with traditional ML methods. The DL model excelled in addressing 

the complexity and temporal dynamics of the data. 

One of the primary strengths of this research is its detailed long-term dataset from 

EHR, providing a complete view of patient well-being over time. LSTM networks enable the 

model to capture essential temporal dependencies for forecasting disease progression. 

Additionally, integrating various EHR data types, such as clinical notes and cognitive scores, 

offers a comprehensive approach. However, the performance of the model relies on the 

quality of EHR data, which can vary. Incorporating clinical biomarkers could enhance 

predictive accuracy. This study represents a significant advancement in using DL to forecast 

progression from MCI to AD, highlighting EHR data in clinical prediction models for early 

detection in a scalable, non-intrusive manner. 

D. Zhang and Shen (2012) seek to enhance the forecasting of AD progression among 

individuals with MCI. The authors employ longitudinal data, various biomarkers, such as MRI 

and FDG-PET imaging, and clinical scores such as MMSE and ADAS-Cog. The research aims to 

predict both qualitative changes (such as transitioning from MCI to AD) and quantitative 

changes (such as fluctuations in cognitive scores) in MCI patients over a period of time. 

Accurately predicting these changes is essential for the early diagnosis and tracking of AD 

progression. The researchers applied data from the ADNI, which involved 88 MCI participants 

monitored at various intervals. 

The approach included conducting a longitudinal selection process to identify 

relevant and important brain regions over time for each type of modality. This was 
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accomplished using a sparse linear regression model that incorporated 'group regularisation' 

to group the weights related to the same brain region over multiple time points. This method 

identifies brain areas based on cumulative evidence from multiple time points. The 

longitudinal features obtained from the selected areas were then combined with a multi-

kernel SVM to predict future clinical outcomes. The model demonstrated results with 78.4% 

accuracy compared to traditional techniques. In particular, the research accurately predicted 

cognitive scores (MMSE and ADAS-Cog) after 24 months and the progression from MCI to AD 

with high accuracy, employing data from at least half a year prior to the progression from MCI 

to AD. 

The main advantage of this research is its comprehensive method, which employs 

various types of data and multiple time points to enhance predictive accuracy. Nevertheless, 

the complexity of the model and the requirement for extensive longitudinal data may restrict 

its practical application in clinical settings, where obtaining such detailed data may not always 

be feasible. The research effectively showcases the potential of combining advanced ML 

methods with multimodal biomarkers for predicting AD outcomes. However, further studies 

must focus on making these models straightforward for broader clinical applications and 

ensuring their effectiveness in various patient demographics.  

Oh et al. (2019) investigate innovative methods for diagnosing AD using MRI data. 

The research aims to enhance the accuracy and interpretability of AD diagnosis by utilising a 

convolutional NN (CNN) trained on volumetric data in conjunction with transfer learning. This 

method uses pre-trained DL models adjusted to a dataset to identify stages such as AD, 

progressive pMCI, stable sMCI, and NC.  

The research employs VCNNs and convolutional autoencoders (CAE) to analyse MRI 

data, offering a comprehensive analysis than standard 2D approaches. Pre-trained models 

were modified using TL and an inception module-based CAE to reduce the specialised training 

data required for AD. The models receive MRI data from ADNI to ensure robust training. The 

combination of VCNN and TL methods successfully attained high accuracy, varying from 60% 

to 86% in distinguishing various presentations of diseases. The model captured subtle 

characteristics of disease progression by utilising volumetrically labelled data. The research 

also highlighted the ability of the model to visualise essential features that impact 

classification, improving the understandability of the outcomes.  



 

   

 

©University of Reading 2025      Page 70 

The main advantage of this research is its utilisation of volumetrically labelled data, 

which gives an extensive dataset for analysis and enhances diagnostic accuracy. Moreover, TL 

lowers the requirement for extensive, disease-specific datasets, resulting in efficient and 

accessible model training. One possible drawback is the dependency on TL, which could result 

in biases from the pre-trained models if they do not align well with the specific features of AD. 

The research significantly impacts the field by merging sophisticated ML methods with 

medical imaging. It emphasises the promise of VCNNs, CAEs, and TL in improving AD diagnosis, 

but research is needed to perfect these techniques and ensure their effectiveness in various 

settings. 

Aderghal et al. (2020) address the classification of AD stages by utilising different MRI 

modalities in conjunction with TL methods. The primary focus of this study was to enhance 

the accuracy of classifying Alzheimer's stages (normal cognition, MCI, and AD) using DL 

models. The research aimed to enhance the accuracy of diagnosis and early detection of AD 

progression by analysing MRI data sourced from the ADNI database. The dataset consisted of 

306 individuals, 133 classified as having MCI, 58 with AD, and 115 as normal controls. The MRI 

images were segmented before being used to train and evaluate the models.  

The research utilised TL, specifically employing pre-trained LeNet-like CNN 

architectures trained on MNIST. Features were derived from the MRI and DTI data, which were 

specifically created for classifying multiple stages of Alzheimer's. The research investigated 

different DL architectures, utilising methods such as weighted cross-entropy loss to tackle 

imbalanced class problems. The results showed that the fusion method produced the highest 

performance, showing varying accuracy rates in different projections but demonstrating 

strong classification abilities.  

One key advantage of this study is its all-encompassing strategy, which combines 

various MRI methods and utilises advanced DL methods to address the complex issue of 

classifying Alzheimer's Disease. Utilising TL enabled efficient management of inadequately 

labelled data by capitalising on insights from similar or MNIST data. Nevertheless, the research 

encountered obstacles such as addressing class disparities and the risk of overfitting because 

of the complex model structures employed. Moreover, although the results showed potential, 

validation is needed to determine if the findings can be applied to different datasets or clinical 

contexts. The research shows promising possibilities for utilising TL to detect Alzheimer's 
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cognitive stages early and accurately, providing a strong framework that can be enhanced and 

evaluated in clinical settings.  

Mehmood et al. (2024) aim to enhance the diagnostic accuracy of AD across various 

stages by utilising advanced DL methods such as TL and CNNs. The main emphasis is on 

utilising the Siamese NN structure, particularly the 4D-AlzNet model, which consists of four 

parallel CNNs, to analyse MRI data. This method is significant as it looks at both spatial 

features and temporal variations, rigorously examining the structural changes to the brain as 

AD progresses.  

The research utilises TL, where the model is pre-trained on VGG-19, VGG-16, and 

customised AlexNet, which is trained on a comprehensive dataset. The model is then further 

trained on a task-related dataset, specifically the ADNI dataset. This technique enhances the 

capability of the model to identify minor distinctions in MRI images that suggest different 

stages of AD. The Siamese network excels at comparing pairs of images, which is essential for 

differentiating between the early and late stages of MCI and AD. The results are promising, as 

the Siamese 4D-AlzNet demonstrates a high accuracy of 95.05% in distinguishing AD stages. 

This is particularly important for quickly detecting and tracking the development of diseases, 

as this is vital for prompt intervention. Utilising four data types in the model introduces a new 

aspect to the analysis, which may result in precise forecasts than conventional 2D or 3D 

imaging methods. 

The strength of the research lies in its creative utilisation of sophisticated NN 

structures and TL, which collectively enhance the capacity of the model to generalise and 

accurately classify complex data. However, the research also has limitations, such as the 

computational resources needed to develop and use these complex models, potentially 

hindering their use in real-world clinical settings. Moreover, despite the high accuracy of the 

model, additional validation on various populations is necessary to verify its overall 

applicability. This study makes a substantial contribution to the neuroimaging field and the 

diagnosis of NDD by introducing an innovative method that integrates sophisticated DL 

strategies with extensive, multiple types of data. This may lead to accurate and quicker AD 

detection, possibly enhancing patient results with earlier and focused treatments.  
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Qiu et al. (2018) explore the combined use of multiple diagnostic modalities to 

enhance the detection of MCI. The research aims to determine whether combining MRI scans, 

MMSE, and logical memory (LM) tests can enhance the accuracy of diagnosing MCI, a 

precursor to AD. 

The data for DL models were MRI data from the National Alzheimer's Coordinating 

Centre database, consisting of 386 individuals with normal cognition, or MCI. The research 

methodology fine-tuned the VGG-11 model, which was pre-trained on large datasets, for 

classifying cognitive status for MRI scans. Modifications involved batch normalisation, dropout 

layers, and additional fully connected layers. The research compared the accuracy of various 

models in identifying MCI through different data types. The MRI model reached an accuracy 

of 83.1%, the MMSE model 84.3%, and the LM model 89.1%. The accuracy was greatly 

enhanced to 90.9% by blending these models using a majority voting technique. Combining 

various data sources using a multimodal strategy enhances the dependability of MCI 

identification, providing accuracy. Various predictions from different sources, such as MRI, 

MMSE, and LM tests, were integrated through majority voting to make the final model and 

diagnosis. This method of multimodal fusion sought to capitalise on the advantages of each 

data type to enhance diagnostic robustness. This suggests that merging different data sources 

can greatly enhance diagnostic accuracy compared to using just one data type. 

The strength of the research is in its original utilisation of diverse multimodal and 

comprehensive DL methods, offering a rigorous approach to diagnosing MCI. However, the 

research is constrained by its retrospective design and the risk of overfitting because of the 

relatively small sample size. Furthermore, the model has not been tested for its 

generalisability to other populations, potentially restricting its broader applicability. This 

research contributes substantially to the field by showing how combining various 

neuroimaging and neuropsychological tests with DL techniques can lead to a promising 

method for detecting cognitive impairments at an early stage. 

Duc et al. (2020) investigate a novel method for AD diagnosis and MMSE score 

prediction using resting-state functional MRI data. The main goal of this research is twofold: 

first, to create a DL model to classify AD, and second, to predict cognitive impairment levels 

based on MMSE scores.  
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The research used rs-fMRI data from 331 participants in South Korea, consisting of 

individuals with AD and those who were healthy. The researchers obtained 3D independent 

component spatial maps from fMRI scans and used them as features in a 3D CNN for the 

classification task. Multiple regression models, such as linear least squares regression (LLSR), 

support vector regression, and ensemble techniques, were evaluated for MMSE score 

prediction. Techniques such as LASSO and SVM-RFE were used for feature optimisation. The 

findings were encouraging, as the CNN obtained an average balanced accuracy of 85.27% in 

differentiating between AD patients and healthy controls. Moreover, the research found that 

networks such as the medial visual, default mode, dorsal attention, executive, and auditory-

related networks strongly correlate with AD. The best results for MMSE score prediction were 

achieved by combining gICA features with SVM-RFE, resulting in an R square value of 0.63 and 

an RMSE of 3.27. 

The strengths of the study are its comprehensive feature extraction from rs-fMRI 

data and the use of state-of-the-art DL techniques, which increase the accuracy of AD 

detection and cognitive decline prediction. Nevertheless, the research is constrained by its 

concentration on a particular group, potentially impacting the applicability of the findings. 

Moreover, although helpful, rs-fMRI can be susceptible to motion artefacts and other factors 

that may affect the reliability of the results. The paper greatly impacts the field by showing 

how combining neuroimaging data with DL can be valuable for diagnosing NDDs and MMSE 

scores jointly. Still, testing with diverse populations is needed to verify its broader 

applicability. 

Gao et al., (2020) propose an innovative approach that enhances the prediction 

accuracy for converting MCI to AD. The study aims to address a critical challenge in NDD 

research by identifying which MCI patients are at higher risk of progressing to AD. This 

prediction is vital for early intervention and improving patient outcomes. The research uses a 

dataset from the ADNI, including neuroimaging data, demographic information, and cognitive 

assessments, to build a robust predictive model. 

The authors introduce a novel DL model named AD-NET (age-adjust NN), which 

utilises TL to maximise the utility of limited medical imaging data. The model uniquely 

incorporates an age-adjusted component, recognising age as a significant factor in the 

progression to AD. This is achieved by transferring knowledge from a pre-trained model 
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trained on healthy subjects to the AD-NET for feature extraction and utilising age-related 

information as a surrogate biomarker. The dual purpose of the TL approach in AD-NET sets it 

apart from other methods, enhancing the ability of the model to predict conversion accurately 

across different age groups. The experimental results demonstrate that AD-NET significantly 

outperforms eight other classification models in predicting the conversion from MCI to AD, 

particularly highlighting its effectiveness in young cohorts. The performance of the model was 

validated using metrics such as accuracy and AUC, which gave rise to enhanced results. This 

success underscores the capability of the model to integrate both feature extraction and 

demographic information effectively. 

However, the research does have its limitations. One significant drawback is the lack 

of generalisability of the model, as it was only trained on a particular dataset. This could 

restrict its applicability to a broader range of diseases and purposes. Moreover, the 

interpretability of the NN is also a challenge due to its complexity, which is vital for clinical use 

and decision-making. In conclusion, AD-NET has made significant advancements in 

neuroimaging and Alzheimer's research, particularly in addressing data scarcity and the role 

of age as a predictive factor. 

2.4   Comprehensive Survey of Explainability and Interpretability Techniques 

2.4.1 Brief overview of XAI and explainability in ML/AI 

Over the past decade, the rapid expansion of AI has led to significant improvement in 

predictive accuracy, optimisation capabilities, and real-world deployment. State-of-the-art 

models, particularly DNNs, ensemble learning systems, and complex generative architectures, 

have demonstrated exceptional performance across a diverse range of applications, such as 

computer vision (Krizhevsky et al., 2012), natural language processing (Vaswani et al., 2017), 

healthcare diagnostics (Esteva et al., 2017), finance (Heaton et al., 2017; Lipton, 2018), and 

autonomous systems (Bojarski et al., 2017). However, this increase in model complexity has 

also resulted in significant challenges related to interpretability, transparency, and 

accountability. 

Frequently, these complex models are referred to as “black boxes” (Lipton, 2018), 

indicating that their internal decision-making processes are either inaccessible or 
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incomprehensible to users. As AI systems increasingly influence critical decisions with social, 

ethical, and legal consequences, the demand for explainability of the reasoning behind 

decisions, also known as XAI, has grown substantially. Explainability refers to the extent to 

which an end user can understand, trust, and verify the output of an AI system. While 

traditional, classic models, such as decision trees or linear regression, naturally provide 

interpretable structures, most modern ML algorithms sacrifice explainability in pursuit of 

improved predictive performance. 

The field of XAI has thus emerged to address the trade-off between explainability and 

performance. It encompasses a diverse set of methods designed to generate human-

comprehensible explanations for complex model outputs. This need for explainability is driven 

by multiple stakeholders, including domain experts seeking to validate AI recommendations, 

developers aiming to debug and improve models, regulators requiring transparency for 

compliance, and end-users who need to trust system outputs in high-stakes settings (Doshi-

Velez and Kim, 2017; Rudin, 2019). Regulatory pressures such as the European Union’s 

General Data Protection Regulation (GDPR) (Goodman and Flaxman, 2017) and the EU AI Act 

have further accelerated interest in developing explainable AI systems.  

Furthermore, explainability is increasingly linked with other critical dimensions of 

responsible AI, including fairness, bias mitigation, robustness, and trustworthiness (Gilpin et 

al., 2018; Mittelstadt, 2019). Explanations facilitate the identification of biased correlations, 

highlight spurious features, and reveal vulnerabilities to adversarial examples. As a result, 

explainability not only increases transparency but also acts as a vital diagnostic tool for 

enhancing model integrity.  

Despite the growing emphasis on research in this area, a universally accepted 

definition or standardised approach to achieving explainability in AI remains elusive. Instead, 

a variety of techniques have been developed, encompassing both inherently interpretable 

models and post-hoc explanation frameworks (Carvalho et al., 2019; Molnar et al., 2020). 

These methodologies vary in several aspects, such as timing, scope, dependency on model 

architecture, and the underlying mechanisms employed. Each approach is characterised by 

distinct strengths, limitations, and suitability, which are contingent upon the specific domain 

and use case. 
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2.4.2 Key questions addressed by the literature review  

This survey seeks to systematically explore the landscape of explainable AI by addressing 

several interrelated research questions that have emerged within the field. 

a) What are the major categories and taxonomies used to classify explainability methods in 

AI? 

The review aims to synthesise the diverse taxonomic frameworks that have been 

proposed, considering multiple dimensions such as timing of explanation, scope, model 

dependence, and technique type. 

b) Which specific methods and algorithms are currently most influential for generating 

explanations? 

This encompasses both classical and contemporary methodologies, such as decision 

trees, rule lists (Ustun and Rudin, 2016), surrogate models (Ribeiro et al., 2016), SHAP 

(Lundberg and Lee, 2017), gradient-based approaches (Selvaraju et al., 2020; Simonyan et al., 

2014), example-based strategies (Kim et al., 2014; Koh and Liang, 2017), among others. 

c) How do different explanation techniques perform in terms of faithfulness, fidelity, stability, 

and human interpretability? 

The review will explore the strengths and weaknesses of competing methods across 

these evaluation dimensions, drawing on comparative studies and benchmarking efforts 

(Doshi-Velez and Kim, 2017; Vilone and Longo, 2021). 

d) What are the emerging research challenges and future directions in XAI? 

The review will highlight unresolved problems, including the absence of standardised 

benchmarks, the risk of misleading or incomplete explanations, the interaction between 

explainability and fairness, and the prospects for causal and interactive explainability 

frameworks (Ghorbani et al., 2019; Lipton, 2018; Rudin, 2019). 

Through the systematic examination of these inquiries, this literature review aims to 

provide a comprehensive and contemporary synthesis of the field, presenting both a broad 

overview and a critical analysis of XAI methodologies. 
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2.5 Conceptual Foundations 

2.5.1 Definitions and Terminology 

In the XAI literature, the terms "explainability" and "interpretability" are frequently utilised 

interchangeably; however, nuanced distinctions between them have been proposed. Lipton 

(2018) asserts that interpretability pertains to the extent to which an individual can 

comprehend the internal mechanisms of a system without the aid of external tools, while 

explainability refers to the degree to which a system can generate external artefacts or 

reasoning to substantiate its decisions. Interpretability typically refers to the inherent 

transparency of a model, such as linear regression or decision trees. In contrast, explainability 

may encompass post-hoc techniques applied to models that are otherwise opaque. 

Doshi-Velez and Kim (2017) argue that interpretability is a sub-component of 

explainability, where explanations should be comprehensible to humans and should support 

specific goals, such as debugging, trust-building, or regulatory compliance. Rudin (2019) 

adopts a radical stance, asserting that inherently interpretable models should be prioritised 

over black-box models, as post-hoc explanations may prove to be approximate and potentially 

misleading. Despite the lack of consensus, it is broadly accepted that both interpretability and 

explainability serve the common purpose of making AI systems transparent, trustworthy, and 

aligned with human understanding (Carvalho et al., 2019; Miller, 2019). 

In addition to interpretability and explainability, several other related terms 

frequently appear in XAI discussions, such as Transparency, which refers to the visibility of the 

internal structure and functioning of an AI model. Highly transparent models are naturally 

interpretable. Trust is another term that relates to confidence in predictions of the system 

and its willingness to rely on its outputs (Gunning et al., 2019). Trust may not directly correlate 

with technical interpretability, as humans may trust systems for reasons unrelated to their 

true reliability (Miller, 2019). Another term, Causality, involves understanding not only 

correlations but also the underlying causal mechanisms that drive predictions (Pearl, 2009). 

Causal explanations are often considered robust, as they reflect actual data-generating 

processes rather than superficial patterns. The growing attention to these concepts reflects 

the multidisciplinary nature of XAI, which draws from ML, human-computer interaction, 

cognitive psychology, philosophy, and law (Mittelstadt, 2019). 
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2.5.2 Importance of Explainability 

The necessity for explainability in AI systems emanates from various, frequently intersecting 

dimensions: ethical, technical, regulatory, and domain-specific. One of the foremost ethical 

arguments for explainability focuses on accountability. When AI systems are engaged in high-

stakes decisions, such as medical diagnoses, loan approvals, or legal sentencing, it is essential 

that affected individuals and decision-makers possess the capability to comprehend and 

contest the rationale underpinning those decisions (Wachter et al., 2017). In the absence of 

sufficient explanations, individuals are deprived of the opportunity for recourse or informed 

consent, thus raising significant ethical concerns. 

From a technical perspective, the concept of explainability significantly contributes 

to the processes of model debugging, validation, and enhancement. Explanations serve as 

valuable tools for researchers, enabling the identification of issues such as data leakage, 

spurious correlations, and overfitting (Hooker et al., 2019; A. S. Ross et al., 2017). 

Furthermore, they facilitate feature engineering, enabling practitioners to identify critical 

variables and their interrelationships. In addition, explanations have the potential to reveal 

vulnerabilities associated with adversarial examples and failures in robustness (Ghorbani et 

al., 2019). 

From a regulatory perspective, emerging legal frameworks have introduced formal 

obligations of explainability. The GDPR policy of the EU includes the "right to explanation" 

(Goodman and Flaxman, 2017). The proposed EU AI Act suggests stringent requirements 

concerning transparency, risk management, and accountability in AI systems, particularly 

those classified as high-risk.  

Explainability is also closely linked to fairness and the mitigation of bias. Transparent 

explanations can help identify and rectify systematic biases against particular groups, ensuring 

that AI systems do not perpetuate or amplify existing inequalities (Barocas et al., 2021; 

Mehrabi et al., 2021). Consequently, numerous scholars regard explainability as a 

fundamental element of comprehensive frameworks for responsible and trustworthy AI 

(Cowls et al., 2019; Jobin et al., 2019). 

While explainability holds universal significance, its importance becomes particularly 

pronounced within certain application domains. In the realm of clinical decision-making, both 
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physicians and patients must possess the capability to comprehend and validate AI-generated 

recommendations. In the absence of interpretability, the level of trust in AI-assisted 

diagnostics and treatments remains considerably restricted. (Caruana et al., 2015; Holzinger 

et al., 2017). For instance, models that predict disease risk must provide clear rationales based 

on medically meaningful features to support clinical adoption (Tonekaboni et al., 2019).  

In the financial services industry, AI models are utilised for credit scoring, fraud 

detection, and informed investment decisions (Ryman-Tubb et al., 2018). Regulatory bodies 

often require clear documentation of model decisions to ensure fairness, prevent 

discrimination, and maintain market integrity. In legal and judicial systems, predictive models 

employed within the realm of criminal justice necessitate transparency to prevent opaque 

decision-making that could unjustly impact individuals (Dressel and Farid, 2018; Surden, 

2021). In safety-critical applications such as autonomous vehicles and robotics, real-time 

explanations can aid system monitoring, safety validation, and post-incident analysis (Amodei 

et al., 2016).  

In these domains, the absence of explainability can significantly impede adoption, 

diminish trust, and heighten public apprehensions regarding the implementation of AI. 

Consequently, explainability is progressively regarded not merely as a desirable attribute but 

as an essential requirement for the ethical utilisation of AI. 

2.6 Taxonomy of Explainability Techniques 

As the field of XAI continues to evolve, various frameworks have been proposed to categorise 

explanation methods according to their objectives, characteristics, and underlying 

mechanisms. A systematic taxonomy facilitates the organisation of this expanding field of 

research and assists in the selection of appropriate techniques, tailored to specific use cases, 

model types, and interpretability requirements. This section presents a structured taxonomy 

of XAI techniques, organised along four core dimensions: timing of explanation, scope, model 

dependency, and technique type.  
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2.6.1 By Time of Explanation 

2.6.1.1 Intrinsic Interpretability 

Intrinsic interpretability pertains to models that are inherently transparent by design. Such 

models enable direct human comprehension of their internal logic and decision-making 

processes, thereby avoiding the necessity for post-hoc analysis. Decision Trees (L. Breiman et 

al., 2017; Quinlan, 2014), Rule-Based Systems (Rivest, 1987; Ustun and Rudin, 2016), and 

Generalised Additive Models (GAMs) (Caruana et al., 2015; Hastie and Tibshirani, 1986) serve 

as exemplars of this methodology. Each mechanism produces comprehensible outputs, 

whether through decision-making pathways, established rule sets, or the effects of additive 

features, thus enabling immediate analysis.  

These models provide high interpretability and a minimal cognitive burden, 

particularly in domains that require transparency, such as finance, healthcare, and law. 

However, their expressiveness is limited. They frequently underperform on high-dimensional, 

unstructured, or highly non-linear data, where model complexity may be essential for 

achieving predictive accuracy. Nonetheless, their alignment with human reasoning continues 

to sustain their relevance in safety-critical and regulatory settings. 

2.6.1.2 Post-hoc Explainability 

Post-hoc explainability encompasses techniques applied after model training to interpret 

otherwise opaque black-box systems. These methods enable interpretability without 

modifying the underlying model and are particularly crucial for explaining DNN, ensemble 

methods, and kernel methods. While highly versatile, these techniques are often subject to 

trade-offs between fidelity and interpretability. A wide range of tools fall under this category: 

SHapley Additive exPlanations (SHAP) (Lundberg and Lee, 2017) is a unified 

framework for interpreting model predictions based on Shapley values from cooperative 

game theory. Each feature is a “player” in a coalition, with the prediction of the model as the 

“payout” distributed based on their contribution. SHAP attributes feature importance by 

computing the marginal contribution of each feature across all possible subsets of features. 

Unlike heuristic-based methods, SHAP provides strong theoretical guarantees, satisfying 

properties such as local accuracy, consistency, and robustness against missing data. Its formal 
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mathematical grounding has made it a prominent tool in the XAI landscape, particularly in 

high-stakes domains where interpretability must be both rigorous and actionable. 

Local Interpretable Model-Agnostic Explanations (LIME) (Ribeiro et al., 2016) is a 

flexible, post-hoc technique designed to enhance transparency in black-box models. LIME 

generates perturbed samples around a prediction instance and fits an interpretable model, 

usually linear, to approximate the complex decision in a local neighbourhood. The strength of 

LIME lies in its model-agnostic nature, enabling it to be applied across various domains, 

including image classification, text processing, and tabular data. Its early popularity was driven 

by its intuitive conceptual framework and ease of integration with any classifier, making it a 

cornerstone technique in the formative years of XAI. 

Saliency-based methods (Simonyan et al., 2014) identify input regions that influence 

outputs, primarily in image tasks. Despite being computationally efficient, their reliability has 

been scrutinised, suggesting that explanations may not always accurately represent the actual 

decision-making process (Adebayo et al., 2018). 

Grad-CAM (Selvaraju et al., 2020) enhances saliency maps for CNNs by incorporating 

intermediate activations to produce spatially coherent heatmaps. It finds extensive 

application in vision tasks; however, it demonstrates limitations in generalisability beyond 

CNNs. 

Counterfactual explanations (Wachter et al., 2017) generate minimal alterations to 

input variables that influence predictions, thereby addressing inquiries of a hypothetical 

nature. Their inherent actionability renders them suitable for domains that necessitate user-

centred interpretability; however, the issue of feasibility in high-dimensional spaces remains 

an unresolved matter. 

While post-hoc methods expand interpretability across diverse domains and model 

types, concerns persist regarding their faithfulness and robustness. Krishna et al. (2025) argue 

that post-hoc explanation methods, such as SHAP and LIME, are prone to spurious feature 

attribution, wherein irrelevant features are assigned elevated significance due to correlated 

noise or dataset artefacts. This predicament is exacerbated when models are trained on 

biased or imbalanced data, resulting in misleading explanations that mirror data artefacts 

rather than the actual reasoning of the model. They assert that this undermines their 
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applicability in fairness-sensitive contexts and promotes a transition towards intrinsically 

interpretable models. These limitations highlight a persistent challenge in post-hoc XAI: the 

necessity to produce reliable, stable, and truly reflective explanations of model behaviour. 

2.6.2 By Scope 

2.6.2.1 Global Explanations 

Global explanations aim to elucidate the behaviour of the model across the whole input space, 

providing a macroscopic perspective on how features impact predictions on average. These 

methodologies facilitate the identification of overarching trends and feature significance 

throughout the dataset; however, they may obscure heterogeneity in localised contexts.  

Partial Dependence Plots (PDPs) (Friedman, 2001; Greenwell et al., 2018) serve to 

estimate marginal effects by averaging model predictions across the distribution of all other 

features while systematically varying one or more target features. This methodology aids in 

visualising overarching relationships, such as monotonicity or threshold effects. Nevertheless, 

PDPs are predicated on the assumption of feature independence, which often fails in real-

world datasets, thereby leading to potentially misleading conclusions when significant feature 

interactions or correlations are present (Apley and Zhu, 2020). 

Feature importance scores, such as those derived from permutation tests (Breiman, 

2001), quantify the degree to which model accuracy diminishes when feature values are 

randomly shuffled. Although beneficial for ranking features, these scores provide no 

directional insight and may prove unreliable in the context of multicollinearity (Molnar et al., 

2020). 

SHAP, previously introduced, also supports global interpretability by aggregating 

local Shapley values across the dataset. This yields a consistent global importance measure 

that reflects both the direction and magnitude of feature effects. However, the aggregation 

process may obscure local nuances, and additive assumption of SHAP remains a limiting factor 

in highly non-linear or interaction-heavy models (Kumar et al., 2020). 
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2.6.2.2 Local Explanations 

In contrast, local explanations focus on individual predictions, revealing which features 

influenced a specific output. This degree of granularity holds particular significance in domains 

where justifications at the individual instance level are essential, notably within clinical or legal 

contexts. 

Local LIME provides local explanations by training a surrogate model around a given 

input instance. Its value lies in offering case-specific rationales; however, concerns remain 

regarding the stability and faithfulness of its approximations in non-linear regions (Alvarez-

Melis and Jaakkola, 2018). 

Similarly, local SHAP values represent the contribution of each feature to a single 

prediction based on cooperative game theory. They offer theoretically grounded, instance-

level attribution. As previously indicated, these values are computationally intensive and are 

constrained by the assumptions of the additive model, which may overly simplify interactions 

(Frye et al., 2021). 

While global methodologies contribute to the comprehension of overarching model 

trends and the significance of features, local methodologies complement these by offering 

actionable insights at the individual level. Collectively, they establish a dual perspective for 

interpretability: global explanations facilitate transparency, whereas local explanations 

enhance accountability. 

2.6.3 By Model Dependency 

2.6.3.1 Model-Agnostic Methods 

Model-agnostic methods operate independently of model internals, relying solely on input–

output behaviour. This black-box approach offers broad applicability across diverse 

architectures, ranging from tree ensembles to DNN, though often at the cost of faithfulness 

and computational efficiency. 

LIME exemplifies this paradigm by constructing local surrogate models through 

perturbation-based sampling techniques. Its strength resides in its versatility; however, it 
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remains sensitive to perturbation design and may yield unstable results in non-linear regions 

(Alvarez-Melis and Jaakkola, 2018). 

Permutation Feature Importance (Breiman, 2001), although initially developed for 

Random Forests, generalises across various models. It quantifies feature importance by 

assessing the decline in performance when feature values are permuted. Nevertheless, its 

ability to accurately represent importance may be compromised in the presence of 

multicollinearity, as permutation can disrupt joint distributions (Molnar et al., 2020; Strobl et 

al., 2008). 

PDPs and Individual Conditional Expectation (ICE) plots (Goldstein et al., 2015) 

effectively offer visual representations of both global and individual-level effects by 

marginalising or conditioning predictions across features. PDPs elucidate average effects, 

while ICE delineates per-instance trajectories. Nevertheless, both methodologies are 

predicated on independence assumptions and may obscure interaction effects (Apley and 

Zhu, 2020). 

Anchors (Ribeiro et al., 2018) offer localised if-then rules that serve as sufficient 

conditions for predictions. Their objective is to maximise precision amid sampling-based 

perturbations, thereby enhancing the discreteness and interpretability of explanations. 

Nevertheless, the generation of informative anchors may prove to be computationally 

intensive and is dependent on the dataset utilised. 

Despite their inherent flexibility, model-agnostic methods typically depend on 

approximations, whether through perturbation, marginalisation, or local surrogates. 

Consequently, this reliance introduces a potential divergence between the explanations 

provided and the actual behaviour of the model. This discrepancy raises concerns in domains 

that demand high fidelity and accountability (Rudin, 2019). 

2.6.3.2 Model-Specific Methods 

Model-specific approaches utilise the internal architecture of the model, utilising gradients, 

structural elements, or attention mechanisms to directly trace the influence of features. These 

approaches often yield higher-fidelity explanations, but they are closely tied to the model 

type, thereby limiting their transferability and applicability. 
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For neural networks, Saliency Maps use gradients to estimate feature relevance. 

Although easy to compute, they are susceptible to noise and sensitive to model parameters, 

with evidence showing similar outputs for randomised models (Adebayo et al., 2018). 

Grad-CAM enhances saliency by utilising gradients related to intermediate feature 

maps, resulting in class-discriminative spatial heatmaps. This method is effective for CNNs in 

visual tasks; however, it is not generalisable to non-spatial models. 

In tree-based models, TreeSHAP (Lundberg et al., 2020) offers an efficient and precise 

computation of Shapley values, utilising the tree structure to facilitate rapid and accurate 

attributions. Although it is highly effective for gradient-boosted ensembles, its design remains 

model-specific and non-transferable. 

Explanations based on the approach of Saabas (Ando Saabas, 2021) offer rapid and 

heuristic approximations by assigning predictive changes along a singular decision pathway. 

Although these methods are efficient, they do not possess the axiomatic guarantees found in 

methodologies such as SHAP. They inadvertently neglect contributions from features that are 

not included in the decision-making process path. 

In transformer architectures, attention weights are often visualised as proxies for 

feature importance (Vig, 2019). However, their interpretability is debated: attention can be 

manipulated without altering outputs (Jain and Wallace, 2019). To improve robustness, newer 

methods, such as those by (Chefer et al. (2021), propagate relevance scores through attention 

blocks; however, these remain tightly tied to transformer internals and are challenging to 

validate. 

In summary, model-specific methods enable profound insight into internal 

computations but sacrifice generalisability. They are most effectively utilised when the 

architecture of the model is transparent and accessible. 

2.6.4 By Technique Type 

Contemporary explainability methods can be classified according to their methodological 

foundations. This section examines seven principal categories: surrogate models, 

perturbation-based methods, gradient-based techniques, decomposition-based approaches, 

attention-based strategies, feature attribution methods, and counterfactual or example-
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based techniques. Although there are overlaps, many methods traverse multiple categories; 

this taxonomy elucidates their fundamental mechanisms and underlying assumptions. 

2.6.4.1 Surrogate Models 

Surrogate models are designed to replicate the behaviour of complex, often opaque models 

through the utilisation of interpretable models such as linear regressions, decision trees, or 

rule lists. These models can be trained either locally, focusing on a specific prediction, or 

globally, encompassing the entire dataset.  

Key examples of such models include LIME, Anchors, and Explainable Boosting 

Machines (EBMs). Notably, EBMs (Nori et al., 2019) utilise Generalised Additive Models 

featuring pairwise interactions to achieve an equilibrium between interpretability and 

performance. Nevertheless, they may fail to capture profound, non-linear dependencies 

adequately. 

2.6.4.2 Perturbation-Based Methods 

Perturbation-based techniques explain model behaviour by systematically altering input 

features and observing changes in the output, without needing access to the internal 

architecture of the model. They estimate feature importance based on how predictions vary 

with input perturbations.  

Permutation Feature Importance, PDP and ICE plots are prime examples. LIME and 

SHAP, although often considered surrogate methods, also fall under this category due to their 

use of input perturbation. A shared limitation across all perturbation-based approaches is 

their computational inefficiency, particularly for large models, and sensitivity to perturbation 

schemes, particularly in high-dimensional or structured domains.  

2.6.4.3 Gradient-Based Methods 

Gradient-based methods involve computing the partial derivatives of the output with respect 

to its input features. By utilising differentiability, these techniques enable the assessment of 

local feature sensitivity and are primarily employed in the context of neural networks.  

Prominent examples include Saliency Maps, Grad-CAM, and Integrated Gradients 

(Sundararajan et al., 2017). Integrated Gradients address the issue of gradient saturation by 
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integrating gradients along a straight-line path from a baseline input to the actual input. 

Although these methods are theoretically grounded, their outputs can vary significantly 

depending on the choice of baseline, as highlighted by (Kindermans et al., 2018), which raises 

concerns about their reliability in specific applications. 

2.6.4.4 Decomposition-Based Methods 

Decomposition methods attribute model output by breaking it down into additive 

contributions from input features, often utilising cooperative game theory principles, such as 

SHAP. 

Layer-wise Relevance Propagation (LRP) (Bach et al., 2015) redistributes output 

scores through neural network layers. While effective for computer vision, interpretability 

relies on tuning propagation rules and may not generalise across architectures.  

DeepLIFT (Shrikumar et al., 2017) compares neuron activations to a reference input, 

bypassing local gradient issues. It shares baseline sensitivity concerns with Integrated 

Gradients but offers stable attribution.  

Although decomposition methods offer structured, axiomatic attribution, their 

reliance on additive assumptions can obscure interaction effects or feature dependencies 

intrinsic to DNN. 

2.6.4.5 Attention-Based Methods 

In attention-based architectures such as transformers, attention weights are often interpreted 

as indicators of feature importance. These visualisations, while intuitive, are not inherently 

explanatory. (Jain and Wallace, 2019) demonstrated that attention distributions can be 

adversarial and have a negligible impact on output, and attention alone lacks the causal 

criteria necessary to serve as faithful explanations. 

Robust variants include attention rollout (Abnar and Zuidema, 2020) and gradient-

weighted attention (Chefer et al., 2021), which attempt to trace relevance across layers. These 

approaches improve attribution fidelity but remain model-specific and do not generalise well 

beyond attention-based frameworks. 
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2.6.4.6 Feature Attribution Methods 

Feature attribution encompasses a broad class of methods that assign numeric importance 

scores to input features for a specific prediction. Techniques such as SHAP, Integrated 

Gradients, DeepLIFT, and LIME are unified under this paradigm. 

Despite methodological differences, these methods share common challenges, 

including sensitivity to baseline choice, instability under input perturbation, and limited 

capacity to reflect complex feature interactions. SHAP remains the most theoretically 

rigorous, while gradient-based variants offer computational tractability with architectural 

access. 

2.6.4.7 Counterfactual and Example-Based Methods 

Counterfactual and example-based methods provide contrastive explanations by identifying 

the minimal changes to an input that would alter the decision of the model. Rather than 

attributing prediction to features, they answer "what if" scenarios, such as Counterfactual 

explanations. 

Influence functions (Koh and Liang, 2017) trace the effect of training points on a given 

prediction by approximating the impact of removing or upweighting instances. Though 

theoretically appealing, they rely on convexity assumptions and become intractable in DNN.  

Prototypes and criticisms (Kim et al., 2014) aim to summarise the dataset by 

identifying representative and outlier examples, facilitating intuitive understanding. However, 

these methods struggle with scalability and maintaining semantic relevance in large, 

heterogeneous datasets. 

While these approaches align closely with human reasoning, their dependence on 

suitable data distributions and their computational demands limit their general utility. A 

summary of the taxonomy, including its techniques, is presented in Table 2- 1 below.  

 

 



 

   

 

©University of Reading 2025      Page 89 

Table 2- 1 Taxonomy of techniques 

Taxonomy 
Dimension 

Category Representative Methods 

Time of 
Explanation 

Intrinsic 
Interpretability 

Decision Trees, Rule Lists, Linear Models, GAMs 

Post-hoc 
Explainability 

LIME, SHAP, Grad-CAM, Counterfactuals 

Scope of 
Explanation 

Global Explanations PDP, Feature Importance, SHAP (Global) 

Local Explanations LIME, SHAP (local), Counterfactuals 

Model 
Dependency 

Model-Agnostic LIME, Anchors, PDP, Permutation Importance 

Model-Specific 
Saliency Maps, Grad-CAM, Integrated Gradients, Tree-
Explainer 

Technique 
Type 

Surrogate Models LIME, Anchors, EBMs 

Perturbation-Based Permutation Importance, PDP, ICE 

Gradient-Based Saliency Maps, Integrated Gradients, Grad-CAM 

Decomposition-Based Deep-LIFT, LRP, SHAP 

Attention-Based Attention Visualisation, Rollout 

Feature Attribution SHAP, LIME, Integrated Gradients, DeepLIFT 

Example-Based Counterfactuals, Prototypes, Influence Functions 

 

2.7 Literature review of explainability techniques  

As the deployment of ML models becomes increasingly widespread across high-stakes 

domains, the demand for explainability has intensified. This literature review examines a 

range of explainability techniques that have contributed to recent advances in interpretable 

AI, focusing on their methodological design, empirical performance, and practical utility across 

various model architectures and application contexts. 

By critically examining how these techniques are applied in contemporary research, 

the review identifies their strengths, limitations, and underlying assumptions. The goal is to 

provide a clear understanding of their interpretability and reliability, as well as the challenges 

they pose in terms of scalability, consistency, and trustworthiness.  
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2.7.1 SHAP (SHapley Additive exPlanations) 

SHAP is widely used due to its game-theoretic formulation, which decomposes the prediction 

of the model into additive contributions from individual features. The theoretical appeal of 

this approach arises from its adherence to axioms such as local accuracy, missingness, and 

consistency, attributes that furnish a compelling rationale for its implementation. However, 

its practical reliability has come under scrutiny in recent literature, with concerns around 

computational cost, instability, and questionable alignment with real-world interpretability 

needs. 

Bitton et al. (2022) proposed Latent SHAP, which improves human interpretability by 

shifting the operation of SHAP to a low-dimensional latent space learned via autoencoders. 

This facilitates the attribution to semantically meaningful concepts as opposed to raw inputs 

such as pixels. Although this approach is intuitive, it is significantly reliant on the quality and 

fidelity of the learned latent space, which introduces an additional layer of complexity and 

potential distortion in the explanations. 

To address the computational inefficiency associated with SHAP, Kelodjou et al. 

(2024) have introduced a neighbourhood-based approximation for KernelSHAP. This 

methodology samples from structured local regions of the input space, aiming to enhance 

stability and mitigate runtime variance. Nonetheless, this approach may lead to an 

oversimplification of interactions by concentrating exclusively on local contexts, which often 

fails to capture significant global dependencies among features adequately. 

Critiques of foundational assumptions have gained increasing prominence. Huang 

and Marques-Silva, (2023) demonstrated that SHAP can yield misleading rankings even when 

applied within regression models, thereby calling into question the trustworthiness of its 

feature importance scores. They contend that reliance on additive decompositions of SHAP 

does not align adequately with intuitive or causal attributions. Reflecting these concerns, 

Letoffe et al. (2024) performed stress tests under controlled and idealised conditions, 

discovering that explanations of SHAP diverge from the ground truth even when models 

exhibit smoothness and continuity, thereby underscoring a discrepancy between theoretical 

guarantees and practical outcomes. 
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Muschalik et al. (2024) introduced TreeSHAP-IQ, which extends SHAP to facilitate 

counterfactual-style queries in decision tree models. This innovative method enables users to 

examine “what-if” scenarios, thereby aligning SHAP closely with causal reasoning. 

Nonetheless, it presupposes a causal interaction of features and is limited to tree-based 

architectures, which restricts its broader applicability. 

In conclusion, SHAP remains a benchmark attribution method due to its robust 

theoretical foundations and extensive practical application. However, recent literature has 

identified significant limitations, particularly in terms of robustness and causal interpretability. 

While it remains valuable, particularly for benchmarking and comparison, SHAP is increasingly 

supplemented by methodologies that emphasise stability, causality, or domain-aligned 

representations.  

2.7.2 LIME (Local Interpretable Model-Agnostic Explanations) 

LIME constitutes a fundamental approach in explainable AI, offering post-hoc local 

explanations through the fitting of sparse linear surrogate models surrounding individual 

predictions. This method perturbs the input data and utilises the resultant outputs to develop 

an interpretable model within the vicinity of a query instance. Despite its widespread 

adoption, the foundational assumptions of LIME, particularly those of local linearity and 

neighbourhood sampling, have been scrutinised in recent studies due to their limitations 

when applied to complex models. 

Anchor LIME (Ribeiro et al., 2018) extends the original approach by generating high-

precision rules (“anchors”) that explain model decisions over subregions of the input space. 

These rule-based explanations provide actionable insights than local regressions, particularly 

in classification tasks. However, anchor generation relies on sampling and heuristic coverage 

thresholds, which can reduce interpretability when rules are either too specific or too sparse 

to generalise. Moreover, the method struggles with capturing nuanced nonlinearities beyond 

its anchored region. 

Slack et al. (2020) utilised LIME to elucidate vulnerabilities within XAI pipelines, 

demonstrating that adversarial models possess the capability to manipulate LIME to obscure 

biased behaviours while still generating seemingly plausible explanations. This research 

suggests that LIME, due to its model-agnostic nature, is susceptible to deception and lacks 
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assurances regarding causal or ethical alignment, thereby raising significant concerns about 

its deployment in sensitive domains. 

The stability of LIME remains a prominent criticism, as discussed by Thibault Laugel 

(2020), where the explanations can differ markedly between adjacent inputs, even when the 

model outputs are nearly equivalent. This inconsistency is attributed to both the stochastic 

characteristics of perturbations and the complex decision boundary of the model. The authors 

proposed decision-boundary-aware sampling as a solution, which enhanced consistency, 

though at the expense of high computational demands. These findings raise concerns 

regarding the reliability of LIME in high-stakes or audit-intensive contexts. 

The use of random perturbation in LIME can lead to unstable explanations for the 

exact prediction, which is a problem in domains such as medical diagnosis, where consistency 

is crucial. Zafar and Khan (2019) present a stable alternative called Deterministic LIME 

(DLIME), which utilises hierarchical clustering and K-Nearest Neighbours to select relevant 

data. Experimental results show that DLIME offers stable explanations compared to LIME. 

Despite its influence, LIME continues to face fundamental challenges. The 

assumption of local linearity often breaks down in DNN or ensemble models. Its perturbation-

based sampling can yield misleading attributions if the sampled neighbourhood is not 

representative. Moreover, LIME usually struggles with the fidelity-interpretability trade-off; 

linear surrogates may oversimplify to be faithful or overly complex to remain interpretable. 

In summary, LIME remains a pivotal method in XAI, particularly for its model-agnostic 

framework and simplicity. However, its reliability, stability, and vulnerability to misuse limit 

its utility in isolation. It is best viewed as an introductory or complementary tool to be used in 

conjunction with robust and domain-aligned explanation techniques. 

2.7.3 Counterfactual Explanations 

Counterfactual explanations (CFE) provide a direct and accessible means of interpretability by 

identifying minimal alterations to an input that would modify the prediction of the model. 

Formally introduced by Wachter et al. (2017), CFE frames this as an optimisation problem, 

seeking the nearest input (according to a specified distance metric) that results in a differing 

outcome. This approach aligns effectively with human reasoning and is notably beneficial in 
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sectors demanding transparency and accountability, such as credit scoring, medical decision-

making, or legal adjudication. 

Karimi et al. (2021) advanced this line of inquiry by incorporating causal reasoning. 

They posited that numerous CFEs derived solely from data may be implausible or misleading; 

for instance, altering the income of an individual without impacting other causally 

interconnected features. Their methodology employs Structural Causal Models (SCMs) to 

ensure that the generated counterfactuals are both feasible and actionable within the causal 

framework of the domain. Although this approach is principled, it necessitates access to 

dependable causal graphs, which are frequently challenging to construct or estimate. 

Dandl et al. (2020) addressed the multi-objective nature of CFE by balancing 

proximity, sparsity, diversity, and plausibility and proposed Multi-Objective Counterfactuals 

(MOC). This gradient-based method efficiently generates diverse counterfactuals using 

differentiable objectives. This method addressed an essential limitation in earlier works that 

yielded single or redundant explanations, thus enhancing user trust and flexibility.  

Russell (2019) advanced an integer programming method for generating plausible, 

sparse CFEs in tabular data. His approach constrains counterfactuals within the convex hull of 

training data, ensuring realism. Despite its effectiveness, the method is computationally 

intensive and poorly scales with feature dimensionality, and convexity assumptions limit its 

ability to capture the full complexity of real-world datasets. 

Kommiya Mothilal et al. (2021) evaluated CFE for fairness auditing, proposing CF-

Fairness to quantify fairness violations based on changes in model output due to sensitive 

attributes (e.g., race or gender). Their results showed that many top models demonstrate 

counterfactually unfair behaviour, despite appearing fair by group-level metrics. This 

highlights the diagnostic power of CFE while raising ethical concerns about the deployment of 

sensitive biases. 

In summary, CFE excels in human-aligned reasoning, actionability, and questioning 

decision boundaries in a model-agnostic manner. They are crucial for fostering recourse, 

transparency, or fairness. However, these benefits rely on generating counterfactuals that are 

mathematically valid, semantically meaningful, and causally grounded. Without these 

safeguards, CFEs can mislead or harm, particularly in sensitive areas. Counterfactuals are not 
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stand-alone explanations; they are part of a broader interpretability toolkit, ideally used with 

feature attribution, sensitivity analysis, and causal diagnostics. They show promise but require 

careful design, domain adaptation, and critical interpretation. 

2.7.4 Layer-wise Relevance Propagation (LRP) 

LRP is a decomposition-based technique for interpreting predictions of layered neural 

networks. It redistributes the prediction score backwards to input features based on their 

contribution to the final decision, using relevance conservation rules to maintain the score 

across layers. This creates a heatmap over the input that reflects the importance of each 

feature. 

In Montavon et al. (2017), the authors extended LRP to deep convolutional networks, 

demonstrating its effectiveness in visual classification. Unlike gradient-based methods, which 

can be affected by saturation or noise, LRP offers stable and class-discriminative explanations. 

The paper presents relevance rules, such as the z-rule and ε-rule, each with unique 

propagation assumptions, providing flexibility for various architectures. A noted limitation of 

LRP is sensitivity to the chosen propagation rule, which may not generalise well across tasks 

without careful tuning. 

Samek et al. (2019) applied LRP to medical imaging, particularly for tumour 

classification in MRI scans. They compared LRP with Grad-CAM and saliency maps, concluding 

that LRP offered finer-grained, spatially localised explanations, which radiologists found 

actionable. However, they noted that the usefulness of the method declined in architectures 

with non-standard layers or residual connections, where the conservation principle was 

harder to apply rigorously. 

In Lapuschkin et al. (2019), LRP was used for model debugging, revealing “Clever 

Hans” predictors, models that relied on spurious correlations instead of semantically 

meaningful features. For example, an image classifier for horses relied on copyright 

watermarks in the training set. This demonstrated auditing model behaviour and validated 

training pipelines. However, LRP required manual inspection and domain knowledge to 

interpret heatmaps meaningfully, an inherent limitation at scale. 
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LRP is a unique tool in the XAI toolkit. Model-specific and efficient, it effectively works 

with deep feedforward or convolutional architectures. Its strength lies in attribution 

faithfulness, redistributing relevance while respecting the internal computation graph, thus 

avoiding some pitfalls of model-agnostic methods, such as LIME. LRP excels in debugging and 

auditing tasks, making it a favourite for researchers validating model integrity. However, its 

internal propagation rules limit flexibility across architectures, particularly for models that use 

dynamic routing, attention, or non-standard modules. It also lacks intuitive interpretability 

outside image domains. When applied to text or tabular data, visualisation and relevance 

semantics can be obscured. Additionally, LRP assumes linear additivity of relevance, which 

may not apply to how non-linear transformations distribute semantic meaning.  

2.7.5 Graph Neural Networks with Causal Structural Models 

The integration of Causal Structural Models (CSMs) into Graph Neural Networks (GNNs) 

represents a novel direction in explainable AI, aiming to ground explanations in counterfactual 

and interventional semantics within graph-structured data. Unlike traditional post-hoc 

methods, such as GNNExplainer, which focus on saliency or feature attribution, CSM-

enhanced GNNs embed causal reasoning through either explicit causal graphs or learned 

causal structures in the latent space. These approaches are particularly beneficial in domains 

such as molecular property prediction, recommendation systems, and social network analysis, 

where understanding causality across subgraphs can aid generalisation. 

However, these benefits come with trade-offs. Most causal GNN methods require 

strong assumptions, such as causal sufficiency and faithfulness, which are often untestable 

from observational data (Peter Spirtes et al., 2000). Wu et al. (2023) highlight the challenge of 

generating counterfactual graphs that are both plausible and interpretable, particularly 

without incorporating domain constraints. These challenges are compounded by 

computational burdens: estimating interventional distributions in large, sparse graphs is 

expensive and sensitive to noise. 

Critically, the absence of standardised evaluation metrics for causal explanations 

within graph models also constrains the reproducibility and reliability of existing results. 

Although GNNExplainer has established initial foundations for interpreting GNN predictions, 

it is devoid of causal grounding. In contrast, methodologies such as CF-GNNExplainer (Lucic et 
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al., 2022) seek to address this discrepancy by generating counterfactual subgraphs, the 

inclusion or exclusion of which alters predictions, thereby offering actionable insights. 

Nonetheless, the challenges of scalability and generalisability persist. 

Overall, while still in its nascent stage, GNNs with CSMs offer a promising framework 

for providing faithful, intervention-aware explanations in structured domains. CSMs in 

particular is said to offer support for characterisation of the causal reasoning rationale of the 

model in emergent contexts. Their ability to reason causally makes them a valuable addition 

to the XAI landscape, particularly when interpretability and robustness under distribution shift 

are critical. However, widespread adoption hinges on formalising evaluation protocols, easing 

computational demands, and reducing the domain-specific expertise required to build valid 

causal graph priors. 

This literature review has critically evaluated key explainability methods in AI, each 

offering distinct strengths—from model-agnostic local approximations to gradient- and 

decomposition-based insights. While widely adopted, these techniques face persistent 

limitations, including sensitivity to baselines, assumptions of feature independence, and poor 

scalability. Despite this, methods such as SHAP remain popular due to their balance of 

generality and interpretability, while counterfactuals offer actionable insights with added 

complexity. Overall, no singular method is adequate across all scenarios; a hybrid, context-

aware approach is imperative.  

2.8 Evaluation of Explainability Methods 

2.8.1 Metrics and Benchmarks 

Evaluating the effectiveness and reliability of explainability methods in AI systems is 

significantly complex than evaluating conventional performance metrics such as accuracy, 

precision, or recall. A singular value cannot adequately encapsulate the quality of an 

explanation; it is intrinsically multidimensional, varying according to context, application 

domain, user expertise, and regulatory prerequisites. Researchers have proposed several 

dimensions across which explanations should be evaluated. These dimensions include fidelity, 

sparsity (or parsimony), stability, human simulatability, and consistency. Each dimension 

addresses a specific aspect of interpretability, and there are often trade-offs between them. 
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Comprehending and critically assessing these dimensions is imperative for both researchers 

and practitioners who aim to implement explainable models in practical settings.  

2.8.1.1 Fidelity 

Fidelity is one of the most fundamental metrics in explainability research. It refers to the 

degree to which an explanation method accurately reflects the internal mechanisms or 

decision boundaries of the underlying model. High fidelity implies that the explanation reveals 

the actual reasoning process of the model, rather than providing a simplified or heuristic 

summary (Doshi-Velez and Kim, 2017).  

Several methods have been developed to quantify fidelity. One commonly used 

approach involves constructing a surrogate model, typically a straightforward and 

interpretable model such as a decision tree or linear regressor, that approximates the 

behaviour of the complex black-box model (Ribeiro et al., 2016). The agreement between the 

predictions of the surrogate and the original model can be measured using accuracy or R-

squared values, depending on the task. Another approach involves faithfulness scores, which 

quantify the impact of removing or masking top-ranked features identified by the explanation 

method. For instance, if removing these features leads to a significant degradation in 

prediction quality, the explanation is considered faithful.  

Despite these advancements, high fidelity does not inherently translate into human 

usability. A highly accurate surrogate model may itself be complex and opaque to human 

understanding, thus defeating the purpose of explainability. Therefore, fidelity is necessary 

but not sufficient; it must be coupled with additional properties, such as simplicity and clarity. 

2.8.1.2 Sparsity 

Sparsity, also referred to as parsimony, is another critical dimension in explanation evaluation. 

The principle underlying sparsity is grounded in the cognitive limitations of humans to 

comprehend straightforward explanations. An explanation that highlights a smaller number 

of relevant features or rules is likely to be comprehensible to end users. Sparsity is typically 

quantified by counting the number of features involved in the explanation or measuring the 

depth and length of decision rules in tree-based or rule-based models.  
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For example, in LIME, the local surrogate coefficients of the model can be inspected 

to determine which features are considered most important, and only a few top-ranked ones 

are typically shown to the user. Similarly, decision rule extraction methods evaluate the 

number and complexity of rules employed to make a prediction. However, this preference for 

simplicity introduces a significant trade-off.  

Overly sparse explanations might fail to capture the complex dependencies between 

features, thereby omitting critical information and potentially misleading users. The challenge 

lies in achieving a balance between simplicity and completeness, where the explanation is 

concise enough for human consumption yet still accurately represents the reasoning process 

of the model (Guidotti et al., 2018). 

2.8.1.3 Stability 

Stability or robustness is an important but often overlooked property of explanation methods. 

It refers to the consistency of explanations in response to small, usually imperceptible changes 

in input data. Ideally, similar inputs should produce similar explanations. This property is 

particularly vital for applications in safety-critical domains, where reliability and consistency 

are paramount.  

Quantitative evaluation of stability typically involves computing the similarity 

between explanations for slightly perturbed inputs. For instance, in saliency-based methods, 

researchers measure the overlap or cosine similarity between saliency maps generated from 

original and perturbed data samples. In feature attribution techniques, the similarity of 

feature importance vectors across different runs or input variations can be examined.  

Alvarez-Melis & Jaakkola (2018) highlighted that many popular methods, including 

LIME and gradient-based saliency maps, often exhibit poor robustness. Small perturbations in 

input can result in disproportionately large changes in the generated explanations. This 

instability undermines the credibility of the explanation and erodes user trust. Additionally, 

randomness in the explanation algorithm itself, such as stochastic sampling in LIME, can 

further exacerbate this instability. Consequently, improving robustness remains a key 

research direction in the field. 
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2.8.1.4 Human simulatability 

Human simulatability provides a user-centric approach to evaluating explanations. It concerns 

the ability of humans to replicate or predict decisions by a model based solely on the provided 

explanations. This metric focuses less on technical correctness and on practical utility, as it 

measures how well an explanation aids human understanding and decision-making.  

Empirical assessment of simulatability is typically performed through controlled user 

studies, where participants are asked to simulate model outputs based solely on the input 

data and its accompanying explanation. Their success in these tasks, often measured through 

accuracy or task completion time, indicates the quality of the explanation. Research by 

Poursabzi-Sangdeh et al. (2021) demonstrated that even explanations perceived as intuitive 

can fail to improve human decision-making if they do not align with user mental models.  

Simulatability becomes particularly critical in high-stakes domains such as healthcare, 

legal reasoning, and financial services, where explanations are often scrutinised by domain 

experts and regulators. The major challenge, however, lies in the cost and scalability of 

conducting rigorous user studies, which are typically resource-intensive and domain-specific. 

Nonetheless, they remain among the most reliable methods for assessing the real-world 

impact of explainability. 

2.8.1.5 Consistency  

Consistency is another vital criterion, particularly in the context of fairness and regulatory 

compliance. It demands that similar models, or even the same model making similar 

predictions, should generate similar explanations. Inconsistent explanations can lead to 

confusion and distrust, particularly in settings where accountability and transparency are 

required.  

Evaluating consistency involves measuring the similarity of explanations across 

different model instances trained on similar data or across different inputs leading to the same 

output. Ribeiro et al. (2016) argued that explanation methods must offer a degree of 

invariance to model data permutations. However, achieving this is challenging due to factors 

such as model stochasticity, feature correlation, and algorithmic randomness.  
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In neural networks, for example, different initialisations or training paths can result 

in different internal representations even when predictive performance remains unchanged. 

This variance can cascade into the explanation layer, producing divergent rationalisations for 

identical outcomes. Addressing these issues requires both algorithmic innovation and rigorous 

evaluation protocols that go beyond superficial consistency checks. 

2.8.2 Limitations of Current Evaluation Metrics 

Despite the development of multiple evaluation metrics, the field of explainable AI remains 

constrained by several foundational challenges that hinder robust assessment of explanation 

quality.  

One of the most pressing issues is the lack of standardisation. The field lacks 

universally accepted definitions, taxonomies, or benchmarks, making it challenging to 

compare different explainability methods fairly. Terminological inconsistencies further 

compound the problem. Terms such as “explanation” and “interpretation” are often used 

interchangeably in the literature, despite referring to distinct concepts (Doshi-Velez and Kim, 

2017; Lipton, 2018). This lack of clarity hampers meaningful communication and cross-

comparison between studies. Initiatives such as OpenXAI and the DARPA XAI program have 

pushed towards consistent evaluation frameworks, but widespread adoption remains limited. 

Subjectivity is another significant limitation in evaluating explainability. Unlike 

performance metrics, which are objective and reproducible, the effectiveness of an 

explanation often depends on user perception, background knowledge, and task context. As 

a result, many studies rely on subjective human evaluations, such as Likert scale ratings (Joshi 

et al., 2015) or user satisfaction surveys. While these metrics provide valuable insights, they 

are inherently biased and often lack generalisability. Furthermore, such evaluations tend to 

be domain-specific. The integration of human factors into explanation evaluation is essential 

but fraught with methodological and practical challenges, including participant recruitment, 

experiment design, and ethical considerations (Miller, 2019). 

A particularly contentious issue is the distinction between explanation and 

Interpretability. Post-hoc explanation methods, such as LIME or SHAP, are designed to provide 

insights into the behaviour of the model after it has been trained. However, they often act as 

rationalisers rather than actual reflectors of the internal decision-making process. This 
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distinction is particularly problematic in contexts that demand a high degree of transparency 

and accountability, such as judicial decision-making or algorithmic lending. (Rudin, 2019) has 

strongly argued for the use of inherently interpretable models in such high-stakes domains, 

noting that post-hoc methods are often incapable of providing faithful and verifiable 

explanations. 

Another major limitation lies in the datasets used for benchmarking explainability 

methods. Many widely used datasets, such as MNIST, CIFAR-10, or tasks from the UCI 

repository, are simplistic and fail to capture the complexities of real-world applications. These 

datasets are often insufficient to stress-test the nuanced behaviour of explainability 

techniques. As Arrieta et al. (2020) and Vilone and Longo (2021) note, the lack of diversity and 

complexity in benchmark datasets can lead to overfitting to specific tasks or explanation 

styles, thereby limiting generalisability. There is a growing consensus that richer, contextually 

grounded datasets, such as those involving electronic health records, legal documents, or 

financial transactions, are necessary to advance the state of the art in XAI evaluation. 

Ultimately, it is essential to recognise the broader epistemological challenge of 

explanation in AI. Unlike traditional software systems, where the logic is explicitly encoded 

and traceable, ML models often operate through distributed representations and non-linear 

interactions that are not easily decomposed into human-understandable components. This 

fundamental mismatch between how models represent knowledge and how humans 

understand reasoning processes complicates all efforts at explainability. Addressing this gap 

demands collaborative efforts across disciplines to create evaluation frameworks that draw 

on insights from computer science and human-computer interaction, combining rigour with 

practical applicability.  

In summary, while significant strides have been made in defining and quantifying 

various aspects of explanation quality, the evaluation of XAI methods remains an open and 

evolving area of research. Fidelity, sparsity, stability, human simulatability, and consistency 

each provide valuable but incomplete views of explanation quality. Moreover, limitations such 

as lack of standardisation, subjectivity, reliance on post-hoc rationalisation, and benchmark 

bias continue to undermine the robustness of current evaluation practices. Addressing these 

issues will be essential for the development of trustworthy AI systems that can be deployed 

responsibly in real-world contexts. 
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2.8.3 Summary of the Literature Survey 

Table 2- 2 presented below provides a consolidated overview of seminal 

contributions from key authors who have significantly shaped the field of Explainable Artificial 

Intelligence. It highlights foundational methods across various interpretability paradigms, 

including decision trees, rule-based systems, GAMs, model-agnostic explanation frameworks 

such as LIME and SHAP, and saliency-based techniques. This curated collection of literature 

captures the diversity and evolution of XAI methodologies, offering a meta-perspective on the 

landscape of interpretable models and the critical advancements that enable transparent, 

reliable, and user-centred AI systems. 

Table 2- 2 Summary of Literature Survey 

Authors Title  Year of 
Publication 

Summary of the Publication 

Quinlan J. R. 
C4.5: programs 
for machine 
learning. 

2014 
Authors proposed the C4.5 algorithm for 
generating decision trees for classification 
tasks. 

Breiman, L. et 
al. 

Classification and 
regression trees. 

2017 
Authors proposed CART, a decision tree 
algorithm for classification and 
regression. 

Rivest R. L. 
Learning decision 
lists. 

1987 
Authors proposed decision lists as a 
simple, rule-based classification method. 

Ustun, B., & 
Rudin, C. 

Supersparse 
linear integer 
models for 
optimized 
medical scoring 
systems. 

2016 

Authors proposed Supersparse Linear 
Integer Models (SLIM), a sparse, 
interpretable linear model for scoring 
systems. 

Hastie, T., & 
Tibshirani, R. 

Generalized 
additive models. 

1986 
Authors proposed GAMs to model non-
linear relationships while maintaining 
interpretability. 

Caruana, R., 
et al. 

Intelligible models 
for healthcare: 
Predicting 
pneumonia risk 
and hospital 30-
day readmission. 

2015 
Authors demonstrated the application of 
interpretable GAMs for healthcare 
predictions. 

Lundberg, S. 
M., & Lee, S. I. 

A unified 
approach to 
interpreting 
model 
predictions. 

2017 
Authors proposed SHAP, a unified 
framework for feature attribution using 
Shapley values. 
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Authors Title  Year of 
Publication 

Summary of the Publication 

Ribeiro, M. T., 
et al. 

"Why should I 
trust you?": 
Explaining the 
predictions of any 
classifier. 

2016 
Authors proposed LIME, a local, model-
agnostic explanation method. 

Simonyan, K., 
et al. 

Deep inside 
convolutional 
networks: 
Visualising image 
classification 
models and 
saliency maps. 

2014 
Authors proposed saliency maps to 
visualise pixel importance in CNNs. 

Selvaraju, R. 
R., et al. 

Grad-CAM: Visual 
explanations from 
deep networks via 
gradient-based 
localisation. 

2020 
Authors proposed Grad-CAM for visual 
explanations using class-discriminative 
heatmaps. 

Wachter, S., 
et al. 

Counterfactual 
explanations 
without opening 
the black box: 
Automated 
decisions and the 
GDPR. 

2017 
Authors proposed generating 
counterfactual explanations without 
accessing the internal model. 

Friedman, J. 
H. 

Greedy function 
approximation: A 
gradient boosting 
machine. 

2001 
Authors proposed gradient boosting and 
introduced PDPs for interpreting model 
predictions. 

Greenwell, B. 
M., et al. 

A simple and 
effective model-
based variable 
importance 
measure. 

2018 
Authors proposed an approach using 
PDPs for variable importance in complex 
models. 

Breiman, L. Random forests. 2001 
Authors proposed permutation feature 
importance as part of the Random Forest 
framework. 

Goldstein, A., 
et al. 

Peeking inside the 
black box: 
Visualizing 
statistical learning 
with plots of 
individual 
conditional 
expectation. 

2015 
Authors proposed ICE plots to visualise 
individual feature effects. 



 

   

 

©University of Reading 2025      Page 104 

Authors Title  Year of 
Publication 

Summary of the Publication 

Ribeiro, M. T., 
et al. 

Anchors: High-
precision model-
agnostic 
explanations. 

2018 
Authors proposed Anchors, a high-
precision local explanation method using 
if-then rules. 

Lundberg, S. 
M., et al. 

From local 
explanations to 
global 
understanding 
with explainable 
AI for trees. 

2020 
Authors proposed TreeSHAP for 
consistent, efficient explanations in tree 
ensembles. 

Saabas, A. 
Interpreting 
random forests. 

2014 
Authors proposed a local feature 
contribution method specific to decision 
trees. 

Vig, J. 

A Multiscale 
Visualization of 
Attention in the 
Transformer 
Model. 

2019 
Authors proposed attention visualisation 
techniques for Transformer models. 

Jain, S., & 
Wallace, B. C. 

Attention is not 
Explanation. 

2019 
Authors argued that attention weights 
are not reliable explanations. 

Nori, H., et al. 

InterpretML: A 
unified 
framework for 
machine learning 
interpretability. 

2019 
Authors proposed the Explainable 
Boosting Machine (EBM), a GAM-like, 
interpretable model. 

Sundararajan, 
M., et al. 

Axiomatic 
attribution for 
deep networks. 

2017 
Authors proposed Integrated Gradients, 
an attribution method for deep networks. 

Bach, S., et al. 

On pixel-wise 
explanations for 
non-linear 
classifier 
decisions by 
layer-wise 
relevance 
propagation. 

2015 
Authors proposed Layer-wise Relevance 
Propagation (LRP) for pixel-level 
explanations. 

Shrikumar, A., 
et al. 

Learning 
important 
features through 
propagating 
activation 
differences. 

2017 
Authors proposed DeepLIFT, an efficient 
backpropagation-based attribution 
method. 

Abnar, S., & 
Zuidema, W. 

Quantifying 
Attention Flow in 
Transformers. 

2020 
Authors proposed attention rollout for 
robust attention flow quantification in 
Transformers. 
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Authors Title  Year of 
Publication 

Summary of the Publication 

Chefer, H., et 
al. 

Transformer 
interpretability 
beyond attention 
visualization. 

2021 
Authors proposed gradient-based 
Transformer interpretability beyond 
attention flow. 

Koh, P. W., & 
Liang, P. 

Understanding 
black-box 
predictions via 
influence 
functions. 

2017 
Authors proposed using influence 
functions to trace training data influence 
on predictions. 

Kim, B., et al. 

The Bayesian 
Case Model: A 
generative 
approach for 
case-based 
reasoning and 
prototype 
classification. 

2014 
Authors proposed a generative case-
based reasoning framework using 
prototypes. 

Bitton, R., et 
al. 

Latent SHAP: 
Toward practical 
human-
interpretable 
explanations. 

2022 
Authors proposed Latent SHAP for 
interpretable explanations in latent 
feature spaces. 

Kelodjou, G., 
et al. 

Shaping up SHAP: 
Enhancing 
stability through 
layer-wise 
neighbour 
selection. 

2024 
Authors proposed a neighbourhood-
based KernelSHAP approximation to 
improve stability. 

Muschalik, 
M., et al. 

Beyond treeSHAP: 
Efficient 
computation of 
any-order 
SHAPley 
interactions for 
tree ensembles. 

2024 
Authors proposed TreeSHAP-IQ for 
computing higher-order SHAP 
interactions efficiently. 

Zafar, M. R., & 
Khan, N. M. 

DLIME: A 
deterministic 
local 
interpretable 
model-agnostic 
explanations 
approach for 
computer-aided 
diagnosis 
systems. 

2019 
Authors proposed DLIME, a deterministic 
variant of LIME for reliable local 
explanations. 
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Authors Title  Year of 
Publication 

Summary of the Publication 

Karimi, A. H., 
et al. 

Algorithmic 
recourse: From 
counterfactual 
explanations to 
interventions. 

2021 
Authors proposed integrating causal 
reasoning into counterfactual 
explanations for actionable recourse. 

Dandl, S., et 
al. 

Multi-objective 
counterfactual 
explanations. 

2020 
Authors proposed a multi-objective 
optimisation framework for generating 
counterfactuals. 

Russell, C. 

Efficient search 
for diverse 
coherent 
explanations. 

2019 
Authors proposed using integer 
programming for generating diverse, 
plausible counterfactuals. 

Kommiya 
Mothilal, R., 
et al. 

Towards unifying 
feature 
attribution and 
counterfactual 
explanations: 
Different means 
to the same end. 

2021 
Authors proposed aligning feature 
attributions with counterfactuals to 
support fairness audits. 

Montavon, G., 
et al. 

Explaining 
nonlinear 
classification 
decisions with 
deep Taylor 
decomposition. 

2017 
Authors proposed extending LRP with 
deep Taylor decomposition for CNNs. 

Samek, W., et 
al. 

Explainable AI: 
Interpreting, 
explaining and 
visualizing deep 
learning. 

2019 
Authors applied LRP-based methods to 
interpret medical imaging models. 

Lapuschkin, 
S., et al. 

Unmasking Clever 
Hans predictors 
and assessing 
what machines 
really learn. 

2019 
Authors used LRP to expose spurious 
correlations in machine learning models. 

Lucic, A., et al. 

CF-GNNExplainer: 
Counterfactual 
explanations for 
graph neural 
networks. 

2022 
Authors proposed CF-GNNExplainer for 
generating counterfactual explanations in 
GNNs. 

Doshi-Velez, 
F., & Kim, B. 

Towards a 
rigorous science 
of interpretable 
machine learning. 

2017 
Authors advocated for formalising 
interpretability with high-fidelity 
explanations. 
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Authors Title  Year of 
Publication 

Summary of the Publication 

Guidotti, R., 
et al. 

A survey of 
methods for 
explaining black 
box models. 

2018 
Authors provided a comprehensive 
survey on explainable machine learning 
methods. 

Poursabzi-
Sangdeh, F., 
et al. 

Manipulating and 
measuring model 
interpretability. 

2021 
Authors demonstrated the gap between 
intuitive explanations and effective 
human decision-making. 

Lipton, Z. C. 
The mythos of 
model 
interpretability. 

2018 
Authors critically analysed the ambiguous 
use of "interpretability" in machine 
learning. 

Joshi, A., et al. 
Likert scale: 
Explored and 
explained. 

2015 
Authors explained the design and 
application of Likert scale ratings in 
surveys. 

Miller, T. 

Explanation in 
artificial 
intelligence: 
Insights from the 
social sciences. 

2019 
Authors proposed integrating social 
science principles to improve explanation 
design in AI. 

 

2.9 Challenges in Explainability Research 

While a growing body of work has focused on the development and evaluation of 

explainability methods, a range of systemic challenges persist in the field. These issues span 

methodological limitations, epistemic inconsistencies, and the practical realities of deploying 

XAI in real-world contexts. Collectively, they reflect the crudeness of the domain and the need 

for principled and theoretically grounded approaches. The following sections provide a 

detailed examination of these challenges. 

2.9.1 Methodological Limitations 

Beyond conceptual ambiguity, the specific methods employed in XAI often suffer from severe 

technical limitations. Surrogate model techniques, such as LIME and Anchors, approximate 

local decision boundaries using interpretable models, including linear classifiers and decision 

trees. However, these approximations can have low fidelity in non-linear or high-dimensional 

spaces, misrepresenting the original decision logic of the model (Thibault Laugel, 2020). 
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Gradient-based saliency maps, such as those generated via Grad-CAM, are widely 

used in image and text models; however, they are sensitive to input noise and adversarial 

perturbations. Empirical studies have shown that randomly initialised networks can produce 

saliency maps similar to those of trained models, casting doubt on their utility as explanations 

(Adebayo et al., 2018; Kindermans et al., 2018). 

Feature attribution methods, including SHAP and Integrated Gradients, assume 

additive feature contributions; however, they are often undermined by feature collinearity or 

causal ambiguity. These approaches risk attributing importance to features that are merely 

correlated with causal drivers, thus providing misleading insights (Hooker et al., 2019). 

Counterfactual explanation methods aim to identify the minimal changes required to 

alter model decisions. While promising, they frequently generate unrealistic or infeasible 

examples that lie off the data manifold, which diminishes their practical interpretability.  

Finally, attention-based methods, while intuitive, have been criticised for combining 

attention weights with explanatory relevance, despite evidence that attention does not 

always correlate with model outputs (Jain and Wallace, 2019; Serrano and Smith, 2020). 

2.9.2 Performance–Explainability Trade-off 

A fundamental obstacle in XAI is the apparent trade-off between model explainability and 

predictive performance. High-performing models, particularly those based on deep learning, 

typically rely on complex, non-linear representations that defy intuitive understanding. In 

contrast, models such as logistic regression or decision trees are inherently interpretable but 

often lack the representational capacity required for tasks in vision, language, and genomics. 

This trade-off has been particularly salient in high-stakes domains such as medicine 

and finance. For example, CNN have achieved high accuracy in radiological diagnosis but is 

opaque to clinicians, undermining trust and regulatory compliance (Caruana et al., 2015). 

Similarly, credit-scoring algorithms based on ensemble methods may outperform traditional 

scorecards, but they also raise concerns about fairness and explainability. 

Emerging research seeks to mitigate this trade-off by developing models that strike 

a balance between explainability and performance. GAMs and EBM use additive structure and 

monotonic constraints to ensure transparency while capturing non-linear effects. Neural-
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symbolic systems (J. Zhang et al., 2021) integrate DL with logical reasoning, enabling traceable 

inference processes. However, these approaches are still developing and often require 

domain-specific tuning. 

2.9.3 Faithfulness vs. Plausibility 

Another pervasive issue in explainability is the tension between generating faithful 

explanations —those that accurately reflect internal model computations and plausible ones 

that are intelligible and satisfying to human users. Faithfulness is crucial for technical 

transparency, yet explanations optimised for human comprehension often sacrifice this in 

favour of simplicity or coherence (Jacovi and Goldberg, 2020). 

An example is the use of saliency maps in image classification. While these heatmaps 

may visually highlight regions of interest, they are frequently unfaithful to the actual reasoning 

of the model. Adebayo et al. (2018) demonstrated that saliency methods produce virtually 

identical outputs even for untrained or randomised networks, indicating that these 

explanations are artefacts of input structure rather than actual model reasoning. This 

phenomenon is not limited to vision; in natural language processing, attention heatmaps 

often fail to align accurately with attention heads that influence outputs (Wiegreffe and 

Pinter, 2019). 

This disconnect poses significant epistemic and practical risks. Users may accept 

plausible yet incorrect explanations, leading to misplaced trust or faulty decisions. To address 

this, some researchers advocate hybrid approaches that explicitly balance faithfulness and 

interpretability, such as using concept bottlenecks (Koh et al., 2020) or causal constraints 

(Pearl, 2009). 

2.9.4 Bias Amplification and Adversarial Explanations 

The deployment of XAI systems in real-world applications has surfaced concerns about the 

amplification of biases and the vulnerability of explanation mechanisms to adversarial 

manipulation. Explanations often reflect underlying data patterns, and biased training data 

can result in explanations that rationalise discriminatory or unfair decisions. Mehrabi et al. 

(2021) have demonstrated that models trained on biased datasets not only propagate harmful 
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stereotypes but also generate explanations that obscure or justify these patterns, thereby 

compounding the problem. 

Ghorbani et al. (2019) introduced the concept of adversarial explanations, where 

small perturbations to input data can cause significant shifts in the resulting explanations, 

without affecting model predictions. This raises the possibility of intentionally manipulating 

explanations to conceal biases, introduce misleading rationales, or fabricate a false sense of 

fairness. Slack et al. (2020) demonstrated that models could be trained to appear fair in 

explanations while being discriminatory in operation, which is a serious concern for 

auditability and compliance. 

Addressing these issues requires robust training paradigms, fairness-aware 

explanation methods, and detection mechanisms for identifying and mitigating adversarial 

manipulations. Approaches such as invariant risk minimisation (Arjovsky et al., 2020) 

represent promising directions but are computationally demanding and not yet conventional 

methods. 

2.9.5 The Rashomon Effect 

Derived from statistical learning theory, the Rashomon Effect describes how multiple, equally 

plausible yet structurally distinct explanations can explain the same model prediction 

(Breiman, 2001; Rudin, 2019). This multiplicity complicates the landscape of interpretability, 

particularly in parameterised models where many decision paths can lead to the same output. 

From a practical perspective, this multiplicity undermines the trustworthiness of 

explanations. Users are left uncertain as to which explanation, if any, reflects the "true" 

rationale behind the decision of the model. In high-stakes scenarios, such as legal adjudication 

or autonomous vehicle operations, this ambiguity poses significant risks. 

Efforts to mitigate the Rashomon Effect include the use of causal inference 

frameworks to constrain the space of valid explanations (Pearl, 2009) and ensemble 

explanation strategies that aggregate across multiple models or runs (Thibault Laugel, 2020). 

However, these solutions are not universal. Causal models require strong assumptions and 

domain expertise, whereas ensemble methods may introduce additional complexity and 

compromise interpretability. 
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Overall, these challenges underscore that explainability is not a mere add-on to ML 

pipelines, but a foundational requirement that intersects with model design, training data, 

evaluation, and human factors. Advancing the field will require multidisciplinary collaboration, 

principled frameworks, and emphasis on empirical validation across real-world settings. 

2.10 Summary of the Key Findings 

The expedited adoption of AI in critical decision-making contexts, including healthcare, 

finance, autonomous systems, and public policy, has precipitated an urgent demand for 

transparent, accountable, and interpretable AI. This chapter undertakes a comprehensive 

examination of XAI, encompassing its conceptual foundations, evolving taxonomy, prevailing 

methodological paradigms, evaluation frameworks, and enduring challenges. From this 

comprehensive synthesis, it becomes evident that explainability is not merely an ancillary 

feature of ML systems, but rather a fundamental prerequisite, epistemologically, ethically, 

and practically, for establishing trustworthy and responsible AI. 

One of the central tensions in XAI resides in the ambiguity surrounding its 

foundational terminology. Terms such as “interpretability” and “explanation” are frequently 

employed interchangeably, despite possessing distinct semantic and operational implications. 

This semantic fluidity obstructs the process of consensus-building, reproducibility, and 

standardised benchmarking. The lack of a unifying framework constitutes a significant 

impediment to the advancement of the field. Efforts to address this through taxonomies and 

benchmarking initiatives show promise; however, their acceptance across various domains 

and use cases remains limited. In the absence of shared standards, comparisons between 

methodologies become anecdotal rather than principled, thereby hindering the cumulative 

advancement of XAI. 

The complexity is further compounded by the methodological limitations inherent in 

contemporary XAI approaches. Although local surrogate models, gradient-based 

visualisations, attribution methods, counterfactuals, and attention mechanisms each offer 

valuable insights into model behaviour, none can be deemed universally reliable or robust. 

Many of these methods fail to generalise beyond narrow experimental frameworks, exhibit 

fragility when subjected to adversarial perturbations, or render explanations that, while 

plausible, ultimately do not faithfully represent the underlying model logic. This inconsistency 
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not only raises doubts regarding their utility but also creates opportunities for manipulation 

and adversarial misuse, thereby challenging the notion that explanations are inherently 

stabilising or trustworthy.  

Moreover, the longstanding trade-off between explainability and predictive 

performance remains a structural dilemma. DNN achieve state-of-the-art results across 

domains, but often at the cost of human comprehensibility. While interpretable-by-design 

models such as GAMs or EBMs offer a middle ground, their scope and applicability remain 

domain-bound and data-sensitive. Emerging neural-symbolic hybrids and concept-based 

models promise greater integration of logic and learning, yet they too demand rigorous 

empirical validation and precise theoretical articulation. 

Most concerning are the socio-technical risks posed by explainability methods 

themselves. Explanations can be gamed, manipulated, or weaponised to mask algorithmic 

bias, justify unfair decisions, or simulate regulatory compliance. The dual-use nature of XAI 

implies that it must be developed with security, fairness, and adversarial resilience in mind. 

This further raises concerns about the assumption that explanations are always beneficial. 

Explanations must be accurate, faithful, and useful to the target audience, often requiring a 

delicate balance between technical transparency and cognitive plausibility. 

The Rashomon Effect underscores this complexity, revealing that many models admit 

multiple, equally valid explanations for a single prediction. This undermines any simplistic 

notion of a single "true" explanation and highlights the epistemic uncertainty inherent in high-

capacity models. While causal inference and ensemble explanation approaches offer 

pathways to manage this multiplicity, they require deeper engagement with domain 

knowledge, experimental design, and philosophical perspectives on causality and inference. 

Taken together, these insights suggest that explainability cannot be retrofitted into 

AI systems as an afterthought. Instead, it must be integral to model architecture, data 

curation, evaluation protocols, and deployment pipelines. This necessitates a rethinking of the 

entire AI lifecycle, from data collection and feature engineering to training, inference, and 

human–AI interaction. Crucially, explainability research must embrace interdisciplinary 

collaboration, drawing on computer science, human–computer interaction, legal theory, and 
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ethics. Only by embedding explainability within these broader epistemic and societal contexts 

can the field realise its promise. 

Future research must thus aim at (i) formalising and standardising explanation goals 

across use-cases, (ii) creating robust explanation methods, and (iii) grounding evaluations in 

human-centred design and real-world deployment feedback. Explainability is not simply about 

making models understandable; it is about enabling accountable, fair, and informed decision-

making in an increasingly opaque algorithmic system. The path forward lies not in searching 

for a universal solution, but in building a pluralistic, context-sensitive ecosystem of 

techniques, metrics, and theoretical frameworks that together constitute a robust science of 

explanation in AI. 
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3 Dataset 

This chapter aims to comprehensively analyse the data utilised for the proposed research, 

specifically focusing on neuroimaging techniques. Identifying even the most minor changes in 

brain atrophy is essential to conducting an in-depth examination and developing models. 

Selecting the correct type of neuroimaging is essential. It plays a key role in early AD detection 

and diagnosis, with various techniques offering unique insights into brain structure and 

function.  

Few of these methods help identify early signs and stages of AD. Magnetic Resonance 

Imaging (MRI) employs strong magnets and radio waves to generate highly detailed brain 

images. MRI is particularly effective in identifying structural abnormalities such as brain 

atrophy, stroke damage, tumours, and fluid accumulation. In the context of Alzheimer's 

research, MRI is invaluable for quantitatively characterising the disease progression (Mcevoy 

et al., 2009). Quantitative measurements from MRI images can track the subtle changes in 

brain structures over time, providing a clear picture of Alzheimer's disease and its impacts on 

the brain. 

There are two types of MRI techniques. Functional MRI, or fMRI, is a primary 

technique used to study brain function by measuring changes in blood flow. fMRI scans of 

individuals with AD frequently reveal reduced brain activity in certain regions, suggesting a 

deterioration in neuronal function (Dennis and Thompson, 2014). Resting-state fMRI has 

emerged as a potential diagnostic tool for identifying functional brain alterations in the initial 

phases of AD. 

Secondly, structural MRI (sMRI) is essential for this study as it enables the detailed 

visualisation of brain regions impacted by Alzheimer's disease. By capturing changes in the 

brain structure and shape, sMRI can help in the early detection of atrophy, which is crucial for 

diagnosing and understanding the progression of Alzheimer's (Vemuri and Jack, 2010). 

Moreover, advances in DL have enabled the classification of MRI images at a level comparable 

with the performance of expert radiologists. Advancements in DL enhance the diagnostic 

value of MRI, making it a powerful tool in both clinical and research settings. 

Since the primary aim of this thesis is to detect patterns arising from alterations in 

brain structure and morphology, sMRI is the optimal neuroimaging modality for this research. 
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Its capacity to offer complex brain morphology images makes it perfect for examining the 

slight alterations linked with AD. The information gathered from sMRI will serve as the basis 

for the models created in this study, enabling precise categorisation and forecasting of 

Alzheimer's advancement. 

3.1 Sources of the data 

A meticulously chosen and diverse collection of publicly accessible datasets, each offering a 

distinctive perspective on the research framework, has been thoughtfully put together. These 

datasets have been meticulously chosen based on their relevance to research objectives and 

comprehensive representation of patients with varying cognitive conditions and 

demographics. 

The Alzheimer's Disease Neuroimaging Initiative (ADNI) plays a crucial role in 

neuroimaging research (ADNI Database, 2021). ADNI is highly valued for its extensive 

collection of MRI scans, clinical assessments, and genetic data from individuals diagnosed with 

AD and Cognitively Normal (CN) controls. The primary benefit of ADNI lies in its longitudinal 

design, enabling the observation and examination of the progression of cognitive decline in 

the early stages of AD. 

The AIBL study, known as the Australian Imaging, Biomarker, and Lifestyle Flagship 

Study of Ageing, offers a vast and invaluable data collection (AIBL Database, 2021). This data 

includes information from individuals who have undergone cognitive assessments, MRI scans, 

and biomarker measurements. The dataset is a comprehensive resource that encompasses 

individuals at various stages of cognitive deterioration and those who remain cognitively 

healthy. Consequently, it is a crucial framework for studying the development of AD-

associated changes and the various factors that influence cognitive ageing. Adding AIBL to the 

research plan significantly enhances the comprehension of the complicated mechanisms 

linked to AD and cognitive deterioration. 

In contrast, the Information eXtraction from Images (IXI) dataset provides a unique 

perspective on the field of research (IXI Database, 2021). This dataset contains a variety of 

MRI scans, from a range of Cognitively Normal (CN) individuals of different ages. 

Encompassing diverse subjects in the dataset boosts the research by enabling evaluations 
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between AD and CN. This analysis reveals the distinctive patterns and characteristics 

associated with each scenario.  

Research objectives have guided the careful and strategic selection of datasets to 

investigate the patterns and biomarkers associated with AD. The ADNI, IXI, and AIBL datasets 

provide a comprehensive and holistic approach to navigating neuroimaging data. This 

deliberate selection makes it possible to examine various sources of information, offering a 

comprehensive and multidimensional understanding of AD and its correlation to other NDDs. 

Employing this extensive approach can help discover ground-breaking insights and make 

substantial contributions to neurodegenerative research. 

3.2 Further information regarding the MRI scans. 

In neuroimaging, acquiring sMRI scans is crucial for understanding the human brain. These 

scans provide a detailed view of the brain anatomy, helping to identify and characterise 

various structures. The choice of MRI weights, particularly T1 and T2, is a crucial component 

of sMRI scanning. This decision is far from arbitrary, as it fundamentally affects the 

information derived from the scans and shapes the goals of subsequent analyses. This thesis 

focuses on examining and interpreting brain structures, making the choice of T1 weighting of 

essential significance.  

T1 and T2 are two distinct MRI weights that represent various aspects of the 

composition of the brain. T1-weighted images mainly highlight the existence of fat in tissues, 

particularly in the context of brain structures. They excel at emphasising differences in various 

brain tissues, predominantly white and grey matter. On the other hand, T2-weighted images 

enhance the detection of fat and water content in tissues, such as Cerebro-Spinal Fluid (CSF) 

(MacKay et al., 2006). T2-weighting is often employed to investigate fluid-related issues in the 

brain, such as identifying lesions, tumours, or abnormalities in CSF flow. Figure 3- 1Error! 

Reference source not found. shows two sequences in sMRI scans, modified from (Atia et al., 

2022). 
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Figure 3- 1 Two sequences in sMRI scans, modified from (Atia et al., 2022) 

White and grey matter are two fundamental constituents of the brain, each 

possessing distinct functions and characteristics. White matter consists of axons responsible 

for transmitting signals between different brain regions, while grey matter primarily 

comprises cell bodies and is integral to various cognitive functions (Mercadante and Tadi, 

2020). Accurately examining these structures is essential for understanding neurological 

conditions, cognitive functions, and the overall operation of the brain. 

T1-weighted sMRI scans outline the borders between white and grey matter, 

delivering exceptional detail and contrast. This increased awareness of fat levels in tissues is 

particularly beneficial for evaluating the structural integrity of the brain and identifying subtle 

changes that may occur in diseases such as Alzheimer's or multiple sclerosis (Marcisz and 

Polanska, 2023). By using T1 weighting, this thesis aligns with a specific focus on white and 

grey matter analysis, enabling a rigorous examination of the structural properties of the brain 

as well as any potential alterations or abnormalities. 

In sMRI scanning, choosing the MRI weighting is crucial for guiding future research. 

This thesis strategically selects T1 weighting over T2 for a detailed analysis of brain structures, 

primarily focusing on white and grey matter. This choice highlights the need for accuracy and 

sensitivity in understanding the complexities of the human brain and provides insights into 

neurological function and dysfunction.  

 



 

   

 

©University of Reading 2025      Page 118 

3.3 FreeSurfer and Its Processing 

This thesis examines the complex field of structural neuroimaging, incorporating quantitative 

measurements as a fundamental aspect of analysis. These measurements, such as thickness, 

volume, and area, are essential for understanding the human brain. Researchers conduct a 

comprehensive examination using high-resolution three-dimensional brain scans, also known 

as sMRI data. The well-known neuroimaging program FreeSurfer v.6.0 (Fischl, 2012) facilitates 

an advanced processing pipeline for retrieving these numerical measurements.  

The investigation aims to enhance understanding of brain structure and its links to 

neurological disorders and cognitive functions. Using advanced quantitative methods, it seeks 

to gain deeper insights into brain morphology and its impact on well-being and cognition. The 

data provides a comprehensive view of the internal structure through three-dimensional 

scans, but the raw data requires careful preprocessing to enable meaningful numerical 

measurements.  

FreeSurfer version 6.0 serves as the foundation for the preprocessing pipeline. This 

software package provides tools and algorithms particularly designed for neuroimaging data 

analysis. The initial stage is image registration, which aligns scans to a standard reference 

system (Wyawahare et al., 2009). This alignment ensures consistency and compatibility across 

scans, enabling accurate comparisons of brain structures over time.  

After registration, the software proceeds with skull stripping, an essential step that 

removes non-brain tissues from the images (Kalavathi and Prasath, 2016). This rigorous 

procedure ensures that all future analyses are exclusively concentrated on the structural 

components of the brain. After the skull stripping process, clean brain images are ready for 

further analysis.  

Brain segmentation and parcellation are crucial in preprocessing, as they enable the 

identification and labelling of distinct brain regions with unique anatomical boundaries 

(Backhausen et al., 2016). FreeSurfer excels at accurately labelling various structures, ranging 

from the cortex to subcortical areas. This automated parcellation step enables the extraction 

of region-specific measurements for detailed examination of brain diversity components.  

A notable feature of Freesurfer is its ability to estimate cortical measurements, such 

as surface area, volume, and thickness. These measurements are vital in research, providing 
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insights into cortical structure and variations. Cortical thickness offers crucial information 

regarding brain health and developmental changes. Quantifying these metrics enables 

statistical evaluations, thereby enhancing the depth of analysis. 

The extracted numerical measurements are crucial for research. These 

measurements encompass a broad range of brain regions and characteristics, providing a 

diverse perspective on brain structure. For example, one may focus on quantifying the 

thickness of specific regions, such as the right HATA (Hippocampal-amygdala transition area), 

or the volume of important structures, such as the right Hippocampus. Each measurement 

represents a numerical value, which not only enables quantitative comparisons but also 

enables sophisticated statistical analyses.  

This study benefits from a comprehensive viewpoint, covering the entire brain and 

specific areas. This perspective ensures the research captures the full range of brain structure 

and its implications. It recognises the complexity of the brain and aims to accurately represent 

this intricacy.  

Figure 3- 2 represents the overview of the FreeSurfer steps in extracting the 

necessary numerical values (Grossner et al., 2018). 

 

Figure 3- 2 Processing overview of the FreeSurfer program used to extract grey matter volumes (Grossner et al., 

2018) 

This thesis focuses on carefully extracting and examining numerical measurements 

from sMRI data. By utilising the advanced preprocessing capabilities of FreeSurfer v.6.0, the 
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software ensures that these measurements are accurate and reliable. These numerical 

attributes, such as thickness, volume, and area, play a crucial role in research by providing 

insight into the intricacies of brain shape and its relationship to neurological well-being, 

cognitive abilities, and other key factors. The aim is to enhance the growing understanding of 

the human brain by merging advanced technology with in-depth analysis. 

3.4 Post-processing 

This thesis develops a critical data selection process utilising three datasets to enhance 

comprehension and diagnostic capabilities in AD. These datasets provide valuable 

information, including multiple scans per subject taken at various disease stages, such as 

screening, baseline, or follow-ups. 

The data selection is vital as it significantly influences the thesis goals and results. The 

research aims to enhance early AD detection, emphasising the importance of identifying the 

disease at an early stage. This aligns with the healthcare goals of early intervention and 

treating NDD, potentially improving patient outcomes and quality of life.  

Selecting the earliest scan for each subject is essential to represent the initial stages 

of AD accurately. Clinicians typically conduct these scans when symptoms are mild or even 

before they appear. By focusing on early scans, the goal is to maximise the detection of subtle 

brain changes occurring before noticeable clinical signs arise. This approach underscores the 

importance of early detection and intervention in AD, which is crucial for enhancing patient 

care outcomes.  

An additional criterion is used to enhance data selection during the same stage of 

gathering information (for example, multiple scans taken on the same date). Clinicians 

prioritise the scan with the highest Contrast-to-Noise Ratio (CNR), a valuable measure that 

assesses image quality and clarity, ensuring the most accurate depiction of the complexity of 

the brain. 

After meticulously implementing these selection criteria across all datasets, the next 

step was to curate a subset of data comprising 3,974 sMRI scans successfully. Each scan 

corresponds to an individual subject, creating a dataset uniquely tailored to the specific goals 

and objectives of this thesis. 
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After undergoing pre-processing, every sMRI scan from subjects provides a 

comprehensive collection of 446 attributes, which represent numerical assessments of 

various brain areas. These characteristics comprehensively examine the structural qualities of 

the brain, including measurements such as thickness, volume, and area. Nevertheless, similar 

to any data, it is crucial to ensure the quality and precision of the information. 

The data cleaning phase removed 45 features from the initial set of 446. These 

excluded features were either duplicates of other measurements or contained errors. Factors 

such as head movement during scanning or complexities in the pre-processing steps of 

FreeSurfer could cause these errors. Removing these irrelevant features is crucial to prevent 

any distortions or biases in the subsequent analysis, ultimately enhancing the reliability of the 

dataset. 

This data-cleaning process resulted in a well-organised and enhanced dataset using 

Knime software (Berthold et al., 2009; Sarica et al., 2014). It was presented as a table of 3,974 

rows, each representing an individual subject's scan. The table also contained 404 columns 

representing the features extracted from these scans. These 404 columns comprised 401 

unique brain features generated by FreeSurfer v.6.0, in addition to age, gender, and research 

group, which indicated the subject's disease. These characteristics provided valuable insights 

into various structural aspects of the brain, such as cortical thickness, subcortical volumes, 

and other essential measurements. Moreover, the dataset contained age and gender data for 

each subject, which was crucial for examining the potential impact of these demographic 

variables on brain structure and the diagnosis of AD. 

Research indicates that the ADNI dataset is of great value due to its large number of 

Alzheimer's disease subjects. Consistency across datasets, particularly in age range, is 

essential for valid findings and reliable comparisons. The ADNI study includes participants 

ranging in age from 55 to 90 years. To maintain consistency with ADNI and uphold the integrity 

of the research, any additional datasets used in this study must also fall within this age range. 

For example, the IXI dataset, which covers a broader age range from 19 to 90, has been 

narrowed down to only include individuals aged 55 and above. This careful selection ensures 

that the dataset used in this thesis remains consistent in terms of age, which is an important 

factor considering the significant impact of age on brain size and structure. 
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The post-processing and cleaning stages of the dataset are crucial. Removing 

duplicate or incorrect features enhances the quality and reliability of the dataset. The resulting 

dataset, which consists of 3,974 subjects and 404 features, is a valuable resource for 

investigating the complex structure of the brain and its implications for AD diagnosis. 

Additionally, the focus on maintaining consistent age ranges across datasets ensures that the 

research is built on a strong foundation and can provide accurate and meaningful insights into 

the relationship between brain structure and AD within the specified age range. The flow chart 

depicted in Figure 3- 3Error! Reference source not found. illustrates the procedure for 

acquiring data sources, processing using Free Surfer, and implementing post-processing steps. 

 

Figure 3- 3 Pipeline depicting the overall data processing steps 

3.5 General overview and statistics of the dataset 

The data visualisation component of this research is a crucial element aimed at visually 

representing and analysing the extensive and complex data associated with 

neurodevelopmental disorders (NDDs). This section uses various graphical and descriptive 

methods to provide a clear overview of the dataset, enhancing our understanding of the 

connections, trends, and patterns within the data. These visualisations simplify the 
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interpretation of the results and enhance the overall coherence and understanding of this 

study. 

The visualisations are organised into three main sections. First, they will provide an 

overview of the dataset by focusing on general statistics, including the distributions and the 

ranges of key features. Second, the visualisations will compare each condition, examining their 

distributions and the ranges of select features. Finally, the visualisations will emphasise 

insights that can be illustrated through plots, highlighting trends and relationships between 

variables to enable a clear visual interpretation of data patterns. 

3.5.1 Contributions of each data source 

The pie chart in Figure 3- 4Error! Reference source not found. below clearly 

represents the distribution of data sources used throughout this research. The ADNI data 

source is the most significant contributor, accounting for 77.4% of the overall dataset. This 

dominance reflects a substantial portion of the data, comprising approximately 3,080 patient 

records. Following ADNI, the second-largest contributor is the AIBL data source, which 

accounts for 16.73% of the dataset, equating to roughly 670 patient records. At the other end 

of the spectrum is the IXI data source, contributing the smallest share at 5.86%, with just 230 

records.  

 

Figure 3- 4 Distribution of the data sources 
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Despite its smaller size, the IXI dataset is significant because it contains the highest 

proportion of healthy records, which are essential for further comparative studies. This 

detailed breakdown provides a comprehensive view of the distribution and significance of 

each data source, highlighting not only their sizes but also their unique contributions to the 

overall analysis. 

3.5.2 Distribution of different genders among each of the data sources 

The pie charts in Figure 3- 5 below clearly visualise the gender distribution across the 

different data sources. In the most extensive dataset, ADNI, males comprise 50.99%, 

corresponding to approximately 1,570 records. Females account for 49.01%, representing 

around 1,510 records. In the next largest dataset, AIBL, the gender distribution shifts slightly, 

with females comprising 55.79% (approximately 371 records) and males comprising 44.21% 

(roughly 294 records). The smallest dataset, IXI, also shows a higher proportion of females, 

with 61.73%, around 143 records, while males account for 38.63% or roughly 90 records. 

 

Figure 3- 5 Gender distribution for each different data source 

Overall, the gender distribution is generally adequate across the datasets, although 

some variations exist, particularly in AIBL and IXI, where females slightly outnumber males. 

Sampling techniques are necessary to ensure a balanced representation in future studies that 

focus on gender-specific factors. However, since this research primarily focuses on disease 

analysis rather than gender, the current gender distribution remains sufficient and does not 

require further adjustments. 



 

   

 

©University of Reading 2025      Page 125 

3.5.3 Distribution of healthy and multiple diseases within each data source 

The tree graphs in Figure 3- 6 below depict the distribution of various diseases across 

the different data sources. For the ADNI dataset, CN patients form the largest category, 

comprising approximately 1,360 records. Following that, AD represents about 840 records, 

while MCI contributes around 360 records. Close behind is the EMCI category, with about 340 

records. The smallest proportion within the ADNI dataset is LMCI, which has around 180 

records. In the AIBL dataset, CN patients comprise the most significant proportion, with 484 

records. The next largest group is MCI, contributing 102 records; finally, AD accounts for 79 

records. The IXI dataset is distinct because it exclusively contains CN patients, with 233 

records, and does not represent neurodegenerative diseases such as AD, MCI, Early MCI, or 

Late MCI. 

 

Figure 3- 6 Distribution of healthy and various diseases within each data source 

Overall, the distribution across the datasets shows a relatively balanced 

representation between cognitively normal individuals and those affected by various stages 

of neurodegenerative diseases, except the IXI dataset, which only includes healthy 

participants. This distribution offers a valuable overview of disease and cognitive state 

representation, helping to shape the research scope and focus based on contributions from 

each dataset. 



 

   

 

©University of Reading 2025      Page 126 

3.5.4 The average age of data-subjects included in the data source 

Figure 3- 7 Visualises the mean age across the various data sources, providing 

valuable demographic context for this research. Starting with the AIBL dataset, the average 

age is 75 years, reflecting a relatively older population, which is significant when considering 

age-related factors in neurodegenerative diseases. In the ADNI cohort, the average age is 

slightly younger, at 74 years. However, it still represents an older demographic that is typical 

for studies focused on conditions such as Alzheimer's disease and other age-associated 

disorders. In contrast, the IXI cohort presents a notably younger average age of 65 years, 

suggesting a relatively youthful group of participants compared to the other datasets.  

 

Figure 3- 7 Average age of each data source 

This younger demographic could be particularly useful for comparative studies, 

particularly when examining early-stage disease markers or drawing comparisons between 

younger, healthier individuals and older populations prone to cognitive decline. This 

demographic breakdown underscores the importance of factoring in age when conducting 

research across these datasets. Age plays a critical role in the onset and progression of 

neurodegenerative diseases, and the variation in average ages across these cohorts may have 

meaningful implications for both the analysis and interpretation of the results. By considering 

these age differences, researchers can understand the role of ageing in the data, potentially 

leading to tailored and accurate conclusions. 
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3.5.5 Distribution of all the diseases 

The bar graph in Figure 3- 8 provides a detailed visualisation of the distribution of 

neurodegenerative diseases and the healthy control group within the dataset under 

examination. The CN category holds the largest share, with 2,198 patient records, making up 

approximately 48.25% of the dataset. The high proportion of healthy individuals in the data is 

a critical reference point for comparative analyses with neurodegenerative conditions. The 

second-largest category is AD, comprising 921 patient records, which accounts for roughly 

20.22% of the dataset. The dataset distribution emphasises the prominence of Alzheimer’s 

patients, focusing on studying neurodegenerative diseases. MCI is represented by 461 

patients, making up around 10.12% of the dataset. This classification reflects individuals 

experiencing cognitive decline that does not yet meet the threshold for a diagnosis of 

Alzheimer’s disease or another severe neurodegenerative condition. The dataset includes 335 

records under the EMCI category, representing an earlier stage of cognitive impairment, which 

is crucial for tracking disease progression. On the other hand, the LMCI group forms the most 

minor proportion, with 179 records, accounting for 3.39% of the dataset. LMCI typically 

signifies an advanced stage of impairment, often preceding full-blown Alzheimer’s disease or 

other severe conditions. 

 

Figure 3- 8 Distribution of Diseases within the whole dataset 

This comprehensive distribution clearly explains the prevalence of different 

neurodegenerative stages within the dataset and offers insight into the balance between the 

healthy control group and the various cognitive states. Such a breakdown is essential for 
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researchers, as it enables nuanced analysis of disease progression and comparisons between 

healthy and affected individuals, ultimately enhancing the depth and precision of the research 

findings. 

3.5.6 Gender distribution among the diseases 

The investigation into the gender distribution across various categories of 

neurodegenerative diseases reveals a relatively balanced representation between males and 

females, with some variation across different conditions, as presented in Figure 3- 9Error! 

Reference source not found.. For the CN category, females comprise 54.64% of the group, 

with approximately 1,200 patient records, while males account for 45.36%, with around 1,000 

records. This slight female dominance in the healthy control group is notable. In the AD 

category, the gender distribution shifts slightly, with males representing 51.79% of 477 

records, while females make up 48.21% of roughly 444 records. This minor discrepancy 

suggests a near-equal representation of genders among Alzheimer’s patients. The MCI 

category exhibits a pronounced gender difference, with males comprising 60.74% of 

approximately 280 records, while females account for 39.26% of around 181 records. The data 

indicate a higher representation of males in the MCI stage of cognitive decline.   In the EMCI 

category, males constitute 54.33%, about 182 records, while females are slightly fewer, at 

45.67%, around 153 records. Similarly, for LMCI, males represent 55.62%, approximately 99 

records, while females account for 44.38%, roughly 79. 
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Figure 3- 9 Gender distribution within each disease 

This detailed breakdown of gender distribution across neurodegenerative disease 

categories provides valuable insights into the subtle discrepancies between male and female 

involvement. Understanding these variations is crucial for interpreting demographic trends 

within the dataset, which can significantly influence research outcomes, particularly in studies 

examining gender-specific risk factors or disease progression pathways. 

3.5.7 The average age of each instance of disease places the progression stages of AD 

The line plot in Figure 3- 10 illustrates the average age across cognitively normal 

individuals and those affected by various neurodegenerative diseases, offering crucial 

demographic insights for the research. The data shows the youngest average age is in the 

EMCI category, with an average age of 71.2 years. Following that, the LMCI group has an 

average age of 72.3 years, slightly higher than EMCI. The CN group sits just above that, with 

an average age of 72.5 years. The MCI group shows a higher average age of 74.7 years, while 

the AD category shows the highest average age of 75.0 years. This gradual increase in age 

from EMCI through to AD reflects a logical and real-life progression of cognitive decline. 

Alzheimer's, typically diagnosed in individuals over the age of 60, often takes several years to 

fully manifest severe symptoms, while earlier stages, such as EMCI, can appear much sooner. 
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Figure 3- 10 Average age of each disease 

This demographic breakdown is essential because it highlights the significance of age-

related factors in the progression of neurodegenerative diseases. By accounting for these age 

differences, the research can accurately assess disease development, symptom onset, and 

progression patterns, ensuring that age-related trends are factored into the analysis of the 

study cohorts. 

3.5.8 Types of data attributes  

The doughnut chart in Figure 3- 11 visually shows the allocation of variables in the 

dataset, highlighting their distribution. "Area" is slightly dominant, accounting for 69 

attributes, underscoring its significance for early AD diagnosis research analysis. Following 

closely behind is "Meancurv", making up 68% of the dataset, indicating its importance in 

analysis. Volume, Thickness, and Thickness standard deviation each contribute 68%, 

emphasising their critical roles. The remaining variables, Volume and Misc., account for 60% 

of the dataset. Although smaller, their contribution helps to provide a comprehensive 

understanding of the dataset. 
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Figure 3- 11 Distribution of type of attributes within the dataset 

This doughnut chart clearly and immediately visualises how different variables are 

distributed and meticulously breaks down their significance within the dataset. Highlighting 

the prevalence of key variables such as area, mean curvature, thickness, and volume enables 

researchers to quickly grasp the relative importance of each factor, facilitating a focused and 

informed analysis in the research process. 

3.5.9 Cortex Volume 

The line graph in Figure 3- 12 illustrates changes in cortex volume by age and gender 

across four neurodegenerative conditions: AD, MCI, EMCI, and LMCI. A key observation is the 

consistent downward trend in cortex volume for both genders, indicating reduced brain 

volume as the diseases progress. This decline is most evident in EMCI and LMCI, where the 

drop is visually striking. The MCI plot shows a significant reduction with a less sharp slope, 

while the AD plot reveals a gradual decline over time, though still substantial. Another notable 

feature is the difference in male and female trajectories, with females consistently having 

lower cortex volumes. The data suggest that females, on average, start with a smaller cortex 

volume than males, whose starting points are higher in each disease category, possibly 

reflecting gender-related differences in brain anatomy or progression rates. 
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Figure 3- 12 Correlation of Cortex Volume of the brain with Age and Genders for four different Diseases  

This visualisation aligns with real-world observations of NDD progression. Cortex 

volume tends to shrink as cognitive decline advances, and in the case of Alzheimer’s Disease, 

cortical atrophy, particularly in regions responsible for spatial reasoning and visual processing, 

can profoundly affect an individual’s ability to interpret spatial and visual information. The 

decline in cortex volume observed in these graphs underscores the importance of monitoring 

cortical changes in patients as a critical marker of disease progression, and it highlights the 

potential gender differences in how these diseases impact the brain. 

3.5.10 Amygdala 

The line graphs in Figure 3- 13 below present the changes in the left and right 

amygdala as a correlation of age and gender across four neurodegenerative conditions: AD, 

MCI, EMCI, and LMCI. A key observation from the graph is the consistent downward trend in 

the amygdala, both right and left, for all genders across all four conditions, indicating a 

reduction in this brain region as the diseases progress. 
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The decline is most evident in the EMCI and LMCI plots, where the sharp drop in 

amygdala size indicates significant loss of brain tissue early in disease progression. The MCI 

plot shows a gradual reduction, reflecting ongoing atrophy at this stage. In contrast, the AD 

plot demonstrates a milder decline, particularly in females, while males experience a 

pronounced loss of amygdala volume. The data suggests the most substantial loss of amygdala 

volume occurs early in Alzheimer's disease rather than post-diagnosis. Another feature is the 

difference in male and female trajectories. In all conditions, female amygdala volume is 

slightly lower than that of males, consistent with earlier observations of gender differences in 

brain anatomy. Male patients exhibit a notable difference between the left and right 

amygdalae, particularly in the EMCI and LMCI stages. This data suggests a potential gender-

based asymmetry in brain degeneration, with differing effects on the right and left sides in 

males. 

 

Figure 3- 13 Correlation of Left and Right Amygdala of the brain with Age and Genders for four different Diseases  

This visualisation depicts real-world patterns of NDD progression. The amygdala, a 

structure located in the temporal lobe, plays a critical role in emotional processing, memory, 
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and responses to stimuli. In patients with Alzheimer's and related conditions, the amygdala 

tends to shrink as cognitive decline advances. The line graphs reveal that much of the 

amygdala volume loss occurs during the early stages, particularly in EMCI and LMCI, 

emphasising the importance of early detection and monitoring. This data underscores the 

necessity of tracking amygdala changes as a marker of disease progression while also 

highlighting potential gender differences in how these neurodegenerative conditions impact 

brain anatomy. 

3.5.11 Whole Hippocampus 

The graphs in Figure 3- 14 below present the changes in the left and right 

hippocampus related to age and gender across four neurodegenerative conditions: AD, MCI, 

EMCI, and LMCI. A key observation from these graphs is the consistent downward trend in 

hippocampal volume, both right and left, across all genders and conditions, signalling a 

reduction in this critical brain region as the diseases progress. 

The EMCI and LMCI stages show significant declines in hippocampal size, indicating 

their importance in understanding disease progression. The MCI plot reveals noticeable 

hippocampal shrinkage, with male patients experiencing a gradual decline. In contrast, female 

MCI patients show a sharper reduction, indicating a faster atrophy rate. The AD plot shows a 

slower decline in hippocampal volume, particularly in males, while females exhibit a 

noticeable decrease. Gender differences in hippocampal atrophy are evident in advanced 

stages such as MCI and AD, but less so in earlier EMCI and LMCI stages. 

The hippocampal decline reflects the progression of real-world NDD. However, the 

hippocampus shrinks with age, and conditions such as Alzheimer's speed up this volume loss. 

Neuron loss correlates closely with hippocampal atrophy than with tau protein accumulation 

or other markers. Line graphs show significant shrinkage during the early stages, particularly 

EMCI and LMCI, underscoring the need for early detection and ongoing monitoring to 

understand and intervene in disease progression. 
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Figure 3- 14 Correlation of Left and Right Whole Hippocampus of the brain with Age and Genders for four 

different Diseases 

This data also highlights the importance of tracking hippocampal changes as a key 

indicator of disease progression. It highlights potential gender differences in how 

neurodegenerative diseases such as Alzheimer's impact the brain, suggesting that men and 

women may experience these conditions differently in terms of brain volume loss and the 

pace of cognitive decline. Understanding these nuances is critical for tailoring early 

interventions and treatments that account for these gender-specific differences. 

3.5.12 Ventricle 

The line graphs in Figure 3- 15 below display the changes in the left and right Lateral 

Ventricles as they relate to age and gender across four neurodegenerative conditions: AD, 

MCI, EMCI, and LMCI. A significant observation from the graphs is the consistent upward trend 

in lateral ventricle size for all genders and conditions on both the right and left sides. This 

expansion of the lateral ventricles indicates brain matter shrinkage as the disease progresses, 

a hallmark of neurodegenerative decline. 
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One key feature is the clear jump in the line graphs as patients age, further 

emphasising that ageing plays a significant role in the enlargement of lateral ventricles. The 

ageing process accelerates ventricle growth, corresponding with the loss of brain tissue over 

time. This phenomenon is most prominent in the EMCI and LMCI stages, where the rapid 

increase in lateral ventricle size is visually striking, suggesting that significant brain atrophy 

occurs early in the progression of the disease. In AD, although the ventricles continue to 

expand, the rate of increase is slower and stable, reflecting ongoing but moderate atrophy in 

the later stages of the disease. 

In contrast, the MCI plot shows a relatively milder increase in lateral ventricle size. 

Interestingly, female patients with MCI exhibit a gradual rise in ventricle size, while male 

patients experience a slightly pronounced expansion. These findings suggest that, although 

ventricle enlargement remains consistent, its rate may vary by gender in certain conditions.  

A key feature is the distinction between male and female trajectories. Unlike past 

findings of gender differences in brain atrophy, changes in lateral ventricle size are uniform 

across genders. This suggests ventricle enlargement in NDD may not differ significantly by 

gender. The left and right lateral ventricles expand at similar rates in male and female patients, 

contradicting earlier observations of gender-based anatomical variations in brain 

degeneration. 
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Figure 3- 15 Correlation of Left and Right Lateral Ventricles of the Brain with Age and Gender for four different 

Diseases 

This visualisation shows patterns of ventricular enlargement in neurodegenerative 

diseases. As brain matter shrinks, particularly in the cortex, ventricles expand to fill the space. 

This ventricular enlargement is a marker of brain atrophy, often seen in conditions such as AD. 

A sharp increase in the early stages (EMCI and LMCI) emphasises the importance of early 

detection. The lateral ventricles are crucial for tracking disease progression, providing insights 

into the severity of brain tissue loss severity over time. Notably, the absence of significant 

gender differences suggests that ventricular expansion is a consistent marker of 

neurodegeneration for both men and women, aiding researchers and clinicians in developing 

standardised approaches for diagnosis and monitoring across diverse patient populations. 



 

   

 

©University of Reading 2025      Page 138 

3.6  Experimental Setup 

3.6.1 Dataset for Feature Selection 

Only two targets, AD and CN, have been selected for the FS project in which experiments will 

be conducted. Data for classes AD and CN with all metrics includes 404 features in Dataset set 

01. Dataset set 02 includes 268 traits for classes AD and CN, encompassing essential metrics 

such as the volume, area, and thickness of various brain regions.  

For external validation of the proposed techniques, Dataset 03 is an arrhythmia 

dataset (Guvenir et al., 1997). The UCI Arrhythmia Dataset is a medical dataset for classifying 

cardiac arrhythmias, differentiating between normal heart function and various arrhythmic 

conditions. It includes categorical, integer, and real-valued features derived from 

electrocardiogram (ECG) recordings and patient information. The primary goal of the dataset 

is to classify instances into one of 16 categories, encompassing normal heartbeats and 

different types of arrhythmias. For research purposes, all arrhythmias can be combined into a 

single “arrhythmia” class, while normal cases remain “normal,” simplifying the classification 

task. This dataset makes it valuable for ML medical diagnosis and predictive modelling 

research.  

This chapter established a strong foundation for developing robust FS techniques 

using the datasets presented in Table 3- 1. These techniques enhance model performance, 

enhance explainability, and reduce computational costs. 

Table 3- 1 Dataset and its Number of features 

Dataset Name Target Number of features 

Dataset 01: Full Set of MRI Features AD/CN 401 

Dataset: Reduced Set of MRI Features AD/CN 268 

Dataset 03: Arrythmia Arrhythmia/Normal 279 
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3.6.2 Dataset for Sensitivity Analysis 

Only two targets, Alzheimer’s Disease (AD) and Cognitively Normal (CN), were selected for the 

Sensitivity analysis experiments. Data for classes AD and CN with all metrics such as volume, 

thickness, standard deviation of thickness, mean curvature, and area, totalling 404 features in 

Dataset set 01.  

Dataset set 02 includes 268 traits for classes AD and CN, encompassing essential 

metrics such as the volume, area, and thickness of various brain regions. The standard 

deviation of thickness and mean curvature were excluded from Dataset 02, as these are 

derivative features that may introduce irrelevant variability. The focus was placed on primary 

structural features such as volume, area, and thickness, which are directly interpretable and 

typically hold stronger discriminative power in classification tasks.  

This chapter builds a solid foundation for developing effective SA techniques using 

the datasets presented below in Table 3- 2. These techniques enhance model explainability, 

which is crucial for incorporating AI into real-world applications. 

Table 3- 2 Datasets utilised in the sensitivity analysis 

Dataset Name Target Number of Features 

Dataset 01: Full Set of MRI Features  AD/CN 401 
Dataset 02: Reduced Set of MRI Features AD/CN 268 

3.6.3 Dataset for Transfer Learning  

Only targets such as Alzheimer’s Disease (AD), Mild Cognitive Impairment (MCI), Early MCI 

(EMCI), and Late MCI (LMCI) were selected for the transfer learning process experiments. The 

study used two distinct datasets to examine and develop predictive models for cognitive 

deterioration in individuals with AD. 

The first dataset comprised records from patients with different stages of MCI, 

including Early MCI and Late MCI.  This dataset consisted of 975 entries, broken down into 335 

records from EMCI patients, 461 from MCI patients, and 179 from LMCI patients. Each entry 

included 404 features related to cognitive and morphological data, along with demographic 

information such as age, gender, and research group classification. The numerous features 

provided a comprehensive dataset, enabling a detailed exploration of the various factors 

contributing to cognitive impairment in patients at different stages of MCI. 
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Designated values were assigned based on MMSE score ranges to prepare the second 

dataset for the primary research goal, i.e., evaluating the degree of cognitive impairment in 

AD patients (Joshi et al., 2019). These ranges helped categorise the severity of cognitive 

decline in patients. An MMSE score of 21–30 was assigned a value of 3, indicating mild 

cognitive impairment. A score between 15-20 was assigned a value of 2, representing 

moderate cognitive deterioration. Finally, a score in the range of 0–14 was assigned a value 

of 1, signifying moderate to severe cognitive impairment. This scoring system helped simplify 

the categorisation of patients for further analysis. 

The second dataset, focused on AD, contained 2,110 entries. Each entry included 

morphological characteristics, MMSE scores, and corresponding disease stages derived from 

the MMSE scores. However, the analysis in this chapter focused solely on the mild and 

moderate cognitive stages, as data on patients with severe cognitive impairment were limited. 

Due to the inherent class imbalance, where mild cases outnumbered moderate ones, random 

undersampling was employed to balance the dataset. After under-sampling, the dataset 

consisted of 230 records, comprising 115 entries for mild cognitive impairment and 115 for 

moderate impairment. The summary of all the datasets utilised in this study is presented in 

Table 3- 3 below. This balanced dataset was then used for two key tasks: regression analysis 

to predict MMSE scores and classification of cognitive impairment severity. 

Table 3- 3 Description of the datasets 

Dataset Name Diseases Included Target 
Number of 
Records 

Dataset01: MCI dataset MCI, LMCI, EMCI Age 975 

Dataset01: MCI dataset MCI, LMCI, EMCI NA 975 

Dataset02: AD Dataset AD MMSE Scores 230 

4. Improved Filter-Based Feature Selection Techniques Based 

on Correlation and Clustering Techniques 

This chapter explores FS methods that enhance model performance and interpretability in 

high-dimensional medical datasets. FS is vital in ML research, where datasets often contain 

numerous interdependent variables that introduce irrelevancy and noise, degrading model 

efficiency. Correlation-based and clustering-based techniques effectively identify informative 
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features while reducing dimensionality. These approaches enhance model generalisability and 

robustness by retaining discriminative patterns relevant to the target task while eliminating 

irrelevant or redundant inputs (Hall, 2000). 

Three primary motivations drive these innovative techniques. Firstly, they address 

the “curse of dimensionality” prevalent in high-dimensional datasets, where the presence of 

many features can lead to overfitting and reduce predictive performance (Debie and Shafi, 

2019). Correlation-based methods, such as Minimum Redundancy Maximum Relevance 

(MRMR) (Peng et al., 2005; Radovic et al., 2017), select the most informative features by 

focusing on those highly relevant to the target variable while reducing redundancy. Instance-

based approaches, such as ReliefF, evaluate feature importance by assessing how well 

individual features differentiate between instances of the same and different classes based 

on nearest-neighbour distances (Kononenko, 1994). Clustering methods, such as hierarchical 

and spectral clustering, group similar features to enhance representative selection, enhancing 

classification accuracy in AI models. These techniques enhance model efficiency by 

streamlining data while retaining essential predictive information, thereby enhancing 

classification and prediction performance in complex tasks.  

Second, FS techniques enhance the explainability of models, which is essential for 

real-world applications. By reducing the number of features, these methods make it easier to 

interpret the relationships between input variables and model predictions. Transparent and 

interpretable models enable developers and domain experts to verify the basis of predictions, 

ensuring that AI systems integrate with task-specific knowledge and integrate effectively into 

operational workflows. Additionally, removing irrelevant features reduces the risk of spurious 

correlations, resulting in a robust and trustworthy model recommendation.  

Finally, High-dimensional datasets present considerable computational challenges, 

as training and executing ML models on such data can demand extensive resources. With an 

increasing number of features, model complexity escalates, resulting in prolonged training 

times, higher memory needs, and a heightened possibility of overfitting. This is particularly 

relevant in domains such as image analysis, sensor data, and text processing, where datasets 

often contain thousands of variables, making model optimisation and hyperparameter tuning 

computationally expensive (Guyon and Elisseeff, 2003). Utilising FS to reduce dimensionality 
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can alleviate these problems by decreasing computational expenses while preserving crucial 

predictive information, ultimately enhancing model efficiency and scalability.  

This chapter aims to provide a framework for enhancing the performance and 

interpretability of ML models using correlation and clustering-based FS techniques. These 

methods support the development of AI-driven tools that are accurate, transparent, and 

adaptable for complex, real-world applications.   

4.1 Methodology: 

This section introduces a structured and systematic approach to FS techniques developed to 

enhance the performance and interpretability of ML models. Implemented using Python 

3.9.13 and relevant scientific libraries, the techniques use correlation-based and clustering-

based strategies to identify the most informative features from datasets. 

The process involved implementing the methodology on two carefully curated 

subsets of the original dataset and an external dataset for validation. These datasets captured 

different data dimensions, such as demographic variability and MRI imaging-derived features, 

facilitating a robust evaluation of the FS techniques across multiple datasets.  

Multiple ML and DL models were employed to validate the effectiveness of the 

selected features. This approach enabled the comparison of FS impact across a spectrum of 

model complexities commonly used in predictive data analysis. Metrics were used to 

benchmark performance, including accuracy. 

Cross-validation strategies were integrated into the pipeline to mitigate overfitting 

and ensure the generalisability of the results. The reliability of the FS methods was rigorously 

assessed by systematically partitioning the datasets into training and test splits. 

The following sub-sections will explain each stage of the FS framework in detail, 

including the rationale behind the techniques and the observed impact on downstream model 

performance. 

This chapter presents a novel FS approach that enhances model accuracy while 

preserving interpretability, which is crucial in real-world settings. By identifying robust and 

significant features, the method supports the development of reliable predictive tools. 
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4.1.1 CGN-FS: Correlation-based Greedy Neighbourhood Feature Selection 

This section introduces the Correlation-based Greedy Neighbourhood FS (CGN-FS) 

methodology, a novel and systematic approach for identifying and retaining the most 

informative features from high-dimensional datasets. CGN-FS combines correlation analysis 

with threshold-based filtering and evaluation metrics to reduce redundancy, enhance model 

interpretability, and enhance predictive performance. A pseudo code for the algorithm is 

given in Algorithm 4- 1 table below. 

 

Algorithm 4- 1 CGN-FS: Correlation-based Greedy Neighbourhood Feature Selection 

Step 1: Correlation Matrix Generation 

The initial stage of CGN-FS involves constructing a correlation matrix to capture the linear 

relationships between all pairs of features within the dataset. Pearsons correlation coefficient 

is used for this purpose. It offers a well-established measure of linear association, ranging from 

-1 (perfect negative correlation) to +1 (perfect positive correlation). A coefficient close to zero 

indicates a minimal or no linear relationship. 

The resulting matrix is square, with rows and columns corresponding to the input 

features. Diagonal entries, representing the correlation of each feature with itself, are always 
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equal to 1 and are excluded from further analysis. This exclusion is essential for computational 

efficiency and relevance, as self-correlation does not provide helpful information for selection. 

The absolute values of the correlation coefficients are computed to standardise the 

interpretation of correlation strength. This ensures that strong positive and negative 

relationships are treated equally, enabling a holistic understanding of inter-feature 

interactions. Features that exhibit high absolute correlations with others are considered 

potentially irrelevant, setting the foundation for the subsequent selection steps. 

Step 2: Computation of Evaluation Metrics 

Once the absolute correlation matrix is generated, two key metrics—sum and count — are 

computed for each feature. The schematic of the Sum variable is presented in the Figure 4- 1 

below.  

 

Figure 4- 1 Sample of ‘SUM’ attribute calculation 

The Sum quantifies the total absolute correlation of a given feature with all other features. A 

high Sum indicates that a feature is generally well-connected within the feature space, often 

implying redundancy or high similarity with other variables. 
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The schematic of the count variable is presented in the Figure 4- 2 below. In this 

example, a user-defined threshold is applied, where a sample is considered valid if its value 

exceeds 0.60. 

 

Figure 4- 2 Sample of calculation of the ‘Count’ Attribute 

The count represents the number of features with which a given feature shares a strong 

correlation, defined by a user-specified threshold (e.g., > 0.75). Features exceeding this 

threshold are labelled Neighbours, highlighting their dense connectivity within the dataset. 

The methodology is evaluated across a spectrum of correlation thresholds to assess the 

robustness of CGN-FS. Starting from 0.50, thresholds are incremented by 0.05 until they reach 

1.00.  

These metrics serve complementary roles—Sum provides a global view of correlation 

strength, while count identifies local clusters of highly related features. 

Step 3: Sorting and Filtering Features 

After calculating the metrics, features are sorted in descending order based on their Count 

and Sum values. This prioritisation highlights features with strong and widespread 
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correlations. Each feature is assigned a flag “Keep” and its respective neighbours are assigned 

a flag “Remove”. The schematic of the CGN-FS methodology is presented in the Figure 4- 3 

below.  

 

Figure 4- 3 Schematic of the CGN-FS methodology 

Step 4: Final Feature Selection and Retrieval 

The final subset of features consists of those flagged as “Keep.” These represent the most 

informative features from the original dataset. This list forms the input for downstream 

predictive modelling tasks. The CGN-FS algorithm is flexible and iterative, enabling it to be 

reapplied to various datasets and making it appropriate for numerous applications. 
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Step 5: Evaluation Across Multiple Thresholds 

At each threshold level, subsets of features are selected and evaluated using multiple ML 

classifiers, such as Random Forests, SVM, and shallow neural networks. These classifiers 

represent diverse modelling strategies suitable for handling complex high-dimensional data. 

Each classifier is trained and evaluated using accuracy, precision, recall, and F1-score 

performance metrics. Additionally, the standard deviation of accuracy scores across repeated 

trials is computed to assess the stability of the selected feature subsets. The objective is to 

maximise accuracy while minimising variance, ensuring that selected features generalise well 

across different model configurations and do not introduce instability. 

In conclusion, the CGN-FS method provides a robust, transparent, and practical 

approach to reducing dimensionality in high-dimensional datasets. The method efficiently 

identifies the most relevant features by utilising correlation analysis and strategic thresholding 

while mitigating multicollinearity and redundancy. This approach enhances the performance 

and stability of ML models and enhances interpretability, an essential requirement in decision-

making contexts. Through its application, CGN-FS demonstrates potential in enhancing model 

efficiency and reliability in complex, high-dimensional tasks, ultimately contributing to 

accurate predictions and informed decision-making across diverse domains. 

4.1.2 RCH-FSC: Region and Clustering-based Heuristic Feature Selection with Clustering 

Analysis 

This section presents the Region and Clustering-based Heuristic Feature Selection with 

Clustering Analysis (RCH-FSC), an advanced technique designed to address the challenges of 

high-dimensional feature spaces. RCH-FSC offers a structured, data-driven method that 

combines correlation analysis with clustering techniques to identify a compact, interpretable 

subset of representative features. The primary goal of this technique is to enhance the 

efficiency, accuracy, and interpretability of downstream predictive models without 

compromising essential information. A pseudo code for the algorithm is given in Algorithm 4- 

2 table below.  
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Algorithm 4- 2 RCH-FSC: Region and Clustering-based Heuristic Feature Selection with Clustering Analysis 

Step 1: Input and Initial Setup 

The RCH-FSC process begins with a high-dimensional input dataset, typically comprising 

numerous features. These features often exhibit complex interdependencies, warranting a 

systematic approach to reduce dimensionality while preserving essential information.  

Step 2: Correlation Matrix Generation 

The first analytical step involves generating a correlation matrix to capture the pairwise 

relationships among all features. Pearsons correlation coefficient measures the linear 

dependency between features. As with CGN-FS, the diagonal elements of this matrix, 

representing self-correlations, are excluded, given their lack of contribution to inter-feature 

relationship analysis. 

To facilitate uniform assessment, the absolute values of correlation coefficients are 

calculated, ensuring that strong positive and negative correlations are treated equivalently. 

This enables a comprehensive understanding of redundancy and similarity among features. 

Step 3: Correlation Distance Calculation and Normalisation 

Next, the absolute correlation matrix is transformed into a correlation distance matrix, which 

quantifies dissimilarity between features. This conversion is essential for the subsequent 
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clustering process, as clustering algorithms generally operate on distance metrics rather than 

similarity measures.  

The distance matrix is normalised to prevent any individual or cluster of features from 

disproportionately influencing the outcome. This standardisation step ensures that all 

features contribute equitably to the clustering process and promote balanced cluster 

formation. 

Step 4: Dimensionality Reduction via Principal Coordinate Analysis 

Following normalisation, the correlation distance data undergoes Principal Coordinate 

Analysis (PCoA), a technique that projects high-dimensional data into a lower-dimensional 

space. This step preserves the relative distances between features, thereby maintaining the 

integrity of feature relationships while making them tractable for visualisation and clustering. 

The dimensionality reduction enhances the clarity of inter-feature patterns, preparing 

the data for robust clustering by highlighting the underlying structure and separability. 

Step 5: K-medoids Clustering and Feature Selection 

With the lower-dimensional representation of features, the K-medoid clustering algorithm is 

applied to group similar features based on their proximity in the transformed space. In 

contrast to K-means, K-medoids select actual data points as cluster centres (medoids), offering 

greater resilience to outliers and noise, which are common attributes in high-dimensional 

datasets. 

• The optimal number of clusters is determined using techniques such as the elbow 

method and silhouette score analysis: 

• The elbow method identifies the point at which increasing the number of clusters 

yields diminishing improvements in cluster cohesion. 

• The silhouette score assesses cluster consistency, with higher scores indicating better-

defined groupings. 

The medoid, the most central and representative feature, is selected for each cluster formed. 

These medoids constitute the final subset of features, encapsulating the diversity of the whole 

dataset while reducing redundancy. 
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Step 6: Final feature subset 

The selected medoids represent the most informative and distinct features within the original 

dataset. This approach significantly reduces dimensionality while preserving, and in some 

cases enhancing, the predictive power of the models. The resulting feature subset enhances 

computational efficiency and facilitates model interpretability. 

In summary, the RCH-FSC methodology introduces a robust, clustering-based heuristic 

approach to FS which is presented in Figure 4- 4 below. 

 

Figure 4- 4 Schematic diagram of RCH-FSC 

The method provides a principled means of reducing feature space in high-

dimensional neuroimaging datasets by integrating correlation analysis, distance 

normalisation, dimensionality reduction, and K-medoid clustering. The selected 

representative features enable efficient modelling, enhanced interpretability, and reliable 

performance, key considerations for ML applications. 

4.2 Results and Discussions: 

4.2.1 Quantitative Analysis:  

In this section, the quantitative results obtained are discussed by applying the proposed 

techniques to the AD and Arrhythmia datasets. Although validated on these datasets, the 
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proposed methods are generalisable and suitable for application across other domains with 

high-dimensional data. 

Feature selection was performed on two AD datasets, one comprising 401 features 

(Dataset 1) and the other 265 features (Dataset 2). To ensure robustness, external validation 

was carried out using the Arrhythmia dataset. The CGN-FS method was further validated using 

the ReliefF algorithm, demonstrating consistency and reliability across diverse datasets. 

CGN-FS Method: 

The developed models were evaluated using repeated 10-fold stratified cross-validation 

across thresholds from 0.1 to 0.95 and presented in Figure 4- 5 below.  

Three classifiers were evaluated using the AD Dataset 1 with 401 features for FS. 

Logistic Regression achieved an accuracy of 88.91% ± 3.03, while the SVM classifier reached 

87.66% ± 2.70. The Shallow NN outperformed both, achieving the highest accuracy of 97.29% 

± 0.94, demonstrating its effectiveness on this feature set. Of the three, the Shallow NN was 

the most accurate and consistent, likely due to its ability to capture complex, non-linear 

patterns within the data. In contrast, though comparable, Logistic Regression and SVM 

showed significant variability and lower performance. However, the increased interpretability 

of these traditional models, particularly Logistic Regression, could still make them valuable in 

scenarios where transparency is crucial. 

 

Figure 4- 5 Accuracy plot for CGN-FS 
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Using the AD Dataset 2 with 265 features, three classifiers were assessed. Logistic 

Regression achieved an accuracy of 91.06% ± 1.76, while the SVM classifier performed slightly 

lower at 90.66% ± 1.83. The Shallow Neural Network again showed enhanced performance 

with an accuracy of 92.49% ± 0.95. Although the margin was narrower than that of dataset 2, 

the neural network remained the most accurate and consistent model, benefiting from its 

ability to learn complex patterns. Nonetheless, Logistic Regression offered strong 

performance with interpretability, making it a competitive choice for applications requiring 

model transparency.  

The summary of the results obtained using the CGN-FS methodology, validated on 

different datasets along with their respective accuracies, is presented in Table 4- 1 below. 

Table 4- 1 Performance summary of CGN-FS methodologies and their respective accuracy 

Method Data 
Number of 
Features 

Model 
Mean 
Accuracy 

ReliefF 

CGN-FS 

AD Dataset 1 (401 
features) 

182 
Logistic 
Regression 

88.91 ± 
3.03 

90.30 

297 SVM Classifier  
87.66 ± 
2.70 

76.72 

217 
Shallow Neural 
network 

97.29 ± 
0.94 

- 

AD Dataset 2 (265 
features) 

95 
Logistic 
Regression 

91.06 ± 
1.76 

90.40 

95 SVM Classifier  
90.66 ± 
1.83 

78.06 

67 
Shallow Neural 
network 

92.49 ± 
0.95 

- 

Arrhythmia 
Dataset  

101 
Logistic 
Regression 

68.57 ± 
3.87 

70.58 

101 SVM Classifier  
67.26 ± 
2.70 

73.91 

200 
Shallow Neural 
network 

92.10 ± 
2.77 

- 

 

On the Arrhythmia dataset, Logistic Regression achieved an accuracy of 68.57% ± 

3.87, while the SVM classifier followed closely with 67.26% ± 2.70. The Shallow NN 

significantly outperformed both, achieving 92.10% ± 2.77. Notably, the NN utilised 200 
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features—nearly double the number used by the traditional classifiers—highlighting its ability 

to utilise higher-dimensional representations effectively. While this resulted in a substantial 

performance boost, it also comes with increased computational cost and reduced 

interpretability, essential considerations for deployment in real-world settings.  

The ReliefF method was also implemented for comparison using 95 features and 20 

random neighbours. Using logistic regression, the ReliefF approach achieved an accuracy of 

90%, demonstrating that the CGN-FS methodology provided enhanced FS and model 

performance. 

RCH-FSC method:  

Two distinct AD/CN datasets were evaluated using the clustering-based FS method for RCH-

FSC. To determine the number of clusters, the elbow method and silhouette score were 

utilised, and their results are presented in Figure 4- 6 below. The first dataset, containing 401 

features, yielded four optimal features: rh_paracentral_area, lh_middletemporal_meancurv, 

rh_parsorbitalis_volume, and rh_pericalcarine_thickness. SVM on this feature set achieved 

the best accuracy of 77.42%, with a standard deviation of 0.80.  

 

Figure 4- 6 Number of Cluster Analysis 

In contrast, the second dataset, with 265 features, identified four key features: 

lh_bankssts_thickness, lh_pericalcarine_thickness, rh_parsorbitalis_area, and 

lh_cuneus_volume. Logistic regression performed best on these four features, achieving an 

accuracy of 80.41% and a standard deviation of 1.6.  
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The summary of the results obtained using the RCH-FSC methodology, validated on 

different datasets along with their respective accuracies, is presented in Table 4- 2 below. 

Table 4- 2 Performance summary of RCH-FSC methodologies and their respective accuracy 

Method Data 
Number of 
Features 

Model 
Mean 
Accuracy 

RCH-
FSC 

AD Dataset 1 (401 
features) 

4 

Logistic Regression 76.92 ± 0.60 

SVM Classifier  77.42 ± 0.80 

Shallow Neural 
network 

76.94 ± 0.16  

AD Dataset 2 (265 
Features) 

4 

Logistic Regression 80.41 ± 1.60 

SVM Classifier 80.10 ± 1.90 

Shallow Neural 
network 

78.42 ± 0.42 

Arrhythmia Dataset  17 

Logistic Regression 68.82 ± 8.04 

SVM Classifier 73.45 ± 5.30 

Shallow Neural 
network 

71.36 ± 2.01 

 

For external validation, the Arrhythmia dataset, with 279 features, identified 17 key 

features. SVM performed best on these features, achieving an accuracy of 73.45% and a 

standard deviation of 5.30.  

In both cases, the FS methodology demonstrated its capacity to significantly reduce 

the number of features while maintaining high model accuracy. These results underscore the 

robustness of the selected feature sets in differentiating between AD and CN classes, 

particularly in comparison to models trained on random or complete feature sets. 

4.2.2  Discussion 

This research explored and compared two distinct FS methodologies, CGN-FS and RCH-FSC, 

validated on internal (AD datasets) and external (Arrhythmia dataset) data. The objective was 

to assess the effectiveness of each method in minimising dimensionality while maintaining or 

enhancing model performance and interpretability, a factor that is particularly paramount 

when managing high-dimensional datasets.  
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The CGN-FS method demonstrated strong performance across all datasets and 

classifiers. Applied to the AD Dataset 1 (401 features), CGN-FS significantly reduced the 

feature space while maintaining high classification accuracy. Notably, the Shallow NN 

achieved 97.29% ± 0.94 accuracy using 217 selected features, outperforming Logistic 

Regression (88.91% ± 3.03) and the SVM classifier (87.66% ± 2.70). This trend continued with 

the 265-feature AD Dataset 2, where the NN again showed the highest performance (92.49% 

± 0.95), though the performance gap between classifiers narrowed. The consistency of the 

deep learning model results in a relatively low standard deviation in both cases supports its 

robustness and suitability for complex, non-linear patterns common in real-time data. 

However, this performance comes at the cost of interpretability and computational 

complexity, particularly when the number of retained features is considerably higher than for 

traditional classifiers. 

The CGN-FS method was further validated through the ReliefF algorithm. Across 

datasets, ReliefF-supported feature subsets showed slightly lower performance, suggesting 

that CGN-FS captured strongly predictive features and managed redundancy effectively. For 

instance, in AD Dataset 1, ReliefF with Logistic Regression yielded an accuracy of 90.30%, while 

CGN-FS yielded a slightly lower 88.91%, though the difference was not substantial. 

Interestingly, in some cases, ReliefF produced comparable performance (e.g., AD Dataset 2 

with Logistic Regression at 90.40%), reinforcing the reliability of both techniques but slightly 

favouring CGN-FS for nuanced real-world datasets. 

The external validation on the Arrhythmia dataset added an essential dimension to 

this analysis. Using CGN-FS, the Shallow NN achieved an impressive 92.10% ± 2.77 accuracy 

using 200 features—nearly double the number used by Logistic Regression and SVM (each 

using 101 features). This result underscores the capacity of the NN to harness high-

dimensional representations effectively. However, the increased feature count also brings 

potential overfitting risks and interpretability challenges, which should be cautiously 

addressed in real-world applications. Meanwhile, Logistic Regression and SVM, while less 

accurate (68.57% and 67.26% respectively), offered interpretable models and required 

significantly fewer features, which could be preferable in resource-constrained or regulatory-

sensitive environments. 



 

   

 

©University of Reading 2025      Page 156 

In contrast, the RCH-FSC method took a fundamentally different approach by 

identifying a compact and highly representative feature subset using clustering. This method 

reduced AD datasets to four features while achieving reasonable classification accuracy. On 

AD Dataset 1, SVM achieved the highest accuracy (77.42% ± 0.80), followed closely by the 

Shallow NN and Logistic Regression. In Dataset 2, Logistic Regression performed best (80.41% 

± 1.60), slightly outperforming SVM and NN. Although the absolute accuracies were lower 

than those achieved through CGN-FS, the significant reduction in feature count, down to 

approximately 1% of the original dimensionality, highlights the strength of RCH-FSC in 

generating lightweight, interpretable models. This is particularly important where reducing 

complexity can lead to practical and explainable AI tools. 

The Arrhythmia dataset, used for external validation of RCH-FSC, further 

demonstrated the utility of this clustering-based approach. With only 17 selected features, 

SVM achieved the highest accuracy (73.45% ± 5.30), surpassing both Logistic Regression 

(68.82% ± 8.04) and Shallow NN (71.36% ± 2.01). Despite a moderate drop in accuracy 

compared to CGN-FS, RCH-FSC still provided strong generalisability, showing that it can 

effectively reduce dimensionality without a significant loss in performance. Additionally, the 

interpretable nature of RCH-FSC-selected features (e.g., specific brain regions) could make this 

method particularly appealing for applications that require in depth insights or logical 

reasoning. 

Comparatively, CGN-FS produces high-performing models by maintaining features, 

particularly when model performance is the priority. Meanwhile, RCH-FSC prioritises 

compactness and interpretability, showing strength when the goal is to identify a small set of 

meaningful features or when computational efficiency is essential. Together, these results 

address the trade-off between performance and interpretability, where the specific demands 

of the critical task should guide the choice of FS method. CGN-FS combined with a Shallow NN 

is most effective for predictive accuracy. However, for model simplicity and transparency, 

which are crucial in real-world deployment, RCH-FSC offers a balanced and explainable 

solution. 

Comparison with recent feature selection methods 
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Recent research on feature selection has been predominantly characterised by approaches 

driven by deep learning, such as attention-enhanced Convolutional Neural Networks (CNNs), 

Vision Transformers, hybrid deep-feature pipelines, sparse or embedded methods, and a wide 

range of meta-heuristic optimisation strategies. These methods have shown improvements, 

especially when implemented on extensive MRI image datasets where attention mechanisms 

or global token interactions can enhance representation learning. Hybrid pipelines that 

combine deep features with classical FS (e.g., LASSO, PSO, WOA) remain favourable because 

of their flexibility and generally robust performance. However, despite their strengths, many 

of these techniques rely on intensive computation, large sample sizes, unstable attention 

mechanisms, or heuristic search procedures that can limit interpretability, reproducibility, and 

applicability to smaller ROI-based MRI datasets. The following Table 4- 3 summarises such 

examples in contrast to the proposed FS techniques. 

Table 4- 3 Comparison with Recent Feature Selection Methods 

Method 
category 

Recent FS 
approaches 

Strengths Limitations How CGN-FS / RCH-FSC 
improve on this 

Attention-based 
Deep FS 

3D CNN + 
attention, ROI-wise 
3D-ViT approaches. 
(Saoud & 
AlMarzouqi, 2024; 
Zhou et al., 2025) 

Learns task-specific 
importance, 
highlights image 
regions, often 
improves accuracy. 

Requires relatively large 
data, attention maps can 
be unstable or hard to 
interpret as a global 
feature ranking. 

CGN-FS/RCH-FSC are 
model-agnostic and 
produce stable, global 
smaller MRI-tabular 
datasets. 

Transformer-
derived / ViT 
methods 

Vision-Transformer 
and hybrid 
ViT+CNN models 
for MRI. 
(Mahmud Joy et al., 
2025; Z. Zhao et al., 
2024) 

Capture long-
range/global spatial 
relationships in 
images; strong 
performance on large 
image sets. 

High compute; attention 
≠ formal feature 
selection; not directly 
suited to ROI-tabular 
features. 

FS operates on 
ROI/tabular features 
(lightweight) and yields 
interpretable subsets 
without heavy compute. 

Embedded / 
Sparse methods 
(LASSO, sparse 
AE) 

Sparse 
autoencoders / 
stacked sparse 
AEs. 
(Alorf & Khan, 
2022; Helaly et al., 
2021) 

Built-in 
regularisation; 
directly enforces 
sparsity; simple to 
implement. 

Sensitive to 
hyperparameters; may be 
instability across folds; 
not necessarily 
redundancy-aware (group 
correlated features). 

CGN-FS reduces 
correlated groups and 
provides more 
reproducible ranking; 
RCH-FSC yields ultra-
compact interpretable 
sets (useful when 1–4 
ROI features are 
needed). 

Traditional filter 
/ wrapper 
(ReliefF, mRMR, 
RFE) 

ReliefF and mRMR 
hybrid CNN. 
(Eroglu et al., 2022; 
Sadiq et al., 2021a)  

Fast, explainable, 
widely used; works 
well as a first filter. 

Struggle with very high-
dimensional / highly 
correlated data; ignore 
higher-order interactions. 

CGN-FS addresses 
redundancy and 
neighbourhood 
structure; RCH-FSC 

provides cluster-level 
selection (reduces 
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Method 
category 

Recent FS 
approaches Strengths Limitations 

How CGN-FS / RCH-FSC 
improve on this 
correlated ROI 
duplication). 

Metaheuristic 
optimisation 
(WOA/PSO/GA) 

WOA, PSO, GA for 
feature selection in 
AD pipelines. 
(Cao et al., 2024; S. 
Kaur et al., 2022; 
Mohammad & Al 
Ahmadi, 2023) 

Robust global search; 
can find small high-
accuracy subsets 
from huge feature 
pools. 

Often heuristic, heavy 
compute, less 
interpretable why 
features chosen; 
potential overfitting. 

CGN-FS / RCH-FSC 
target interpretability/ 
stability first (not pure 
search), validated across 
external dataset 
(Arrhythmia) to reduce 
overfitting risk. 

 

As the above comparison shows, CGN-FS and RCH-FSC directly target several 

limitations common to recent deep and hybrid FS approaches. Instead of relying on attention 

weights, image-based token structures, or a meta-heuristic search, both proposed methods 

operate as model-agnostic, prioritise stability, redundancy-handling, and interpretability. 

CGN-FS explicitly incorporates correlation and neighbourhood information, producing 

consistent feature rankings even when datasets are small or highly structured, where 

transformers or attention-based models typically struggle. RCH-FSC complements this by 

producing extremely compact, clinically interpretable feature subsets without sacrificing 

generalisability, as demonstrated through external validation on the Arrhythmia dataset. 

Together, these two methods address the performance–interpretability trade-offs present in 

many of the recent research studies and offer a lightweight, transparent alternative that is 

consistent  with real-world clinical deployment and the nature of MRI-derived tabular data. 

4.3 Summary of the Key Findings 

In this study, two straightforward FS methods—correlation-based and clustering-based—

were implemented and validated on the internal AD/CN dataset and the arrhythmia dataset 

for external validation. These methods aim to enhance model performance by reducing the 

feature space while maintaining or improving accuracy and interpretability. 

The correlation-based method selects features with low inter-feature correlation, 

ensuring that irrelevant or highly correlated features are excluded. This process reduces the 

feature set, streamlining the modelling process without compromising and often improving 
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accuracy. The correlation-based approach outperformed the ReliefF method, demonstrating 

increased robustness and accuracy in both datasets. Reducing the number of features also 

enhanced the interpretability of the model, providing clearer insights into the relationship 

between the selected variables and their impact on classification. 

The clustering-based method was equally effective in selecting a reduced set of 

relevant features by analysing the pattern of data points in a 2D space and determining cluster 

centroids based on their distances. This method successfully identified key features, 

significantly reducing dimensionality without significant trade-offs in accuracy. For instance, 

using the arrhythmia dataset, this approach reduced the feature space to 15 features while 

maintaining accuracy within a 1.5% margin compared to the complete feature set. This 

highlights the capability of the algorithm to capture essential information for classification 

while improving computational efficiency and model interpretability. 

In conclusion, applying correlation-based and clustering-based FS methods 

significantly enhanced model performance, accuracy, and interpretability across the datasets. 

The correlation-based approach effectively reduced the feature set while maintaining or 

improving accuracy, particularly in datasets where features were highly correlated. 

Meanwhile, the clustering-based approach provided a compact and efficient feature set that 

captured the core patterns in the data, thereby improving model performance with minimal 

trade-offs. 

These methods offer a powerful toolkit for developing efficient ML models, 

particularly in critical domains where high-dimensional datasets are standard. Streamlining 

features while retaining important information enhances the practicality of these models in 

real-world applications. However, attention must be given to the specific characteristics of 

each dataset to ensure that the selected method aligns with the underlying data structure.  

As FS techniques evolve, integrating these methods into broader ML frameworks 

holds promise for optimising models across various domains, leading to robust, interpretable, 

and efficient solutions in data-driven decision-making. 



 

   

 

©University of Reading 2025      Page 160 

4.3.1 Advantages and Challenges of the proposed techniques 

FS methods demonstrated increased accuracy and robustness compared to existing methods 

such as ReliefF.  

This is particularly notable in the AD/CN dataset, where feature reduction through 

correlation analysis enhanced model performance without sacrificing accuracy. These 

methods significantly reduce the number of input features. For example, the clustering 

approach selected only 15 features for the arrhythmia dataset, and the correlation method 

selected 95 features for AD/CN, making the models efficient and faster to train. 

Reducing feature space contributes to interpretability. Models trained on fewer but 

relevant features provide clearer insights into the relationships between the input data and 

the classification outcomes. 

The successful application of these techniques to two distinct datasets highlights the 

generalisability of the methods. This indicates potential for use in other high-dimensional 

medical datasets, further broadening the scope of these methodologies. 

While the correlation and clustering methods are effective, their performance is still 

sensitive to the underlying characteristics of the dataset. For instance, the correlation method 

might underperform if the features are not strongly correlated or have complex 

interdependencies, as seen in the arrhythmia dataset, where NN performed than logistic 

regression. 

In some scenarios, these methods may not drastically reduce dimensionality, 

particularly if the dataset has a high degree of feature variability, as observed in the 

arrhythmia dataset, where the final number of features remained relatively high after 

clustering (15 features). 

4.3.2 Clinical Relevance 

The research has significant clinical implications, as the proposed techniques have been 

validated on the AD dataset, particularly in the early diagnosis and treatment monitoring of 

AD. By applying advanced FS techniques such as the correlation-based CGN-FS and clustering-

based RCH-FSC methods, the model identifies key biomarkers from high-dimensional MRI 

data that contribute to accurate AD/CN classification. The reduced feature sets, which focus 
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on specific brain regions (such as the entorhinal cortex and hippocampus), are highly relevant 

in detecting early cognitive decline and tracking disease progression.  

Moreover, these methods enhance the interpretability of ML models, enabling 

clinicians and researchers to understand the relationships between selected brain structures 

and AD. This transparency is critical in medical decision-making, as it enables clinicians to base 

their diagnoses on interpretable, biologically meaningful features rather than black-box 

models. The external validation using the arrhythmia dataset further underscores the 

potential for these methodologies to be generalised and applied to other medical domains, 

improving diagnostic accuracy in areas such as cardiovascular disease. 

By streamlining the number of features, these methods also pave the way for 

efficient and cost-effective diagnostic tools. Reducing the computational burden without 

sacrificing accuracy could lead to faster, real-time clinical decision support systems, helping 

practitioners in hospitals and clinics. 

4.4.3 Future Work 

While this study demonstrates the effectiveness of correlation and clustering FS methods, 

several avenues remain open for future exploration: 

1) Integration with Longitudinal Data: A logical next step would be integrating longitudinal 

data into the model. By tracking over time, FS methods could identify patterns of 

disease progression, enabling predictive modelling of when symptoms might emerge 

or worsen. 

2) Cross-Domain Application: The successful validation of these FS methods on the 

arrhythmia dataset underscores their potential applicability across various domains. 

Future work could test these methods on other high-dimensional datasets, such as 

cancer genomics, cardiovascular imaging, or wearable health data, to further validate 

their effectiveness. 

3) Explainability and Interpretability: To enhance transparency, further enhancement of 

explainability techniques could be integrated with these FS methods. For instance, 

applying XAI methods such as SHAP or SOBOL could offer deeper insights into why 

certain features are selected and how they influence model predictions. This would 

further boost trust in AI models. 
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4) Model Generalisation and Transfer Learning: Investigating how these models 

generalise across different datasets and populations is another key area for future 

work. Utilising transfer learning techniques could help adapt models trained on large 

datasets to smaller, less well-represented datasets, enhancing their applicability in 

under-resourced settings. 

In summary, its potential lies in enhancing accuracy and its flexibility for adaptation across 

other domains. Future research should focus on expanding the capabilities of the model, 

enhancing its explainability, and integrating it into real-world applications for broader impact. 

  



 

   

 

©University of Reading 2025      Page 163 

5 Sensitivity Analysis for Feature Importance in Predicting 

Alzheimer’s Disease 

This chapter explores XAI frameworks that enhance the transparency and trustworthiness of 

ML models applied to high-dimensional datasets. As AI is increasingly embedded in critical 

workflows, understanding how input features influence model predictions is essential, 

particularly in high-stakes domains where decision reliability is crucial. XAI frameworks utilise 

SA techniques enabling the interpretation of complex DL models by quantifying the effect of 

individual input variables on model output, thus contributing to the development of 

explainable AI systems for real-world applications (Razavi et al., 2021). 

Three key motivations underpin the application of XAI in the critical domains. Firstly, 

XAI directly addresses the black-box nature of modern ML and DL models, which often lack 

transparency despite their high performance (Bloch and Friedrich, 2022). In real-world 

settings, the opacity of such models can limit trust and adoption. SA techniques, such as input 

perturbation, gradient-based saliency maps, and layer-wise relevance propagation, reveal 

how and why models make specific predictions by attributing importance to input features. 

This interpretability is essential for experts who must understand the rationale behind AI-

assisted decisions, particularly in high-stakes scenarios where clarity and traceability of 

decisions are critical. 

Secondly, XAI plays a dual role in enhancing domain relevance and validating the 

acceptability of the decision-making process by the model. It identifies which input features 

significantly influence classification outcomes and ensures they align with known, 

theoretically or empirically relevant patterns in the dataset. This alignment ensures that 

predictions are both statistically robust and practically meaningful. The approach becomes 

particularly vital when models are applied to rare, edge-case, or low-representation scenarios, 

where early and accurate identification supports timely actions and reliable decision-making. 

Furthermore, sensitivity-driven insights can guide the discovery of novel, underexplored 

feature interactions, advancing research in complex, high-dimensional datasets.  

Lastly, SA techniques employed provide a mechanism for model refinement and 

robustness assessment. By revealing the features on which the model relies, researchers can 
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identify potential overfitting to noise in the dataset. This approach facilitates iterative data 

preprocessing, feature engineering, and model design improvements. Moreover, SA methods 

help evaluate the consistency of model behaviour across different data subgroups, ensuring 

generalisability and fairness, crucial attributes for real-world adoption. 

For this research, SHAP and Sobol global sensitivity analysis methods were chosen 

over alternatives such as LIME, Grad-CAM, Integrated Gradients, and permutation-based 

importance due to their robustness and precision for high-dimensional MRI-derived datasets. 

Local methods such as LIME and Grad-CAM struggle with the highly correlated, non-spatial 

tabular MRI features utilised in Alzheimer’s disease research. Integrated Gradients and 

permutation methods frequently fail to capture nonlinear interactions or score inconsistently 

when feature distributions are imbalanced. Conversely, SHAP provides theoretically resilient, 

model-agnostic attributions, and Sobol provides robust global sensitivity measures capable of 

revealing complex interactions, thereby enhancing their reliability and clinical relevance for 

Alzheimer’s disease prediction tasks. 

This chapter utilise SA techniques tailored to high-dimensional datasets, highlighting 

their role in enhancing model interpretability, domain relevance, and reliability. These 

strategies contribute to creating AI systems that are powerful, accurate, transparent, 

explainable, and aligned with real-world deployment needs. 

5.1 Methodology: 

This section outlines the methodologies employed to conduct SA on a DNN model developed 

for a classification task on high-dimensional dataset. SA is critical for understanding the 

internal workings of ML models, particularly DL models, which are often considered black 

boxes. By scrutinising the impact of input features on predictions, SA facilitates the 

enhancement of model interpretability, a critical prerequisite for implementing AI models in 

high-stakes environment. 

In this research, multiple SA techniques have been evaluated to compute the 

importance of features derived from a DNN model classifying AD/CN. Features were obtained 

from MRI dataset, processed using FreeSurfer to extract various neuroimaging measures, such 

as cortical thickness, volume, and surface area.  
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The analysis uses local and global explanation methods, offering a comprehensive 

approach to feature relevance assessment. Local methods offer valuable insights into specific 

predictions, whereas global methods provide a comprehensive understanding of the 

behaviour of the model as a whole dataset. The techniques used in this study include SHAP 

and the SALib library, which implement global and local SA methods, such as Sobol, Morris, 

and FAST. These methods provide diverse perspectives on feature importance, enables a 

robust and reliable evaluation of which features most strongly influence model predictions. 

By performing SA on two datasets—Dataset 1 (401 features) and Dataset 2 (268 

features)—this study seeks to identify a consistent set of important features for developed 

DNN model. The findings across methods are compared to ensure the robustness and stability 

of the results, further advancing the interpretability and trustworthiness of the DNN model in 

practical applications. Ultimately, this methodology aims to provide valuable insights into the 

decision-making process and contribute to the development of transparent and explainable 

AI models. Figure 5- 1 shows the architecture of Model 1 for Dataset 1. 

 

Figure 5- 1 Architecture of Model 1 for dataset 1 
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The two datasets are input into two distinct DNN models. Each model is similarly 

structured but adapted to manage different input feature sets. DNN Model 1 has been trained 

utilising Dataset 1. In contrast, DNN Model 2 has been trained using Dataset 2, which 

encompasses fewer features but emphasises a refined subset that may still provide robust 

predictive capabilities.  

Each model uses an NN with multiple layers, including an input layer corresponding 

to the number of features, three hidden layers with ReLU activation functions to introduce 

non-linearity and an output layer with a sigmoid activation function for binary classification. 

The models are trained using the Adam optimiser and binary cross-entropy loss with accuracy 

as the evaluation metric. Figure 5- 2 shows the architecture of the DNN model 2 using Dataset 

2. 

 

Figure 5- 2 Architecture of the DNN model 2 using dataset 2 
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These DNN models have been utilised in both the SALib and SHAP methodologies to 

ensure consistency in the training of models. Both models are designed explicitly for respective 

datasets and are employed to predict the classification tasks of AD versus CN individuals. 

5.1.1 Methodology using SALib 

This section outlines the methodology used to perform SA for DNN models validated on the 

AD dataset. SA uses the SALib Python library, implementing three key methods: Sobol, Morris, 

and FAST. These techniques assess the importance of various features in the two respective 

datasets. The approach consists of four main steps: data preparation, augmented data 

generation, model training, and application of SA techniques. 

Step 1: Data Preparation and SA technique Initialisation. 

The first step in the methodology involves preparing the datasets for model training. The 

datasets consist of various features, each representing a distinct characteristic related to the 

structure of the brain. Dataset 1 contains 401 features, and Dataset 2 includes 268 features, 

a reduced subset derived from the original dataset. 

The training features and target labels for each dataset are defined, followed by scaling 

and normalisation to ensure the features are on a comparable scale for model input.  

Step 2: Augmented Data Generation in SALib Using Mean and Standard Deviation 

In the SALib framework, SA methods—namely, Sobol, Morris, and FAST—necessitate a 

precisely defined input space from which to sample to assess the influence of individual 

features on model outputs. When the input features are assumed to adhere to a normal 

distribution, the mean and standard deviation for each feature must be specified. Using these 

parameters and the defined distribution type, SALib generates a representative and 

augmented dataset by sampling from the specified distributions. Small perturbations, in the 

form of controlled noise, are then introduced to the original dataset to create varied samples 

that reflect plausible variations in the input space. 

These perturbations are method-specific: the Sobol method employs Monte Carlo 

sampling to estimate first-order, total-order, and interaction sensitivity indices; the Morris 

method generates multiple trajectories through the input space to identify both main effects 



 

   

 

©University of Reading 2025      Page 168 

and higher-order interactions; and the FAST technique applies Fourier analysis to decompose 

the variance in model output attributable to each input feature. This enhanced sampling 

strategy enables systematic exploration of input variability and its effect on model behaviour. 

By evaluating the response of the model across these variations, SALib quantifies the relative 

importance and sensitivity of each feature. Such analysis is particularly valuable in complex 

models, where understanding the contribution of individual features supports interpretability, 

model optimisation, and informed decision-making. 

Step 3. Sensitivity Analysis Using SALib 

Once the models are trained, a generated sample dataset (with perturbations) is utilised as 

input into the trained DNN models, making predictions based on the perturbed data. 

The SA techniques are applied to the predictions using the ‘analyse’ function from the 

SALib library; the analysis computes the feature importance scores for each feature based on 

the degree to which perturbations influence the output of the model. 

Multiple iterations of training, prediction, and SA are performed to account for the 

stochastic nature of DNN training (due to random initialisation of weights and biases). This 

approach ensures robust and reliable results by averaging across several runs to mitigate the 

effects of randomness. 

Step 4. Results Processing 

Once the analysis is complete, the output from the Sobol, Morris, and FAST methods is 

processed to identify the most important features of each method. The results from each 

method are compared to evaluate the consistency of feature importance across the different 

techniques. This comparison helps determine which features consistently influence AD 

prediction across various models and methods. Figure 5- 3 visualises the schematic flowchart 

for Sobol, Morris and FAST techniques. 
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Figure 5- 3 Schematic Flowchart for Sobol, Morris and FAST techniques 

5.1.2 Methodology using SHAP 

This section outlines the methodology used to perform Shapley value-based SA on the DNN 

models, as described in the previous section. In this approach, SHAP (SHapley Additive 

exPlanations) using the SHAP Python library is implemented to identify the most important 

features in predicting AD using two distinct datasets: Dataset 1 and Dataset 2. This 

methodology focuses on performing SA on DNN Model 1 and DNN Model 2 and extracting the 

relevant feature importance scores. Figure 5- 4 visualises the Schematic flowchart for SHAP 

technique. 
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Figure 5- 4 Schematic Flowchart for SHAP technique 

The DNN models are trained to utilise the respective datasets, and a SHAP analysis is 

performed to determine the feature importance scores. The procedure commences with the 

initialisation of the SHAP DeepExplainer function, which is specifically designed to elucidate 

the output generated by DNN models.  

Subsequently, the SHAP explainer is initialised, utilising the trained DNN model and 

the scaled training dataset. The SHAP DeepExplainer function computes the Shapley values, 

thereby quantifying the contribution of each feature to the predictions of the model. These 
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values represent the impact each feature has on the output of the model, enabling the 

identification of the most influential features. Features with higher Shapley values are 

considered important, as they significantly impact the output of the model. 

To accommodate the inherent randomness of the DNN training process—arising 

from factors such as random weight initialisation, mini-batch sampling, and stochastic 

optimisation—multiple iterations of training, prediction, and SHAP analysis are conducted. 

This approach ensures robust results that are not biased by arbitrary initialisations, with 

averaged outcomes yielding reliable feature importance scores. 

The output from the SHAP analysis is processed to identify the most important 

features of each dataset and model. These results are post-processed to identify which 

features consistently influence model predictions. The final feature importance scores could 

be visualised using SHAP plots, such as bar and summary plots, to represent the most 

influential features for the DNN model. 

5.2 Results and Discussion:  

5.2.1 Quantitative results: 

In this section, the quantitative results obtained are discussed by applying the proposed 

techniques to the AD datasets. Although validated on these datasets, the proposed methods 

are generalisable and suitable for application across other domains with high-dimensional 

data. 

This study developed two DNN models (Model 1 and Model 2) for detecting AD using 

two distinct datasets: dataset 1, containing 401 features, and Dataset 2, containing 265 

features. The explainability of these models was assessed through SA methods, specifically 

SHAP and SALib, which include Sobol, Morris, and FAST methods.  

The SA was performed using both SHAP and SALib methods. Each method was 

executed 500 times for Dataset 1 and 300 times for Dataset 2 to account for any fluctuations 

in the results. These methods provided feature importance scores, which were then analysed 

to determine the most essential features for AD detection. 
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Ranking of Features 

Each list was converted into a corresponding ranking pattern to compare the feature 

importance scores obtained from the different methods. The similarity between the rankings 

was determined by calculating the absolute difference between the rankings using the 

following equation: 

𝑎𝑏𝑠(𝐴 − 𝐵)

𝑆𝑁𝑆𝐹
 

If A ≤ SNSF or B ≤ SNSF                           - Eq. (1) 

Where: 

- (A) is the rank from Rank list A, 

- (B) is the rank from Rank list B, and 

- (SNSF) is the number of selected features specified. 

This equation calculates the relative discrepancy between the ranks of two lists, 

normalising by the number of features to facilitate comparison across different datasets. 

Utilising this methodology, the outcomes from the four techniques (SHAP, Sobol, Morris, and 

FAST) were evaluated. The average rank differences were computed to assess central 

tendency, thereby summarising the collective similarity across all methods.  

Similarity Analysis 

Upon conducting a comparative analysis, the SHAP and Sobol methodologies demonstrated a 

significant degree of similarity in the ranking of feature importance. The discrepancies in 

rankings between SHAP and Sobol were consistently minimal when contrasted with those 

observed between alternative methodologies. This observation culminated in the conclusion 

that these two methods yielded the most consistent and dependable results in identifying 

crucial features. To ascertain the robustness and reliability of the analysis, only the results 

garnered from SHAP and Sobol were selected for further scrutiny.  

The results of the similarity analysis, as shown in Figure 5- 5, demonstrate the 

comparison of ranking patterns across different methods for the 401 features dataset and 

indicate the high degree of consistency between SHAP and Sobol 
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Figure 5- 5 Similarity analysis for four different approaches and 401 features dataset 

Final Feature Importance Ranking 

To derive the final feature importance ranking, the results from SHAP and Sobol were 

combined using the Rank Position Method (reciprocal rank method) (Nuray & Can, 2006), as 

described in equation (2): 

𝑟(𝑑𝑗) =  
1

∑ 𝑗 
1

𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑑𝑖𝑗)

       - Eq. (2) 

This method computes a rank score for each feature based on its position across all 

retrieval systems, where (n) represents the total number of features. The resulting rank scores 

were used to sort the features in non-decreasing order, forming the final feature importance 

ranking. 
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The final rankings were then used to identify the top 20 most important features for 

AD detection. These features were selected based on their position in the final combined 

ranking from SHAP and Sobol. 

Feature Importance results in Tables 

The findings outlined in this section derive from proposed SA techniques utilising the AD 

dataset, which serves as the validation platform for the methods. Although the methods 

developed are domain-agnostic and adaptable across multiple disciplines, the AD dataset was 

explicitly chosen to exemplify the efficacy of the approach on a complex, high-dimensional 

dataset. 

Table 5- 1 lists the 20 most important features identified from Model 1, which was 

trained on Dataset 1 with 401 features. The table provides the feature names, their 

corresponding medical terminology, and references to relevant medical literature. These 

features are crucial in early AD detection, as indicated by their strong importance in the 

feature ranking analysis.  

Table 5- 1 Feature Importance for Dataset 1 

Feature Name Medical Names Medical Reference 

Left-Inf-Lat-Vent 
Temporal horn of left lateral 
ventricle 

Vernooij and van 
Buchem, 2020 

Right-Inf-Lat-Vent 
Temporal horn of right lateral 
ventricle 

Vernooij and van 
Buchem, 2020 

Left_Hippocampal_tail Hippocampal tail Zhao et al., 2019 

left_presubiculum Pre subiculum Carlesimo et al., 2015 

left_Whole_hippocampus Hippocampus Rao et al., 2022 

left_molecular_layer_HP Molecular Layer Hippocampus Scheff et al., 1996 

left_subiculum Subiculum Carlesimo et al., 2015 

right_Hippocampal_tail Hippocampal tail Zhao et al., 2019 

lh_bankssts_volume 
Banks of Superior Temporal 
Sulcus 

Sacchi et al., 2023 

lh_bankssts_thicknessstd 
Banks of Superior Temporal 
Sulcus 

Sacchi et al., 2023 

lh_parahippocampal_thickness Para Hippocampal Van Hoesen et al., 2000 

rh_paracentral_thicknessstd Paracentral Yang et al., 2019 

right_subiculum Subiculum Carlesimo et al., 2015 

rh_inferiorparietal_thickness Inferior Parietal Jacobs et al., 2012 

lh_transversetemporal_meancu
rv 

Transverse Temporal Peters et al., 2009 
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Left-Amygdala Amygdala Poulin et al., 2011 

left_hippocampal fissure Hippocampal Sulcus 
De Bastos-Leite et al., 
2006 

left_GC-ML-DG 
Granule Cell (GC) and 
Molecular Layer (ML) of the 
Dentate Gyrus (DG) 

Ohm, 2007 

Right-Amygdala Amygdala Poulin et al., 2011 

rh_inferiortemporal_volume Inferior Temporal Scheff et al., 2011 

 

Table 5- 2 presents the 20 most important features identified from Model 2, which 

was trained on Dataset 2 with 265 features. Interestingly, there is a 60% overlap between the 

features identified in Error! Reference source not found. and Error! Reference source not 

found., highlighting the consistency of these brain regions across distinct datasets and 

models. This overlap further reinforces the reliability of the proposed SA methods, 

demonstrating their ability to consistently identify the most informative features that drive 

accurate model predictions.  

Table 5- 2 Feature Importance for Dataset 2 

Feature Name Medical Names Medical Reference 

Left-Inf-Lat-Vent 
Temporal horn of left lateral 
ventricle 

Vernooij & van Buchem, 
2020 

Right-Inf-Lat-Vent 
Temporal horn of right lateral 
ventricle 

Vernooij and van 
Buchem, 2020 

right_Hippocampal_tail Hippocampal tail Zhao et al., 2019 

left_presubiculum Presubiculum Carlesimo et al., 2015 

left_subiculum Subiculum  Carlesimo et al., 2015 

left_Hippocampal_tail Hippocampal tail Zhao et al., 2019 

left_hippocampal-fissure Hippocampal Sulcus 
De Bastos-Leite et al., 
2006 

lh_parahippocampal_thickness Para Hippocampal Van Hoesen et al., 2000 

left_molecular_layer_HP 
Molecular Layer 
Hippocampus 

Scheff et al., 1996 

rh_entorhinal_thickness Entorhinal van Hoesen et al., 1991 

rh_rostralmiddlefrontal_thickness Rostral Middle Frontal Vasconcelos et al., 2014 

rh_inferiorparietal_thickness Inferior Parietal 
Greene and Killiany, 
2010  

left_Whole_hippocampus Hippocampus Rao et al., 2022 

lh_precuneus_thickness Precuneus Koch et al., 2022 

Left-Amygdala Amygdala Poulin et al., 2011 

Optic-Chiasm Optic-Chiasm Sadun & Bassi, 1990 
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Feature Name Medical Names Medical Reference 

Right-Pallidum Pallidum Miklossy, 2011 

rh_entorhinal_volume Entorhinal van Hoesen et al., 1991 

right_presubiculum Pre-Subiculum Carlesimo et al., 2015 

Left-Pallidum Pallidum Miklossy, 2011 

 

The comparison between the two tables reinforces the importance of specific brain 

regions, such as the hippocampus, amygdala, and various subiculum regions, in Alzheimer’s 

diagnosis. These findings are consistent with current medical literature that highlights the role 

of these structures in AD pathology. In conclusion, the SA demonstrated that the SHAP and 

Sobol methods yielded the most consistent feature importance rankings. 

5.2.2 Discussions:  

The present analysis focuses on improving the explainability of DNN classifiers by utilising 

various SA techniques. Several recent studies have investigated explainable deep learning 

approaches for Alzheimer’s Disease (AD) classification using MRI-derived features. AbdelAziz 

et al. (2024) proposed a hybrid SECNN-RF framework that combines a Squeeze-and-Excitation 

CNN with a Random Forest classifier, using attention weights and saliency maps to highlight 

important features. While their method achieves high classification accuracy, its 

interpretability is relatively coarse and primarily local, lacking global feature sensitivity 

analysis. Kang et al. (2023) integrated CNN feature extraction with an Explainable Boosting 

Machine to obtain interpretable rankings of brain regions. This approach provides glass-box 

interpretability, but the feature importance is derived from the boosting model rather than a 

direct sensitivity analysis of the DNN, potentially missing higher-order interactions among 

features.  

Table 5- 3 Comparison with recent SA techniques 

Study 
Model / 
Method 

Explainability / 
Feature Importance 

Limitation vs Proposed 
Ensemble Method 

AbdelAziz et al. 
(2024) 

SECNN + RF 
Saliency maps / 
attention 

Local SA only; no global 
sensitivity analysis 
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Study 
Model / 
Method 

Explainability / 
Feature Importance 

Limitation vs Proposed 
Ensemble Method 

Kang et al. (2023) CNN + EBM 
Feature ranking via 
boosting 

No direct DNN sensitivity 
analysis. 

(Jumaili & Sonuç, 
2025) 

Attention-CNN 
+ Grad-
CAM/LIME 

Local / instance-
level explanation 

Not global; no MRI feature 
ranking. 

(Junior et al., 2024) 
CNN + Grad-
CAM 

instance-level 
explanation 

Instance/local; no stability 
analysis. 

 

Other studies have focused on local or visual interpretability of deep networks.  

Jumaili and Sonuc (2025) deployed an attention-based CNN with Grad-CAM and LIME for 

instance-level explanations, while Junior et al., (2024) used Grad-CAM to generate instance-

level explanations for multi-stage AD classification. Although these methods highlight key 

regions in MRI images, they do not provide a systematic global ranking of tabular MRI features 

or assess feature stability across multiple model execution instances..  

In comparison, the proposed research applies a combination of SHAP and variance-

based sensitivity analysis methods (Sobol, Morris, FAST) to generate stable, global feature 

importance rankings for DNN classifiers trained on high-dimensional MRI datasets. This 

approach captures both main and interaction effects among features, is repeatable across 

execution instances , and is directly applicable to high-dimensional tabular MRI features, 

making it more robust and interpretable than prior methods. Notably, the resulting top-

ranked features are consistent across two distinct datasets, demonstrating the reliability and 

generalisability of the proposed methods. By providing a consensus-based ranking with 

iterative stability analysis, this framework surpasses prior approaches in interpretability and 

robustness, while remaining directly applicable to tabular MRI-derived features commonly 

used in clinical and research settings. 

5.3 Summary of the Key Findings 
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This chapter details the application of DNN models in critical domains, focusing on integrating 

SA techniques to assess the explainability of these models. The research used SHAP and SALib-

based Sobol, Morris, and FAST methods to comprehensively understand the importance of 

features in the given dataset. Two distinct DNN models processed datasets of different sizes, 

offering insights into how varying amounts of data influence model performance and 

explainability.  

The methodological approach employed in this study provides a significant 

contribution to the XAI field by developing advanced AI models and addressing the crucial 

challenge of model explainability. The research presented an integrated framework that 

combines DNN models with SA techniques to enhance the interpretability of complex models, 

which is often a challenge in DL. By utilising SHAP and SALib, this study has provided valuable 

insights into which features most significantly impact the predictive capabilities of DNN 

models. This approach sheds light on the factors that influence model outputs and provides a 

straightforward interpretation of the decision-making process of the AI model, which is critical 

in a high-stakes setting where transparency is essential. 

In addition to providing valuable insights into the interpretability of AI models, the 

study offers a comparative analysis of SHAP and SALib techniques, offering a comprehensive 

evaluation of their performance and suitability for feature importance assessment. By 

comparing these methods, this research provides an understanding of their strengths and 

weaknesses, guiding future researchers in selecting the most appropriate SA technique for 

their specific needs.  

Furthermore, this study bridges the gap between computer science and real-world 

deployment, demonstrating how AI methodologies can effectively address challenges that 

demand high levels of transparency and accountability in decision-making processes.  

In conclusion, this research presents a substantial contribution to advancing AI 

methodologies for high-dimensional data analysis, with a particular focus on improving model 

explainability and reliability. By integrating DNN with rigorous sensitivity analysis techniques, 

this work delivers a scalable and transparent framework for developing interpretable AI 

systems. The methods proposed not only optimise predictive performance but also address 

one of the most critical challenges in modern AI: balancing model accuracy with explainability. 
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While the experimental validation was conducted using Alzheimer’s Disease 

datasets, the approaches developed are broadly applicable across domains where data 

complexity, limited sample sizes, and decision accountability are critical. This research paves 

the way for future advancements in building trustworthy, generalisable, and transparent AI 

solutions suitable for real-world deployment. 

5.3.1 Clinical Relevance 

The sensitivity analysis techniques explored in this study—including SALib-based Sobol, 

Morris, FAST, and SHAP—offer significant computational insights into feature relevance for 

AD prediction using MRI scan data. These methodologies provide a robust, model-agnostic 

framework for identifying the most influential features in complex datasets, demonstrating 

how XAI methods can systematically improve the interpretability of DNN models. This 

combination of SA and DNN contributes to the growing need for transparent and trustworthy 

AI systems, particularly in domains where decisions must be explainable and verifiable. 

The analysis consistently highlighted several key brain structures across both 

datasets, including the hippocampus, subiculum, presubiculum, amygdala, and the temporal 

horns of the lateral ventricles. These regions are well-established in the literature as being 

involved in the progression of AD. For example, hippocampal atrophy is widely recognised as 

an early biomarker, supported by numerous neuroimaging studies (De Bastos-Leite et al., 

2006; Van Hoesen et al., 2000; W. Zhao et al., 2019). The identification of the subiculum and 

presubiculum aligns with Braak’s neuropathological staging, which places these regions 

among the earliest to exhibit tau pathology (C. Macedo et al., 2023). 

The inclusion of lateral ventricular structures—the left and right inferior lateral 

ventricles—further validates existing findings, as ventricular enlargement is often observed in 

neurodegenerative conditions and serves as an indirect indicator of tissue loss (Vernooij and 

van Buchem, 2020). Additional features such as the molecular layer of the hippocampus, 

hippocampal tail, and hippocampal fissure provide further anatomical precision, 

corroborating established volumetric studies (Scheff et al., 1996).  

In a clinical context, comprehending which brain regions exert the most significant 

influence in predicting AD can assist healthcare professionals in concentrating their diagnostic 

efforts on the most pertinent biomarkers. By identifying and prioritising these essential 
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features, clinicians can implement targeted interventions, enhancing diagnostic accuracy and 

early treatment efficacy.  

Furthermore, using DNN models in this study represents a significant advancement 

toward creating sophisticated and precise diagnostic tools for NDD. As AI advances, the 

potential for integrating complex datasets, including MRI scans, genetic information, and 

cognitive scores, is becoming increasingly paramount. The amalgamation of these data 

sources with rigorous analytical methodologies has the potential to enhance prediction 

accuracy and facilitate the development of personalised treatment strategies, which 

ultimately contribute to enhanced patient outcomes. 

5.3.2 Future Work 

Although the methodologies outlined in this study offer significant insights in XAI techniques, 

numerous promising avenues for future research may further refine and expand upon the 

obtained results here. 

1) Enhanced Model Interpretability: Although SHAP offers valuable interpretability for 

DNN models, further research could focus on enhancing the explainability of complex 

models. Various techniques could be explored to enhance transparency, such as 

incorporating attention mechanisms or layer-wise relevance propagation. Additionally, 

developing methods that quantify the contribution of individual neurons or layers in 

an NN could provide a deeper understanding of the inner workings of DNN models and 

offer experts insight into how the model arrives at its predictions. 

2) Model Optimisation: Although the current models are effective, there is room for 

optimisation. Future studies could explore hyperparameter tuning, transfer learning 

techniques or alternative NN architectures to enhance model performance, 

particularly for smaller datasets. Applying ensemble methods or hybrid models that 

combine multiple algorithms could enhance prediction accuracy and model 

robustness, particularly in cases with limited data. 

In conclusion, while this study makes significant strides in applying SA to deep learning 

models, several areas for future research could further enhance the performance of the model 

and applicability. By incorporating additional model interpretability techniques and model 

optimisations, the potential for AI-driven tools in practical settings continues to expand.  
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6. Transfer Learning for Predicting Cognitive Staging in 

Alzheimer's Disease  

This chapter focuses on developing strategies to improve classification performance in 

complex, high-dimensional datasets. It investigates the integration of transfer learning and 

autoencoder-based techniques to enhance predictive accuracy in scenarios where labelled 

data is limited.  

The chapter addresses two key challenges. First, it addresses the challenge of data 

scarcity by utilising knowledge from related, larger datasets through transfer learning, which 

improves model robustness and stability when training samples are limited. Second, it 

demonstrates the importance of learning compact, non-linear feature representations using 

autoencoders. This enables the models to extract meaningful, abstract patterns from high-

dimensional inputs that conventional algorithms often fail to capture, ultimately improving 

both accuracy and generalisability in challenging, real-world applications. 

By undertaking these initiatives, the chapter contributes to advancing the 

development of efficient DL solutions for complex, high-dimensional classification tasks. It 

highlights the potential of innovative, cutting-edge ML techniques—such as transfer learning 

and autoencoders—to improve model accuracy, generalisability, and robustness in scenarios 

where data is limited, noisy, or challenging to obtain. These methods offer scalable and 

adaptable solutions that are broadly applicable across domains where data scarcity presents 

a significant modelling challenge.  

6.1 Methodology 

This section introduces the proposed novel multi-stage algorithm that employs advanced ML 

methods such as autoencoders and TL. Utilising the advanced techniques could help in 

scenarios with limited data samples. To evaluate this methodology, the AD dataset has been 

utilised to enhance the accuracy and prediction of MMSE scores and different stages of AD 

using MCI data. The data are sourced from the ADNI dataset, which includes MRI images, 

demographic data, genetic details, and cognitive evaluations. The dataset consisted of MCI, 

LMCI, EMCI, and AD, which were employed in this research.  
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Python version 3.9.13 was used to develop the methodology, utilising its libraries for 

scientific computing and data analysis. Keras version 2.9, a high-level NN API, was employed 

for advanced ML models in TL and autoencoders. This was supported by TensorFlow version 

2.9.2 as a backend, enabling efficient computation and model deployment for NN 

development and fine-tuning. 

Figure 6- 1 illustrates the comprehensive approach to predicting and classifying 

MMSE scores and stages of AD. The process starts by training a regression model to predict 

the ages of patients diagnosed with MCI, EMCI, and LMCI. This regression model acts as a pre-

trained model for subsequent stages of the algorithm, facilitating knowledge transfer. The 

initial layer of the model is used to learn representation of the knowledge learned by the pre-

trained model, which captures generalised features necessary for pattern analysis within the 

MCI dataset. These layers capture important, broad-spectrum features across the three stages 

of MCI. 

Next, an autoencoder is trained using a combined input comprising data from MCI, 

EMCI, and LMCI alongside the knowledge extracted from the pre-trained regression model. 

Autoencoders are employed to identify the most essential features in the dataset, efficiently 

compressing the data to generate a reduced representation that preserves essential 

information. 

In the final phase, an AD dataset trains a regression model that predicts MMSE 

scores. This model uses the AD dataset and the features extracted by the autoencoder to 

predict the MMSE score. The predicted MMSE scores are subsequently employed to 

categorise the patients into two distinct stages of AD: mild and moderate cognitive 

impairment. This classification reflects the progression of cognitive decline in patients. The 

following sub-sections will comprehensively explain each phase to facilitate replication and 

documentation. 
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Figure 6- 1 Overall approach for using transfer learning and autoencoders to predict MMSE scores and Cognitive stages of AD 

Overall, this multi-stage algorithm uses autoencoders and TL to enhance the 

understanding and tracking of cognitive decline in AD patients. This is achieved by improving 

the accuracy of MMSE score prediction and AD stage classification. 

6.1.1 Regression analysis to predict the age of the MCI patients 

The initial step of the multi-stage algorithm involves designing and developing a regression 

model to estimate the age of patients with MCI. This model employs a feed-forward NN due 

to its ability to capture complex, non-linear relationships within the data. The regression 

neural network architecture discussed in this section is represented in Figure 6-2 below.  

The optimal number of hidden layers was determined using the GridSearchCV 

module from  scikit-learn, which systematically tests various configurations to find the best 
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model structure. Algorithm 6- 1 summarises the optimisation process. This procedure involves 

training the model on the MCI dataset with various input and output layers. Table 6- 1 

presents the Grid Search Results for an Age-Regression Model with 3-Fold cross-validation. 

Algorithm 6- 1 Algorithm for Grid Search for Regression Model 
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Table 6- 1 Grid Search Results for Age-Regression Model (3-Fold CV) 

Rank Layers Units Factor Dropout Mean MAE Std MAE 

1 3 0.5 0.3 52.76 1.1804 

2 2 0.5 0.3 54.04 2.9567 
3 3 0.6 0.3 54.27 0.8689 

4 4 0.5 0.2 54.8 1.9178 

5 4 0.6 0.2 55.12 1.6212 

6 2 0.6 0.2 55.87 1.1886 

7 2 0.6 0.3 55.88 1.4879 
8 2 0.5 0.2 55.92 2.2143 

9 3 0.6 0.2 56.45 2.6597 

10 3 0.5 0.2 58.08 1.062 
11 4 0.5 0.3 58.11 3.4402 

12 4 0.6 0.3 59.39 1.3468 

 

The best-performing configuration was the 3-layer network with a 0.5 reduction 

factor and 0.3 dropout. The resultant regression model design architecture from grid search 

is used to forecast the age of patients in the MCI dataset as shown in Figure 6- 2. The final 

design had an input layer with 401 neurones and a ReLU activation function; the number of 

neurones matches the number of the dataset features. Three hidden layers then follow the 

input layers. Every hidden layer employ ReLU for activation and includes a dropout layer with 

a 30% dropout rate. The initial hidden layer consists of 200 neurons, half the size of the 

previous layer. The next set of hidden layers has 100 neurons, and the last hidden layer 

contains 50 neurons. The ReLU activation function is used to introduce non-linearity and aid 

in identifying complex data patterns. A dropout rate of 0.3 was added after every hidden layer 

to enhance the generalisation of the model by reducing overfitting.  
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Figure 6- 2 Regression model to predict the Age of the MCI patients 

Before the output layer, a dense layer with 10 neurons was included to reduce the 

dimensionality of the features gradually. The output layer, consisting of 1 neuron with ReLU, 

was used to predict the age of the patients. The mean squared error loss function was utilised 

to train the model, which was further optimised using the RMSprop optimiser during fine-

tuning. To prevent overfitting and enable early stopping, a callback method was implemented 

with a tolerance of three epochs and a setback to the best weights. The model performance 

on new and unseen data was observed throughout the training process by dividing 30% of the 

data for validation across 1000 epochs. Following training, the model was evaluated on the 

test dataset, and its performance was assessed based on the MAE metric.  

6.1.2 Transfer Learning 

In the multi-stage algorithm, the following phase involves utilising the TL approach. The 

encoder section of a pre-trained model for predicting age was isolated and used as a feature 

extractor. The encoder, which includes the first layers of the model, is responsible for 

transforming the input data into a lower-dimensional, abstract representation that captures 

essential patterns and relevant features for the task. This step is vital for employing the 
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acquired features from a model pre-trained on a similar task, thus decreasing the need for 

extensive training data and computational resources.  

The extraction process included developing a new model, `encoder model`, with the 

original model as the input and a specific chosen layer from the initial layers as the output. By 

choosing this particular layer, the encoder can be sure to extract a sufficiently abstract and 

high-level feature representation. The number of layers of the encoder was decided based on 

the required abstraction level and task needs. 

To maintain the accuracy of the learnt representations and avoid any modifications 

to the encoder while fine-tuning, all layers within the `encoder model` were kept frozen. This 

was achieved by setting the `trainable` attribute of every layer to `False`. Keeping the layers 

frozen ensures that the encoder weights and biases stay consistent throughout training, 

preserving the robustness of the features extracted. This step is essential in TL, as it enables 

knowledge transfer between different domains, potentially enhancing performance and 

convergence speed in the new task despite having limited data. Using the pre-trained 

encoder, the model gains an advantage from the knowledge embedded into the original 

network, establishing a strong foundation for additional training and fine-tuning on the target 

dataset.  

6.1.3 Autoencoder: 

The next stage in the development process included designing and improving an autoencoder 

architecture that can learn and extract important features from the MCI dataset.  

Autoencoders were chosen over recent architectures such as Transformers due to 

their ability to learn compact, low-dimensional representations from limited, highly 

structured datasets. In contrast to Transformer-based models, which typically require large-

scale training datasets and significant computational resources, autoencoders provide stable, 

data-efficient feature extraction that aligns with the constraints of medical and MRI-derived 

datasets. They also provide controllable latent-space behaviour, enabling structured 

regularisation and reconstruction-based constraints, which are particularly valuable when 

preserving subtle anatomical patterns. 



 

   

 

©University of Reading 2025      Page 188 

TL was used to enhance the ability of the encoder to extract features even further. 

TL is a robust method where a model, previously trained on one task, is adjusted and used for 

a similar task. In this development stage, an encoder pre-trained and derived from a fine-

tuned regression model was incorporated into the autoencoder. Precisely, a layer of 50 

neurons was linked to the autoencoder encoder output, integrating information from the pre-

trained model. Combining the capabilities of the autoencoder and the pre-trained encoder 

enabled the autoencoder to use previously learnt patterns and representations to enhance 

the feature extraction process.  

To enhance the model stability and accelerate convergence during training, batch 

normalisation layers were included in both the encoder and decoder. These layers 

standardised the output of every dense layer, ensuring the resilience of the model to 

fluctuations in the input data distribution. This not only enhanced the speed of training but 

also aided in preventing overfitting by controlling the learning process of the model. Batch 

normalisation enabled increased learning rates by addressing the issue of disappearing or 

amplifying gradients, leading to enhanced learning efficiency for the model.  

The autoencoder was trained using the RMSprop optimiser, which is well-suited for 

tasks involving large datasets and complex models. The learning rate was set to 0.0001, a 

conservative value that ensured slow, steady enhancements in the model weights to minimise 

the Mean Squared Error (MSE) loss. MSE was used as the primary loss function, directly 

measuring the difference between the original input data and the reconstructed output. The 

training was conducted over 1000 epochs, with a batch size of 64, effectively balancing 

computational efficiency and memory utilisation. Additionally, early stopping was employed 

with a patience of 5 epochs, ensuring that the model would halt training if no significant 

improvement in the loss metric was observed, preventing overfitting and reducing 

computational resources.  

A grid search strategy was used to find the best autoencoder architecture. Grid 

search involves systematically testing a pre-defined set of hyperparameters to find the 

optimal model configuration. Algorithm 6- 2, below, sets out the procedure. 
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Algorithm 6- 2 Algorithm for Grid Search for Autoencoder 

 

 

Each configuration generated by the grid search was evaluated using k-fold cross-

validation to ensure robust performance across different subsets of the MCI dataset. The 

mean and standard deviation of the reconstruction score (MSE-based) were recorded for 

every combination of encoder and decoder architectures. The resulting scores provide insight 

into the trade-off between model complexity and reconstruction accuracy, enabling the 

selection of an optimal autoencoder configuration that balances efficient feature extraction 

with generalisability. Table 6- 2, below, sets out the results of the grid search for the 

autoencoder. 
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Table 6- 2 Grid Search Results for Autoencoder Model (3-Fold CV) 

Rank 
Encoder Architecture 
(Neurons) 

Decoder Architecture 
(Neurons) 

Mean Score 
Std Dev of 
Score 

1 [200, 100] [100, 200] 0.7089 0.0121 

2 [100, 50] [100, 200] 0.7109 0.0134 

3 [150, 50] [100, 200] 0.7148 0.0138 

4 [100, 50] [50, 150] 0.7269 0.0132 

5 [200, 100] [50, 150] 0.7305 0.0161 

6 [150, 50] [50, 150] 0.7315 0.0176 

7 [200, 100] [50, 100] 0.7356 0.0185 

8 [150, 50] [50, 100] 0.7389 0.0231 

9 [100, 50] [50, 100] 0.7404 0.0187 

 

Figure 6- 3 illustrates the final autoencoder structure, which combines the optimal 

encoder/decoder design with transfer learning. This configuration efficiently captures latent 

patterns from the MCI dataset, providing features for downstream MMSE prediction and 

cognitive stage classification. 
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Figure 6- 3 Architecture of the autoencoder 

Ultimately, the optimised autoencoder structure achieved an excellent balance 

between model complexity and computational efficiency. By extracting and encoding critical 

features from the MCI dataset, the autoencoder demonstrated an ability to capture latent 

patterns that were not readily apparent in the raw input data. This robust feature extraction 

capability, combined with the use of TL, significantly enhanced the performance of the model 

in downstream predictive tasks.  

The utilisation of TL and the grid search-driven optimisation technique resulted in a 

robust autoencoder structure that played a crucial role in the complex ML process created in 

this research. The autoencoder-acquired characteristics were then used further in a predictive 

model to approximate MMSE scores and categorise cognitive conditions in AD patients. Being 

able to reliably forecast cognitive decline and classify patients according to their cognitive 

status is clinically significant. The autoencoder-based feature extraction method contributes 

to improving the accuracy and reliability of these forecasts.  

The resultant architecture of the autoencoder also included TL and grid search 

optimisation. The capability to derive significant and coherent attributes from complex 
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datasets is anticipated to enhance significantly the accuracy and dependability of the models, 

ultimately leading to results. 

6.1.4 Regression followed by categorisation: 

The final phase of this multi-stage algorithm aimed to predict MMSE scores, a critical measure 

of cognitive function, in AD patients. This was achieved by utilising the output of feature 

representations from an autoencoder to perform regression analysis and subsequently 

classify these MMSE scores into two distinct cognitive impairment categories: mild and 

moderate. The accurate prediction and classification of MMSE scores is vital, as it can 

significantly contribute to the timely and effective management of cognitive decline in AD 

patients.  

Algorithm 6-3, below, sets out the procedure of the grid search applied to the 

regression model used to predict the MMSE score. This is followed by Table 6-3, which 

presents the experimental results for various configurations of the model.  



 

   

 

©University of Reading 2025      Page 193 

 

Algorithm 6- 3 Algorithm for Grid Search for Regression Model with MMSE Score 

 

Table 6- 3 Grid Search Results for Regression followed by categorisation (3-Fold CV) 

Rank Layers 
Initial Units 

(U0) 

Unit 
Reduction 

Factor 
Mean Score 

Std Dev of 
Score 

1 2 400 0.6 4.325 0.5073 

2 2 400 0.5 4.459 0.4923 

3 2 300 0.5 4.522 0.4514 

4 2 300 0.6 4.555 0.5115 

5 3 300 0.6 4.636 0.489 
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Rank Layers 
Initial Units 

(U0) 

Unit 
Reduction 

Factor 
Mean Score 

Std Dev of 
Score 

6 3 400 0.5 4.638 0.4756 

7 3 400 0.6 4.726 0.6418 

8 3 300 0.5 4.733 0.4368 

9 4 400 0.6 4.855 0.2438 

10 4 300 0.6 4.873 0.8139 

11 4 300 0.5 5.072 0.14 

12 4 400 0.5 5.092 0.063 

 

The optimisation of these parameters enabled the model to capture the non-linear 

relationships inherent in the disease progression, leading to enhanced accuracy and stability 

in MMSE score predictions. Figure 6- 4 illustrates the NN architecture for regression model. 

 

Figure 6- 4 NN architecture for Regression model 
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To further guard against overfitting, early stopping was implemented with a patience 

of 10 epochs. Early stopping is another regularisation technique that halts training if the 

performance of the model on a validation set stops improving for a specified number of 

epochs or iterations. By doing this, the model avoids overfitting to the training data while 

retaining weights that produce the best generalisation performance on unseen data. The 

patience parameter was set to 10, enabling the model enough time to explore potential 

improvements in performance while preventing overtraining. The model was trained for up 

to 500 epochs, with a batch size of 64, which balanced training performance and memory 

utilisation. Using mini-batches during training enabled the model to update its weights 

frequently, leading to faster convergence. 

After training, the predictive performance of the model was evaluated on a separate 

test dataset. The evaluation metrics included Mean Absolute Error (MAE), Root Mean Squared 

Error (RMSE) and MSE. These metrics are commonly used in regression tasks to quantify the 

difference between predicted and actual values. MAE provides a straightforward error 

measure by calculating the average absolute difference between predictions and actual 

values, while RMSE and MSE assign weight to penalise significant errors heavily. This 

combination of metrics ensured a comprehensive evaluation of the accuracy and reliability of 

the model in predicting MMSE scores. 

To classify the predicted MMSE scores into cognitive impairment categories, the 

regression predictions of the model were rounded to the nearest whole number. The rationale 

was to map the continuous MMSE predictions into discrete categories that reflect clinically 

meaningful levels of cognitive impairment. Based on established MMSE thresholds, the 

rounded scores were classified into two categories: mild cognitive impairment and moderate 

cognitive impairment. These categories are clinically significant because they represent 

different stages of cognitive decline, with MCI often being an early indicator of AD 

progression. 

The classification accuracy of the model was evaluated by comparing the predicted 

cognitive categories to the actual cognitive status labels in the test data. A confusion matrix 

was generated to assess the ability of the model to distinguish between mild and moderate 

cognitive impairment correctly. The confusion matrix provided a detailed breakdown of the 

classification performance of the model, highlighting not only the accuracy but also any errors 
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made in predicting the cognitive status of patients. This analysis was particularly valuable in 

assessing the clinical utility of the model, as the ability to classify cognitive impairment levels 

accurately could directly impact patient care and treatment decisions. 

The final step in the multi-stage process was to compute average performance 

metrics, including MAE, RMSE, MSE, and classification accuracy, over multiple model 

execution instances. This step was crucial for ensuring the robustness and reproducibility of 

the results. By averaging the metrics over multiple iterations, any variability in the model 

performance due to random initialisation or other factors could be mitigated, leading to 

reliable conclusions about the predictive capabilities of the model. 

In summary, the last stage of the multi-stage method successfully integrated 

regression analysis and classification to predict MMSE scores and categorise them into mild 

or moderate cognitive impairment. Using autoencoder-generated feature representations 

and a well-optimised NN architecture enabled the model to capture complex, non-linear 

patterns in the AD data. The grid search optimisation, regularisation techniques such as 

dropout and early stopping, and careful tuning of hyperparameters contributed to the strong 

performance of the model. The evaluation metrics demonstrated that the model could 

reliably predict MMSE scores and classify patients into relevant cognitive categories. It is a 

valuable tool for clinical decision-making in managing AD. By advancing the state-of-the-art 

predictive modelling for neurodegenerative diseases, this approach holds promise for 

improving patient care and supporting clinicians in the early detection and treatment of 

cognitive decline. 

6.2 Results and Discussion: 

6.2.1 Quantitative results 

In this section, the quantitative results obtained are discussed by applying the proposed 

techniques to the NDD datasets. Although validated on these datasets, the proposed methods 

are generalisable and suitable for application across other domains. 

The initial regression model was designed to predict the age of patients with MCI, 

EMCI, and LMCI, and it performed well. During training, the model achieved a Mean Absolute 

Error (MAE) between 6 and 7 years, demonstrating reasonable accuracy. Even though the 



 

   

 

©University of Reading 2025      Page 197 

testing MAE increased to 12 years, this result is still considered good, particularly given the 

complexity of the data and the challenge of predicting the age of cognitively declining 

patients. The ability of the model to perform reasonably well on unseen data highlights its 

robustness and potential for utilising it for the TL process.  

In the TL approach, the second layer from the top was selected for its ability to 

capture the most generalised features from the MCI dataset. These features, abstracted from 

deeper layers of the model, are highly transferable and valuable for related tasks. For this 

purpose, 50 neurons were used to represent the features learned from the model, providing 

an optimal balance between complexity and generalisation. This enabled the model to adapt 

effectively in predicting outcomes such as cognitive decline with minimal fine-tuning, 

enhancing its overall performance. 

For the autoencoder, the input data was a combination of MCI data and the 50 

neurons derived from TL. The autoencoder was trained with early stopping-to-halt training 

when no further loss improvement was observed. A reconstruction error distribution 

histogram was plotted to assess the autoencoder performance. On this histogram presented 

in Figure 6- 5Error! Reference source not found., the X-axis represents the error, while the Y-

axis shows the frequency of errors. As illustrated, most errors are minimal, clustering around 

the 0.25 to 0.50 range, with very few values exceeding 1, indicating effective reconstruction 

performance.  
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Figure 6- 5 Reconstruction Error Distribution for the Autoencoder 

In the autoencoder, the reconstruction error represents the difference between the 

original input and its reconstruction after passing through the encoder-decoder process. The 

reconstruction error distribution histogram helps to visualise how well the autoencoder 

performs by plotting error values on the X-axis and their frequency on the Y-axis. A low 

reconstruction error suggests that the autoencoder has effectively learned the essential 

features from the data. In this case, most errors fall between 0.25 and 0.50, indicating strong 

model performance, with only a few values exceeding 1, suggesting minimal outliers or poor 

reconstructions. This distribution confirms that the autoencoder has successfully captured the 

important patterns in the MCI data. 

The regression model for predicting MMSE scores showed strong performance, using 

early stopping and training over 10 iterations to prevent overfitting. The model achieved an 

average MAE of 3.51 with a standard deviation of 0.12, demonstrating consistent predictions. 

Additionally, the RMSE was 4.53, and the MSE was 20.54, reflecting accurate predictions of 

cognitive decline. Following the regression, the predicted MMSE scores were classified into 

mild and moderate categories, achieving an overall accuracy of 73.26% with a standard 

deviation of 3.93 across 10 iterations. The performance consistency of the model over 

multiple runs was visualised using a line graph in Figure 6- 6, illustrating reliable outcomes 

across all stages of the process. This combination of regression and classification highlights 

the robustness of the model in predicting and categorising disease severity. 
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Figure 6- 6 Performance of the last stage over 10 iterations 

Further, in the analysis of diagnostic accuracy for distinguishing between mild and 

moderate cognitive decline, an average of all 10 confusion matrices was derived and plotted 

below in Figure 6- 7. This provides a comprehensive overview of the performance of the 

model.  
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Figure 6- 7 Average value of Confusion Matrix for the Categorisation of MMSE Scores over 10 iterations  

The true negative rate (TN) was recorded at 38.4, indicating a substantial number of 

correctly identified mild cognitive decline. The model also exhibited 28.7 true positives (TP), 

accurately identifying individuals with moderate cognitive decline. However, there were 7.6 

false positives (FP), representing instances where individuals were incorrectly classified as 

having the condition, and 17.3 false negatives (FN), highlighting cases where moderate 

conditions were missed and misclassified as mild. These values underscore the importance of 

balancing sensitivity and specificity in diagnostic evaluations. 

6.2.2 Discussions 

A comprehensive comparison of model performance was conducted to evaluate the 

effectiveness of the proposed multi-stage algorithm in predicting cognitive stages of AD 

progression, particularly regarding several baseline and state-of-the-art models. This 

evaluation was critical to understanding how well the new approach, which integrates 

advanced techniques such as TL and autoencoders, performs compared to traditional models 

that rely solely on structural MRI data or different combinations of NN architectures. By 

benchmarking the proposed algorithm against established models, the study aims to highlight 
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its strengths in improving accuracy, reducing error margins, and offering reliable predictions, 

ultimately contributing to the broader field of transfer learning modelling. 

As a first step, a baseline regression model was constructed using the same 

architecture as the final regression model from the proposed approach. However, this 

baseline model was exclusively trained and evaluated on the AD dataset with MMSE scores as 

the target without pretraining or enhancement techniques. The architecture of the baseline 

model consisted of two hidden layers, each incorporating a dropout layer with a dropout rate 

of 0.3 to reduce the risk of overfitting. The first hidden layer comprised 401 neurons, matching 

the input dimensionality of the AD dataset. Subsequent layers followed a reduction strategy, 

where each had 60% of the neurons of the preceding layer. Unlike the proposed multi-stage 

algorithm, which utilised TL and autoencoders for enhanced generalisation and performance, 

this baseline model used only AD data, devoid of advanced pretraining methods. 

After completing the regression task in the baseline model, a classification step was 

introduced to provide a comprehensive model evaluation of the performance. The results 

were averaged over 10 runs to capture variability. The regression task yielded an MAE of 4.9, 

with a standard deviation of 0.1919, demonstrating a consistent performance across runs. In 

terms of classification, the model achieved a mean accuracy of 61.08%, with a standard 

deviation of 2.21. These results serve as a reference for gauging the performance 

improvements in sophisticated models. 

In contrast, the multi-stage algorithm proposed in this research demonstrated a 

significant performance improvement over the baseline model. This model also utilised 

structural MRI and age data sourced from ADNI, AIBL, and IXI datasets, but with the added 

benefit of TL and autoencoders. These techniques helped enhance diagnostic accuracy, 

reduce training time, and lower the dependence on large amounts of training data. The model 

was evaluated on the AD dataset, predicting MMSE scores, key indicators of cognitive decline 

and disease severity in AD patients. By incorporating data from patients with MCI, the model 

effectively predicted MMSE scores, offering an accurate assessment of disease progression. 

The integration of TL enabled feature extraction by using pre-trained models. At the 

same time, autoencoders facilitated efficient data representation, resulting in a notable 

accuracy of 73.26% with a standard deviation of 3.92. This marks a substantial improvement 
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over the baseline model, underscoring the advantages of combining these advanced 

techniques. The enhanced performance of the proposed model highlights the ability of TL and 

autoencoders to capture complex patterns in the data, ultimately leading to precise 

predictions of AD progression and severity. 

These results underscore the gap in performance between the baseline model and 

the primary approach, reaffirming the benefits of using TL and autoencoders to enhance 

prediction accuracy and minimise error margins in AD cognitive progression forecasting. 

Li et al. (2015) developed a DL model to classify AD and MCI patients using MRI data, 

combining DL with a stability selection method to enhance feature extraction. This approach 

enabled the model to handle the variability and noise typical in medical imaging data. The 

process began with PCA, which captured unsupervised latent feature representations from 

the MRI scans, providing a detailed understanding of brain structure. These features were 

further refined using the stability selection method, which applied Lasso regularisation to 

optimise feature selection by minimising the cost function. The refined features were then 

used in a multi-task DL model with dropout, incorporating additional labels such as MMSE and 

ADAS-Cog scores to enhance prediction accuracy. Finally, the outputs of the multi-task model 

were passed to an SVM classifier for the final classification of AD and MCI patients. This 

combined approach achieved a classification accuracy of 70.1% with a standard deviation of 

2.3, demonstrating a significant improvement over baseline models by utilising deep feature 

learning and stability selection. 

In Oh et al. (2019), the model approach involved two DL architectures: a 

Convolutional Autoencoder (CAE)-based model and an Inception CAE (ICAE)-based model 

aimed at classifying progressive MCI (pMCI) vs. stable MCI (sMCI). The CAE model consisted 

of 3D convolutional and fully connected layers to extract meaningful features from MRI data. 

The ICAE model incorporated an inception module, which used multi-scale convolutional 

kernels to capture visual representations at different levels. Both models utilised TL by 

initialising their convolutional layers with pre-trained weights from an AD vs NC classification 

task, followed by supervised fine-tuning for pMCI vs MCI classification. 

In the CAE model, the architecture had three 3×3×3 convolutional layers with ReLU 

activations, max-pooling, and Gaussian dropout to prevent overfitting. It included fully 
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connected layers with 32 and 16 nodes and a final output layer with two nodes for 

classification. The ICAE-based model, on the other hand, included two convolutional layers 

followed by an inception module that combined different kernel sizes (1×1×1 and 3×3×3) to 

enhance feature extraction at multiple scales. The output from the inception module was 

directly fed into the classifier without fully connected layers, optimising performance for the 

pMCI vs. sMCI task. Both models applied supervised TL to utilise shared features between the 

AD vs. NC task and the pMCI vs. sMCI task. The use of pre-trained weights enabled the network 

to attain enhanced generalisation capability despite the smaller dataset size for the pMCI vs 

sMCI classification, resulting in enhanced accuracy—73.23% for the CAE model and 73.95% 

for the ICAE model. This demonstrated that TL could effectively bridge performance gaps 

when dataset size is limited and the classification task is inherently challenging. 

 

Table 6- 4 highlights the accuracy of each model when trained on similar datasets, 

predominantly using structural MRI data, with all models incorporating TL. These results 

highlight the competitiveness of the proposed model, which demonstrates a marked 

improvement over baseline methods and performs comparably to existing advanced models. 

This demonstrates the efficacy of TL techniques in scenarios with limited datasets. 

Table 6- 4 Comparison of results between current and existing models 

 

Although a range of DL models has been applied to structural MRI data to predict 

Alzheimer's Disease, only a small subset of existing work has focused specifically on predicting 

Methods Model Data Accuracy (in %) 

Baseline Model DL Structural MRI 61.08 ± 2.2 

(Li et al., 2015) DL Structural MRI 70.1% ± 2.3 

CAE (Oh et al., 2019) DL Structural MRI 73.23 ± 4.21 

Multi-Stage Algorithm DL Structural MRI 73.26 ± 3.93 

ICAE (Oh et al., 2019)  DL Structural MRI 73.95 ± 4.82 

Methods Model Data Accuracy (in %) 

Baseline Model DL Structural MRI 61.08 ± 2.2 

(Li et al., 2015) DL Structural MRI 70.1% ± 2.3 

CAE (Oh et al., 2019) DL Structural MRI 73.23 ± 4.21 

Multi-Stage Algorithm DL Structural MRI 73.26 ± 3.93 

ICAE (Oh et al., 2019)  DL Structural MRI 73.95 ± 4.82 
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MMSE scores using transfer learning or autoencoder-based feature representations. 

Consequently, the proposed multi-stage pipeline occupies a distinct methodological space: it 

combines a regression-based MMSE prediction model with transfer-learning and an 

autoencoder-derived latent feature space, providing a more generalisable representation 

under limited sample availability. This design positions the model as one of the few AD-

focused frameworks to utilise stage-informed feature transfer for cognitive-score estimation 

explicitly. 

A broader context of recent literature presented in Table 6-5, below, has examined 

transfer learning in prognostic tasks, particularly in predicting conversion from MCI to AD, 

which is closely related to cognitive decline and strongly correlated with MMSE progression. 

Models such as those proposed by Dhinagar et al., (2022; S.-C. Huang et al., (2023); Khan et 

al., (2022) apply transfer learning, 3D CNNs, or autoencoder-driven latent spaces to capture 

structural markers of disease progression. While these methods demonstrate a strong 

performance in binary conversion prediction, they do not estimate clinical scores directly and 

thus address a fundamentally different problem. Nevertheless, their success highlights the 

underlying rationale of the approach proposed in this research study, in that feature 

distributions learned from MCI subjects encoding a cognitively meaningful variation that can 

be transferred to improve downstream MMSE prediction in AD. 

Table 6- 5 TL-based MCI to AD Conversion 

Study Model Data 
Accuracy / Key 
Results 

Dhinagar et al., 
(2022) 

Transfer learning 
(pretrained CNNs, fine-
tuned) 

ADNI + 
independent tests 
(AIBL, MIRIAD, 
OASIS) 

91.3% with CV; 
94.2% / 87.9% on 
external datasets 

Khan et al., (2022) 
VGG-based TL on grey-
matter slices 

ADNI (NC, EMCI, 
LMCI, AD) 

~97.9% multiclass 
accuracy 

S.-C. Huang et al., 
(2023) 

Transformer 
(pretrained + fine-
tuned) 

ADNI / AIBL 
99.6% (ADNI), 94.0% 
(AIBL) 
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These works collectively demonstrate rapid progress in MRI-based transfer learning 

for disease-stage classification but differ substantially from clinical-score prediction tasks, 

underscoring the relative scarcity of TL-based MMSE regression pipelines. 

More recent studies presented in Table 6-6, below, have predicted MMSE or 

cognitive impairment scores from neuro-imaging and multimodal data. However, these 

pipelines generally lack transfer-learning, integrate an autoencoder-derived latent space, 

or target broader multimodal contexts rather than MRI-derived structural representations. As 

a result, they are methodologically related but not directly comparable to the multi-stage 

approach proposed in this research.  

Table 6- 6 Non-TL MMSE Prediction Models 

Study Method Data Output Type 

Dong et al., (2020) 
Patch-based CNN + 
multi-task learning 

MRI MMSE regression 

Liu et al., (2024) Multi-task network MRI MMSE + diagnosis 

Ilias and Askounis, 
(2022) 

Multimodal 
regression model 
(speech/text/vision) 

Non-MRI MMSE regression 

Bass et al., (2023) ICAM-reg (VAE-GAN) MRI MMSE regression 

 

Taken together, these findings emphasise that while MMSE prediction and disease-

stage classification have both been explored in the literature, very few models combine 

transfer learning, autoencoder-derived representations, and regression within a unified multi-

stage framework. Existing approaches either rely solely on multi-task learning, focus 

exclusively on MCI-to-AD conversion, or use alternative modalities such as speech and text. 

The method proposed in this thesis therefore contributes a distinct architectural strategy—

one that leverages MCI-informed latent representations to enhance MMSE regression 

performance in AD patients, addressing a gap in current transfer-learning research for clinical-

score prediction.    

6.3 Summary of the Key Findings 
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The proposed multi-stage algorithm offers several advantages that enhance its performance 

in predicting and classification tasks. One key benefit is enhanced predictive accuracy, 

achieved by integrating advanced techniques such as TL and autoencoders. These methods 

enable the model to extract meaningful features from complex datasets, resulting in a high 

accuracy rate of 73.26%, which exceeds that of baseline models. This enhanced precision is 

particularly valuable for applications involving nuanced class boundaries and complex data 

structures, where reliable predictions can further optimise real-time decision-making 

processes.  

Another significant advantage is efficient feature extraction. The algorithm uses a 

pre-trained regression model to capture a generalised representation of the features from a 

larger dataset, which are then transferred to subsequent stages. This reduces the need for 

manual feature selection and extensive data preprocessing, streamlining the entire modelling 

process. Additionally, the autoencoder further enhances this by enabling dimensionality 

reduction without sacrificing critical information. This reduces computational costs and helps 

the model generalise, improving its ability to work effectively even with smaller datasets. The 

algorithm also demonstrates robustness and flexibility by utilising information from various 

datasets.  

Moreover, its consistency across multiple runs, as indicated by low standard 

deviations in accuracy and error metrics, highlights its reliability in real-world applications. 

This robustness is further supported by techniques such as early stopping, which prevent 

overfitting by halting training when no further improvement is observed, ensuring the model 

remains generalised. Additionally, TL reduces the data required for training and decreases 

computational time while maintaining strong performance. The combination of TL and 

autoencoders also leads to scalability, enabling the model to be easily expanded to 

incorporate other data modalities without requiring a complete redesign.  

Finally, the algorithm demonstrates promising results for the early diagnosis of 

Alzheimer's disease. By accurately predicting MMSE scores and classifying different stages of 

cognitive impairment, the model can assist in the timely detection of AD progression. This 

early identification is essential for initiating appropriate interventions that may slow the 

disease progression and enhance patient outcomes.  
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While the proposed multi-stage algorithm offers numerous advantages, there are 

minor disadvantages. One potential issue is increased model complexity. Integrating multiple 

advanced techniques such as TL and autoencoders requires careful tuning and design, which 

can be challenging to implement than models. This can make the approach harder to 

interpret, particularly for experts who may not be familiar with DL methods.  

Another drawback is the dependence on high-quality data. While TL helps mitigate 

the need for large datasets, the model performance still heavily relies on the quality of the 

input data. Any noise or inaccuracies in this data could reduce the effectiveness of the 

algorithm, particularly in real-world environments where data may not always be perfect. 

6.3.1 Clinical relevance  

The proposed multi-stage algorithm has significant clinical relevance, as it was evaluated using 

an AD dataset. Advanced techniques such as TL and autoencoders enable the model to extract 

key patterns from complex datasets, such as MRI scans and demographic data, making it 

possible to detect subtle changes in brain structure that might not be obvious in standard 

assessments. This can lead to earlier diagnosis than traditional methods, which often rely on 

observable symptoms that may appear in the later stages of the disease. As a result, 

healthcare professionals could use this algorithm to identify at-risk individuals before a 

significant cognitive decline occurs, opening opportunities for preventive care or early 

therapeutic interventions. 

Additionally, by accurately predicting MMSE scores and classifying stages of cognitive 

decline, the algorithm provides an effective tool for identifying individuals at varying stages of 

impairment, including mild and moderate cognitive impairment. Early and precise detection 

of cognitive decline is critical for clinicians, as it enables timely intervention strategies that 

could slow disease progression, enhance quality of life, and offer long-term outcomes for 

patients. 

Furthermore, the ability of the algorithm to work with diverse types of data, including 

MRI images and cognitive scores, reflects its versatility in real-world clinical settings. It can be 

integrated into existing diagnostic workflows, providing clinicians with an additional tool to 

enhance decision-making. By automating the feature extraction and prediction process, the 

algorithm reduces the cognitive load on clinicians, enabling faster and consistent diagnostic 
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evaluations. This could be particularly beneficial in clinical environments with limited access 

to specialised neurological expertise, enabling accurate assessments in a broader range of 

healthcare settings. 

In summary, the proposed approach has clear clinical implications. It offers a precise, 

automated, and scalable method for diagnosing and tracking the progression of AD, ultimately 

leading to patient management and enhanced clinical outcomes.  

6.3.2 Future work 

Future directions for the proposed multi-stage algorithm involve several avenues for 

improvement and broader application. 

One important direction is enhancing the interpretability of the model. While the 

algorithm performs well in terms of prediction, its complexity can make it challenging to adopt 

without understanding the underlying factors driving its decisions. Future work could focus 

on developing explainability tools, such as attention mechanisms or feature attribution 

methods, to offer clearer insights into which features are most strongly associated with the 

target. This would make the model transparent and user-friendly, aiding its acceptance and 

adoption. 

Finally, another important direction is the optimisation of the algorithm for scalability 

and efficiency, enabling its deployment on large-scale and high-dimensional datasets typical 

in real-world scenarios. This could involve investigating efficient architectures, pruning 

strategies, or utilising distributed computing frameworks to reduce computational cost 

without sacrificing accuracy.  

7. Conclusion 

This thesis has examined a range of AI methodologies to enhance predictive performance and 

explainability for complex real-world applications, with a particular emphasis on Alzheimer’s 

disease (AD) prediction, wherein model reliability is crucial. Various methodologies were 

investigated to enhance the accuracy, explainability and data limitations of AI models. To 

address the primary issues, novel methodologies for feature selection, sensitivity analysis, and 

transfer learning have been proposed.  
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The initial research introduced two novel filter-based FS methods designed to 

address the challenges of high-dimensional and noisy datasets. Based on correlation and 

clustering, these techniques significantly reduced the number of input features while 

maintaining or even improving predictive accuracy. The validation of these methodologies 

against an external arrhythmia dataset has indicated their potential to generalise and enhance 

the efficiency of model training and enhance explainability, constituting a significant 

contribution to the field of ML. This research focused on reducing dimensionality and 

developing efficient, interpretable models for practical applications.  

The subsequent research focused on model explainability, representing one of the 

most significant challenges in implementing DNNs within high-stakes domains. The research 

evaluated the feature importance scores of a DNN model using SA techniques such as SHAP 

and Sobol. The research contributed to the understanding of the decision-making patterns of 

complex models, minimising the gap between black box AI models and their practical 

applicability. This technique provides critical assistance in the continuous endeavours 

concerning AI models, which is vital for the predictive models developed for domains requiring 

high interpretability.  

The final research introduced a novel multi-step algorithm designed to mitigate the 

challenges associated with limited data availability in critical domains, thereby enabling data-

efficient and precise predictive modelling. This research significantly enhanced prediction 

accuracy by combining TL and autoencoder methods. Using pre-trained models and applying 

feature extraction techniques through TL and autoencoders has proven to be an effective 

strategy, yielding accurate and reliable predictions. This study illustrates the potential to 

enhance AI applications for predicting outcomes in data-constrained scenarios, underscoring 

its contribution to advancing the technical capabilities of AI in real-world applications. This 

methodology was employed to predict the cognitive stages of AD patients based on their 

MMSE scores. 

The three research studies have made considerable contributions to advancing AI 

within real-world applications. As evidenced by the thesis, advancements in feature selection, 

sensitivity analysis, and transfer learning provide a solid foundation for enhancing the 

accuracy, transparency, and reliability of AI models. This research has laid a robust foundation 

for future initiatives to develop effective AI systems by addressing critical challenges such as 
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performance, explainability and data constraints. In conclusion, this research holds the 

potential to transform the utilisation of AI in high-stakes healthcare applications such as 

predicting AD. This transformation could lead to significant advancements in the accuracy and 

efficacy of AI applications within the high-stakes domains. 

7.1. Feature Selection Summary 

Chapter 4 presented two novel filter-based FS techniques to enhance model performance, 

minimise overfitting, and enhance interpretability in high-dimensional datasets. Feature 

selection plays a vital role when dealing with noisy or irrelevant features within datasets, 

enabling models to concentrate on the most pertinent inputs. The three predominant FS 

approaches, filter, wrapper, and embedded methods are notably characterised by their 

computational efficiency and generalisability in effectiveness. Both proposed techniques in 

this research were filter-based approaches.  

The first technique developed used a correlation-based approach referred to as CGN-

FS, where features with correlation values above a threshold were selected to represent the 

broader dataset. This method identified features with low inter-feature correlation, reducing 

the feature set without sacrificing accuracy. The second technique employed was clustering 

analysis, referred to as RCH-FSC, where clusters were formed based on data correlations. The 

centroids of these clusters identified by the K-Means algorithm were utilised to represent the 

entirety of the cluster, thereby creating the most relevant subset of features. This clustering 

methodology has successfully identified a concise set of features that preserve critical 

information pertinent to classification tasks while simultaneously reducing the dimensionality 

of the dataset. 

The correlation-based methodology yielded a feature set with fewer features, 

resulting in straightforward models to interpret. The model demonstrates a negligible impact 

on overall accuracy. The technique was validated on the arrhythmia dataset to illustrate the 

generalisability of the established method. For comparison, the ReliefF algorithm, a traditional 

FS technique, demonstrated marginally lower classification performance in the SVM model 

and comparable performance in linear regression models, suggesting that CGN-FS captured 

strongly predictive features and effectively reduced the input feature space. 
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The clustering-based approach yielded a feature set comprising four features while 

maintaining comparable accuracy to the model that utilises the complete feature set. These 

reductions in dimensionality fostered the development of robust and interpretable models, 

ultimately unveiling deeper insights into the relationships among variables.  

Both developed techniques exhibited an observable enhancement in accuracy. This 

observation underscores their efficacy in identifying the most pertinent features and 

emphasises their straightforward implementation. The correlation and clustering-based 

feature selection represents a robust methodology for optimising ML models, particularly in 

high-dimensional datasets.  

The proposed FS techniques enhance the predictive accuracy and interpretability of 

models, particularly in AD prediction, where concise biomarker sets are necessary for clinical 

decision-making. By significantly minimising the feature space, these techniques facilitate 

transparent and reliable decision-making processes, which are crucial for real-world 

applications. Furthermore, these methods establish a robust framework for managing 

complex datasets, thereby paving the way for subsequent innovations in FS methodologies. 

7.2. Sensitivity Analysis Summary 

Chapter 5 presents the DNN models, which were evaluated using SA techniques to assess the 

degree of their explainability. However, DNNs are frequently regarded as black-box models 

due to their lack of transparency. This raises concerns about their trustworthiness in critical 

applications, which led to increased demand for the explainability of AI models, to understand 

and trust their decision-making processes. 

This research used a high-dimensional dataset categorised into two groups to train 

the classification model. Two G-SA libraries, SHAP and SALib, which comprise Sobol, Morris, 

and FAST methods, were utilised to compute feature importance scores, thereby 

understanding the features that most significantly influenced the predictions of the DNN 

model. 

The feature importance scores derived from SHAP and SALib libraries were compared 

and combined based on their similarities, ensuring the robustness of the findings. This 



 

   

 

©University of Reading 2025      Page 212 

comprehensive analysis of the importance of features helps enhance the interpretability of 

the DNN model, making its predictions transparent and aligned with established knowledge.  

The ensemble approach of SA was implemented on the Alzheimer's Disease dataset 

and their neuro-anatomical findings correspond to established AD biomarkers, thereby 

enhancing its clinical validity. Ensemble-based SA approach identified several significant brain 

regions strongly associated with AD, including the temporal horn of the lateral ventricles, the 

hippocampus, the hippocampal tail, the subiculum, and other related areas. Experts in the 

medical field rigorously evaluated and correlated these features with established 

neuroimaging biomarkers, structural alterations, and clinical indicators of AD. Understanding 

these significant features contributes to a deeper comprehension of Alzheimer’s progression 

and underlying mechanisms, providing valuable insights for both AI model development and 

medical research. 

This study focused on enhancing AI models designed to predict and, significantly, 

address the critical issue of model explainability. By employing model-agnostic explainability 

techniques such as SHAP and SALib, this research identifies the most influential features 

driving model predictions. This contributes to enhancing interpretability in ML pipelines and 

provides a structured framework for future AI research focused on complex, high-dimensional 

datasets. The comparative analysis of these methodologies provides valuable insights into 

their efficacy, helping researchers select the most suitable approaches for evaluating feature 

importance within AI models. 

Ultimately, this work advances the integration of AI methodologies with real-world 

applications, contributing to the development of robust and interpretable AI systems. The 

outcomes of this research are expected to support the design of reliable, transparent AI 

models applicable to high-stakes decision-making environments, while providing a foundation 

for further exploration in explainable AI and algorithmic reliability.  

7.3  Transfer Learning with Autoencoder Summary 

Chapter 6 presents a novel multi-stage algorithm developed to enhance the accuracy of 

predictive modelling in data-constrained environments, particularly in AD prediction, where 

labelled training data is often limited. DNN-based techniques are increasingly utilised to 
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address complex prediction and classification tasks across various domains. This research 

integrates regression and classification models to utilise insights derived from multi-class 

datasets, enhancing predictive performance in sequential learning tasks. 

Initially, a regression model was created to predict the ages of the patients using a 

combined MCI dataset, which included individuals with EMCI, MCI, and LMCI. The model was 

designed with multiple hidden layers and ReLU activation functions while incorporating 

dropout regularisation and RMSprop optimisation. Hyperparameter tuning was performed 

using GridSearchCV to optimise performance. TL techniques were then applied to transfer 

knowledge from the regression model into an autoencoder. The autoencoder effectively 

extracted key features from the MCI dataset, generating encoded representations to predict 

MMSE scores. These scores were then employed to classify patients into two cognitive 

categories: Mild and Moderate.  

The proposed multi-stage algorithm yielded promising results, achieving an accuracy 

of approximately 73.26% with a standard deviation of 3.92%. In contrast, a regression model 

that did not employ transfer learning or autoencoders achieved only 61.08% accuracy with a 

2.21% standard deviation. This 12.18% improvement in accuracy highlights the significant 

contribution of the TL and autoencoder techniques to the performance of the model. The 

comparison underscores the effectiveness of the proposed methodology. 

The proposed algorithm was assessed against various published DNN-based 

methodologies utilising structural MRI data. When compared to the performance metrics of 

Li et al. (2015) (70.1 ± 2.3%) and the CAE model developed by Oh et al. (2019) (73.23 ± 4.21%), 

as well as their ICAE model (73.95 ± 4.82%), the proposed algorithm demonstrates 

competitive performance. Although the enhanced accuracy variations range from 0.03% to 

3.2%, the consistent performance underscores the robustness of this approach in delivering 

reliable and interpretable classification without dependence on additional estimated 

variables. 

Overall, this study demonstrates the efficacy of transfer learning and autoencoder-

based feature extraction for improving predictive modelling in data-limited scenarios. The 

proposed multi-step algorithm has proven effective in enhancing both classification and 

regression tasks, offering a scalable framework for future AI applications. The research 
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contributes to the advancement of DNN-based methodologies and establishes a strong 

foundation for subsequent developments in predictive modelling across diverse, high-impact 

domains. The multi-step algorithm has also proven effective in enhancing cognitive stage 

classification and predicting MMSE scores, providing valuable insights for clinical applications. 

7.4 Overall Conclusions 

This thesis has explored various AI techniques to enhance predictive performance and 

explainability of DNN models, particularly in AD prediction, where accuracy and 

interpretability are essential for clinical contexts. The research has focused on three primary 

aspects: Feature Selection, Sensitivity Analysis, and Transfer Learning with autoencoders. 

These methodologies have significantly enhanced accuracy, explicability, and data efficiency. 

Integrating these approaches can lead to robust and interpretable AI frameworks, advancing 

the field of AI and facilitating the integration of DNN models into critical domains. 

A particularly noteworthy finding of this thesis is that the features selected by the 

clustering-based FS technique, approximately four features, were also prioritised by SA 

models. This convergence suggests that the chosen features are statistically significant and 

medically relevant. This alignment strengthens the reliability of these features in AD diagnosis 

and progression prediction.  

Beyond the specific methodologies explored in this thesis, these findings highlight 

broader implications for AI in critical domains. Integrating FS, SA, TL, and autoencoders aligns 

with key objectives in AI-driven domains, including improving transparency, reducing data 

requirements, and increasing the accuracy of predictive models. This research has 

demonstrated that lowering dimensionality while preserving essential information is possible 

and beneficial for improving model generalisation. Additionally, by utilising pre-trained 

models and autoencoders, AI models can be developed with less reliance on extensive labelled 

datasets, addressing one of the significant challenges in healthcare. 

An effective integration combines feature selection, transfer learning, and 

autoencoders to address high-dimensional, noisy datasets. The correlation-based FS method 

proposed in this thesis efficiently reduces input space while maintaining or improving 

predictive accuracy. Applying FS prior to TL refines the dataset, lowering computational 
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complexity and improving model generalisation. Autoencoders further optimise feature 

representations by compressing irrelevant information and extracting essential patterns. This 

synergistic approach enables the construction of efficient, scalable, and interpretable AI 

models for complex tasks. 

Additionally, sensitivity analysis can be integrated with TL and autoencoders to 

enhance feature prioritisation. Techniques such as SHAP and SALib, as employed in this 

research, guide the selection of influential features from pre-trained models, improving the 

reliability and focus of TL-based architectures. Autoencoders can further refine these features 

by eliminating redundancy while preserving critical information, supporting the development 

of explainable and computationally efficient AI pipelines. 

Alternatively, SA can be applied after the TL process to evaluate and interpret feature 

importance in the transferred model. These evaluations are particularly valuable for AD 

models, as they ensure the transferred features maintain clinical relevance. Using diverse SA 

techniques such as SHAP, Permutation Feature Importance (PFI), and DiCE offers 

complementary perspectives—local, global, and counterfactual—on model behaviour. This 

post-hoc sensitivity evaluation enhances interpretability by validating which features remain 

critical after knowledge transfer, further supporting model transparency and robustness. 

Furthermore, the potential impact of these integrated approaches extends beyond 

the specific application domain explored in this study. The methodologies developed in this 

thesis can be applied to other complex, high-dimensional datasets and broader AI tasks where 

data complexity, interpretability, and limited labelled data remain significant challenges. The 

use of feature selection, sensitivity analysis, and transfer learning with autoencoders offers a 

scalable blueprint for designing AI models that are not only highly accurate but also aligned 

with real-world computational and interpretability requirements.  

In conclusion, this thesis has laid the groundwork for a comprehensive AI framework 

capable of producing accurate, reliable, and interpretable models. Utilising feature selection, 

sensitivity analysis, transfer learning, and autoencoders presents a robust approach to 

addressing key challenges in explainability, data efficiency, and predictive performance. 

Future research should focus on refining and validating these methods using larger, 

heterogeneous datasets and exploring their deployment within practical, real-world AI 
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systems. Ultimately, this research significantly contributes to advancing the development of 

transparent, efficient, and scalable AI solutions for complex, high-stakes decision-making 

environments across various domains.  

7.5 Limitations of the Study 

While there are significant advancements in AI applications, particularly in FS, model 

explainability and TL, it is imperative to point out the limitations experienced during the 

analysis. 

7.5.1 Limited Dataset Size: 

A prominent limitation identified in the existing literature is the limited number of 

datasets employed, particularly specific conditions such as AD and supplement evaluations. 

Although the gathered data has proven advantageous, it is imperative for researchers to 

obtain additional data to enhance the generalisability and robustness of their models. With a 

broader and diverse array of patient data, the findings could achieve excellent representation 

and applicability within broader healthcare contexts. It is recommended that future research 

emphasises the augmentation of dataset sizes through partnerships with larger institutions to 

ensure results that are both reliable and broadly applicable. 

7.5.2 Generalisability of MRI-Based Models: 

The use of MRI scans as the primary data source presents another limitation in terms 

of generalisability. Although the MRI scans provide valuable structural insight, the models 

built within this research study may not fully capture the complexity of the development of 

AD over different populations or within different stages of the progression of the disease. 

Training on MRI data alone may not adequately support model generalisability across 

different types of patients or NDDs. Including other forms of data, such as clinical notes, 

medical evaluations or data on other biomarkers, would alleviate this issue and enhance the 

applicability of the models in various medical settings. 

In summary, the few demerits of this research are the small size of the available 

dataset, and over-dependence on MRI scans. Addressing these challenges with volumetric 
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data and diverse diseases would be imperative in increasing the robustness and applicability 

of AI models in the medical field. 

7.6 Future Directions 

7.6.1 Enhancing AI with Integrated Methods 

One avenue for future research is to further explore the integration of feature 

selection, transfer learning, autoencoders, and sensitivity analysis to enhance model 

efficiency, interpretability, and scalability. Applying sensitivity analysis either before or after 

transfer learning, using techniques such as SHAP, PFI, and DiCE, can offer diverse insights into 

feature importance and enhance model transparency in complex, high-dimensional tasks. This 

combined approach can reduce computational costs, enable effective generalisation to 

unseen datasets, and support the development of AI models that are both accurate and 

explainable. Such models would be particularly valuable in real-world applications where 

decision traceability, reliability, and data efficiency are critical. Ultimately, this framework 

could serve as a foundation for building robust AI solutions capable of addressing complex 

challenges across various domains. 

7.6.2 Integrating Real-Time Data Streams into AI Models 

One area with potential for further exploration and advancement is the integration 

of real-time data into AI systems. As technology advances, the utilisation of real-time data, for 

instance, through health trackers or monitoring patients in a hospital, enables the possibility 

of deploying AI models that could evolve with re-training on data as the disease progresses. 

This approach would provide much-needed support in clinical settings where care is time-

bound and data-driven decisions are made rapidly. However, further research is necessary to 

address the real-time AI issues that arise from the practical application of these models, while 

also preventing risks to patients and breaches of data confidentiality. One promising area for 

further exploration is the integration of real-time data into AI systems. As technology 

advances, utilising continuous data streams from sensors, IoT devices, or dynamic 

environments presents opportunities to deploy AI models capable of evolving through 

incremental or online learning. This would enable AI systems to adapt to changing conditions 
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and support rapid, data-driven decision-making in time-sensitive applications. However, 

further research is required to address the practical challenges of real-time AI, including 

system reliability, computational efficiency, and data privacy concerns in dynamic deployment 

scenarios. 
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Appendix A 

MRI-Derived Dataset, Access and Reproducibility 

The MRI and cognitive assessment datasets used in this thesis were sourced from established 

research repositories. Due to licensing and data-use restrictions, these datasets cannot be 

redistributed directly as part of this thesis or any accompanying repository. To support full 

reproducibility, the official access points, approval requirements, and download instructions 

are provided below. 

1. ADNI  

• Access portal: ADNI Website  

• Access requires registration, acceptance of the Data Use Agreement, and approval 

from the data managers of the repository. 

• Imaging scans (T1-weighted MRI) and associated clinical/cognitive metadata can be 

downloaded in standard formats. 

2. AIBL  

• Access portal: AIBL website 

• Access is granted upon free registration, agreement to the Data Use Policy, and 

approval from the data administrators. 

• Imaging scans (T1-weighted MRI) and associated clinical/cognitive metadata can be 

downloaded in standard formats.  

3. IXI 

• Access portal: IXI website 

• Access requires free registration, acceptance of the Data Use Agreement, and approval 

from the data administrators. 

• Imaging scans (T1-weighted MRI) and associated clinical/cognitive metadata can be 

downloaded in standard formats. 

Researchers intending to reproduce the experiments should obtain the datasets directly from 

the corresponding repositories, follow the preprocessing pipelines and apply the feature 

extraction procedures described in Chapter 3. This appendix ensures that the entire 

experimental workflow can be replicated without violating any data-sharing policies. 

https://adni.loni.usc.edu/
https://adni.loni.usc.edu/category/aibl-study-data/
https://brain-development.org/ixi-dataset/
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All structural MRI features were generated using FreeSurfer and grouped into cortical 

morphometry, subcortical volumes, ventricular measures, and hippocampal subfields.  

Annexure A Table - 1 Overview of Feature Types and Counts 

Anatomical 
Category 

Area Thickness 
Thickness 

SD 
Mean 

Curvature 
Volume 

Total 
Features 

Left Hemisphere 
Cortex 

34 34 34 34 34 170 

Right Hemisphere 
Cortex 

34 34 34 34 34 170 

Subcortical and 
Ventricular 
Structures 

- - - - 29 29 

Corpus Callosum 
Regions 

- - - - 6 6 

Hippocampal 
Subfields (L/R) 

- - - - 26 26 

Total 68 68 68 68 129 401 

Raw datasets (ADNI, AIBL, IXI) cannot be redistributed, but the full list of feature 

names used in this thesis is provided below for transparency and reproducibility. 

(A) Features from Left Hemisphere Cortical Regions 

Each region includes: area, meancurv, thickness, thicknessstd, volume. 

lh_bankssts 

lh_caudalanteriorcingulate 

lh_caudalmiddlefrontal 

lh_cuneus 

lh_entorhinal 

lh_fusiform 

lh_inferiorparietal 

lh_inferiortemporal 

lh_isthmuscingulate 

lh_lateraloccipital 

lh_lateralorbitofrontal 

lh_lingual 

lh_medialorbitofrontal 

lh_middletemporal 

lh_parahippocampal 

lh_paracentral 

lh_parsopercularis 

lh_parsorbitalis 
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lh_parstriangularis 

lh_pericalcarine 

lh_postcentral 

lh_posteriorcingulate 

lh_precentral 

lh_precuneus 

lh_rostralanteriorcingulate 

lh_rostralmiddlefrontal 

lh_superiorfrontal 

lh_superiorparietal 

lh_superiortemporal 

lh_supramarginal 

lh_frontalpole 

lh_temporalpole 

lh_transversetemporal 

lh_insula 

(B) Features from Right Hemisphere Cortical Regions 

Each region includes: area, meancurv, thickness, thicknessstd, volume. 

rh_bankssts 

rh_caudalanteriorcingulate 

rh_caudalmiddlefrontal 

rh_cuneus 

rh_entorhinal 

rh_fusiform 

rh_inferiorparietal 

rh_inferiortemporal 

rh_isthmuscingulate 

rh_lateraloccipital 

rh_lateralorbitofrontal 

rh_lingual 

rh_medialorbitofrontal 

rh_middletemporal 

rh_parahippocampal 

rh_paracentral 

rh_parsopercularis 

rh_parsorbitalis 

rh_parstriangularis 

rh_pericalcarine 

rh_postcentral 

rh_posteriorcingulate 
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rh_precentral 

rh_precuneus 

rh_rostralanteriorcingulate 

rh_rostralmiddlefrontal 

rh_superiorfrontal 

rh_superiorparietal 

rh_superiortemporal 

rh_supramarginal 

rh_frontalpole 

rh_temporalpole 

rh_transversetemporal 

rh_insula 

(C) Features from Subcortical & Ventricular Structures 

Left-Lateral-Ventricle 

Left-Inf-Lat-Vent 

Left-Cerebellum-White-Matter 

Left-Cerebellum-Cortex 

Left-Thalamus-Proper 

Left-Caudate 

Left-Putamen 

Left-Pallidum 

Left-Amygdala 

Left-Accumbens-area 

Left-VentralDC 

Left-choroid-plexus 

Right-Lateral-Ventricle 

Right-Inf-Lat-Vent 

Right-Cerebellum-White-Matter 

Right-Cerebellum-Cortex 

Right-Thalamus-Proper 

Right-Caudate 

Right-Putamen 

Right-Pallidum 

Right-Amygdala 
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Right-Accumbens-area 

Right-VentralDC 

Right-choroid-plexus 

3rd-Ventricle 

4th-Ventricle 

Brain-Stem 

Optic-Chiasm 

(D) Features from Corpus Callosum Regions & Supratentorial Volume 

CC_Posterior 

CC_Mid_Posterior 

CC_Central 

CC_Mid_Anterior 

CC_Anterior 

SupraTentorialVolNotVent 

(E) Features from Hippocampal Subfields (Left & Right) 

left_Hippocampal_tail 

left_subiculum 

left_CA1 

left_hippocampal-fissure 

left_presubiculum 

left_parasubiculum 

left_molecular_layer_HP 

left_GC-ML-DG 

left_CA3 

left_CA4 

left_fimbria 

left_HATA 

left_Whole_hippocampus 

right_Hippocampal_tail 

right_subiculum 

right_CA1 
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right_hippocampal-fissure 

right_presubiculum 

right_parasubiculum 

right_molecular_layer_HP 

right_GC-ML-DG 

right_CA3 

right_CA4 

right_fimbria 

right_HATA 

right_Whole_hippocampus 
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Appendix B 

Reproducibility Resources 

To support reproducibility and transparency of the experiments conducted in this thesis, the 

full source code used for feature selection, sensitivity analysis, and transfer-learning modules 

has been made publicly available on GitHub. 

Source Code Repository 

The complete implementation developed for this thesis is accessible at: 

GitHub: https://github.com/akhilatmakuru/Research_Papers 

The repository includes: 

• Python scripts for all proposed algorithms  

• A README file with instructions to run the code. 

‘requirements.txt’ listing all dependencies and versions. 

https://github.com/akhilatmakuru/Research_Papers

	Scientific Publications
	Abstract
	List of Abbreviations
	Table of Contents
	List of Figures
	List of Tables
	List of Algorithms
	1. INTRODUCTION
	1.1. Artificial Intelligence
	1.1.1. Recent Advances and Outstanding Challenges in Machine Learning
	1.1.2. Blackbox Behaviour
	1.1.3. Explainability and Accuracy Trade-Off
	1.1.4. Explainability in Artificial Intelligence and Frameworks

	1.2. Neurodegenerative Diseases
	1.2.1. Changes in the brain for progression to AD
	1.2.2. Early diagnosis and its impact
	1.2.3 Brief of Stages of AD and MMSE Scores
	1.2.4     AI methods for AD diagnosis

	1.3. Overview of the Focus of Research
	1.3.1. Feature Selection
	1.3.2. Sensitivity Analysis
	1.3.3. Transfer learning with autoencoders.

	1.4. Problem statement and its proposed solution
	1.4.1. Problem statement
	1.4.2. Motivation
	1.4.3. Research Gap
	1.4.4. Proposed solution
	1.4.5. Objectives

	1.5. Structure of the Thesis

	2. Related Work
	2.1 Literature Review for Feature Selection
	2.2 Literature Review for Sensitivity Analysis
	2.3  Literature Review for Transfer Learning
	2.4   Comprehensive Survey of Explainability and Interpretability Techniques
	2.4.1 Brief overview of XAI and explainability in ML/AI
	2.4.2 Key questions addressed by the literature review

	2.5 Conceptual Foundations
	2.5.1 Definitions and Terminology
	2.5.2 Importance of Explainability

	2.6 Taxonomy of Explainability Techniques
	2.6.1 By Time of Explanation
	2.6.1.1 Intrinsic Interpretability
	2.6.1.2 Post-hoc Explainability

	2.6.2 By Scope
	2.6.2.1 Global Explanations
	2.6.2.2 Local Explanations

	2.6.3 By Model Dependency
	2.6.3.1 Model-Agnostic Methods
	2.6.3.2 Model-Specific Methods

	2.6.4 By Technique Type
	2.6.4.1 Surrogate Models
	2.6.4.2 Perturbation-Based Methods
	2.6.4.3 Gradient-Based Methods
	2.6.4.4 Decomposition-Based Methods
	2.6.4.5 Attention-Based Methods
	2.6.4.6 Feature Attribution Methods
	2.6.4.7 Counterfactual and Example-Based Methods


	2.7 Literature review of explainability techniques
	2.7.1 SHAP (SHapley Additive exPlanations)
	2.7.2 LIME (Local Interpretable Model-Agnostic Explanations)
	2.7.3 Counterfactual Explanations
	2.7.4 Layer-wise Relevance Propagation (LRP)
	2.7.5 Graph Neural Networks with Causal Structural Models

	2.8 Evaluation of Explainability Methods
	2.8.1 Metrics and Benchmarks
	2.8.1.1 Fidelity
	2.8.1.2 Sparsity
	2.8.1.3 Stability
	2.8.1.4 Human simulatability
	2.8.1.5 Consistency

	2.8.2 Limitations of Current Evaluation Metrics
	2.8.3 Summary of the Literature Survey

	2.9 Challenges in Explainability Research
	2.9.1 Methodological Limitations
	2.9.2 Performance–Explainability Trade-off
	2.9.3 Faithfulness vs. Plausibility
	2.9.4 Bias Amplification and Adversarial Explanations
	2.9.5 The Rashomon Effect

	2.10 Summary of the Key Findings

	3 Dataset
	3.1 Sources of the data
	3.2 Further information regarding the MRI scans.
	3.3 FreeSurfer and Its Processing
	3.4 Post-processing
	3.5 General overview and statistics of the dataset
	3.5.1 Contributions of each data source
	3.5.2 Distribution of different genders among each of the data sources
	3.5.3 Distribution of healthy and multiple diseases within each data source
	3.5.4 The average age of data-subjects included in the data source
	3.5.5 Distribution of all the diseases
	3.5.6 Gender distribution among the diseases
	3.5.7 The average age of each instance of disease places the progression stages of AD
	3.5.8 Types of data attributes
	3.5.9 Cortex Volume
	3.5.10 Amygdala
	3.5.11 Whole Hippocampus
	3.5.12 Ventricle
	3.6  Experimental Setup
	3.6.1 Dataset for Feature Selection
	3.6.2 Dataset for Sensitivity Analysis
	3.6.3 Dataset for Transfer Learning


	4. Improved Filter-Based Feature Selection Techniques Based on Correlation and Clustering Techniques
	4.1 Methodology:
	4.1.1 CGN-FS: Correlation-based Greedy Neighbourhood Feature Selection
	Step 1: Correlation Matrix Generation
	Step 2: Computation of Evaluation Metrics
	Step 3: Sorting and Filtering Features
	Step 4: Final Feature Selection and Retrieval
	Step 5: Evaluation Across Multiple Thresholds

	4.1.2 RCH-FSC: Region and Clustering-based Heuristic Feature Selection with Clustering Analysis
	Step 1: Input and Initial Setup
	Step 2: Correlation Matrix Generation
	Step 3: Correlation Distance Calculation and Normalisation
	Step 4: Dimensionality Reduction via Principal Coordinate Analysis
	Step 5: K-medoids Clustering and Feature Selection
	Step 6: Final feature subset


	4.2 Results and Discussions:
	4.2.1 Quantitative Analysis:
	4.2.2  Discussion

	4.3 Summary of the Key Findings
	4.3.1 Advantages and Challenges of the proposed techniques
	4.3.2 Clinical Relevance
	4.4.3 Future Work


	5 Sensitivity Analysis for Feature Importance in Predicting Alzheimer’s Disease
	5.1 Methodology:
	5.1.1 Methodology using SALib
	Step 1: Data Preparation and SA technique Initialisation.
	Step 2: Augmented Data Generation in SALib Using Mean and Standard Deviation
	Step 3. Sensitivity Analysis Using SALib
	Step 4. Results Processing

	5.1.2 Methodology using SHAP

	5.2 Results and Discussion:
	5.2.1 Quantitative results:
	Similarity Analysis
	Final Feature Importance Ranking
	Feature Importance results in Tables

	5.2.2 Discussions:

	5.3 Summary of the Key Findings
	5.3.1 Clinical Relevance
	5.3.2 Future Work


	6. Transfer Learning for Predicting Cognitive Staging in Alzheimer's Disease
	6.1 Methodology
	6.1.1 Regression analysis to predict the age of the MCI patients
	6.1.2 Transfer Learning
	6.1.3 Autoencoder:
	6.1.4 Regression followed by categorisation:

	6.2 Results and Discussion:
	6.2.1 Quantitative results
	6.2.2 Discussions

	6.3 Summary of the Key Findings
	6.3.1 Clinical relevance
	6.3.2 Future work


	7. Conclusion
	7.1. Feature Selection Summary
	7.2. Sensitivity Analysis Summary
	7.3  Transfer Learning with Autoencoder Summary
	7.4 Overall Conclusions
	7.5 Limitations of the Study
	7.5.1 Limited Dataset Size:
	7.5.2 Generalisability of MRI-Based Models:

	7.6 Future Directions
	7.6.1 Enhancing AI with Integrated Methods
	7.6.2 Integrating Real-Time Data Streams into AI Models


	References
	Appendix A
	Appendix B

