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Abstract

This thesis addresses the three fundamental challenges for enhancing the performance of
Machine Learning (ML) models. Despite their evolving predictive capabilities, MLs still present
significant limitations in generalisability, particularly in high-dimensional settings,
interpretability, and high data requirements. These issues require methodologies that reduce
input data dimensionality, enhance transparency, and utilise prior knowledge to moderate
the scale of data requirements, thereby improving the performance, reliability, and efficiency

of machine learning solutions in practical applications.

Accordingly, this thesis introduces three independent methods responsive to the
above main limitations that need to be overcome to enhance the performance and
transparency of models in complex task domains. First, two filter-based feature selection
techniques—one correlation-driven and the other clustering-based—are developed to reduce
redundancy and enhance generalisability in high-dimensional data. The correlation-based
technique outperforms the state-of-the-art (as represented by ReliefF) in both internal and
external validations. Second, an ensemble explainability framework integrates Shapley
Additive Explanations (SHAP) values with Sobol indices, combining their rankings to yield
stable and interpretable attributions. Third, a multi-stage algorithm couples transfer learning
with an autoencoder to minimise labelled data requirements without adversely affecting

performance.

All proposed methods yielded quantifiable improvements. The feature selection
techniques reduced input dimensionality while enhancing accuracy and generalisability
compared to ReliefF. The ensemble explainability framework produced consistent attributions
under varying data distributions and reliably identified informative input features. The multi-
stage algorithm achieved enhanced classification performance with reduced reliance on

labelled data.

Case-Study: The proposed methods were validated in the context of medical diagnosis
for early-stage prediction of dementia, utilising a structural Alzheimer’s MRI dataset. In this
application, optimising the feature selection, as described above, enhanced the cross-cohort
accuracy and decreased the data dimensionality. The explainability framework consistently

identified clinically relevant regions, such as hippocampal subfields (W. Zhao et al., 2019) and
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the temporal horn (Vernooij and van Buchem, 2020), supporting the credibility of feature

relevance. The data-efficient multi-stage pipeline achieved an accuracy of 73.26%, exceeding

prior baselines (Li et al., 2015; Oh et al., 2019).

This thesis concludes that the proposed correlation and clustering-based feature
selection, ensemble explainability combining SHAP and Sobol, and transfer learning with
autoencoders have led to enhanced accuracy, robustness, and transparency of the
performance of the machine learning models. Although this was validated for the Alzheimer’s
validation task, these methods are domain-agnostic and provide scalable, reliable, and

resource-efficient approaches for high-dimensional, data-limited real-world applications.
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1. INTRODUCTION

Artificial Intelligence (Al) has impacted daily routines, such as work, education,
communication and socialising, by imitating human intelligence to perform tasks and make
decisions. Sophisticated Al models utilising Deep Learning (DL) can analyse large quantities of
varied data, inherently grasp complex nonlinear connections between dependent and
independent variables and provide accurate decisions. Therefore, Al models can address
numerous real-world issues. Their deployment spans many applications, such as
smartphones, autonomous vehicles, and vital services such as banking, healthcare, law
enforcement, and the military. Al models excel in speech, image recognition, translation,

natural language processing, computer vision, and autonomous driving.

Al is essential in modern industry, as advanced Al models can analyse vast amounts
of complex, high-dimensional data. Developing Al-based classifiers facilitates accurate pattern
recognition, anomaly detection, and performance forecasting across various domains. Al
models assist experts in decision-making, system optimisation, and delivering tailored
solutions, demonstrating predictive accuracy comparable to traditional expert-driven
methods. However, despite these advancements, the adoption of Al in critical real-world

applications remains challenging.

Although Al models perform excellently, industry practitioners often hesitate to
deploy these models in operational pipelines. The primary concern is the lack of transparent
explanations for model behaviour, primarily due to the black-box nature of DL models. In high-
stakes environments, decisions must be explainable, reliable, and trustworthy. Additionally,
regulatory frameworks require organisations to provide accountability for decisions made by
their algorithms. These challenges have sparked research efforts to advance eXplainable Al

(XALl) techniques through Sensitivity Analysis (SA) (Arrieta et al., 2020).

Developing precise and interpretable Al models, particularly for complex
classification and decision-making tasks, requires addressing challenges related to data
dimensionality, quality, and availability. Feature Selection (FS) is key to improving Al model
performance by identifying the most relevant features while minimising irrelevant or noisy
data. Many real-world datasets, such as those collected from sensors, logs, or transactional

records, are high-dimensional, making FS essential for improving model accuracy,
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interpretability, and computational efficiency. Techniques such as Pearson correlation,
Recursive Feature Elimination (RFE), and LASSO regression help refine predictive models by

selecting the most discriminative features and enhancing pattern recognition.

Despite advancements in Al, a significant challenge in real-world applications is the
scarcity of large, labelled datasets, often due to privacy constraints, data sensitivity, or the
high cost of expert annotations. Transfer Learning (TL) helps to overcome this issue by utilising
pre-trained models on large, publicly available datasets and adapting them to smaller,
domain-specific datasets. By fine-tuning DL models on large multi-source datasets, TL
enhances predictive accuracy, accelerates training, and reduces overfitting. In monitoring and
predictive modelling, TL enables Al systems to efficiently analyse evolving patterns, forecast

critical changes, and integrate diverse information sources.

This chapter analyses the relative merits and demerits of various Al methodologies.
It also aims to explain key concepts, challenges, and model behaviours in complex, high-
dimensional environments, including their broader impact on model reliability and
performance. The chapter discusses the integration of Al with real-world applications, with
particular emphasis on its use in high-stakes decision-making tasks. This review examines
Feature Selection (FS) methods, Sensitivity Analysis (SA) techniques, and Transfer Learning
(TL) approaches, providing a foundation for this research. It then sets the stage for an in-depth
investigation of these methodologies in the subsequent chapters by explaining how they
enhance model accuracy, enhance explainability, and utilise existing knowledge for efficient
learning. Additionally, overcoming these challenges is crucial to enhancing the understanding
of complex systems, which can lead to the development of effective, trustworthy, and scalable

Al applications.

1.1. Artificial Intelligence

Artificial Intelligence (Al) is a branch of computer science that focuses on designing algorithms
enabling machines to perform tasks requiring intelligent behaviour. It involves computational
models for perception, reasoning, learning, and decision-making. Building on the widespread
influence of Al in various sectors, this section explores the fundamental principles, learning
methods, and functionalities that define Al systems. The rapid rise in processing capabilities

and data accessibility has driven Al to the forefront of its advancement (Duan et al., 2019).
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This field of research has undergone a significant transformation, with researchers rigorously
evaluating its advantages and current challenges. Al has enhanced several sectors, such as

banking, manufacturing, and healthcare, by effectively managing various complex tasks.

Machine Learning (ML) is a subfield of Al that focuses on developing algorithms that
enable systems to learn patterns from data. It involves statistical modelling, optimisation, and
generalisation to improve performance on tasks without explicit programming. ML has three
main learning approaches: supervised, semi-supervised, and unsupervised learning, as shown

in Figure 1- 1.

Machine Learning Approaches

4 N
The model is trained on a | Grouping unlabelled data
labelled dataset. [ after gaining insights

from labelled data.
/ \_
7
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patterns in the input
data.

J

Figure 1- 1 Machine Learning Approaches

Supervised learning is crucial in classification and prediction tasks, as models train on
labelled data with known input-output pairs. This approach is effective in scenarios involving

historical data, providing precise predictions of results (Cunningham et al., 2008). Semi-

supervised learning utilises both labelled and unlabelled data to optimise model performance,
particularly in scenarios where acquiring labelled data is resource-intensive. This approach
enhances the decision boundary by incorporating the structure of the unlabelled data
distribution, improving generalisation and reducing reliance on limited labelled samples (Y.

C.A.P.Reddy et al., 2018) .
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On the other hand, unsupervised learning models independently discover hidden
patterns, correlations, and underlying influences using data without predetermined labels

(Barlow, 1989). These approaches provide flexible resources for retrieving valuable data

insights, each designed for various industries such as finance, healthcare, and marketing. Al
learning methods provide powerful tools for data-driven decision-making, but their real-world

impact depends on their strengths and limitations.

1.1.1. Recent Advances and Outstanding Challenges in Machine Learning

Al provides numerous advantages, leading to significant progress in transforming different
sectors. An important benefit is its capacity to simplify everyday tasks, improving productivity
and enabling the workforce to focus on complex and innovative endeavours. Additionally,
different industries, such as manufacturing, healthcare, finance, chatbots, virtual assistants,

e-commerce, scientific research, drug development, and climate research, use Al models.

Al-powered robots in manufacturing are capable of carrying out assembly line duties
with accuracy and speed, resulting in decreased production expenses and enhanced output

quality (Grau et al., 2021). Al analyses large data sets, recognises patterns and insights, and

swiftly makes accurate decisions. This ability is crucial in domains such as healthcare, where
Al can significantly impact the identification of illnesses, forecasting of patient outcomes, and

personalisation of treatment strategies (Panesar, 2021). Al, when applied in the financial

sector, can examine market patterns and identify fraudulent activities instantly, leading to

increased profitability and security (Hafez et al., 2025). Adam et al. (2021) state that Al-

powered chatbots and virtual assistants enhance customer satisfaction by offering immediate

assistance and tailored interactions.

Within scientific research, Al accelerates discovery by effectively analysing large
datasets, recognising complex patterns, and creating predictive models. These innovations in
climate science have resulted in significant advancements in accurately predicting

environmental changes (Huntingford et al., 2019). Integrating Al into education enables

adaptive systems that model individual cognitive processes and personalise content.
Techniques such as reinforcement learning and intelligent tutoring systems support diverse
learning styles and promote autonomy. The systems offer real-time feedback and detailed

analysis of student engagement and progress (Zhai et al., 2021).
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Although Al offers numerous benefits, it also has several significant disadvantages
and limitations. Among the many challenges of Al, one of the most pressing issues in critical
applications such as finance and healthcare is the ‘black box’ nature of DL models, which raises
concerns about transparency and trustworthiness (Rudin, 2019). Moreover, Al systems often
require substantial amounts of data to operate efficiently. Collecting, storing, and analysing
this data can require significant resources and potentially raise privacy concerns (Philip Chen

and Zhang, 2014). Violating or breaching regulations concerning this information may result

in substantial ethical and legal complications, weakening confidence in Al technologies (Stahl,

2021).

A significant drawback of Al is its reliance on the quality of the data it is trained on.
When trained on biased or incomplete data, Al can reinforce biases and produce inequitable
results. This can significantly affect individuals and communities in sensitive domains such as

hiring, law enforcement, and lending (Martin, 2019). It is crucial to acknowledge and address

the downsides and limitations of Al, such as privacy issues, biased algorithms, and inadequate
transparency. This strategy is vital for ensuring the responsible and beneficial use of Al

technology.

1.1.2. Blackbox Behaviour

Despite the significant potential of Al systems, there remains a reluctance to adopt DL and
Deep Neural Network (DNN) models in critical sectors such as medical diagnostics, defence,
automobile automation, financial prediction, and the justice system. Deep Learning, a subset
of machine learning, refers to the use of multilayered artificial neural networks to learn
hierarchical feature representations from large-scale data. The black-box nature of DL models
poses a significant challenge to their implementation. DNNs often operate using complex,
hidden internal mechanisms that are challenging for humans to comprehend, raising concerns
about the transparency and reliability of their decision-making. In the healthcare industry,
unexplainable systems can cause distrust among clinicians making life-changing decisions,

leading to hesitation in trusting or understanding the reasoning of the model (Rosenbacke et

al., 2024).

In this context, the concepts of explainability and interpretability become crucial

(Nassar et al., 2020). Interpretability focuses on providing clear reasons why an Al model
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makes specific predictions or decisions, aiming to make the underlying mechanisms and logic
of the model understandable to users. Understanding model decisions is critical in complex
models, such as DNNs, where outcomes may not be visible or intuitive. On the other hand,
explainability refers to how easily a human can comprehend the relationship between the
input and output of the model. Classic models, such as decision trees and linear regression,
are inherently explainable because their decision-making processes are straightforward.
Nevertheless, as model complexity increases, preserving explainability becomes challenging.
Despite their high accuracy, DNNs have limited explainability, hindering their application in

real-world settings.

1.1.3. Explainability and Accuracy Trade-Off

Enhancing explainability highlights an inherent challenge in Al development—the trade-off
between model accuracy and explainability. When developing and implementing Machine
Learning (ML) models, a common performance trade-off arises between precision and

explainability (Wanner et al., 2021). Linear regression and decision trees are easy to

understand, explain, and validate, even for those with limited Al knowledge (Izza et al., 2020).

This simplicity fosters greater trust in these models because their decision-making processes
are transparent and understandable. Users can easily trace how these models arrived at a
particular decision or prediction, making them particularly appealing when trust and

accountability are crucial.

Nevertheless, as research goals become complex, the limitations of these models
become evident, frequently requiring the utilisation of advanced DL models. Nonlinear models
can manage higher complexity and generate precise outcomes but typically trade off
transparency in explanations. One optimal illustration of this compromise is evident in

Convolutional Neural Networks (CNNs) (Jung et al., 2021). Although CNNs have shown

outstanding results in domains such as image recognition, understanding their internal
operations proves challenging, even for experts. The lack of transparency due to this opacity
hinders the ability to justify the reasoning behind a particular prediction outcome by the

model.

Hence, there is a conflict between models that are understandable yet less precise

and those that are accurate yet less interpretable. Basic models are easier to understand, yet
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they may not possess the sophistication, i.e., the learning capability needed to achieve
maximum predictive precision. Conversely, while yielding enhanced results, complex models
often obscure the decision-making process, eroding trust among users, particularly in high-
stakes domains. In law, finance, and healthcare, predictive accuracy is of paramount
importance for validation. In these domains, the success of the model depends primarily on
its ability to produce precise and reliable results. However, despite the emphasis on accuracy,

the need for explainability remains critical, particularly from the end user’s perspective.

The increased significance of explainability requires Al systems to balance precise
predictions and understandable explanations. Despite their exceptional predictive accuracy,
complex models such as CNNs and other DNN techniques must provide transparency. This
approach has led to the development of XAl methods using SA techniques that focus on

making complex models explainable so that experts can trust the decisions of Al models.

In recent years, several diverse domains have embraced the explainability
component of Al, prioritising trustworthiness and transparency over pure accuracy. The right
balance between accuracy and explainability is crucial for the successful adoption of Al in
critical domains. Researchers and domain experts can ensure that DL models provide precise
predictions and generate explanations that foster trust and enable informed decision-making

by incorporating techniques that enhance explainability, such as XAl frameworks.

1.1.4. Explainability in Artificial Intelligence and Frameworks

To address these obstacles, it is crucial to develop DL models that are both precise and offer
clear explanations. This helps experts to understand results, make informed choices, and trust
Al-based systems. Realising the full potential of DL in critical domains requires dedicated

efforts to develop easily understood and explainable Al (D. Kaur et al., 2023).

Researchers have developed XAl frameworks to address the challenges posed by
black-box Al models, thereby enhancing transparency and trust. These frameworks provide
insights into how Al generates predictions, making them interpretable for practitioners and
researchers. Sensitivity Analysis (SA) is a key technique within XAl that investigates how
variations in input features influence model outputs, thereby revealing the internal decision-
making process of complex models. By quantifying feature relevance, SA enhances model
interpretability and facilitates the identification of inputs that most significantly drive
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predictions. SA directly advances the objectives of XAl by enhancing the transparency,
interpretability, and trustworthiness of opaque models—such as deep neural networks. XAl
frameworks are crucial for generating explanations and enhancing the transparency of DNNs,

thereby fostering user confidence in Al-driven decisions.

SHapley Additive exPlanations (SHAP) is a critical framework that utilises game

theory, mainly focusing on Shapley values (Lundberg and Lee, 2017). SHAP assigns a weight to

each feature based on its contribution to the prediction made by the model by considering all
possible feature combinations. This method ensures a fair distribution of feature importance,
providing both local and global insights into the model. SHAP is applicable across various ML

and DL models, offering accurate and consistent explanations.

Figure 1- 2Error! Reference source not found. presents various XAl frameworks. The
techniques discussed in this section represent only a small subset of the complete range of

available methods.
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Figure 1- 2 Current eXplainability in Al (XAl) Frameworks
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Methods such as Sobol, Morris, and Fourier Amplitude Sensitivity Testing (FAST) are
vital for comprehending Al model predictions by assessing feature importance. The Sobol
method, a variance-based approach, breaks down the model output variance into
contributions from input variables and their interactions, thereby providing a comprehensive

global view of feature importance (Sobol, 2001). In contrast, the Morris method is a practical

One-At-a-Time (OAT) technique that approximates the elementary effects of input variables
through small perturbations and measurement of the resulting output changes. This makes it
effective for identifying key features without heavy computational demand (Morris, 1991).
The FAST method, which operates in the frequency domain, derives sensitivity indices by
transforming input variables and analysing variance across different frequencies, serving as a

computationally efficient alternative to the Sobol approach (Saltelli et al., 1999). These XAl

frameworks that use SA techniques provide valuable insights into model behaviour by

providing global interpretability and fostering trust in Al-driven solutions and decision-making.

For models requiring visual explanations, Individual Conditional Expectations (ICE)
extend the Partial Dependence Plot (PDP) method by providing individual-level plots

(Friedman, 2001; Goldstein et al., 2015). While PDP provides the average effect of a feature

on predictions, ICE generates disaggregated plots for specific data points by altering one
feature while keeping others constant. This approach provides a granular understanding of
how feature changes affect individual predictions. ICE is model-agnostic and can be applied to

many black-box models, making it a valuable tool for local and global interpretability.

XAl frameworks, such as SHAP, Sobol, Morris, FAST, PDP, and ICE, help make Al
models interpretable and trustworthy. These frameworks utilise SA to quantify the impact of
input features on predications and provide various explanation forms, from visual heatmaps

to textual and numerical outputs, suitable for different user needs (Viswan et al., 2024).

Whether used for local instance-based explanations or global insights into model-wide
behaviour, these tools help bridge the gap between complex Al systems and human
understanding, ensuring that Al-driven decisions are transparent and explainable across

different domains.

1.2. Neurodegenerative Diseases
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As the primary dataset utilised in this research is derived from Alzheimer’s Disease (AD)
research, this section provides a brief overview of Neurodegenerative Diseases (NDD), with a
particular emphasis on AD, to provide contextual understanding for the experimental work.
The AD dataset serves as a critical benchmark for validating the proposed methodologies, such
as feature selection, sensitivity analysis, and transfer learning techniques. While the core
focus of this thesis lies in advancing Al strategies, it is essential to introduce AD to justify its
relevance as a complex, high-dimensional, and real-world dataset that presents unique

challenges in classification and model interpretability.

NDD is an umbrella term that refers to a range of conditions that involve the
progressive loss of neurons in the brain, spinal cord, and central and peripheral nervous
systems. Most diseases typically stem from a combination of lifestyle, environmental, and
genetic factors. Despite their distinct pathologies, each of the NDDs originates from abnormal

protein buildup (Ross and Poirier, 2004). Most NDDs are irreversible; however, proactive

management can help mitigate their impact. Treatment aims to control symptoms and slow
the progression of the disease. Healthcare providers use various therapies and medications to
enhance the patient’s quality of life. An ageing global population increases NDD prevalence,
presenting a significant public health challenge. Although they have different mechanisms,
most NDDs exhibit common traits, such as progressive neurodegeneration and cognitive or

motor decline.

1.2.1. Changes in the brain for progression to AD

AD has several clinical forms and is one of the NDDs which progresses in stages, affecting an

individual's cognitive abilities and daily living activities (Zhang and Jiang, 2015). AD presents

itself in patients at distinct times and with different severities. The symptoms gradually
progress in severity and take several years before reaching their peak. Nonetheless, the pace
of the disease and the set of symptoms manifesting may vary remarkably from one person to

another.

Researchers usually simplify the progression to Alzheimer’s Disease (AD) into three
phases: the Cognitively Normal (CN) stage, the Mild Cognitive Impairment (MCI) stage, and

the Alzheimer’s Disease (AD) stage. The literature often uses various designations for subjects
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in the preclinical period with no apparent cognitive symptoms, such as the early stage of CN,

No Dementia (ND), Normal Condition (NC), and Healthy Controls (HC).

In the Cognitively Normal (CN) or preclinical stage, individuals show no overt
symptoms of AD. However, evidence suggests AD symptoms can begin affecting the brain up

to 20 years before clinical diagnosis (Rajan et al., 2015). Signs of change, such as beta-amyloid

plagues and tau neurofibrillary tangles, are visible in the brain during this stage- both are

diagnostic features of Alzheimer’s (Paula et al., 2009). These neurotoxic proteins damage

neurons and disrupt brain connectivity, even in the absence of clinical symptoms. To detect
brain changes, Doctors may diagnose preclinical AD through cerebrospinal fluid (CSF) analysis

or advanced imaging techniques, such as MRI and PET scans (Blennow et al., 2015). This

condition is commonly caused by excessive lipid accumulation and marks the final stage of AD,

where patients show measurable cognitive symptoms.

Figure 1- 3 presents typical MRI images corresponding to different stages of
Alzheimer's disease, such as normal, very mild, mild, and moderate stages adapted from

Battineni et al. (2021).

Figure 1- 3 MRI Images presenting different AD Stages. a. non-demented; b. very mild dementia,; ¢ mild

dementia; d moderate dementia Battineni et al. (2021)

As the pathology progresses to Mild Cognitive Impairment (MCI), noticeable
cognitive impairments emerge, but they are not severe enough to significantly disrupt daily
activities. MCI often signals AD, linked to memory declines, articulation issues, and executive
dysfunction, such as planning or reasoning difficulties, which become evident to individuals

and families. The key brain structures affected include the hippocampus, amygdala, and
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entorhinal cortex, which are crucial for memory formation and spatial orientation. In this
degeneration, the affected regions shrink, while the ventricles enlarge. Early memory deficits,

particularly the shrinking of the hippocampus, indicate the onset of these stages (Apostolova
et al., 2012).

Figure 1- 4 illustrates a brain cross-sectional image highlighting the differences

between a healthy brain and one affected by Alzheimer's disease (Tamanini et al., 2009).

Brain Cross-Sections

S
Sulcus \
-
Gyrus \ 3

.

Lungﬁm

l ] Memory

Normal Alzheimer's

‘ . \ Sulcus
-~ t (‘ / J/ Gyrus

7

\ Vonlriclo//\

(4

Figure 1- 4 Difference in the structure of the brain between the normal and Alzheimer’s (Tamanini et al., 2009)

As the condition progresses to the stage of Alzheimer’s Disease (AD), the individual
experiences a severe cognitive decline, and their ability to perform typical daily activities
significantly deteriorates. At this level, the individual faces extreme memory problems,
disorientation, and a failure to recognise people, places, and things that are otherwise
familiar. There are still significant structural changes in the brain, in addition to the existing
condition, which represents a further advancement in the shrinkage of both the hippocampus
and the cerebral cortex, along with an increase in the size of the ventricles. The entorhinal
cortex, which plays a role in language, reasoning, and social interaction, undergoes significant
atrophy. As a result, many people lose these skills, experience personality changes, and
struggle with declining reasoning abilities. The illness progresses through acute exacerbation

before being categorised into three stages: mild, moderate, and severe.

AD ultimately causes a total breakdown of cognitive and physical functions,

preventing patients from performing basic activities. Its progressive nature makes AD one of
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the most challenging NDDs for both patients and caregivers. Progression to the severe stage
signifies a decline in cognitive abilities but also creates a heavy emotional burden on

caregivers and the healthcare system.

1.2.2. Early diagnosis and its impact

Early diagnosis has enormous potential to enhance the quality of life for those affected by
NDDs. In addition to benefiting patients, this proactive approach significantly benefits the
economy, society, and families by decreasing social, financial, and emotional burdens. Even
though these diseases may not currently have a cure, early diagnosis can make all the
difference in managing NDDs. Primarily, it facilitates prompt intervention and access to
existing treatments and therapies that have the potential to decelerate the progression of the

illness and enhance symptom management.

Furthermore, an early diagnosis enables patients and their families to make plans. It
offers a chance to make well-informed decisions about financial arrangements, legal issues,
and care while actively enabling the person with NDD to participate in these discussions. By
taking this proactive measure, the patient and their family can experience less stress and
uncertainty, which enhances their emotional health and facilitates a seamless transition into
care arrangements. In addition to these individual advantages, early diagnosis extends to

broader financial impacts.

Early diagnosis additionally has significant economic implications. Early detection of
NDDs makes outpatient care and support services cost-effective, whereas later diagnosis can
often require expensive hospital stays and long-term care. Early diagnosis can lessen the
financial stress on individuals, insurance companies, and healthcare systems. It could also
enable patients to work longer to contribute significantly to society, reducing the burden on

disability support services.

Early diagnosis enables targeted healthcare policies and resource allocation.
Government organisations can establish screening programs, fund research, and create
infrastructure to meet the needs of NDD patients. These initiatives reflect a commitment to
public health and enhance care standards. An early diagnosis also has emotional impacts on
families. Caring for someone with an NDD can be exhausting, but early diagnosis enables
families to plan and adapt. It offers opportunities to build support networks, seek counselling,
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and explore local resources, ultimately empowering families to enhance emotional and
medical care, improving their quality of life. While early diagnosis offers many benefits, it also
relies heavily on technological advancements. Al methods have shown considerable promise

in improving the speed and accuracy of diagnosis for NDDs such as Alzheimer’s.

1.2.3 Brief of Stages of AD and MMSE Scores

AD is a severe neurological disorder with global consequences, affecting millions of people
and their families. AD and other NDDs create complex health challenges that significantly
impact healthcare systems. Individuals diagnosed with AD go through different phases, such
as MCI, EMCI, and LMCI. Every phase shows specific clinical signs of deterioration, requiring

accurate diagnostic standards and careful observation.

Diagnosis of MCI is vital because it marks the beginning stage of cognitive
deterioration and provides a chance for prompt intervention, which could help slow down the
progression of the disease. AD progresses from MCI through mild, moderate, and severe
stages before reaching the terminal phase. Precise categorisation and forecasting of disease

advancement are crucial in creating successful treatment strategies.

The MMSE is commonly used as a screening tool to assess cognitive function and
detect any impairment. It evaluates various cognitive domains such as orientation,
registration, attention, calculation, recall, language, and visuospatial abilities. A perfect score

on the MMSE is 30 points, indicating higher or normal cognitive capability (Joshi et al., 2019).

The MMSE plays a crucial role in differentiating cognitive impairments in AD diagnosis
and distinguishing between normal ageing and pathological decline. MMSE scores decrease
gradually as AD advances, which is helpful for both diagnosing and monitoring the progression
of the disease. MCI can result in minor decreases in scores, whereas substantial drops suggest

the early, moderate, or late phases of AD.

The MMSE is crucial for detecting cognitive impairment and tracking the progression
of AD. This assists in prompt intervention, customised treatment plans, and assessing
treatment results. Observing the different stages of AD results in personalised care plans for
individuals, improving their quality of life and advancing the development of treatment for

neurodegenerative conditions.
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1.2.4 Al methods for AD diagnosis

The healthcare sector is increasingly utilising Al for its exceptional ability to detect hidden
patterns within complex and large datasets. This is essential for identifying diseases that
display slight changes, such as AD. This type of NDD poses a significant challenge in early
detection due to its subtle initial symptoms, such as minor reductions in brain volume.
Traditional diagnostic methods, which heavily rely on expert analysis, are often time-
consuming and limited by the availability of skilled radiologists. The ability of Al to detect
subtle changes in brain structure plays a crucial role in early diagnosis. ML and DL models
efficiently diagnose AD by processing large datasets, significantly reducing reliance on skilled
human intervention. These technologies are essential for diagnosing AD promptly by

identifying subtle alterations in brain structure.

Researchers widely apply ML in diagnosing AD at different stages using various input
types, such as MRI scans, cognitive tests, and electronic health records. Early attempts to use
Al for AD diagnosis centred on supervised ML techniques, such as decision trees, random

forests, SVM, and ANN (Salvatore et al., 2016; Song et al., 2021). These ML models view

disease diagnosis, staging, and prognosis as classification problems, where medical experts

select discriminative features to achieve adequate disease classification (Moreno-lbarra et al.,

2021). Among the various ML algorithms, ANN algorithms have shown enhanced performance
in similar tasks because of their capability to capture complex, nonlinear correlations present

in the data.

Recently, ML techniques have been overshadowed by the emergence of DL models.
While ML models rely on manually selected features, DL models can automatically extract
essential features from complex data sets, offering enhanced performance. In comparison, DL
models, specifically DNNs, have become valuable tools for examining high-resolution brain
scans using different imaging methods such as structural MRI (sMRI), functional MRI (fMRI),
and Positron Emission Tomography (PET) scans. In contrast to traditional ML models, DNNs
can automatically discover important features from raw input data, avoiding the necessity of

manual feature selection and minimising the risk of human error (LeCun et al., 2015). This is

particularly advantageous in cases of AD, as the heterogeneous nature of the disease and the

subtle early signs demand precise image analysis.
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The ability of DL models to process and understand high-dimensional data is a
significant factor in their success in AD detection. For instance, DL models can detect detailed
brain atrophy patterns related to the early stages of AD from MRI scans. Additionally, studies
have demonstrated that DL models surpass ML algorithms in terms of accuracy and precision,

particularly in research comparing the two methods for AD diagnosis (Asl et al., 2018; Sarraf

and Tofighi, 2017). Techniques such as stochastic gradient descent (SGD) and dropout are

advantageous in improving optimisation processes. Implementing these methods has
enhanced the ability of DL models to generalise effectively, enabling them to perform

exceptionally well on diverse and complex datasets (Srivastava et al., 2014). These methods

help avoid overfitting, ensuring the accurate prediction of AD stages across diverse patient

groups.

Although DL models outperform traditional ML methods, critical domains have
restricted the use of DL technologies. The primary cause of this hesitancy is the ambiguity
surrounding the decision-making process of these models. While ML models are transparent
and interpretable, DL models are often perceived as opaque “black boxes,” posing challenges

for understanding the reasoning behind a particular prediction.

The consequences of this lack of explainability are widespread. Clinicians and patients
may be reluctant to trust the predictions of a DL model for essential healthcare decisions if
they do not fully understand how the model reaches its conclusions. This reluctance may delay
the adoption of advanced tools, limit the use of life-saving technologies, and perpetuate

continued dependence on less precise methods.

1.3. Overview of the Focus of Research

The overall objective of this research is to enable the use of Al in critical real-world
applications, particularly within MRI-driven healthcare investigative processes such as
predicting Alzheimer’s Disease (AD) stages onset. Despite advancements in the field,
challenges remain, such as complex models that lack explainability and interpretability,
dealing with high-dimensional data and the need for substantial amounts of data. This thesis
investigates three main disciplines to tackle these problems: Feature selection (FS), sensitivity
analysis (SA), transfer learning (TL), and Autoencoder. Choosing the right features enhances
model performance by determining the most important features, simplifying complexity, and
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boosting explainability and computational efficiency. SA enhances comprehension of factors
influencing DNN predictions, which is critical for their explainability and acceptability in real-
world applications. TL, in combination with Autoencoder, enables the use of information from
larger and related tasks, improving the robustness of the model with a smaller dataset and
reducing the time required for training. This research aims to address a crucial gap in
explainability and enhance the accuracy of models. Therefore, in line with the central focus of
this study, a brief overview of the three topics—feature selection, sensitivity analysis, and

transfer learning—is presented in the upcoming sections.

1.3.1. Feature Selection

Feature selection is a crucial preprocessing step in data analysis, particularly significant in MRI-
based Alzheimer's disease research, where datasets are high-dimensional. It involves choosing
a specific group of important features from all available features to train a model. FS seeks to
enhance model performance by decreasing dataset dimensionality and eliminating irrelevant
or noisy data that may cause overfitting and diminish generalisation capacity. The main goal
is to enhance model precision, reduce computational complexity, and ensure an explainable

model.

FS provides various advantages in Al applications. Enhanced model performance by
decreasing the number of irrelevant features with FS enhances model accuracy and predictive
power. Reducing overfitting is achieved by selecting only the most important features, which
prevents the model from learning noise and forces it to focus on the true underlying data
patterns. Lower computational costs and quicker training times with fewer features benefit
large datasets and real-time applications. Reduced features enhance model interpretability,

crucial in scientific domains for understanding feature impacts.

Although FS has its benefits, it also has potential drawbacks, such as the loss of
valuable information. This challenge is frequently encountered in Alzheimer's Disease (AD)
research due to wide-ranging heterogeneous biomarkers. Removing seemingly irrelevant
features may result in discarding interactions that could enhance model performance.
Additionally, computationally intensive wrapper methods involve retraining the model for
various feature subsets. The indiscriminate inclusion of features, particularly in high-

dimensional datasets, can lead to sub-optimal model performance, increasing the risk of
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overfitting or underfitting. Applying dimensionality reduction and feature engineering
techniques is essential to optimise the feature set, ensuring the model learns meaningful
patterns rather than noise. This is particularly critical in domains with naturally imbalanced

data distributions, where careful FS directly impacts model reliability and generalisability.

Several studies have explored strategies to identify the most informative features
from high-dimensional data, highlighting that robust FS is central to improving MRI-based AD

classification. Gallego-Jutgla et al. (2015) proposed a hybrid FS approach using synchrony

measures and frequency-relative power derived from EEG signals. This demonstrates that
multi-feature classifiers significantly outperform single-feature systems, achieving up to 100%

classification accuracy in Mild AD detection. Similarly, Faisal.F.U.R. et al. (2021) introduced a

combined FS technique, integrating Principal Component Analysis (PCA) with Recursive
Feature Elimination (RFE) to reduce dimensionality while retaining crucial structural MRI
features. Their method achieved high classification accuracies (over 95%) across different AD

subtypes using Support Vector Machines (SVM). In a broader context, Rado et al. (2019)

assessed multiple classification and FS methods across varied datasets, highlighting that
optimal feature selection enhances predictive performance and reduces model complexity

while improving discriminative efficiency.

The selection of features continues to be a crucial research area, particularly in the
realm of explainability in DL, as there is a rising concern about model transparency.
Furthermore, it is crucial for enhancing model accuracy, decreasing overfitting, and improving
interpretability, particularly in cases involving large datasets. Nevertheless, applying feature
engineering techniques should be undertaken cautiously, as the selection of non-informative
features could result in either loss of valuable information or underfitting, highlighting the

importance of ongoing exploration into resilient techniques.

1.3.2. Sensitivity Analysis

XAl frameworks utilise Sensitivity Analysis (SA) techniques for evaluating the impact of
variations in input variables on the resultant output, a crucial requirement when analysing
MRI data, where transparency in decision-making is essential. The primary objective of SA is

to determine the input variables that significantly influence the predictions made by the
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model. This approach will provide a deeper understanding of model performance and help

develop robust and reliable models.

SA is essential for interpreting models, particularly in medical applications, where
input-output relationships are usually nonlinear and challenging to comprehend. It helps
identify the key attributes and assesses the robustness of the model by analysing how slight

variations in input data can affect results.

SA provides numerous important advantages, including enhanced model
interpretability by understanding how input features influence model predictions. SA can
guide the FS procedures by pinpointing the input variables that have the most significant
impact. This approach can simplify the model and enhance its ability to generalise. SA enables
the assessment of the robustness of a model by examining its sensitivity to minor
perturbations in input data. It helps ensure that the model performs consistently across
various scenarios. Model assumption validation through SA assists in validating assumptions
made in model development. It ensures the model functions correctly with varying inputs and

identifies areas for possible improvement.

Although SA has numerous benefits, it has some drawbacks, such as computational
complexity, which is a significant consideration when dealing with high-dimensional MRI-
derived data. Global Sensitivity Analysis (Global SA) evaluates the impact of input variations
on the output across the entire input space, providing a comprehensive measure of feature
importance. Specific techniques, such as global SA, require substantial computational
resources and may not be feasible for extensive datasets or complex models. Local SA assumes
that linear relationships between input features and output exist in local methods, but may
not apply to nonlinear models, as small changes in input may not result in proportional
changes in output. SA can demonstrate which inputs affect outputs without causality, but it
does not provide causal relationships. Researchers may need to examine further, as variations
in the output do not always link to a sensitive input. The effectiveness of SA relies on the
guality of the underlying model. If there are errors in the model, the conclusions drawn from

the analysis could be incorrect.

De Santi et al., (2023) proposed an explainable convolutional neural network using

18f-FDG PET images to enhance early diagnosis while offering insight into the decision-making
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process of the model. El-Sappagh et al. (2021) developed a multilayer, multimodal model that

integrated 11 data types and utilised random forests alongside SHAP and fuzzy rule-based

systems to generate both global and patient-specific explanations. Similarly, Chun et al. (2022)

used interpretable ML techniques to predict conversion from amnestic mild cognitive
impairment (aMCI) to AD, employing SHAP and ICE to identify key risk factors per individual.
Across these studies, SA techniques such as SHAP have proven essential for elucidating the
contribution of individual features, supporting model transparency. These approaches
demonstrate how interpretability and performance can be jointly optimised to enhance trust

and applicability in real-world practice.

SA is a valuable tool for understanding the behaviour of DL models, offering insights
into which input features most influence the output. SA plays a critical role in model
development and validation by enhancing explainability, guiding feature selection, and
evaluating robustness. Despite challenges such as computational complexity and the
assumption of linearity in some methods, the field continues to evolve. As SA becomes
integrated with complex models such as DNN, its importance in ensuring reliable and

interpretable Al systems will only increase.

1.3.3. Transfer learning with autoencoders.

Transfer Learning (TL) involves taking a model trained for one task and adjusting it to carry out
a different but related task. This approach is especially advantageous in MRI-based AD

classification, where data scarcity is commonly observed.

The concept involves utilising knowledge gained by a model through being trained on the
dataset from one domain and implementing the model in another related domain. This
approach is particularly valuable when the new task has a small amount of data. TL enables
the model to utilise knowledge from a larger, related dataset, enhancing performance with

reduced training data.

Autoencoders, an unsupervised technique used in NN, reduce dimensionality by
compressing data and extracting features. They consist of two components: an encoder that
compresses input data and a decoder that reconstructs it. An autoencoder learns a compact
representation of input data while minimising the reconstruction error. Researchers widely
use autoencoders in applications such as anomaly detection, image denoising, and
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dimensionality reduction. The latent space representations learnt by autoencoders are
particularly valuable in transfer learning scenarios, where they can serve as feature extractors

for downstream tasks.

Using autoencoders with TL offers numerous advantages. The main advantage of this
approach is enhanced generalisation with small datasets, as it utilises representations gained
from a larger dataset. This approach can significantly decrease overfitting and enhance model
performance. Autoencoders reduce dimensionality by compressing data into a lower-
dimensional latent space, simplifying the model, and improving training efficiency. This
approach primarily benefits tasks with high-dimensional input data and limited labelled data.
The encoder component extracts valuable features that can be utilised in tasks further down
the line. The acquired features are insightful than the original data, enhancing the
performance of the model in classification, regression, or clustering activities. Autoencoders
can undergo unsupervised pretraining, which enables them to train without needing labelled
data. This approach enables them to learn from vast quantities of unlabelled data, which is
typically easier to acquire than labelled data. These acquired characteristics can support
supervised tasks with limited labelled data. When combined with autoencoders, transfer
learning is flexible and applicable across various domains, such as computer vision, natural

language processing, and medical imaging.

Although TL using autoencoders has its benefits, it also has some drawbacks. TL is
most effective when the source and target tasks have a strong connection. If the source data
differs vastly from the task, the Autoencoder may not learn transferable features, resulting in
poor performance. Training an autoencoder on a large dataset can require many
computational resources, mainly when using a complex model architecture. Using pre-trained
models or utilising cloud computing resources can reduce this issue. Although TL helps with
limited datasets, inadequate fine-tuning can still lead to overfitting. The model might be
memorising the limited dataset instead of generalising from the transferred characteristics. It
can be challenging to optimise performance on a smaller dataset when fine-tuning the
encoder and decoder of an autoencoder for a new task, necessitating meticulous

hyperparameter tuning and experimentation.

Nanni et al. (2020) compared TL with traditional ML using structural MR, finding that

while ensemble TL models performed well—achieving an AUC of 90.2% for AD vs CN—classical
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methods with careful feature engineering often outperformed them in some classification
tasks. However, TL remained competitive in distinguishing MCI converters from non-

converters. Gao et al., (2020) introduced AD-NET, a TL-based model incorporating age

adjustment as a surrogate biomarker, which significantly enhanced MCI-to-AD conversion
prediction across age groups, outperforming eight other models. This approach underscored
the value of combining demographic knowledge with feature transfer. Meanwhile, Duc et al.,
(2020) used resting-state fMRI data and a 3D CNN to classify AD and predict MMSE scores,
achieving strong results by combining group ICA features with SVM-RFE. The study
demonstrated the potential of TL in enhancing DNNs models, particularly when paired with

effective feature selection.

TL combined with autoencoders is a powerful technique for improving model
performance on small datasets by utilising the representational power of large datasets.
Autoencoders offer a robust method for extracting significant features from data, whereas
transfer learning applies these characteristics to new tasks that have limited data. Despite
domain mismatch and high computational cost, this approach has proven flexible and
successful in various domains, generative modelling, and multimodal learning. As the field
advances, sophisticated techniques and applications arise, creating new opportunities for

domains with limited data.

1.4. Problem statement and its proposed solution

This section sets out the primary problem statement and motivation for this research, with a
particular emphasis on MRI-based applications. It then discusses the existing research gapsin
the methods, leading to proposed solutions and research objectives. It provides a

comprehensive overview of Al-driven solutions, particularly in real-world applications.

1.4.1. Problem statement

The research addresses the problem of effectively analysing high-dimensional datasets such
as MRI data. These datasets often contain a vast number of features, many of which may be
irrelevant, making it challenging to extract meaningful insights. Diminishing the size of these
data sets is essential in enhancing the interpretability of Al models, enabling them to focus on

the most significant features and offering precise, actionable insights. Through sophisticated

©University of Reading 2025 Page 40



algorithms, Al can effectively manage these high-dimensional datasets by highlighting
significant features, improving model performance, and ensuring reliable solutions in real-

world settings.

Nevertheless, despite enhanced performance, a significant challenge remains in
adopting Al models in critical environments, where model accountability is paramount
essential. Many professionals hesitate to adopt these technologies due to a lack of
explainability, as they need to trust and understand how a model arrives at its predictions.
Without this transparency, the potential of Al remains underutilised. Therefore, developing
models that reduce complexity and offer clear, explainable outcomes is vital for gaining
confidence. The absence of explainability in Al-driven models increases the risk of

misinterpretation, which can affect decision-making, particularly in critical domains.

Moreover, limited datasets, a common scenario, compound the challenge. It is
necessary to enable models to utilise knowledge from larger, robust datasets to enhance

predictive accuracy.

1.4.2. Motivation

The growing complexity and scale of high-dimensional data present significant challenges in
ML, particularly in developing models that are efficient, interpretable, and generalisable. As
dimensionality increases, computational costs, training time, and the risk of overfitting
escalate, making advanced feature selection and explainability techniques essential. These
methods not only improve model robustness but also ensure transparency in critical decision-

making contexts where black-box models are unacceptable.

Despite the success of DNNs, limited interpretability continues to hinder the broader
adoption of complex models, particularly in expert-driven domains where explainability is key
to trust and accountability. This thesis is driven by the need to develop computationally
efficient, explainable Al solutions capable of handling high-dimensional datasets while

delivering clear, reproducible, and trustworthy insights.

An additional motivation is addressing the challenge of small-sample datasets,

common in many critical domains. This research integrates transfer learning with
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autoencoders to enhance predictive performance in data-scarce scenarios by utilising

knowledge from larger datasets.

Although the methods proposed are domain-agnostic, they are validated on
Alzheimer’s Disease and arrhythmia datasets. The shortage of radiologists exacerbates delays
in diagnosing AD, potentially missing opportunities for early intervention, which could

drastically enhance patient outcomes (Konstantinidis, 2024). The use of AD datasets offers a

relevant test case due to their high dimensionality, limited sample sizes, and the practical need
for model interpretability. Addressing these challenges in the AD domain further
demonstrates the applicability and impact of the proposed techniques in real-world, high-

stakes environments.

1.4.3. Research Gap

This research addresses critical gaps in merging Al and healthcare, focusing on interpretability,
explainability, and model performance. Improving model performance and interpretability
through feature selection is essential in real-world applications. Effective feature selection
strikes a balance between model complexity and predictive power, improving both accuracy
and interpretability. While existing literature highlights the need for algorithms that reduce

dimensionality while preserving informative features (Jia et al., 2022), a significant research

gap exists in validating these algorithms on external datasets to ensure their generalisability.

Explainability is increasingly important due to its influence on decision-making and
the necessity of trust in Al systems. Despite the use of sensitivity analysis techniques to assess
the impacts of individual features, there is a lack of systematic comparisons to identify
commonalities and integrate these methods into a robust, ensemble-based approach. This
gap highlights the need for standardised metrics to evaluate explainability and ensure

responsible Al deployment.

The combination of transfer learning and autoencoders is also crucial in advancing
research in applications involving small datasets. Grasping the trade-offs in interpretability,
computational complexity, and generalisability in this context is essential. Transfer learning
offers a promising solution by enabling models to utilise knowledge from larger,

comprehensive datasets, enhancing performance on smaller, specialised datasets. Despite its
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potential, research lacks the best approach to applying transfer learning with autoencoders

to maximise accuracy and reliability.

Without addressing these issues, the potential of predictive models to address real-
world problems, remains limited. This study aims to fill these gaps by developing and
validating advanced feature selection algorithms, systematically comparing sensitivity analysis
techniques, and creating a multi-stage algorithm that utilises transfer learning with
autoencoders to enhance predictive accuracy in datasets with limited samples. This research
is critical for enhancing the interpretability, explainability, and performance of models used in

critical application research, ultimately contributing to DNNs adoptability.

1.4.4. Proposed solution

The proposed solution focuses on developing advanced algorithms to tackle key challenges in
analysing real-world datasets and is validated on AD datasets to ensure domain relevance.
The first component involves designing and developing feature selection algorithms to reduce
these dataset dimensionalities effectively. By focusing on the most relevant features, these
algorithms not only streamline the data for efficient processing but also enhance the
interpretability of the resulting models. This enhanced interpretability will provide precise
insights into the underlying data patterns, enabling researchers to understand the factors
contributing to the prediction. The generalisability of these algorithms will be validated using
an external dataset, ensuring that the solutions are robust across different contexts and not

merely tailored to a specific dataset.

The second component focuses on developing and systematically comparing various
sensitivity analysis techniques. Understanding the influence of individual features on model
output is crucial. Comparing different techniques will help identify commonalities and unique
strengths among them. This knowledge will help develop an ensemble approach that
combines similar results from various methods, enhancing the reliability of the model
outcomes. This method enhances the explainability of the decision-making process of the

model, increasing transparency and reliability.

The last component includes designing, developing, and testing a multi-step
algorithm that combines transfer learning with autoencoders, particularly relevant for MRI
applications constrained by small patient cohorts. This algorithm enhances the performance
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of models trained on datasets with fewer samples, a common issue in critical research
domains. By transferring knowledge from larger datasets, the algorithm will enhance the
predictive capabilities of the model, leading to accurate predictions. This sequential method

will provide a detailed comprehension of model development for such scenarios.

1.4.5. Objectives

a) Design and develop feature selection algorithms to reduce the dimensionality of
high-dimensional datasets with validation on AD datasets to ensure clinical applicability.
These algorithms will be validated on external datasets to demonstrate their generalisability.
Effectively reducing the number of features enhances the interpretability of the models,

offering precise insights into the underlying data patterns.

b) Develop and systematically compare various XAl frameworks. This comparison will
identify commonalities among the techniques, enabling the creation of an ensemble
approach. Integrating similar results enhances the robustness and generalisability of the

model outputs, enhancing the explainability of the model in the decision-making process.

c) Design, develop, and validate a multi-stage algorithm that uses transfer learning
with autoencoders for AD datasets where the sample size is limited. This algorithm enhances
model performance on datasets with limited samples by transferring knowledge from larger,

relevant datasets.

1.5. Structure of the Thesis

This section presents a meticulously structured framework that encapsulates the core
elements of the research. The aim is to enhance the explainability and performance of deep
neural networks in healthcare applications with limited data. This research follows a
meticulously crafted and structured approach, encompassing six distinct chapters that

contribute to a comprehensive understanding of the research.

Chapter 2 presents a comprehensive survey of the related research domains. The first
section provides an extensive literature review of feature selection (FS), sensitivity analysis
(SA), and transfer learning (TL) in the context of DNNs. Subsequently, the chapter provides an

in-depth examination of explainability and interpretability techniques in machine learning,
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with particular attention to their significance for Al-driven systems. The discussion
systematically categorises key explainable Al (XAl) approaches based on explanation timing,
scope, model dependency, and methodological type. This structured review establishes the
theoretical foundation for the methodologies proposed in the subsequent chapters and

situates the current research within the broader context of contemporary Al advancements.

Chapter 3 explores the dataset used in this research, delving deeply into its sources
and elucidating their essential contributions to the research scope. Explore the complex
process of dataset preprocessing using the FreeSurfer tool, describing the steps in
transforming raw MRI scans into a structured tabular format. Moreover, it provides insights
into the post-processing activities applied to the dataset and discusses the resulting refined
dataset. This chapter incorporates various visualisation charts to enhance understanding of

the dataset, offering valuable insights into its statistics, general trends, and any novel findings.

Chapter 4 explores feature selection techniques applied in the research. The first part
presents a comprehensive literature review of existing techniques, providing a comprehensive
understanding of their content and methodologies. Next, the methodology section presents
two novel feature selection techniques based on correlation and clustering. The method
developed was subsequently evaluated using an external dataset and a benchmark algorithm
known as ReliefF. The correlation-based method produced a simplified feature set, leading to
straightforward interpretability with enhanced accuracy. In contrast, the clustering-based
approach produced four features, retaining accuracy similar to the complete feature set.
These dimensionality reductions enhanced model robustness and interpretability, ultimately

unveiling deeper insights into variable relationships.

Chapter 5 focuses on the SA techniques used in the research. The initial segment of
this chapter involves an exhaustive literature review of SA within the domain of DNN. It also
offers critical assessments of the current methods and their respective approaches.
Subsequently, the thesis sets out to the methodology section, which centres on the novel
ensemble SA approach and its design and offers comprehensive insights into its
implementation. The chapter culminates in a comprehensive analysis of the results produced
through these methodologies, highlighting their significance and discussing their role in
enhancing the explainability of the models. The results indicate that the hippocampal sub-
regions, fissure/sulcus, and temporal horn of the lateral ventricle can be considered the most
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important features in predicting AD. The findings are consistent with earlier results from

medical experts, underscoring the impact of the research.

Chapter 6 presents a dedicated examination of the transfer learning and autoencoder
models employed in the research. The chapter begins with a comprehensive review of the
literature, shedding light on the importance of using transfer learning within the scope of the
research and evaluating the existing architectures. The methodology section presents a
detailed explanation of the innovative multi-stage algorithm developed. It then delves into
discussing its architecture and implementation. The chapter concludes with a rigorous analysis
of the results obtained from these methodologies, emphasising their significance within the
research context and discussing their contributions to the overall research focus. This
approach resulted in around 73.26% accuracy with a standard deviation of 3.92%, with an
improvement of approximately an accuracy of 12.18% in comparison to a basic regression

model.

Chapter 7, the final chapter of this thesis, presents the conclusion of the summary
findings from the previous chapters. This chapter rigorously summarises the conclusions
arrived at through each approach discussed. It emphasises the associations between these
approaches, highlights their joint contributions to the research goal, and provides a robust
approach to support the diagnosis and monitoring of DNN progression in healthcare. This joint
viewpoint enables a deeper comprehension of the importance of the research findings.

Further, the chapter discusses the limitations and future directions of the research.
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2. Related Work

2.1 Literature Review for Feature Selection

Faisal. F.U.R. et al. (2021) explore the early diagnosis of AD using sMRI and traditional ML

approaches, focusing on model complexity and feature redundancy challenges. The paper
targets the differentiation between AD, Mild Cognitive Impairment (MCl), and Healthy Control
(HC) populations using T1-weighted images, a widely used imaging modality in

neurodegenerative research.

The study utilises data from the ADNI dataset, comprising 308 subjects with
combined subcortical and cortical features. Three binary classification experiments are
conducted: AD versus Early MCI, AD versus Late MCI, and AD versus Healthy Cohorts. The
authors propose an improvised FS that combines Principal Component Analysis with Recursive
Feature Elimination to address the high dimensionality inherent to neuroimaging data. This
dual approach serves a twofold purpose: reducing the size of the dataset and selecting the
most discriminative features, thereby simplifying the model while maintaining predictive
power. The experimental results indicate that the SVM classifier performs best, with
impressive accuracies of 97.87% for AD versus EMCI, 95.83% for AD versus LMCI, and 97.83%
for AD versus HC. These high classification accuracies demonstrate the potential of the
combined FS method in enhancing the diagnostic performance of traditional ML models for

AD identification.

A significant advantage of the study lies in its practical solution to the dimensionality
challenge frequently encountered in neuroimaging analysis. The approach reduces
computational complexity by integrating PCA and RFE while preserving crucial diagnostic
information. This is particularly valuable when dealing with limited datasets, as is often the
case in clinical studies. However, the modest sample size of 308 subjects may restrict the
generalisability of the findings. Additionally, while traditional ML methods such as SVM have
shown high performance, the study does not compare their approach with modern DL
techniques that have become increasingly prevalent in this domain. Further validation on
larger, independent cohorts is also necessary to fully establish the clinical utility of the

proposed framework. In summary, the research provides a robust framework for AD diagnosis
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using sMRI by effectively addressing feature redundancy and model complexity through a

combined PCA-RFE method, yielding high accuracy and promising diagnostic potential.

Farouk and Rady (2020) investigate the potential of unsupervised ML for the early

diagnosis of AD, highlighting a key challenge in the field, the frequent lack of or inaccuracy of
labelled data in medical datasets. Rather than relying on traditional supervised classification
methods, the research employs clustering algorithms to differentiate between stages of brain

deterioration using MRI data.

The authors focus on two widely used unsupervised learning techniques, k-means
and k-medoids, to cluster subjects based on Voxel-Based Morphometry (VBM) features
extracted from structural MRI scans. These features reflect local differences in brain anatomy
and are particularly useful for identifying subtle atrophic patterns associated with early-stage
AD. A crucial methodological comparison is drawn between two levels of anatomical analysis:
whole-brain global features and region-of-interest-based local features. This comparison
helps evaluate whether focusing on specific brain regions enhances diagnostic performance.
The best-performing approach in the study achieves an accuracy of 76%, demonstrating that
even without labelled data, clustering methods can provide meaningful groupings that may
align with disease progression. While this accuracy is lower than that reported in supervised
models, the value of the research lies in exploring alternative diagnostic methods when

labelled data is unreliable or unavailable.

The study is commendable for challenging the conventional classification-based
pipeline in AD diagnosis and presenting unsupervised learning as a viable alternative in low-
resource or early-stage research settings. However, it also reflects the limitations of clustering
in clinical applications, particularly regarding diagnostic precision and interpretability. Overall,
this work contributes a novel angle to the literature by advocating for label-free approaches
in early AD diagnosis and emphasising the utility of VBM features in distinguishing AD-related

brain changes, even in an unsupervised context.

Grafna et al. (2011) present a computer-aided diagnosis (CAD) system for AD that

utilises features derived from diffusion tensor imaging (DTI), specifically focusing on fractional

anisotropy (FA) and mean diffusivity (MD) metrics. The study aims to identify discriminative
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features from these scalar measures to train classifiers capable of distinguishing AD patients

from healthy controls.

The methodology involves computing correlation using the Pearson method between
FA or MD values across subjects and the corresponding class labels at each voxel. Voxels
exhibiting high absolute correlation values are selected as features for classification. An SVM
classifier, particularly with a linear kernel, is trained and tested using these selected features.
The dataset comprises anatomical T1-weighted MRI volumes and DTI data collected from

healthy control subjects and AD patients at the Hospital de Santiago Apostol.

The results demonstrate that using FA features with a linear SVM classifier achieves
perfect accuracy, sensitivity, and specificity in several cross-validation studies. This
underscores the potential of DTI-derived features as effective imaging biomarkers for AD and
supports the feasibility of developing CAD systems based on these metrics. This study
contributes to the field by highlighting the efficacy of combining DTI-derived features with ML
techniques for early and accurate diagnosis of AD. The approach offers a promising avenue

for enhancing diagnostic tools and potentially aiding clinicians in assessing AD.

Karegowda et al. (2010) explore the importance of feature subset selection in data

mining, particularly for high-dimensional data, which makes training and testing classification
models challenging. The paper compares two FS methods: Gain Ratio and Correlation-based
FS (CFS). These methods are used to identify the most relevant features for classifying the
Pima Indian Diabetes Dataset (PIDD), which is commonly used for evaluating ML algorithms in

the medical domain.

The paper uses the decision tree algorithm with Gain Ratio to split the data and
select the most informative features. Additionally, a Genetic Algorithm (GA) is employed as a
search method, with CFS being used as the evaluation mechanism for feature subsets. The
resulting feature subsets are then tested with two supervised classification methods: the
Backpropagation Neural Network (BPNN) and the Radial Basis Function Network (RBFN).
These classifiers were chosen for their ability to model non-linear relationships in the data,

making them suitable for a wide range of classification tasks.

The experimental results demonstrate that the CFS method, which uses correlation

to assess feature relevance, significantly enhances classification accuracy as compared to the
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Gain Ratio method. Both methods reduce the features needed for effective classification, but
CFSyields an accurate classification model for both BPNN and RBFN classifiers. These findings
highlight the importance of feature subset selection in improving the performance of
classification algorithms, particularly when dealing with high-dimensional data. The paper also
suggests that using a Genetic Algorithm for a feature subset search enhances the FS process,

leading to classification accuracy.

The study concludes that CFS is effective than the gain ratio method in selecting
feature subsets that enhance classification accuracy. It also demonstrates the significance of
combining FS techniques with search algorithms such as Genetic Algorithms to enhance ML
models. The results underline the potential of feature subset selection in simplifying complex
datasets and improving the performance of ML models, particularly for tasks such as medical

diagnosis, where FS can play a crucial role in obtaining accurate predictions.

Chormunge and Jena, (2018) address the dimensionality problem in data mining

tasks, particularly focusing on FS, a critical technique for handling high-dimensional data.
Traditional FS algorithms often struggle to scale efficiently when dealing with large datasets,

leading to the need for effective methods.

The authors propose a novel approach integrating clustering with correlation-based
FS to enhance feature subset selection. The method works in two key stages. First, irrelevant
features are eliminated using the k-means clustering algorithm. This clustering approach
groups the features based on similarity, enabling the algorithm to identify and remove those
features that do not contribute significantly to the classification task. Once the irrelevant
features are eliminated, the next step involves selecting relevant features within each cluster
using a correlation measure. This step ensures that only the most informative features are
retained, minimising redundancy and improving the efficiency of the model. To evaluate the
effectiveness of the proposed method, the authors test it on Microarray and Text datasets,
which are commonly used in ML research. The performance of the method is compared with
several well-known FS techniques, and the Naive Bayes classifier is employed to assess the
classification accuracy. A percentage-wise criterion is used to measure the accuracy of the
proposed method across different numbers of relevant features, enabling an objective

comparison.
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The experimental results show that the proposed method significantly outperforms
traditional FS methods in terms of efficiency and accuracy. By effectively reducing
dimensionality and selecting the most relevant features, the approach enhances the
performance of classification tasks, particularly when dealing with high-dimensional data.
Combining clustering with correlation-based selection enables the model to handle large
datasets efficiently, a common challenge in many real-world applications. In conclusion, the
paper demonstrates that combining clustering techniques with correlation-based FS
effectively solves the dimensionality problem in data mining. The proposed method proves to
be a robust approach to identifying and selecting relevant as distinct from non-redundant

features, thereby improving the efficiency and accuracy of classification models.

Yu and Liu (2003) propose a novel approach for FS in high-dimensional data. They

introduce the "predominant correlation" concept to identify relevant features and reduce
duplication among them. This method aims to overcome the limitations of traditional FS
approaches, which rely on pairwise correlation analysis, making the process slower and less

scalable.

The paper presents a fast correlation-based filter method that identifies relevant
features and removes redundancy without the computational overhead of pairwise
correlation analysis. The technique is designed to efficiently handle datasets with large
numbers of features, making it particularly suited to high-dimensional data where traditional
methods struggle. The authors demonstrate the efficacy of their method through extensive
comparisons with other FS techniques. The proposed method outperforms existing methods
in both speed and accuracy, utilising real-world high-dimensional datasets. This approach
significantly reduces computational time while maintaining or improving the accuracy of

feature selection, making it a viable solution for large-scale ML tasks.

The proposed fast correlation-based filter method effectively addresses the
challenges of high-dimensional data in FS. By introducing the concept of predominant
correlation, the method enables efficient FS that reduces redundancy and enhances model

performance, offering a valuable tool for ML tasks involving large datasets.

Trambaiolli et al. (2017) explored the role of FS in improving the performance of

electroencephalogram (EEG)-based classification systems for diagnosing AD. In decision

©University of Reading 2025 Page 51



support systems, irrelevant features in the data can lead to model complexity and decrease
classification accuracy. This is particularly crucial in AD diagnosis, where EEG spectral features
often contain relevant and irrelevant information. Therefore, effective FS is essential to
enhance the performance of the model by identifying the most informative features while

eliminating noise and redundancy.

The paper investigates eight FS algorithms for EEG spectral data collected from 22 AD
patients and 12 healthy age-matched controls. The authors focus on determining how these
FS algorithms affect the accuracy of SVM classifiers. SVM is known for its robust performance
in high-dimensional data classification, making it an ideal choice for this study. The authors
use a leave-one-subject-out cross-validation strategy to assess the FS methods. This helps
reduce the potential bias from small sample sizes and provides a generalisable model

evaluation of the performance.

The results indicate that the Filtered Subset Evaluator method produced the best
performance improvements. This method achieved an impressive accuracy of 91.18% on a
per-patient basis and 85.29 + 21.62% on a per-epoch basis, demonstrating the positive impact
of FS on model performance. Furthermore, applying FS led to a substantial reduction in the
number of features—88.76 + 1.12% of the original features were removed—without
compromising the accuracy of the classification task. This reduction in feature space can
significantly enhance the computational efficiency of the diagnostic system, making it feasible

for clinical settings.

A key finding was that all FS algorithms recognised alpha and beta frequency bands
as crucial for distinguishing AD patients from healthy controls. This concurs with prior clinical
studies, emphasising these frequency bands in AD diagnosis. Alpha and beta waves are known
to be impacted in NDD, such as Alzheimer’s, which displays changes in brain activity,
particularly in the prefrontal and temporal regions. The ability of the research to replicate
these findings further confirms the relevance of these frequency bands in EEG-based AD

diagnostic systems.

In summary, this paper highlights the significance of FS as a pre-processing step in
EEG-based AD diagnosis. By applying FS techniques, the researchers were able to enhance the

classification accuracy, reduce computational complexity, and enhance the interpretability of
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the model. The study demonstrates that biologically relevant EEG data, when combined with
effective FS methods, can significantly boost the performance of diagnostic systems. This
could pave the way for accurate, efficient, and interpretable AD detection systems, ultimately

contributing to clinical decision-making in the early stages of the disease.

Sadig et al. (2021) propose a novel approach for distinguishing AD patients from

healthy controls using resting-state functional magnetic resonance imaging (rs-fMRI) data,
focusing on brain connectivity patterns. The study underscores the significance of
understanding the functional organisation of the brain, particularly in NDD, such as AD. Since
rs-fMRI captures spontaneous brain activity during rest, it has become a valuable tool in
assessing intrinsic functional connectivity and alterations associated with neurological

conditions.

The authors combine Pearson correlation connectivity (PCC) and the ReliefF FS
algorithm to enhance classification accuracy. PCC is a well-established statistical method used
to quantify the degree of linear correlation between different brain regions, effectively
creating a functional connectivity matrix that serves as a high-dimensional feature set.
However, due to the large number of features typically generated from such matrices, FS

becomes crucial to mitigate the curse of dimensionality and reduce model overfitting.

The study employs ReliefF, a popular algorithm for its robustness in identifying
relevant features in high-dimensional datasets, to address this. ReliefF evaluates the
importance of features based on how well their values differentiate between instances near
each other, thus identifying informative attributes. The integration of PCC with ReliefF enables
the extraction of connectivity features that are statistically meaningful and diagnostically
relevant. For classification, a K-Nearest Neighbour (KNN) algorithm is used. KNN, being a non-
parametric and instance-based learning technique, classifies new data based on the majority
label of its closest neighbours in the training set. Despite its simplicity, KNN is particularly

effective when combined with well-selected features, as in this study.

The proposed method achieves a classification accuracy of 93.5%, which indicates a
strong potential for this combined approach in clinical AD diagnosis. The high performance
also highlights the effectiveness of combining a connectivity-based feature extraction method

(PCC) with a robust FS mechanism (ReliefF) to reduce dimensionality and retain informative
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biomarkers. The study contributes to the growing body of research on ML applications in
neuroimaging by offering a method that effectively utilises functional connectivity and
intelligent FS. The work demonstrates that targeted use of statistical and algorithmic tools can
result in high diagnostic accuracy, potentially aiding the development of early detection
systems for AD. This is particularly important given the progressive nature of AD and the

clinical emphasis on early intervention.

In conclusion, FS techniques remain central to addressing high-dimensionality
challenges in neuroimaging and medical datasets. Filter-based methods are particularly
prevalent due to their efficiency and ability to identify relevant features before model training.
Among these, methods such as Gain Ratio, CFS, and ReliefF are frequently employed as they
serve as a baseline for comparison. However, existing approaches often fail to effectively
capture deeper inter-feature dependencies, particularly when relying solely on pairwise
correlations. To address this limitation, this research chapter introduces two complementary
FS methods that integrate correlation analysis with clustering principles, offering a structured
approach to reducing feature redundancy and improving model interpretability in AD

classification.

2.2 Literature Review for Sensitivity Analysis

El-Sappagh et al. (2021) introduced a multilayer, multimodal model designed for both the
early diagnosis and progression prediction of AD, emphasising explainability. The paper
targets key shortcomings in the existing literature, such as the over-reliance on unimodal data,
separation of diagnosis and progression tasks, and the general lack of model transparency.
The proposed model aims to bridge the gap between high-performance Al systems and clinical

usability.

The study uses data from the ADNI, incorporating 11 modalities across 1,048
subjects. The cohort includes CN individuals, stable MCI (sMCl), progressive MCI (pMCI), and
AD patients. The model is structured in two layers: the first performs multi-class classification
(CN, sMCl, pMCI, AD), while the second focuses on the binary classification to predict MCl-to-
AD conversion within three years. A random forest classifier is employed in both layers, with
FS tailored to optimise performance. Importantly, the model integrates explainability at global
and instance levels using SHAP, complemented by 22 additional explanation modules based
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on decision trees and fuzzy rule-based systems. These explanations are also translated into
natural language, enhancing interpretability for clinical users. The model achieves high-
performance metrics, with a cross-validation accuracy of 93.95% and an F1-score of 93.94%
in the diagnosis layer and 87.08% accuracy and 87.09% F1-score in the progression layer.
Strengths of the work include its multimodal approach, unified handling of diagnosis and

progression, and comprehensive commitment to explainability.

Despite these merits, certain limitations remain. The use of a random forest, while
interpretable, may not fully exploit the temporal and spatial complexities present in
neuroimaging data. Additionally, while 11 modalities are integrated, the generalisability of the
model and scalability in real-world clinical settings are not explicitly validated across
independent cohorts or sites. Furthermore, potential biases introduced during feature
selection and explainer design are not critically addressed. Nonetheless, the study represents
a significant step toward clinically viable Al in AD, offering diagnostic precision and trust-
enhancing interpretability. The approach aligns well with current calls for transparent,

actionable, and patient-centred medical Al systems.

Chun et al. (2022) present an interpretable ML approach to predict the conversion of

patients with aMCl to AD. The study addresses a clinically pressing need, as not all individuals
with aMCl progress to AD, and accurate risk stratification could significantly enhance early
intervention efforts. Traditional parametric models, such as logistic regression, often fall short
in capturing complex, non-linear relationships among predictors; this research aimed to
overcome such limitations by integrating modern ML algorithms with interpretability

techniques.

The study prospectively analysed a cohort of 705 aMCI patients from the Samsung
Medical Center, with a minimum of three years of follow-up data. Key features included
neuropsychological test results and an apolipoprotein E (APOE) genotype. The dataset was
split into a model-building set (n=565) and a validation set (n=140). Four algorithms were
evaluated: logistic regression, random forest, support vector machine, and XGBoost. The
XGBoost model achieved the highest performance with an AUC of 0.852 and an accuracy of
0.807. Crucially, the study enhances model transparency through global and local

interpretability methods. SHAP and ICE were used to identify the most influential features per
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patient. Key predictors included age, education level, memory and visuospatial scores, Clinical

Dementia Rating (CDR) sum of boxes, MMSE, and APOE status.

Strengths of the study include the use of a relatively large, well-characterised
prospective cohort, the combination of high-performance modelling with explainability tools,
and the focus on individualised risk interpretation. However, the model relies primarily on
neuropsychological and genetic data, excluding neuroimaging and biomarkers that may
further enhance predictive accuracy. Additionally, external validation using diverse
populations is lacking, which limits generalisability. Overall, the study demonstrates a practical
and interpretable framework for predicting dementia conversion in aMCl patients. By
balancing predictive power with clinical interpretability, the proposed model supports
informed, patient-specific decision-making and offers a template for future applications in

cognitive decline prediction.

De Santi et al. (2023) introduce a 3D CNN framework intended for the early diagnosis

of AD through volumetric 18F-FDG PET scans. The model effectively addresses a notable
challenge in neuroimaging-based Al diagnostics, specifically the lack of transparency inherent
in black-box DL models. To enhance interpretability, the authors integrate two post hoc
explanation techniques, Sensitivity Map (SM) and Layer-wise Relevance Propagation (LRP) to

visualise the significance of various brain regions in the classification process.

The study uses a large dataset of 2552 PET scans sourced from the ADNI, representing
three diagnostic classes: CN, MCI, and AD. A 3D CNN is trained for multiclass classification,
with the model achieving Area Under the Curve (AUC) scores of 0.81 for CN, 0.63 for MCl, and
0.77 for AD. The relatively lower performance on MCI classification highlights the ongoing

difficulty in detecting this transitional phase.

A significant strength of this study is the integration of explainability tools,
particularly the application of LRP, which has been demonstrated to generate heatmaps with
greater anatomical relevance than SM. The authors further enhance their analytical approach
by aligning these heatmaps with the Talairach brain atlas, facilitating region-specific
guantitative evaluations. Nevertheless, the study indicates an absence of a definitive
correlation between the explanation provided by the heatmaps and the intensity of the PET

signal. This observation suggests a possible disconnection between the attention mechanisms
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of the model and its biological plausibility. Although the model exhibits performance
comparable to that reported in the existing literature, several limitations are noted. The
relatively modest AUC for MCI diminishes the clinical applicability of the model in the context

of early intervention.

Furthermore, the absence of external validation utilising independent datasets
restricts the generalisability of the findings. Although visually informative, the explainability
methods lack clinical validation or expert review to verify their compatibility with established
neuroanatomical biomarkers of AD. In conclusion, this study presents a methodologically
rigorous and explainability-oriented approach to AD classification through PET imaging. It
significantly contributes to initiatives promoting transparent Al in the context of AD research.
Nevertheless, it would benefit from an extensive clinical evaluation, enhanced detection of
prodromal stages, and a stronger connection between model outputs and biological

interpretation.

Bogdanovic et al. (2022) present a comprehensive application of explainable ML to

investigate AD, utilising an extensive dataset of over 12,000 individuals. In contrast to
numerous studies focusing on prediction, this research emphasises the extraction of clinically
significant insights and the validation of existing hypotheses concerning the risk and diagnosis

of AD through the interpretability of models.

The dataset includes various features encompassing medical, cognitive, and lifestyle
variables. The study applies a meticulous preprocessing pipeline, addressing missing data,
feature redundancy, data imbalance, and inter-feature correlations. After this rigorous data
preparation, the authors employ the XGBoost algorithm, a gradient-boosted decision tree
ensemble known for its robustness and performance. The model achieves an F1-score of 0.84,
placing it among the top-performing models in the domain. However, the authors frame this

metric as secondary to their central aim: deriving interpretable, clinically actionable insights.

The SHAP framework generates both global and local interpretations of feature
importance. Notably, the study presents a unified influence scheme that illustrates the
directionality, positive or negative, of each significant effect of a feature on AD diagnosis. This
scheme functions as evidence-based guidance for clinicians, potentially aiding in the

interpretation of individual patient profiles.
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A key strength of the study is its emphasis on hypothesis testing through
interpretability rather than treating ML as purely predictive. The scale of the dataset also lends
credibility to the derived conclusions. However, the study is limited by the absence of detailed
information regarding the external validation of the model across distinct populations or
clinical settings. Additionally, while SHAP enhances transparency, it remains sensitive to the
training data and model structure, which may influence the consistency of the interpretations.
The paper contributes meaningfully to explainable Al in NDD research. Prioritising insight over
accuracy showcases a paradigm shift towards interpretable, hypothesis-driven ML
applications. The results ensure to enhance early diagnosis and reshape how complex clinical

data is utilised in uncovering patterns behind AD.

Varghese et al. (2023) propose a transparent diagnostic framework for AD

classification using XAl. The primary goal is to bridge the gap between model performance
and clinical interpretability by embedding explanation mechanisms into a non-linear neural

network model, specifically focusing on early detection through MCI classification.

The study recognises a key barrier in AD diagnosis—delayed identification due to
subtle early-stage symptoms and reliance on non-transparent, high-performing models that
lack clinical trust. To address this, the authors develop an NN classifier that differentiates
between demented and non-demented individuals. The novelty lies in enhancing this black-
box model with local post hoc explanation techniques SHAP and LIME to transform it into a
glass-box system. These XAl tools enable interpretability by highlighting feature contributions
to individual predictions. Model evaluation indicates that CDR, age, and Atlas Scaling Factor
(ASF) are strongly positively associated with dementia prediction, aligning with established
clinical understanding. Conversely, features such as normalised Whole Brain Volume (nWBYV),
MMSE, and estimated Total Intracranial Volume (eTIV) contributed towards identifying non-
demented individuals. The dual application of LIME and SHAP adds robustness by offering

individual and global insights into model behaviour.

A key strength of this study is its focus on building clinician trust through
interpretability without compromising classification accuracy. Including features clinically
relevant to AD enhances the practical utility of the system. Additionally, two complementary
XAl techniques provide a richer and reliable interpretative framework. However, whether the

system was validated across external or independent cohorts remains unclear, which is crucial
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for assessing generalisability. The study contributes to AD research by combining performance
with interpretability. Incorporating XAl techniques fosters transparency, trust, and potential

for clinical adoption in early-stage AD diagnosis and monitoring.

Alatrany et al. (2024) present an explainable ML approach tailored to address the

challenges of AD classification, focusing on predictive performance and model interpretability.
Recognising the complexity and high dimensionality of AD datasets, the study utilises data
from the National Alzheimer’s Coordinating Center, encompassing 169,408 records and 1024

features—a notably large dataset in the AD research domain.

The central aim is to enhance classification performance and extract interpretable
rules to support clinical understanding. The researchers implement dimensionality reduction
techniques to manage data complexity and employ SVM for classification tasks. SVMs are
evaluated on external validation data and demonstrate strong performance, with an F1-score
of 98.9% in binary classification (Normal Control vs AD) and 90.7% in multiclass settings.
Additionally, the model predicts AD progression over a four-year period, achieving F1-scores
of 88% (binary) and 72.8% (multiclass), highlighting its temporal predictive capability. To
address the explainability challenge, the authors incorporate two rule-extraction methods,
class Rule Mining and a Stable and Interpretable Rule Set approach. These generate
transparent, human-readable decision rules, offering insight into the most influential features
for classification. Key predictors identified include MEMORY, JUDGMENT, COMMUN
(communication abilities), ORIENT (orientation), and the CDR score. These features were
further validated using SHAP and LIME, ensuring consistency between rule-based and feature

attribution perspectives.

A notable strength of the study is the integration of high-performing predictive
models with interpretation mechanisms, offering both accuracy and clinical transparency.
Using a large, real-world dataset enhances generalisability, while validation on external data
sets supports robustness. However, while multiple explainability tools were used, the clinical
utility of the extracted rules in a real-world diagnostic workflow remains underexplored. In
conclusion, the study makes a meaningful contribution by combining high accuracy with
interpretable outputs. It demonstrates how explainable ML can support early AD diagnosis

and risk stratification in ways that align with clinical reasoning and evidence.
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Amoroso et al. (2023) present a novel XAl approach for understanding how AD

impacts brain connectivity, utilising both graph theory and interpretability methods. Their
work addresses a central challenge in clinical Al applications: the black-box nature of many
high-performing models, which impedes clinical adoption and trust. The study uses structural
brain data from the ADNI, encompassing 432 T1-weighted MRI scans: 92 from AD patients,
126 from CN individuals, and 214 from those with MCl. Graph-based models are constructed
to represent brain connectivity networks, enabling for topological analysis of structural brain

changes across diagnostic groups.

ML models trained on these graph features successfully distinguish between AD, MCl,
and NC groups. Crucially, the study integrates Shapley values to provide insight into the
contribution of individual brain regions to the classification decisions. This enhances
interpretability by quantifying the influence of specific nodes in the connectivity network. The
interpretability results are biologically and clinically meaningful. The hippocampus and
amygdala are shown to be highly relevant in AD classification—a finding that aligns well with
established neurodegenerative patterns. For MCI subjects, the posterior cingulate and
precuneus emerged as important, supporting the hypothesis that these regions are early
markers of disruption. Interestingly, putamen and temporal gyri were highlighted as playing a

role across the spectrum.

Strengths of the paper lie in its methodological innovation, combining graph theory
with XAl tools, and its clinical relevance. By pinpointing disease-relevant regions in an
interpretable way, the approach supports diagnosis, disease tracking, and intervention design.
The study could explore whether such graph-based explainable frameworks can generalise
across imaging modalities or cohorts. In conclusion, the paper contributes a compelling
framework that links structural connectivity with explainability, bridging the gap between

computational neuroscience and clinical neurology.

Raghupathy et al. (2025) present an ensemble-based ML approach combined with

explainability techniques for the accurate diagnosis of AD. Their work emphasises the growing
importance of XAl, particularly in clinical settings where model transparency is as essential as

accuracy.
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The study focuses on boosting ensemble classifiers, specifically XGBoost, LightGBM,
and Gradient Boosting, which are known for their robustness and efficiency, particularly with
structured data. A key contribution is the integration of SHAP into the modelling pipeline—
not only to interpret the model outputs but also to guide feature selection. This dual role of
SHAP enhances the transparency and the performance of the system. The authors report an
accuracy exceeding 94%, achieved with a reduced set of features, demonstrating the
effectiveness of using SHAP for dimensionality reduction without compromising performance.
This study aligns with current trends in medical Al research, prioritising interpretable, high-
performing models that can be used in real-world diagnostic settings. While boosting methods
are already well-regarded for their predictive power, their black-box nature often limits their
clinical use. By using SHAP, the authors enable local and global explanations, helping identify

which features most influence individual and overall predictions.

Strengths of the paper include its focus on ensemble model robustness, efficiency
with minimal feature sets, and the explicit use of XAl for explainability and trust-building. It
contributes to the growing literature advocating for hybrid pipelines that merge model
performance with interpretability. This work effectively demonstrates the power of
combining boosting ensembles with SHAP for accurate and explainable AD classification,

supporting clinical utility and trust in ML-based diagnostics.

(Jahan et al., 2023) propose an explainable ML framework for predicting and

managing AD using a multimodal dataset. The paper responds to two key limitations in current
AD prediction research: the over-reliance on neuroimaging alone and the lack of transparency

in ML models that inhibits trust among end-users, particularly clinicians.

The authors use a data fusion strategy that combines clinical, MRl segmentation, and
psychological data, enabling a holistic understanding of the disease. This multimodal
integration is applied to a five-class classification task, distinguishing between AD, cognitively
normal individuals, non-Alzheimer's dementia, uncertain dementia, and others. This goes
beyond the common binary or three-class classification approaches in much of the literature.
Nine machine learning models were evaluated, with RF emerging as the top performer. It
achieved a cross-validated accuracy of 98.81%, suggesting strong discriminative capability and
robustness. The choice of models, ranging from classifiers such as logistic regression and
decision trees to complex ones such as MLP and ensemble techniques, adds credibility to the
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comparative aspect of their methodology. Explainability is addressed through SHAP, which
interprets model predictions and identifies influential features. A unique contribution of this

study is also the inclusion of a proposed patient management architecture.

The main strength of the study lies in its novel use of multimodal data for five-way
classification, which aligns well with the heterogeneity of dementia presentations in clinical
reality. Using OASIS-3, a well-regarded open-access dataset, adds reproducibility value to the
work. Additionally, incorporating explainability directly into the pipeline is a necessary step
toward trusted, clinically applicable Al systems. The paper would benefit from discussion
around the clinical validity of the most predictive features. Furthermore, while the proposed
management architecture is a forward-thinking addition, its practical utility must be assessed
in real-world deployment scenarios. In summary, this study makes a valuable contribution by
demonstrating how integrating diverse data types and explainability methods can enhance

performance and transparency in AD diagnosis and management.

P..A.Menon and R.Gunasundari (2024) presents an explainable ML framework for

early AD classification that balances accuracy and interpretability. The key novelty lies in
integrating SHAP for feature selection and model explainability and utilising PyCaret, a low-

code automated ML tool, for rapid model evaluation and deployment.

The study uses the OASIS dataset and explores various classifiers for AD prediction.
Among them, Naive Bayes achieves the highest classification accuracy of 96%. While this
model is relatively basic, its performance suggests that with appropriate feature selection and
preprocessing, even basic models can perform competitively. SHAP is used post hoc for
interpretation and to identify and retain the most impactful features, effectively acting as a
filter for feature importance. PyCaret simplifies model comparison and tuning, which may
appeal to researchers or clinicians with limited coding experience. This low-code approach
also aligns well with the push for democratising Al in healthcare. The use of SHAP adds
transparency by showing which features drive predictions. However, there is limited
discussion about class imbalance, model robustness, or external validation, which would be

crucial for deployment in real-world settings.

In terms of contribution, this work shows the potential of combining automated ML

tools with explainable Al to build interpretable and clinically relevant prediction models
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efficiently. It demonstrates how methodological simplicity and strong interpretability coexist,
particularly in early diagnostic tasks. discussion on the clinical meaning of selected features
and a comparison with complex models, such as XGBoost or ensemble learners, would have
been valuable to strengthen the study. Still, the approach provides a strong, practical
foundation for building transparent AD classification systems that are easier to understand

and implement.

2.3 Literature Review for Transfer Learning

Choe et al. (2020) aim to evaluate sub-scores from the MMSE to predict the progression from

MCI to AD. The research used data from 306 people with MCI obtained from the ADNI
database, including various standardised clinical and neuropsychological tests conducted at

baseline and a two-year follow-up.

The researchers employed logistic regression analysis to investigate how MMSE total
and subscale scores were related to the risk of developing AD. The analysed MMSE subscale
scores comprised memory, orientation, construction, attention, and language. The research
also accounted for possible factors, such as demographic and clinical variables, ensuring a
robust data analysis. The results indicated a greater likelihood of developing AD, which was
linked to decreased MMSE scores in memory, orientation, and construction subscales. In
particular, the delayed memory recall section and the time aspect of the orientation section
(specifically focusing on the week and day) were significant indicators of disease progression.
However, the relationship between the attention and language subscales and AD conversion

was not statistically significant.

This research utilises the MMSE cognitive evaluation tool and examines subscale
results, guiding healthcare professionals. Using a large cohort from the ADNI database
enhances the reliability and generalisability of the results. However, focusing on a single
assessment tool may be a drawback since other biomarkers may be overlooked alongside
neuroimaging data that could enhance predictive accuracy. Overall, the study underscores the
significance of MMSE subscale scores, particularly in memory and orientation, as early
indicators of AD progression in MCI patients. It advocates integrating accessible clinical

evaluations into routine assessments to identify high-risk individuals.

©University of Reading 2025 Page 63



Nanni et al. (2020) investigate the effectiveness of TL versus traditional models in
diagnosing and predicting AD through structural MRI scans. The goal was to identify which
method performed best in differentiating stages of cognitive decline. The study involved over
600 participants from the ADNI database, including individuals with AD, MCl converters to AD
(MClc), MCI non-converters (MClnc), and CN patients. Three methods were evaluated: an
ensemble of five DL models fine-tuned for MRI tasks, training a 3D CNN model from scratch,
and combining two conventional ML models with feature extraction and SVM. Performance

was assessed in binary classifications: AD vs. CN, MClc vs. CN, and MClc vs. MClnc.

The ensemble TL model achieved an AUC of 90.2% for AD vs CN, 83.2% for MClc vs
CN, and 70.6% for MClc vs MClnc. Traditional ML techniques outperformed TLin AD vs CN and
MCI vs CN comparisons, with AUCs of 93.1% and 89.6%. However, MClc and MCInc results
varied, with AUCs from 69.1% to 73.3%. The CNN trained from scratch underperformed due
to the small dataset. Using an ensemble of pre-trained models is a notable innovation in TL. A
limitation is the small dataset, which may hinder DL model performance, particularly for CNNs

that require large data volumes

This research highlights TL in medical diagnosis without extensive labelled datasets.
Even with training on non-medical images, TL models achieved impressive results, indicating
room for further investigation. The findings show that traditional ML techniques, combined
with careful feature development, can still compete with or surpass DL methods, emphasising
the ongoing relevance of classic approaches in medical contexts. The study provides insights
into the effectiveness of TL compared to traditional methods for early detection and
prediction of AD, stressing the importance of ensemble methods and interdisciplinary

strategies in advancing medical diagnostics.

Jha and Kwon (2017) introduce a technique using sparse autoencoders (SAE) to

identify AD in its early stages. This technique combines scale conjugate gradient (SCG)
optimisation with a SoftMax output layer for patient categorisation. The main objective of this
study was to develop an accurate and efficient algorithm for distinguishing AD patients from

individuals with normal cognitive function.

The research utilised OASIS neuroimaging data, employing a sparse autoencoder to

extract key input features. This was combined with SCG, an optimisation algorithm that
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efficiently fine-tuned NN by minimising loss functions than traditional methods. The model
included a stacked autoencoder with a SoftMax layer for classification, converting outputs
into probability distributions. It was refined to enhance accuracy, sensitivity, and specificity,
addressing overfitting and feature redundancy. The model achieved 91.6% accuracy, 98.09%
sensitivity, and 84.09% specificity, demonstrating reliable detection of both positive and

negative AD cases for early diagnosis.

Using sparse autoencoders helps the model focus on the most important
characteristics, decreasing the likelihood of overfitting. The SCG optimisation enhances the
ability of the model to learn from the data. In general, this research provides significant
knowledge on employing autoencoders for detecting AD, particularly through the unique

integration of sparse autoencoders and SCG.

Bhatkoti and Paul (2016) present a novel DL method for AD detection that uses brain

MRI scan data, CSF, and PET images. They develop a framework that employs a modified k-
sparse autoencoder and a multi-class classification model. The model distinguishes between

various stages of AD, including MCl and advanced AD.

The approach uses a k-sparse autoencoder to enhance feature extraction from input
MRI data. This model is combined with a DL classifier for multi-class classification. The
autoencoder incorporates a sparsity constraint, activating only a limited number of neurones
and improving feature learning. The classifier uses these features to distinguish between
healthy, MCl, and AD phases, significantly improving accuracy. The research highlights that
the k-sparse autoencoder boosts model resilience and precision, which is crucial for early-

stage MCI detection and vital for prompt intervention.

The main advantage is its use of the k-sparse autoencoder, improving feature
extraction and classification accuracy. Multiple classes provide a breakdown of Alzheimer's
stages, enhancing diagnostics with nuanced information. However, relying on a single data set
may limit the applicability of the results. Additionally, significant modifications and
computational resources are required due to the complexity of the model, including the
sparsity constraint. The study offers a promising approach for detecting early Alzheimer's

through advanced ML methods and neuroimaging data.
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Mehmood et al. (2021) explore a new method to enhance early AD detection by
applying TL methods to MRI images from ADNI. This approach focuses on using CNNs pre-
trained on large image datasets, specifically the VGG19 architecture, fine-tuning them for MRI
scans of AD patients to differentiate stages of the disease. Data augmentation was essential
in artificially expanding the training set, preventing overfitting and improving model
generalisability. The study also incorporated batch normalisation and dropout layers for
enhanced performance, adjusting only the final layers of pre-trained networks for the AD

classification task while retaining the general features from earlier layers.

The TL models accurately distinguished normal controls from MCI and AD patients.
The VGG-based model outperformed traditional techniques reliant on manually selected
features regarding accuracy. This suggests that pre-trained CNNs, tailored for specific medical
imaging, can greatly enhance diagnostic accuracy. The innovative use of TL in addressing
complex medical issues highlights the promise of DL in healthcare. However, the research is
limited to one imaging technique (MRI) and lacks additional data such as genetic information
or clinical evaluations for a comprehensive diagnostic approach. However, it significantly
contributes to AD diagnosis, showcasing the effectiveness of advanced ML methods in medical

imaging.

C. Wu et al. (2018) aim to develop a CNN model for accurate classification of MCl and

prediction of its progression to AD, addressing the need for early and reliable diagnostic tools.
The study employed MRI data from the ADNI dataset to differentiate between MCl and normal
cognitive function and predict the progression from MCl to AD. The dataset included structural
MRI and clinical information, ensuring a comprehensive approach to training and validating

the model.

The research used a 3D CNN model to analyse MRI data, extracting spatial features
to recognise patterns linked to cognitive states. The model integrated TL and data
augmentation methods to enhance effectiveness and generalisation. It also explored various
DL structures and optimisation techniques to enhance accuracy in classifying MCI and
predicting progression to AD. The CNN model achieved high accuracy in both classification
and prediction, indicating its potential to predict the transition from MCI to AD and providing

insights into cognitive decline progression.
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The strength is its advanced DL structure that captures specific MRI spatial details.
Using TL enables the model to utilise pre-trained networks, enhancing accuracy and
robustness. However, a limitation is its reliance on a single imaging modality, potentially
overlooking important biomarkers for AD progression. The research contributes by applying
CNNs to MCI classification and conversion prediction tasks. While results show promise,

dependence on MRI data limits usefulness in contexts where this imaging is not feasible.

Spasov et al. (2019) seek to develop a DL model that is efficient in terms of

parameters to predict the transition of individuals from MCI to AD. The study employed data
from the ADNI dataset, including MRI images, demographic data, genetic details, and cognitive
evaluations. The dataset contained stable MCI patients as well as individuals who progressed

to AD during a specified follow-up period.

The study employed an efficient CNN method that reduced parameters while
maintaining accuracy. It introduced a new 3D CNN model integrating spatial and temporal
data, addressing high computational demands. This structure effectively captured spatial
aspects of brain atrophy related to AD progression. A feature extraction technique identified
the most predictive biomarkers, enabling accurate MCl to AD transition predictions, achieving
86% accuracy. The model effectively distinguishes between sMCl and pMCI, serving as a

valuable tool for early detection.

This research emphasises an efficient model, enhancing applicability in resource-
limited clinical settings. Combining multi-modal data with advanced feature extraction boosts
robustness and predictive power. However, its reliance on a single dataset (ADNI) limits
generalisability across diverse populations. Although the model demonstrates a reasonable
level of accuracy, there exists significant potential for enhancement, particularly regarding the
specificity of predictions. This work significantly advances neuroimaging and predictive
modelling for AD, addressing common challenges in deep learning model deployment by

utilising a model with fewer parameters.

Fouladvand et al. (2019) focused on creating a DL algorithm for forecasting the
progression from MCI to AD using the Mayo Clinic Study on Ageing (MCSA). The emphasis was
on utilising longitudinal data to enhance predictive accuracy, enabling earlier and precise

interventions for high-risk patients. The dataset contained 558 electronic health records (EHR)
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of individuals with MCI, including details on personal information, clinical notes, diagnoses,

lab results, medications, and cognitive scores.

The research used a DL system that integrated various EHR data. It focused on
temporal aspects, recognising that changes in clinical and cognitive markers over time are
crucial for forecasting disease progression. The RNN architecture used was the LSTM network,
which handled the sequential nature of EHR data. The LSTM was trained to predict the
progression of MCI to AD in patients over a period of time. The results were promising,
demonstrating a robust predictive capability for identifying patients with MCI who are likely
to progress to AD. The study found LSTMs enhanced to random forests in F1 scores and
compared the DL approach with traditional ML methods. The DL model excelled in addressing

the complexity and temporal dynamics of the data.

One of the primary strengths of this research is its detailed long-term dataset from
EHR, providing a complete view of patient well-being over time. LSTM networks enable the
model to capture essential temporal dependencies for forecasting disease progression.
Additionally, integrating various EHR data types, such as clinical notes and cognitive scores,
offers a comprehensive approach. However, the performance of the model relies on the
quality of EHR data, which can vary. Incorporating clinical biomarkers could enhance
predictive accuracy. This study represents a significant advancement in using DL to forecast
progression from MCI to AD, highlighting EHR data in clinical prediction models for early

detection in a scalable, non-intrusive manner.

D. Zhang and Shen (2012) seek to enhance the forecasting of AD progression among
individuals with MCI. The authors employ longitudinal data, various biomarkers, such as MRI
and FDG-PET imaging, and clinical scores such as MMSE and ADAS-Cog. The research aims to
predict both qualitative changes (such as transitioning from MCI to AD) and quantitative
changes (such as fluctuations in cognitive scores) in MCI patients over a period of time.
Accurately predicting these changes is essential for the early diagnosis and tracking of AD
progression. The researchers applied data from the ADNI, which involved 88 MCI participants

monitored at various intervals.

The approach included conducting a longitudinal selection process to identify

relevant and important brain regions over time for each type of modality. This was
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accomplished using a sparse linear regression model that incorporated 'group regularisation'
to group the weights related to the same brain region over multiple time points. This method
identifies brain areas based on cumulative evidence from multiple time points. The
longitudinal features obtained from the selected areas were then combined with a multi-
kernel SVM to predict future clinical outcomes. The model demonstrated results with 78.4%
accuracy compared to traditional techniques. In particular, the research accurately predicted
cognitive scores (MMSE and ADAS-Cog) after 24 months and the progression from MCI to AD
with high accuracy, employing data from at least half a year prior to the progression from MCI

to AD.

The main advantage of this research is its comprehensive method, which employs
various types of data and multiple time points to enhance predictive accuracy. Nevertheless,
the complexity of the model and the requirement for extensive longitudinal data may restrict
its practical application in clinical settings, where obtaining such detailed data may not always
be feasible. The research effectively showcases the potential of combining advanced ML
methods with multimodal biomarkers for predicting AD outcomes. However, further studies
must focus on making these models straightforward for broader clinical applications and

ensuring their effectiveness in various patient demographics.

Oh et al. (2019) investigate innovative methods for diagnosing AD using MRI data.

The research aims to enhance the accuracy and interpretability of AD diagnosis by utilising a
convolutional NN (CNN) trained on volumetric data in conjunction with transfer learning. This
method uses pre-trained DL models adjusted to a dataset to identify stages such as AD,

progressive pMCl, stable sMCI, and NC.

The research employs VCNNs and convolutional autoencoders (CAE) to analyse MRI
data, offering a comprehensive analysis than standard 2D approaches. Pre-trained models
were modified using TL and an inception module-based CAE to reduce the specialised training
data required for AD. The models receive MRI data from ADNI to ensure robust training. The
combination of VCNN and TL methods successfully attained high accuracy, varying from 60%
to 86% in distinguishing various presentations of diseases. The model captured subtle
characteristics of disease progression by utilising volumetrically labelled data. The research
also highlighted the ability of the model to visualise essential features that impact
classification, improving the understandability of the outcomes.
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The main advantage of this research is its utilisation of volumetrically labelled data,
which gives an extensive dataset for analysis and enhances diagnostic accuracy. Moreover, TL
lowers the requirement for extensive, disease-specific datasets, resulting in efficient and
accessible model training. One possible drawback is the dependency on TL, which could result
in biases from the pre-trained models if they do not align well with the specific features of AD.
The research significantly impacts the field by merging sophisticated ML methods with
medical imaging. It emphasises the promise of VCNNs, CAEs, and TL in improving AD diagnosis,
but research is needed to perfect these techniques and ensure their effectiveness in various

settings.

Aderghal et al. (2020) address the classification of AD stages by utilising different MRI

modalities in conjunction with TL methods. The primary focus of this study was to enhance
the accuracy of classifying Alzheimer's stages (normal cognition, MCI, and AD) using DL
models. The research aimed to enhance the accuracy of diagnosis and early detection of AD
progression by analysing MRI data sourced from the ADNI database. The dataset consisted of
306 individuals, 133 classified as having MCI, 58 with AD, and 115 as normal controls. The MRI

images were segmented before being used to train and evaluate the models.

The research utilised TL, specifically employing pre-trained LeNet-like CNN
architectures trained on MNIST. Features were derived from the MRl and DTl data, which were
specifically created for classifying multiple stages of Alzheimer's. The research investigated
different DL architectures, utilising methods such as weighted cross-entropy loss to tackle
imbalanced class problems. The results showed that the fusion method produced the highest
performance, showing varying accuracy rates in different projections but demonstrating

strong classification abilities.

One key advantage of this study is its all-encompassing strategy, which combines
various MRI methods and utilises advanced DL methods to address the complex issue of
classifying Alzheimer's Disease. Utilising TL enabled efficient management of inadequately
labelled data by capitalising on insights from similar or MNIST data. Nevertheless, the research
encountered obstacles such as addressing class disparities and the risk of overfitting because
of the complex model structures employed. Moreover, although the results showed potential,
validation is needed to determine if the findings can be applied to different datasets or clinical

contexts. The research shows promising possibilities for utilising TL to detect Alzheimer's
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cognitive stages early and accurately, providing a strong framework that can be enhanced and

evaluated in clinical settings.

Mehmood et al. (2024) aim to enhance the diagnostic accuracy of AD across various
stages by utilising advanced DL methods such as TL and CNNs. The main emphasis is on
utilising the Siamese NN structure, particularly the 4D-AlzNet model, which consists of four
parallel CNNs, to analyse MRI data. This method is significant as it looks at both spatial
features and temporal variations, rigorously examining the structural changes to the brain as

AD progresses.

The research utilises TL, where the model is pre-trained on VGG-19, VGG-16, and
customised AlexNet, which is trained on a comprehensive dataset. The model is then further
trained on a task-related dataset, specifically the ADNI dataset. This technique enhances the
capability of the model to identify minor distinctions in MRI images that suggest different
stages of AD. The Siamese network excels at comparing pairs of images, which is essential for
differentiating between the early and late stages of MCl and AD. The results are promising, as
the Siamese 4D-AlzNet demonstrates a high accuracy of 95.05% in distinguishing AD stages.
This is particularly important for quickly detecting and tracking the development of diseases,
as this is vital for prompt intervention. Utilising four data types in the model introduces a new
aspect to the analysis, which may result in precise forecasts than conventional 2D or 3D

imaging methods.

The strength of the research lies in its creative utilisation of sophisticated NN
structures and TL, which collectively enhance the capacity of the model to generalise and
accurately classify complex data. However, the research also has limitations, such as the
computational resources needed to develop and use these complex models, potentially
hindering their use in real-world clinical settings. Moreover, despite the high accuracy of the
model, additional validation on various populations is necessary to verify its overall
applicability. This study makes a substantial contribution to the neuroimaging field and the
diagnosis of NDD by introducing an innovative method that integrates sophisticated DL
strategies with extensive, multiple types of data. This may lead to accurate and quicker AD

detection, possibly enhancing patient results with earlier and focused treatments.
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Qiu et al. (2018) explore the combined use of multiple diagnostic modalities to

enhance the detection of MCI. The research aims to determine whether combining MRI scans,
MMSE, and logical memory (LM) tests can enhance the accuracy of diagnosing MCI, a

precursor to AD.

The data for DL models were MRI data from the National Alzheimer's Coordinating
Centre database, consisting of 386 individuals with normal cognition, or MCI. The research
methodology fine-tuned the VGG-11 model, which was pre-trained on large datasets, for
classifying cognitive status for MRI scans. Modifications involved batch normalisation, dropout
layers, and additional fully connected layers. The research compared the accuracy of various
models in identifying MCI through different data types. The MRI model reached an accuracy
of 83.1%, the MMSE model 84.3%, and the LM model 89.1%. The accuracy was greatly
enhanced to 90.9% by blending these models using a majority voting technique. Combining
various data sources using a multimodal strategy enhances the dependability of MCI
identification, providing accuracy. Various predictions from different sources, such as MRI,
MMSE, and LM tests, were integrated through majority voting to make the final model and
diagnosis. This method of multimodal fusion sought to capitalise on the advantages of each
data type to enhance diagnostic robustness. This suggests that merging different data sources

can greatly enhance diagnostic accuracy compared to using just one data type.

The strength of the research is in its original utilisation of diverse multimodal and
comprehensive DL methods, offering a rigorous approach to diagnosing MCIl. However, the
research is constrained by its retrospective design and the risk of overfitting because of the
relatively small sample size. Furthermore, the model has not been tested for its
generalisability to other populations, potentially restricting its broader applicability. This
research contributes substantially to the field by showing how combining various
neuroimaging and neuropsychological tests with DL techniques can lead to a promising

method for detecting cognitive impairments at an early stage.

Duc et al. (2020) investigate a novel method for AD diagnosis and MMSE score

prediction using resting-state functional MRI data. The main goal of this research is twofold:
first, to create a DL model to classify AD, and second, to predict cognitive impairment levels

based on MMSE scores.
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The research used rs-fMRI data from 331 participants in South Korea, consisting of
individuals with AD and those who were healthy. The researchers obtained 3D independent
component spatial maps from fMRI scans and used them as features in a 3D CNN for the
classification task. Multiple regression models, such as linear least squares regression (LLSR),
support vector regression, and ensemble techniques, were evaluated for MMSE score
prediction. Techniques such as LASSO and SVM-RFE were used for feature optimisation. The
findings were encouraging, as the CNN obtained an average balanced accuracy of 85.27% in
differentiating between AD patients and healthy controls. Moreover, the research found that
networks such as the medial visual, default mode, dorsal attention, executive, and auditory-
related networks strongly correlate with AD. The best results for MMSE score prediction were
achieved by combining gICA features with SVM-RFE, resulting in an R square value of 0.63 and
an RMSE of 3.27.

The strengths of the study are its comprehensive feature extraction from rs-fMRI
data and the use of state-of-the-art DL techniques, which increase the accuracy of AD
detection and cognitive decline prediction. Nevertheless, the research is constrained by its
concentration on a particular group, potentially impacting the applicability of the findings.
Moreover, although helpful, rs-fMRI can be susceptible to motion artefacts and other factors
that may affect the reliability of the results. The paper greatly impacts the field by showing
how combining neuroimaging data with DL can be valuable for diagnosing NDDs and MMSE
scores jointly. Still, testing with diverse populations is needed to verify its broader

applicability.

Gao et al., (2020) propose an innovative approach that enhances the prediction
accuracy for converting MCI to AD. The study aims to address a critical challenge in NDD
research by identifying which MCI patients are at higher risk of progressing to AD. This
prediction is vital for early intervention and improving patient outcomes. The research uses a
dataset from the ADNI, including neuroimaging data, demographic information, and cognitive

assessments, to build a robust predictive model.

The authors introduce a novel DL model named AD-NET (age-adjust NN), which
utilises TL to maximise the utility of limited medical imaging data. The model uniquely
incorporates an age-adjusted component, recognising age as a significant factor in the
progression to AD. This is achieved by transferring knowledge from a pre-trained model
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trained on healthy subjects to the AD-NET for feature extraction and utilising age-related
information as a surrogate biomarker. The dual purpose of the TL approach in AD-NET sets it
apart from other methods, enhancing the ability of the model to predict conversion accurately
across different age groups. The experimental results demonstrate that AD-NET significantly
outperforms eight other classification models in predicting the conversion from MCI to AD,
particularly highlighting its effectiveness in young cohorts. The performance of the model was
validated using metrics such as accuracy and AUC, which gave rise to enhanced results. This
success underscores the capability of the model to integrate both feature extraction and

demographic information effectively.

However, the research does have its limitations. One significant drawback is the lack
of generalisability of the model, as it was only trained on a particular dataset. This could
restrict its applicability to a broader range of diseases and purposes. Moreover, the
interpretability of the NN is also a challenge due to its complexity, which is vital for clinical use
and decision-making. In conclusion, AD-NET has made significant advancements in
neuroimaging and Alzheimer's research, particularly in addressing data scarcity and the role

of age as a predictive factor.

2.4 Comprehensive Survey of Explainability and Interpretability Techniques

2.4.1 Brief overview of XAl and explainability in ML/AI

Over the past decade, the rapid expansion of Al has led to significant improvement in
predictive accuracy, optimisation capabilities, and real-world deployment. State-of-the-art
models, particularly DNNs, ensemble learning systems, and complex generative architectures,
have demonstrated exceptional performance across a diverse range of applications, such as

computer vision (Krizhevsky et al., 2012), natural language processing (Vaswani et al., 2017),

healthcare diagnostics (Esteva et al., 2017), finance (Heaton et al., 2017; Lipton, 2018), and

autonomous systems (Bojarski et al., 2017). However, this increase in model complexity has

also resulted in significant challenges related to interpretability, transparency, and

accountability.

Frequently, these complex models are referred to as “black boxes” (Lipton, 2018),

indicating that their internal decision-making processes are either inaccessible or
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incomprehensible to users. As Al systems increasingly influence critical decisions with social,
ethical, and legal consequences, the demand for explainability of the reasoning behind
decisions, also known as XAl, has grown substantially. Explainability refers to the extent to
which an end user can understand, trust, and verify the output of an Al system. While
traditional, classic models, such as decision trees or linear regression, naturally provide
interpretable structures, most modern ML algorithms sacrifice explainability in pursuit of

improved predictive performance.

The field of XAl has thus emerged to address the trade-off between explainability and
performance. It encompasses a diverse set of methods designed to generate human-
comprehensible explanations for complex model outputs. This need for explainability is driven
by multiple stakeholders, including domain experts seeking to validate Al recommendations,
developers aiming to debug and improve models, regulators requiring transparency for
compliance, and end-users who need to trust system outputs in high-stakes settings (Doshi-

Velez and Kim, 2017; Rudin, 2019). Regulatory pressures such as the European Union’s

General Data Protection Regulation (GDPR) (Goodman and Flaxman, 2017) and the EU Al Act

have further accelerated interest in developing explainable Al systems.

Furthermore, explainability is increasingly linked with other critical dimensions of
responsible Al, including fairness, bias mitigation, robustness, and trustworthiness (Gilpin et

al., 2018; Mittelstadt, 2019). Explanations facilitate the identification of biased correlations,

highlight spurious features, and reveal vulnerabilities to adversarial examples. As a result,
explainability not only increases transparency but also acts as a vital diagnostic tool for

enhancing model integrity.

Despite the growing emphasis on research in this area, a universally accepted
definition or standardised approach to achieving explainability in Al remains elusive. Instead,
a variety of techniques have been developed, encompassing both inherently interpretable

models and post-hoc explanation frameworks (Carvalho et al., 2019; Molnar et al., 2020).

These methodologies vary in several aspects, such as timing, scope, dependency on model
architecture, and the underlying mechanisms employed. Each approach is characterised by
distinct strengths, limitations, and suitability, which are contingent upon the specific domain

and use case.
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2.4.2 Key questions addressed by the literature review

This survey seeks to systematically explore the landscape of explainable Al by addressing

several interrelated research questions that have emerged within the field.

a) What are the major categories and taxonomies used to classify explainability methods in

Al?

The review aims to synthesise the diverse taxonomic frameworks that have been
proposed, considering multiple dimensions such as timing of explanation, scope, model

dependence, and technique type.

b) Which specific methods and algorithms are currently most influential for generating

explanations?

This encompasses both classical and contemporary methodologies, such as decision

trees, rule lists (Ustun and Rudin, 2016), surrogate models (Ribeiro et al., 2016), SHAP

(Lundberg and Lee, 2017), gradient-based approaches (Selvaraju et al., 2020; Simonyan et al.,

2014), example-based strategies (Kim et al., 2014; Koh and Liang, 2017), among others.

c) How do different explanation techniques perform in terms of faithfulness, fidelity, stability,

and human interpretability?

The review will explore the strengths and weaknesses of competing methods across
these evaluation dimensions, drawing on comparative studies and benchmarking efforts

(Doshi-Velez and Kim, 2017; Vilone and Longo, 2021).

d) What are the emerging research challenges and future directions in XAI?

The review will highlight unresolved problems, including the absence of standardised
benchmarks, the risk of misleading or incomplete explanations, the interaction between
explainability and fairness, and the prospects for causal and interactive explainability

frameworks (Ghorbani et al., 2019; Lipton, 2018; Rudin, 2019).

Through the systematic examination of these inquiries, this literature review aims to
provide a comprehensive and contemporary synthesis of the field, presenting both a broad

overview and a critical analysis of XAl methodologies.
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2.5 Conceptual Foundations

2.5.1 Definitions and Terminology

In the XAl literature, the terms "explainability" and "interpretability" are frequently utilised
interchangeably; however, nuanced distinctions between them have been proposed. Lipton
(2018) asserts that interpretability pertains to the extent to which an individual can
comprehend the internal mechanisms of a system without the aid of external tools, while
explainability refers to the degree to which a system can generate external artefacts or
reasoning to substantiate its decisions. Interpretability typically refers to the inherent
transparency of a model, such as linear regression or decision trees. In contrast, explainability

may encompass post-hoc techniques applied to models that are otherwise opaque.

Doshi-Velez and Kim (2017) argue that interpretability is a sub-component of

explainability, where explanations should be comprehensible to humans and should support
specific goals, such as debugging, trust-building, or regulatory compliance. Rudin (2019)
adopts a radical stance, asserting that inherently interpretable models should be prioritised
over black-box models, as post-hoc explanations may prove to be approximate and potentially
misleading. Despite the lack of consensus, it is broadly accepted that both interpretability and
explainability serve the common purpose of making Al systems transparent, trustworthy, and

aligned with human understanding (Carvalho et al., 2019; Miller, 2019).

In addition to interpretability and explainability, several other related terms
frequently appear in XAl discussions, such as Transparency, which refers to the visibility of the
internal structure and functioning of an Al model. Highly transparent models are naturally
interpretable. Trust is another term that relates to confidence in predictions of the system

and its willingness to rely on its outputs (Gunning et al., 2019). Trust may not directly correlate

with technical interpretability, as humans may trust systems for reasons unrelated to their

true reliability (Miller, 2019). Another term, Causality, involves understanding not only

correlations but also the underlying causal mechanisms that drive predictions (Pearl, 2009).
Causal explanations are often considered robust, as they reflect actual data-generating
processes rather than superficial patterns. The growing attention to these concepts reflects
the multidisciplinary nature of XAl, which draws from ML, human-computer interaction,

cognitive psychology, philosophy, and law (Mittelstadt, 2019).
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2.5.2 Importance of Explainability

The necessity for explainability in Al systems emanates from various, frequently intersecting
dimensions: ethical, technical, regulatory, and domain-specific. One of the foremost ethical
arguments for explainability focuses on accountability. When Al systems are engaged in high-
stakes decisions, such as medical diagnoses, loan approvals, or legal sentencing, it is essential
that affected individuals and decision-makers possess the capability to comprehend and

contest the rationale underpinning those decisions (Wachter et al., 2017). In the absence of

sufficient explanations, individuals are deprived of the opportunity for recourse or informed

consent, thus raising significant ethical concerns.

From a technical perspective, the concept of explainability significantly contributes
to the processes of model debugging, validation, and enhancement. Explanations serve as
valuable tools for researchers, enabling the identification of issues such as data leakage,

spurious correlations, and overfitting (Hooker et al., 2019; A. S. Ross et al., 2017).

Furthermore, they facilitate feature engineering, enabling practitioners to identify critical
variables and their interrelationships. In addition, explanations have the potential to reveal
vulnerabilities associated with adversarial examples and failures in robustness (Ghorbani et

al., 2019).

From a regulatory perspective, emerging legal frameworks have introduced formal
obligations of explainability. The GDPR policy of the EU includes the "right to explanation”

(Goodman and Flaxman, 2017). The proposed EU Al Act suggests stringent requirements

concerning transparency, risk management, and accountability in Al systems, particularly

those classified as high-risk.

Explainability is also closely linked to fairness and the mitigation of bias. Transparent
explanations can help identify and rectify systematic biases against particular groups, ensuring

that Al systems do not perpetuate or amplify existing inequalities (Barocas et al., 2021;

Mehrabi et al., 2021). Consequently, numerous scholars regard explainability as a

fundamental element of comprehensive frameworks for responsible and trustworthy Al

(Cowls et al., 2019; Jobin et al., 2019).

While explainability holds universal significance, its importance becomes particularly

pronounced within certain application domains. In the realm of clinical decision-making, both
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physicians and patients must possess the capability to comprehend and validate Al-generated
recommendations. In the absence of interpretability, the level of trust in Al-assisted

diagnostics and treatments remains considerably restricted. (Caruana et al., 2015; Holzinger

etal., 2017). For instance, models that predict disease risk must provide clear rationales based

on medically meaningful features to support clinical adoption (Tonekaboni et al., 2019).

In the financial services industry, Al models are utilised for credit scoring, fraud

detection, and informed investment decisions (Ryman-Tubb et al., 2018). Regulatory bodies

often require clear documentation of model decisions to ensure fairness, prevent
discrimination, and maintain market integrity. In legal and judicial systems, predictive models
employed within the realm of criminal justice necessitate transparency to prevent opaque

decision-making that could unjustly impact individuals (Dressel and Farid, 2018; Surden,

2021). In safety-critical applications such as autonomous vehicles and robotics, real-time
explanations can aid system monitoring, safety validation, and post-incident analysis (Amodei

et al.,, 2016).

In these domains, the absence of explainability can significantly impede adoption,
diminish trust, and heighten public apprehensions regarding the implementation of Al.
Consequently, explainability is progressively regarded not merely as a desirable attribute but

as an essential requirement for the ethical utilisation of Al.

2.6 Taxonomy of Explainability Techniques

As the field of XAl continues to evolve, various frameworks have been proposed to categorise
explanation methods according to their objectives, characteristics, and underlying
mechanisms. A systematic taxonomy facilitates the organisation of this expanding field of
research and assists in the selection of appropriate techniques, tailored to specific use cases,
model types, and interpretability requirements. This section presents a structured taxonomy
of XAl techniques, organised along four core dimensions: timing of explanation, scope, model

dependency, and technique type.
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2.6.1 By Time of Explanation

2.6.1.1 Intrinsic Interpretability

Intrinsic interpretability pertains to models that are inherently transparent by design. Such
models enable direct human comprehension of their internal logic and decision-making
processes, thereby avoiding the necessity for post-hoc analysis. Decision Trees (L. Breiman et
al., 2017; Quinlan, 2014), Rule-Based Systems (Rivest, 1987; Ustun and Rudin, 2016), and

Generalised Additive Models (GAMs) (Caruana et al., 2015; Hastie and Tibshirani, 1986) serve

as exemplars of this methodology. Each mechanism produces comprehensible outputs,
whether through decision-making pathways, established rule sets, or the effects of additive

features, thus enabling immediate analysis.

These models provide high interpretability and a minimal cognitive burden,
particularly in domains that require transparency, such as finance, healthcare, and law.
However, their expressiveness is limited. They frequently underperform on high-dimensional,
unstructured, or highly non-linear data, where model complexity may be essential for
achieving predictive accuracy. Nonetheless, their alignment with human reasoning continues

to sustain their relevance in safety-critical and regulatory settings.

2.6.1.2 Post-hoc Explainability

Post-hoc explainability encompasses techniques applied after model training to interpret
otherwise opaque black-box systems. These methods enable interpretability without
modifying the underlying model and are particularly crucial for explaining DNN, ensemble
methods, and kernel methods. While highly versatile, these techniques are often subject to

trade-offs between fidelity and interpretability. A wide range of tools fall under this category:

SHapley Additive exPlanations (SHAP) (Lundberg and Lee, 2017) is a unified

framework for interpreting model predictions based on Shapley values from cooperative
game theory. Each feature is a “player” in a coalition, with the prediction of the model as the
“payout” distributed based on their contribution. SHAP attributes feature importance by
computing the marginal contribution of each feature across all possible subsets of features.
Unlike heuristic-based methods, SHAP provides strong theoretical guarantees, satisfying

properties such as local accuracy, consistency, and robustness against missing data. Its formal
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mathematical grounding has made it a prominent tool in the XAl landscape, particularly in

high-stakes domains where interpretability must be both rigorous and actionable.

Local Interpretable Model-Agnostic Explanations (LIME) (Ribeiro et al., 2016) is a

flexible, post-hoc technique designed to enhance transparency in black-box models. LIME
generates perturbed samples around a prediction instance and fits an interpretable model,
usually linear, to approximate the complex decision in a local neighbourhood. The strength of
LIME lies in its model-agnostic nature, enabling it to be applied across various domains,
including image classification, text processing, and tabular data. Its early popularity was driven
by its intuitive conceptual framework and ease of integration with any classifier, making it a

cornerstone technique in the formative years of XAl.

Saliency-based methods (Simonyan et al., 2014) identify input regions that influence

outputs, primarily in image tasks. Despite being computationally efficient, their reliability has
been scrutinised, suggesting that explanations may not always accurately represent the actual

decision-making process (Adebayo et al., 2018).

Grad-CAM (Selvaraju et al., 2020) enhances saliency maps for CNNs by incorporating

intermediate activations to produce spatially coherent heatmaps. It finds extensive
application in vision tasks; however, it demonstrates limitations in generalisability beyond

CNNs.

Counterfactual explanations (Wachter et al., 2017) generate minimal alterations to

input variables that influence predictions, thereby addressing inquiries of a hypothetical
nature. Their inherent actionability renders them suitable for domains that necessitate user-
centred interpretability; however, the issue of feasibility in high-dimensional spaces remains

an unresolved matter.

While post-hoc methods expand interpretability across diverse domains and model

types, concerns persist regarding their faithfulness and robustness. Krishna et al. (2025) argue

that post-hoc explanation methods, such as SHAP and LIME, are prone to spurious feature
attribution, wherein irrelevant features are assigned elevated significance due to correlated
noise or dataset artefacts. This predicament is exacerbated when models are trained on
biased or imbalanced data, resulting in misleading explanations that mirror data artefacts

rather than the actual reasoning of the model. They assert that this undermines their
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applicability in fairness-sensitive contexts and promotes a transition towards intrinsically
interpretable models. These limitations highlight a persistent challenge in post-hoc XAl: the

necessity to produce reliable, stable, and truly reflective explanations of model behaviour.

2.6.2 By Scope

2.6.2.1 Global Explanations

Global explanations aim to elucidate the behaviour of the model across the whole input space,
providing a macroscopic perspective on how features impact predictions on average. These
methodologies facilitate the identification of overarching trends and feature significance

throughout the dataset; however, they may obscure heterogeneity in localised contexts.

Partial Dependence Plots (PDPs) (Friedman, 2001; Greenwell et al., 2018) serve to

estimate marginal effects by averaging model predictions across the distribution of all other
features while systematically varying one or more target features. This methodology aids in
visualising overarching relationships, such as monotonicity or threshold effects. Nevertheless,
PDPs are predicated on the assumption of feature independence, which often fails in real-
world datasets, thereby leading to potentially misleading conclusions when significant feature

interactions or correlations are present (Apley and Zhu, 2020).

Feature importance scores, such as those derived from permutation tests (Breiman,
2001), quantify the degree to which model accuracy diminishes when feature values are
randomly shuffled. Although beneficial for ranking features, these scores provide no
directional insight and may prove unreliable in the context of multicollinearity (Molnar et al.,

2020).

SHAP, previously introduced, also supports global interpretability by aggregating
local Shapley values across the dataset. This yields a consistent global importance measure
that reflects both the direction and magnitude of feature effects. However, the aggregation
process may obscure local nuances, and additive assumption of SHAP remains a limiting factor

in highly non-linear or interaction-heavy models (Kumar et al., 2020).
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2.6.2.2 Local Explanations

In contrast, local explanations focus on individual predictions, revealing which features
influenced a specific output. This degree of granularity holds particular significance in domains
where justifications at the individual instance level are essential, notably within clinical or legal

contexts.

Local LIME provides local explanations by training a surrogate model around a given
input instance. Its value lies in offering case-specific rationales; however, concerns remain
regarding the stability and faithfulness of its approximations in non-linear regions (Alvarez-

Melis and Jaakkola, 2018).

Similarly, local SHAP values represent the contribution of each feature to a single
prediction based on cooperative game theory. They offer theoretically grounded, instance-
level attribution. As previously indicated, these values are computationally intensive and are
constrained by the assumptions of the additive model, which may overly simplify interactions

(Frye et al., 2021).

While global methodologies contribute to the comprehension of overarching model
trends and the significance of features, local methodologies complement these by offering
actionable insights at the individual level. Collectively, they establish a dual perspective for
interpretability: global explanations facilitate transparency, whereas local explanations

enhance accountability.

2.6.3 By Model Dependency

2.6.3.1 Model-Agnostic Methods

Model-agnostic methods operate independently of model internals, relying solely on input—
output behaviour. This black-box approach offers broad applicability across diverse
architectures, ranging from tree ensembles to DNN, though often at the cost of faithfulness

and computational efficiency.

LIME exemplifies this paradigm by constructing local surrogate models through

perturbation-based sampling techniques. Its strength resides in its versatility; however, it
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remains sensitive to perturbation design and may yield unstable results in non-linear regions

(Alvarez-Melis and Jaakkola, 2018).

Permutation Feature Importance (Breiman, 2001), although initially developed for

Random Forests, generalises across various models. It quantifies feature importance by
assessing the decline in performance when feature values are permuted. Nevertheless, its
ability to accurately represent importance may be compromised in the presence of

multicollinearity, as permutation can disrupt joint distributions (Molnar et al., 2020; Strobl et

al., 2008).

PDPs and Individual Conditional Expectation (ICE) plots (Goldstein et al., 2015)

effectively offer visual representations of both global and individual-level effects by
marginalising or conditioning predictions across features. PDPs elucidate average effects,
while ICE delineates per-instance trajectories. Nevertheless, both methodologies are

predicated on independence assumptions and may obscure interaction effects (Apley and

Zhu, 2020).

Anchors (Ribeiro et al., 2018) offer localised if-then rules that serve as sufficient

conditions for predictions. Their objective is to maximise precision amid sampling-based
perturbations, thereby enhancing the discreteness and interpretability of explanations.
Nevertheless, the generation of informative anchors may prove to be computationally

intensive and is dependent on the dataset utilised.

Despite their inherent flexibility, model-agnostic methods typically depend on
approximations, whether through perturbation, marginalisation, or local surrogates.
Consequently, this reliance introduces a potential divergence between the explanations
provided and the actual behaviour of the model. This discrepancy raises concerns in domains

that demand high fidelity and accountability (Rudin, 2019).

2.6.3.2 Model-Specific Methods

Model-specific approaches utilise the internal architecture of the model, utilising gradients,
structural elements, or attention mechanisms to directly trace the influence of features. These
approaches often yield higher-fidelity explanations, but they are closely tied to the model

type, thereby limiting their transferability and applicability.
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For neural networks, Saliency Maps use gradients to estimate feature relevance.
Although easy to compute, they are susceptible to noise and sensitive to model parameters,

with evidence showing similar outputs for randomised models (Adebayo et al., 2018).

Grad-CAM enhances saliency by utilising gradients related to intermediate feature
maps, resulting in class-discriminative spatial heatmaps. This method is effective for CNNs in

visual tasks; however, it is not generalisable to non-spatial models.

In tree-based models, TreeSHAP (Lundberg et al., 2020) offers an efficient and precise

computation of Shapley values, utilising the tree structure to facilitate rapid and accurate
attributions. Although it is highly effective for gradient-boosted ensembles, its design remains

model-specific and non-transferable.

Explanations based on the approach of Saabas (Ando Saabas, 2021) offer rapid and

heuristic approximations by assigning predictive changes along a singular decision pathway.
Although these methods are efficient, they do not possess the axiomatic guarantees found in
methodologies such as SHAP. They inadvertently neglect contributions from features that are

not included in the decision-making process path.

In transformer architectures, attention weights are often visualised as proxies for
feature importance (Vig, 2019). However, their interpretability is debated: attention can be

manipulated without altering outputs (Jain and Wallace, 2019). To improve robustness, newer

methods, such as those by (Chefer et al. (2021), propagate relevance scores through attention

blocks; however, these remain tightly tied to transformer internals and are challenging to

validate.

In summary, model-specific methods enable profound insight into internal
computations but sacrifice generalisability. They are most effectively utilised when the

architecture of the model is transparent and accessible.

2.6.4 By Technique Type

Contemporary explainability methods can be classified according to their methodological
foundations. This section examines seven principal categories: surrogate models,
perturbation-based methods, gradient-based techniques, decomposition-based approaches,

attention-based strategies, feature attribution methods, and counterfactual or example-
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based techniques. Although there are overlaps, many methods traverse multiple categories;

this taxonomy elucidates their fundamental mechanisms and underlying assumptions.

2.6.4.1 Surrogate Models

Surrogate models are designed to replicate the behaviour of complex, often opaque models
through the utilisation of interpretable models such as linear regressions, decision trees, or
rule lists. These models can be trained either locally, focusing on a specific prediction, or

globally, encompassing the entire dataset.

Key examples of such models include LIME, Anchors, and Explainable Boosting

Machines (EBMs). Notably, EBMs (Nori et al., 2019) utilise Generalised Additive Models

featuring pairwise interactions to achieve an equilibrium between interpretability and
performance. Nevertheless, they may fail to capture profound, non-linear dependencies

adequately.

2.6.4.2 Perturbation-Based Methods

Perturbation-based techniques explain model behaviour by systematically altering input
features and observing changes in the output, without needing access to the internal
architecture of the model. They estimate feature importance based on how predictions vary

with input perturbations.

Permutation Feature Importance, PDP and ICE plots are prime examples. LIME and
SHAP, although often considered surrogate methods, also fall under this category due to their
use of input perturbation. A shared limitation across all perturbation-based approaches is
their computational inefficiency, particularly for large models, and sensitivity to perturbation

schemes, particularly in high-dimensional or structured domains.

2.6.4.3 Gradient-Based Methods

Gradient-based methods involve computing the partial derivatives of the output with respect
to its input features. By utilising differentiability, these techniques enable the assessment of

local feature sensitivity and are primarily employed in the context of neural networks.

Prominent examples include Saliency Maps, Grad-CAM, and Integrated Gradients

(Sundararajan et al., 2017). Integrated Gradients address the issue of gradient saturation by
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integrating gradients along a straight-line path from a baseline input to the actual input.
Although these methods are theoretically grounded, their outputs can vary significantly

depending on the choice of baseline, as highlighted by (Kindermans et al., 2018), which raises

concerns about their reliability in specific applications.

2.6.4.4 Decomposition-Based Methods

Decomposition methods attribute model output by breaking it down into additive
contributions from input features, often utilising cooperative game theory principles, such as

SHAP.

Layer-wise Relevance Propagation (LRP) (Bach et al., 2015) redistributes output

scores through neural network layers. While effective for computer vision, interpretability

relies on tuning propagation rules and may not generalise across architectures.

DeepLIFT (Shrikumar et al., 2017) compares neuron activations to a reference input,

bypassing local gradient issues. It shares baseline sensitivity concerns with Integrated

Gradients but offers stable attribution.

Although decomposition methods offer structured, axiomatic attribution, their
reliance on additive assumptions can obscure interaction effects or feature dependencies

intrinsic to DNN.

2.6.4.5 Attention-Based Methods

In attention-based architectures such as transformers, attention weights are often interpreted
as indicators of feature importance. These visualisations, while intuitive, are not inherently

explanatory. (Jain and Wallace, 2019) demonstrated that attention distributions can be

adversarial and have a negligible impact on output, and attention alone lacks the causal

criteria necessary to serve as faithful explanations.

Robust variants include attention rollout (Abnar and Zuidema, 2020) and gradient-

weighted attention (Chefer et al., 2021), which attempt to trace relevance across layers. These

approaches improve attribution fidelity but remain model-specific and do not generalise well

beyond attention-based frameworks.
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2.6.4.6 Feature Attribution Methods

Feature attribution encompasses a broad class of methods that assign numeric importance
scores to input features for a specific prediction. Techniques such as SHAP, Integrated

Gradients, DeepLIFT, and LIME are unified under this paradigm.

Despite methodological differences, these methods share common challenges,
including sensitivity to baseline choice, instability under input perturbation, and limited
capacity to reflect complex feature interactions. SHAP remains the most theoretically
rigorous, while gradient-based variants offer computational tractability with architectural

access.

2.6.4.7 Counterfactual and Example-Based Methods

Counterfactual and example-based methods provide contrastive explanations by identifying
the minimal changes to an input that would alter the decision of the model. Rather than
attributing prediction to features, they answer "what if" scenarios, such as Counterfactual

explanations.

Influence functions (Koh and Liang, 2017) trace the effect of training points on a given

prediction by approximating the impact of removing or upweighting instances. Though

theoretically appealing, they rely on convexity assumptions and become intractable in DNN.

Prototypes and criticisms (Kim et al., 2014) aim to summarise the dataset by

identifying representative and outlier examples, facilitating intuitive understanding. However,
these methods struggle with scalability and maintaining semantic relevance in large,

heterogeneous datasets.

While these approaches align closely with human reasoning, their dependence on
suitable data distributions and their computational demands limit their general utility. A

summary of the taxonomy, including its techniques, is presented in Table 2- 1 below.
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Table 2- 1 Taxonomy of techniques

T .
?xonorny Category Representative Methods
Dimension
Intrinsi
nerinsic - Decision Trees, Rule Lists, Linear Models, GAMs
Time of | Interpretability
Explanation | post-h
0% . oc . LIME, SHAP, Grad-CAM, Counterfactuals
Explainability
Scope of | Global Explanations PDP, Feature Importance, SHAP (Global)
Explanation || 3] Explanations LIME, SHAP (local), Counterfactuals
Model-Agnostic LIME, Anchors, PDP, Permutation Importance
Model ) .
Dependency Model-Specific Saller?cy Maps, Grad-CAM, Integrated Gradients, Tree-
Explainer
Surrogate Models LIME, Anchors, EBMs
Perturbation-Based Permutation Importance, PDP, ICE
Gradient-Based Saliency Maps, Integrated Gradients, Grad-CAM
Technique Decomposition-Based | Deep-LIFT, LRP, SHAP
Type
P Attention-Based Attention Visualisation, Rollout
Feature Attribution SHAP, LIME, Integrated Gradients, DeepLIFT
Example-Based Counterfactuals, Prototypes, Influence Functions

2.7 Literature review of explainability techniques

As the deployment of ML models becomes increasingly widespread across high-stakes

domains, the demand for explainability has intensified. This literature review examines a

range of explainability techniques that have contributed to recent advances in interpretable

Al, focusing on their methodological design, empirical performance, and practical utility across

various model architectures and application contexts.

By critically examining how these techniques are applied in contemporary research,

the review identifies their strengths, limitations, and underlying assumptions. The goal is to

provide a clear understanding of their interpretability and reliability, as well as the challenges

they pose in terms of scalability, consistency, and trustworthiness.
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2.7.1 SHAP (SHapley Additive exPlanations)

SHAP is widely used due to its game-theoretic formulation, which decomposes the prediction
of the model into additive contributions from individual features. The theoretical appeal of
this approach arises from its adherence to axioms such as local accuracy, missingness, and
consistency, attributes that furnish a compelling rationale for its implementation. However,
its practical reliability has come under scrutiny in recent literature, with concerns around
computational cost, instability, and questionable alignment with real-world interpretability

needs.

Bitton et al. (2022) proposed Latent SHAP, which improves human interpretability by

shifting the operation of SHAP to a low-dimensional latent space learned via autoencoders.
This facilitates the attribution to semantically meaningful concepts as opposed to raw inputs
such as pixels. Although this approach is intuitive, it is significantly reliant on the quality and
fidelity of the learned latent space, which introduces an additional layer of complexity and

potential distortion in the explanations.

To address the computational inefficiency associated with SHAP, Kelodjou et al.

(2024) have introduced a neighbourhood-based approximation for KernelSHAP. This
methodology samples from structured local regions of the input space, aiming to enhance
stability and mitigate runtime variance. Nonetheless, this approach may lead to an
oversimplification of interactions by concentrating exclusively on local contexts, which often

fails to capture significant global dependencies among features adequately.

Critiques of foundational assumptions have gained increasing prominence. Huang

and Marques-Silva, (2023) demonstrated that SHAP can yield misleading rankings even when

applied within regression models, thereby calling into question the trustworthiness of its
feature importance scores. They contend that reliance on additive decompositions of SHAP
does not align adequately with intuitive or causal attributions. Reflecting these concerns,

Letoffe et al. (2024) performed stress tests under controlled and idealised conditions,

discovering that explanations of SHAP diverge from the ground truth even when models
exhibit smoothness and continuity, thereby underscoring a discrepancy between theoretical

guarantees and practical outcomes.
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Muschalik et al. (2024) introduced TreeSHAP-IQ, which extends SHAP to facilitate

counterfactual-style queries in decision tree models. This innovative method enables users to
examine “what-if” scenarios, thereby aligning SHAP closely with causal reasoning.
Nonetheless, it presupposes a causal interaction of features and is limited to tree-based

architectures, which restricts its broader applicability.

In conclusion, SHAP remains a benchmark attribution method due to its robust
theoretical foundations and extensive practical application. However, recent literature has
identified significant limitations, particularly in terms of robustness and causal interpretability.
While it remains valuable, particularly for benchmarking and comparison, SHAP is increasingly
supplemented by methodologies that emphasise stability, causality, or domain-aligned

representations.

2.7.2 LIME (Local Interpretable Model-Agnostic Explanations)

LIME constitutes a fundamental approach in explainable Al, offering post-hoc local
explanations through the fitting of sparse linear surrogate models surrounding individual
predictions. This method perturbs the input data and utilises the resultant outputs to develop
an interpretable model within the vicinity of a query instance. Despite its widespread
adoption, the foundational assumptions of LIME, particularly those of local linearity and
neighbourhood sampling, have been scrutinised in recent studies due to their limitations

when applied to complex models.

Anchor LIME (Ribeiro et al., 2018) extends the original approach by generating high-

precision rules (“anchors”) that explain model decisions over subregions of the input space.
These rule-based explanations provide actionable insights than local regressions, particularly
in classification tasks. However, anchor generation relies on sampling and heuristic coverage
thresholds, which can reduce interpretability when rules are either too specific or too sparse
to generalise. Moreover, the method struggles with capturing nuanced nonlinearities beyond

its anchored region.

Slack et al. (2020) utilised LIME to elucidate vulnerabilities within XAl pipelines,

demonstrating that adversarial models possess the capability to manipulate LIME to obscure
biased behaviours while still generating seemingly plausible explanations. This research
suggests that LIME, due to its model-agnostic nature, is susceptible to deception and lacks
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assurances regarding causal or ethical alignment, thereby raising significant concerns about

its deployment in sensitive domains.

The stability of LIME remains a prominent criticism, as discussed by Thibault Laugel

(2020), where the explanations can differ markedly between adjacent inputs, even when the
model outputs are nearly equivalent. This inconsistency is attributed to both the stochastic
characteristics of perturbations and the complex decision boundary of the model. The authors
proposed decision-boundary-aware sampling as a solution, which enhanced consistency,
though at the expense of high computational demands. These findings raise concerns

regarding the reliability of LIME in high-stakes or audit-intensive contexts.

The use of random perturbation in LIME can lead to unstable explanations for the
exact prediction, which is a problem in domains such as medical diagnosis, where consistency

is crucial. Zafar and Khan (2019) present a stable alternative called Deterministic LIME

(DLIME), which utilises hierarchical clustering and K-Nearest Neighbours to select relevant

data. Experimental results show that DLIME offers stable explanations compared to LIME.

Despite its influence, LIME continues to face fundamental challenges. The
assumption of local linearity often breaks down in DNN or ensemble models. Its perturbation-
based sampling can yield misleading attributions if the sampled neighbourhood is not
representative. Moreover, LIME usually struggles with the fidelity-interpretability trade-off;

linear surrogates may oversimplify to be faithful or overly complex to remain interpretable.

In summary, LIME remains a pivotal method in XAl, particularly for its model-agnostic
framework and simplicity. However, its reliability, stability, and vulnerability to misuse limit
its utility in isolation. It is best viewed as an introductory or complementary tool to be used in

conjunction with robust and domain-aligned explanation techniques.

2.7.3 Counterfactual Explanations

Counterfactual explanations (CFE) provide a direct and accessible means of interpretability by
identifying minimal alterations to an input that would modify the prediction of the model.

Formally introduced by Wachter et al. (2017), CFE frames this as an optimisation problem,

seeking the nearest input (according to a specified distance metric) that results in a differing

outcome. This approach aligns effectively with human reasoning and is notably beneficial in
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sectors demanding transparency and accountability, such as credit scoring, medical decision-

making, or legal adjudication.

Karimi et al. (2021) advanced this line of inquiry by incorporating causal reasoning.

They posited that numerous CFEs derived solely from data may be implausible or misleading;
for instance, altering the income of an individual without impacting other causally
interconnected features. Their methodology employs Structural Causal Models (SCMs) to
ensure that the generated counterfactuals are both feasible and actionable within the causal
framework of the domain. Although this approach is principled, it necessitates access to

dependable causal graphs, which are frequently challenging to construct or estimate.

Dandl et al. (2020) addressed the multi-objective nature of CFE by balancing

proximity, sparsity, diversity, and plausibility and proposed Multi-Objective Counterfactuals
(MOC). This gradient-based method efficiently generates diverse counterfactuals using
differentiable objectives. This method addressed an essential limitation in earlier works that

yielded single or redundant explanations, thus enhancing user trust and flexibility.

Russell (2019) advanced an integer programming method for generating plausible,
sparse CFEs in tabular data. His approach constrains counterfactuals within the convex hull of
training data, ensuring realism. Despite its effectiveness, the method is computationally
intensive and poorly scales with feature dimensionality, and convexity assumptions limit its

ability to capture the full complexity of real-world datasets.

Kommiya Mothilal et al. (2021) evaluated CFE for fairness auditing, proposing CF-

Fairness to quantify fairness violations based on changes in model output due to sensitive
attributes (e.g., race or gender). Their results showed that many top models demonstrate
counterfactually unfair behaviour, despite appearing fair by group-level metrics. This
highlights the diagnostic power of CFE while raising ethical concerns about the deployment of

sensitive biases.

In summary, CFE excels in human-aligned reasoning, actionability, and questioning
decision boundaries in a model-agnostic manner. They are crucial for fostering recourse,
transparency, or fairness. However, these benefits rely on generating counterfactuals that are
mathematically valid, semantically meaningful, and causally grounded. Without these

safeguards, CFEs can mislead or harm, particularly in sensitive areas. Counterfactuals are not
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stand-alone explanations; they are part of a broader interpretability toolkit, ideally used with
feature attribution, sensitivity analysis, and causal diagnostics. They show promise but require

careful design, domain adaptation, and critical interpretation.

2.7.4 layer-wise Relevance Propagation (LRP)

LRP is a decomposition-based technique for interpreting predictions of layered neural
networks. It redistributes the prediction score backwards to input features based on their
contribution to the final decision, using relevance conservation rules to maintain the score
across layers. This creates a heatmap over the input that reflects the importance of each

feature.

In Montavon et al. (2017), the authors extended LRP to deep convolutional networks,

demonstrating its effectiveness in visual classification. Unlike gradient-based methods, which
can be affected by saturation or noise, LRP offers stable and class-discriminative explanations.
The paper presents relevance rules, such as the z-rule and e-rule, each with unique
propagation assumptions, providing flexibility for various architectures. A noted limitation of
LRP is sensitivity to the chosen propagation rule, which may not generalise well across tasks

without careful tuning.

Samek et al. (2019) applied LRP to medical imaging, particularly for tumour

classification in MRI scans. They compared LRP with Grad-CAM and saliency maps, concluding
that LRP offered finer-grained, spatially localised explanations, which radiologists found
actionable. However, they noted that the usefulness of the method declined in architectures
with non-standard layers or residual connections, where the conservation principle was

harder to apply rigorously.

In Lapuschkin et al. (2019), LRP was used for model debugging, revealing “Clever

Hans” predictors, models that relied on spurious correlations instead of semantically
meaningful features. For example, an image classifier for horses relied on copyright
watermarks in the training set. This demonstrated auditing model behaviour and validated
training pipelines. However, LRP required manual inspection and domain knowledge to

interpret heatmaps meaningfully, an inherent limitation at scale.
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LRP is a unique tool in the XAl toolkit. Model-specific and efficient, it effectively works
with deep feedforward or convolutional architectures. Its strength lies in attribution
faithfulness, redistributing relevance while respecting the internal computation graph, thus
avoiding some pitfalls of model-agnostic methods, such as LIME. LRP excels in debugging and
auditing tasks, making it a favourite for researchers validating model integrity. However, its
internal propagation rules limit flexibility across architectures, particularly for models that use
dynamic routing, attention, or non-standard modules. It also lacks intuitive interpretability
outside image domains. When applied to text or tabular data, visualisation and relevance
semantics can be obscured. Additionally, LRP assumes linear additivity of relevance, which

may not apply to how non-linear transformations distribute semantic meaning.

2.7.5 Graph Neural Networks with Causal Structural Models

The integration of Causal Structural Models (CSMs) into Graph Neural Networks (GNNs)
represents a novel direction in explainable Al, aiming to ground explanations in counterfactual
and interventional semantics within graph-structured data. Unlike traditional post-hoc
methods, such as GNNExplainer, which focus on saliency or feature attribution, CSM-
enhanced GNNs embed causal reasoning through either explicit causal graphs or learned
causal structures in the latent space. These approaches are particularly beneficial in domains
such as molecular property prediction, recommendation systems, and social network analysis,

where understanding causality across subgraphs can aid generalisation.

However, these benefits come with trade-offs. Most causal GNN methods require
strong assumptions, such as causal sufficiency and faithfulness, which are often untestable

from observational data (Peter Spirtes et al., 2000). Wu et al. (2023) highlight the challenge of

generating counterfactual graphs that are both plausible and interpretable, particularly
without incorporating domain constraints. These challenges are compounded by
computational burdens: estimating interventional distributions in large, sparse graphs is

expensive and sensitive to noise.

Critically, the absence of standardised evaluation metrics for causal explanations
within graph models also constrains the reproducibility and reliability of existing results.
Although GNNExplainer has established initial foundations for interpreting GNN predictions,

it is devoid of causal grounding. In contrast, methodologies such as CF-GNNExplainer (Lucic et
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al., 2022) seek to address this discrepancy by generating counterfactual subgraphs, the
inclusion or exclusion of which alters predictions, thereby offering actionable insights.

Nonetheless, the challenges of scalability and generalisability persist.

Overall, while still in its nascent stage, GNNs with CSMs offer a promising framework
for providing faithful, intervention-aware explanations in structured domains. CSMs in
particular is said to offer support for characterisation of the causal reasoning rationale of the
model in emergent contexts. Their ability to reason causally makes them a valuable addition
to the XAl landscape, particularly when interpretability and robustness under distribution shift
are critical. However, widespread adoption hinges on formalising evaluation protocols, easing
computational demands, and reducing the domain-specific expertise required to build valid

causal graph priors.

This literature review has critically evaluated key explainability methods in Al, each
offering distinct strengths—from model-agnostic local approximations to gradient- and
decomposition-based insights. While widely adopted, these techniques face persistent
limitations, including sensitivity to baselines, assumptions of feature independence, and poor
scalability. Despite this, methods such as SHAP remain popular due to their balance of
generality and interpretability, while counterfactuals offer actionable insights with added
complexity. Overall, no singular method is adequate across all scenarios; a hybrid, context-

aware approach is imperative.

2.8 Evaluation of Explainability Methods

2.8.1 Metrics and Benchmarks

Evaluating the effectiveness and reliability of explainability methods in Al systems is
significantly complex than evaluating conventional performance metrics such as accuracy,
precision, or recall. A singular value cannot adequately encapsulate the quality of an
explanation; it is intrinsically multidimensional, varying according to context, application
domain, user expertise, and regulatory prerequisites. Researchers have proposed several
dimensions across which explanations should be evaluated. These dimensions include fidelity,
sparsity (or parsimony), stability, human simulatability, and consistency. Each dimension

addresses a specific aspect of interpretability, and there are often trade-offs between them.
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Comprehending and critically assessing these dimensions is imperative for both researchers

and practitioners who aim to implement explainable models in practical settings.

2.8.1.1 Fidelity

Fidelity is one of the most fundamental metrics in explainability research. It refers to the
degree to which an explanation method accurately reflects the internal mechanisms or
decision boundaries of the underlying model. High fidelity implies that the explanation reveals
the actual reasoning process of the model, rather than providing a simplified or heuristic

summary (Doshi-Velez and Kim, 2017).

Several methods have been developed to quantify fidelity. One commonly used
approach involves constructing a surrogate model, typically a straightforward and
interpretable model such as a decision tree or linear regressor, that approximates the

behaviour of the complex black-box model (Ribeiro et al., 2016). The agreement between the

predictions of the surrogate and the original model can be measured using accuracy or R-
squared values, depending on the task. Another approach involves faithfulness scores, which
guantify the impact of removing or masking top-ranked features identified by the explanation
method. For instance, if removing these features leads to a significant degradation in

prediction quality, the explanation is considered faithful.

Despite these advancements, high fidelity does not inherently translate into human
usability. A highly accurate surrogate model may itself be complex and opaque to human
understanding, thus defeating the purpose of explainability. Therefore, fidelity is necessary

but not sufficient; it must be coupled with additional properties, such as simplicity and clarity.

2.8.1.2 Sparsity

Sparsity, also referred to as parsimony, is another critical dimension in explanation evaluation.
The principle underlying sparsity is grounded in the cognitive limitations of humans to
comprehend straightforward explanations. An explanation that highlights a smaller number
of relevant features or rules is likely to be comprehensible to end users. Sparsity is typically
guantified by counting the number of features involved in the explanation or measuring the

depth and length of decision rules in tree-based or rule-based models.
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For example, in LIME, the local surrogate coefficients of the model can be inspected
to determine which features are considered most important, and only a few top-ranked ones
are typically shown to the user. Similarly, decision rule extraction methods evaluate the
number and complexity of rules employed to make a prediction. However, this preference for

simplicity introduces a significant trade-off.

Overly sparse explanations might fail to capture the complex dependencies between
features, thereby omitting critical information and potentially misleading users. The challenge
lies in achieving a balance between simplicity and completeness, where the explanation is
concise enough for human consumption yet still accurately represents the reasoning process

of the model (Guidotti et al., 2018).

2.8.1.3 Stability

Stability or robustness is an important but often overlooked property of explanation methods.
It refers to the consistency of explanations in response to small, usually imperceptible changes
in input data. Ideally, similar inputs should produce similar explanations. This property is
particularly vital for applications in safety-critical domains, where reliability and consistency

are paramount.

Quantitative evaluation of stability typically involves computing the similarity
between explanations for slightly perturbed inputs. For instance, in saliency-based methods,
researchers measure the overlap or cosine similarity between saliency maps generated from
original and perturbed data samples. In feature attribution techniques, the similarity of

feature importance vectors across different runs or input variations can be examined.

Alvarez-Melis & Jaakkola (2018) highlighted that many popular methods, including

LIME and gradient-based saliency maps, often exhibit poor robustness. Small perturbations in
input can result in disproportionately large changes in the generated explanations. This
instability undermines the credibility of the explanation and erodes user trust. Additionally,
randomness in the explanation algorithm itself, such as stochastic sampling in LIME, can
further exacerbate this instability. Consequently, improving robustness remains a key

research direction in the field.
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2.8.1.4 Human simulatability

Human simulatability provides a user-centric approach to evaluating explanations. It concerns
the ability of humans to replicate or predict decisions by a model based solely on the provided
explanations. This metric focuses less on technical correctness and on practical utility, as it

measures how well an explanation aids human understanding and decision-making.

Empirical assessment of simulatability is typically performed through controlled user
studies, where participants are asked to simulate model outputs based solely on the input
data and its accompanying explanation. Their success in these tasks, often measured through
accuracy or task completion time, indicates the quality of the explanation. Research by

Poursabzi-Sangdeh et al. (2021) demonstrated that even explanations perceived as intuitive

can fail to improve human decision-making if they do not align with user mental models.

Simulatability becomes particularly critical in high-stakes domains such as healthcare,
legal reasoning, and financial services, where explanations are often scrutinised by domain
experts and regulators. The major challenge, however, lies in the cost and scalability of
conducting rigorous user studies, which are typically resource-intensive and domain-specific.
Nonetheless, they remain among the most reliable methods for assessing the real-world

impact of explainability.

2.8.1.5 Consistency

Consistency is another vital criterion, particularly in the context of fairness and regulatory
compliance. It demands that similar models, or even the same model making similar
predictions, should generate similar explanations. Inconsistent explanations can lead to
confusion and distrust, particularly in settings where accountability and transparency are

required.

Evaluating consistency involves measuring the similarity of explanations across
different model instances trained on similar data or across different inputs leading to the same

output. Ribeiro et al. (2016) argued that explanation methods must offer a degree of

invariance to model data permutations. However, achieving this is challenging due to factors

such as model stochasticity, feature correlation, and algorithmic randomness.
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In neural networks, for example, different initialisations or training paths can result
in different internal representations even when predictive performance remains unchanged.
This variance can cascade into the explanation layer, producing divergent rationalisations for
identical outcomes. Addressing these issues requires both algorithmic innovation and rigorous

evaluation protocols that go beyond superficial consistency checks.

2.8.2 Limitations of Current Evaluation Metrics

Despite the development of multiple evaluation metrics, the field of explainable Al remains
constrained by several foundational challenges that hinder robust assessment of explanation

quality.

One of the most pressing issues is the lack of standardisation. The field lacks
universally accepted definitions, taxonomies, or benchmarks, making it challenging to
compare different explainability methods fairly. Terminological inconsistencies further
compound the problem. Terms such as “explanation” and “interpretation” are often used

interchangeably in the literature, despite referring to distinct concepts (Doshi-Velez and Kim,

2017; Lipton, 2018). This lack of clarity hampers meaningful communication and cross-

comparison between studies. Initiatives such as OpenXAl and the DARPA XAl program have

pushed towards consistent evaluation frameworks, but widespread adoption remains limited.

Subjectivity is another significant limitation in evaluating explainability. Unlike
performance metrics, which are objective and reproducible, the effectiveness of an
explanation often depends on user perception, background knowledge, and task context. As
a result, many studies rely on subjective human evaluations, such as Likert scale ratings (Joshi
et al., 2015) or user satisfaction surveys. While these metrics provide valuable insights, they
are inherently biased and often lack generalisability. Furthermore, such evaluations tend to
be domain-specific. The integration of human factors into explanation evaluation is essential
but fraught with methodological and practical challenges, including participant recruitment,

experiment design, and ethical considerations (Miller, 2019).

A particularly contentious issue is the distinction between explanation and
Interpretability. Post-hoc explanation methods, such as LIME or SHAP, are designed to provide
insights into the behaviour of the model after it has been trained. However, they often act as
rationalisers rather than actual reflectors of the internal decision-making process. This
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distinction is particularly problematic in contexts that demand a high degree of transparency
and accountability, such as judicial decision-making or algorithmic lending. (Rudin, 2019) has
strongly argued for the use of inherently interpretable models in such high-stakes domains,
noting that post-hoc methods are often incapable of providing faithful and verifiable

explanations.

Another major limitation lies in the datasets used for benchmarking explainability
methods. Many widely used datasets, such as MNIST, CIFAR-10, or tasks from the UCI
repository, are simplistic and fail to capture the complexities of real-world applications. These
datasets are often insufficient to stress-test the nuanced behaviour of explainability

techniques. As Arrieta et al. (2020) and Vilone and Longo (2021) note, the lack of diversity and

complexity in benchmark datasets can lead to overfitting to specific tasks or explanation
styles, thereby limiting generalisability. There is a growing consensus that richer, contextually
grounded datasets, such as those involving electronic health records, legal documents, or

financial transactions, are necessary to advance the state of the art in XAl evaluation.

Ultimately, it is essential to recognise the broader epistemological challenge of
explanation in Al. Unlike traditional software systems, where the logic is explicitly encoded
and traceable, ML models often operate through distributed representations and non-linear
interactions that are not easily decomposed into human-understandable components. This
fundamental mismatch between how models represent knowledge and how humans
understand reasoning processes complicates all efforts at explainability. Addressing this gap
demands collaborative efforts across disciplines to create evaluation frameworks that draw
on insights from computer science and human-computer interaction, combining rigour with

practical applicability.

In summary, while significant strides have been made in defining and quantifying
various aspects of explanation quality, the evaluation of XAl methods remains an open and
evolving area of research. Fidelity, sparsity, stability, human simulatability, and consistency
each provide valuable but incomplete views of explanation quality. Moreover, limitations such
as lack of standardisation, subjectivity, reliance on post-hoc rationalisation, and benchmark
bias continue to undermine the robustness of current evaluation practices. Addressing these
issues will be essential for the development of trustworthy Al systems that can be deployed
responsibly in real-world contexts.
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2.8.3 Summary of the Literature Survey

Table 2- 2 presented below provides a consolidated overview of seminal
contributions from key authors who have significantly shaped the field of Explainable Artificial
Intelligence. It highlights foundational methods across various interpretability paradigms,
including decision trees, rule-based systems, GAMs, model-agnostic explanation frameworks
such as LIME and SHAP, and saliency-based techniques. This curated collection of literature
captures the diversity and evolution of XAl methodologies, offering a meta-perspective on the
landscape of interpretable models and the critical advancements that enable transparent,

reliable, and user-centred Al systems.

Table 2- 2 Summary of Literature Survey

Authors Title Year of Summary of the Publication
Publication
C4.5: programs Authors proposed the C4.5 algorithm for
QuinlanJ.R. | for machine 2014 generating decision trees for classification
learning. tasks.
Breiman, L. et | Classification and Authc?rs proposed CART' a decision tree
) 2017 algorithm for classification and
al. regression trees. .
regression.
Rivest R. L. L.earnmg decision 1987 Authors proposed deC|s!o'n I|§ts asa
lists. simple, rule-based classification method.
Supersparse
linear integer Authors proposed Supersparse Linear
Ustun, B., & models for 5016 Integer Models (SLIM), a sparse,
Rudin, C. optimized interpretable linear model for scoring
medical scoring systems.
systems.
Hastie, T., & | Generalized Authors pr(?posgd GAN.IS to rr'10d'el _non—
e o 1986 linear relationships while maintaining
Tibshirani, R. | additive models. . .
interpretability.
Intelligible models
for healthcare: N
Caruana. R Predictin Authors demonstrated the application of
T & 2015 interpretable GAMs for healthcare
et al. pneumonia risk redictions
and hospital 30- P )
day readmission.
A unified
Lundberg, S. gpproach. to Authors proposed SHAP, a _unlflled _
interpreting 2017 framework for feature attribution using
M., & Lee, S. I
model Shapley values.
predictions.
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Authors Title Year of Summary of the Publication
Publication
"Why should |
LN
Ribeiro, M. T, trust you:: Authors proposed LIME, a local, model-
Explaining the 2016 . .
et al. .. agnostic explanation method.
predictions of any
classifier.
Deep inside
convolutional
networks:
Si K. Auth d sali t
imonyan, ., Visualising image | 2014 .u grs pr'opo'se >3 |ency'maps ©
et al. e o visualise pixel importance in CNNs.
classification
models and
saliency maps.
Grad-CAM: Visual
. explanations from Authors proposed Grad-CAM for visual
Selvaraju, R. . . . e
deep networks via | 2020 explanations using class-discriminative
R., et al. .
gradient-based heatmaps.
localisation.
Counterfactual
explanations
Wachter, ., without opening Authors proposed gener.ating .
ot al the black box: 2017 counterfactual explanations without
' Automated accessing the internal model.
decisions and the
GDPR.
Greedy functi
. ree y unc? 'on Authors proposed gradient boosting and
Friedman, J. approximation: A . . .
. . 2001 introduced PDPs for interpreting model
H. gradient boosting .
. predictions.
machine.
A simple and
Greenwell, B. effective model— Authors prop.)osed‘ an approach using
M. et al based variable 2018 PDPs for variable importance in complex
v’ ' importance models.
measure.
Authors proposed permutation feature
Breiman, L. Random forests. | 2001 importance as part of the Random Forest
framework.
Peeking inside the
black box:
Visualizing
Goldstein, A., | statistical learning Authors proposed ICE plots to visualise
) 2015 e
et al. with plots of individual feature effects.
individual
conditional

expectation.
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Authors Title Year of Summary of the Publication
Publication
. Anchqrs: High- Authors proposed Anchors, a high-
Ribeiro, M. T., | precision model- . . .
. 2018 precision local explanation method using
et al. agnostic .
. if-then rules.
explanations.
From local
explanations to Authors proposed TreeSHAP for
Lundberg, S. | global . .. . .
. 2020 consistent, efficient explanations in tree
M., et al. understanding
, , ensembles.
with explainable
Al for trees.
Interoretin Authors proposed a local feature
Saabas, A. P g 2014 contribution method specific to decision
random forests.
trees.
A Multiscale
Visualization of Authors proposed attention visualisation
Vig, J. Attention in the 2019 . brop
techniques for Transformer models.
Transformer
Model.
Jain, S., & Attention is not 2019 Authors argued that attention weights
Wallace, B. C. | Explanation. are not reliable explanations.
InterpretML: A
unified Authors proposed the Explainable
Nori, H., et al. | framework for 2019 Boosting Machine (EBM), a GAM-like,
machine learning interpretable model.
interpretability.
Axi -
Sundararajan, xu?ma’Flc Authors proposed Integrated Gradients,
attribution for 2017 .
M., et al. an attribution method for deep networks.
deep networks.
On pixel-wise
explanations for
:I(;:;Ii:c?:fr Authors proposed Layer-wise Relevance
Bach, S., et al. . 2015 Propagation (LRP) for pixel-level
decisions by .
. explanations.
layer-wise
relevance
propagation.
Learning
Shrikumar. A :‘r:aizrrteasn:hrou h Authors proposed DeeplLIFT, an efficient
ot al T Copagatin g 2017 backpropagation-based attribution
' P .p g 8 method.
activation
differences.
Quantifying Authors proposed attention rollout for
Abnar, S., & . . ) e e
. Attention Flow in | 2020 robust attention flow quantification in
Zuidema, W.
Transformers. Transformers.
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Authors Title Year of Summary of the Publication
Publication
-Transforme.r. Authors proposed gradient-based
Chefer, H., et |interpretability . s
. 2021 Transformer interpretability beyond
al. beyond attention .
. . attention flow.
visualization.
Understanding
black-box Authors proposed using influence
Koh, P. W., & L . . . .
Liang P predictions via 2017 functions to trace training data influence
& influence on predictions.
functions.
The Bayesian
Case Model: A
genfgztcl;:ior Authors proposed a generative case-
Kim, B., et al. PP 2014 based reasoning framework using
case-based rototvbes
reasoning and P ypes.
prototype
classification.
Latent SHAP:
. Toward practical Authors proposed Latent SHAP for
Bitton, R., et . . .
Al human- 2022 interpretable explanations in latent
' interpretable feature spaces.
explanations.
Shaping up SHAP:
Enhancing .
. s Authors proposed a neighbourhood-
Kelod G. tability th h
elodjol, ., | stabllity throtig 2024 based KernelSHAP approximation to
etal. layer-wise improve stabilit
neighbour P v
selection.
Beyond treeSHAP:
Efficient
. computation of Authors proposed TreeSHAP-IQ for
Muschalik, . .
M. et al any-order 2024 computing higher-order SHAP
v ' SHAPley interactions efficiently.
interactions for
tree ensembles.
DLIME: A
deterministic
local
interpretable o
7afar M. R.. & | model-agnostic Authors proposed DLIME, a deterministic
o g 2019 variant of LIME for reliable local

Khan, N. M.

explanations
approach for
computer-aided
diagnosis
systems.

explanations.
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machine learning.

Authors Title Year of Summary of the Publication
Publication
Algorithmic
o recourse: From Authors proposed integrating causal
Karimi, A. H., .
ot al counterfactual 2021 reasoning into counterfactual
' explanations to explanations for actionable recourse.
interventions.
Multi-objective Authors proposed a multi-objective
Dandl, S., et R .
al counterfactual 2020 optimisation framework for generating
' explanations. counterfactuals.
Efficient search N
. Authors proposed using integer
for diverse . . .
Russell, C. 2019 programming for generating diverse,
coherent .
i plausible counterfactuals.
explanations.
Towards unifying
feature
Kommiya attribution and Authors proposed aligning feature
Mothilal, R., counterfactual 2021 attributions with counterfactuals to
et al. explanations: support fairness audits.
Different means
to the same end.
Explaining
nonlinear
Montavon, G., | classification 5017 Authors proposed extending LRP with
et al. decisions with deep Taylor decomposition for CNNs.
deep Taylor
decomposition.
Explainable Al:
Interpreting, .
Samek, W., et p . & Authors applied LRP-based methods to
explaining and 2019 . - .
al. . . interpret medical imaging models.
visualizing deep
learning.
Unmasking Clever
. Hans predictors .
Lapuschkin, P . Authors used LRP to expose spurious
and assessing 2019 . . . .
S., etal. ) correlations in machine learning models.
what machines
really learn.
CF-GNNExplainer:
Counterfactual Authors proposed CF-GNNExplainer for
Lucic, A., et al. | explanations for | 2022 generating counterfactual explanations in
graph neural GNNSs.
networks.
T d .
. .owar >a . Authors advocated for formalising
Doshi-Velez, | rigorous science |, interpretability with high-fidelit
F., & Kim, B. of interpretable P y & y

explanations.
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Insights from the
social sciences.

Authors Title Year of Summary of the Publication
Publication
. . A survey of Authors provided a comprehensive
Guidotti, R,, methods for . . .
. 2018 survey on explainable machine learning
et al. explaining black
methods.

box models.
Poursabzi- Manipulating and Authors demonstrated the gap between
Sangdeh, F., measuring model | 2021 intuitive explanations and effective
et al. interpretability. human decision-making.

The mythos of Authors critically analysed the ambiguous
Lipton, Z. C. model 2018 use of "interpretability" in machine

interpretability. learning.

Likert scale: Authors explained the design and
Joshi, A., et al. | Explored and 2015 application of Likert scale ratings in

explained. surveys.

Explanation in

artificial Authors proposed integrating social
Miller, T. intelligence: 2019 science principles to improve explanation

design in Al.

2.9 Challenges in Explainability Research

While a growing body of work has focused on the development and evaluation of

explainability methods, a range of systemic challenges persist in the field. These issues span

methodological limitations, epistemic inconsistencies, and the practical realities of deploying

XAl in real-world contexts. Collectively, they reflect the crudeness of the domain and the need

for principled and theoretically grounded approaches. The following sections provide a

detailed examination of these challenges.

2.9.1 Methodological Limitations

Beyond conceptual ambiguity, the specific methods employed in XAl often suffer from severe

technical limitations. Surrogate model techniques, such as LIME and Anchors, approximate

local decision boundaries using interpretable models, including linear classifiers and decision

trees. However, these approximations can have low fidelity in non-linear or high-dimensional

spaces, misrepresenting the original decision logic of the model (Thibault Laugel, 2020).
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Gradient-based saliency maps, such as those generated via Grad-CAM, are widely
used in image and text models; however, they are sensitive to input noise and adversarial
perturbations. Empirical studies have shown that randomly initialised networks can produce
saliency maps similar to those of trained models, casting doubt on their utility as explanations

(Adebayo et al., 2018: Kindermans et al., 2018).

Feature attribution methods, including SHAP and Integrated Gradients, assume
additive feature contributions; however, they are often undermined by feature collinearity or
causal ambiguity. These approaches risk attributing importance to features that are merely

correlated with causal drivers, thus providing misleading insights (Hooker et al., 2019).

Counterfactual explanation methods aim to identify the minimal changes required to
alter model decisions. While promising, they frequently generate unrealistic or infeasible

examples that lie off the data manifold, which diminishes their practical interpretability.

Finally, attention-based methods, while intuitive, have been criticised for combining
attention weights with explanatory relevance, despite evidence that attention does not

always correlate with model outputs (Jain and Wallace, 2019; Serrano and Smith, 2020).

2.9.2 Performance-Explainability Trade-off

A fundamental obstacle in XAl is the apparent trade-off between model explainability and
predictive performance. High-performing models, particularly those based on deep learning,
typically rely on complex, non-linear representations that defy intuitive understanding. In
contrast, models such as logistic regression or decision trees are inherently interpretable but

often lack the representational capacity required for tasks in vision, language, and genomics.

This trade-off has been particularly salient in high-stakes domains such as medicine
and finance. For example, CNN have achieved high accuracy in radiological diagnosis but is

opaque to clinicians, undermining trust and regulatory compliance (Caruana et al., 2015).

Similarly, credit-scoring algorithms based on ensemble methods may outperform traditional

scorecards, but they also raise concerns about fairness and explainability.

Emerging research seeks to mitigate this trade-off by developing models that strike
a balance between explainability and performance. GAMs and EBM use additive structure and

monotonic constraints to ensure transparency while capturing non-linear effects. Neural-
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symbolic systems (J. Zhang et al., 2021) integrate DL with logical reasoning, enabling traceable

inference processes. However, these approaches are still developing and often require

domain-specific tuning.

2.9.3 Faithfulness vs. Plausibility

Another pervasive issue in explainability is the tension between generating faithful
explanations —those that accurately reflect internal model computations and plausible ones
that are intelligible and satisfying to human users. Faithfulness is crucial for technical
transparency, yet explanations optimised for human comprehension often sacrifice this in

favour of simplicity or coherence (Jacovi and Goldberg, 2020).

An example is the use of saliency maps in image classification. While these heatmaps
may visually highlight regions of interest, they are frequently unfaithful to the actual reasoning

of the model. Adebayo et al. (2018) demonstrated that saliency methods produce virtually

identical outputs even for untrained or randomised networks, indicating that these
explanations are artefacts of input structure rather than actual model reasoning. This
phenomenon is not limited to vision; in natural language processing, attention heatmaps

often fail to align accurately with attention heads that influence outputs (Wiegreffe and

Pinter, 2019).

This disconnect poses significant epistemic and practical risks. Users may accept
plausible yet incorrect explanations, leading to misplaced trust or faulty decisions. To address
this, some researchers advocate hybrid approaches that explicitly balance faithfulness and

interpretability, such as using concept bottlenecks (Koh et al., 2020) or causal constraints

(Pearl, 2009).

2.9.4 Bias Amplification and Adversarial Explanations

The deployment of XAl systems in real-world applications has surfaced concerns about the
amplification of biases and the vulnerability of explanation mechanisms to adversarial
manipulation. Explanations often reflect underlying data patterns, and biased training data
can result in explanations that rationalise discriminatory or unfair decisions. Mehrabi et al.

(2021) have demonstrated that models trained on biased datasets not only propagate harmful
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stereotypes but also generate explanations that obscure or justify these patterns, thereby

compounding the problem.

Ghorbani et al. (2019) introduced the concept of adversarial explanations, where
small perturbations to input data can cause significant shifts in the resulting explanations,
without affecting model predictions. This raises the possibility of intentionally manipulating
explanations to conceal biases, introduce misleading rationales, or fabricate a false sense of
fairness. Slack et al. (2020) demonstrated that models could be trained to appear fair in
explanations while being discriminatory in operation, which is a serious concern for

auditability and compliance.

Addressing these issues requires robust training paradigms, fairness-aware
explanation methods, and detection mechanisms for identifying and mitigating adversarial

manipulations. Approaches such as invariant risk minimisation (Arjovsky et al., 2020)

represent promising directions but are computationally demanding and not yet conventional

methods.

2.9.5 The Rashomon Effect

Derived from statistical learning theory, the Rashomon Effect describes how multiple, equally
plausible yet structurally distinct explanations can explain the same model prediction

(Breiman, 2001; Rudin, 2019). This multiplicity complicates the landscape of interpretability,

particularly in parameterised models where many decision paths can lead to the same output.

From a practical perspective, this multiplicity undermines the trustworthiness of
explanations. Users are left uncertain as to which explanation, if any, reflects the "true"
rationale behind the decision of the model. In high-stakes scenarios, such as legal adjudication

or autonomous vehicle operations, this ambiguity poses significant risks.

Efforts to mitigate the Rashomon Effect include the use of causal inference
frameworks to constrain the space of valid explanations (Pearl, 2009) and ensemble
explanation strategies that aggregate across multiple models or runs (Thibault Laugel, 2020).
However, these solutions are not universal. Causal models require strong assumptions and
domain expertise, whereas ensemble methods may introduce additional complexity and

compromise interpretability.
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Overall, these challenges underscore that explainability is not a mere add-on to ML
pipelines, but a foundational requirement that intersects with model design, training data,
evaluation, and human factors. Advancing the field will require multidisciplinary collaboration,

principled frameworks, and emphasis on empirical validation across real-world settings.

2.10 Summary of the Key Findings

The expedited adoption of Al in critical decision-making contexts, including healthcare,
finance, autonomous systems, and public policy, has precipitated an urgent demand for
transparent, accountable, and interpretable Al. This chapter undertakes a comprehensive
examination of XAl, encompassing its conceptual foundations, evolving taxonomy, prevailing
methodological paradigms, evaluation frameworks, and enduring challenges. From this
comprehensive synthesis, it becomes evident that explainability is not merely an ancillary
feature of ML systems, but rather a fundamental prerequisite, epistemologically, ethically,

and practically, for establishing trustworthy and responsible Al.

One of the central tensions in XAl resides in the ambiguity surrounding its
foundational terminology. Terms such as “interpretability” and “explanation” are frequently
employed interchangeably, despite possessing distinct semantic and operational implications.
This semantic fluidity obstructs the process of consensus-building, reproducibility, and
standardised benchmarking. The lack of a unifying framework constitutes a significant
impediment to the advancement of the field. Efforts to address this through taxonomies and
benchmarking initiatives show promise; however, their acceptance across various domains
and use cases remains limited. In the absence of shared standards, comparisons between
methodologies become anecdotal rather than principled, thereby hindering the cumulative

advancement of XAl.

The complexity is further compounded by the methodological limitations inherent in
contemporary XAl approaches. Although local surrogate models, gradient-based
visualisations, attribution methods, counterfactuals, and attention mechanisms each offer
valuable insights into model behaviour, none can be deemed universally reliable or robust.
Many of these methods fail to generalise beyond narrow experimental frameworks, exhibit
fragility when subjected to adversarial perturbations, or render explanations that, while
plausible, ultimately do not faithfully represent the underlying model logic. This inconsistency
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not only raises doubts regarding their utility but also creates opportunities for manipulation
and adversarial misuse, thereby challenging the notion that explanations are inherently

stabilising or trustworthy.

Moreover, the longstanding trade-off between explainability and predictive
performance remains a structural dilemma. DNN achieve state-of-the-art results across
domains, but often at the cost of human comprehensibility. While interpretable-by-design
models such as GAMs or EBMs offer a middle ground, their scope and applicability remain
domain-bound and data-sensitive. Emerging neural-symbolic hybrids and concept-based
models promise greater integration of logic and learning, yet they too demand rigorous

empirical validation and precise theoretical articulation.

Most concerning are the socio-technical risks posed by explainability methods
themselves. Explanations can be gamed, manipulated, or weaponised to mask algorithmic
bias, justify unfair decisions, or simulate regulatory compliance. The dual-use nature of XAl
implies that it must be developed with security, fairness, and adversarial resilience in mind.
This further raises concerns about the assumption that explanations are always beneficial.
Explanations must be accurate, faithful, and useful to the target audience, often requiring a

delicate balance between technical transparency and cognitive plausibility.

The Rashomon Effect underscores this complexity, revealing that many models admit
multiple, equally valid explanations for a single prediction. This undermines any simplistic
notion of a single "true" explanation and highlights the epistemic uncertainty inherent in high-
capacity models. While causal inference and ensemble explanation approaches offer
pathways to manage this multiplicity, they require deeper engagement with domain

knowledge, experimental design, and philosophical perspectives on causality and inference.

Taken together, these insights suggest that explainability cannot be retrofitted into
Al systems as an afterthought. Instead, it must be integral to model architecture, data
curation, evaluation protocols, and deployment pipelines. This necessitates a rethinking of the
entire Al lifecycle, from data collection and feature engineering to training, inference, and
human-Al interaction. Crucially, explainability research must embrace interdisciplinary

collaboration, drawing on computer science, human—computer interaction, legal theory, and
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ethics. Only by embedding explainability within these broader epistemic and societal contexts

can the field realise its promise.

Future research must thus aim at (i) formalising and standardising explanation goals
across use-cases, (ii) creating robust explanation methods, and (iii) grounding evaluations in
human-centred design and real-world deployment feedback. Explainability is not simply about
making models understandable; it is about enabling accountable, fair, and informed decision-
making in an increasingly opaque algorithmic system. The path forward lies not in searching
for a universal solution, but in building a pluralistic, context-sensitive ecosystem of
techniques, metrics, and theoretical frameworks that together constitute a robust science of

explanation in Al.
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3 Dataset

This chapter aims to comprehensively analyse the data utilised for the proposed research,
specifically focusing on neuroimaging techniques. Identifying even the most minor changes in
brain atrophy is essential to conducting an in-depth examination and developing models.
Selecting the correct type of neuroimaging is essential. It plays a key role in early AD detection
and diagnosis, with various techniques offering unique insights into brain structure and

function.

Few of these methods help identify early signs and stages of AD. Magnetic Resonance
Imaging (MRI) employs strong magnets and radio waves to generate highly detailed brain
images. MRI is particularly effective in identifying structural abnormalities such as brain
atrophy, stroke damage, tumours, and fluid accumulation. In the context of Alzheimer's
research, MRI is invaluable for quantitatively characterising the disease progression (Micevoy
et al., 2009). Quantitative measurements from MRI images can track the subtle changes in
brain structures over time, providing a clear picture of Alzheimer's disease and its impacts on

the brain.

There are two types of MRI techniques. Functional MRI, or fMRI, is a primary
technique used to study brain function by measuring changes in blood flow. fMRI scans of
individuals with AD frequently reveal reduced brain activity in certain regions, suggesting a

deterioration in neuronal function (Dennis and Thompson, 2014). Resting-state fMRI has

emerged as a potential diagnostic tool for identifying functional brain alterations in the initial

phases of AD.

Secondly, structural MRI (sMRI) is essential for this study as it enables the detailed
visualisation of brain regions impacted by Alzheimer's disease. By capturing changes in the
brain structure and shape, sMRI can help in the early detection of atrophy, which is crucial for
diagnosing and understanding the progression of Alzheimer's (Vemuri and Jack, 2010).
Moreover, advances in DL have enabled the classification of MRl images at a level comparable
with the performance of expert radiologists. Advancements in DL enhance the diagnostic

value of MRI, making it a powerful tool in both clinical and research settings.

Since the primary aim of this thesis is to detect patterns arising from alterations in
brain structure and morphology, sMRI is the optimal neuroimaging modality for this research.
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Its capacity to offer complex brain morphology images makes it perfect for examining the
slight alterations linked with AD. The information gathered from sMRI will serve as the basis
for the models created in this study, enabling precise categorisation and forecasting of

Alzheimer's advancement.

3.1 Sources of the data

A meticulously chosen and diverse collection of publicly accessible datasets, each offering a
distinctive perspective on the research framework, has been thoughtfully put together. These
datasets have been meticulously chosen based on their relevance to research objectives and
comprehensive representation of patients with varying cognitive conditions and

demographics.

The Alzheimer's Disease Neuroimaging Initiative (ADNI) plays a crucial role in

neuroimaging research (ADNI Database, 2021). ADNI is highly valued for its extensive
collection of MRI scans, clinical assessments, and genetic data from individuals diagnosed with
AD and Cognitively Normal (CN) controls. The primary benefit of ADNI lies in its longitudinal
design, enabling the observation and examination of the progression of cognitive decline in

the early stages of AD.

The AIBL study, known as the Australian Imaging, Biomarker, and Lifestyle Flagship

Study of Ageing, offers a vast and invaluable data collection (AIBL Database, 2021). This data

includes information from individuals who have undergone cognitive assessments, MRl scans,
and biomarker measurements. The dataset is a comprehensive resource that encompasses
individuals at various stages of cognitive deterioration and those who remain cognitively
healthy. Consequently, it is a crucial framework for studying the development of AD-
associated changes and the various factors that influence cognitive ageing. Adding AIBL to the
research plan significantly enhances the comprehension of the complicated mechanisms

linked to AD and cognitive deterioration.

In contrast, the Information eXtraction from Images (IXI) dataset provides a unique

perspective on the field of research (IXI Database, 2021). This dataset contains a variety of

MRI scans, from a range of Cognitively Normal (CN) individuals of different ages.

Encompassing diverse subjects in the dataset boosts the research by enabling evaluations
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between AD and CN. This analysis reveals the distinctive patterns and characteristics

associated with each scenario.

Research objectives have guided the careful and strategic selection of datasets to
investigate the patterns and biomarkers associated with AD. The ADNI, IXI, and AIBL datasets
provide a comprehensive and holistic approach to navigating neuroimaging data. This
deliberate selection makes it possible to examine various sources of information, offering a
comprehensive and multidimensional understanding of AD and its correlation to other NDDs.
Employing this extensive approach can help discover ground-breaking insights and make

substantial contributions to neurodegenerative research.

3.2 Further information regarding the MRI scans.

In neuroimaging, acquiring sMRI scans is crucial for understanding the human brain. These
scans provide a detailed view of the brain anatomy, helping to identify and characterise
various structures. The choice of MRI weights, particularly T1 and T2, is a crucial component
of sMRI scanning. This decision is far from arbitrary, as it fundamentally affects the
information derived from the scans and shapes the goals of subsequent analyses. This thesis
focuses on examining and interpreting brain structures, making the choice of T1 weighting of

essential significance.

T1 and T2 are two distinct MRI weights that represent various aspects of the
composition of the brain. T1-weighted images mainly highlight the existence of fat in tissues,
particularly in the context of brain structures. They excel at emphasising differences in various
brain tissues, predominantly white and grey matter. On the other hand, T2-weighted images
enhance the detection of fat and water content in tissues, such as Cerebro-Spinal Fluid (CSF)
(MacKay et al., 2006). T2-weighting is often employed to investigate fluid-related issues in the
brain, such as identifying lesions, tumours, or abnormalities in CSF flow. Figure 3- 1Error!

Reference source not found. shows two sequences in sSMRI scans, modified from (Atia et al.,

2022).
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Figure 3- 1 Two sequences in sSMRI scans, modified from (Atia et al., 2022)

White and grey matter are two fundamental constituents of the brain, each
possessing distinct functions and characteristics. White matter consists of axons responsible
for transmitting signals between different brain regions, while grey matter primarily

comprises cell bodies and is integral to various cognitive functions (Mercadante and Tadi,

2020). Accurately examining these structures is essential for understanding neurological

conditions, cognitive functions, and the overall operation of the brain.

T1-weighted sMRI scans outline the borders between white and grey matter,
delivering exceptional detail and contrast. This increased awareness of fat levels in tissues is
particularly beneficial for evaluating the structural integrity of the brain and identifying subtle
changes that may occur in diseases such as Alzheimer's or multiple sclerosis (Marcisz and

Polanska, 2023). By using T1 weighting, this thesis aligns with a specific focus on white and

grey matter analysis, enabling a rigorous examination of the structural properties of the brain

as well as any potential alterations or abnormalities.

In sMRI scanning, choosing the MRI weighting is crucial for guiding future research.
This thesis strategically selects T1 weighting over T2 for a detailed analysis of brain structures,
primarily focusing on white and grey matter. This choice highlights the need for accuracy and
sensitivity in understanding the complexities of the human brain and provides insights into

neurological function and dysfunction.
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3.3 FreeSurfer and Its Processing

This thesis examines the complex field of structural neuroimaging, incorporating quantitative
measurements as a fundamental aspect of analysis. These measurements, such as thickness,
volume, and area, are essential for understanding the human brain. Researchers conduct a
comprehensive examination using high-resolution three-dimensional brain scans, also known
as sMRI data. The well-known neuroimaging program FreeSurfer v.6.0 (Fischl, 2012) facilitates

an advanced processing pipeline for retrieving these numerical measurements.

The investigation aims to enhance understanding of brain structure and its links to
neurological disorders and cognitive functions. Using advanced quantitative methods, it seeks
to gain deeper insights into brain morphology and its impact on well-being and cognition. The
data provides a comprehensive view of the internal structure through three-dimensional
scans, but the raw data requires careful preprocessing to enable meaningful numerical

measurements.

FreeSurfer version 6.0 serves as the foundation for the preprocessing pipeline. This
software package provides tools and algorithms particularly designed for neuroimaging data
analysis. The initial stage is image registration, which aligns scans to a standard reference

system (Wyawahare et al., 2009). This alignment ensures consistency and compatibility across

scans, enabling accurate comparisons of brain structures over time.

After registration, the software proceeds with skull stripping, an essential step that

removes non-brain tissues from the images (Kalavathi and Prasath, 2016). This rigorous

procedure ensures that all future analyses are exclusively concentrated on the structural
components of the brain. After the skull stripping process, clean brain images are ready for

further analysis.

Brain segmentation and parcellation are crucial in preprocessing, as they enable the
identification and labelling of distinct brain regions with unique anatomical boundaries

(Backhausen et al., 2016). FreeSurfer excels at accurately labelling various structures, ranging

from the cortex to subcortical areas. This automated parcellation step enables the extraction

of region-specific measurements for detailed examination of brain diversity components.

A notable feature of Freesurfer is its ability to estimate cortical measurements, such

as surface area, volume, and thickness. These measurements are vital in research, providing
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insights into cortical structure and variations. Cortical thickness offers crucial information
regarding brain health and developmental changes. Quantifying these metrics enables

statistical evaluations, thereby enhancing the depth of analysis.

The extracted numerical measurements are crucial for research. These
measurements encompass a broad range of brain regions and characteristics, providing a
diverse perspective on brain structure. For example, one may focus on quantifying the
thickness of specific regions, such as the right HATA (Hippocampal-amygdala transition area),
or the volume of important structures, such as the right Hippocampus. Each measurement
represents a numerical value, which not only enables quantitative comparisons but also

enables sophisticated statistical analyses.

This study benefits from a comprehensive viewpoint, covering the entire brain and
specific areas. This perspective ensures the research captures the full range of brain structure
and its implications. It recognises the complexity of the brain and aims to accurately represent

this intricacy.

Figure 3- 2 represents the overview of the FreeSurfer steps in extracting the

necessary numerical values (Grossner et al., 2018).

Processing Stream Overview

e & & &
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1. T1 Weighted 2. Skull Stripping 3. Volumetric Labeling 4. Intensity
Input Normalization

5. White Matter 6. Surface Atlas 7. Surface Extraction 8. Gyral Labeling
Segmentation Registration

Figure 3- 2 Processing overview of the FreeSurfer program used to extract grey matter volumes (Grossner et al.
2018)
This thesis focuses on carefully extracting and examining numerical measurements

from sMRI data. By utilising the advanced preprocessing capabilities of FreeSurfer v.6.0, the
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software ensures that these measurements are accurate and reliable. These numerical
attributes, such as thickness, volume, and area, play a crucial role in research by providing
insight into the intricacies of brain shape and its relationship to neurological well-being,
cognitive abilities, and other key factors. The aim is to enhance the growing understanding of

the human brain by merging advanced technology with in-depth analysis.

3.4 Post-processing

This thesis develops a critical data selection process utilising three datasets to enhance
comprehension and diagnostic capabilities in AD. These datasets provide valuable
information, including multiple scans per subject taken at various disease stages, such as

screening, baseline, or follow-ups.

The data selection is vital as it significantly influences the thesis goals and results. The
research aims to enhance early AD detection, emphasising the importance of identifying the
disease at an early stage. This aligns with the healthcare goals of early intervention and

treating NDD, potentially improving patient outcomes and quality of life.

Selecting the earliest scan for each subject is essential to represent the initial stages
of AD accurately. Clinicians typically conduct these scans when symptoms are mild or even
before they appear. By focusing on early scans, the goal is to maximise the detection of subtle
brain changes occurring before noticeable clinical signs arise. This approach underscores the
importance of early detection and intervention in AD, which is crucial for enhancing patient

care outcomes.

An additional criterion is used to enhance data selection during the same stage of
gathering information (for example, multiple scans taken on the same date). Clinicians
prioritise the scan with the highest Contrast-to-Noise Ratio (CNR), a valuable measure that
assesses image quality and clarity, ensuring the most accurate depiction of the complexity of

the brain.

After meticulously implementing these selection criteria across all datasets, the next
step was to curate a subset of data comprising 3,974 sMRI scans successfully. Each scan
corresponds to an individual subject, creating a dataset uniquely tailored to the specific goals

and objectives of this thesis.
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After undergoing pre-processing, every sMRI scan from subjects provides a
comprehensive collection of 446 attributes, which represent numerical assessments of
various brain areas. These characteristics comprehensively examine the structural qualities of
the brain, including measurements such as thickness, volume, and area. Nevertheless, similar

to any data, it is crucial to ensure the quality and precision of the information.

The data cleaning phase removed 45 features from the initial set of 446. These
excluded features were either duplicates of other measurements or contained errors. Factors
such as head movement during scanning or complexities in the pre-processing steps of
FreeSurfer could cause these errors. Removing these irrelevant features is crucial to prevent
any distortions or biases in the subsequent analysis, ultimately enhancing the reliability of the

dataset.

This data-cleaning process resulted in a well-organised and enhanced dataset using

Knime software (Berthold et al., 2009; Sarica et al., 2014). It was presented as a table of 3,974

rows, each representing an individual subject's scan. The table also contained 404 columns
representing the features extracted from these scans. These 404 columns comprised 401
unique brain features generated by FreeSurfer v.6.0, in addition to age, gender, and research
group, which indicated the subject's disease. These characteristics provided valuable insights
into various structural aspects of the brain, such as cortical thickness, subcortical volumes,
and other essential measurements. Moreover, the dataset contained age and gender data for
each subject, which was crucial for examining the potential impact of these demographic

variables on brain structure and the diagnosis of AD.

Research indicates that the ADNI dataset is of great value due to its large number of
Alzheimer's disease subjects. Consistency across datasets, particularly in age range, is
essential for valid findings and reliable comparisons. The ADNI study includes participants
ranging in age from 55 to 90 years. To maintain consistency with ADNI and uphold the integrity
of the research, any additional datasets used in this study must also fall within this age range.
For example, the IXI dataset, which covers a broader age range from 19 to 90, has been
narrowed down to only include individuals aged 55 and above. This careful selection ensures
that the dataset used in this thesis remains consistent in terms of age, which is an important

factor considering the significant impact of age on brain size and structure.
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The post-processing and cleaning stages of the dataset are crucial. Removing
duplicate orincorrect features enhances the quality and reliability of the dataset. The resulting
dataset, which consists of 3,974 subjects and 404 features, is a valuable resource for
investigating the complex structure of the brain and its implications for AD diagnosis.
Additionally, the focus on maintaining consistent age ranges across datasets ensures that the
research is built on a strong foundation and can provide accurate and meaningful insights into
the relationship between brain structure and AD within the specified age range. The flow chart
depicted in Figure 3- 3Error! Reference source not found. illustrates the procedure for

acquiring data sources, processing using Free Surfer, and implementing post-processing steps.

Overall Data Processing Approach

N T1 o(:'l;?;;ians | l/ \) T s
. Data Source | ! 3 ) [ e
- P LAY - .
e i ,‘ 1. T1 Weighted 2. Skull Stripping 3. Volumetric Labeling 4. Intensity
S / N 8 | Input Normalization
ADNI | ?
AIBL |
|
IXR ‘

5. White Matter 6. Surface Atlas 7. Surface Extraction 8. Gyral Labeling
Segmentation Registration

: POST PROCESSING USING KNIME : : SELECTION PROCESS :
| Remove duplicate / All Patients must be [)_l Scans with highCNR | » ‘ Earliest available scans | |
: Contained Errors between 55 - 90 : o : are retained o 7\ are retained |

|

Figure 3- 3 Pipeline depicting the overall data processing steps

3.5 General overview and statistics of the dataset

The data visualisation component of this research is a crucial element aimed at visually
representing and analysing the extensive and complex data associated with
neurodevelopmental disorders (NDDs). This section uses various graphical and descriptive
methods to provide a clear overview of the dataset, enhancing our understanding of the

connections, trends, and patterns within the data. These visualisations simplify the
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interpretation of the results and enhance the overall coherence and understanding of this

study.

The visualisations are organised into three main sections. First, they will provide an
overview of the dataset by focusing on general statistics, including the distributions and the
ranges of key features. Second, the visualisations will compare each condition, examining their
distributions and the ranges of select features. Finally, the visualisations will emphasise
insights that can be illustrated through plots, highlighting trends and relationships between

variables to enable a clear visual interpretation of data patterns.

3.5.1 Contributions of each data source

The pie chart in Figure 3- 4Error! Reference source not found. below clearly
represents the distribution of data sources used throughout this research. The ADNI data
source is the most significant contributor, accounting for 77.4% of the overall dataset. This
dominance reflects a substantial portion of the data, comprising approximately 3,080 patient
records. Following ADNI, the second-largest contributor is the AIBL data source, which
accounts for 16.73% of the dataset, equating to roughly 670 patient records. At the other end
of the spectrum is the IXI data source, contributing the smallest share at 5.86%, with just 230

records.

Distribution of Data Source
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Figure 3- 4 Distribution of the data sources
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Despite its smaller size, the IXI dataset is significant because it contains the highest
proportion of healthy records, which are essential for further comparative studies. This
detailed breakdown provides a comprehensive view of the distribution and significance of
each data source, highlighting not only their sizes but also their unique contributions to the

overall analysis.

3.5.2 Distribution of different genders among each of the data sources

The pie charts in Figure 3- 5 below clearly visualise the gender distribution across the
different data sources. In the most extensive dataset, ADNI, males comprise 50.99%,
corresponding to approximately 1,570 records. Females account for 49.01%, representing
around 1,510 records. In the next largest dataset, AIBL, the gender distribution shifts slightly,
with females comprising 55.79% (approximately 371 records) and males comprising 44.21%
(roughly 294 records). The smallest dataset, IXI, also shows a higher proportion of females,

with 61.73%, around 143 records, while males account for 38.63% or roughly 90 records.
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Figure 3- 5 Gender distribution for each different data source

Overall, the gender distribution is generally adequate across the datasets, although
some variations exist, particularly in AIBL and IXI, where females slightly outnumber males.
Sampling techniques are necessary to ensure a balanced representation in future studies that
focus on gender-specific factors. However, since this research primarily focuses on disease
analysis rather than gender, the current gender distribution remains sufficient and does not

require further adjustments.
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3.5.3 Distribution of healthy and multiple diseases within each data source

The tree graphs in Figure 3- 6 below depict the distribution of various diseases across
the different data sources. For the ADNI dataset, CN patients form the largest category,
comprising approximately 1,360 records. Following that, AD represents about 840 records,
while MCI contributes around 360 records. Close behind is the EMCI category, with about 340
records. The smallest proportion within the ADNI dataset is LMCI, which has around 180
records. In the AIBL dataset, CN patients comprise the most significant proportion, with 484
records. The next largest group is MCI, contributing 102 records; finally, AD accounts for 79
records. The IXI dataset is distinct because it exclusively contains CN patients, with 233
records, and does not represent neurodegenerative diseases such as AD, MCI, Early MCI, or

Late MCI.

Distribution of DNscases Among Data Sources - ADNI

Distribution of Diseases Among Data Sources - [ Distribation of Discases Among Data Sources - AIBL

- - I

Figure 3- 6 Distribution of healthy and various diseases within each data source

Overall, the distribution across the datasets shows a relatively balanced
representation between cognitively normal individuals and those affected by various stages
of neurodegenerative diseases, except the IXI dataset, which only includes healthy
participants. This distribution offers a valuable overview of disease and cognitive state
representation, helping to shape the research scope and focus based on contributions from

each dataset.
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3.5.4 The average age of data-subjects included in the data source

Figure 3- 7 Visualises the mean age across the various data sources, providing
valuable demographic context for this research. Starting with the AIBL dataset, the average
age is 75 years, reflecting a relatively older population, which is significant when considering
age-related factors in neurodegenerative diseases. In the ADNI cohort, the average age is
slightly younger, at 74 years. However, it still represents an older demographic that is typical
for studies focused on conditions such as Alzheimer's disease and other age-associated
disorders. In contrast, the IXI cohort presents a notably younger average age of 65 years,

suggesting a relatively youthful group of participants compared to the other datasets.

Average Age of Each Data Sources
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Figure 3- 7 Average age of each data source

This younger demographic could be particularly useful for comparative studies,
particularly when examining early-stage disease markers or drawing comparisons between
younger, healthier individuals and older populations prone to cognitive decline. This
demographic breakdown underscores the importance of factoring in age when conducting
research across these datasets. Age plays a critical role in the onset and progression of
neurodegenerative diseases, and the variation in average ages across these cohorts may have
meaningful implications for both the analysis and interpretation of the results. By considering
these age differences, researchers can understand the role of ageing in the data, potentially

leading to tailored and accurate conclusions.
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3.5.5 Distribution of all the diseases

The bar graph in Figure 3- 8 provides a detailed visualisation of the distribution of
neurodegenerative diseases and the healthy control group within the dataset under
examination. The CN category holds the largest share, with 2,198 patient records, making up
approximately 48.25% of the dataset. The high proportion of healthy individuals in the data is
a critical reference point for comparative analyses with neurodegenerative conditions. The
second-largest category is AD, comprising 921 patient records, which accounts for roughly
20.22% of the dataset. The dataset distribution emphasises the prominence of Alzheimer’s
patients, focusing on studying neurodegenerative diseases. MCI is represented by 461
patients, making up around 10.12% of the dataset. This classification reflects individuals
experiencing cognitive decline that does not yet meet the threshold for a diagnosis of
Alzheimer’s disease or another severe neurodegenerative condition. The dataset includes 335
records under the EMCI category, representing an earlier stage of cognitive impairment, which
is crucial for tracking disease progression. On the other hand, the LMCI group forms the most
minor proportion, with 179 records, accounting for 3.39% of the dataset. LMCI typically
signifies an advanced stage of impairment, often preceding full-blown Alzheimer’s disease or

other severe conditions.
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Figure 3- 8 Distribution of Diseases within the whole dataset

This comprehensive distribution clearly explains the prevalence of different
neurodegenerative stages within the dataset and offers insight into the balance between the

healthy control group and the various cognitive states. Such a breakdown is essential for
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researchers, as it enables nuanced analysis of disease progression and comparisons between
healthy and affected individuals, ultimately enhancing the depth and precision of the research

findings.

3.5.6 Gender distribution among the diseases

The investigation into the gender distribution across various categories of
neurodegenerative diseases reveals a relatively balanced representation between males and
females, with some variation across different conditions, as presented in Figure 3- 9Error!
Reference source not found.. For the CN category, females comprise 54.64% of the group,
with approximately 1,200 patient records, while males account for 45.36%, with around 1,000
records. This slight female dominance in the healthy control group is notable. In the AD
category, the gender distribution shifts slightly, with males representing 51.79% of 477
records, while females make up 48.21% of roughly 444 records. This minor discrepancy
suggests a near-equal representation of genders among Alzheimer’s patients. The MCI
category exhibits a pronounced gender difference, with males comprising 60.74% of
approximately 280 records, while females account for 39.26% of around 181 records. The data
indicate a higher representation of males in the MCI stage of cognitive decline. In the EMCI
category, males constitute 54.33%, about 182 records, while females are slightly fewer, at
45.67%, around 153 records. Similarly, for LMCI, males represent 55.62%, approximately 99

records, while females account for 44.38%, roughly 79.
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Figure 3- 9 Gender distribution within each disease

This detailed breakdown of gender distribution across neurodegenerative disease
categories provides valuable insights into the subtle discrepancies between male and female
involvement. Understanding these variations is crucial for interpreting demographic trends
within the dataset, which can significantly influence research outcomes, particularly in studies

examining gender-specific risk factors or disease progression pathways.

3.5.7 The average age of each instance of disease places the progression stages of AD

The line plot in Figure 3- 10 illustrates the average age across cognitively normal
individuals and those affected by various neurodegenerative diseases, offering crucial
demographic insights for the research. The data shows the youngest average age is in the
EMCI category, with an average age of 71.2 years. Following that, the LMCI group has an
average age of 72.3 years, slightly higher than EMCI. The CN group sits just above that, with
an average age of 72.5 years. The MCI group shows a higher average age of 74.7 years, while
the AD category shows the highest average age of 75.0 years. This gradual increase in age
from EMCI through to AD reflects a logical and real-life progression of cognitive decline.
Alzheimer's, typically diagnosed in individuals over the age of 60, often takes several years to

fully manifest severe symptoms, while earlier stages, such as EMCI, can appear much sooner.
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Figure 3- 10 Average age of each disease

This demographic breakdown is essential because it highlights the significance of age-
related factors in the progression of neurodegenerative diseases. By accounting for these age
differences, the research can accurately assess disease development, symptom onset, and

progression patterns, ensuring that age-related trends are factored into the analysis of the

study cohorts.

3.5.8 Types of data attributes

The doughnut chart in Figure 3- 11 visually shows the allocation of variables in the
dataset, highlighting their distribution. "Area" is slightly dominant, accounting for 69
attributes, underscoring its significance for early AD diagnosis research analysis. Following
closely behind is "Meancurv", making up 68% of the dataset, indicating its importance in
analysis. Volume, Thickness, and Thickness standard deviation each contribute 68%,
emphasising their critical roles. The remaining variables, Volume and Misc., account for 60%
of the dataset. Although smaller, their contribution helps to provide a comprehensive

understanding of the dataset.
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Figure 3- 11 Distribution of type of attributes within the dataset

This doughnut chart clearly and immediately visualises how different variables are
distributed and meticulously breaks down their significance within the dataset. Highlighting
the prevalence of key variables such as area, mean curvature, thickness, and volume enables
researchers to quickly grasp the relative importance of each factor, facilitating a focused and

informed analysis in the research process.

3.5.9 Cortex Volume

The line graph in Figure 3- 12 illustrates changes in cortex volume by age and gender
across four neurodegenerative conditions: AD, MCl, EMCI, and LMCI. A key observation is the
consistent downward trend in cortex volume for both genders, indicating reduced brain
volume as the diseases progress. This decline is most evident in EMCI and LMCI, where the
drop is visually striking. The MCI plot shows a significant reduction with a less sharp slope,
while the AD plot reveals a gradual decline over time, though still substantial. Another notable
feature is the difference in male and female trajectories, with females consistently having
lower cortex volumes. The data suggest that females, on average, start with a smaller cortex
volume than males, whose starting points are higher in each disease category, possibly

reflecting gender-related differences in brain anatomy or progression rates.
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Figure 3- 12 Correlation of Cortex Volume of the brain with Age and Genders for four different Diseases

This visualisation aligns with real-world observations of NDD progression. Cortex
volume tends to shrink as cognitive decline advances, and in the case of Alzheimer’s Disease,
cortical atrophy, particularly in regions responsible for spatial reasoning and visual processing,
can profoundly affect an individual’s ability to interpret spatial and visual information. The
decline in cortex volume observed in these graphs underscores the importance of monitoring
cortical changes in patients as a critical marker of disease progression, and it highlights the

potential gender differences in how these diseases impact the brain.

3.5.10 Amygdala

The line graphs in Figure 3- 13 below present the changes in the left and right
amygdala as a correlation of age and gender across four neurodegenerative conditions: AD,
MCI, EMCI, and LMCI. A key observation from the graph is the consistent downward trend in
the amygdala, both right and left, for all genders across all four conditions, indicating a

reduction in this brain region as the diseases progress.
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The decline is most evident in the EMCI and LMCI plots, where the sharp drop in
amygdala size indicates significant loss of brain tissue early in disease progression. The MCI
plot shows a gradual reduction, reflecting ongoing atrophy at this stage. In contrast, the AD
plot demonstrates a milder decline, particularly in females, while males experience a
pronounced loss of amygdala volume. The data suggests the most substantial loss of amygdala
volume occurs early in Alzheimer's disease rather than post-diagnosis. Another feature is the
difference in male and female trajectories. In all conditions, female amygdala volume is
slightly lower than that of males, consistent with earlier observations of gender differences in
brain anatomy. Male patients exhibit a notable difference between the left and right
amygdalae, particularly in the EMCI and LMCI stages. This data suggests a potential gender-

based asymmetry in brain degeneration, with differing effects on the right and left sides in

males.
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Figure 3- 13 Correlation of Left and Right Amygdala of the brain with Age and Genders for four different Diseases

This visualisation depicts real-world patterns of NDD progression. The amygdala, a

structure located in the temporal lobe, plays a critical role in emotional processing, memory,
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and responses to stimuli. In patients with Alzheimer's and related conditions, the amygdala
tends to shrink as cognitive decline advances. The line graphs reveal that much of the
amygdala volume loss occurs during the early stages, particularly in EMCI and LMCI,
emphasising the importance of early detection and monitoring. This data underscores the
necessity of tracking amygdala changes as a marker of disease progression while also
highlighting potential gender differences in how these neurodegenerative conditions impact

brain anatomy.

3.5.11 Whole Hippocampus

The graphs in Figure 3- 14 below present the changes in the left and right
hippocampus related to age and gender across four neurodegenerative conditions: AD, MClI,
EMCI, and LMCI. A key observation from these graphs is the consistent downward trend in
hippocampal volume, both right and left, across all genders and conditions, signalling a

reduction in this critical brain region as the diseases progress.

The EMCI and LMCI stages show significant declines in hippocampal size, indicating
their importance in understanding disease progression. The MCI plot reveals noticeable
hippocampal shrinkage, with male patients experiencing a gradual decline. In contrast, female
MCI patients show a sharper reduction, indicating a faster atrophy rate. The AD plot shows a
slower decline in hippocampal volume, particularly in males, while females exhibit a
noticeable decrease. Gender differences in hippocampal atrophy are evident in advanced

stages such as MCl and AD, but less so in earlier EMCI and LMCI stages.

The hippocampal decline reflects the progression of real-world NDD. However, the
hippocampus shrinks with age, and conditions such as Alzheimer's speed up this volume loss.
Neuron loss correlates closely with hippocampal atrophy than with tau protein accumulation
or other markers. Line graphs show significant shrinkage during the early stages, particularly
EMCI and LMCI, underscoring the need for early detection and ongoing monitoring to

understand and intervene in disease progression.
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Figure 3- 14 Correlation of Left and Right Whole Hippocampus of the brain with Age and Genders for four
different Diseases
This data also highlights the importance of tracking hippocampal changes as a key
indicator of disease progression. It highlights potential gender differences in how
neurodegenerative diseases such as Alzheimer's impact the brain, suggesting that men and
women may experience these conditions differently in terms of brain volume loss and the
pace of cognitive decline. Understanding these nuances is critical for tailoring early

interventions and treatments that account for these gender-specific differences.

3.5.12 Ventricle

The line graphs in Figure 3- 15 below display the changes in the left and right Lateral
Ventricles as they relate to age and gender across four neurodegenerative conditions: AD,
MCI, EMCI, and LMCI. A significant observation from the graphs is the consistent upward trend
in lateral ventricle size for all genders and conditions on both the right and left sides. This
expansion of the lateral ventricles indicates brain matter shrinkage as the disease progresses,

a hallmark of neurodegenerative decline.
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One key feature is the clear jump in the line graphs as patients age, further
emphasising that ageing plays a significant role in the enlargement of lateral ventricles. The
ageing process accelerates ventricle growth, corresponding with the loss of brain tissue over
time. This phenomenon is most prominent in the EMCI and LMCI stages, where the rapid
increase in lateral ventricle size is visually striking, suggesting that significant brain atrophy
occurs early in the progression of the disease. In AD, although the ventricles continue to
expand, the rate of increase is slower and stable, reflecting ongoing but moderate atrophy in

the later stages of the disease.

In contrast, the MCI plot shows a relatively milder increase in lateral ventricle size.
Interestingly, female patients with MCI exhibit a gradual rise in ventricle size, while male
patients experience a slightly pronounced expansion. These findings suggest that, although

ventricle enlargement remains consistent, its rate may vary by gender in certain conditions.

A key feature is the distinction between male and female trajectories. Unlike past
findings of gender differences in brain atrophy, changes in lateral ventricle size are uniform
across genders. This suggests ventricle enlargement in NDD may not differ significantly by
gender. The left and right lateral ventricles expand at similar rates in male and female patients,
contradicting earlier observations of gender-based anatomical variations in brain

degeneration.
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Figure 3- 15 Correlation of Left and Right Lateral Ventricles of the Brain with Age and Gender for four different

Diseases

This visualisation shows patterns of ventricular enlargement in neurodegenerative
diseases. As brain matter shrinks, particularly in the cortex, ventricles expand to fill the space.
This ventricular enlargement is a marker of brain atrophy, often seen in conditions such as AD.
A sharp increase in the early stages (EMCI and LMCI) emphasises the importance of early
detection. The lateral ventricles are crucial for tracking disease progression, providing insights
into the severity of brain tissue loss severity over time. Notably, the absence of significant
gender differences suggests that ventricular expansion is a consistent marker of
neurodegeneration for both men and women, aiding researchers and clinicians in developing

standardised approaches for diagnosis and monitoring across diverse patient populations.
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3.6 Experimental Setup

3.6.1 Dataset for Feature Selection

Only two targets, AD and CN, have been selected for the FS project in which experiments will
be conducted. Data for classes AD and CN with all metrics includes 404 features in Dataset set
01. Dataset set 02 includes 268 traits for classes AD and CN, encompassing essential metrics

such as the volume, area, and thickness of various brain regions.

For external validation of the proposed techniques, Dataset 03 is an arrhythmia
dataset (Guvenir et al., 1997). The UCI Arrhythmia Dataset is a medical dataset for classifying
cardiac arrhythmias, differentiating between normal heart function and various arrhythmic
conditions. It includes categorical, integer, and real-valued features derived from
electrocardiogram (ECG) recordings and patient information. The primary goal of the dataset
is to classify instances into one of 16 categories, encompassing normal heartbeats and
different types of arrhythmias. For research purposes, all arrhythmias can be combined into a
single “arrhythmia” class, while normal cases remain “normal,” simplifying the classification
task. This dataset makes it valuable for ML medical diagnosis and predictive modelling

research.

This chapter established a strong foundation for developing robust FS techniques
using the datasets presented in Table 3- 1. These techniques enhance model performance,

enhance explainability, and reduce computational costs.

Table 3- 1 Dataset and its Number of features

Dataset Name Target Number of features
Dataset 01: Full Set of MRI Features AD/CN 401
Dataset: Reduced Set of MRI Features AD/CN 268
Dataset 03: Arrythmia Arrhythmia/Normal 279
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3.6.2 Dataset for Sensitivity Analysis

Only two targets, Alzheimer’s Disease (AD) and Cognitively Normal (CN), were selected for the
Sensitivity analysis experiments. Data for classes AD and CN with all metrics such as volume,
thickness, standard deviation of thickness, mean curvature, and area, totalling 404 features in

Dataset set 01.

Dataset set 02 includes 268 traits for classes AD and CN, encompassing essential
metrics such as the volume, area, and thickness of various brain regions. The standard
deviation of thickness and mean curvature were excluded from Dataset 02, as these are
derivative features that may introduce irrelevant variability. The focus was placed on primary
structural features such as volume, area, and thickness, which are directly interpretable and

typically hold stronger discriminative power in classification tasks.

This chapter builds a solid foundation for developing effective SA techniques using
the datasets presented below in Table 3- 2. These techniques enhance model explainability,

which is crucial for incorporating Al into real-world applications.

Table 3- 2 Datasets utilised in the sensitivity analysis

Dataset Name Target Number of Features
Dataset 01: Full Set of MRI Features AD/CN 401
Dataset 02: Reduced Set of MRI Features | AD/CN 268

3.6.3 Dataset for Transfer Learning

Only targets such as Alzheimer’s Disease (AD), Mild Cognitive Impairment (MCI), Early MCI
(EMCI), and Late MCI (LMCI) were selected for the transfer learning process experiments. The
study used two distinct datasets to examine and develop predictive models for cognitive

deterioration in individuals with AD.

The first dataset comprised records from patients with different stages of MCI,
including Early MCl and Late MCI. This dataset consisted of 975 entries, broken down into 335
records from EMCI patients, 461 from MCI patients, and 179 from LMCI patients. Each entry
included 404 features related to cognitive and morphological data, along with demographic
information such as age, gender, and research group classification. The numerous features
provided a comprehensive dataset, enabling a detailed exploration of the various factors

contributing to cognitive impairment in patients at different stages of MCI.
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Designated values were assigned based on MMSE score ranges to prepare the second
dataset for the primary research goal, i.e., evaluating the degree of cognitive impairment in
AD patients (Joshi et al., 2019). These ranges helped categorise the severity of cognitive
decline in patients. An MMSE score of 21-30 was assigned a value of 3, indicating mild
cognitive impairment. A score between 15-20 was assigned a value of 2, representing
moderate cognitive deterioration. Finally, a score in the range of 0—14 was assigned a value
of 1, signifying moderate to severe cognitive impairment. This scoring system helped simplify

the categorisation of patients for further analysis.

The second dataset, focused on AD, contained 2,110 entries. Each entry included
morphological characteristics, MMSE scores, and corresponding disease stages derived from
the MMSE scores. However, the analysis in this chapter focused solely on the mild and
moderate cognitive stages, as data on patients with severe cognitive impairment were limited.
Due to the inherent class imbalance, where mild cases outnumbered moderate ones, random
undersampling was employed to balance the dataset. After under-sampling, the dataset
consisted of 230 records, comprising 115 entries for mild cognitive impairment and 115 for
moderate impairment. The summary of all the datasets utilised in this study is presented in
Table 3- 3 below. This balanced dataset was then used for two key tasks: regression analysis

to predict MMSE scores and classification of cognitive impairment severity.

Table 3- 3 Description of the datasets

Dataset Name Diseases Included Target Number of
Records
Dataset01: MCI dataset MCI, LMCI, EMCI Age 975
Dataset01: MCI dataset MCI, LMCI, EMCI NA 975
Dataset02: AD Dataset AD MMSE Scores 230

4. Improved Filter-Based Feature Selection Techniques Based
on Correlation and Clustering Techniques

This chapter explores FS methods that enhance model performance and interpretability in
high-dimensional medical datasets. FS is vital in ML research, where datasets often contain
numerous interdependent variables that introduce irrelevancy and noise, degrading model

efficiency. Correlation-based and clustering-based techniques effectively identify informative
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features while reducing dimensionality. These approaches enhance model generalisability and
robustness by retaining discriminative patterns relevant to the target task while eliminating

irrelevant or redundant inputs (Hall, 2000).

Three primary motivations drive these innovative techniques. Firstly, they address
the “curse of dimensionality” prevalent in high-dimensional datasets, where the presence of

many features can lead to overfitting and reduce predictive performance (Debie and Shafi,

2019). Correlation-based methods, such as Minimum Redundancy Maximum Relevance

(MRMR) (Peng et al., 2005; Radovic et al., 2017), select the most informative features by

focusing on those highly relevant to the target variable while reducing redundancy. Instance-
based approaches, such as ReliefF, evaluate feature importance by assessing how well
individual features differentiate between instances of the same and different classes based

on nearest-neighbour distances (Kononenko, 1994). Clustering methods, such as hierarchical

and spectral clustering, group similar features to enhance representative selection, enhancing
classification accuracy in Al models. These techniques enhance model efficiency by
streamlining data while retaining essential predictive information, thereby enhancing

classification and prediction performance in complex tasks.

Second, FS techniques enhance the explainability of models, which is essential for
real-world applications. By reducing the number of features, these methods make it easier to
interpret the relationships between input variables and model predictions. Transparent and
interpretable models enable developers and domain experts to verify the basis of predictions,
ensuring that Al systems integrate with task-specific knowledge and integrate effectively into
operational workflows. Additionally, removing irrelevant features reduces the risk of spurious

correlations, resulting in a robust and trustworthy model recommendation.

Finally, High-dimensional datasets present considerable computational challenges,
as training and executing ML models on such data can demand extensive resources. With an
increasing number of features, model complexity escalates, resulting in prolonged training
times, higher memory needs, and a heightened possibility of overfitting. This is particularly
relevant in domains such as image analysis, sensor data, and text processing, where datasets
often contain thousands of variables, making model optimisation and hyperparameter tuning

computationally expensive (Guyon and Elisseeff, 2003). Utilising FS to reduce dimensionality
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can alleviate these problems by decreasing computational expenses while preserving crucial

predictive information, ultimately enhancing model efficiency and scalability.

This chapter aims to provide a framework for enhancing the performance and
interpretability of ML models using correlation and clustering-based FS techniques. These
methods support the development of Al-driven tools that are accurate, transparent, and

adaptable for complex, real-world applications.

4.1 Methodology:

This section introduces a structured and systematic approach to FS techniques developed to
enhance the performance and interpretability of ML models. Implemented using Python
3.9.13 and relevant scientific libraries, the techniques use correlation-based and clustering-

based strategies to identify the most informative features from datasets.

The process involved implementing the methodology on two carefully curated
subsets of the original dataset and an external dataset for validation. These datasets captured
different data dimensions, such as demographic variability and MRI imaging-derived features,

facilitating a robust evaluation of the FS techniques across multiple datasets.

Multiple ML and DL models were employed to validate the effectiveness of the
selected features. This approach enabled the comparison of FS impact across a spectrum of
model complexities commonly used in predictive data analysis. Metrics were used to

benchmark performance, including accuracy.

Cross-validation strategies were integrated into the pipeline to mitigate overfitting
and ensure the generalisability of the results. The reliability of the FS methods was rigorously

assessed by systematically partitioning the datasets into training and test splits.

The following sub-sections will explain each stage of the FS framework in detail,
including the rationale behind the techniques and the observed impact on downstream model

performance.

This chapter presents a novel FS approach that enhances model accuracy while
preserving interpretability, which is crucial in real-world settings. By identifying robust and

significant features, the method supports the development of reliable predictive tools.
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4.1.1 CGN-FS: Correlation-based Greedy Neighbourhood Feature Selection

This section introduces the Correlation-based Greedy Neighbourhood FS (CGN-FS)
methodology, a novel and systematic approach for identifying and retaining the most
informative features from high-dimensional datasets. CGN-FS combines correlation analysis
with threshold-based filtering and evaluation metrics to reduce redundancy, enhance model
interpretability, and enhance predictive performance. A pseudo code for the algorithm is

given in Algorithm 4- 1 table below.

Algorithm 01: Correlation-based Greedy Neighbourhood Feature Selection Method (CGN-FS)

Input: High Dimensional Dataset
Threshold: To be chosen after thorough analysis
Output: Subset of features
‘Procedure:
1. Calculate the feature correlation using Pearson Method.
Obtain the absolute values of the feature correlation matrix.

2
3. Calculate the sum of each feature’s correlation values w.r.t all other features.
4

For each feature i, count the number of correlation values above threshold w.r.t to all other
features and identify these features as neighbours(i). The number of neighbours is ‘count’ value.

Sort by decreasing order of count (primary) and sum (secondary).
Initialize flag as ‘Keep’ for all features.

For each feature i, if Flag(i) is “Keep” mark the features in the neighbours(i) as ‘Removed”.

© N o wu

Return the features with flag “Keep”.

Algorithm 4- 1 CGN-FS: Correlation-based Greedy Neighbourhood Feature Selection

Step 1: Correlation Matrix Generation

The initial stage of CGN-FS involves constructing a correlation matrix to capture the linear
relationships between all pairs of features within the dataset. Pearsons correlation coefficient
is used for this purpose. It offers a well-established measure of linear association, ranging from
-1 (perfect negative correlation) to +1 (perfect positive correlation). A coefficient close to zero

indicates a minimal or no linear relationship.

The resulting matrix is square, with rows and columns corresponding to the input

features. Diagonal entries, representing the correlation of each feature with itself, are always
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equal to 1 and are excluded from further analysis. This exclusion is essential for computational

efficiency and relevance, as self-correlation does not provide helpful information for selection.

The absolute values of the correlation coefficients are computed to standardise the
interpretation of correlation strength. This ensures that strong positive and negative
relationships are treated equally, enabling a holistic understanding of inter-feature
interactions. Features that exhibit high absolute correlations with others are considered

potentially irrelevant, setting the foundation for the subsequent selection steps.

Step 2: Computation of Evaluation Metrics

Once the absolute correlation matrix is generated, two key metrics—sum and count — are
computed for each feature. The schematic of the Sum variable is presented in the Figure 4- 1

below.
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Figure 4- 1 Sample of ‘SUM’ attribute calculation

The Sum quantifies the total absolute correlation of a given feature with all other features. A
high Sum indicates that a feature is generally well-connected within the feature space, often

implying redundancy or high similarity with other variables.
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The schematic of the count variable is presented in the Figure 4- 2 below. In this

example, a user-defined threshold is applied, where a sample is considered valid if its value

exceeds 0.60.
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Figure 4- 2 Sample of calculation of the ‘Count’ Attribute

The count represents the number of features with which a given feature shares a strong
correlation, defined by a user-specified threshold (e.g., > 0.75). Features exceeding this
threshold are labelled Neighbours, highlighting their dense connectivity within the dataset.
The methodology is evaluated across a spectrum of correlation thresholds to assess the

robustness of CGN-FS. Starting from 0.50, thresholds are incremented by 0.05 until they reach
1.00.

These metrics serve complementary roles—Sum provides a global view of correlation

strength, while count identifies local clusters of highly related features.

Step 3: Sorting and Filtering Features

After calculating the metrics, features are sorted in descending order based on their Count

and Sum values. This prioritisation highlights features with strong and widespread
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correlations. Each feature is assigned a flag “Keep” and its respective neighbours are assigned

a flag “Remove”. The schematic of the CGN-FS methodology is presented in the Figure 4- 3

below.

| Sum of these values gives rise to attribute Sum’ |

10

Generate Sum Metric

| Count of these values gives rise to
*

Generate count Metric

Features with moderate count but high
individual relevance, evidenced by their
predictive contribution in model
evaluations, are retained.

Figure 4- 3 Schematic of the CGN-FS methodology

Step 4: Final Feature Selection and Retrieval

The final subset of features consists of those flagged as “Keep.” These represent the most

informative features from the original dataset. This list forms the input for downstream

predictive modelling tasks. The CGN-FS algorithm is flexible and iterative, enabling it to be

reapplied to various datasets and making it appropriate for numerous applications.
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Step 5: Evaluation Across Multiple Thresholds

At each threshold level, subsets of features are selected and evaluated using multiple ML
classifiers, such as Random Forests, SVM, and shallow neural networks. These classifiers

represent diverse modelling strategies suitable for handling complex high-dimensional data.

Each classifier is trained and evaluated using accuracy, precision, recall, and Fl-score
performance metrics. Additionally, the standard deviation of accuracy scores across repeated
trials is computed to assess the stability of the selected feature subsets. The objective is to
maximise accuracy while minimising variance, ensuring that selected features generalise well

across different model configurations and do not introduce instability.

In conclusion, the CGN-FS method provides a robust, transparent, and practical
approach to reducing dimensionality in high-dimensional datasets. The method efficiently
identifies the most relevant features by utilising correlation analysis and strategic thresholding
while mitigating multicollinearity and redundancy. This approach enhances the performance
and stability of ML models and enhances interpretability, an essential requirement in decision-
making contexts. Through its application, CGN-FS demonstrates potential in enhancing model
efficiency and reliability in complex, high-dimensional tasks, ultimately contributing to

accurate predictions and informed decision-making across diverse domains.

4.1.2 RCH-FSC: Region and Clustering-based Heuristic Feature Selection with Clustering

Analysis

This section presents the Region and Clustering-based Heuristic Feature Selection with
Clustering Analysis (RCH-FSC), an advanced technique designed to address the challenges of
high-dimensional feature spaces. RCH-FSC offers a structured, data-driven method that
combines correlation analysis with clustering techniques to identify a compact, interpretable
subset of representative features. The primary goal of this technique is to enhance the
efficiency, accuracy, and interpretability of downstream predictive models without
compromising essential information. A pseudo code for the algorithm is given in Algorithm 4-

2 table below.
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Algorithm 02: Region and Correlation based Heuristic Feature Selection with
Clustering Analysis Method (RCH-FSC)

Input: High Dimensional Dataset

Output: Subset of features

Procedure:

1.  Calculate the feature correlation using the Pearson Method.

2.  Obtain the distance matrix from the correlation matrix.

3.  Perform Principal Co-Ordinate Analysis with Multi Dimensional Scaling.
4. Perform K-Medoids Clustering analysis.

5. Identify one feature to represent each and entire cluster.

6. Identified features are the final subset.

Algorithm 4- 2 RCH-FSC: Region and Clustering-based Heuristic Feature Selection with Clustering Analysis

Step 1: Input and Initial Setup

The RCH-FSC process begins with a high-dimensional input dataset, typically comprising
numerous features. These features often exhibit complex interdependencies, warranting a

systematic approach to reduce dimensionality while preserving essential information.

Step 2: Correlation Matrix Generation

The first analytical step involves generating a correlation matrix to capture the pairwise
relationships among all features. Pearsons correlation coefficient measures the linear
dependency between features. As with CGN-FS, the diagonal elements of this matrix,
representing self-correlations, are excluded, given their lack of contribution to inter-feature

relationship analysis.

To facilitate uniform assessment, the absolute values of correlation coefficients are
calculated, ensuring that strong positive and negative correlations are treated equivalently.

This enables a comprehensive understanding of redundancy and similarity among features.

Step 3: Correlation Distance Calculation and Normalisation

Next, the absolute correlation matrix is transformed into a correlation distance matrix, which

quantifies dissimilarity between features. This conversion is essential for the subsequent
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clustering process, as clustering algorithms generally operate on distance metrics rather than

similarity measures.

The distance matrix is normalised to prevent any individual or cluster of features from
disproportionately influencing the outcome. This standardisation step ensures that all
features contribute equitably to the clustering process and promote balanced cluster

formation.

Step 4: Dimensionality Reduction via Principal Coordinate Analysis

Following normalisation, the correlation distance data undergoes Principal Coordinate
Analysis (PCoA), a technique that projects high-dimensional data into a lower-dimensional
space. This step preserves the relative distances between features, thereby maintaining the

integrity of feature relationships while making them tractable for visualisation and clustering.

The dimensionality reduction enhances the clarity of inter-feature patterns, preparing

the data for robust clustering by highlighting the underlying structure and separability.

Step 5: K-medoids Clustering and Feature Selection

With the lower-dimensional representation of features, the K-medoid clustering algorithm is
applied to group similar features based on their proximity in the transformed space. In
contrast to K-means, K-medoids select actual data points as cluster centres (medoids), offering
greater resilience to outliers and noise, which are common attributes in high-dimensional

datasets.

e The optimal number of clusters is determined using techniques such as the elbow
method and silhouette score analysis:

e The elbow method identifies the point at which increasing the number of clusters
yields diminishing improvements in cluster cohesion.

e The silhouette score assesses cluster consistency, with higher scores indicating better-

defined groupings.

The medoid, the most central and representative feature, is selected for each cluster formed.
These medoids constitute the final subset of features, encapsulating the diversity of the whole

dataset while reducing redundancy.
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Step 6: Final feature subset

The selected medoids represent the most informative and distinct features within the original
dataset. This approach significantly reduces dimensionality while preserving, and in some
cases enhancing, the predictive power of the models. The resulting feature subset enhances

computational efficiency and facilitates model interpretability.

In summary, the RCH-FSC methodology introduces a robust, clustering-based heuristic

approach to FS which is presented in Figure 4- 4 below.
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Figure 4- 4 Schematic diagram of RCH-FSC

The method provides a principled means of reducing feature space in high-
dimensional neuroimaging datasets by integrating correlation analysis, distance
normalisation, dimensionality reduction, and K-medoid clustering. The selected
representative features enable efficient modelling, enhanced interpretability, and reliable

performance, key considerations for ML applications.

4.2 Results and Discussions:

4.2.1 Quantitative Analysis:

In this section, the quantitative results obtained are discussed by applying the proposed

techniques to the AD and Arrhythmia datasets. Although validated on these datasets, the
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proposed methods are generalisable and suitable for application across other domains with

high-dimensional data.

Feature selection was performed on two AD datasets, one comprising 401 features
(Dataset 1) and the other 265 features (Dataset 2). To ensure robustness, external validation
was carried out using the Arrhythmia dataset. The CGN-FS method was further validated using

the ReliefF algorithm, demonstrating consistency and reliability across diverse datasets.
CGN-FS Method:

The developed models were evaluated using repeated 10-fold stratified cross-validation

across thresholds from 0.1 to 0.95 and presented in Figure 4- 5 below.

Three classifiers were evaluated using the AD Dataset 1 with 401 features for FS.
Logistic Regression achieved an accuracy of 88.91% + 3.03, while the SVM classifier reached
87.66% t 2.70. The Shallow NN outperformed both, achieving the highest accuracy of 97.29%
+ 0.94, demonstrating its effectiveness on this feature set. Of the three, the Shallow NN was
the most accurate and consistent, likely due to its ability to capture complex, non-linear
patterns within the data. In contrast, though comparable, Logistic Regression and SVM
showed significant variability and lower performance. However, the increased interpretability
of these traditional models, particularly Logistic Regression, could still make them valuable in

scenarios where transparency is crucial.

CGN-FS Accuracy - Dataset 2
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Figure 4- 5 Accuracy plot for CGN-FS
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Using the AD Dataset 2 with 265 features, three classifiers were assessed. Logistic
Regression achieved an accuracy of 91.06% + 1.76, while the SVM classifier performed slightly
lower at 90.66% + 1.83. The Shallow Neural Network again showed enhanced performance
with an accuracy of 92.49% + 0.95. Although the margin was narrower than that of dataset 2,
the neural network remained the most accurate and consistent model, benefiting from its
ability to learn complex patterns. Nonetheless, Logistic Regression offered strong
performance with interpretability, making it a competitive choice for applications requiring

model transparency.

The summary of the results obtained using the CGN-FS methodology, validated on

different datasets along with their respective accuracies, is presented in Table 4- 1 below.

Table 4- 1 Performance summary of CGN-FS methodologies and their respective accuracy

Method | Data Number of Model Mean ReliefF
Features Accuracy
Logistic 88.91 +
182 Regression 3.03 90.30
7. +
AD Dataset 1 (401 | , o, SVM Classifier | 5700 76.72
features) 2.70
217 Shallow Neural | 97.29 |
network 0.94
Logistic 91.06 +
% Regression 1.76 9040
+
CGN-Fs | AD Dataset 2 (265 | o SVM Classifier | 20:%% ¥ 7506
features) 1.83
67 Shallow Neural | 92.49 |
network 0.95
Logistic 68.57 *
101 Regression 3.87 70.58
i +
Arrhythmia 101 SVM Classifier | 272%  *| 7301
Dataset 2.70
Shallow Neural | 92.10 +
200 network 2.77 i

On the Arrhythmia dataset, Logistic Regression achieved an accuracy of 68.57% +
3.87, while the SVM classifier followed closely with 67.26% * 2.70. The Shallow NN
significantly outperformed both, achieving 92.10% + 2.77. Notably, the NN utilised 200
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features—nearly double the number used by the traditional classifiers—highlighting its ability
to utilise higher-dimensional representations effectively. While this resulted in a substantial
performance boost, it also comes with increased computational cost and reduced

interpretability, essential considerations for deployment in real-world settings.

The ReliefF method was also implemented for comparison using 95 features and 20
random neighbours. Using logistic regression, the ReliefF approach achieved an accuracy of
90%, demonstrating that the CGN-FS methodology provided enhanced FS and model

performance.
RCH-FSC method:

Two distinct AD/CN datasets were evaluated using the clustering-based FS method for RCH-
FSC. To determine the number of clusters, the elbow method and silhouette score were
utilised, and their results are presented in Figure 4- 6 below. The first dataset, containing 401
features, yielded four optimal features: rh_paracentral_area, Ih_middletemporal_meancurv,
rh_parsorbitalis_volume, and rh_pericalcarine_thickness. SVM on this feature set achieved

the best accuracy of 77.42%, with a standard deviation of 0.80.
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Figure 4- 6 Number of Cluster Analysis

In contrast, the second dataset, with 265 features, identified four key features:
Ih_bankssts_thickness, Ih_pericalcarine_thickness, rh_parsorbitalis_area, and
Ih_cuneus_volume. Logistic regression performed best on these four features, achieving an

accuracy of 80.41% and a standard deviation of 1.6.
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The summary of the results obtained using the RCH-FSC methodology, validated on

different datasets along with their respective accuracies, is presented in Table 4- 2 below.

Table 4- 2 Performance summary of RCH-FSC methodologies and their respective accuracy

N f M
Method | Data umber o Model ean
Features Accuracy
Logistic Regression 76.92 £ 0.60
AD Dataset 1 (401 4 SVM Classifier 77.42 + 0.80
features)
Shallow Neural 76.94 4 0.16
network
Logistic Regression 80.41 £ 1.60
RCH- AD Dataset 2 (265 4 SVM Classifier 80.10 + 1.90
FSC Features)
Shallow Neural 78.42 + 0.42
network
Logistic Regression 68.82 + 8.04
Arrhythmia Dataset 17 SVM Classifier 73.45+5.30
Shallow Neural 7136+ 2.01
network

For external validation, the Arrhythmia dataset, with 279 features, identified 17 key
features. SVM performed best on these features, achieving an accuracy of 73.45% and a

standard deviation of 5.30.

In both cases, the FS methodology demonstrated its capacity to significantly reduce
the number of features while maintaining high model accuracy. These results underscore the
robustness of the selected feature sets in differentiating between AD and CN classes,

particularly in comparison to models trained on random or complete feature sets.

4.2.2 Discussion

This research explored and compared two distinct FS methodologies, CGN-FS and RCH-FSC,
validated on internal (AD datasets) and external (Arrhythmia dataset) data. The objective was
to assess the effectiveness of each method in minimising dimensionality while maintaining or
enhancing model performance and interpretability, a factor that is particularly paramount

when managing high-dimensional datasets.
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The CGN-FS method demonstrated strong performance across all datasets and
classifiers. Applied to the AD Dataset 1 (401 features), CGN-FS significantly reduced the
feature space while maintaining high classification accuracy. Notably, the Shallow NN
achieved 97.29% + 0.94 accuracy using 217 selected features, outperforming Logistic
Regression (88.91% + 3.03) and the SVM classifier (87.66% + 2.70). This trend continued with
the 265-feature AD Dataset 2, where the NN again showed the highest performance (92.49%
+ 0.95), though the performance gap between classifiers narrowed. The consistency of the
deep learning model results in a relatively low standard deviation in both cases supports its
robustness and suitability for complex, non-linear patterns common in real-time data.
However, this performance comes at the cost of interpretability and computational
complexity, particularly when the number of retained features is considerably higher than for

traditional classifiers.

The CGN-FS method was further validated through the ReliefF algorithm. Across
datasets, ReliefF-supported feature subsets showed slightly lower performance, suggesting
that CGN-FS captured strongly predictive features and managed redundancy effectively. For
instance, in AD Dataset 1, ReliefF with Logistic Regression yielded an accuracy of 90.30%, while
CGN-FS vyielded a slightly lower 88.91%, though the difference was not substantial.
Interestingly, in some cases, ReliefF produced comparable performance (e.g., AD Dataset 2
with Logistic Regression at 90.40%), reinforcing the reliability of both techniques but slightly

favouring CGN-FS for nuanced real-world datasets.

The external validation on the Arrhythmia dataset added an essential dimension to
this analysis. Using CGN-FS, the Shallow NN achieved an impressive 92.10% + 2.77 accuracy
using 200 features—nearly double the number used by Logistic Regression and SVM (each
using 101 features). This result underscores the capacity of the NN to harness high-
dimensional representations effectively. However, the increased feature count also brings
potential overfitting risks and interpretability challenges, which should be cautiously
addressed in real-world applications. Meanwhile, Logistic Regression and SVM, while less
accurate (68.57% and 67.26% respectively), offered interpretable models and required
significantly fewer features, which could be preferable in resource-constrained or regulatory-

sensitive environments.
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In contrast, the RCH-FSC method took a fundamentally different approach by
identifying a compact and highly representative feature subset using clustering. This method
reduced AD datasets to four features while achieving reasonable classification accuracy. On
AD Dataset 1, SVM achieved the highest accuracy (77.42% + 0.80), followed closely by the
Shallow NN and Logistic Regression. In Dataset 2, Logistic Regression performed best (80.41%
+ 1.60), slightly outperforming SVM and NN. Although the absolute accuracies were lower
than those achieved through CGN-FS, the significant reduction in feature count, down to
approximately 1% of the original dimensionality, highlights the strength of RCH-FSC in
generating lightweight, interpretable models. This is particularly important where reducing

complexity can lead to practical and explainable Al tools.

The Arrhythmia dataset, used for external validation of RCH-FSC, further
demonstrated the utility of this clustering-based approach. With only 17 selected features,
SVM achieved the highest accuracy (73.45% + 5.30), surpassing both Logistic Regression
(68.82% + 8.04) and Shallow NN (71.36% + 2.01). Despite a moderate drop in accuracy
compared to CGN-FS, RCH-FSC still provided strong generalisability, showing that it can
effectively reduce dimensionality without a significant loss in performance. Additionally, the
interpretable nature of RCH-FSC-selected features (e.g., specific brain regions) could make this
method particularly appealing for applications that require in depth insights or logical

reasoning.

Comparatively, CGN-FS produces high-performing models by maintaining features,
particularly when model performance is the priority. Meanwhile, RCH-FSC prioritises
compactness and interpretability, showing strength when the goal is to identify a small set of
meaningful features or when computational efficiency is essential. Together, these results
address the trade-off between performance and interpretability, where the specific demands
of the critical task should guide the choice of FS method. CGN-FS combined with a Shallow NN
is most effective for predictive accuracy. However, for model simplicity and transparency,
which are crucial in real-world deployment, RCH-FSC offers a balanced and explainable

solution.

Comparison with recent feature selection methods
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Recent research on feature selection has been predominantly characterised by approaches

driven by deep learning, such as attention-enhanced Convolutional Neural Networks (CNNs),

Vision Transformers, hybrid deep-feature pipelines, sparse or embedded methods, and a wide

range of meta-heuristic optimisation strategies. These methods have shown improvements,

especially when implemented on extensive MRI image datasets where attention mechanisms

or global token interactions can enhance representation learning. Hybrid pipelines that

combine deep features with classical FS (e.g., LASSO, PSO, WOA) remain favourable because

of their flexibility and generally robust performance. However, despite their strengths, many

of these techniques rely on intensive computation, large sample sizes, unstable attention

mechanisms, or heuristic search procedures that can limit interpretability, reproducibility, and

applicability to smaller ROI-based MRI datasets. The following Table 4- 3 summarises such

examples in contrast to the proposed FS techniques.

Table 4- 3 Comparison with Recent Feature Selection Methods

Attention-based
Deep FS

attention, ROl-wise
3D-ViT approaches.
(Saoud &
AlMarzouqi, 2024,
Zhou et al., 2025)

Learns task-specific
importance,
highlights image
regions, often
improves accuracy.

Requires relatively large
data, attention maps can
be unstable or hard to
interpret as a global
feature ranking.

Method Recent FS - How CGN-FS / RCH-FSC
Strengths Limitations . .
category approaches improve on this
3D CNN +

CGN-FS/RCH-FSC are
model-agnostic and
produce stable, global
smaller MRI-tabular
datasets.

Vision-Transformer
and hybrid

Capture long-
range/global spatial

High compute; attention

FS operates on

(LASSO, sparse
AE)

AEs.

(Alorf & Khan,
2022; Helaly et al.,
2021)

directly enforces
sparsity; simple to
implement.

not necessarily
redundancy-aware (group
correlated features).

Transformer- ViT+CNN models relationshios in # formal feature ROl/tabular features
derived / ViT for MRI. images: stchJ)n selection; not directly (lightweight) and yields
methods (Mahmud Joy et al., erfirm,ance En large suited to ROI-tabular interpretable subsets
2025;Z.Zhao et al., p features. without heavy compute.
image sets.
2024)
CGN-FS reduces
Sparse o Sensitive to corr(?lated groups and
autoencoders / Built-in provides more
Embedded / stacked sparse regularisation; hyperparameters; may be reproducible ranking;
Sparse methods P g ’ instability across folds; P &

RCH-FSC yields ultra-
compactinterpretable
sets (useful when 1-4
ROI features are
needed).

Traditional filter
/ wrapper
(ReliefF, mRMR,
RFE)

ReliefF and mRMR
hybrid CNN.
(Eroglu et al., 2022;
Sadiq et al., 2021a)

Fast, explainable,
widely used; works
well as a first filter.

Struggle with very high-
dimensional / highly
correlated data; ignore
higher-order interactions.

CGN-FS addresses
redundancy and
neighbourhood
structure; RCH-FSC
provides cluster-level
selection (reduces
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Method Recent FS s How CGN-FS / RCH-FSC
Strengths Limitations . .
category approaches improve on this
correlated ROI
duplication).
WOA, PSO, GA for CGN-FS/RCH-FSC
feature selectionin | Robust global search; | Often heuristic, heavy target interpretability/
Metaheuristic AD pipelines. can find small high- compute, less stability first (not pure
optimisation (Cao et al., 2024; S. | accuracy subsets interpretable why search), validated across
(WOA/PSO/GA) | Kauretal., 2022; from huge feature features chosen; external dataset
Mohammad & Al pools. potential overfitting. (Arrhythmia) to reduce
Ahmadi, 2023) overfitting risk.

As the above comparison shows, CGN-FS and RCH-FSC directly target several
limitations common to recent deep and hybrid FS approaches. Instead of relying on attention
weights, image-based token structures, or a meta-heuristic search, both proposed methods
operate as model-agnostic, prioritise stability, redundancy-handling, and interpretability.
CGN-FS explicitly incorporates correlation and neighbourhood information, producing
consistent feature rankings even when datasets are small or highly structured, where
transformers or attention-based models typically struggle. RCH-FSC complements this by
producing extremely compact, clinically interpretable feature subsets without sacrificing
generalisability, as demonstrated through external validation on the Arrhythmia dataset.
Together, these two methods address the performance—interpretability trade-offs present in
many of the recent research studies and offer a lightweight, transparent alternative that is

consistent with real-world clinical deployment and the nature of MRI-derived tabular data.

4.3 Summary of the Key Findings

In this study, two straightforward FS methods—correlation-based and clustering-based—
were implemented and validated on the internal AD/CN dataset and the arrhythmia dataset
for external validation. These methods aim to enhance model performance by reducing the

feature space while maintaining or improving accuracy and interpretability.

The correlation-based method selects features with low inter-feature correlation,
ensuring that irrelevant or highly correlated features are excluded. This process reduces the

feature set, streamlining the modelling process without compromising and often improving
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accuracy. The correlation-based approach outperformed the ReliefF method, demonstrating
increased robustness and accuracy in both datasets. Reducing the number of features also
enhanced the interpretability of the model, providing clearer insights into the relationship

between the selected variables and their impact on classification.

The clustering-based method was equally effective in selecting a reduced set of
relevant features by analysing the pattern of data points in a 2D space and determining cluster
centroids based on their distances. This method successfully identified key features,
significantly reducing dimensionality without significant trade-offs in accuracy. For instance,
using the arrhythmia dataset, this approach reduced the feature space to 15 features while
maintaining accuracy within a 1.5% margin compared to the complete feature set. This
highlights the capability of the algorithm to capture essential information for classification

while improving computational efficiency and model interpretability.

In conclusion, applying correlation-based and clustering-based FS methods
significantly enhanced model performance, accuracy, and interpretability across the datasets.
The correlation-based approach effectively reduced the feature set while maintaining or
improving accuracy, particularly in datasets where features were highly correlated.
Meanwhile, the clustering-based approach provided a compact and efficient feature set that
captured the core patterns in the data, thereby improving model performance with minimal

trade-offs.

These methods offer a powerful toolkit for developing efficient ML models,
particularly in critical domains where high-dimensional datasets are standard. Streamlining
features while retaining important information enhances the practicality of these models in
real-world applications. However, attention must be given to the specific characteristics of

each dataset to ensure that the selected method aligns with the underlying data structure.

As FS techniques evolve, integrating these methods into broader ML frameworks
holds promise for optimising models across various domains, leading to robust, interpretable,

and efficient solutions in data-driven decision-making.
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4.3.1 Advantages and Challenges of the proposed techniques

FS methods demonstrated increased accuracy and robustness compared to existing methods

such as ReliefF.

This is particularly notable in the AD/CN dataset, where feature reduction through
correlation analysis enhanced model performance without sacrificing accuracy. These
methods significantly reduce the number of input features. For example, the clustering
approach selected only 15 features for the arrhythmia dataset, and the correlation method

selected 95 features for AD/CN, making the models efficient and faster to train.

Reducing feature space contributes to interpretability. Models trained on fewer but
relevant features provide clearer insights into the relationships between the input data and

the classification outcomes.

The successful application of these techniques to two distinct datasets highlights the
generalisability of the methods. This indicates potential for use in other high-dimensional

medical datasets, further broadening the scope of these methodologies.

While the correlation and clustering methods are effective, their performance is still
sensitive to the underlying characteristics of the dataset. For instance, the correlation method
might underperform if the features are not strongly correlated or have complex
interdependencies, as seen in the arrhythmia dataset, where NN performed than logistic

regression.

In some scenarios, these methods may not drastically reduce dimensionality,
particularly if the dataset has a high degree of feature variability, as observed in the
arrhythmia dataset, where the final number of features remained relatively high after

clustering (15 features).

4.3.2 Clinical Relevance

The research has significant clinical implications, as the proposed techniques have been
validated on the AD dataset, particularly in the early diagnosis and treatment monitoring of
AD. By applying advanced FS techniques such as the correlation-based CGN-FS and clustering-
based RCH-FSC methods, the model identifies key biomarkers from high-dimensional MRI

data that contribute to accurate AD/CN classification. The reduced feature sets, which focus
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on specific brain regions (such as the entorhinal cortex and hippocampus), are highly relevant

in detecting early cognitive decline and tracking disease progression.

Moreover, these methods enhance the interpretability of ML models, enabling
clinicians and researchers to understand the relationships between selected brain structures
and AD. This transparency is critical in medical decision-making, as it enables clinicians to base
their diagnoses on interpretable, biologically meaningful features rather than black-box
models. The external validation using the arrhythmia dataset further underscores the
potential for these methodologies to be generalised and applied to other medical domains,

improving diagnostic accuracy in areas such as cardiovascular disease.

By streamlining the number of features, these methods also pave the way for
efficient and cost-effective diagnostic tools. Reducing the computational burden without
sacrificing accuracy could lead to faster, real-time clinical decision support systems, helping

practitioners in hospitals and clinics.

4.4.3 Future Work

While this study demonstrates the effectiveness of correlation and clustering FS methods,

several avenues remain open for future exploration:

1) Integration with Longitudinal Data: A logical next step would be integrating longitudinal
data into the model. By tracking over time, FS methods could identify patterns of
disease progression, enabling predictive modelling of when symptoms might emerge
or worsen.

2) Cross-Domain Application: The successful validation of these FS methods on the
arrhythmia dataset underscores their potential applicability across various domains.
Future work could test these methods on other high-dimensional datasets, such as
cancer genomics, cardiovascular imaging, or wearable health data, to further validate
their effectiveness.

3) Explainability and Interpretability: To enhance transparency, further enhancement of
explainability techniques could be integrated with these FS methods. For instance,
applying XAl methods such as SHAP or SOBOL could offer deeper insights into why
certain features are selected and how they influence model predictions. This would
further boost trust in Al models.
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4) Model Generalisation and Transfer Learning: Investigating how these models
generalise across different datasets and populations is another key area for future
work. Utilising transfer learning techniques could help adapt models trained on large
datasets to smaller, less well-represented datasets, enhancing their applicability in

under-resourced settings.

In summary, its potential lies in enhancing accuracy and its flexibility for adaptation across
other domains. Future research should focus on expanding the capabilities of the model,

enhancing its explainability, and integrating it into real-world applications for broader impact.
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5 Sensitivity Analysis for Feature Importance in Predicting
Alzheimer’s Disease

This chapter explores XAl frameworks that enhance the transparency and trustworthiness of
ML models applied to high-dimensional datasets. As Al is increasingly embedded in critical
workflows, understanding how input features influence model predictions is essential,
particularly in high-stakes domains where decision reliability is crucial. XAl frameworks utilise
SA techniques enabling the interpretation of complex DL models by quantifying the effect of
individual input variables on model output, thus contributing to the development of

explainable Al systems for real-world applications (Razavi et al., 2021).

Three key motivations underpin the application of XAl in the critical domains. Firstly,
XAl directly addresses the black-box nature of modern ML and DL models, which often lack
transparency despite their high performance (Bloch and Friedrich, 2022). In real-world
settings, the opacity of such models can limit trust and adoption. SA techniques, such as input
perturbation, gradient-based saliency maps, and layer-wise relevance propagation, reveal
how and why models make specific predictions by attributing importance to input features.
This interpretability is essential for experts who must understand the rationale behind Al-
assisted decisions, particularly in high-stakes scenarios where clarity and traceability of

decisions are critical.

Secondly, XAl plays a dual role in enhancing domain relevance and validating the
acceptability of the decision-making process by the model. It identifies which input features
significantly influence classification outcomes and ensures they align with known,
theoretically or empirically relevant patterns in the dataset. This alignment ensures that
predictions are both statistically robust and practically meaningful. The approach becomes
particularly vital when models are applied to rare, edge-case, or low-representation scenarios,
where early and accurate identification supports timely actions and reliable decision-making.
Furthermore, sensitivity-driven insights can guide the discovery of novel, underexplored

feature interactions, advancing research in complex, high-dimensional datasets.

Lastly, SA techniques employed provide a mechanism for model refinement and

robustness assessment. By revealing the features on which the model relies, researchers can
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identify potential overfitting to noise in the dataset. This approach facilitates iterative data
preprocessing, feature engineering, and model design improvements. Moreover, SA methods
help evaluate the consistency of model behaviour across different data subgroups, ensuring

generalisability and fairness, crucial attributes for real-world adoption.

For this research, SHAP and Sobol global sensitivity analysis methods were chosen
over alternatives such as LIME, Grad-CAM, Integrated Gradients, and permutation-based
importance due to their robustness and precision for high-dimensional MRI-derived datasets.
Local methods such as LIME and Grad-CAM struggle with the highly correlated, non-spatial
tabular MRI features utilised in Alzheimer’s disease research. Integrated Gradients and
permutation methods frequently fail to capture nonlinear interactions or score inconsistently
when feature distributions are imbalanced. Conversely, SHAP provides theoretically resilient,
model-agnostic attributions, and Sobol provides robust global sensitivity measures capable of
revealing complex interactions, thereby enhancing their reliability and clinical relevance for

Alzheimer’s disease prediction tasks.

This chapter utilise SA techniques tailored to high-dimensional datasets, highlighting
their role in enhancing model interpretability, domain relevance, and reliability. These
strategies contribute to creating Al systems that are powerful, accurate, transparent,

explainable, and aligned with real-world deployment needs.

5.1 Methodology:

This section outlines the methodologies employed to conduct SA on a DNN model developed
for a classification task on high-dimensional dataset. SA is critical for understanding the
internal workings of ML models, particularly DL models, which are often considered black
boxes. By scrutinising the impact of input features on predictions, SA facilitates the
enhancement of model interpretability, a critical prerequisite for implementing Al models in

high-stakes environment.

In this research, multiple SA techniques have been evaluated to compute the
importance of features derived from a DNN model classifying AD/CN. Features were obtained
from MRI dataset, processed using FreeSurfer to extract various neuroimaging measures, such

as cortical thickness, volume, and surface area.
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The analysis uses local and global explanation methods, offering a comprehensive
approach to feature relevance assessment. Local methods offer valuable insights into specific
predictions, whereas global methods provide a comprehensive understanding of the
behaviour of the model as a whole dataset. The techniques used in this study include SHAP
and the SALib library, which implement global and local SA methods, such as Sobol, Morris,
and FAST. These methods provide diverse perspectives on feature importance, enables a

robust and reliable evaluation of which features most strongly influence model predictions.

By performing SA on two datasets—Dataset 1 (401 features) and Dataset 2 (268
features)—this study seeks to identify a consistent set of important features for developed
DNN model. The findings across methods are compared to ensure the robustness and stability
of the results, further advancing the interpretability and trustworthiness of the DNN model in
practical applications. Ultimately, this methodology aims to provide valuable insights into the
decision-making process and contribute to the development of transparent and explainable

Al models. Figure 5- 1 shows the architecture of Model 1 for Dataset 1.
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Figure 5- 1 Architecture of Model 1 for dataset 1
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The two datasets are input into two distinct DNN models. Each model is similarly
structured but adapted to manage different input feature sets. DNN Model 1 has been trained
utilising Dataset 1. In contrast, DNN Model 2 has been trained using Dataset 2, which
encompasses fewer features but emphasises a refined subset that may still provide robust

predictive capabilities.

Each model uses an NN with multiple layers, including an input layer corresponding
to the number of features, three hidden layers with ReLU activation functions to introduce
non-linearity and an output layer with a sigmoid activation function for binary classification.
The models are trained using the Adam optimiser and binary cross-entropy loss with accuracy

as the evaluation metric. Figure 5- 2 shows the architecture of the DNN model 2 using Dataset
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Figure 5- 2 Architecture of the DNN model 2 using dataset 2
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These DNN models have been utilised in both the SALib and SHAP methodologies to
ensure consistency in the training of models. Both models are designed explicitly for respective

datasets and are employed to predict the classification tasks of AD versus CN individuals.

5.1.1 Methodology using SALib

This section outlines the methodology used to perform SA for DNN models validated on the
AD dataset. SA uses the SALib Python library, implementing three key methods: Sobol, Morris,
and FAST. These techniques assess the importance of various features in the two respective
datasets. The approach consists of four main steps: data preparation, augmented data

generation, model training, and application of SA techniques.

Step 1: Data Preparation and SA technique Initialisation.

The first step in the methodology involves preparing the datasets for model training. The
datasets consist of various features, each representing a distinct characteristic related to the
structure of the brain. Dataset 1 contains 401 features, and Dataset 2 includes 268 features,

a reduced subset derived from the original dataset.

The training features and target labels for each dataset are defined, followed by scaling

and normalisation to ensure the features are on a comparable scale for model input.

Step 2: Augmented Data Generation in SALib Using Mean and Standard Deviation

In the SALib framework, SA methods—namely, Sobol, Morris, and FAST—necessitate a
precisely defined input space from which to sample to assess the influence of individual
features on model outputs. When the input features are assumed to adhere to a normal
distribution, the mean and standard deviation for each feature must be specified. Using these
parameters and the defined distribution type, SALib generates a representative and
augmented dataset by sampling from the specified distributions. Small perturbations, in the
form of controlled noise, are then introduced to the original dataset to create varied samples

that reflect plausible variations in the input space.

These perturbations are method-specific: the Sobol method employs Monte Carlo
sampling to estimate first-order, total-order, and interaction sensitivity indices; the Morris

method generates multiple trajectories through the input space to identify both main effects
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and higher-order interactions; and the FAST technique applies Fourier analysis to decompose
the variance in model output attributable to each input feature. This enhanced sampling
strategy enables systematic exploration of input variability and its effect on model behaviour.
By evaluating the response of the model across these variations, SALib quantifies the relative
importance and sensitivity of each feature. Such analysis is particularly valuable in complex
models, where understanding the contribution of individual features supports interpretability,

model optimisation, and informed decision-making.

Step 3. Sensitivity Analysis Using SALib

Once the models are trained, a generated sample dataset (with perturbations) is utilised as

input into the trained DNN models, making predictions based on the perturbed data.

The SA techniques are applied to the predictions using the ‘analyse’ function from the
SALib library; the analysis computes the feature importance scores for each feature based on

the degree to which perturbations influence the output of the model.

Multiple iterations of training, prediction, and SA are performed to account for the
stochastic nature of DNN training (due to random initialisation of weights and biases). This
approach ensures robust and reliable results by averaging across several runs to mitigate the

effects of randomness.

Step 4. Results Processing

Once the analysis is complete, the output from the Sobol, Morris, and FAST methods is
processed to identify the most important features of each method. The results from each
method are compared to evaluate the consistency of feature importance across the different
techniques. This comparison helps determine which features consistently influence AD
prediction across various models and methods. Figure 5- 3 visualises the schematic flowchart

for Sobol, Morris and FAST techniques.

©University of Reading 2025 Page 168



C S’fim D)
/ AD/CN DATA /

-—————*————— SAMPLE DATA
|| NEURAL NETWORK TRAINING GENERATED

! ——

PREDICTION

SAMPLE DATA

‘N’ Number of ITERATIONS

SENSTIVITY ANALYSIS

FEATURE IMPORTANCE RESULTS

Figure 5- 3 Schematic Flowchart for Sobol, Morris and FAST techniques

5.1.2 Methodology using SHAP

This section outlines the methodology used to perform Shapley value-based SA on the DNN
models, as described in the previous section. In this approach, SHAP (SHapley Additive
exPlanations) using the SHAP Python library is implemented to identify the most important
features in predicting AD using two distinct datasets: Dataset 1 and Dataset 2. This
methodology focuses on performing SA on DNN Model 1 and DNN Model 2 and extracting the
relevant feature importance scores. Figure 5- 4 visualises the Schematic flowchart for SHAP

technique.
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Figure 5- 4 Schematic Flowchart for SHAP technique

The DNN models are trained to utilise the respective datasets, and a SHAP analysis is
performed to determine the feature importance scores. The procedure commences with the
initialisation of the SHAP DeepExplainer function, which is specifically designed to elucidate

the output generated by DNN models.

Subsequently, the SHAP explainer is initialised, utilising the trained DNN model and
the scaled training dataset. The SHAP DeepExplainer function computes the Shapley values,

thereby quantifying the contribution of each feature to the predictions of the model. These
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values represent the impact each feature has on the output of the model, enabling the
identification of the most influential features. Features with higher Shapley values are

considered important, as they significantly impact the output of the model.

To accommodate the inherent randomness of the DNN training process—arising
from factors such as random weight initialisation, mini-batch sampling, and stochastic
optimisation—multiple iterations of training, prediction, and SHAP analysis are conducted.
This approach ensures robust results that are not biased by arbitrary initialisations, with

averaged outcomes yielding reliable feature importance scores.

The output from the SHAP analysis is processed to identify the most important
features of each dataset and model. These results are post-processed to identify which
features consistently influence model predictions. The final feature importance scores could
be visualised using SHAP plots, such as bar and summary plots, to represent the most

influential features for the DNN model.

5.2 Results and Discussion:

5.2.1 Quantitative results:

In this section, the quantitative results obtained are discussed by applying the proposed
techniques to the AD datasets. Although validated on these datasets, the proposed methods
are generalisable and suitable for application across other domains with high-dimensional

data.

This study developed two DNN models (Model 1 and Model 2) for detecting AD using
two distinct datasets: dataset 1, containing 401 features, and Dataset 2, containing 265
features. The explainability of these models was assessed through SA methods, specifically

SHAP and SALib, which include Sobol, Morris, and FAST methods.

The SA was performed using both SHAP and SALib methods. Each method was
executed 500 times for Dataset 1 and 300 times for Dataset 2 to account for any fluctuations
in the results. These methods provided feature importance scores, which were then analysed

to determine the most essential features for AD detection.
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Ranking of Features

Each list was converted into a corresponding ranking pattern to compare the feature
importance scores obtained from the different methods. The similarity between the rankings
was determined by calculating the absolute difference between the rankings using the
following equation:

abs(A — B)
SNSF

If A < SNSF or B < SNSF - Eq. (1)
Where:

- (A) is the rank from Rank list A,

- (B) is the rank from Rank list B, and

- (SNSF) is the number of selected features specified.

This equation calculates the relative discrepancy between the ranks of two lists,
normalising by the number of features to facilitate comparison across different datasets.
Utilising this methodology, the outcomes from the four techniques (SHAP, Sobol, Morris, and
FAST) were evaluated. The average rank differences were computed to assess central

tendency, thereby summarising the collective similarity across all methods.

Similarity Analysis

Upon conducting a comparative analysis, the SHAP and Sobol methodologies demonstrated a
significant degree of similarity in the ranking of feature importance. The discrepancies in
rankings between SHAP and Sobol were consistently minimal when contrasted with those
observed between alternative methodologies. This observation culminated in the conclusion
that these two methods yielded the most consistent and dependable results in identifying
crucial features. To ascertain the robustness and reliability of the analysis, only the results

garnered from SHAP and Sobol were selected for further scrutiny.

The results of the similarity analysis, as shown in Figure 5- 5, demonstrate the
comparison of ranking patterns across different methods for the 401 features dataset and

indicate the high degree of consistency between SHAP and Sobol
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Figure 5- 5 Similarity analysis for four different approaches and 401 features dataset

Final Feature Importance Ranking

To derive the final feature importance ranking, the results from SHAP and Sobol were

combined using the Rank Position Method (reciprocal rank method) (Nuray & Can, 2006), as

described in equation (2):
r(d) = —— . (2)
Y7

position(dij)

This method computes a rank score for each feature based on its position across all
retrieval systems, where (n) represents the total number of features. The resulting rank scores
were used to sort the features in non-decreasing order, forming the final feature importance

ranking.
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The final rankings were then used to identify the top 20 most important features for
AD detection. These features were selected based on their position in the final combined

ranking from SHAP and Sobol.

Feature Importance results in Tables

The findings outlined in this section derive from proposed SA techniques utilising the AD
dataset, which serves as the validation platform for the methods. Although the methods
developed are domain-agnostic and adaptable across multiple disciplines, the AD dataset was
explicitly chosen to exemplify the efficacy of the approach on a complex, high-dimensional

dataset.

Table 5- 1 lists the 20 most important features identified from Model 1, which was
trained on Dataset 1 with 401 features. The table provides the feature names, their
corresponding medical terminology, and references to relevant medical literature. These

features are crucial in early AD detection, as indicated by their strong importance in the

feature ranking analysis.

Table 5- 1 Feature Importance for Dataset 1

Feature Name

Medical Names

Medical Reference

Left-Inf-Lat-Vent

Temporal horn of left lateral
ventricle

Vernooij and van
Buchem, 2020

Right-Inf-Lat-Vent

Temporal horn of right lateral
ventricle

Vernooij and van
Buchem, 2020

Left_Hippocampal_tail

Hippocampal tail

Zhao et al., 2019

left_presubiculum

Pre subiculum

Carlesimo et al., 2015

left_ Whole_hippocampus

Hippocampus

Rao et al., 2022

left_molecular_layer HP

Molecular Layer Hippocampus

Scheff et al., 1996

left_subiculum

Subiculum

Carlesimo et al., 2015

right_Hippocampal_tail

Hippocampal tail

Zhao et al., 2019

Ih_bankssts_volume

Banks of Superior Temporal
Sulcus

Sacchi et al., 2023

Ih_bankssts_thicknessstd

Banks of Superior Temporal
Sulcus

Sacchi et al., 2023

Ih_parahippocampal_thickness

Para Hippocampal

Van Hoesen et al., 2000

rh_paracentral_thicknessstd

Paracentral

Yang et al., 2019

right_subiculum

Subiculum

Carlesimo et al., 2015

rh_inferiorparietal thickness

Inferior Parietal

Jacobs et al., 2012

Ih_transversetemporal_meancu
rv

Transverse Temporal

Peters et al., 2009
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Left-Amygdala

Amygdala

Poulin et al., 2011

left_hippocampal fissure

Hippocampal Sulcus

De Bastos-Leite et al.,
2006

left_GC-ML-DG

Granule Cell (GC) and

Molecular Layer (ML) of the

Dentate Gyrus (DG)

Ohm, 2007

Right-Amygdala

Amygdala

Poulin et al., 2011

rh_inferiortemporal_volume

Inferior Temporal

Scheff et al., 2011

Table 5- 2 presents the 20 most important features identified from Model 2, which

was trained on Dataset 2 with 265 features. Interestingly, there is a 60% overlap between the

features identified in Error! Reference source not found. and Error! Reference source not

found., highlighting the consistency of these brain regions across distinct datasets and

models. This overlap further reinforces the reliability of the proposed SA methods,

demonstrating their ability to consistently identify the most informative features that drive

accurate model predictions.

Table 5- 2 Feature Importance for Dataset 2

Feature Name

Medical Names

Medical Reference

Left-Inf-Lat-Vent

ventricle

Temporal horn of left lateral

Vernooij & van Buchem,
2020

Right-Inf-Lat-Vent

ventricle

Temporal horn of right lateral

Vernooij and van

Buchem, 2020

right_Hippocampal_tail

Hippocampal tail

Zhao et al., 2019

left_presubiculum

Presubiculum

Carlesimo et al., 2015

left_subiculum

Subiculum

Carlesimo et al., 2015

left_Hippocampal_tail

Hippocampal tail

Zhao et al., 2019

left_hippocampal-fissure

Hippocampal Sulcus

De Bastos-Leite et al.,
2006

Ih_parahippocampal_thickness

Para Hippocampal

Van Hoesen et al., 2000

Molecul L
left_molecular_layer_HP .0 ecuiar aver Scheff et al., 1996
Hippocampus
rh_entorhinal_thickness Entorhinal van Hoesen et al., 1991
rh_rostralmiddlefrontal_thickness | Rostral Middle Frontal Vasconcelos et al., 2014
Killi
rh_inferiorparietal thickness Inferior Parietal ;;igne and Hiany,
left_ Whole_hippocampus Hippocampus Rao et al., 2022
Ih_precuneus_thickness Precuneus Koch et al., 2022
Left-Amygdala Amygdala Poulin et al., 2011
Optic-Chiasm Optic-Chiasm Sadun & Bassi, 1990
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Feature Name Medical Names Medical Reference
Right-Pallidum Pallidum Miklossy, 2011
rh_entorhinal_volume Entorhinal van Hoesen et al., 1991
right_presubiculum Pre-Subiculum Carlesimo et al., 2015
Left-Pallidum Pallidum Miklossy, 2011

The comparison between the two tables reinforces the importance of specific brain
regions, such as the hippocampus, amygdala, and various subiculum regions, in Alzheimer’s
diagnosis. These findings are consistent with current medical literature that highlights the role
of these structures in AD pathology. In conclusion, the SA demonstrated that the SHAP and

Sobol methods yielded the most consistent feature importance rankings.

5.2.2 Discussions:

The present analysis focuses on improving the explainability of DNN classifiers by utilising
various SA techniques. Several recent studies have investigated explainable deep learning
approaches for Alzheimer’s Disease (AD) classification using MRI-derived features. AbdelAziz
et al. (2024) proposed a hybrid SECNN-RF framework that combines a Squeeze-and-Excitation
CNN with a Random Forest classifier, using attention weights and saliency maps to highlight
important features. While their method achieves high classification accuracy, its
interpretability is relatively coarse and primarily local, lacking global feature sensitivity

analysis. Kang et al. (2023) integrated CNN feature extraction with an Explainable Boosting

Machine to obtain interpretable rankings of brain regions. This approach provides glass-box
interpretability, but the feature importance is derived from the boosting model rather than a

direct sensitivity analysis of the DNN, potentially missing higher-order interactions among

features.
Table 5- 3 Comparison with recent SA techniques
Stud Model / Explainability / Limitation vs Proposed
y Method Feature Importance | Ensemble Method
AbdelAziz et al. SECNN + RF SallenFy maps / Loca! SA only; no.global
(2024) attention sensitivity analysis
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Model / Explainability / Limitation vs Proposed

Stud
ady Method Feature Importance | Ensemble Method

Kang et al. (2023) CNN + EBM Feature ranking via | No direct DNN sensitivity

boosting analysis.

Attention-CNN
(Jumaili & Sonuc, ention Local / instance- Not global; no MRI feature
2025) + Grad- level explanation rankin

CAM/LIME P &

N i . i ) .

(unior et al., 2024) CNN + Grad |nstance.IeveI InstanFe/IocaI, no stability

CAM explanation analysis.

Other studies have focused on local or visual interpretability of deep networks.
Jumaili and Sonuc (2025) deployed an attention-based CNN with Grad-CAM and LIME for

instance-level explanations, while Junior et al., (2024) used Grad-CAM to generate instance-

level explanations for multi-stage AD classification. Although these methods highlight key
regions in MRl images, they do not provide a systematic global ranking of tabular MRI features

or assess feature stability across multiple model execution instances..

In comparison, the proposed research applies a combination of SHAP and variance-
based sensitivity analysis methods (Sobol, Morris, FAST) to generate stable, global feature
importance rankings for DNN classifiers trained on high-dimensional MRI datasets. This
approach captures both main and interaction effects among features, is repeatable across
execution instances , and is directly applicable to high-dimensional tabular MRI features,
making it more robust and interpretable than prior methods. Notably, the resulting top-
ranked features are consistent across two distinct datasets, demonstrating the reliability and
generalisability of the proposed methods. By providing a consensus-based ranking with
iterative stability analysis, this framework surpasses prior approaches in interpretability and
robustness, while remaining directly applicable to tabular MRI-derived features commonly

used in clinical and research settings.

5.3 Summary of the Key Findings
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This chapter details the application of DNN models in critical domains, focusing on integrating
SA techniques to assess the explainability of these models. The research used SHAP and SALib-
based Sobol, Morris, and FAST methods to comprehensively understand the importance of
features in the given dataset. Two distinct DNN models processed datasets of different sizes,
offering insights into how varying amounts of data influence model performance and

explainability.

The methodological approach employed in this study provides a significant
contribution to the XAl field by developing advanced Al models and addressing the crucial
challenge of model explainability. The research presented an integrated framework that
combines DNN models with SA techniques to enhance the interpretability of complex models,
which is often a challenge in DL. By utilising SHAP and SALib, this study has provided valuable
insights into which features most significantly impact the predictive capabilities of DNN
models. This approach sheds light on the factors that influence model outputs and provides a
straightforward interpretation of the decision-making process of the Al model, which is critical

in a high-stakes setting where transparency is essential.

In addition to providing valuable insights into the interpretability of Al models, the
study offers a comparative analysis of SHAP and SALib techniques, offering a comprehensive
evaluation of their performance and suitability for feature importance assessment. By
comparing these methods, this research provides an understanding of their strengths and
weaknesses, guiding future researchers in selecting the most appropriate SA technique for

their specific needs.

Furthermore, this study bridges the gap between computer science and real-world
deployment, demonstrating how Al methodologies can effectively address challenges that

demand high levels of transparency and accountability in decision-making processes.

In conclusion, this research presents a substantial contribution to advancing Al
methodologies for high-dimensional data analysis, with a particular focus on improving model
explainability and reliability. By integrating DNN with rigorous sensitivity analysis techniques,
this work delivers a scalable and transparent framework for developing interpretable Al
systems. The methods proposed not only optimise predictive performance but also address

one of the most critical challenges in modern Al: balancing model accuracy with explainability.
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While the experimental validation was conducted using Alzheimer’s Disease
datasets, the approaches developed are broadly applicable across domains where data
complexity, limited sample sizes, and decision accountability are critical. This research paves
the way for future advancements in building trustworthy, generalisable, and transparent Al

solutions suitable for real-world deployment.

5.3.1 Clinical Relevance

The sensitivity analysis techniques explored in this study—including SALib-based Sobol,
Morris, FAST, and SHAP—offer significant computational insights into feature relevance for
AD prediction using MRI scan data. These methodologies provide a robust, model-agnostic
framework for identifying the most influential features in complex datasets, demonstrating
how XAl methods can systematically improve the interpretability of DNN models. This
combination of SA and DNN contributes to the growing need for transparent and trustworthy

Al systems, particularly in domains where decisions must be explainable and verifiable.

The analysis consistently highlighted several key brain structures across both
datasets, including the hippocampus, subiculum, presubiculum, amygdala, and the temporal
horns of the lateral ventricles. These regions are well-established in the literature as being
involved in the progression of AD. For example, hippocampal atrophy is widely recognised as

an early biomarker, supported by numerous neuroimaging studies (De Bastos-Leite et al.,

2006; Van Hoesen et al., 2000; W. Zhao et al., 2019). The identification of the subiculum and

presubiculum aligns with Braak’s neuropathological staging, which places these regions

among the earliest to exhibit tau pathology (C. Macedo et al., 2023).

The inclusion of lateral ventricular structures—the left and right inferior lateral
ventricles—further validates existing findings, as ventricular enlargement is often observed in
neurodegenerative conditions and serves as an indirect indicator of tissue loss (Vernooij and

van Buchem, 2020). Additional features such as the molecular layer of the hippocampus,

hippocampal tail, and hippocampal fissure provide further anatomical precision,

corroborating established volumetric studies (Scheff et al., 1996).

In a clinical context, comprehending which brain regions exert the most significant
influence in predicting AD can assist healthcare professionals in concentrating their diagnostic
efforts on the most pertinent biomarkers. By identifying and prioritising these essential
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features, clinicians can implement targeted interventions, enhancing diagnostic accuracy and

early treatment efficacy.

Furthermore, using DNN models in this study represents a significant advancement
toward creating sophisticated and precise diagnostic tools for NDD. As Al advances, the
potential for integrating complex datasets, including MRI scans, genetic information, and
cognitive scores, is becoming increasingly paramount. The amalgamation of these data
sources with rigorous analytical methodologies has the potential to enhance prediction
accuracy and facilitate the development of personalised treatment strategies, which

ultimately contribute to enhanced patient outcomes.

5.3.2 Future Work

Although the methodologies outlined in this study offer significant insights in XAl techniques,
numerous promising avenues for future research may further refine and expand upon the

obtained results here.

1) Enhanced Model Interpretability: Although SHAP offers valuable interpretability for
DNN models, further research could focus on enhancing the explainability of complex
models. Various techniques could be explored to enhance transparency, such as
incorporating attention mechanisms or layer-wise relevance propagation. Additionally,
developing methods that quantify the contribution of individual neurons or layers in
an NN could provide a deeper understanding of the inner workings of DNN models and
offer experts insight into how the model arrives at its predictions.

2) Model Optimisation: Although the current models are effective, there is room for
optimisation. Future studies could explore hyperparameter tuning, transfer learning
technigues or alternative NN architectures to enhance model performance,
particularly for smaller datasets. Applying ensemble methods or hybrid models that
combine multiple algorithms could enhance prediction accuracy and model

robustness, particularly in cases with limited data.

In conclusion, while this study makes significant strides in applying SA to deep learning
models, several areas for future research could further enhance the performance of the model
and applicability. By incorporating additional model interpretability techniques and model
optimisations, the potential for Al-driven tools in practical settings continues to expand.
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6. Transfer Learning for Predicting Cognitive Staging in
Alzheimer's Disease

This chapter focuses on developing strategies to improve classification performance in
complex, high-dimensional datasets. It investigates the integration of transfer learning and
autoencoder-based techniques to enhance predictive accuracy in scenarios where labelled

data is limited.

The chapter addresses two key challenges. First, it addresses the challenge of data
scarcity by utilising knowledge from related, larger datasets through transfer learning, which
improves model robustness and stability when training samples are limited. Second, it
demonstrates the importance of learning compact, non-linear feature representations using
autoencoders. This enables the models to extract meaningful, abstract patterns from high-
dimensional inputs that conventional algorithms often fail to capture, ultimately improving

both accuracy and generalisability in challenging, real-world applications.

By undertaking these initiatives, the chapter contributes to advancing the
development of efficient DL solutions for complex, high-dimensional classification tasks. It
highlights the potential of innovative, cutting-edge ML techniques—such as transfer learning
and autoencoders—to improve model accuracy, generalisability, and robustness in scenarios
where data is limited, noisy, or challenging to obtain. These methods offer scalable and
adaptable solutions that are broadly applicable across domains where data scarcity presents

a significant modelling challenge.

6.1 Methodology

This section introduces the proposed novel multi-stage algorithm that employs advanced ML
methods such as autoencoders and TL. Utilising the advanced techniques could help in
scenarios with limited data samples. To evaluate this methodology, the AD dataset has been
utilised to enhance the accuracy and prediction of MMSE scores and different stages of AD
using MCI data. The data are sourced from the ADNI dataset, which includes MRI images,
demographic data, genetic details, and cognitive evaluations. The dataset consisted of MClI,

LMCI, EMCI, and AD, which were employed in this research.
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Python version 3.9.13 was used to develop the methodology, utilising its libraries for
scientific computing and data analysis. Keras version 2.9, a high-level NN API, was employed
for advanced ML models in TL and autoencoders. This was supported by TensorFlow version
2.9.2 as a backend, enabling efficient computation and model deployment for NN

development and fine-tuning.

Figure 6- 1 illustrates the comprehensive approach to predicting and classifying
MMSE scores and stages of AD. The process starts by training a regression model to predict
the ages of patients diagnosed with MCI, EMCI, and LMCI. This regression model acts as a pre-
trained model for subsequent stages of the algorithm, facilitating knowledge transfer. The
initial layer of the model is used to learn representation of the knowledge learned by the pre-
trained model, which captures generalised features necessary for pattern analysis within the
MCI dataset. These layers capture important, broad-spectrum features across the three stages

of MCI.

Next, an autoencoder is trained using a combined input comprising data from MCI,
EMCI, and LMCI alongside the knowledge extracted from the pre-trained regression model.
Autoencoders are employed to identify the most essential features in the dataset, efficiently
compressing the data to generate a reduced representation that preserves essential

information.

In the final phase, an AD dataset trains a regression model that predicts MMSE
scores. This model uses the AD dataset and the features extracted by the autoencoder to
predict the MMSE score. The predicted MMSE scores are subsequently employed to
categorise the patients into two distinct stages of AD: mild and moderate cognitive
impairment. This classification reflects the progression of cognitive decline in patients. The
following sub-sections will comprehensively explain each phase to facilitate replication and

documentation.
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Figure 6- 1 Overall approach for using transfer learning and autoencoders to predict MMSE scores and Cognitive stages of AD

Overall, this multi-stage algorithm uses autoencoders and TL to enhance the
understanding and tracking of cognitive decline in AD patients. This is achieved by improving

the accuracy of MMSE score prediction and AD stage classification.

6.1.1 Regression analysis to predict the age of the MCI patients

The initial step of the multi-stage algorithm involves designing and developing a regression
model to estimate the age of patients with MCI. This model employs a feed-forward NN due
to its ability to capture complex, non-linear relationships within the data. The regression

neural network architecture discussed in this section is represented in Figure 6-2 below.

The optimal number of hidden layers was determined using the GridSearchCV

module from scikit-learn, which systematically tests various configurations to find the best
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model structure. Algorithm 6- 1 summarises the optimisation process. This procedure involves
training the model on the MCI dataset with various input and output layers. Table 6- 1

presents the Grid Search Results for an Age-Regression Model with 3-Fold cross-validation.

Algorithm 6- 1 Algorithm for Grid Search for Regression Model

Algorithm for Grid Search for Regression Model

Input:

X train (features), y_train (age labels)

L=1{2, 3, 4} # candidate number of layers
F = {0.5, 0.6} # units reduction factors

D = {0.2, 0.3} # dropout rates

optimizer = RMSprop
epochs = 1000
batch size = 32

Output: Best model architecture 6*

Procedure:

1l: Initialise results_list = []

2: For each 1 in L do

3 For each f in F do

4: For each d in D do

5: # Construct model

6: model ~ BuildNetwork (num_layers=1,
units_ factor=f,dropout=d)

a's Compile model using MSE loss and RMSprop
o
8

ptimizer

2 Perform 3-fold cross-validation on (X train, |
y_train)
9: Compute mean MAE and std MAE across folds
10: Append (1, f, d, mean MAE, std MAE) to
results_list
11: End For
12: End For
13: End For

14: Select configuration 6* with minimum mean_ MAE

15: Retrain final model using 6* on full training dataset with
early stopping

16: Return 6%
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Table 6- 1 Grid Search Results for Age-Regression Model (3-Fold CV)

Rank Layers Units Factor Dropout Mean MAE Std MAE
1 3 0.5 0.3 52.76 1.1804
2 2 0.5 0.3 54.04 2.9567
3 3 0.6 0.3 54.27 0.8689
4 4 0.5 0.2 54.8 1.9178
5 4 0.6 0.2 55.12 1.6212
6 2 0.6 0.2 55.87 1.1886
7 2 0.6 0.3 55.88 1.4879
8 2 0.5 0.2 55.92 2.2143
9 3 0.6 0.2 56.45 2.6597
10 3 0.5 0.2 58.08 1.062
11 4 0.5 0.3 58.11 3.4402
12 4 0.6 0.3 59.39 1.3468

The best-performing configuration was the 3-layer network with a 0.5 reduction
factor and 0.3 dropout. The resultant regression model design architecture from grid search
is used to forecast the age of patients in the MCI dataset as shown in Figure 6- 2. The final
design had an input layer with 401 neurones and a ReLU activation function; the number of
neurones matches the number of the dataset features. Three hidden layers then follow the
input layers. Every hidden layer employ ReLU for activation and includes a dropout layer with
a 30% dropout rate. The initial hidden layer consists of 200 neurons, half the size of the
previous layer. The next set of hidden layers has 100 neurons, and the last hidden layer
contains 50 neurons. The ReLU activation function is used to introduce non-linearity and aid

in identifying complex data patterns. A dropout rate of 0.3 was added after every hidden layer

to enhance the generalisation of the model by reducing overfitting.
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Figure 6- 2 Regression model to predict the Age of the MCI patients

Before the output layer, a dense layer with 10 neurons was included to reduce the
dimensionality of the features gradually. The output layer, consisting of 1 neuron with RelLU,
was used to predict the age of the patients. The mean squared error loss function was utilised
to train the model, which was further optimised using the RMSprop optimiser during fine-
tuning. To prevent overfitting and enable early stopping, a callback method was implemented
with a tolerance of three epochs and a setback to the best weights. The model performance
on new and unseen data was observed throughout the training process by dividing 30% of the
data for validation across 1000 epochs. Following training, the model was evaluated on the

test dataset, and its performance was assessed based on the MAE metric.

6.1.2 Transfer Learning

In the multi-stage algorithm, the following phase involves utilising the TL approach. The
encoder section of a pre-trained model for predicting age was isolated and used as a feature
extractor. The encoder, which includes the first layers of the model, is responsible for
transforming the input data into a lower-dimensional, abstract representation that captures
essential patterns and relevant features for the task. This step is vital for employing the
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acquired features from a model pre-trained on a similar task, thus decreasing the need for

extensive training data and computational resources.

The extraction process included developing a new model, ‘encoder model’, with the
original model as the input and a specific chosen layer from the initial layers as the output. By
choosing this particular layer, the encoder can be sure to extract a sufficiently abstract and
high-level feature representation. The number of layers of the encoder was decided based on

the required abstraction level and task needs.

To maintain the accuracy of the learnt representations and avoid any modifications
to the encoder while fine-tuning, all layers within the ‘encoder model” were kept frozen. This
was achieved by setting the “trainable’ attribute of every layer to "False’. Keeping the layers
frozen ensures that the encoder weights and biases stay consistent throughout training,
preserving the robustness of the features extracted. This step is essential in TL, as it enables
knowledge transfer between different domains, potentially enhancing performance and
convergence speed in the new task despite having limited data. Using the pre-trained
encoder, the model gains an advantage from the knowledge embedded into the original
network, establishing a strong foundation for additional training and fine-tuning on the target

dataset.

6.1.3 Autoencoder:

The next stage in the development process included designing and improving an autoencoder

architecture that can learn and extract important features from the MCl dataset.

Autoencoders were chosen over recent architectures such as Transformers due to
their ability to learn compact, low-dimensional representations from limited, highly
structured datasets. In contrast to Transformer-based models, which typically require large-
scale training datasets and significant computational resources, autoencoders provide stable,
data-efficient feature extraction that aligns with the constraints of medical and MRI-derived
datasets. They also provide controllable latent-space behaviour, enabling structured
regularisation and reconstruction-based constraints, which are particularly valuable when

preserving subtle anatomical patterns.
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TL was used to enhance the ability of the encoder to extract features even further.
TLis a robust method where a model, previously trained on one task, is adjusted and used for
a similar task. In this development stage, an encoder pre-trained and derived from a fine-
tuned regression model was incorporated into the autoencoder. Precisely, a layer of 50
neurons was linked to the autoencoder encoder output, integrating information from the pre-
trained model. Combining the capabilities of the autoencoder and the pre-trained encoder
enabled the autoencoder to use previously learnt patterns and representations to enhance

the feature extraction process.

To enhance the model stability and accelerate convergence during training, batch
normalisation layers were included in both the encoder and decoder. These layers
standardised the output of every dense layer, ensuring the resilience of the model to
fluctuations in the input data distribution. This not only enhanced the speed of training but
also aided in preventing overfitting by controlling the learning process of the model. Batch
normalisation enabled increased learning rates by addressing the issue of disappearing or

amplifying gradients, leading to enhanced learning efficiency for the model.

The autoencoder was trained using the RMSprop optimiser, which is well-suited for
tasks involving large datasets and complex models. The learning rate was set to 0.0001, a
conservative value that ensured slow, steady enhancements in the model weights to minimise
the Mean Squared Error (MSE) loss. MSE was used as the primary loss function, directly
measuring the difference between the original input data and the reconstructed output. The
training was conducted over 1000 epochs, with a batch size of 64, effectively balancing
computational efficiency and memory utilisation. Additionally, early stopping was employed
with a patience of 5 epochs, ensuring that the model would halt training if no significant
improvement in the loss metric was observed, preventing overfitting and reducing

computational resources.

A grid search strategy was used to find the best autoencoder architecture. Grid
search involves systematically testing a pre-defined set of hyperparameters to find the

optimal model configuration. Algorithm 6- 2, below, sets out the procedure.
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Algorithm 6- 2 Algorithm for Grid Search for Autoencoder

Algorithm for Grid Search for Autoencoder

Input:
X _train, hyperparameter sets (layers, neurons, batch size, learning
rate)

Output: Best autoencoder configuration 6%*

Procedure:

1: Initialize results_list = []

2: For each combination of layers and neurons do
Build autoencoder with current configuration
Compile model with MSE loss and RMSprop
Perform k-fold cross-validation on X_train
Compute mean_score and std_score across folds
Append (layers, neurons, batch_size, mean_score,
std_score)to results_list

8: End For

9: Select 6* with minimum mean_score

10: Retrain autoencoderwith 6* on full dataset with early
stopping

11: Return 6*

Nouhkw

Each configuration generated by the grid search was evaluated using k-fold cross-
validation to ensure robust performance across different subsets of the MCI dataset. The
mean and standard deviation of the reconstruction score (MSE-based) were recorded for
every combination of encoder and decoder architectures. The resulting scores provide insight
into the trade-off between model complexity and reconstruction accuracy, enabling the
selection of an optimal autoencoder configuration that balances efficient feature extraction
with generalisability. Table 6- 2, below, sets out the results of the grid search for the

autoencoder.
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Table 6- 2 Grid Search Results for Autoencoder Model (3-Fold CV)

Encoder Architecture Decoder Architecture Std Dev of
Rank Mean Score

(Neurons) (Neurons) Score
1 [200, 100] [100, 200] 0.7089 0.0121
2 [100, 50] [100, 200] 0.7109 0.0134
3 [150, 50] [100, 200] 0.7148 0.0138
4 [100, 50] [50, 150] 0.7269 0.0132
5 [200, 100] [50, 150] 0.7305 0.0161
6 [150, 50] [50, 150] 0.7315 0.0176
7 [200, 100] [50, 100] 0.7356 0.0185
8 [150, 50] [50, 100] 0.7389 0.0231
9 [100, 50] [50, 100] 0.7404 0.0187

Figure 6- 3 illustrates the final autoencoder structure, which combines the optimal

encoder/decoder design with transfer learning. This configuration efficiently captures latent

patterns from the MCI dataset, providing features for downstream MMSE prediction and

cognitive stage classification.
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Figure 6- 3 Architecture of the autoencoder

Ultimately, the optimised autoencoder structure achieved an excellent balance
between model complexity and computational efficiency. By extracting and encoding critical
features from the MCI dataset, the autoencoder demonstrated an ability to capture latent
patterns that were not readily apparent in the raw input data. This robust feature extraction
capability, combined with the use of TL, significantly enhanced the performance of the model

in downstream predictive tasks.

The utilisation of TL and the grid search-driven optimisation technique resulted in a
robust autoencoder structure that played a crucial role in the complex ML process created in
this research. The autoencoder-acquired characteristics were then used further in a predictive
model to approximate MMSE scores and categorise cognitive conditions in AD patients. Being
able to reliably forecast cognitive decline and classify patients according to their cognitive
status is clinically significant. The autoencoder-based feature extraction method contributes

to improving the accuracy and reliability of these forecasts.

The resultant architecture of the autoencoder also included TL and grid search

optimisation. The capability to derive significant and coherent attributes from complex
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datasets is anticipated to enhance significantly the accuracy and dependability of the models,

ultimately leading to results.

6.1.4 Regression followed by categorisation:

The final phase of this multi-stage algorithm aimed to predict MMSE scores, a critical measure
of cognitive function, in AD patients. This was achieved by utilising the output of feature
representations from an autoencoder to perform regression analysis and subsequently
classify these MMSE scores into two distinct cognitive impairment categories: mild and
moderate. The accurate prediction and classification of MMSE scores is vital, as it can
significantly contribute to the timely and effective management of cognitive decline in AD

patients.

Algorithm 6-3, below, sets out the procedure of the grid search applied to the
regression model used to predict the MMSE score. This is followed by Table 6-3, which

presents the experimental results for various configurations of the model.
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Algorithm 6- 3 Algorithm for Grid Search for Regression Model with MMSE Score

Algorithm for Grid Search for Regression Model with MMSE scores

Input:

X. .train, y .train (features and MMSE scores)

L = {2, 3, 4} # candidate number of hidden layers

U0 = {300, 400} # initial units in first hidden layer

F = {0.5, 0.6} # unit reduction factors for subseguent layers
optimizer = RMSprop

epochs = 500

batch _size = 64

Output:

Best regression model configuration 6%*

Procedure:

1: Initialize xe

ikts

et iSt

2: For each 1 in L do

3: For each u0 in UO do

4: For each £ in F do

S: # Construct model

6: model « BuildNN.(num layers=1l, Jdanitial units=uo,
reg n _factor=f, dropout=0.3)

¥ i Compile model with MSE loss and RMSprop optimizer

8: Perform 3-fold cross-validation on (X _txain, y _txain)

9: Compute mean score and gstd _score across folds

10: Append (1, u0, £, MeAN_SGOXR, LA ScRrS) to xesults list
11: End For

12: End For

13: End For
14: Select configuration ©* with minimum mean sScoxre
15: Retrain final model using 6* on full training dataset with early stopping

16: Return ©*

Table 6- 3 Grid Search Results for Regression followed by categorisation (3-Fold CV)

- . Unit
Rank Layers Initial Units Reduction Mean Score Std Dev of
(Uo) Score
Factor

400 0.6 4.325 0.5073

400 0.5 4.459 0.4923

300 0.5 4.522 0.4514

300 0.6 4.555 0.5115

vi| | W N| =
W| N[ N N[N

300 0.6 4.636 0.489
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Rank Layers Initi(aLI’ (l;;nits Re:uT:ion Mean Score Stz:);‘; of
Factor

6 3 400 0.5 4.638 0.4756
7 3 400 0.6 4.726 0.6418
8 3 300 0.5 4.733 0.4368
9 4 400 0.6 4.855 0.2438
10 4 300 0.6 4.873 0.8139
11 4 300 0.5 5.072 0.14

12 4 400 0.5 5.092 0.063

The optimisation of these parameters enabled the model to capture the non-linear

relationships inherent in the disease progression, leading to enhanced accuracy and stability

in MMSE score predictions. Figure 6- 4 illustrates the NN architecture for regression model.
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Figure 6- 4 NN architecture for Regression model
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To further guard against overfitting, early stopping was implemented with a patience
of 10 epochs. Early stopping is another regularisation technique that halts training if the
performance of the model on a validation set stops improving for a specified number of
epochs or iterations. By doing this, the model avoids overfitting to the training data while
retaining weights that produce the best generalisation performance on unseen data. The
patience parameter was set to 10, enabling the model enough time to explore potential
improvements in performance while preventing overtraining. The model was trained for up
to 500 epochs, with a batch size of 64, which balanced training performance and memory
utilisation. Using mini-batches during training enabled the model to update its weights

frequently, leading to faster convergence.

After training, the predictive performance of the model was evaluated on a separate
test dataset. The evaluation metrics included Mean Absolute Error (MAE), Root Mean Squared
Error (RMSE) and MSE. These metrics are commonly used in regression tasks to quantify the
difference between predicted and actual values. MAE provides a straightforward error
measure by calculating the average absolute difference between predictions and actual
values, while RMSE and MSE assign weight to penalise significant errors heavily. This
combination of metrics ensured a comprehensive evaluation of the accuracy and reliability of

the model in predicting MMSE scores.

To classify the predicted MMSE scores into cognitive impairment categories, the
regression predictions of the model were rounded to the nearest whole number. The rationale
was to map the continuous MMSE predictions into discrete categories that reflect clinically
meaningful levels of cognitive impairment. Based on established MMSE thresholds, the
rounded scores were classified into two categories: mild cognitive impairment and moderate
cognitive impairment. These categories are clinically significant because they represent
different stages of cognitive decline, with MCI often being an early indicator of AD

progression.

The classification accuracy of the model was evaluated by comparing the predicted
cognitive categories to the actual cognitive status labels in the test data. A confusion matrix
was generated to assess the ability of the model to distinguish between mild and moderate
cognitive impairment correctly. The confusion matrix provided a detailed breakdown of the
classification performance of the model, highlighting not only the accuracy but also any errors
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made in predicting the cognitive status of patients. This analysis was particularly valuable in
assessing the clinical utility of the model, as the ability to classify cognitive impairment levels

accurately could directly impact patient care and treatment decisions.

The final step in the multi-stage process was to compute average performance
metrics, including MAE, RMSE, MSE, and classification accuracy, over multiple model
execution instances. This step was crucial for ensuring the robustness and reproducibility of
the results. By averaging the metrics over multiple iterations, any variability in the model
performance due to random initialisation or other factors could be mitigated, leading to

reliable conclusions about the predictive capabilities of the model.

In summary, the last stage of the multi-stage method successfully integrated
regression analysis and classification to predict MMSE scores and categorise them into mild
or moderate cognitive impairment. Using autoencoder-generated feature representations
and a well-optimised NN architecture enabled the model to capture complex, non-linear
patterns in the AD data. The grid search optimisation, regularisation techniques such as
dropout and early stopping, and careful tuning of hyperparameters contributed to the strong
performance of the model. The evaluation metrics demonstrated that the model could
reliably predict MMSE scores and classify patients into relevant cognitive categories. It is a
valuable tool for clinical decision-making in managing AD. By advancing the state-of-the-art
predictive modelling for neurodegenerative diseases, this approach holds promise for
improving patient care and supporting clinicians in the early detection and treatment of

cognitive decline.

6.2 Results and Discussion:

6.2.1 Quantitative results

In this section, the quantitative results obtained are discussed by applying the proposed
techniques to the NDD datasets. Although validated on these datasets, the proposed methods

are generalisable and suitable for application across other domains.

The initial regression model was designed to predict the age of patients with MClI,
EMCI, and LMCI, and it performed well. During training, the model achieved a Mean Absolute
Error (MAE) between 6 and 7 years, demonstrating reasonable accuracy. Even though the
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testing MAE increased to 12 years, this result is still considered good, particularly given the
complexity of the data and the challenge of predicting the age of cognitively declining
patients. The ability of the model to perform reasonably well on unseen data highlights its

robustness and potential for utilising it for the TL process.

In the TL approach, the second layer from the top was selected for its ability to
capture the most generalised features from the MCI dataset. These features, abstracted from
deeper layers of the model, are highly transferable and valuable for related tasks. For this
purpose, 50 neurons were used to represent the features learned from the model, providing
an optimal balance between complexity and generalisation. This enabled the model to adapt
effectively in predicting outcomes such as cognitive decline with minimal fine-tuning,

enhancing its overall performance.

For the autoencoder, the input data was a combination of MCI data and the 50
neurons derived from TL. The autoencoder was trained with early stopping-to-halt training
when no further loss improvement was observed. A reconstruction error distribution
histogram was plotted to assess the autoencoder performance. On this histogram presented
in Figure 6- 5Error! Reference source not found., the X-axis represents the error, while the Y-
axis shows the frequency of errors. As illustrated, most errors are minimal, clustering around
the 0.25 to 0.50 range, with very few values exceeding 1, indicating effective reconstruction

performance.
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Figure 6- 5 Reconstruction Error Distribution for the Autoencoder

In the autoencoder, the reconstruction error represents the difference between the
original input and its reconstruction after passing through the encoder-decoder process. The
reconstruction error distribution histogram helps to visualise how well the autoencoder
performs by plotting error values on the X-axis and their frequency on the Y-axis. A low
reconstruction error suggests that the autoencoder has effectively learned the essential
features from the data. In this case, most errors fall between 0.25 and 0.50, indicating strong
model performance, with only a few values exceeding 1, suggesting minimal outliers or poor
reconstructions. This distribution confirms that the autoencoder has successfully captured the

important patterns in the MCI data.

The regression model for predicting MMSE scores showed strong performance, using
early stopping and training over 10 iterations to prevent overfitting. The model achieved an
average MAE of 3.51 with a standard deviation of 0.12, demonstrating consistent predictions.
Additionally, the RMSE was 4.53, and the MSE was 20.54, reflecting accurate predictions of
cognitive decline. Following the regression, the predicted MMSE scores were classified into
mild and moderate categories, achieving an overall accuracy of 73.26% with a standard
deviation of 3.93 across 10 iterations. The performance consistency of the model over
multiple runs was visualised using a line graph in Figure 6- 6, illustrating reliable outcomes
across all stages of the process. This combination of regression and classification highlights
the robustness of the model in predicting and categorising disease severity.
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Figure 6- 6 Performance of the last stage over 10 iterations

Further, in the analysis of diagnostic accuracy for distinguishing between mild and
moderate cognitive decline, an average of all 10 confusion matrices was derived and plotted
below in Figure 6- 7. This provides a comprehensive overview of the performance of the

model.
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Figure 6- 7 Average value of Confusion Matrix for the Categorisation of MMSE Scores over 10 iterations

The true negative rate (TN) was recorded at 38.4, indicating a substantial number of
correctly identified mild cognitive decline. The model also exhibited 28.7 true positives (TP),
accurately identifying individuals with moderate cognitive decline. However, there were 7.6
false positives (FP), representing instances where individuals were incorrectly classified as
having the condition, and 17.3 false negatives (FN), highlighting cases where moderate
conditions were missed and misclassified as mild. These values underscore the importance of

balancing sensitivity and specificity in diagnostic evaluations.

6.2.2 Discussions

A comprehensive comparison of model performance was conducted to evaluate the
effectiveness of the proposed multi-stage algorithm in predicting cognitive stages of AD
progression, particularly regarding several baseline and state-of-the-art models. This
evaluation was critical to understanding how well the new approach, which integrates
advanced techniques such as TL and autoencoders, performs compared to traditional models
that rely solely on structural MRI data or different combinations of NN architectures. By

benchmarking the proposed algorithm against established models, the study aims to highlight
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its strengths in improving accuracy, reducing error margins, and offering reliable predictions,

ultimately contributing to the broader field of transfer learning modelling.

As a first step, a baseline regression model was constructed using the same
architecture as the final regression model from the proposed approach. However, this
baseline model was exclusively trained and evaluated on the AD dataset with MMSE scores as
the target without pretraining or enhancement techniques. The architecture of the baseline
model consisted of two hidden layers, each incorporating a dropout layer with a dropout rate
of 0.3 to reduce the risk of overfitting. The first hidden layer comprised 401 neurons, matching
the input dimensionality of the AD dataset. Subsequent layers followed a reduction strategy,
where each had 60% of the neurons of the preceding layer. Unlike the proposed multi-stage
algorithm, which utilised TL and autoencoders for enhanced generalisation and performance,

this baseline model used only AD data, devoid of advanced pretraining methods.

After completing the regression task in the baseline model, a classification step was
introduced to provide a comprehensive model evaluation of the performance. The results
were averaged over 10 runs to capture variability. The regression task yielded an MAE of 4.9,
with a standard deviation of 0.1919, demonstrating a consistent performance across runs. In
terms of classification, the model achieved a mean accuracy of 61.08%, with a standard
deviation of 2.21. These results serve as a reference for gauging the performance

improvements in sophisticated models.

In contrast, the multi-stage algorithm proposed in this research demonstrated a
significant performance improvement over the baseline model. This model also utilised
structural MRI and age data sourced from ADNI, AIBL, and IXI datasets, but with the added
benefit of TL and autoencoders. These techniques helped enhance diagnostic accuracy,
reduce training time, and lower the dependence on large amounts of training data. The model
was evaluated on the AD dataset, predicting MMSE scores, key indicators of cognitive decline
and disease severity in AD patients. By incorporating data from patients with MCl, the model

effectively predicted MMSE scores, offering an accurate assessment of disease progression.

The integration of TL enabled feature extraction by using pre-trained models. At the
same time, autoencoders facilitated efficient data representation, resulting in a notable

accuracy of 73.26% with a standard deviation of 3.92. This marks a substantial improvement
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over the baseline model, underscoring the advantages of combining these advanced
techniques. The enhanced performance of the proposed model highlights the ability of TL and
autoencoders to capture complex patterns in the data, ultimately leading to precise

predictions of AD progression and severity.

These results underscore the gap in performance between the baseline model and
the primary approach, reaffirming the benefits of using TL and autoencoders to enhance

prediction accuracy and minimise error margins in AD cognitive progression forecasting.

Li et al. (2015) developed a DL model to classify AD and MCI patients using MRI data,
combining DL with a stability selection method to enhance feature extraction. This approach
enabled the model to handle the variability and noise typical in medical imaging data. The
process began with PCA, which captured unsupervised latent feature representations from
the MRI scans, providing a detailed understanding of brain structure. These features were
further refined using the stability selection method, which applied Lasso regularisation to
optimise feature selection by minimising the cost function. The refined features were then
used in a multi-task DL model with dropout, incorporating additional labels such as MMSE and
ADAS-Cog scores to enhance prediction accuracy. Finally, the outputs of the multi-task model
were passed to an SVM classifier for the final classification of AD and MCI patients. This
combined approach achieved a classification accuracy of 70.1% with a standard deviation of
2.3, demonstrating a significant improvement over baseline models by utilising deep feature

learning and stability selection.

In Oh et al. (2019), the model approach involved two DL architectures: a

Convolutional Autoencoder (CAE)-based model and an Inception CAE (ICAE)-based model
aimed at classifying progressive MCI (pMCI) vs. stable MCI (sMCI). The CAE model consisted
of 3D convolutional and fully connected layers to extract meaningful features from MRI data.
The ICAE model incorporated an inception module, which used multi-scale convolutional
kernels to capture visual representations at different levels. Both models utilised TL by
initialising their convolutional layers with pre-trained weights from an AD vs NC classification

task, followed by supervised fine-tuning for pMCl vs MCI classification.

In the CAE model, the architecture had three 3x3x3 convolutional layers with ReLU

activations, max-pooling, and Gaussian dropout to prevent overfitting. It included fully
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connected layers with 32 and 16 nodes and a final output layer with two nodes for
classification. The ICAE-based model, on the other hand, included two convolutional layers
followed by an inception module that combined different kernel sizes (1x1x1 and 3x3x3) to
enhance feature extraction at multiple scales. The output from the inception module was
directly fed into the classifier without fully connected layers, optimising performance for the
pPMCI vs. sMCI task. Both models applied supervised TL to utilise shared features between the
AD vs. NC task and the pMCl vs. sMCl task. The use of pre-trained weights enabled the network
to attain enhanced generalisation capability despite the smaller dataset size for the pMCI vs
sMCI classification, resulting in enhanced accuracy—73.23% for the CAE model and 73.95%
for the ICAE model. This demonstrated that TL could effectively bridge performance gaps

when dataset size is limited and the classification task is inherently challenging.

Methods Model Data Accuracy (in %)
Baseline Model DL Structural MRI 61.08 +2.2

(Li et al., 2015) DL Structural MRI 70.1% £ 2.3
CAE (Oh et al., 2019) DL Structural MRI 73.23+4.21
Multi-Stage Algorithm DL Structural MRI 73.26 £ 3.93
ICAE (Oh et al., 2019) DL Structural MRI 73.951+4.82

Table 6- 4 highlights the accuracy of each model when trained on similar datasets,
predominantly using structural MRI data, with all models incorporating TL. These results
highlight the competitiveness of the proposed model, which demonstrates a marked
improvement over baseline methods and performs comparably to existing advanced models.

This demonstrates the efficacy of TL techniques in scenarios with limited datasets.

Table 6- 4 Comparison of results between current and existing models

Methods Model Data Accuracy (in %)
Baseline Model DL Structural MRI 61.08 +2.2

(Li et al., 2015) DL Structural MRI 70.1% £ 2.3
CAE (Oh et al., 2019) DL Structural MRI 73.23+4.21
Multi-Stage Algorithm DL Structural MRI 73.26 + 3.93
ICAE (Oh et al., 2019) DL Structural MRI 73.95+4.82

Although a range of DL models has been applied to structural MRI data to predict

Alzheimer's Disease, only a small subset of existing work has focused specifically on predicting
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MMSE scores using transfer learning or autoencoder-based feature representations.
Consequently, the proposed multi-stage pipeline occupies a distinct methodological space: it
combines a regression-based MMSE prediction model with transfer-learning and an
autoencoder-derived latent feature space, providing a more generalisable representation
under limited sample availability. This design positions the model as one of the few AD-
focused frameworks to utilise stage-informed feature transfer for cognitive-score estimation

explicitly.

A broader context of recent literature presented in Table 6-5, below, has examined
transfer learning in prognostic tasks, particularly in predicting conversion from MCI to AD,
which is closely related to cognitive decline and strongly correlated with MMSE progression.

Models such as those proposed by Dhinagar et al., (2022; S.-C. Huang et al., (2023); Khan et

al., (2022) apply transfer learning, 3D CNNs, or autoencoder-driven latent spaces to capture
structural markers of disease progression. While these methods demonstrate a strong
performance in binary conversion prediction, they do not estimate clinical scores directly and
thus address a fundamentally different problem. Nevertheless, their success highlights the
underlying rationale of the approach proposed in this research study, in that feature
distributions learned from MCI subjects encoding a cognitively meaningful variation that can

be transferred to improve downstream MMSE prediction in AD.

Table 6- 5 TL-based MCI to AD Conversion

Accuracy / Key

t M | Dat
stucy ode at Results
Dhinagar et al Transfer learning ﬁ?ﬂgégndent tests 91.3% with CV;
° . . ; 0 .
(2022) (pretrained CNNs, fine (AIBL, MIRIAD, 94.2% / 87.9% on
tuned) external datasets

OASIS)

- - ~ 0, 1
Khan et al., (2022) VGG-based TL on grey- | ADNI (NC, EMCI, 97.9% multiclass

matter slices LMCI, AD) accuracy
Transformer
S.-C.H tal. 99.6% (ADNI), 94.09
Hang €tal, | (pretrained + fine- ADNI / AIBL 7% (ADNI), 94.0%
(2023) (AIBL)
tuned)
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These works collectively demonstrate rapid progress in MRI-based transfer learning
for disease-stage classification but differ substantially from clinical-score prediction tasks,

underscoring the relative scarcity of TL-based MMSE regression pipelines.

More recent studies presented in Table 6-6, below, have predicted MMSE or
cognitive impairment scores from neuro-imaging and multimodal data. However, these
pipelines generally lack transfer-learning, integrate an autoencoder-derived latent space,
or target broader multimodal contexts rather than MRI-derived structural representations. As
a result, they are methodologically related but not directly comparable to the multi-stage

approach proposed in this research.

Table 6- 6 Non-TL MMSE Prediction Models

Study Method Data Output Type

- +
Dong etal, (2020) | Patch-based CNN -+ o, MMSE regression
multi-task learning

Liu et al., (2024) Multi-task network MRI MMSE + diagnosis
Ilias and Askounis Multimodal

5022 ’ regression model | Non-MRI MMSE regression
(2022) (speech/text/vision)

Bass et al., (2023) ICAM-reg (VAE-GAN) | MRI MMSE regression

Taken together, these findings emphasise that while MMSE prediction and disease-
stage classification have both been explored in the literature, very few models combine
transfer learning, autoencoder-derived representations, and regression within a unified multi-
stage framework. Existing approaches either rely solely on multi-task learning, focus
exclusively on MCI-to-AD conversion, or use alternative modalities such as speech and text.
The method proposed in this thesis therefore contributes a distinct architectural strategy—
one that leverages MCl-informed latent representationsto enhance MMSE regression
performance in AD patients, addressing a gap in current transfer-learning research for clinical-

score prediction.

6.3 Summary of the Key Findings
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The proposed multi-stage algorithm offers several advantages that enhance its performance
in predicting and classification tasks. One key benefit is enhanced predictive accuracy,
achieved by integrating advanced techniques such as TL and autoencoders. These methods
enable the model to extract meaningful features from complex datasets, resulting in a high
accuracy rate of 73.26%, which exceeds that of baseline models. This enhanced precision is
particularly valuable for applications involving nuanced class boundaries and complex data
structures, where reliable predictions can further optimise real-time decision-making

processes.

Another significant advantage is efficient feature extraction. The algorithm uses a
pre-trained regression model to capture a generalised representation of the features from a
larger dataset, which are then transferred to subsequent stages. This reduces the need for
manual feature selection and extensive data preprocessing, streamlining the entire modelling
process. Additionally, the autoencoder further enhances this by enabling dimensionality
reduction without sacrificing critical information. This reduces computational costs and helps
the model generalise, improving its ability to work effectively even with smaller datasets. The
algorithm also demonstrates robustness and flexibility by utilising information from various

datasets.

Moreover, its consistency across multiple runs, as indicated by low standard
deviations in accuracy and error metrics, highlights its reliability in real-world applications.
This robustness is further supported by techniques such as early stopping, which prevent
overfitting by halting training when no further improvement is observed, ensuring the model
remains generalised. Additionally, TL reduces the data required for training and decreases
computational time while maintaining strong performance. The combination of TL and
autoencoders also leads to scalability, enabling the model to be easily expanded to

incorporate other data modalities without requiring a complete redesign.

Finally, the algorithm demonstrates promising results for the early diagnosis of
Alzheimer's disease. By accurately predicting MMSE scores and classifying different stages of
cognitive impairment, the model can assist in the timely detection of AD progression. This
early identification is essential for initiating appropriate interventions that may slow the

disease progression and enhance patient outcomes.

©University of Reading 2025 Page 206



While the proposed multi-stage algorithm offers numerous advantages, there are
minor disadvantages. One potential issue is increased model complexity. Integrating multiple
advanced techniques such as TL and autoencoders requires careful tuning and design, which
can be challenging to implement than models. This can make the approach harder to

interpret, particularly for experts who may not be familiar with DL methods.

Another drawback is the dependence on high-quality data. While TL helps mitigate
the need for large datasets, the model performance still heavily relies on the quality of the
input data. Any noise or inaccuracies in this data could reduce the effectiveness of the

algorithm, particularly in real-world environments where data may not always be perfect.

6.3.1 Clinical relevance

The proposed multi-stage algorithm has significant clinical relevance, as it was evaluated using
an AD dataset. Advanced techniques such as TL and autoencoders enable the model to extract
key patterns from complex datasets, such as MRI scans and demographic data, making it
possible to detect subtle changes in brain structure that might not be obvious in standard
assessments. This can lead to earlier diagnosis than traditional methods, which often rely on
observable symptoms that may appear in the later stages of the disease. As a result,
healthcare professionals could use this algorithm to identify at-risk individuals before a
significant cognitive decline occurs, opening opportunities for preventive care or early

therapeutic interventions.

Additionally, by accurately predicting MMSE scores and classifying stages of cognitive
decline, the algorithm provides an effective tool for identifying individuals at varying stages of
impairment, including mild and moderate cognitive impairment. Early and precise detection
of cognitive decline is critical for clinicians, as it enables timely intervention strategies that
could slow disease progression, enhance quality of life, and offer long-term outcomes for

patients.

Furthermore, the ability of the algorithm to work with diverse types of data, including
MRI images and cognitive scores, reflects its versatility in real-world clinical settings. It can be
integrated into existing diagnostic workflows, providing clinicians with an additional tool to
enhance decision-making. By automating the feature extraction and prediction process, the
algorithm reduces the cognitive load on clinicians, enabling faster and consistent diagnostic
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evaluations. This could be particularly beneficial in clinical environments with limited access
to specialised neurological expertise, enabling accurate assessments in a broader range of

healthcare settings.

In summary, the proposed approach has clear clinical implications. It offers a precise,
automated, and scalable method for diagnosing and tracking the progression of AD, ultimately

leading to patient management and enhanced clinical outcomes.

6.3.2 Future work

Future directions for the proposed multi-stage algorithm involve several avenues for

improvement and broader application.

One important direction is enhancing the interpretability of the model. While the
algorithm performs well in terms of prediction, its complexity can make it challenging to adopt
without understanding the underlying factors driving its decisions. Future work could focus
on developing explainability tools, such as attention mechanisms or feature attribution
methods, to offer clearer insights into which features are most strongly associated with the
target. This would make the model transparent and user-friendly, aiding its acceptance and

adoption.

Finally, another important direction is the optimisation of the algorithm for scalability
and efficiency, enabling its deployment on large-scale and high-dimensional datasets typical
in real-world scenarios. This could involve investigating efficient architectures, pruning
strategies, or utilising distributed computing frameworks to reduce computational cost

without sacrificing accuracy.

7. Conclusion

This thesis has examined a range of Al methodologies to enhance predictive performance and
explainability for complex real-world applications, with a particular emphasis on Alzheimer’s
disease (AD) prediction, wherein model reliability is crucial. Various methodologies were
investigated to enhance the accuracy, explainability and data limitations of Al models. To
address the primary issues, novel methodologies for feature selection, sensitivity analysis, and

transfer learning have been proposed.

©University of Reading 2025 Page 208



The initial research introduced two novel filter-based FS methods designed to
address the challenges of high-dimensional and noisy datasets. Based on correlation and
clustering, these techniques significantly reduced the number of input features while
maintaining or even improving predictive accuracy. The validation of these methodologies
against an external arrhythmia dataset has indicated their potential to generalise and enhance
the efficiency of model training and enhance explainability, constituting a significant
contribution to the field of ML. This research focused on reducing dimensionality and

developing efficient, interpretable models for practical applications.

The subsequent research focused on model explainability, representing one of the
most significant challenges in implementing DNNs within high-stakes domains. The research
evaluated the feature importance scores of a DNN model using SA techniques such as SHAP
and Sobol. The research contributed to the understanding of the decision-making patterns of
complex models, minimising the gap between black box Al models and their practical
applicability. This technique provides critical assistance in the continuous endeavours
concerning Al models, which is vital for the predictive models developed for domains requiring

high interpretability.

The final research introduced a novel multi-step algorithm designed to mitigate the
challenges associated with limited data availability in critical domains, thereby enabling data-
efficient and precise predictive modelling. This research significantly enhanced prediction
accuracy by combining TL and autoencoder methods. Using pre-trained models and applying
feature extraction techniques through TL and autoencoders has proven to be an effective
strategy, yielding accurate and reliable predictions. This study illustrates the potential to
enhance Al applications for predicting outcomes in data-constrained scenarios, underscoring
its contribution to advancing the technical capabilities of Al in real-world applications. This
methodology was employed to predict the cognitive stages of AD patients based on their

MMSE scores.

The three research studies have made considerable contributions to advancing Al
within real-world applications. As evidenced by the thesis, advancements in feature selection,
sensitivity analysis, and transfer learning provide a solid foundation for enhancing the
accuracy, transparency, and reliability of Al models. This research has laid a robust foundation
for future initiatives to develop effective Al systems by addressing critical challenges such as
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performance, explainability and data constraints. In conclusion, this research holds the
potential to transform the utilisation of Al in high-stakes healthcare applications such as
predicting AD. This transformation could lead to significant advancements in the accuracy and

efficacy of Al applications within the high-stakes domains.

7.1. Feature Selection Summary

Chapter 4 presented two novel filter-based FS techniques to enhance model performance,
minimise overfitting, and enhance interpretability in high-dimensional datasets. Feature
selection plays a vital role when dealing with noisy or irrelevant features within datasets,
enabling models to concentrate on the most pertinent inputs. The three predominant FS
approaches, filter, wrapper, and embedded methods are notably characterised by their
computational efficiency and generalisability in effectiveness. Both proposed techniques in

this research were filter-based approaches.

The first technique developed used a correlation-based approach referred to as CGN-
FS, where features with correlation values above a threshold were selected to represent the
broader dataset. This method identified features with low inter-feature correlation, reducing
the feature set without sacrificing accuracy. The second technique employed was clustering
analysis, referred to as RCH-FSC, where clusters were formed based on data correlations. The
centroids of these clusters identified by the K-Means algorithm were utilised to represent the
entirety of the cluster, thereby creating the most relevant subset of features. This clustering
methodology has successfully identified a concise set of features that preserve critical
information pertinent to classification tasks while simultaneously reducing the dimensionality

of the dataset.

The correlation-based methodology yielded a feature set with fewer features,
resulting in straightforward models to interpret. The model demonstrates a negligible impact
on overall accuracy. The technique was validated on the arrhythmia dataset to illustrate the
generalisability of the established method. For comparison, the ReliefF algorithm, a traditional
FS technique, demonstrated marginally lower classification performance in the SVM model
and comparable performance in linear regression models, suggesting that CGN-FS captured

strongly predictive features and effectively reduced the input feature space.

©University of Reading 2025 Page 210



The clustering-based approach yielded a feature set comprising four features while
maintaining comparable accuracy to the model that utilises the complete feature set. These
reductions in dimensionality fostered the development of robust and interpretable models,

ultimately unveiling deeper insights into the relationships among variables.

Both developed techniques exhibited an observable enhancement in accuracy. This
observation underscores their efficacy in identifying the most pertinent features and
emphasises their straightforward implementation. The correlation and clustering-based
feature selection represents a robust methodology for optimising ML models, particularly in

high-dimensional datasets.

The proposed FS techniques enhance the predictive accuracy and interpretability of
models, particularly in AD prediction, where concise biomarker sets are necessary for clinical
decision-making. By significantly minimising the feature space, these techniques facilitate
transparent and reliable decision-making processes, which are crucial for real-world
applications. Furthermore, these methods establish a robust framework for managing

complex datasets, thereby paving the way for subsequent innovations in FS methodologies.

7.2. Sensitivity Analysis Summary

Chapter 5 presents the DNN models, which were evaluated using SA techniques to assess the
degree of their explainability. However, DNNs are frequently regarded as black-box models
due to their lack of transparency. This raises concerns about their trustworthiness in critical
applications, which led to increased demand for the explainability of Al models, to understand

and trust their decision-making processes.

This research used a high-dimensional dataset categorised into two groups to train
the classification model. Two G-SA libraries, SHAP and SALib, which comprise Sobol, Morris,
and FAST methods, were utilised to compute feature importance scores, thereby
understanding the features that most significantly influenced the predictions of the DNN

model.

The feature importance scores derived from SHAP and SALib libraries were compared

and combined based on their similarities, ensuring the robustness of the findings. This
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comprehensive analysis of the importance of features helps enhance the interpretability of

the DNN model, making its predictions transparent and aligned with established knowledge.

The ensemble approach of SA was implemented on the Alzheimer's Disease dataset
and their neuro-anatomical findings correspond to established AD biomarkers, thereby
enhancing its clinical validity. Ensemble-based SA approach identified several significant brain
regions strongly associated with AD, including the temporal horn of the lateral ventricles, the
hippocampus, the hippocampal tail, the subiculum, and other related areas. Experts in the
medical field rigorously evaluated and correlated these features with established
neuroimaging biomarkers, structural alterations, and clinical indicators of AD. Understanding
these significant features contributes to a deeper comprehension of Alzheimer’s progression
and underlying mechanisms, providing valuable insights for both Al model development and

medical research.

This study focused on enhancing Al models designed to predict and, significantly,
address the critical issue of model explainability. By employing model-agnostic explainability
techniques such as SHAP and SALib, this research identifies the most influential features
driving model predictions. This contributes to enhancing interpretability in ML pipelines and
provides a structured framework for future Al research focused on complex, high-dimensional
datasets. The comparative analysis of these methodologies provides valuable insights into
their efficacy, helping researchers select the most suitable approaches for evaluating feature

importance within Al models.

Ultimately, this work advances the integration of Al methodologies with real-world
applications, contributing to the development of robust and interpretable Al systems. The
outcomes of this research are expected to support the design of reliable, transparent Al
models applicable to high-stakes decision-making environments, while providing a foundation

for further exploration in explainable Al and algorithmic reliability.

7.3 Transfer Learning with Autoencoder Summary

Chapter 6 presents a novel multi-stage algorithm developed to enhance the accuracy of
predictive modelling in data-constrained environments, particularly in AD prediction, where

labelled training data is often limited. DNN-based techniques are increasingly utilised to
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address complex prediction and classification tasks across various domains. This research
integrates regression and classification models to utilise insights derived from multi-class

datasets, enhancing predictive performance in sequential learning tasks.

Initially, a regression model was created to predict the ages of the patients using a
combined MCI dataset, which included individuals with EMCI, MCI, and LMCI. The model was
designed with multiple hidden layers and RelLU activation functions while incorporating
dropout regularisation and RMSprop optimisation. Hyperparameter tuning was performed
using GridSearchCV to optimise performance. TL techniques were then applied to transfer
knowledge from the regression model into an autoencoder. The autoencoder effectively
extracted key features from the MCI dataset, generating encoded representations to predict
MMSE scores. These scores were then employed to classify patients into two cognitive

categories: Mild and Moderate.

The proposed multi-stage algorithm yielded promising results, achieving an accuracy
of approximately 73.26% with a standard deviation of 3.92%. In contrast, a regression model
that did not employ transfer learning or autoencoders achieved only 61.08% accuracy with a
2.21% standard deviation. This 12.18% improvement in accuracy highlights the significant
contribution of the TL and autoencoder techniques to the performance of the model. The

comparison underscores the effectiveness of the proposed methodology.

The proposed algorithm was assessed against various published DNN-based
methodologies utilising structural MRI data. When compared to the performance metrics of

Li et al. (2015) (70.1 + 2.3%) and the CAE model developed by Oh et al. (2019) (73.23 £ 4.21%),

as well as their ICAE model (73.95+4.82%), the proposed algorithm demonstrates
competitive performance. Although the enhanced accuracy variations range from 0.03% to
3.2%, the consistent performance underscores the robustness of this approach in delivering
reliable and interpretable classification without dependence on additional estimated

variables.

Overall, this study demonstrates the efficacy of transfer learning and autoencoder-
based feature extraction for improving predictive modelling in data-limited scenarios. The
proposed multi-step algorithm has proven effective in enhancing both classification and

regression tasks, offering a scalable framework for future Al applications. The research
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contributes to the advancement of DNN-based methodologies and establishes a strong
foundation for subsequent developments in predictive modelling across diverse, high-impact
domains. The multi-step algorithm has also proven effective in enhancing cognitive stage

classification and predicting MMSE scores, providing valuable insights for clinical applications.

7.4 Overall Conclusions

This thesis has explored various Al techniques to enhance predictive performance and
explainability of DNN models, particularly in AD prediction, where accuracy and
interpretability are essential for clinical contexts. The research has focused on three primary
aspects: Feature Selection, Sensitivity Analysis, and Transfer Learning with autoencoders.
These methodologies have significantly enhanced accuracy, explicability, and data efficiency.
Integrating these approaches can lead to robust and interpretable Al frameworks, advancing

the field of Al and facilitating the integration of DNN models into critical domains.

A particularly noteworthy finding of this thesis is that the features selected by the
clustering-based FS technique, approximately four features, were also prioritised by SA
models. This convergence suggests that the chosen features are statistically significant and
medically relevant. This alighnment strengthens the reliability of these features in AD diagnosis

and progression prediction.

Beyond the specific methodologies explored in this thesis, these findings highlight
broader implications for Al in critical domains. Integrating FS, SA, TL, and autoencoders aligns
with key objectives in Al-driven domains, including improving transparency, reducing data
requirements, and increasing the accuracy of predictive models. This research has
demonstrated that lowering dimensionality while preserving essential information is possible
and beneficial for improving model generalisation. Additionally, by utilising pre-trained
models and autoencoders, Al models can be developed with less reliance on extensive labelled

datasets, addressing one of the significant challenges in healthcare.

An effective integration combines feature selection, transfer learning, and
autoencoders to address high-dimensional, noisy datasets. The correlation-based FS method
proposed in this thesis efficiently reduces input space while maintaining or improving

predictive accuracy. Applying FS prior to TL refines the dataset, lowering computational
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complexity and improving model generalisation. Autoencoders further optimise feature
representations by compressing irrelevant information and extracting essential patterns. This
synergistic approach enables the construction of efficient, scalable, and interpretable Al

models for complex tasks.

Additionally, sensitivity analysis can be integrated with TL and autoencoders to
enhance feature prioritisation. Techniques such as SHAP and SALib, as employed in this
research, guide the selection of influential features from pre-trained models, improving the
reliability and focus of TL-based architectures. Autoencoders can further refine these features
by eliminating redundancy while preserving critical information, supporting the development

of explainable and computationally efficient Al pipelines.

Alternatively, SA can be applied after the TL process to evaluate and interpret feature
importance in the transferred model. These evaluations are particularly valuable for AD
models, as they ensure the transferred features maintain clinical relevance. Using diverse SA
techniques such as SHAP, Permutation Feature Importance (PFl), and DiCE offers
complementary perspectives—local, global, and counterfactual—on model behaviour. This
post-hoc sensitivity evaluation enhances interpretability by validating which features remain

critical after knowledge transfer, further supporting model transparency and robustness.

Furthermore, the potential impact of these integrated approaches extends beyond
the specific application domain explored in this study. The methodologies developed in this
thesis can be applied to other complex, high-dimensional datasets and broader Al tasks where
data complexity, interpretability, and limited labelled data remain significant challenges. The
use of feature selection, sensitivity analysis, and transfer learning with autoencoders offers a
scalable blueprint for designing Al models that are not only highly accurate but also aligned

with real-world computational and interpretability requirements.

In conclusion, this thesis has laid the groundwork for a comprehensive Al framework
capable of producing accurate, reliable, and interpretable models. Utilising feature selection,
sensitivity analysis, transfer learning, and autoencoders presents a robust approach to
addressing key challenges in explainability, data efficiency, and predictive performance.
Future research should focus on refining and validating these methods using larger,

heterogeneous datasets and exploring their deployment within practical, real-world Al
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systems. Ultimately, this research significantly contributes to advancing the development of
transparent, efficient, and scalable Al solutions for complex, high-stakes decision-making

environments across various domains.

7.5 Limitations of the Study

While there are significant advancements in Al applications, particularly in FS, model
explainability and TL, it is imperative to point out the limitations experienced during the

analysis.

7.5.1 Limited Dataset Size:

A prominent limitation identified in the existing literature is the limited number of
datasets employed, particularly specific conditions such as AD and supplement evaluations.
Although the gathered data has proven advantageous, it is imperative for researchers to
obtain additional data to enhance the generalisability and robustness of their models. With a
broader and diverse array of patient data, the findings could achieve excellent representation
and applicability within broader healthcare contexts. It is recommended that future research
emphasises the augmentation of dataset sizes through partnerships with larger institutions to

ensure results that are both reliable and broadly applicable.

7.5.2 Generalisability of MRI-Based Models:

The use of MRI scans as the primary data source presents another limitation in terms
of generalisability. Although the MRI scans provide valuable structural insight, the models
built within this research study may not fully capture the complexity of the development of
AD over different populations or within different stages of the progression of the disease.
Training on MRI data alone may not adequately support model generalisability across
different types of patients or NDDs. Including other forms of data, such as clinical notes,
medical evaluations or data on other biomarkers, would alleviate this issue and enhance the

applicability of the models in various medical settings.

In summary, the few demerits of this research are the small size of the available

dataset, and over-dependence on MRI scans. Addressing these challenges with volumetric
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data and diverse diseases would be imperative in increasing the robustness and applicability

of Al models in the medical field.

7.6 Future Directions

7.6.1 Enhancing Al with Integrated Methods

One avenue for future research is to further explore the integration of feature
selection, transfer learning, autoencoders, and sensitivity analysis to enhance model
efficiency, interpretability, and scalability. Applying sensitivity analysis either before or after
transfer learning, using techniques such as SHAP, PFl, and DiCE, can offer diverse insights into
feature importance and enhance model transparency in complex, high-dimensional tasks. This
combined approach can reduce computational costs, enable effective generalisation to
unseen datasets, and support the development of Al models that are both accurate and
explainable. Such models would be particularly valuable in real-world applications where
decision traceability, reliability, and data efficiency are critical. Ultimately, this framework
could serve as a foundation for building robust Al solutions capable of addressing complex

challenges across various domains.

7.6.2 Integrating Real-Time Data Streams into Al Models

One area with potential for further exploration and advancement is the integration
of real-time data into Al systems. As technology advances, the utilisation of real-time data, for
instance, through health trackers or monitoring patients in a hospital, enables the possibility
of deploying Al models that could evolve with re-training on data as the disease progresses.
This approach would provide much-needed support in clinical settings where care is time-
bound and data-driven decisions are made rapidly. However, further research is necessary to
address the real-time Al issues that arise from the practical application of these models, while
also preventing risks to patients and breaches of data confidentiality. One promising area for
further exploration is the integration of real-time data into Al systems. As technology
advances, utilising continuous data streams from sensors, loT devices, or dynamic
environments presents opportunities to deploy Al models capable of evolving through

incremental or online learning. This would enable Al systems to adapt to changing conditions
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and support rapid, data-driven decision-making in time-sensitive applications. However,
further research is required to address the practical challenges of real-time Al, including
system reliability, computational efficiency, and data privacy concerns in dynamic deployment

scenarios.
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Appendix A

MRI-Derived Dataset, Access and Reproducibility

The MRI and cognitive assessment datasets used in this thesis were sourced from established
research repositories. Due to licensing and data-use restrictions, these datasets cannot be
redistributed directly as part of this thesis or any accompanying repository. To support full
reproducibility, the official access points, approval requirements, and download instructions

are provided below.

1. ADNI
e Access portal: ADNI Website
e Access requires registration, acceptance of the Data Use Agreement, and approval
from the data managers of the repository.
e Imaging scans (T1-weighted MRI) and associated clinical/cognitive metadata can be
downloaded in standard formats.
2. AIBL
e Access portal: AIBL website
e Access is granted upon free registration, agreement to the Data Use Policy, and
approval from the data administrators.
e Imaging scans (T1-weighted MRI) and associated clinical/cognitive metadata can be
downloaded in standard formats.
3. IXI
e Access portal: IXI website
e Access requires free registration, acceptance of the Data Use Agreement, and approval
from the data administrators.
e Imaging scans (T1-weighted MRI) and associated clinical/cognitive metadata can be

downloaded in standard formats.

Researchers intending to reproduce the experiments should obtain the datasets directly from
the corresponding repositories, follow the preprocessing pipelines and apply the feature
extraction procedures described in Chapter 3. This appendix ensures that the entire

experimental workflow can be replicated without violating any data-sharing policies.
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All structural MRl features were generated using FreeSurfer and grouped into cortical

morphometry, subcortical volumes, ventricular measures, and hippocampal subfields.

Annexure A Table - 1 Overview of Feature Types and Counts

Anatomical . Thickness Mean Total
Area Thickness Volume
Category SD Curvature Features
Left Hemisphere 34 34 34 34 34 170
Cortex
Right Hemisphere 34 34 34 34 34 170
Cortex
Subcortical and
Ventricular - - - - 29 29
Structures
C
orpus ;allosum i i i i 6 6
Regions
Hippocampal
Subfields (L/R) 26 26
Total 68 68 68 68 129 401

Raw datasets (ADNI, AIBL, IXI) cannot be redistributed, but the full list of feature

names used in this thesis is provided below for transparency and reproducibility.

(A) Features from Left Hemisphere Cortical Regions

Each region includes: area, meancurv, thickness, thicknessstd, volume.

Ih_bankssts

Ih_caudalanteriorcingulate

Ih_caudalmiddlefrontal

Ih_cuneus

Ih_entorhinal

Ih_fusiform

Ih_inferiorparietal

Ih_inferiortemporal

Ih_isthmuscingulate

Ih_lateraloccipital

Ih_lateralorbitofrontal

lh_lingual

Ih_medialorbitofrontal

Ih_middletemporal

Ih_parahippocampal

Ih_paracentral

Ih_parsopercularis

Ih_parsorbitalis
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Ih_parstriangularis
Ih_pericalcarine

Ih_postcentral

Ih_posteriorcingulate

Ih_precentral

Ilh_precuneus

Ih_rostralanteriorcingulate

Ih_rostralmiddlefrontal

Ih_superiorfrontal

Ih_superiorparietal
Ih_superiortemporal

Ih_supramarginal

Ih_frontalpole

Ih_temporalpole
Ih_transversetemporal

Ih_insula

(B) Features from Right Hemisphere Cortical Regions

Each region includes: area, meancurv, thickness, thicknessstd, volume.

rh_bankssts

rh_caudalanteriorcingulate

rh_caudalmiddlefrontal

rh_cuneus

rh_entorhinal
rh_fusiform

rh_inferiorparietal

rh_inferiortemporal

rh_isthmuscingulate
rh_lateraloccipital

rh_lateralorbitofrontal

rh_lingual

rh_medialorbitofrontal
rh_middletemporal

rh_parahippocampal

rh_paracentral

rh_parsopercularis

rh_parsorbitalis

rh_parstriangularis

rh_pericalcarine

rh_postcentral

rh_posteriorcingulate
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rh_precentral

rh_precuneus

rh_rostralanteriorcingulate

rh_rostralmiddlefrontal

rh_superiorfrontal

rh_superiorparietal

rh_superiortemporal

rh_supramarginal

rh_frontalpole

rh_temporalpole

rh_transversetemporal

rh_insula

(C) Features from Subcortical & Ventricular Structures

Left-Lateral-Ventricle

Left-Inf-Lat-Vent

Left-Cerebellum-White-Matter

Left-Cerebellum-Cortex

Left-Thalamus-Proper

Left-Caudate

Left-Putamen

Left-Pallidum

Left-Amygdala

Left-Accumbens-area

Left-VentralDC

Left-choroid-plexus

Right-Lateral-Ventricle

Right-Inf-Lat-Vent

Right-Cerebellum-White-Matter

Right-Cerebellum-Cortex

Right-Thalamus-Proper

Right-Caudate

Right-Putamen

Right-Pallidum

Right-Amygdala
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Right-Accumbens-area

Right-VentralDC

Right-choroid-plexus

3rd-Ventricle

4th-Ventricle

Brain-Stem

Optic-Chiasm

(D) Features from Corpus Callosum Regions & Supratentorial Volume

CC_Posterior
CC_Mid_Posterior
CC_Central
CC_Mid_Anterior
CC_Anterior
SupraTentorialVolNotVent

(E) Features from Hippocampal Subfields (Left & Right)

left Hippocampal_tail

left_subiculum

left_CA1

left_hippocampal-fissure

left_presubiculum

left_parasubiculum

left_molecular_layer_HP

left_GC-ML-DG

left CA3

left_CA4

left_fimbria

left_HATA

left_Whole_hippocampus

right_Hippocampal_tail

right_subiculum

right_CA1l
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right_hippocampal-fissure

right_presubiculum

right_parasubiculum

right_molecular_layer_HP

right_GC-ML-DG

right_CA3

right_ CA4

right_fimbria

right_ HATA

right_Whole_hippocampus
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Appendix B

Reproducibility Resources

To support reproducibility and transparency of the experiments conducted in this thesis, the
full source code used for feature selection, sensitivity analysis, and transfer-learning modules

has been made publicly available on GitHub.
Source Code Repository
The complete implementation developed for this thesis is accessible at:

GitHub: https://github.com/akhilatmakuru/Research Papers

The repository includes:

e Python scripts for all proposed algorithms

e A READMIE file with instructions to run the code.

‘requirements.txt’ listing all dependencies and versions.
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