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ABSTRACT
Deep reinforcement learning (DRL) has become a promising approach for electric vehicle (EV) charging scheduling. However,
its practical deployment poses potential risks to power infrastructure. DRL relies on trial‐and‐error interactions during training
to approximate optimal policies, which may lead to unsafe decisions. To address this, a novel framework called dual‐layer safety
modules for EV charging scheduling (DuMES) is proposed. This framework introduces a decision‐level safety layer into the
conventional DRL architecture that adaptively detects and replaces unsafe actions. Furthermore, by integrating dual safety
layers with reward shaping, the framework promotes convergence between raw and safe actions. This enhances training ef-
ficiency while ensuring power system stability during both training and deployment phases. The method was evaluated through
simulation experiments on a charging station equipped with renewable energy and energy storage system (ESS). Comparative
analyses with baseline methods demonstrate that DuMES effectively satisfies user charging demands, reduces operational costs
and ensures compliance with safety constraints.

1 | Introduction

Due to the capability of connecting to the power grid and
replenishing clean energy, electric vehicles (EVs) offer signifi-
cant advantages over conventional fuel‐powered vehicles in
reducing carbon emissions. By 2024, the global fleet of EVs has
reached 64 million, and it is projected to increase nearly fourfold
to 250 million by 2030. Under this trend, EVs are expected to
account for over 10% of all road vehicles by 2030 [1].

The widespread adoption of EVs has introduced significant
challenges to the power system. The uncontrolled integration of
mobile loads is likely to cause regional peak‐valley fluctuations.
Without effective countermeasures, this could lead to risks such
as overloads of distribution equipment and increased load de-
mands [2]. The upgrading of power infrastructure aims to
improve the load‐bearing capacity of the distribution network.

However, it often faces high expansion costs and extended
construction periods [3]. In contrast, charging scheduling de-
cisions, through the dynamic adjustment of charging periods or
charging power, leverage the flexible storage capabilities of EVs.
This approach not only alleviates the load demand on the grid
but also minimises electricity costs for users, presenting a more
economical and efficient solution [4].

However, the charging behaviour of EVs exhibits significant
spatiotemporal randomness. Influenced by factors such as time‐
of‐use (TOU) electricity pricing and user range anxiety, the
charging time and energy demand vary substantially across
different vehicles [5]. Additionally, some EVs operate under a
vehicle‐to‐grid (V2G) model, allowing them to feed energy back
into the power grid, further increasing the complexity of the
system. Traditional scheduling methods, such as rule‐based
methods and dynamic programming, rely on predefined rules
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or precise system models. Their effectiveness largely depends on
the accuracy of environmental assumptions and predictions,
rendering them less adaptable to complex and dynamic real‐
world conditions [6]. To address these limitations, a class of
approaches has emerged based on day‐ahead scheduling,
incorporating robust optimisation or stochastic optimisation
techniques to mitigate the influence of uncertainties on
decision‐making [7]. Although these methods enhance sched-
uling robustness to some extent, they remain insufficient for
real‐time decision‐making due to the high‐dimensional and
dynamic nature of the EV charging scene [8]. Therefore, existing
scheduling methods exhibit inherent limitations and struggle to
effectively address the increasingly complex problem of EV
charging problems.

In recent years, inspired by the successful applications of DRL
in domains such as autonomous driving, cloud computing and
robot controlling [9–11], the integration of DRL into EV
charging scheduling has emerged as a promising solution.
Compared to conventional approaches, the primary advantage
of reinforcement learning lies in its independence from prior
knowledge, achieving optimisation solely through the interac-
tion between the agent and the environment. Owing to this
characteristic, reinforcement learning can effectively capture
the stochastic features of charging scenarios, including TOU
price, renewable energy generation and user behaviour, thereby
enabling the learning of optimal scheduling strategies [12].
However, the deployment of DRL in real‐world energy systems
necessitates consideration of safety constraints. As a model‐free
method, DRL often struggles to accurately represent the phys-
ical constraints inherent in EV charging scenarios, potentially
leading to constraint‐violating decisions, which may result in
energy inefficiencies or damage to power infrastructure.

In response to the aforementioned challenges, safe deep rein-
forcement learning (SDRL)has emerged as a promising approach.
Several studies model the problem as a constrained markov de-
cision process (CMDP),where the objective function incorporates
safety constraints to guide the agent away from infeasible actions,
thereby enhancing training efficiency. Other approaches intro-
duce independent safety modules to correct constraint‐violating
behaviours without altering the underlying DRL algorithm,
enabling seamless integration into the training process and
improving overall safety. Recent studies in safe RL for EV cha-
rging have primarily addressed specific operational concerns
within charging stations, such as battery degradation [13] and safe
command allocation to prevent charging power deviations [14].
However, limited attention has been paid to the potential adverse
impacts of high‐power peaks on the electrical grid.

This study proposes DuMES, a DRL‐based scheduling method
that achieves multi‐objective optimisation under safety con-
straints. The method integrates safety layer and reward shaping
techniques into the DRL framework, introducing a dual‐layer
safety module while designing the reward function with in-
centives that encourage alignment with safe actions. Specifically,
the constraints focus on mitigating power surges caused by
instantaneous load spikes, aiming to ensure battery health and
peak power safety. Through an iterative learning process, the
safety layer in DuMES guarantees decision‐making security
during both training and deployment phases, whereas the reward

design facilitates the agent towards more efficient learning of a
feasible action space. DuMES is applied to schedule EV charging
at a novel charging stationwith integrated renewables and energy
storage. Experimental results demonstrate that the proposed
DuMES effectively reduces operational costs while fulfiling user
charging demands.

The main contributions of this paper are as follows:

� To optimise energy scheduling in V2G systems, we propose
DuMES, a data‐driven method based on DRL. The charging
scheduling problem is formulated as an MDP, with the goal
of meeting charging demands while minimising the oper-
ating costs of charging station.

� To address safety risks from the stochastic nature of DRL
exploration, DuMES incorporates a dual‐layer safety mod-
ule. The first layer ensures battery safety during charging
and discharging through iterative verification. The second
layers smooths power peaks by adaptively delaying
charging surges, taking into account factors such as rated
power and flexibility margins.

� Simulations experiments are conducted on a charging sta-
tion integrated with renewable energy and storage. The
results show that DuMES consistently achieves optimal
or near‐optimal performance in operational cost and ser-
vice reliability. Moreover, it enhances power safety, acce-
lerates training and ensures safe agent behaviour during
exploration.

The remainder of this paper is organised as follows. Section 2
reviews relevant work in the field of safe RL. Section 3 in-
troduces the system model and formally defines the problem.
Section 4 presents the proposed DuMES approach in detail.
Section 5 reports experimental results and performance anal-
ysis. Finally, Section 6 concludes the paper with a summary of
the main contributions.

2 | Related Work

In the field of energy management, DRL has emerged as an
effective approach for addressing dynamic and real‐time deci-
sion‐making problems [26]. By balancing stochastic exploration
with the exploitation of accumulated experience, DRL is capable
of learning optimal scheduling strategies without relying on
prior knowledge. However, during the exploration phase, DRL
may generate actions that violate system constraints, potentially
compromising the stable operation of energy systems. Ensuring
the safety and feasibility of learnt policies in practical power
system applications thus represents a critical research challenge.

The safe RL approach aims to learn a policy that maximises
cumulative rewards while adhering to predefined safety con-
straints. Although existing studies vary in the formulation of
objective functions and constraint conditions, they consistently
emphasise the necessity for safe RL to ensure power system
stability through the safe execution of actions. Table 1 presents a
comparative analysis of relevant safe RL research in the energy
sector from multiple perspectives.

2 IET Smart Energy Systems, 2025
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Based on the extent of expert knowledge utilised, energy man-
agement methods based on safe RL can generally be categorised
into two types. One category independently of any expert
knowledge, embedding safety feedback directly into the objective
function for optimisation. The reward shaping technique in-
corporates static penalty terms into the immediate rewards to
guide the agent in actively avoiding unsafe or infeasible actions
[13]. In contrast, the Lagrangian relaxation method introduces
adaptive multipliers λ, which can be updated online within the
overall objective function, thus reducing the sensitivity to
hyperparameter settings. For example, the study [16] proposes a
distributional soft actor–critic conservative augmented Lagra-
ngian algorithm to address the battery temperature and health
issues during fast charging of EVs, which was validated in real‐
world charging scenarios. Similarly, the work [17] introduced
an actor–critic–Lagrangian (ACL) algorithm to resolve voltage
violation problems in EV charging stations. Overall, these ap-
proaches contribute tomore efficient learning of safety constraint
boundaries by the agent, thereby enhancing training efficiency.
However, due to the absence of explicit safety constraint mech-
anisms, it is challenging to ensure the system remains in a safe
operating state throughout the training process.

Another category ofmethods constructsmonitors based on expert
knowledge to facilitate safety decision‐making. The trust region
method dynamically updates the trust region to ensure that policy
at each step is projected onto the safety set. For example, thework
[21] addresses the operational safety issues in distribution net-
works by proposing a projection‐based embedded multi‐agent
DRL algorithm. This method effectively limits the decision
space of the agent through action smoothing, achieving a 100%
safety rate in experimental evaluations. Additionally, the safety
layer and shielding mechanism are commonly used hard
constraint techniques, although their implementations differ.
The safety layer is typically embeddedwithin theDRL framework
for additional checks, whereas shielding mechanisms act as
external components that intervene and provide corrections only
when necessary. Regarding the issue of grid stability under large‐
scale EV integration, the research [23] proposes a dual‐layer
safety layer design based on the steady‐state voltage security re-
gion (SVSR). This design utilises load margin indicators (LMI) to
dynamically address uncertainties in charging and discharging
strategies. The work [25] constructs an action feasibility space
based on expert knowledge that adapts to V2G characteristics.
When the current action may lead to overcharging or deep dis-
charging of the battery energy storage system (BESS), it utilises
the shielding mechanism to clip and replace the action, ensuring
system stability. These methods strictly guarantee system safety

during both the training and deployment phases.However, due to
their reliance on constraints rather than incentives, the agent
often struggles to fully comprehend the alignment logic of safe
actions. This can result in slower policy convergence and even
training instability in complex scenarios.

In contrast, we propose a novel safe RL‐based method, termed
DuMES, which incorporates a dual‐layer safety module and a
safety‐driven reward function to guide the agent towards effi-
cient energy scheduling in complex EV charging scenarios.
Distinct from the aforementioned approaches, DuMES not only
ensures strict safety in decision‐making but also accelerates
policy convergence by aligning raw actions with safety‐refined
actions. Furthermore, DuMES constructs safety constraint
boundaries using a small amount of expert knowledge solely
during the initial learning phase, thereby eliminating the reli-
ance on explicit constraints and reducing both the complexity
and dependency associated with penalty coefficient tuning.
Simulation results demonstrate that DuMES significantly en-
hances decision‐making safety while achieving optimal or near‐
optimal performance across various scheduling optimisation
metrics.

3 | System Model for DUMES

In this section, we first outline the general system model
employed in the DuMES framework, followed by a formal
definition of the safety constraint and optimisation problem in
charging scheduling. For better reference, the important nota-
tion is listed in Table 2.

3.1 | System Architecture

The architecture of the proposed DuMES method is shown in
Figure 1. In the considered charging scenario, a V2G charging
station capable of bidirectional energy transfer is employed. To
further enhance the flexibility of regulation, renewable energy
generation and ESS units are integrated into the framework. The
entire framework is centred around a scheduling centre, where
the DuMES strategy is deployed to perform real‐time energy
scheduling. This strategy dynamically determines the power
allocation for both chargers and ESS at any given time. Operating
under the V2G paradigm, the chargers not only supply energy
to EVs but also enable energy feedback to the grid when appro-
priate. The main grid, in conjunction with renewable sources,

TABLE 1 | Comparison of safe RL methods for energy management.

Methods
Constraint Safe Expert Action Training efficiency
Type Exploration Knowledge Alignment Param sensitivity Convergence

DuMES Soft‐hard Yes Initial Yes Low Fast

Reward shaping [13, 15] Soft No No Yes High Fast

Lagrangian relaxation [16–19] Soft No No Yes Low Slow

Trust region [20, 21] Hard Yes Initial No High Slow

Safety layer [14, 22, 23] Hard Yes Initial No Low Unstable

Shielding [24, 25] Hard Yes All No Low Unstable

IET Smart Energy Systems, 2025 3
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constitutes the energy supply for the charging station, thereby
facilitating bidirectional energy flow. On the power market side,
there is a continuous exchange of information with the sched-
uling centre, including dynamic electricity prices, repurchase
signals and other relevant data.

Upon arrival at the charging station, the scheduling centre
collects relevant charging information of EVs, including battery
capacity, target state‐of‐charge (SoC) and estimated departure
time. Subsequently, the DuMES framework integrates this in-
formation with environmental parameters, such as TOU prices
and renewable energy output. Based on this integration, it for-
mulates an energy scheduling policy π, which determines the
optimal power allocation for each device at the current time
step. According to this policy, chargers coordinates with the on‐
board EV batteries with the ESS to execute the specified
charging and discharging operations. It is important to note
that, as this study primarily focuses on the potential of EVs to
contribute to grid stability and energy complementarity, EVs are

typically assumed to remain parked for extended durations.
Therefore, it is assumed that the charging station provides ser-
vice only when chargers are available; otherwise, newly arrived
EVs will depart immediately rather than waiting in a queue.

3.2 | Problem Formulation

To model the optimisation problem in this work, we provide
mathematical definitions for the arrival EVs, chargers and other
components, along with definitions related to constraint
scheduling optimisation in the DuMES framework.

Arrival EVs: In this study, the arrival vehicle of the charging and
discharge station is regarded as the key flexible energy storage.
For the EV reaching the charging station at any time, it is
defined as Cari = {Cidi, SoCi,Ci, arrivalTi,DDLi,Loci}. Here,
Cidi denotes the ID uniformly assigned by the scheduling
centre. SoCi represents the expected battery state of the user to
be achieved during this charging service; it is a battery energy
ratio that reflects the desired level of charge. Ci is the onboard
battery capacity of the EV. arrivalTi indicates the arrival time of
the EV, and DDLi is the latest estimated departure time pro-
vided by the EV user, which is submitted to the scheduling
centre immediately upon arrival at the charging station. In
addition, location plays an important role in charging sched-
uling, as it directly affects V2G participation [27]. Therefore, the
variable Loci is introduced in the definition of arrival EVs to
represent the type of the current region, which is closely asso-
ciated with the arrival time arrivalTi. Based on a statistical
analysis of the National Household Travel Survey (NHTS) [28],
real‐world distributions of driver behaviour were extracted.
These distributions reveal the temporal characteristics of travel
patterns for four typical parking location types, as illustrated in
Figure 2.

As shown in the figure, EV travel patterns differ markedly across
scenarios. In residential areas, users primarily charge their

TABLE 2 | The used notation.

Notation Meaning
Cidi The id of the ith EV

SoCi The SoC demand by ith EV

Ci The battery capacity of the ith EV

arrivalTi The arrival time of the ith EV

DDLi The departure time of the ith EV

Loci The area type of the ith EV

Pidj The id of the jth charger

Pcharj Charge power of jth charger

ηcharj Charge coefficient of jth charger

Pdisj Discharge power of jth charger

ηdisj Discharge coefficient of jth charger

Pmax
j Maximum rated power of jth charger

FIGURE 1 | The general system architecture of DuMES.

4 IET Smart Energy Systems, 2025
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vehicles in the evening and overnight. During daytime hours, EVs
aremostly parked in public locations such as office or commercial
districts. The design also considers an all‐day scenario, charac-
terised by the absence of distinct traffic peaks; instead, the arrival
probability remains approximately constant throughout the day,
as observed in locations like hospitals and highway service areas.
These variations highlight the need for a scheduling strategy with
sufficient flexibility to adapt to diverse mobility patterns.

Chargers: In this study, chargers are defined by their bidirectional
energy scheduling capabilities. For each charger j in a charging
station, the configuration is denoted as CPj = {Pidj,Pcharj , ηcharj ,

Pdisj , ηdisj ,Pmax
j }, where Pidj is the unique identifier. The model

incorporates both charging power Pcharj and discharging power
Pdisj , along with their corresponding efficiencies ηcharj and ηdisj . A
maximum power limit Pmax

j is imposed to ensure operational
safety by constraining agent decisions and preventing excessive
instantaneous power output.

Optimisation model: The DuMES aims to minimise energy costs
incurred by the charging station while ensuring full compliance
with user charging requirements. Within this design, the
optimal power allocation for the charger set J = [j1, j2,…, jn] is
determined to achieve cost minimisation, expressed as follows:

ω =min∑
I

i=1
Costi (1)

where Costi represents the cost of EV i. This represents the cost
incurred by the charging station when acquiring energy from
the main grid to facilitate energy supply. It is calculated as
follows:

Costi = ρ(t) ∗ PGridt (2)

The instantaneous cost, defined as the product of electricity
price ρ(t) and main grid power PGridt , can be minimised by
shifting demand to off‐peak TOU periods to lower electricity
prices and maximising renewable energy utilisation to reduce
dependence on grid power.

Furthermore, cost minimisation must be based on the suc-
cessful response to charging service. Given that EVs arrive at
and depart from charging stations randomly with uncertain

behaviours, it is crucial to ensure that they reach the desired
state of charge before departure. The scheduling success of
DuMES is defined as follows:

success (Cidi,Pidj) =
⎧⎨

⎩

1, if SoCdepi ≥ SoCexp
i

0, else
(3)

where SoCdepi and SoCexp
i represent the state of charge at de-

parture and the expected level of EV i, respectively. This design
incorporates user‐centric constraints into the energy scheduling
method to improve service quality.

3.3 | Safety Modules

In power systems, which represent highly sensitive environ-
ments, it is essential to implement the safety layer to prevent the
trial‐and‐error behaviour inherent in DRL. The DuMES method
incorporates two primary safety constraints: (1) the real‐time
SoC of EVs must remain within their capacity limits, as either
overcharging or undercharging may result in battery degrada-
tion; (2) the total power output must not exceed a predefined
threshold, since excessive peak power during high‐demand pe-
riods may pose significant risks to the stability of the power grid.
The dual‐layer safety model designed in the DuMES framework
is illustrated in Figure 3. Serving as an intermediate layer be-
tween the agent and the charging environment, the security
module is responsible for transforming potentially hazardous
actions into safe values through two levels of mapping, before
these actions are executed within the environment.

3.3.1 | Battery Safety Module

To address the issue of battery damage during the charging and
discharging processes, this work presents a battery safety
module. The exploration of safe decision‐making actions within
this module can be iteratively conducted as follows:

FIGURE 2 | Probability distributions of arrival time by scenarios. FIGURE 3 | Dual‐layer safety model in DuMES.

IET Smart Energy Systems, 2025 5

 30659655, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/ses2.70017 by U

niversidade N
ova D

e L
isboa, W

iley O
nline L

ibrary on [19/11/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Pagentn,t = an,t ∗ E (4)

Specifically, Equation (4) is designed to compute the pre-
liminary decision power Pagentn,t . By multiplying the power coef-
ficient an,t with the battery capacity E, the initial value for safe
power iteration can be obtained.

Pn,t(k + 1) = Pn,t(k) + ρ(Pagentn,t − Pn,t(k)) (5)

As the number of iterations k increases, the decision power
Pagentn,t gradually converges to the safe power Pn,t. The conver-
gence rate is primarily governed by the exploration parameter ρ,
which is adaptively calculated based on the variation in battery
energy during iteration, as defined in Equation (6). A larger
value of ρ leads to faster convergence, whereas smaller values,
including zero, slows the process or causes it to terminate.

ρ=Γ([sn]+[(E − e) − SoCn(k)]
+

+ [−sn]+[SoCn(k) − (E + e)]
+
)

(6)

Here, Γ is a positive constant, and [sn] + is used to extract the
charging or discharging signal at the current time, where
[•] + = max(•, 0) and sn = sgn (Pagentn,t ); E and E denote the
upper and lower bounds of the battery capacity; e is a small
positive constant used to control the threshold of the safety
margin; and SoCn(k) represents the expected battery energy,
which evolves iteratively with the safe power Pn,t.

This iterative formulation is introduced to ensure that the
adjustment of charging power is adaptive, rather than relying on
abrupt truncation at the safety boundaries. By gradually steering
the safe power Pn,t towards the agent decision Pagentn,t , the
mechanism allows the learning process to preserve continuity in
high‐dimensional action spaces, thereby facilitating stable pol-
icy optimisation. At the same time, the adaptive design gua-
rantees that once the state approaches the safety margin, the
update is immediately suppressed, ensuring strict compliance
with operational limits.

Overall, based on Equations (4–6), when the predicted battery
energy SoCn(k) remains within the safe range [E − e,E + e], the
safe power Pn,t asymptotically converges to the decision power
Pagentn,t at a rate governed by the adaptive parameter ρ ≠ 0. If
SoCn(k) approaches the safety boundary, that is, E − e < SoCn(k)
or E + e > SoCn(k), the parameter is set to ρ = 0, immediately
halting the update of Pn,t and forcing convergence. This mecha-
nism enables fast convergence when operating safely away from
the boundaries while effectively freezing updates near the limits
to prevent overcharge or undercharge risks.

3.3.2 | Power Safety Module

Since public charging stations are typically located in com-
mercial or office areas, their peak loads tend to coincide with
traffic peaks, which can lead to overloads when the distribution
capacity is insufficient. DuMES incorporates a power safety
module to enforce this constraint by adjusting the power

allocated to each EV based on charging anxiety and power limit
margins, thereby smoothing the overall peak load. This process
is implemented through a multi‐step exploratory mapping as
follows:

Step 1: Initialise the power safety threshold ξ, then compute the
safety margin △Φ as follows:

△Φt = ∑
n∈N
(Pmax − Pn,t) (7)

The safety margin represents the difference between the total
power Pn,t and the rated power Pmax. The safety threshold ξ is a
constant used to regulate the operational range of the power
safety module. If the safety margin △Φt is below the threshold ξ,
the process proceeds to Step 2; otherwise, it terminates.

Step 2: Compute the maximum allowable increase in charging
power for EV n ∈ N at time t; the charging power Pn,t is deter-
mined as follows:

P+n,t =min(△Φt, Pmax − Pn,t,
E ⋅ (SOCmax − SoCn(t))/ηch)

(8)

where Pn,t + is determined as the minimum value among three
factors: the safety margin; the difference from the rated power;
and the remaining capacity available for charging, which rep-
resents the maximum power that can be accepted without
causing overcharging of the onboard battery.

Step 3: When reducing power, user charging demands should be
considered. Therefore, we refer to the least laxity first (LLF)
method, which accounts for EV charging time anxiety [29]. The
laxity is defined as follows:

ψn,t = T
Leave
n,t − t − (

(SOCmax − SoCn,t) ∗ E
η ∗ Pmax ∗ △t

) (9)

which represents the remaining schedulable time for EV n at
the current time t, calculated as the expected departure time
minus the current time and the estimated battery full charge
time. A smaller ψn,t indicates a higher priority for ensuring
charging power.

Step 4: Using the maximum allowable increase charging power
Pn,t + and the relaxation factor ψn,t, the priority of each EV
n ∈ N can be determined as follows:

Sn,t = α ⋅
1
P+n,t

− β ⋅ ψn,t (10)

The objective is to prioritise the reduction of charging power for
EVs with lower anxiety levels and higher load conditions. The
above equation reflects this relationship: for any EV n ∈ N, the
smaller its additional achievable power and relaxation factor,
the higher its priority.

Step 5: Based on the obtained priority Sn,t, the EV set N is
reordered to form N

∼

. From this reordered set, the top X vehicles

6 IET Smart Energy Systems, 2025
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are selected to constitute the adjustment set N
∼

X , enabling the
following safe power control:

Pn,t =
⎧⎨

⎩

Pn,t − Padjust, if n ∈ N
∼

X

Pn,t, if n ∈ N\N
∼

X

(11)

For the EV set N, the top X vehicles with higher priority will
have their power reduced by an adjustment value, forming the
new safe power level. The remaining vehicles will retain the safe
power output determined by the previous module.

Step 6: Finally, the safety margin △Φt is updated using the new
safe power Pn,t.

△Φt = ∑
n∈N
(Pmax − Pn,t) (12)

If the safety margin satisfies the threshold condition (△ Φt ≥ ξ),
the safety exploration concludes; otherwise, return to Step 2.

Through the dual mapping in the aforementioned modules, the
DuMES framework establishes a hard constraint on charging
scheduling safety, ensuring strict security during the training
phase. In the following sections, we present the detailed
implementation of the method, along with the soft constraints
by reward shaping.

4 | Method Implementation

The proposed DuMES framework is implemented by the DRL
method developed in this section. This approach enables
adaptive online learning in complex environments and achieves
efficient energy allocation during the execution phase. This
section first introduces the MDP formulation of the scheduling
problem and then presents the implementation process based
on the proximal policy optimisation (PPO) algorithm, which
demonstrates high solving efficiency in high‐dimensional
continuous spaces.

4.1 | Markov Decision Process for DuMES

As a machine learning technique, DRL learns a policy for
maximising cumulative rewards by continuously interacting
with the environment, extracting state information and gener-
ating actions. This section formulates the MDP for multi‐
objective scheduling optimisation, including the state space,
action space and the design of the reward function.

4.1.1 | State Space

The state space is an abstract representation of the scheduling
environment. For the EV charging station considered in this
study, the state at any given moment is described as follows:

S(t) = {ρ(t),G(t),
SoC1(t)…SoCn(t),TLeave1 (t)…TLeaven (t)}

(13)

The state space can be divided into two components based on
whether the corresponding unit performs charging or dis-
charging actions. The global state mainly includes system‐wide
information such as the real‐time electricity price ρ(t) and
renewable generation output G(t). In contrast, the local state
mainly comprises the charging state SoCn(t) of the n‐th charger
(or ESS) at time t and its estimated departure time TLeaven (t). It is
worth noting that for ESSs installed as stationary energy buffers
within the station, its expected departure time is assumed to be
a fixed negative value.

4.1.2 | Action Space

The action space is the set of all possible actions that the agent
can execute within a given environment. In the proposed
DuMES, the action at any time t represents the charging/dis-
charging power coefficient a for each charger or ESS, where
a ∈ [− 1, 1], and can be expressed as follows:

at = ( α1,t, α2,t… αn,t ), αn,t ∈ [−1, 1] (14)

The size of the action space depends on the number of charging
stations n. Each continuous variable αn,t represents the magni-
tude of power, with positive values indicating charging and
negative values indicating discharging.

4.1.3 | Reward Function

As a scheduling approach from the perspective of the charging
station operator, DuMES primarily aims to minimise the cost
of purchasing power from the main grid. Meanwhile, to refl-
ect more realistic considerations, the reward function is addi-
tionally designed with two other components to achieve multi‐
objective optimisation, including meeting user charging de-
mands, ensuring safety constraints and reducing operational
costs.

This section defines the power purchase cost from the main grid
as R(1)t , serving as the primary objective for V2G scheduling
optimisation at charging stations. Specifically, the aim is to
minimise this cost by guiding the agent to fully utilise renewable
energy output and leverage the flexibility of onboard batteries to
respond to real‐time electricity price fluctuations.

R(1)t = ρ(t) ∗ PGridt (15)

where ρ(t) denotes the real‐time TOU price at time t, and PGridt
represents the instantaneous power from the main grid. Their
product corresponds to the electricity purchase cost at the given
time. Furthermore, this section defines the insecurity level of
decision‐making power as R(2)t , expressed by the following
formula:

R(2)t = ∑
n∈EV

|Pagentn,t − Pn,t| (16)

IET Smart Energy Systems, 2025 7
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Here, the difference between decision power Pagentn,t and safety
power Pn,t is used as a penalty for unsafe raw outputs of the
agent. This reward shaping component is designed to guide the
agent to focus on the underlying patterns in the safety module
outputs, ultimately leading its decisions to converge to the safety
boundary.

Finally, this part defines the penalty for unmet charging de-
mand as R(3)t , which represents the discrepancy between the
expected battery departure state SoCtarn and the actual battery
departure state SoCn,t.

R(3)t = ∑
n∈EV ,t∈DDL

max(SoCtarn − SoCn,t, 0)
2

(17)

This penalty term equals zero when the charging demand is met
and increases gradually with the degree of deviation, namely
when the battery charge level at the departure time does not
reach the expected value. This design is intended to prevent the
agent from excessively prioritising optimisation of cost and
safety at the expense of user service.

In summary, the total reward Rtotalt at any given t is defined as
the weighted sum of the three optimisation objective reward
terms, and the formulation is as follows:

Rtotalt = η1R
(1)
t + η2R

(2)
t + η3R

(3)
t (18)

The penalty factors 0 > η1 > η2 > η3 are introduced to balance the
reward weights and the normalisation process. Specifically,
beyond the primary objective of cost minimisation, the condition
0 > η1 > η2 assigns a higher penalty priority to charging safety.
Moreover, since the agent obtains feedback R(3)t only at the de-
parture time of each EV, the negative penalty weight η3 is made
more negative to facilitate more effective learning by the agent.

4.2 | DuMES Implementation

The scheduling framework DuMES, improved with PPO‐based
safety enhancements, is described as follows. Initially, the
agent continuously interacts with the environment to sample
trajectory data over step t. This data includes the state, action,
reward, next state, as well as the action probability under the
current policy. All collected trajectories are stored in an expe-
rience replay buffer for subsequent training. Subsequently, the
agent randomly samples mini‐batches from the buffer to update
both the policy and value networks. During this process, the clip
objective function is employed to constrain the extent of policy
updates, thereby ensuring policy stability during optimisation.
Algorithm 1 provides an overview of this process.

ALGORITHM 1 | The proposed DuMES.

Require: Initial condition of EVs and chargers, discount rate
γ, exploration rate e and clip threshold ε.
1: Initialise: the actor and critic with random parameters θ,

φ; weights c1, c2; constants k, tend, G.
2: for training episode = 1 to k do
3: Initialise environment state s.

4: while t ≠ tend do
5: Sample action: raw_a ∼ πθ(a|s).
6: if raw_a is safe then
7: a← raw_a.
8: else
9: a← Safe_Layer1(raw_a, s; α).
10: a← Safe_Layer2(a, s; β).
11: end if
12: Execute a, observe sʹ , r.
13: Store transition ( s, a, r, sʹ) into replay

buffer Δ.
14: Update s← sʹ .
15: end while
16: randomly select samples S△ from △.
17: Compute Lclip(θ).
18: Update policy network θ via gradient descent.
19: Update value network φ after G iterations.
20: end for

Training: During the training phase, the DuMES method iter-
atively optimises both the policy and value function based on
the PPO algorithm, aiming to learn an optimal energy sched-
uling strategy within a highly dynamic and uncertain environ-
ment. The training process begins by initialising the parameters
of the actor and critic networks, denoted respectively as θ and φ,
along with setting several essential hyperparameters, including
the discount factor γ, exploration rate e and clipping threshold ε.
At the start of each training episode, the environmental state s is
initialised, after which the agent samples a raw action raw_a
from the actor network according to the current policy πθ(a∣s).
To ensure that the learnt policy consistently adheres to pre-
defined system constraints throughout training, DuMES in-
corporates a dual safety layer mechanism. When raw action
raw_a fails to satisfy these constraints, the action is sequentially
refined by Safety Layer 1 and Safety Layer 2. These layers
introduce parameterised control factors, α and β, respectively, to
adaptively handle varying constraint conditions and generate a
final action, denoted as asafe, that is both valid and safe for real‐
world execution.

As shown in Figure 4, the resulting safe action is then delivered
to the environment, which returns the subsequent state sʹ and
the immediate reward r. The transition tuple ( s, a, r, sʹ) is stored
in a replay buffer Δ, and at the end of each episode, a batch of
samples S△ is randomly drawn from it for updating the policy
and value networks. The policy network is updated using the
clipped loss function Lclip(θ), optimising the actor parameters θ
through gradient descent in order to maintain the stability of the
policy update and prevent significant deviation from the previ-
ous policy. In contrast, the critic network parameters φ are
refined through multiple iterations (specified as G times) using
the target value function, thereby enhancing the evaluation
capability of the current policy.

Interaction: At the beginning of each training episode, EVs arrive
at the charging station sequentially and connect to the grid. By
collecting local information such as the battery SoCanddeparture
times from each charger, the state information of the EVs can be
obtained. The global information, such as electricity prices and
renewable energy output, is then extracted and integrated. This
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allows the initialisation of state space as S(t) = {ρ(t),G(t),
SoC1(t),…,TLeave1 (t),…}. The agent, using a DNN to approximate
the probability function, determines the appropriate actions to
take. These actions are executed, and the agent continuously
adjusts its strategy based on the rewards provided by the envi-
ronment and the updates to the state. This interactionmechanism
aims to guide the agent in optimising its strategy, ensuring that
charging demands are met while minimising electricity costs and
maintaining charging safety constraints.

Safety constraints: In this study, a major challenge lies in
learning an optimal scheduling policy while strictly adhering to
charging safety constraints. This difficulty arises from the
model‐free nature of DRL, which enables it to handle high‐
dimensional dynamic processes without any prior knowledge
of system models. However, this also makes it difficult for the
method to accurately capture physical constraints in the envi-
ronment and take proactive safety measures. Furthermore,
DRL‐based approaches typically involve random exploration
during the training phase, which involves extensive trial‐and‐
error behaviour that poses potential risks in real‐world appli-
cations. To address this issue, a safety layer design has been
introduced, as shown in the safety layer component in Figure 4.

DuMES employs an actor–critic architecture for generating raw
action decisions. In this framework, the actor network receives
the current system state and outputs the final policy action,
whereas the critic network estimates the state‐action value
function to evaluate the generated policy and facilitate
decision‐making optimisation. Upon generation of the pre-
liminary action by the actor network, it is forwarded to the
safety layer for constraint verification and correction. Control
commands that may violate physical constraints are adjusted
by the safety layer into constraint‐satisfying safe actions a, and
then transmits these to the charging station controller within
the system environment. The charging station controller

subsequently schedules EVs and ESS based on the safe actions
a. In addition to the hard safety constraints enforced by the
safety layer above, the environment also provides reward
components related to the safe actions in its feedback after
executing a. These components serve to guide the agent in
aligning its preliminary actions with the corresponding safe
actions. By embedding the aforementioned safety constraints
into the feedback learning process, the DuMES is able to
optimise its scheduling strategy while ensuring compliance
with safety requirements.

5 | Evaluation

This section presents an experimental evaluation of the proposed
DuMES to verify its optimisation performance. First, the details of
the experimental environment are described, followed by a per-
formance assessment under various scenarios using several
baseline methods, including two conventional scheduling algo-
rithms, an advanced DRL algorithm and a safety‐enhanced DRL
variant. All methods are implemented in Python 3.9 using the
PyTorch framework. The simulations are conducted on a local
high‐performance computing server equipped with an NVIDIA
GeForceRTX4090GPU (24GBVRAM, 2.6GHz) runningUbuntu
20.04 LTS.

5.1 | Simulation Setup

This section presents a series of evaluations to demonstrate
the effectiveness of the DuMES framework in the context of
charging scheduling. The simulation setup considers a char-
ging station equipped with wind power generation and energy
storage devices. The station includes 20 bidirectional chargers,
each with a maximum charging power of 30 kW and a cha-
rging/discharging efficiency coefficient of 0.91, one energy

FIGURE 4 | The safe RL‐based architecture for EV charging scheduling.
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storage battery with a maximum charging power of 21 kW,
a capacity of 50 kWh and a charging/discharging efficiency
coefficient of 0.98. Additionally, the station includes 20
photovoltaic panels, each with dimensions of 2.279m ×

1.134m and a power conversion efficiency coefficient of 0.21.
Similar to ref. [30], a typical TOU tariff is adopted, as shown
in Table 3.

According to data from the Federal Highway Administration
of the United States Department of Transportation, the fea-
tures of commuting EVs follow the normal distribution [28].
Therefore, the arrival time distribution of EVs conforms to the
real‐world data presented in the arrival EV model in Sec-
tion 3.2, whereas the arrival SoC follows a normal distribution
N ∼ N (20, 22). Similarly, the expected parking time follows a
normal distribution N ∼ N (6, 1). In addition, each EV is
assumed to be equipped with a 50‐kWh onboard lithium
battery, with the expected SoC set to 100%. The minimum
capacity threshold is set to 2.4 kWh to protect battery lifespan
[31]. The power safety threshold ξ is used to determine
whether the current power consumption is approaching the
permissible safety limit of the system. After evaluating mul-
tiple candidate values, ξ is set to 0.01 kW to balance the trade‐
off between detection accuracy and timely responses, thereby
avoiding premature triggers or delayed recognition. It should
be noted that the above settings serve only as simulation‐
specific parameters in this study. The proposed DuMES can
effectively accommodate various travel patterns and electrical
characteristics of EVs during the scheduling process while
requiring only a limited set of prior knowledge such as battery
capacity constraints during the initialisation phase of the
safety module.

In terms of algorithm hyperparameter configuration, the PPO
algorithm adopts a clipped strategy optimisation. The clipping
ratio for policy updates is set to ε = 0.2, which serves to constrain
themagnitude of policy changes and prevent abrupt alterations in
the policy. Both the policy network and the value network are
implemented as two‐layer fully connected structures, with each
layer containing 64 neurons. The activation function used is the
hyperbolic tangent (Tanh). In each learning iteration, the
generalised advantage estimation (GAE) coefficient is set to
λ = 0.95, and the discount factor is defined as γ = 0.99, with the
value network updated every five iterations and the policy
network is updated in each iteration.More detailed configuration
of the hyperparameters is presented in Table 4.

5.2 | Scheduling Performance

The performance of the DuMES method proposed in Algo-
rithm 1 is validated using the following four baseline methods.

1. Greedy method (GRD): A greedy implementation designed
to minimise costs by prioritising the utilisation of renew-
able energy for power supply. Electricity is purchased from
the main grid only when the real‐time TOU price is less
than or equal to the flat period.

2. Rule‐based method (RBC): A rule‐driven decision‐making
mechanism that operates with low latency. If any EV is
scheduled to depart within the next 3 hours, RBC charges
it at maximum power. Otherwise, the charging decisions
are made by jointly considering TOU pricing and the
output of renewable energy.

3. PPO [32]: An advanced real‐time method based on the
actor–critic framework that facilitates continuous action
decision‐making. However, it is founded upon the original
DRL architecture and without the enhancements for
ensuring operational safety.

4. DuMES: Introduced in Section 4.

This section evaluates the proposed method and baseline
method under four charging scenarios, aiming to verify their
scheduling performance on three optimisation objectives, as
compared in Figure 5.

Scenes 1 to 4 correspond to the community, commercial, of-
fice area and all‐day scenarios described in Section 3.2. Ope-
rational cost represents the energy expenditure incurred by
the charging station to respond to charging demands over a
complete testing day. This cost is minimised by fully utilising
renewable energy output and storing energy during periods
with off‐peak electricity prices. In this context, GRD is a
greedy strategy that aims solely at minimising costs. Under
this strategy, it purchases electricity from the main grid
for charging or energy storage only when the real‐time elec-
tricity price does not exceed the flat rate, and it sells electricity
otherwise. Consequently, GRD achieves the optimal reduction
in operational costs by sacrificing other optimisation objec-
tives. As shown in Figure 5a, GRD achieves the best perfor-
mance in reducing operational costs. In comparison, the DRL‐
based PPO and DuMES methods, which incorporate multi‐
objective optimisation, obtain a cost efficiency that is second
only to optimal and comparably close.

TABLE 3 | TOU tariff used in simulations.

Period TOU (¥/kWh)
Peak 12:00–15:00, 18:00–21:00 1.2710

Flat 6:00–12:00, 15:00–18:00.
21:00–23:00

0.7685

Valley 23:00–6:00 0.2576

TABLE 4 | Hyperparameters in the DuMES method.

Discount factor γ 0.99

Buffer size 4000

Batch size 64

Learning rate 3e‐4

Optimiser Adam

Number of hidden layers 2

Number of hidden units 64

Activation function of hidden layers Tahn

Clip parameter ε 0.2

GAE λ 0.95

Value function coefficient 0.5

Updating times 5
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The peak power reflects the performance of the scheduling
method in ensuring power safety. It is defined as the maximum
total power exhibited by the charging station over a complete test
day. As disordered charging may lead to power levels exceeding
safe limits, the peak power is closely correlated with the safety
constraints proposed in this study. Specifically, the power safety
threshold is indicated by the dashed line in Figure 5b. All
scheduling methods successfully avoid power violations in Scene
4, as this hypothetical scenario features continuous and stable
vehicle arrival rates throughout the day, thereby preventing oc-
currences of uncoordinated and concentrated charging. Simi-
larly, Scenario 1, representing a community with high traffic flow
but without a pronounced peak in arrivals, results in only slight
power violations for the GRD and RBC methods. However, in

Scenes 2 and 3, the traffic flow exhibits evident peak and valley
patterns, causing a largenumber of EVs to arrivewithinfixed time
intervals. In such cases, the reward‐drivenmechanismof theDRL
agent alone is insufficient to effectively mitigate peak power de-
mands, and accordingly the GRD, RBC, and DRL methods all
experience significant power violations. In contrast, DuMES in-
tegrates a dual‐layer safety module and leverages the iterative
relaxationmechanism of the power safety module and shifts low‐
priority charging demands to later time periods, thereby
completely smoothing the power peak.

The service success rate indicates whether the charging service
is provided in a timely manner throughout the test day. Due to
its cost‐greedy design, the GRD approach tends to pursue lower

FIGURE 5 | Comparison across different scenes.
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real‐time electricity prices, which may lead to missed opportu-
nities for optimal charging before the user departs. As a result, it
demonstrates the lowest success rate among the compared
strategies. In contrast, RBC adopts a more conservative strategy
by charging at maximum power during the 3 hours preceding
the anticipated departure, which results in an excellent success
rate. By comparison, DuMES achieves a suboptimal success
rate, demonstrating its capability to balance multi‐objective
optimisation.

In summary, the proposed DuMES method achieves multi‐
objective optimisation comparable to PPO in scheduling perfor-
mance. However, DuMES demonstrates a significant improve-
ment in power safety without compromising scheduling
effectiveness. The following section further compares the training
efficiency and battery safety performance of DuMES and PPO.

5.3 | Training Efficiency and Safety

In EV charging scheduling, the computational efficiency of the
policy considerably influences both real‐time performance and
optimisation effectiveness. Conventional DRL methods typically
impose constraints through penalty terms in the reward, using
hard boundary limitations without modifying the network ar-
chitecture. However, when applied to high‐dimensional
continuous solution spaces, DRL often fails to capture the
inherent safety patterns with this approach, thereby exacer-
bating sample and computational restrictions. In contrast, the
proposed DuMES method adopts a more flexible safety module
design that adaptively adjusts the constraint boundaries based
on real‐time states, which significantly reduces the number of
trial‐and‐error iterations. Furthermore, by incorporating dy-
namic safety boundaries into the penalty terms of the reward
function, the method guides the original network output to-
wards alignment with safe actions, thereby accelerating the
convergence rate.

To validate the improvement in training performance achieved
by the proposed framework, this part compares PPO with its
safety‐enhanced variant, DuMES. Both methods are trained for
a maximum of 5 × 105 steps with identical hyperparameter
configurations. The only distinction lies in the formulation of
the reward function: While the PPO employs hard boundary
constraints within the penalty term, the DuMES utilises outputs
from the safety module. Figure 6 presents the mean rewards
obtained by the two methods.

It can be observed that both DuMES and PPO achieved effective
convergence, as quantitatively compared in Table 5. Under
identical hyperparameter settings, PPO converged after 309123
time steps, attaining an average reward of approximately
−12.15. In contrast, DuMES converged after 254352 time steps,
with an average reward of approximately −10.72. This repre-
sents an 11.77% improvement in reward and a 17.72% acceler-
ation in convergence speed, thereby demonstrating the
superiority of DuMES in terms of training efficiency.

In addition, Figure 7 presents the SoC curves of 20 vehicles
participating in the charging scheduling, comparing the DuMES

method equipped with the safety module and the PPO method
without it. It should be noted that the arrival and departure
times in this figure were deliberately designed as an extreme
case, where vehicles arrive within a concentrated time window
and remain parked for an extended duration. This setup serves
as a stress‐test scenario to clearly demonstrate the robustness of
the proposed safety module, and it does not represent the
realistic travel patterns used in the performance evaluation.

As shown in Figure 7b, the absence of a safety module can lead
to violations of the minimum SoC threshold during discharging
operations, occasionally resulting in battery undercharge. This
issue arises because the PPO algorithm relies solely on the
reward function for safety guidance. Consequently, when the
current battery state approaches the lower bound or zero, the
agent may still select random exploratory actions with a(t) < 0,
thereby causing the SoC below the permissible limit or even
producing negative values. In contrast, the proposed DuMES
method, as demonstrated in Figure 7a, ensures that the SoC of
all EVs remains within the specified range, thereby guarantee-
ing battery safety.

To further illustrate the effectiveness of the battery safety
module, Figure 8 presents the safety exploration process con-
ducted by DuMES as the battery SoC increases. In Figure 8a, the
comparative method is the DRL method without safety module.
This method directly applies the decision power produced by
the agent to the charger without evaluating the safety of the
action. It is evident that the instantaneous increase in charging
power under the conventional DRL method may expose the
battery to an overcharge risk. In contrast, when the battery SoC
is substantially lower than the threshold range, DuMES equip-
ped with the safety module rapidly increases the corresponding
safety power exploration value; subsequently, as the battery SoC
approaches the limit, the increase becomes gradual until it
stops, thereby ensuring that the current battery SoC in Figure 8b

FIGURE 6 | Comparison of mean reward between PPO and DuMES.

TABLE 5 | Comparison of training efficiency.

Methods
Mean
reward

Convergence
timestep

Comparison of
convergence (%)

DuMES −10.72 254352 −17.72

PPO −12.15 309123 100
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always remains within the margin of the safety threshold. By
defining the threshold range with an appropriately small posi-
tive number e, the training process is ensured to converge
normally.

6 | Conclusion

In this work, we propose DuMES, a dual‐layer safety module
framework designed to enhance standard DRL approaches for
charging scheduling by introducing a decision‐level safety layer.
DuMES adaptively detects and replaces unsafe actions while
incorporating reward shaping aligned with dual safety con-
straints, effectively mitigating potential grid risks during both
training and deployment. Simulation studies on a charging
station equipped with renewable generation and ESS demon-
strate that DuMES not only satisfies user charging demands but
also surpasses baseline methods in reducing operational costs
and strictly adhering to safety limits. Furthermore, the reward
shaping mechanism promotes convergence between the original

and safe action policies, thereby accelerating training and
reducing the overhead associated with trial‐and‐error learning.
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