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foundation for trustworthy sen-
sor data management. Among
various consensus mechanisms,
Delegated Proof of Stake (DPoS)
has been recognized for its effi-
ciency and low energy consump-
tion, yet it faces two critical issues: limited incentives for ordinary sensor nodes to participate in voting and the risk of
collusion that undermines fairness and stability. To overcome these limitations, this study proposes a blockchain-enabled
sensor data storage framework incorporating a four-party evolutionary game model. The model explicitly captures the
strategic interactions among cluster head nodes, ordinary sensor nodes, competing gateway nodes, and supervisory
nodes, while integrating reputation evaluation, penalty enforcement, and supervisory oversight. Through evolutionary
game analysis, the proposed framework reveals the stability conditions of node behaviors and identifies strategies
that promote fair and secure consensus. Simulation results verify that the mechanism enhances node participation,
suppresses collusion, accelerates consensus convergence, and achieves superior throughput and fault tolerance
compared with existing schemes. This research provides theoretical insights and practical guidance for designing secure,
efficient, and scalable blockchain-enabled sensor network data storage systems.
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ITH the accelerated convergence of digitalization and
Wintelligence, sensor network technologies have been
extensively deployed across critical domains such as envi-
ronmental monitoring, industrial automation, healthcare, and
smart cities [1]-[3]. According to recent forecasts, billions of
sensors are expected to be connected worldwide by 2025, with
the majority of data being generated and processed at the edge
[1]. The continuous influx of massive heterogeneous sensing
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devices and the generation of high-frequency sensor data
impose severe challenges on traditional centralized storage
architectures [4]. These centralized systems are prone to single
points of failure, suffer from poor scalability and high latency,
and struggle to meet the sensor network environment’s mul-
tifaceted demands for real-time responsiveness, data integrity,
privacy preservation, and trustworthy management [5].

Blockchain technology, with its intrinsic features of de-
centralization, immutability, traceability, and automated smart
contract execution, offers a promising alternative for secure
and reliable sensor data storage and management [6], [7].
By integrating data uploading, distributed ledger storage,
and contract-driven automation, blockchain enhances data in-
tegrity and transparency while fostering trust and collaboration
among multiple sensing nodes [8]. However, when applied to
resource-constrained sensor networks characterized by limited
energy and computational capabilities, blockchain systems
face scalability bottlenecks, particularly regarding consensus
mechanisms, which significantly hinder real-world deployment
[9].

Among existing consensus algorithms, Delegated Proof of
Stake (DPoS) has emerged as a widely adopted solution
in blockchain—sensor network integration due to its rapid
transaction confirmation, low energy consumption, and com-
patibility with lightweight infrastructures [10]. Nevertheless,
when implemented in sensor network scenarios, DPoS exhibits
two critical shortcomings. First, the voting participation rate
of ordinary sensor nodes is generally low, as many remain
idle or lack sufficient incentives to engage in elections due
to energy constraints and limited computational ability. This
leads to a concentration of voting power among a few cluster
heads, undermining decentralization and fairness [11]. Sec-
ond, restricted communication ranges and local information
asymmetry among cluster head nodes can facilitate covert
bribery, enabling malicious nodes to manipulate votes by
colluding with ordinary sensors—an attack strategy known
as “election collusion”—which compromises both the fairness
of consensus and overall system stability [12]. In real-time
sensor data applications, where supervisory mechanisms are
often inadequate, the success rate of collusion attacks under
DPoS may exceed 60% in certain cases, posing a significant
threat to the security, reliability, and scalability of blockchain-
enabled sensor networks.

Although various enhancements—such as the incorporation
of reputation systems, dynamic elections, and randomized
voting—have been proposed to mitigate DPoS vulnerabilities,
these solutions largely remain at the algorithmic or procedural
level. They often fail to provide a comprehensive framework
for analyzing the strategic behavior and interactions among
heterogeneous participants. In particular, conventional two-
party or three-party game models are insufficient to capture
the intricate dynamics inherent in blockchain-based sensor
networks, which typically involve interactions among four
key actors: cluster head (authorized) nodes, ordinary sensor
nodes, competing gateway nodes, and supervisory nodes. This
highlights the urgent need for a more expressive and adaptable
modeling paradigm that can accommodate complex strategic
behaviors and system evolution processes.
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To address this gap, this paper focuses on the core issue
of inadequate voting incentives and frequent collusion among
nodes under the DPoS consensus mechanism in sensor net-
works. We propose an evolutionary game-theoretic model tai-
lored for blockchain-enabled sensor data storage, incorporating
four representative node types and systematically investigat-
ing how incentive, punishment, and supervision mechanisms
influence the evolution of strategies and system-level stability.
The proposed model integrates key characteristics of sensor
network deployments and the operational rules of the DPoS
consensus protocol. It establishes a multi-strategy evolutionary
framework incorporating Nash equilibrium analysis, Jacobian
matrix—based stability assessment, and replication dynamic
equations. Simulation experiments are conducted to verify
the model’s adaptability and practical feasibility. The main
contributions of this study are as follows:

i) We construct a blockchain-enabled sensor network stor-
age framework and propose a four-party evolutionary
game model involving cluster head nodes, ordinary sensor
nodes, competing gateway nodes, and supervisory nodes.
The model employs a strategic interaction matrix to
capture the dynamic evolution and interrelations of node
behaviors under the DPoS consensus mechanism.

ii) The game model integrates reputation, punishment, and
supervisory mechanisms to systematically analyze the
evolutionary paths and convergence characteristics of
node strategies, while quantitatively evaluating their ef-
fectiveness in curbing irrational behaviors such as bribery
and collusion in sensor networks.

iii) Simulation experiments and performance evaluations
against existing two-party and three-party models demon-
strate that the proposed method significantly improves
sensor node participation rate, consensus convergence
speed, and system fault tolerance, offering a practical
solution for the secure and efficient implementation of
blockchain-based sensor data storage.

The remainder of this paper is organized as follows. Section
IT reviews related work. Section III describes the problem
and the proposed storage framework. Section IV details
the construction of the evolutionary game model for the
blockchain DPoS consensus mechanism. Section V presents
the experimental results and analysis. Section VI provides the
discussion, and Section VII concludes the paper.

II. RELATED WORK
A. Research on Blockchain in Sensor Networks

With the development of wireless sensor networks (WSNs),
issues of secure storage, privacy protection, and reliable data
management have become increasingly critical. Blockchain
technology, with its decentralized and tamper-resistant nature,
has been widely studied to address these challenges in WSNS.

Recent studies have primarily focused on lightweight au-
thentication and privacy preservation. For example, Yu et
al. [13] proposed a blockchain- and physically unclonable
functions-based lightweight authentication protocol for WM-
SNs, demonstrating improved resistance to cyber and physical
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security threats. Zhang et al. [14] introduced a blockchain-
assisted biometric and password-based authentication and key
agreement scheme for wireless body area networks, which
preserves user privacy and reduces computational overhead.
In addition, blockchain has been employed to improve secure
data collection and storage efficiency. Li et al. [15] presented
a blockchain-enhanced data collection framework for UAV-
assisted WSNGs, integrating spatiotemporal data aggregation
and a Merkle-tree authentication mechanism to ensure secure
data transmission. Pravija Raj et al. [16] designed a secure data
collection model combining blockchain and machine learning
for WSNs, effectively detecting malicious nodes and enhanc-
ing secure storage through blockchain-based registration and
authentication. Hsiao et al. [17] proposed a blockchain-based
encapsulation framework for wireless sensing data in smart
agriculture, improving confidentiality, integrity, and tamper-
resistance of environmental monitoring data. On the consensus
side, researchers have also explored protocol-level innovations.
For instance, Li et al. [18] developed a novel Proof-of-Channel
consensus protocol for blockchain-enabled wireless networks,
enhancing persistence, liveness, and resilience against jam-
ming and Sybil attacks.

Although these studies have substantially advanced authen-
tication, privacy, secure data collection, and consensus re-
silience in blockchain-enabled sensor networks, they fall short
in resolving incentive misalignment among ordinary sensor
nodes and collusion risks between cluster heads and gateway
nodes. This gap underscores the need for a dynamic game-
theoretic framework that integrates incentive, punishment, and
supervision mechanisms to ensure both security and efficiency
in blockchain-based sensor networks.

B. Research on Blockchain DPoS Consensus
Mechanism

In blockchain technology, the DPoS consensus mechanism
is extensively used in various blockchain systems owing to
its high efficiency. In the context of resource-constrained
sensor networks, DPoS has also received widespread attention
because of its lightweight structure and low energy consump-
tion. However, DPoS still faces challenges such as inactive
node voting and collusion attacks, which directly threaten
the stability and security of sensor network—based blockchain
systems.

To address these challenges, scholars have proposed several
optimization schemes. To enhance voting motivation, Zhu et
al. [19] proposed a hierarchical reputation consensus mecha-
nism that combined DPoS and Proof of Work to enhance the
efficiency and security of certificate validation. Additionally,
they introduced a rapid validation method based on block
height and secure authentication. Ahmad et al. [20] proposed a
reputation-delegated proof-of-interest consensus algorithm that
selected agent nodes to participate in the consensus process by
weighting both the number of votes and the reputation values
of the nodes. However, such schemes remain vulnerable in
sensor networks, as reputation values can be manipulated by
a few highly reputable cluster head nodes, thereby creating
new risks of collusion.

To address this limitation. Wang et al. [21] introduced a
credit-weighted integrated election method that first calculated
node activity using k-shell decomposition. It then determined
the weighted vote value and selected the delegate by integrat-
ing both the node activity and the weighted vote. While this
method encourages node participation, it is limited in handling
malicious nodes because of a lack of continuous monitoring.
To address this, researchers have proposed a node-lifting
mechanism and dynamic election strategy for honest nodes.
Feng et al. [22] introduced a dynamic strategy for honest
nodes that effectively reduced the probability of selecting
malicious nodes but did not significantly improve node voting
activity. Additionally, to improve voting fairness and enhance
the reliability and stability of the DPoS consensus mechanism,
Xu et al. [23] proposed refining voting methods to include
support, abstention, and opposition votes, thereby measuring
the node’s willingness to vote in three different ways.

Although these studies provide valuable insights, most
of them remain static and fail to integrate incen-
tive—punishment—supervision mechanisms into a unified
framework. In particular, when applied to sensor networks
characterized by high data real-time requirements and frequent
topology changes, traditional optimization approaches cannot
effectively balance efficiency and security. These limitations
highlight the urgent need for a comprehensive consensus
optimization framework that dynamically integrates incentive,
punishment, and supervision mechanisms, which is precisely
the gap addressed in this study through a four-party evolution-
ary game model tailored for sensor networks.

C. Game Theory in DPoS Consensus Mechanism

Game theory, as a mathematical tool for analyzing decision-
making and strategy selection, has been extensively used in
blockchain consensus mechanisms. In sensor network environ-
ments, where cluster head nodes, ordinary sensor nodes, and
gateway nodes must frequently adjust strategies under resource
and trust constraints, game-theoretic approaches provide a
rigorous foundation for modeling strategic interactions. Pan et
al. [24] investigated how dividends affected user decisions and
welfare in DPoS consensus mechanisms and proposed using a
theoretical framework to enhance resistance to unfair behavior.
However, the two-party game model does not adequately
reflect the complexity of the DPoS consensus mechanism
or the dynamic influence of multiple subjects. Ren et al.
[25] introduced a monitoring mechanism and a reward and
punishment system and constructed a three-party evolutionary
game model involving agent, voting, and supervisory nodes to
analyze changes in node behavioral strategies before and after
improvements to the consensus scheme, thereby providing a
theoretical basis for optimizing network behavior. Therefore,
Wang et al. [26] proposed a new DPoS consensus mechanism
that verified nodes’ votes based on reputation and optimized
user costs and node utility through a three-stage Stackelberg
game. These studies offer new perspectives for understanding
interactions among different participants in the DPoS consen-
sus mechanism and lay the foundation for optimizing network
behavior through reward and punishment mechanisms.



Nevertheless, existing research is still confined to two-party
or three-party models, which overlook the strategic roles of
competing gateway nodes and supervisory nodes, and fail
to capture collusive behaviors that frequently arise in sensor
networks. In addition, the absence of feedback loops and
temporal evolution analysis limits their ability to model real-
world consensus dynamics in heterogeneous sensor networks.
By extending beyond static two- or three-party models, this
paper introduces a four-party evolutionary game model that
explicitly incorporates cluster head nodes, ordinary sensor
nodes, competing gateway nodes, and supervisory nodes. This
approach enables a more accurate depiction of strategy evo-
lution, consensus fairness, and system stability in blockchain-
based sensor networks.

[1l. PROBLEM DESCRIPTION AND STORAGE FRAMEWORK

With the rapid development of sensor network technology,
the large-scale data generated by heterogeneous sensing de-
vices challenges traditional centralized storage systems, which
struggle to meet the sensor networks’ security, reliability,
and real-time requirements. Blockchain technology, with its
decentralized, tamper-proof, and traceable features, offers a
promising solution. This section defines the problem of ap-
plying the DPoS consensus mechanism in sensor networks,
analyzes its security challenges, and presents an optimized data
storage framework to improve both security and efficiency.

A. Game-Theoretic Characterization of the DPoS
Consensus Mechanism in Sensor Networks

With the rapid proliferation of sensor networks, a vast
number of distributed sensor nodes continuously generate
high-frequency data streams. Traditional centralized storage
architectures are increasingly inadequate to satisfy the multi-
dimensional demands for security, reliability, and real-time re-
sponsiveness in such environments. In this context, blockchain
technology—characterized by decentralization, immutability,
and traceability—has emerged as a promising paradigm for
secure and trustworthy sensor data storage. Among various
blockchain consensus algorithms, DPoS has attracted consid-
erable attention for its low energy consumption and high oper-
ational efficiency, making it particularly suitable for resource-
constrained sensor networks. However, the integration of DPoS
into sensor networks also introduces several prominent secu-
rity challenges:

(1) Ordinary sensor nodes often lack sufficient incentive to
actively participate in the voting process. Due to their
limited computational resources and energy constraints,
these devices are unable to execute complex encryption
or validation algorithms, and therefore exhibit low par-
ticipation rates. This leads to a prevalent issue of “voter
absenteeism”, whereby voting rights become concentrated
among a small subset of cluster head nodes, undermining
the fairness and dynamism of the consensus process.

(2) Cluster head nodes, owing to their limited communication
ranges, possess only partial knowledge of the network
state. This “local information asymmetry” provides fertile
ground for electoral collusion. Competing gateway nodes
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may exploit this by bribing ordinary sensors or forming
alliances with certain cluster heads, thereby manipulating
voting outcomes. Once elected, these colluding nodes can
monopolize block generation rights, significantly compro-
mising system fairness and stability.

(3) Real-time sensor data applications, such as industrial
monitoring or healthcare sensing, impose stringent latency
constraints. Excessive consensus delays in blockchain
systems directly degrade the timeliness of sensor data
reporting, which may result in severe operational or safety
risks. Thus, ensuring rapid consensus convergence while
maintaining security is a critical challenge in blockchain-
enabled sensor networks.

Although similar threats exist in traditional IT-based
blockchain systems, they are further exacerbated in sensor
networks due to constrained computation, intermittent con-
nectivity, and the lack of persistent supervisory mechanisms.
These challenges highlight the urgent need for incorporating
dynamic supervision frameworks and game-theoretic modeling
to systematically analyze and mitigate the evolution of collu-
sive behaviors in resource-constrained, trust-deficient sensor
network blockchain environments.

In the proposed model, four types of nodes are explicitly
defined to capture the heterogeneity of blockchain-enabled
sensor networks. Cluster head nodes act as authorized enti-
ties responsible for block validation and generation, leverag-
ing their relatively higher computational and communication
capabilities. Ordinary sensor nodes are widely distributed,
resource-constrained devices that primarily generate sensing
data and participate in voting. Competing gateway nodes
possess partial computational resources and attempt to chal-
lenge cluster heads in elections for block-generation rights.
Supervisory nodes function as trusted monitoring agents, de-
tecting collusion and enforcing penalties through lightweight
mechanisms. Notably, supervisory nodes themselves may also
be subject to oversight to prevent abuse of authority. This
categorization reflects the resource asymmetry and diverse
roles within sensor networks, grounding the evolutionary game
model in realistic deployment scenarios and reinforcing its
practical relevance and adaptability.

B. DPoS-Based Sensor Network Blockchain Data
Storage Framework

To effectively address critical challenges such as insuffi-
cient voting incentives, communication asymmetry, and node
collusion in the DPoS consensus mechanism within sensor
networks, this paper proposes an optimized blockchain data
storage framework that tightly integrates the architectural
characteristics of sensor networks with the operational logic
of the DPoS protocol. The proposed framework is designed
in accordance with the practical demands of sensor data
applications and is structured into three functional layers: the
sensor data collection layer, the consortium chain interaction
layer, and the game-theoretic consensus layer, as illustrated in
Fig. 1.

Sensor Data Collection Layer: This layer is responsible
for the collection and preliminary processing of raw data
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Fig. 1. Blockchain-based sensor network data storage framework

generated by distributed sensor nodes. These nodes—such as
environmental sensors, wearable health monitors, and indus-
trial detectors—typically operate with constrained energy and
computational capacity. To mitigate these limitations, cluster
head or gateway nodes are employed to perform local pre-
processing tasks, including filtering, aggregation, compression,
and initial validation. Such preprocessing reduces redundancy,
enhances integrity, and improves transmission efficiency.

Consortium Blockchain Interaction Layer: Once prepro-
cessed, the data is transmitted from cluster heads to a con-
sortium blockchain network composed of multiple identified
and trusted nodes. This layer employs a DPoS consensus
mechanism to achieve efficient, low-latency, and energy-aware
data consensus and on-chain storage. The system incorporates
four categories of participants:

(1) Cluster head nodes: elected through voting by ordinary
sensor nodes, responsible for validating sensor data and
generating blocks.

(2) Ordinary sensor nodes: general sensor devices that gener-
ate data and participate in the voting process.

(3) Competing gateway nodes: alternative cluster head or
gateway nodes that challenge incumbents in elections for
block-generation rights.

(4) Supervisory nodes: trusted agents managed by authorities
or operators to monitor network behavior, detect collusion,
and enforce accountability through reputation evaluation
and penalty mechanisms.

Game-Theoretic Consensus Layer: In the operation of the
DPoS mechanism, the strategic interactions among the four
node types fundamentally influence system security and con-
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sensus efficiency. To capture these dynamics, a game-theoretic
framework is constructed to model the evolutionary behaviors
of ordinary sensors, cluster heads, competing gateways, and
supervisory nodes. The framework incorporates reputation
differentiation, bribery penalties, supervisory rewards, and
energy consumption constraints to guide the system’s strategic
evolution. Evolutionary game theory is employed to simulate
and analyze strategy adaptation processes over time.

Within this multi-layered architecture, sensor nodes serve
as ordinary participants responsible for data generation; clus-
ter heads handle aggregation and block validation; compet-
ing gateways seek to challenge incumbents under rational
constraints; and supervisory nodes ensure fair participation
and detect collusion. The blockchain system, reinforced by
game-theoretic mechanisms, incentivizes compliant behavior
while penalizing misconduct, thereby enhancing the security,
robustness, and trustworthiness of sensor data storage systems.

IV. OUR PROPOSED BLOCKCHAIN DPOS CONSENSUS
MECHANISM GAME MODEL CONSTRUCTION

In Section III, a blockchain-based data storage architecture
tailored to the sensor network environment is constructed, and
three core challenges inherent in applying the DPoS consensus
mechanism to sensor networks are clearly identified: (1)
the lack of incentive for ordinary sensor nodes to actively
participate in voting, (2) the significant risk of collusion
between cluster head nodes and competing gateway nodes
during the election process, and (3) the stringent real-time
requirements of sensor data that aggravate consensus latency
issues. To systematically capture the evolutionary dynamics



of these misbehaviors and assess their impact on system
stability, Section IV employs evolutionary game theory to
model and analyze the strategic interactions among four key
types of nodes in blockchain-enabled sensor networks: cluster
head nodes, ordinary sensor nodes, competing gateway nodes,
and supervisory nodes. Building upon the problem definition
and architectural framework established in the previous sec-
tion, this part focuses on modeling node behavior strategies,
constructing corresponding payoff functions, analyzing the
dynamic evolution trajectories, and determining the stability
conditions. These efforts aim to provide a solid theoretical
foundation and strategic insights for the optimization and ro-
bustness of the DPoS consensus mechanism in sensor network
applications.

A. Modeling of Node Game Problems and Basic
Assumptions

In sensor network environments, characteristics such as
constrained node resources, limited communication ranges,
and latency-sensitive data flows expose inherent limitations
of the DPoS consensus mechanism. These include insuffi-
cient incentives for ordinary sensor nodes, frequent collusion
among cluster head and competing nodes, and weaknesses
in supervisory mechanisms. In response, this paper proposes
a systematic modeling approach grounded in the behavioral
evolution of node-level strategies, integrating both resource
constraints and real-time sensing requirements into the design.

The four categories of nodes are redefined in the context of
sensor networks:

(1) Cluster head nodes: Aggregation or sink nodes with higher
computing and communication capacity. They can either
follow legitimate voting results to produce blocks or at-
tempt to manipulate elections by bribing ordinary sensors.

(2) Ordinary sensor nodes: Resource-constrained sensing de-
vices responsible for generating raw data and voting. They
can choose to vote normally or accept bribes, though
their limited computation and energy directly affect their
willingness to participate.

(3) Competing gateway nodes: Alternative cluster heads or
gateways with partial resources, which compete to replace
current authorized nodes. They may adopt legitimate com-
petition strategies or collude with ordinary sensors to seize
block production rights.

(4) Supervisory nodes: Trusted monitoring entities (e.g.,
operator-deployed agents or third-party verifiers) that
oversee consensus fairness, detect collusion, and enforce
penalties.

The four types of nodes modeled in this study—cluster
head nodes, ordinary sensor nodes, competing gateway nodes,
and supervisory nodes—are defined based on the practical
characteristics of sensor network deployment. This node map-
ping framework ensures that the proposed model accurately
captures the heterogeneity of device roles, energy constraints,
communication limitations, and the dynamic nature of strategic
interactions inherent in sensor networks.

Specifically, to capture the evolutionary dynamics of node
behavior in a blockchain-enabled sensor data storage context,
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this study builds upon the foundational principles of the DPoS
consensus mechanism [27] and the theoretical framework
of evolutionary game theory [28], while integrating insights
from relevant prior studies on blockchain—sensor network
integration, incentive mechanisms, and collusion prevention
[24]-[26]. Tt systematically considers the trade-offs among
node interests and the behavioral feedback mechanisms in-
fluencing strategy selection across different types of sensor
nodes. On this basis, the paper proposes a set of fundamental
assumptions tailored to the constraints and characteristics of
sensor networks. This assumption framework serves as both
the theoretical underpinning and the modeling foundation for
the subsequent analysis of node evolutionary trajectories and
system stability.

(1) Bounded rationality of heterogeneous nodes. In
line with evolutionary game theory [28], all four
categories of participants—cluster head nodes, ordinary
sensor nodes, competing gateways, and supervisory
nodes—are assumed to exhibit bounded rationality in
their decision-making due to energy, computational,
and communication constraints. Each type of node
selects strategies based on historical payoffs and
behavioral feedback rather than perfect foresight.
Let M = {supervisoryM, non-supervisoryMs},
B = {collusive By, non-collusive By}, G =
{normal votingG1, abnormal votingGs }, and
S = {briberyA;, non-briberyAs} denote the strategy sets
available to supervisory nodes, competing nodes, ordinary
sensor nodes, and cluster head nodes, respectively.

(2) Cluster head nodes may adopt bribery strategies. In sensor
networks, cluster head or sink nodes are responsible for
block production due to their higher computation and
communication capacity [24]. Normally, they obtain block
generation rights via legitimate voting and earn payoff
P,. However, due to local communication asymmetry and
strong incentives for power retention, they may attempt to
bribe ordinary sensor nodes, incurring a bribery cost C
but obtaining higher returns P if successful. If detected,
they face economic penalty F; and reputation loss Lj.
This reflects the reality that cluster heads, with limited
visibility beyond their own communication range, may
exploit asymmetry to collude without being immediately
exposed.

(3) Ordinary sensor nodes face trade-offs under resource
constraints. As widely distributed, low-power devices,
sensor nodes play a crucial role in voting but are severely
constrained by energy consumption and computational
limits [25].For ordinary sensor nodes, the payoff of normal
voting is Ps5, the payoff of bribery-induced abnormal
voting is Py, and the payoff of collusion-induced abnormal
voting is P5. All voting behaviors incur a participation cost
C5. Under supervision, bribery-based abnormal voting is
penalized with a fine F> and and a reputation loss Lo,
while collusion-based abnormal voting is penalized with
a fine F3 and a reputation loss Ls. However, in the
absence of supervision, bribery strategies may yield higher
immediate payoffs, particularly when the energy cost of
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legitimate voting outweighs the perceived benefit, making
short-term opportunism attractive.

(4) Competing gateway nodes can choose collusion or legiti-
mate competition. Competing gateways (alternative cluster
heads) seek to replace current authorized nodes. By collud-
ing with ordinary sensors, they may gain block production
rights and payoff P but must bear collusion cost Cs.
Alternatively, legitimate competition yields payoff Px.
Under active supervision, collusion incurs penalty F; and
reputation loss L4. Without supervision, however, collu-
sion becomes a rational short-term strategy, particularly
in resource-constrained and trust-deficient sensor networks
[26].

(5) Supervisory nodes maintain fairness but are costly to oper-
ate. Supervisory nodes (e.g., trusted monitoring agents or
operator-deployed verifiers) are responsible for detecting
bribery, collusion, and abnormal voting. They incur cost
C} but receive reward Pg under normal monitoring. Upon
violation detection, they additionally obtain penalties F7,
F5, F3, and F, from offenders. However, supervision
in sensor networks is itself resource-intensive; failure to
supervise or deliberate negligence may yield short-term
payoff Py but risks severe penalty bF5 under multi-layer
oversight mechanisms (cross-verification, on-chain audits,
or external audits). This reflects the high monitoring cost
vs. incentive dilemma that supervisory entities face in
practical deployments.

The game model presented in this paper focuses on the
strategic interactions among the four types of nodes. By
constructing the payoff function and penalty mechanism, and
incorporating the specific roles and definitions of variables
(PL—Py, C1—Cy, F1—F5, L1 — Ly, b, etc.), we build the game
matrix and derive the replication dynamics equations. Table
I provides a detailed list of the variable symbols and their
corresponding meanings, which are crucial for the subsequent
analysis of the evolutionary process.

B. Benefits Matrix Construction

Building on the evolutionary game model of the DPoS
system within the sensor network blockchain framework devel-
oped in the previous section, this section further analyzes the
dynamic evolution of node behaviors under different strategy
combinations, aiming to reveal the underlying patterns and
distribution of stable strategies within the system’s game
structure.

In the four-party evolutionary game model, each partici-
pant corresponds to a distinct type of sensor network entity
and makes strategic choices according to its preferences and
resource constraints. To reflect the heterogeneity of sensor
networks, the benefit matrix construction explicitly incorpo-
rates energy costs of sensor voting, communication range
limitations of cluster heads, and latency penalties for real-time
sensor applications.

(1) Let x represent the probability that a cluster head node
chooses the bribery strategy, where x € [0,1], and 1 — =
denotes the probability of choosing the non-bribery strat-
egy.

TABLE |
SYMBOL SETTING AND MEANING OF FOUR-PARTY GAME MODELS

Node type symbol Meaning

A1 Cluster head nodes adopt a bribe strategy

Ag  Cluster head nodes adopt a non-bribery strategy

P Cluster head nodes gain block-generation rights
through normal voting and profit from complet-
ing block-generation tasks

Cluster head P> Cluster head nodes successfully bribe ordinary

nodes sensor nodes for voting support
C1  Bribery cost for cluster head nodes to bribe
ordinary sensor nodes
F1  Penalty cost for cluster head nodes when bribery
is detected
L; Reputation loss of cluster head nodes due to
bribery behavior
G171 Ordinary sensor nodes adopt normal voting strat-
egy
G2 Ordinary sensor nodes abstain or adopt abnormal
voting
P3  Ordinary sensor nodes’ reward from normal vot-
Ordinary sensor ing
nodes P, Ordinary sensor nodes gain benefits by accepting

bribes to participate in voting

Ps  Ordinary sensor nodes collude with cluster head
or competing nodes for profit

Co Voting cost for ordinary sensor nodes

F5 Penalty cost for ordinary sensor nodes engaged
in bribed or collusive voting

Lo Reputation loss of ordinary sensor nodes due to
bribery or collusion

F3  Ordinary sensor node colluding in voting behav-
ior fines

L3 Reputational loss from collusive voting behavior
of Ordinary sensor node

B; Competing gateway nodes adopt collusive strate-
gies

B2 Competing gateway nodes adopt a non-collusive
strategy

Ps Competing gateway nodes successfully collude
to profit from ordinary nodes gaining block
bookkeeping rights

P7; Competing gateway nodes profit by attracting
Ordinary sensor nodes to vote for block book-
keeping rights through normal channels

C'3  Cost of collusion or bribery for competing gate-
way nodes

F4 Fines for collusive behavior and collusive intent
at Competing gateway nodes

L4 Reputational loss from collusive behavior and
collusive intent of Competing gateway nodes

Competing gateway
nodes

M; Supervisory nodes adopt supervisory strategies

Mo Supervisory nodes adopt a strategy of non-
supervisory

Ps  Supervisory node’s supervisory profitability

Py Supervisory node’s non-supervised profiting

C4  Supervisory node’s supervisory costs

Fs  Supervisory nodes fail to supervise fines for
bribery and collusive behavior

bF5 Fines for supervisory nodes turning a blind eye
to bribery and collusive behavior

Supervisory
nodes

(2) Let y denote the probability that an ordinary sensor node
adopts normal voting, where y € [0, 1]; accordingly, 1 —y
denotes the probability of abnormal voting. Here, energy
consumption directly affects the cost of participation, so
bribery strategies may appear more attractive to energy-
constrained nodes.

(3) For a competing gateway node, let m denote the proba-
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TABLE Il
THE PAYOFF MATRIX FOR THE FOUR-PARTY EVOLUTIONARY GAME

Cluster head node, Ordinary sensor node

Bribery x

Non-bribery 1 — x

Normal voting

Abnormal voting Normal voting Abnormal voting

Y 1-y Y 11—y
PR-Ci+F1+F, —-Ci+P+FP+FR+F3+F, Pa—Ci+Fy Ps—Cy+ F5+ Fy
. Pr—Fy — Ly Ps—Cs— F4— Ly Pr—Fy — Ly Psg—Cs— F4— Ly
Collusive m Py — Fy — I Py Oy — Py — I, P P
Supervisory z P3— P Py+P5 —2C2 — Fo — Lo —F3— Lz P3—C2 Ps—Cy—F3— L3
Ps—Ca+ P Ps—Cy+F1+ P Py —Cy Ps—Cy+Fa+ F3
i Pr Py P Py
Supervisory Non-collusive 1-m Py — Fy — Iy Py Cy - F— Iy P P
node Py —Cs Py —Cy— Iy — Lo P3—Cy P3—Co—Fa—Lo—F3—1Ls
Competing gateway Py —bFs5 Py — bFs Py — bFs Py — bF5
node Collusive m i Ps —Cjs Py Ps —C3
Py P —Cq P P
Non-supervisory Py —Co Py + Ps —2C> Py —C Ps —Cs
1—=z2 Py — bF5 Py — bF5 Py — bF5 Py — bFs
. Py Py Py Py
Non-collusive 1 —m P Py P P P,
P3 —Cs Py —Co P3—Cs P3—Cy

bility of choosing a collusive strategy, where m € [0, 1],
and 1 — m be the probability of choosing a non-collusive
strategy. This models the trade-off between short-term
collusive gains and the cost of building sustainable le-
gitimacy.

(4) For a supervisory node, let z represent the probability
of choosing the supervisory strategy, where z € [0,1],
and 1 — 2z be the probability of non-supervisory. Since
supervision incurs monitoring cost but provides rewards
from penalties, z reflects the supervision—cost dilemma in
resource-limited sensor networks.

Based on these assumptions and analyses, the four-party
game benefit matrix of the DPoS consensus mechanism in
sensor networks is constructed, as presented in Table II. This
matrix systematically incorporates not only the traditional
payoffs and penalties, but also sensor-specific costs such as
participation energy consumption, communication overhead,
and real-time latency penalties, thereby capturing the unique
characteristics of blockchain-enabled sensor data storage sys-
tems.

C. Four-Party Evolutionary Game Model Analysis

Building upon the game payoff matrix established in the
previous section, this section introduces the concept of ex-
pected payoff to quantitatively model the returns of differ-
ent sensor network nodes under varying strategy probability
distributions. This modeling lays a theoretical foundation for
the dynamic simulation of subsequent evolutionary paths and
facilitates a deeper exploration of the behavioral evolution
mechanisms of blockchain-enabled sensor nodes in distributed
environments.

To characterize the variations in payoffs for different types
of nodes under various strategic choices, this paper introduces
the concept of expected return [29]. This metric reflects the
weighted average payoff that a specific type of node can obtain
by adopting a given strategy, considering the probabilistic
distribution of strategies adopted by the other three types of

nodes in the current game environment. In sensor networks,
this expected return must explicitly incorporate the energy
consumption of ordinary sensor nodes, the communication
asymmetry of cluster head nodes, and the latency penalties
associated with real-time sensing tasks.

For instance:

(1) E41 denotes the expected payoff for a cluster head node
when it selects the bribery strategy. This value is deter-
mined not only by the probabilities of ordinary sensors
accepting bribery and competing gateways colluding, but
also by the likelihood of supervisory detection and the
additional communication overhead incurred in the bribery
process.

(2) E¢1 represents the expected payoff for an ordinary sensor
node when it opts for the normal voting strategy, calcu-
lated by considering both the voting reward and its energy
cost Co, which plays a decisive role in the long-term
willingness of resource-constrained sensors to participate.

(3) Epp represents the expected payoff for a competing
gateway node when it engages in collusion, factoring in
both the collusion cost C3 and the risk of being penalized
under supervision.

(4) Ez; denotes the expected payoff of a supervisory node
under active monitoring, combining supervisory cost Cy
with potential revenue from penalties (Fy, F, F3, and
Fy).

The computation of expected returns serves as the foun-
dation for constructing the evolutionary replication dynamic
equations. Since nodes are inclined to adopt strategies that
yield higher payoffs, differences in expected returns—shaped
by incentive mechanisms, energy-efficiency trade-offs, and
supervision intensity—act as the driving force behind the
continuous evolution of the system’s strategic distribution.
Consequently, a detailed analysis of the expected return func-
tions for each node type is essential to uncover the stable
evolutionary trajectories and equilibrium structures within the
game system. This analysis also provides a theoretical basis
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for guiding strategic adjustments and optimizing consensus
performance in sensor networks with real-time data demands.

Based on the above definition, the expected payoff can be
expressed as follows:

2 2
Esk = Z Z Z (Pabc X Rsk,abc) (1)

a=1b=1 c=1

where, E;, denotes the expected payoff of the focal entity
when adopting strategy sj. The variables a, b, and c represent
the strategies selected by the other three interacting entities,
where a value of 1 or 2 corresponds to their choice of the
first or second strategy, respectively. P,;. denotes the joint
probability that these three entities adopt the specific strategy
combination abc. R, qpcrepresents the payoff received by the
focal entity when it chooses strategy s; while the other three
entities simultaneously adopt the strategy profile abc.

The following presents the expected payoff calculation for
the cluster head nodes when adopting the “bribery” strategy,
based on the corresponding entries in the benefit matrix and
incorporating bribery cost (C), supervision penalties (F1, L1),
and communication overhead in sensor networks:

Ey1 =2my(Py — Fy — L) + z2zm(1l —y) (P, — C1—
Fi—Ly)+z(1—=m)y(PL — F1 — L1) + z(1—
m)(1—y)+ (P —Cr— Fy — L) + (1 = 2)myP1 (2)
+ (1 =2)m(l —y)y(P— C1) + (1 = 2)(1 —m)yPy
+ (1= 2)(1—m)(1 - y)(Py — C1).

The expected payoff for cluster head nodes when selecting
the non-bribery strategy is given by:

Eaz = 2myP1 — z2m(1 — y)P1 + 2(1 — m)y P
+z(1-m)(1—y)Pr+ (1 — 2)myP; + (1—
2m(l—y)Pr+ (1 —2) (1 —m)yP + (1—

2)(1 —=m)(1 —y)P.

The average payoff for the authorized node across all
strategy choices is:

3)

?AszA1+(l—$)EA2. (4)

Similar expected payoff functions for ordinary sensor nodes,
competing gateway nodes, and supervisory nodes follow the
same computational logic, with their respective strategy sets
and cost structures reflecting energy consumption (Cs), col-
lusion costs (C3), and monitoring costs (Cy). To avoid re-
dundancy, these derivations are omitted but can be analogized
from the above.

D. Evolutionary Stable Strategy Solution

To further examine the evolutionary stability of the system
as driven by the expected returns, this section formulates the
replicator dynamic equations and investigates the evolutionary
trends of the system under different strategy combinations,
taking into account the behavioral characteristics of the game
participants in the sensor network context. In evolutionary
game theory, the long-term dynamic evolution of strategy

selection among interacting agents can be effectively char-
acterized using the replicator dynamic equation [30]. This
equation captures the temporal change in the proportion of
individuals adopting a specific strategy within a population,
thereby reflecting the relative fitness or competitive advantage
of that strategy compared to others.

The general form of the replicator dynamic equation is as
follows: qP
= =P (Es — E) )
where P represents the probability that a subject selects a
particular strategy, E'; denotes the expected return associated
with that strategy given the current strategy profile, and
E signifies the subject’s average expected return across all
possible strategy combinations.

(1) Based on the payoff matrix in Table II and the expected
payoffs of each strategy, the replicator dynamic equation [30]
for cluster head nodes is expressed as:

dx —
= E = x(EAl — EA) = I(l — :L‘)(EAl — EAQ)
=2(z—1)(C14+ PL— Po—yC1 + zF1 + 2L ©)
—yP1 +yPs).

F(P)

F(z)

In the sensor network setting, this difference is shaped not
only by bribery cost C, payoff gap (P; — P»), and supervision
penalties (Fy, L1), but also by the additional communication
overhead that bribery entails when cluster heads attempt to
influence geographically distributed sensors.

Let yo be defined as:

Ci+ P, — Py + 2(F1 + Ly)
Yo = . @)
Ci4+ P — P

1) When y = yo, the function satisfies F'(x) = 0, indicating

that any x € [0, 1] constitutes a stable equilibrium point.

2) When y # yo, solving F(x) = 0 yields two stable points

at x = 0 and x = 1, indicating that both the “bribery”
and “non-bribery” strategies adopted by authorized nodes
can constitute evolutionarily stable strategy (ESS) under
different conditions.

Lemma 1: When 0 < y < yg, the ESS for the cluster head
nodes is ¢ = 1; conversely, when yy < y < 1, the ESS shifts
to x = 0, i.e., non-bribery dominates.

Proof: Taking the first-order partial derivative of F'(x)
with respect to the variable z, we obtain: 81;—?) = (22 —
(C1+ Py —Py—yCr1+2F1 + 2L —yPy +yPs). According
to the stability theorem of differential equations, if F'(z) =
0 and 81;7;90) < 0, then z is a stable point for the strategy
selection of cluster head nodes. Specifically, when 0 < y < yo,
we have F(ac)‘z:1 = 0 and %‘1—1 < 0, implying that
xz = 1 is an ESS. This indicates that when the probability of
ordinary sensor nodes adopting the normal voting strategy is
below g, cluster head nodes will ultimately favor the bribery

strategy. Conversely, when yo < y < 1, since F(x)|I:0 =0,
ag—gf) < 0, it follows that z = 0 is an ESS. In this case,

cluster ﬁgd nodes will tend to adopt the non-bribery strategy,
as the likelihood of ordinary sensor nodes voting normally
exceeds the threshold yqg. [ ]



The phase diagram illustrating the strategic evolution of
cluster head nodes is presented in Fig. 2. As shown, the plane
y = yo divides the strategy space into two distinct regions,
denoted as Region I and Region II. According to Lemma 1,
when the initial state of the cluster head nodes lies within
Region I, the system converges to the stable point x = 1,
indicating that the cluster head nodes will ultimately adopt
the bribery strategy. Conversely, if the initial state falls within
Region II, the system converges to x = 0, meaning that
the cluster head nodes will eventually adopt the non-bribery
strategy.

yﬂ

v

X
Fig. 2. Phase diagram of strategy selection for cluster head nodes

Following the detailed analysis of the strategic evolution of
cluster head nodes, the evolutionary processes of ordinary sen-
sor nodes, competing gateway nodes, and supervisory nodes
can be derived using the same replicator dynamic equations
and stability analysis framework. The critical conditions for
their ESS, as well as the structural characteristics of their cor-
responding phase diagrams, follow analogous logical patterns.
To avoid redundancy, only the key strategic behaviors of the
remaining node types are briefly summarized below, with their
respective phase diagrams presented separately.

(2) When the probability of cluster heads choosing bribery
exceeds a threshold xp, ordinary sensors tend to adopt nor-
mal voting to avoid penalties, provided that the supervisory
intensity is strong enough. Otherwise, they are more likely to
adopt abnormal voting or bribery-based voting, since energy-
saving shortcuts yield immediate payoffs at the cost of long-
term fairness. The phase diagram of this strategy evolution is

x‘l

<
v

z

Fig. 3. Phase diagram of strategy selection for ordinary sensor nodes
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shown in Fig. 3.

(3) When the probability of supervisory nodes adopting
active monitoring exceeds a critical threshold zp, competing
gateways tend to adopt non-collusive strategies. Otherwise,
collusion dominates, as gateways can exploit local commu-
nication asymmetry and partial knowledge of cluster heads
to form covert alliances. The corresponding phase diagram is
shown in Fig. 4.

v

y

Fig. 4.
nodes

Phase diagram of strategy selection for competing gateway

(4) When the probability of competing gateways adopt-
ing collusion exceeds the threshold mg, supervisory nodes
converge toward active monitoring, since higher violation
prevalence increases the expected returns from penalty rewards
(F1—Fy). Conversely, when collusion is rare, supervisors re-
duce monitoring efforts to save energy and cost (Cy), favoring
non-supervision. The strategic phase diagram is shown in Fig.
5.

mha

S
)
SN
SN
RO
S
N
NN
. N
NN
N

]
S
ONN
R
NN
RN
R
0
AN
NOONY
AN
NN
N
N
N
s

¥4

Fig. 5. Phase diagram of strategy selection for supervisory nodes

To analyze the stability of the four-party evolutionary game
system, this study adopts two complementary approaches:
Nash equilibrium [31] analysis and Jacobian matrix [32] eigen-
value analysis. As a fundamental concept in game theory, a
Nash equilibrium refers to a strategy profile in which no partic-
ipant has an incentive to unilaterally deviate, assuming that the
strategies of others remain unchanged. In the context of evolu-
tionary game theory, a pure-strategy Nash equilibrium can be
regarded as an ESS under certain conditions [30]. To further
determine the local stability of equilibrium points, we employ
eigenvalue sign analysis of the Jacobian matrix. Specifically,
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[ OF (z) OF (x) OF (x) OF (x)
ox dy on 0z
Olg(y) ng(y) 95(@1) 31;(11)
J=1ofm) oF(m) oF(m) oF(m)
ox dy om 0z
OF(z)  OF(z) OF(z) OF(z)
L Oz Ay om 0z
(2$71)(01+P17P2 a:(x—l)(—()l
—yCi + zFy P 1 P)
+ 2Ly —yPy +yP2) e
(=2y+1)(mPs — mPs
+ 2Fy + zF3
—y(y—l)(Pg—P4 +ZL2+ZL3
+mCy — mPs +axP3;—xPy
—zF3 — zL3 + mxCo — mzFy

4+ mzFy +mzF;
+mzLy +mzLg3)

—z2(z —1)(zF, — xF3
+ maxFy + maF;
+xyF3 — mayly
— mayFs + bxyFs
— bmazyFy)

—mzLy — mxPs
—xzF3 —xzL3

+ mxzFy + mazFs
+ mzzLo + mxzLs)

m(mfl)(C’3+P67P7)

- Z(Z - 1)(—F2 — F3
— bF5 =+ mF2
+ xF3 — mzks
— makF3 4+ bmFjs
+ bxF5 — bmaFy)

0 z(zx —1)F

—yly —1)(Ps — Ps —yly — )(Fa+ I3

+.’,L’CQ 7ZF2 +L2+L3
— 2Lo — 2P —mFQ—ng
2 3 *JJFgfog

+ x2Fy 4+ x2F3

+ 2Ly + w2Ly) + mazFy + maFs

+ maLy +maxLs)

(2m71)(Cng6+P7
—yCs + 2F)y
+ 2Ly +yPs — yPr)

— Z(Z — 1)(—F2 + F4

m(m — 1)(F4 + L4)

(=22 + )P~ Cas+F3+ P~ Py
+ bF5 — mFy + mFy + xFy

1%@2 fiF} —aF3 — yFy, — yF3 — byFs

_gi 1_, _‘_g ;, + maFy + maFs + myFs + xyFs
TYy=s TS5 — maykFy — mayFs + bmyFs + bayFs

— bayFy)

the system’s replicator dynamic equations are formulated and
differentiated to construct the corresponding Jacobian. Accord-
ing to the principle of differential equation stability theory, if
all eigenvalues of the Jacobian matrix are negative, the corre-
sponding equilibrium point is deemed locally asymptotically
stable [31]. According to the stability principle of differential
equations, when the system of replicator dynamics satisfies
F(z) = F(y) = F(m) = F(z) = 0, the model admits
16 pure-strategy equilibrium solutions. In evolutionary game
theory, any strategy combination that satisfies this equilibrium
condition is considered a pure-strategy Nash equilibrium [31],
implying that no participant has an incentive to unilaterally
deviate from their strategy when the strategies of others remain
unchanged. Based on Friedman’s analytical framework [30],
certain pure-strategy Nash equilibria can further qualify as
ESS under specific conditions. Ritzberger [31] emphasizes
that in asymmetric evolutionary games, an ESS typically
corresponds to a strict Nash equilibrium. To further evaluate
the local stability of these equilibrium points, this study ap-
plies Lyapunov’s First Theorem [32], constructs the Jacobian
matrix derived from the replicator dynamics, and computes its
eigenvalues. If all eigenvalues exhibit negative real parts, the
equilibrium point is locally asymptotically stable. This method
is widely adopted for assessing local nonlinear stability in
evolutionary game models. Accordingly, this paper analyzes
all 16 pure-strategy combinations— FE7(0,0,0,0), through
E16(1,1,1,1)—formed by the four types of game participants,
and constructs their respective Jacobian matrices, as shown
below:

In the asymmetric game, an evolutionary stable equilibrium
must also be a strict Nash equilibrium, which subsequently
must be a pure strategy equilibrium [31]. Thus, only the

— bmayFy)

stability of the pure strategy equilibria is discussed. The
eigenvalues and stability analysis of the equilibrium points
E, ~ Ej4 eigenvalues and the equilibrium points are shown
in Table III.

E. Equilibrium Point Stability Analysis

Building upon the preceding game evolution analysis, this
section introduces the methodologies for determining the
Jacobian matrix and identifying Nash equilibria, in order to
analyze the system’s stable equilibrium structure under specific
parameter settings. In the sensor network context, this stability
analysis not only considers traditional payoff differences but
also incorporates factors such as energy consumption of nodes,
communication overhead between geographically distributed
sensors, and the timeliness of supervisory actions.

According to Lyapunov’s first method, a local equilib-
rium point qualifies as an ESS only if all the eigenvalues
of its associated Jacobian matrix are negative. Based on
the eigenvalue analysis presented in Table III, the Jacobian
matrices corresponding to the 16 local equilibrium points
are examined. The results indicate that only the following
points exhibit potential stability: E5(0,0,1,0), E4(0,0,1,1),
Es(0,1,0,1), Eo(1,0,0,0), F10(1,0,0,1), E11(1,0,1,0),
and F12(1,0,1,1).

However, based on the preceding assumptions and parame-
ter constraints, the following inequality relationships hold:

—(F1+L1)<0
—(Fo+F3+ Ly + L3) <0
Ps—Cy—Py<0

®)

These constraints indicate that effective punishment mech-
anisms, combined with the supervisory cost-reward trade-



off (Ps-C4-Py), determine which equilibria remain evolu-
tionarily stable in practice. Therefore, the equilibrium point
E4(0,1,0,1) is identified as the ESS of the system.

Based on the eigenvalue analysis, equilibrium point
Es(0,1,0,1) is identified as the ESS of the system. In the
sensor network context, this equilibrium implies that clus-
ter head nodes refrain from bribery, ordinary sensor nodes
consistently participate in normal voting, competing gateways
avoid collusion, and supervisory nodes remain active. Such a
configuration balances energy efficiency, consensus fairness,
and network trustworthiness. Although supervisory monitor-
ing incurs computational and energy costs, the penalty-and-
reward mechanism ensures that the supervisory role remains
profitable, thereby preventing negligence. Overall, equilibrium
point Fy reflects the optimal trade-off between energy con-
sumption, communication efficiency, and consensus security
in resource-constrained sensor networks, confirming its role as
the evolutionarily stable state of the proposed DPoS consensus
game model.

V. EXPERIMENTAL RESULTS AND ANALYSIS
A. Simulation Setup

Trade-offs and decisions are inherent in blockchain DPoS
consensus mechanisms. Consequently, this section focuses
on how the four parties—Cluster head nodes, Ordinary
sensor nodes, Competing gateway nodes, and supervisory
nodes—change their behavioral strategy preferences over time.
According to the stability analysis in Section IV, the optimum
state of the four-party evolutionary game is (non-bribery,
normal voting, non-collusive, supervisory), corresponding to
strategy combination Eg(0, 1,0, 1).

To ensure reproducibility, the simulation incorporates both
theoretical parameters and empirical data. We adopt the pub-
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licly available Intel Berkeley Research Lab (IBRL) sensor
dataset, which contains time-series measurements (tempera-
ture, humidity, light, and voltage) collected from 54 Mica2Dot
wireless sensor nodes deployed in a real-world indoor envi-
ronment. This dataset provides representative characteristics
of resource-constrained sensor networks and is widely used
as a benchmark in IoT-related studies. By mapping sensor
devices to ordinary nodes, cluster heads to authorized nodes,
gateway devices to competing nodes, and monitoring agents
to supervisory nodes, we effectively align the dataset with the
four-node game-theoretic framework.

The simulations are conducted on a workstation configured
with an Intel Core i7 processor, 32 GB of memory, and
Windows 11 operating system, ensuring that the results can
be reproduced under a standard computing environment. Nu-
merical simulations are implemented using MATLAB R2017b,
following the replicated dynamic equations and parameter
constraints outlined in Section IV.

Based on the actual DPoS consensus mechanism [27], this
study adopts assignment methods from existing research liter-
ature [24]-[26] to reasonably set the model parameters. The
initial probabilities for the strategy selection of the four entities
are set at [0.5,0.3,0.2,0.3]. The horizontal axis represents
time (t), while the vertical axis represents the probability (P)
that the authorized node (z), ordinary node (y), competing
node (m), and supervisory node (z) select their respective
strategies. The combination of real-world sensor data with
game-theoretic simulations allows the model to capture both
theoretical dynamics and practical constraints, thereby enhanc-
ing its credibility and application relevance.

The specific parameter settings are summarized in Table IV.

TABLE Il
STABILITY ANALYSIS OF PURE STRATEGY EQUILIBRIUM POINTS

Balance point Eigenvalue Positive or negative Stability Scene
(0,0,0,0) Py — P —C1,0,Ps — Pr —C3,Ps — Py — Cy + 2 + F3 + bF5 N,0O,N,N Saddle point '\
Py, — P —Cy—F1 — L1,Fo + F3 + La + Ls,
0,0,0,1) Ps— Ca — Pr— Fy — Ly.Po + Cy — Ps— Iy — Fy — bFs N,+N,N Unstable \
Py — P, —C1,P3s — P5,Pr — Ps + Cs
(0,0,1,0) P By G 4 Fot B+ bFy N.N.N.N ESS )
P,-Cy— P —F,—L1,P3+ F3+ L3 — Ps,
0.0.1.1) P;r+Cs+Fy+Ly— Pg,Pyg+Cy — Py — F3 — Fy — bF5 N.N.N.N ESS @
(0,1,0,0) 0,0,0,Ps — Py — C4 0,0,0,N Saddle point '\
(0,1,0,1) —Fy —Ly,—Fa—F3—La— L3, — Fy4 — L4,Py +Cy — Py -=-N ESS 3)
(0,1,1,0) 0,P5 — P3,0 ,P3s + Fy +bF5 — Cy — Py 0,N,0,N Saddle point '\
—Fy — L1,Ps — P3 — F3 — L3,F4 + Lu,
©,1,1,1) Pt Gt Py — P — P — B L bF NN Unstable \
(1,0,0,0) Py +Cy — P2,P3 — Py,Ps — C3 — Pr,Ps — Cy — Py + F1 + F5 + bF} N,N,N,N ESS @)
P +Ci+Fi+ L1 — P, Ps+ Fa+ Ly — Py,Ps — C3 — Fy — Ly — P,
(1,0.0,1) Pl = Sl N.N.N,N ESS )
Pr+Cy— P, P3s+C2— Py —Ps ,Pr+C3—Fs,
(010 Ps+ Py + Fy + Fs + Fi + bFs — Py — Cy NNNN BS ®
Pr+Ci+Fi+ L1 —P,P3s+Co+ Fa+ Lo+ F3+ L3 — Py — P,
A0.LY Pr+C3+ Fy+ Ly —Ps,Po+Cy — Ps — F| — F» — F3 — Fy — bl NN.NN ESS ™
(1,1,0,0) 0,Py — P3,0,P3 + F1 +bF5 — Py — C4 0,N,0,N Saddle point  \
(1,1,0,1) Fy+Ly,Py—P3—Fy— Lo, — Fy — L4,Po+Cy — Ps — F; — bF5 +N,-,N Unstable \
(1,1,1,0) 0,Py+Ps — P3 —C2,0,Ps + F1 + Fy +bF5 — Py — Cy 0O,N,0,N Saddle point \
(1,111 FitLoPa+ P =Py = Co = Fo = Fy — Ly = L, +N4N Unstable  \

Fy+ L4,Py+Cy — Pg — F1 — Fy — bF5

Note: N indicates that the positivity or negativity of the eigenvalue could not be determined; ESS indicates evolutionary stabilization strategy.
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B. Influence of Competitive Gateway Nodes on the
Evolution of Parties’ Strategies

In sensor networks, competing gateway nodes typically
represent gateway devices or edge servers with partial comput-
ing resources. Their strategic behavior directly influences the
speed of consensus formation. Under the parameter conditions
described in Section V-A, scenario (3) is satisfied.

When competing gateway nodes choose not to collude
(m = 0), the system evolves rapidly toward stability. This
benign behavior accelerates the convergence to the equilib-
rium strategy combination Fg(0,1,0,1), where bribery and
collusion are suppressed, and supervisory monitoring remains
active.

Conversely, when competing gateway nodes choose collu-
sion (m = 1), malicious behaviors emerge. The evolution trend
becomes slower, delaying the stabilization of strategies. This
inhibitory effect arises because collusive gateways manipulate
ordinary nodes’ voting outcomes, thereby increasing instabil-
ity. Fig. 6 shows that the system requires more iterations to
converge when collusion occurs.

C. Impact of Supervision on the Reputation Value of
Different Subjects

The reputation mechanism is critical in sensor networks,
where lightweight nodes have limited computational capacity
but rely on trust-based coordination. To evaluate its impact,
the reputation losses were set as Lo = {0,5,15,60} and L3 =
{0,0.5,26,75}. The strategy evolution process and the results
of the four-party game are shown in Fig. 7.

TABLE IV
PARAMETER SETTINGS

Parameter Value Parameter Value
P 8 Ps 12
Ps 11 Py 6
Ps 15 Ps 10
Py 7 Pg 16
Py 9 Fi 1
F 2 F3 5
Fy 6 Fs 8
Ly 0.6 Lo 0.3
L3 0.5 Ly 0.9
C1 3 Co 2
Cs 4 Cy 5

b 0.5

As shown in Fig. 7, when the reputation penalty increases,
ordinary sensor nodes gradually stabilize on normal voting,
while the bribery behavior of cluster head nodes and the
collusion of competing gateway nodes decline toward zero.
Supervisory nodes’ monitoring probability decreases slightly
after achieving stability, reflecting an energy—security trade-
off.

This analysis indicates that reasonable reputation thresholds
significantly improve node participation and reduce malicious
behaviors. However, excessive penalties yield diminishing
returns, suggesting that a calibrated reputation-loss threshold
must be set to balance fairness and energy efficiency.

Fig. 6. Influence of competing gateway nodes on the evolution of
parties’ strategies

D. The Effect of Different Punishments on the Subject’s
Strategy Choice

The penalty mechanism deters misconduct in blockchain-
based sensor networks. We tested penalty values Fh =
{0,2,10} and F5 = {0, 5,16}. The strategy evolution process
and the results of the four-party game are shown in Fig. 8.

As illustrated in Fig. 8, increasing penalties leads to higher
probabilities of normal voting among ordinary sensor nodes
and stronger supervisory participation, while bribery and col-
lusion are nearly eliminated.

This shows that penalty mechanisms enhance both fairness
and stability, provided penalty magnitudes are chosen care-
fully to avoid excessive energy consumption in supervisory
monitoring.

E. The Effect of Different Punishment Levels on the
Subject’s Strategy Choice

In practice, supervisory nodes (e.g., cluster heads or sink
nodes) incur energy costs when performing monitoring. To
study the effect of punishment severity for supervisory neg-
ligence, the penalty strength was varied: b = {0,0.5,3}, and
study its effect on the stable evolutionary trend of the four-
party nodes, as shown in Fig. 9.

Fig. 9 reveals that as b increases, supervisory nodes are
more motivated to remain active, while ordinary sensor nodes’
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Fig. 9. Impact of different penalty levels on subject’s strategy choice

voting enthusiasm improves. Cluster head nodes abandon
bribery, and competing gateway nodes reduce collusion.
These results confirm that adaptive tuning of punishment
severity is necessary during different stages of network evolu-
tion, enabling secure consensus while minimizing unnecessary
monitoring overhead in energy-constrained sensor networks.
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F. The Effect of Different Collision Costs at Competitive
gateway Nodes on the Subject’s Strategy Choice

To analyze the effect of collusion costs, we varied C5 =
{0,4,10}. The strategy evolution process and the results of
the four-party game are shown in Fig. 10.
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0.8 - —@— Cluster head node(x)[C;=0]
+ @ - Cluster head node(x)[C;=4]
—@- Cluster head node(x)[C,=10]
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—@— Supervisory node(z)[C;=0]
I @ - Supervisory node(z)[C,=4]
02 QU @ Supervisory node(z)[C,=10]
\,,
0.0 |-
1 1 1 1 1 1 1 1 1

Fig. 10. Effect of different collision costs of competing gateway nodes
on the subject’s strategy choice

Fig. 10 demonstrates that as collusion costs increase,
competing gateway nodes increasingly adopt non-collusive
strategies, ordinary sensor nodes prefer normal voting, and
authorized nodes stabilize at non-bribery behavior.

Thus, by setting reasonable collusion costs, the system can
discourage malicious coordination, foster greater node partici-
pation, and reduce supervisory burdens, ultimately promoting
efficient consensus in large-scale sensor deployments.

G. Game-Theoretic Model Comparison Experiments

To comprehensively validate the effectiveness and advan-
tages of the proposed four-party evolutionary game model in
sensor network blockchain environments, this section conducts
a systematic comparison with existing two-party and three-
party models commonly adopted in related literature. The
analysis focuses on two critical dimensions: the stabilization
paths of node strategies and the convergence speed of system
dynamics.

(1) Comparative analysis of strategy stabilization paths. Fig.
11 presents the strategy stabilization trajectories of cluster
head nodes, ordinary sensor nodes, and supervisory nodes
under two-party, three-party, and four-party models. As shown,
the four-party model stabilizes within approximately 1 second,
which is significantly faster than the three-party (1.5 seconds)
and two-party (3 seconds) cases. Compared with the two-party
model, the four-party model reduces the stabilization time by
about 66.7%, and compared with the three-party model, the
convergence speed improves by about 33.3%. This improve-
ment arises from the introduction of reputation supervision,
supervisory incentives, and collusion cost adjustments, which
jointly accelerate convergence and reinforce consensus fairness
in sensor networks.

(2) Comparative analysis of behavioral strategy selection.
Fig. 12 compares node behavioral strategies under the three-
party and four-party models when supervisory nodes are
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Fig. 11. Stable evolutionary paths of each node type

inactive and the penalty parameter is set to b = 0.5. The
results show that the convergence time for both cluster head
and ordinary sensor nodes is shortened from 2.5 seconds in
the three-party model to 1 second in the four-party model—an
improvement of about 60%. This highlights the critical role
of competing gateway nodes in accelerating behavioral adap-
tation and improving collaborative responsiveness across het-
erogeneous sensor devices.

H. Simulation Experiments on Blockchain Performance

Building upon the analyses in Sections V-B to V-F, this
study integrates reputation mechanisms, punishment strategies,
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Fig. 12. Strategy selection of nodes

supervisory incentives, and rational collusion costs into the
DPoS framework to enhance the security and efficiency of
sensor network blockchain systems. To validate performance
improvements, simulation experiments were conducted and
compared with the original DPoS mechanism and the methods
in [21] and [19], focusing on throughput, participation incen-
tives, and error node ratios. The simulations were implemented
in Python, with 301 nodes (100 cluster head nodes and 201
ordinary sensor nodes, including competing gateway nodes),
across 50 consensus rounds.

(1) Comparison of network throughput.
Network throughput. Throughput, measured in Transac-



tions Per Second (TPS), was evaluated under varying block
generation settings. As shown in Fig. 13, the proposed
method achieves an average TPS of 121.79, which is 61.6%
higher than the original DPoS (75.36), 40.6% higher than
[21] (86.63), and 5.9% higher than [19] (115.00). Moreover,
the TPS remained relatively stable, demonstrating robustness
against fluctuating sensor data loads.
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Comparison of error node ratio

V1. DISCUSSION

To comprehensively evaluate the effectiveness of the pro-
posed optimization mechanism in sensor-network-oriented

Running time (min)

Fig. 13. Comparison of system throughput

(2) Node participation incentives

Fig. 14 shows the voting participation rate evolution. The
proposed model achieved an average participation rate of
83.86% after 50 rounds, compared with 45.99% (original
DPoS), 77.84% ( [21]), and 70.00% ( [19]). This improvement
illustrates that ordinary sensor nodes are more effectively
incentivized through reputation and supervisory mechanisms,
addressing the issue of voter apathy in sensor networks.
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Fig. 14. Comparison of node participation incentives

(3) Faulty node ratio.

As shown in Fig. 15, the proportion of faulty nodes (e.g.,
misbehaving or collusive gateways) decreased to 0.263% under
the proposed mechanism, compared with 47.91% (original
DPoS), 1.12% ( [21]), and 0.83% ( [19]). This reduction high-
lights the effectiveness of penalty enforcement and supervisory
oversight in suppressing malicious behaviors, thereby ensuring
consensus reliability and secure data storage in large-scale
sensor deployments.

blockchain systems, this study discusses its contributions,
limitations, and potential applications.

A. Comparative Analysis

Firstly, from the perspective of evolutionary stability, Ta-
ble V shows that the four-party game model significantly
accelerates convergence, with all nodes stabilizing within 1
second. This is faster than the three-party (1.5 seconds) and
two-party (3 seconds) models. Even under partial regulatory
inactivity, the proposed framework retains rapid convergence,
reflecting strong resilience against strategic uncertainty. The
improvements stem from the integration of reputation mech-
anisms, punishment constraints, and supervisory incentives,
which jointly reinforce fairness and controllability.

TABLE V
COMPARATIVE ANALYSIS OF KEY PERFORMANCE METRICS

System Average node Error

comparison scheme average TPST participation rateT node ratiol

Original 75.36 45.99 4791
Literature methods [21] 86.63 77.84 1.12
Literature methods [19] 115.00 70.00 0.83

Proposed method 121.79 83.86 0.263

Note: T indicates a performance metric where higher values are
better; | indicates a metric where lower values are preferable.

Secondly, regarding blockchain performance, the results
confirm that the proposed mechanism achieves substantial
gains in throughput, node participation, and fault tolerance. As
summarized in Table VI, the model achieves an average TPS
of 121.79, a participation rate of 83.86%, and a fault ratio as
low as 0.263%. Compared to the original DPoS, throughput
improves by 61.6%, and the faulty node ratio decreases by
over 99%. These enhancements are particularly relevant in
large-scale sensor deployments, where high-frequency data
generation demands both efficiency and reliability. Thirdly, in
terms of practical implications for sensor networks, the results
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TABLE VI
CONVERGENCE PERFORMANCE OF DIFFERENT GAME MODELS

Stabilization time of Stabilization time of

Types of game models

Stabilization time of  Strategy selection time of Strategy selection time of

cluster head nodes (s) | Ordinary sensor nodes (s) | supervisory nodes (s) | cluster head nodes (s) | Ordinary sensor nodes (s) |

Two- party game model 3.0 3.0 — — —
Three- party game model 1.5 1.5 1.5 25 2.5
Four—pany_ game modeling 1.0 1.0 1.0 10 1.0
(this paper)
Note: “]” indicates that lower values represent better performance; “~ denotes that the node type is not applicable in the corresponding

game model.

highlight the importance of balancing energy cost, fairness,
and trustworthiness. Ordinary sensor nodes—constrained by
limited computing and battery capacity—benefit from reduced
decision complexity, as their role is restricted to voting.
Supervisory nodes, although incurring energy costs, are sus-
tained through well-calibrated reward—penalty mechanisms.
This ensures continuous monitoring without exhausting node
resources.

B. Applications in Sensor Networks

The proposed blockchain-based DPoS consensus mecha-
nism has strong applicability across multiple categories of
sensor networks, where secure, fair, and efficient data storage
is critical.

(1) In industrial environments, thousands of sensors con-
tinuously collect data on temperature, vibration, and energy
consumption. The proposed mechanism ensures that this
mission-critical data is securely stored, while the evolutionary
game framework incentivizes cluster heads nodes to maintain
fairness, thereby reducing the risk of bribery or collusion in
automated manufacturing systems.

(2) Urban sensor deployments for traffic management, smart
lighting, and environmental monitoring demand large-scale
consensus with minimal latency. By incorporating supervisory
nodes and reputation-driven penalties, the model enhances
trust across heterogeneous city-wide sensor infrastructures.
The rapid convergence demonstrated in Section V ensures
timely consensus, supporting real-time decision-making in
smart transportation and emergency response.

(3) Sensor nodes in agriculture or environmental ecosys-
tems are energy-constrained and intermittently connected. The
proposed mechanism minimizes the computational burden on
ordinary sensor nodes, limiting their role to lightweight voting,
while supervisory oversight preserves data integrity, making it
highly suitable for long-term deployments in remote or harsh
environments.

(4) In healthcare monitoring, where data confidentiality and
reliability are paramount, the integration of punishment and
reputation mechanisms mitigates data manipulation risks and
fosters trust among distributed medical devices. This ensures
that sensitive patient data recorded by wearable sensors can
be securely aggregated and stored.

Collectively, these application scenarios highlight the adapt-
ability of the proposed DPoS-based consensus mechanism
across diverse sensor network deployments, demonstrating
both theoretical significance and practical utility.

C. Scalability Considerations

While the proposed mechanism shows strong performance
in small-to-medium sensor networks, scalability remains a
critical concern for real-world large-scale deployments.

(1) To handle millions of sensor nodes in smart city or indus-
trial contexts, a multi-layer structure can be introduced,
where local sub-chains handle intra-cluster consensus, and
a global chain coordinates inter-cluster data aggregation.
This reduces communication overhead and accelerates
consensus at scale.

(2) Ordinary sensor nodes often lack the computational re-
sources for heavy blockchain operations. By restricting
their role to voting and delegating block generation to
more capable cluster heads, the mechanism ensures scala-
bility without overburdening resource-constrained devices.

(3) Adaptive tuning of penalty factors (b), incentives (FPg), and
reputation thresholds (L, L3) is necessary to accommo-
date varying network sizes and workloads. For example,
stricter penalties may be required in high-density urban
deployments, while lighter settings suffice for agricultural
monitoring networks.

(4) Supervisory nodes incur energy costs during monitoring.
Future extensions may adopt energy-aware supervision
scheduling, where supervisory intensity dynamically ad-
justs to current network trust levels, balancing system
security with battery preservation.

These scalability considerations emphasize that while the
proposed consensus mechanism is robust under current sim-
ulation conditions, real-world deployment will require archi-
tectural extensions, adaptive mechanisms, and energy-aware
optimizations to fully meet the challenges of ultra-large-scale
sensor networks.

D. Limitations

Despite these contributions, several limitations remain.

(1) The current model assumes simplified classifications of
nodes (Ordinary sensor, Cluster head, Competing gateway,
supervisory). In real deployments, sensor networks may
include multiple tiers with highly diverse computational
and energy profiles.

(2) Parameters such as penalties and incentives were assumed
fixed during simulations. In practice, these may need to
adapt dynamically to environmental fluctuations, traffic
load, or malicious attack intensity.



(3) While simulation results are promising, the overhead of
supervisory monitoring and cross-verification may in-
crease under very large-scale sensor deployments (e.g.,
smart cities with millions of nodes).

E. Discussion on Simplified Node Strategies and Model
Generalization

In this study, node behaviors were abstracted into binary
strategies such as “bribery/non-bribery” and “collusion/non-
collusion.” This simplification was motivated by two primary
considerations: (1) to maintain the analytical tractability of
the evolutionary game equations and facilitate the derivation
of stability conditions, and (2) to clearly interpret the strategic
evolution of heterogeneous nodes under bounded rationality.
This abstraction approach has been widely adopted in prior
blockchain game-theoretic research [24]-[26] and is suitable
for revealing essential behavioral dynamics in complex decen-
tralized systems.

It is important to note that this simplification does not
undermine the generalization capability of the proposed model.
The evolutionary outcomes are primarily governed by payoff
differentials, incentive and punishment mechanisms, and su-
pervision strength, rather than by the discrete number of strate-
gies. Therefore, the proposed four-party evolutionary game
framework can be regarded as a primitive model for multi-
dimensional strategy extensions. Future work may incorporate
multi-level bribery intensities, partial collusion probabilities,
or adaptive supervision mechanisms to better represent the
heterogeneity of node behaviors and further enhance the
model’s applicability in real-world blockchain-enabled sensor
networks.

F. Discussion on Homogeneous Assumption, Bounded
Rationality, and Model Generalization

In this study, cluster head, ordinary sensor, competing
gateway, and supervisory nodes are modeled as homogeneous
sub-populations with identical rationality and adaptation rates
to simplify analysis and reveal overall evolutionary dynamics.
The bounded rationality assumption is adopted to reflect
realistic decision-making, where nodes with limited energy,
computation, and communication resources adjust strategies
based on local information and historical feedback rather
than global optimization. This assumption departs from per-
fect rationality in classical game theory and better captures
adaptive behavior under incomplete information. Although
the model assumes homogeneity, practical systems exhibit
heterogeneity in resources and topology, leading to varied
rationality and learning rates. Future work will extend the
framework to a heterogeneous evolutionary game model with
differentiated rationality parameters and multi-layer replicator
dynamics to characterize asynchronous evolution and enhance
generalization and applicability.

G. Discussion on Continuous Approximation and
Discrete Consensus Epochs

Although the replicator dynamic equations adopted in this
work are formulated in continuous time, they represent an
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analytical approximation of the discrete strategy updates that
occur across DPoS consensus epochs. In practice, each DPoS
epoch corresponds to a complete voting—block-generation cy-
cle, where node strategies evolve through payoff-driven adjust-
ments. The continuous-time formulation is thus an abstraction
of this iterative learning process, allowing for closed-form
stability and equilibrium analysis. This modeling approach
has been extensively validated in prior evolutionary game-
based blockchain studies [28], [31]. In addition, our simulation
experiments employ discrete iterations and confirm that the
resulting trajectories closely follow the theoretical continu-
ous dynamics. Therefore, while the actual DPoS operates in
discrete epochs, the continuous replicator dynamics remain
an effective and accurate tool for capturing the macroscopic
evolution of consensus behaviors in blockchain-enabled sensor
networks.

VII. CONCLUSION AND FUTURE WORK

This study tackles the challenges of insufficient voting
incentives and collusion in DPoS consensus for sensor net-
works by mapping blockchain roles to cluster head nodes,
ordinary sensor nodes, competing gateway nodes, and su-
pervisory nodes. A four-party evolutionary game model inte-
grating reputation, punishment, and supervisory mechanisms
was developed and validated through theoretical analysis and
simulations. Results show that the model enhances node
participation, accelerates convergence, suppresses malicious
behaviors, and improves throughput, security, and fairness.
This work provides both a theoretical foundation and practical
guidance for secure and efficient blockchain-based sensor net-
works, while future research will address node heterogeneity,
dynamic environments, and adaptive incentive mechanisms to
strengthen scalability and real-world applicability.
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