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a b s t r a c t 

Metabolites play important roles in brain development and their levels change rapidly in the prenatal period 
and during infancy. Metabolite levels are thought to stabilize during childhood, but the development of neuro- 
chemistry across early-middle childhood remains understudied. We examined the developmental changes of key 
metabolites (total N-acetylaspartate, tNAA; total choline, tCho; total creatine, tCr; glutamate + glutamine, Glx; and 
myo-inositol, mI) using short echo-time magnetic resonance spectroscopy (MRS) in the anterior cingulate cortex 
(ACC) and the left temporo-parietal cortex (LTP) using a mixed cross-sectional/longitudinal design in children 
aged 2–11 years (ACC: N = 101 children, 112 observations; LTP: N = 95 children, 318 observations). We found 
that tNAA increased with age in both regions, while tCho decreased with age in both regions. tCr increased with 
age in the LTP only. Glx did not show linear age effects in either region, but a follow-up analysis in participants 
with ≥ 3 datapoints in the LTP revealed a quadratic effect of age following an inverted U-shape. These substantial 
changes in neurochemistry throughout childhood likely underlie various processes of structural and functional 
brain development. 
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. Introduction 

The preschool and early school years are marked by extensive cogni-
ive, emotional, and social development as children gain independence,
earn to interact with peers, and begin formal education. Substantial
hanges in brain structure and function occur alongside this behavioral
aturation ( Long et al., 2017 ; Remer et al., 2017 ; Reynolds et al., 2019 ).

ess is known about the development of the brain’s chemical make-up –
pecifically the metabolites that are involved in various aspects of brain
evelopment, metabolism, and neural signaling. By characterizing the
hanges in metabolites throughout childhood, we can understand the
eurochemistry underpinning healthy brain development. Such insight
ay be useful to identify markers and mechanisms of disorders and dis-

ase, and to provide complementary information to our understanding
f structural and functional development. 

The primary brain metabolites measured with MRS include
-acetylaspartate, choline, creatine, glutamate/glutamine and
yo-inositol, and each has a distinct developmental pattern (see
ichocka and Bere ś 2018 for a systematic review of metabolite develpo-
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ent across the lifespan). N-acetylaspartate (NAA) is primarily found in
ature neurons and is thus considered a neuronal marker ( Blüml et al.,
013 ; Ross and Sachdev, 2004 ). The interpretation of the NAA signal
s complex, with several roles proposed for this metabolite, including
euronal metabolism, myelin lipid synthesis, synthesis of the neuro-
ransmitter N-acetylaspartylglutamate (NAAG), and maintaining water
alance by removing water from neurons ( Hirrlinger and Nave, 2014 ;
offett et al., 2007 ; Rae, 2014 ). NAA is often reported in combination
ith NAAG (labeled NAA + NAAG or total NAA [tNAA]) because the sig-
als of these metabolites are not reliably separated with conventional
RS. Evidence from studies reporting water-referenced metabolite

oncentrations and those reporting metabolite ratios (NAA/Cr or
AA/Cho) converge to show rapid increases in tNAA from in utero

hrough infancy ( Blüml et al., 2013 ; Girard et al., 2006 ; Hashimoto
t al., 1995 ; Kato et al., 1997 ; Kimura et al., 1995 ; Kok et al., 2002 ;
reis et al., 1993 , 2002 ; Patkee et al., 2021 ; van der Knaap et al.,
990 ; Vigneron, 2006 ), followed by gradual increases in childhood and
dolescence ( Blüml et al., 2013 ; Costa et al., 2002 ; Degnan et al., 2014 ;
ashimoto et al., 1995 ; Holmes et al., 2017 ; van der Knaap et al., 1990 ).
 Alberta T3B 6A8, Canada. 
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otably, there have also been reports of decrease ( Bozgeyik et al., 2008 ;
evito et al., 2007 ) or stability ( Giménez et al., 2004 ; Lam et al., 1998 )
f tNAA and NAA ratios (relative to Cr or Cho) in children/adolescents.
hese findings indicate possible region- or tissue-dependent effects and
emonstrate the need for dense sampling across childhood along with
he use of current methodological best-practices to characterize tNAA
evelopment. 

Choline (Cho) is related to membrane turnover, including synthesis
nd repair of the myelin sheath ( Blüml et al., 2013 ; Rae, 2014 ; Ross and
achdev, 2004 ). The total choline (tCho) signal measured by MRS is pri-
arily composed of phosphocholine and glycerophosphocholine, with
 small contribution of free Cho ( Rae, 2014 ; Ross and Sachdev, 2004 ).
Cho levels and Cho/Cr ratios are highest during the prenatal and neona-
al stages, decrease rapidly during infancy, and are thought to stabilize
n childhood ( Blüml et al., 2013 ; Cady et al., 1996 ; Cichocka and Bere ś ,
018 ; Degnan et al., 2014 ; Girard et al., 2006 ; Hashimoto et al., 1995 ;
olmes et al., 2017 ; Kimura et al., 1995 ; Kok et al., 2002 ; Kreis et al.,
993 ; Lam et al., 1998 ; van der Knaap et al., 1990 ). Patterns of change in
Cho levels vary by tissue type, with more rapid early decreases in gray
atter than white matter ( Blüml et al., 2013 ). Myelination may largely

ccount for the decreasing tCho levels during infancy, driven by the in-
orporation of phosphorylcholine into myelin sheath macromolecules
 Blüml et al., 1999 ). 

Creatine (Cr) contributes to the brain’s energy supply and is con-
idered a marker of energy use ( Blüml et al., 2013 ; Rackayova et al.,
017 ; Ross and Sachdev, 2004 ). The total creatine (tCr) signal consists
f creatine and phosphocreatine. Developmental studies show a gener-
lly increasing trend of tCr levels during the prenatal period and in-
ancy ( Blüml et al., 2013 ; Girard et al., 2006 ; Kreis et al., 1993 , 2002 )
hich stabilizes by adolescence ( Blüml et al., 2013 ; Degnan et al., 2014 ;
reis et al., 1993 ). One longitudinal study showed increases in tCr from
ge 5 to 10 years, calling its putative stability into question and rais-
ng concern for its use as a reference metabolite, especially in pediatric
amples ( Holmes et al., 2017 ). 

Glutamate is an excitatory neurotransmitter and serves metabolic
unctions in the Krebs cycle, the glutamate-glutamine cycle, nitro-
en regulation, and formation of gamma-amino-butyric acid (GABA;
ae, 2014 ). Due to their overlapping peaks in the MRS spectrum, glu-

amate is often reported in combination with glutamine, which is an
mino acid precursor of glutamate, GABA, and aspartate ( Blüml et al.,
013 ; Ross and Sachdev, 2004 ). The combined glutamate + glutamine
oncentration is referred to as Glx. Findings regarding developmental
hanges in Glx levels are mixed. Several studies have reported increas-
ng Glx in infancy ( Blüml et al., 2013 ; Degnan et al., 2014 ; Kreis et al.,
002 ), and Blüml et al. (2013) found that Glx stabilized by two years
f age. However, a longitudinal study of 5–10-year-old children points
o more prolonged increases in Glx levels in both white matter and cor-
ical and subcortical gray matter regions ( Holmes et al., 2017 ). Studies
ith samples spanning childhood through young adulthood, including
 recent large study ( N = 144) of adolescents and young adults, show
ge-related decreases in Glx and Glu/Cr ratios ( Ghisleni et al., 2015 ;
erica et al., 2022 ; Raininko and Mattsson, 2010 ; Shimizu et al., 2017 ;
olk et al., 2019 ). An additional interesting finding from Perica and
olleagues’ (2022) study revealed decreasing inter-subject variability in
lu/Cr with age. The authors posit that this change in variability could
e driven by plasticity-related fluctuations in Glu/Cr during adolescence
hat stabilize in adulthood. Together, the evidence points to a complex,
onlinear trajectory of Glx development from infancy through young
dulthood. 

Myo-inositol (mI) is involved in cellular signaling and lipid synthesis,
nd is typically considered a glial marker ( Blüml et al., 2013 ; Ross and
achdev, 2004 ). Evidence converges to show that mI levels are high-
st in utero and rapidly decrease through infancy to stabilize by early
hildhood ( Blüml et al., 2013 ; Cichocka and Bere ś , 2018 ; Degnan et al.,
014 ; Girard et al., 2006 ; Kreis et al., 1993 ; Lam et al., 1998 ). The rapid
ecline in mI levels in the late prenatal-early postnatal period indicates
2 
he importance of this metabolite in brain development and suggests a
ikely role in myelination ( Blüml et al., 2013 ). 

As summarized above, prior MRS studies reveal distinct patterns
f developmental change in brain metabolite levels, predominantly
n the early postnatal months ( Blüml et al., 2013 ; Kreis et al., 1993 ;
igneron, 2006 ). These findings have led researchers to speculate that
etabolite levels remain relatively stable across childhood and ado-

escence ( Blüml et al., 2013 ; Lam et al., 1998 ). However, metabolite
hanges across childhood have been understudied, leaving a gap in the
nderstanding of metabolic brain development. Few studies have ex-
mined metabolite changes across childhood, and those that have in-
lude small sample sizes with sparse data in the early childhood years,
nd most have examined metabolite ratios rather than absolute con-
entrations ( Cichocka and Bere ś , 2018 ). Furthermore, the existing data
s primarily cross-sectional, meaning that developmental trajectories
ithin individuals have not yet been characterized. Identifying patterns
f neurochemical changes is an important step toward understanding
he mechanisms that underlie the cognitive and behavioral changes dur-
ng this crucial developmental period. 

In this study, we used a mixed cross-sectional/longitudinal design to
nvestigate changes in metabolite levels across childhood in the anterior
ingulate cortex (ACC) and the left temporo-parietal cortex (LTP). These
egions play important roles in cognitive development and have shown
ubstantial structural ( Norbom et al., 2020 ; Remer et al., 2017 ) and func-
ional ( Long et al., 2017 ; Xiao et al., 2016 ) changes in this age range.
he ACC plays key roles in cognitive control and emotion regulation net-
orks ( Braver et al., 2021 ; Stevens et al., 2011 ), and the LTP is involved

n attention, social cognition, and semantic processing ( Numssen et al.,
021 ), and supports language and reading skills ( Richlan, 2012 ). Both
f these regions have been considered in prior MRS studies of child-
ood disorders ( Horowitz-Kraus et al., 2018 ; Kossowski et al., 2019 ;
uts et al., 2020 ); characterizing development of metabolites in these
egions will provide important context for interpreting these and fu-
ure studies. We measured concentrations of tNAA, tCho, tCr, Glx and
I using short echo MRS in 124 children ranging in age from 2 to 11

ears (analyses include 430 total observations across two datasets [ACC:
 = 112 observations; LTP: N = 318 observations). We predicted that

NAA and tCr levels would increase across the age range, tCho and mI
ould decrease to stabilize in middle childhood, and Glx would increase

lightly or show no clear developmental change. We expected similar
atterns of change in both regions of interest. The large sample size and
ubstantial longitudinal data within the LTP dataset afforded the abil-
ty to conduct additional analyses in a subset of participants with data
t 3 or more time points (51 individuals, N = 250 observations) to test
or nonlinear patterns of metabolite development and identify ages at
hich metabolite levels reach minimum or maximum values. 

. Methods 

.1. Participants and data collection timeline 

Data was drawn from an accelerated longitudinal study of brain
evelopment across early-middle childhood conducted in Calgary, AB,
anada ( Reynolds et al., 2020 ). None of the participants had diagnosed
eurological, genetic, or neurodevelopmental disorders, and all were
orn full term ( ≥ 37 weeks gestation). Participants were invited to return
or MRI scans semi-annually between ages 2 and 4 years and annually
hereafter. 

.2. Ethics statement 

Parents provided written informed consent and children provided
erbal assent. This study was approved by the conjoint health research
thics board (CHREB) at the University of Calgary (REB13-0020). 

The present analyses include 430 total datasets from 124 partici-
ants (61 female, mean age = 5.46, SD = 1.93, range 2.34–11.13 y).
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hese data were drawn from a database of 598 scans completed as of
ovember 2021 and were selected based on completion of the MRS se-
uence and subsequent quality assurance. 130 of the 598 total scans
ere excluded because no MRS data was collected (due to subjects want-

ng to get out of the scanner, time constraints, and/or poor quality of
1-weighted scans preventing accurate voxel placement); 1 scan was
xcluded due to MRS acquisition outside of the ACC or LTP (voxel ac-
uired in inferior frontal gyrus during study development); 20 scans
ere excluded because the MRS data files could not be retrieved; an ad-
itional 17 scans were excluded during the quality checking procedures,
etailed in the following sections). Median household income for the
ample was $150,000 - $174,999 CAD (range: < $25,000 – > $175,000),
edian level of maternal education was undergraduate degree (range:

ompleted high school - postgraduate degree), and median level of pa-
ernal education was undergraduate degree (range: some high school -
ostgraduate degree). The full sample includes two analysis subsets: (1)
ata acquired from the midline ACC ( N = 112 datasets, 101 participants
47 females], mean age = 4.09 years, SD = 1.11, age range: 2.34 - 7.36
ears) and (2) data acquired from the LTP region in an overlapping set
f participants ( N = 318 datasets, 95 participants [47 female], mean
ge = 5.96 years, SD = 1.92, age range: 2.41 - 11.13 years). MRS scans
ere acquired from the ACC at visit 1 (though ACC data was acquired
t multiple time points for five subjects) and from the LTP at follow-
p visits for most participants, with up to nine longitudinal data points
 Fig. 1 ). This resulted in a primarily cross-sectional data set for the ACC
nd a longitudinal dataset for the LTP. 

.3. Data acquisition 

Prior to participation, families were provided with training materi-
ls to familiarize children with MRI and were offered an opportunity
o complete a mock-MRI training session (see Reynolds et al. 2020 for
etails). Our lab has demonstrated high success rates in MRI scanning
f young children with and without mock-MRI training ( Thieba et al.,
018 ). 

MRI sessions were conducted using a research-dedicated scanner
t the Alberta Children’s Hospital (Calgary, AB, Canada) by staff who
re highly skilled in pediatric neuroimaging. Anatomical images and
etabolite data were acquired using a 3T GE MR750w MR system with
 32-channel head coil. Children were scanned while watching a movie
r during natural sleep; no sedation was used. T1-weighted anatomical
mages were acquired using a spoiled gradient echo sequence (210 axial
lices; 0.9 × 0.9 × 0.9 mm 

3 resolution, TR = 8.23 ms, TE = 3.76 ms, flip
ngle = 12º, matrix size = 512 ×512, inversion time = 540 ms). These
mages were reformatted to provide axial, sagittal, and coronal views at
he scanner which were used for placement of spectroscopy voxels. MRS
ata were acquired using short echo time Point RESolved spectroscopy
PRESS; TE = 30 ms, TR = 2000 ms, 96 averages, 20 ×20 ×15 mm vox-
ls). A strong body of literature demonstrates the test-retest reliability
nd stability of PRESS sequences and supports the validity of MRS mea-
urements for longitudinal research ( Baeshen et al., 2020; Fayed et al.,
009; Gasparovic et al., 2011; Soreni et al., 2010; Volk et al., 2018,
019 ). MRS voxels were placed in either the anterior cingulate cortex
ACC) or in the left temporal-parietal area (LTP) by trained members
f the research team according to detailed instructions and reference
mages. The ACC voxel was localized anterior to and at approximately
he same level as the genu of the corpus callosum viewed on a midsagit-
al slice and consisted almost entirely of gray matter ( Fig. 2 ). The LTP
oxel was localized to capture the left angular gyrus based on all three
mage planes, and included portions of the supramarginal gyrus, pari-
tal operculum, and posterior superior temporal gyrus due to the extent
f the voxel ( Fig. 2 ). The LTP voxel consisted of gray and white matter,
xcluding CSF to the extent possible. 

This data was acquired as part of a larger neuroimaging study in-
luding multiple sequences. MRS data were acquired in the second half
f the protocol, and ∼20% of cases (130 of 598 datasets) stopped scan-
3 
ing prior to the MRS sequence due to time constraints and/or excessive
otion. 

.4. MRS data processing and analysis 

The PRESS acquisition was pre-processed with the FID-A toolbox
 Simpson et al., 2017 ). Pre-processing included coil combination, re-
oval of bad averages, frequency alignment, and phase correction, ac-

ording to recent recommendations ( Near et al., 2020 ). Metabolites
ere then fit using LCModel v6.3 ( Provencher, 1993 ). The metabolites
f interest were: tNAA, tCr, tCho, mI and Glx. The basis set used for
uantification included alanine, ascorbate, aspartate, choline, citrate,
reatine, ethanol, GABA, glycerophosphocholine, glutathione, glucose,
lycine, glutamine, glutamate, water, mI, lactate, NAA, NAAG, phos-
hocholine, phosphocreatine, phosphoryl ethanolamine, scyllo-inositol,
aurine and beta-Hydroxybutyrate, simulated using the FID-A tool-
ox ( Simpson et al., 2017 ) with sequence specific timings and RF
ulse shapes. Fitted spectra were visually inspected for quality as-
urance and datasets with poor spectra were excluded from analy-
is (ACC: n = 5; LTP: n = 6). Quantitative quality metrics (signal-
o-noise ratio [SNR] and linewidth [LW] for NAA) were obtained us-
ng the “op_getLW.m ” and “op_getSNR.m ” functions in FID-A. The
annet CoRegStandAlone function ( Harris et al., 2015 ), which calls

pm12 segmentation ( Ashburner and Friston, 2005 ), was used to quan-
ify tissue content within the MRS voxels by co-registering them to
he T1-weighted image acquired during the same scanning session.
o-registration and segmentation outputs were visually inspected to
nsure accurate localization and segmentation of the MRS voxels.
atasets in which MRS voxels were not accurately located in the ACC
r LTP were excluded from analysis (ACC: n = 3; LTP: n = 1). Ab-
olute metabolite values are expressed in molal units (moles/kg), as
er the approach recommended in the MRS consensus statement on
etabolite quantification ( Near et al., 2020 ) and also described by
asparovic et al. (2006) . This method accounts for the differential wa-

er T1- and T2-relaxation in white matter, gray matter and CSF in
he voxel to enable absolute metabolite measurements. The scripts for
he correction were developed by DeMayo et al. (2023) , and are pub-
icly available (https://github.com/HarrisBrainLab/TissueCorrections).
owever, this approach does not address differences in metabolite con-
entrations between white matter and gray matter (as suggested in
asparovic et al. (2018) ) as this ratio is not agreed upon for all metabo-

ites (and may change with development). For this reason, the gray mat-
er tissue fraction was included as a covariate in analyses. 

The gray matter tissue fraction of each MRS voxel was calculated
or each participant as the fraction of voxel volume composed of gray
atter divided by total tissue within the voxel (sum of the fractions of

oxel volume for gray matter (GM) and white matter (WM; formula:
GM/[fGM + fWM]). This tissue fraction was applied as a fixed effect in
ubsequent analyses to account for individual differences in tissue com-
osition of the voxels to ensure that the effects observed in our models
re driven by age and not tissue content of the voxels. The gray matter
issue fraction was maintained in final models only if including tissue
raction significantly improved model fit. Our model-fitting approach is
etailed in the following section. 

.5. Data analysis 

Prior to analysis, distributions of metabolite values were checked for
utliers by visually inspecting box plots and performing Rosner’s Test
or Outliers with the EnvStats R package ( Millard, 2013 ). In addition to
he previous quality assurance, spectra of datasets identified as outliers
ere visually inspected and excluded from analysis if artifacts were ap-
arent around the peak value for the given metabolite and/or Cramer-
ao lower bounds estimates exceeded 20% (ACC: 1 dataset excluded

rom analysis of mI and tCho, 1 excluded from mI only; LTP: 2 datasets
xcluded from all analyses, 1 excluded from tNAA, 1 excluded from Glx,
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Fig. 1. Age at scan acquisition for the ACC (left) and LTP (right). Each scan is represented by a circle; each participant is shown in a different row with their scans 
connected by a straight line. Inset tables indicate the number of participants who completed each number of visits. 
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 excluded from mI). The distributions were visually checked using den-
ity plots before and after removal of outliers to confirm normal distri-
ution of the data, and that the data meet the normality assumption
equired for Rosner’s Test. 

Relationships between metabolite concentrations and age were
nvestigated using linear mixed-effects modeling with the lme4
 Bates et al., 2015 ) and lmerTest ( Kuznetsova et al., 2017 ) packages in
Studio version 2021.9.0.351 ( RStudio Team, 2020 ). Datasets from the
CC and LTP voxels were analyzed independently, and separate models
ere fitted for each metabolite. First, linear growth models were defined
ith metabolite concentration as the dependent variable, age as a fixed
4 
ffect, and participant as a random effect to account for repeated mea-
ures using the formula: metabolite ∼ age + (1 | participant). GM tissue
raction, sex, and the interaction between age and sex were sequentially
dded to the linear growth models and compared to the previous model
o identify the best-fitting model for each metabolite. The best-fitting
odels were selected based on the likelihood ratio test criterion with

lpha set to 0.05, maintaining the more parsimonious model when the
ikelihood ratio test did not show significant differences in model fit.
alse Discovery Rate (FDR) correction was performed within each re-
ion (ACC and LTP) to correct for running five models ( Benjamini and
ochberg, 1995 ). Both corrected and uncorrected results are reported. 
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Fig. 2. Example voxel placement and spectra (raw data shown in black; spectra fitted with LCModel shown in red) for the anterior cingulate cortex (ACC; top) and 
left temporo-parietal (LTP; bottom). 
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Table 1 

Descriptive statistics for concentrations of metabolites (mmol/kg), Cramer- 
Rao Lower Bounds (CRLBs), gray matter tissue fraction (fGM/[fGM + fWM]), 
linewidth and signal-to-noise ratio (SNR) in each voxel. “N obs. ” indicates 
total number of observations including longitudinal data within partici- 
pants. Linewidth (FWHM) and SNR are reported for NAA. 

ACC LTP 

N obs. Mean SD N obs. Mean SD 

tNAA (mmol/kg) 112 15.66 1.26 318 14.98 1.03 
tCho (mmol/kg) 111 2.60 0.34 318 2.29 0.27 
tCr (mmol/kg) 112 12.72 1.03 318 10.82 0.91 
Glx (mmol/kg) 112 26.84 2.58 317 21.53 2.16 
mI (mmol/kg) 110 7.7 1.52 314 6.38 1.18 
tNAA (CRLB) 112 2.64 0.60 318 2.20 0.47 
tCho (CRLB) 111 4.60 1.28 318 4.16 0.82 
tCr (CRLB) 112 2.81 0.56 318 2.54 0.55 
Glx (CRLB) 112 4.82 1.04 317 4.95 0.80 
mI (CRLB) 110 12.28 5.36 314 11.51 4.67 
GM Tissue Fraction 112 0.96 0.03 318 0.64 0.11 
linewidth (Hz) 112 7.38 3.17 318 6.67 2.22 
SNR 112 57.29 10.64 318 71.48 13.82 
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.6. Longitudinal analysis 

To test for nonlinear effects of age, we conducted additional anal-
sis of participants in the LTP sample who had MRS data for ≥ 3 time
oints. This analysis included 250 datasets from 51 subjects (23 females,
ean age = 5.91 years, SD = 1.91, age range: 2.49–11.13). Based on
odel fitting for the full sample, we first fit mixed-effects models for

ach metabolite with metabolite concentration as the dependent vari-
ble, age and GM tissue fraction as fixed effects, and participant as a
andom effect using the formula: metabolite ∼ age + GM tissue frac-
ion + (1 | participant). A quadratic age term was then added (formula:
etabolite ∼ age + GM tissue fraction + age 2 + (1 | participant)). The

est-fitting model for each metabolite was selected based on the like-
ihood ratio test criterion with alpha set to 0.05. Multiple comparisons
or running 5 models were corrected within each factor (e.g., age) using
DR ( Benjamini and Hochberg, 1995 ). Both corrected and uncorrected
 -values are reported. 

.7. Post-hoc analysis of quality metrics 

We conducted follow-up analyses to tests relationships between age
nd quality metrics (SNR and LW) using mixed-effects models. Quality
etrics that were significantly associated with age were then included

n post-hoc analysis of age-metabolite relationships to test whether the
ffects were driven by data quality. 

. Results 

.1. Sample characteristics 

Mean metabolite concentrations, GM tissue fractions, and quality
etrics for each MRS voxel are reported in Table 1 . 

.2. Age effects in the anterior cingulate cortex (ACC) 

The best fitting model for all metabolites measured in the ACC was
efined by the formula: metabolite ∼ age + (1 | participant). GM tissue
5 
raction and sex had no significant effects and did not improve model fit,
o these variables were not included in the final models. tNAA concen-
ration increased with age ( beta = 0.25, p = .016) and tCho decreased
ith age ( beta = -0.07, p = .018). A trending decrease was found for mI
 beta = -0.22, p = .083), but this effect was not significant. The models
id not show significant age effects for tCr or Glx. Results are summa-
ized in Table 2 and depicted in Fig. 3 . 

.3. Age effects in the left-temporo-parietal region (LTP) 

The best-fitting model for all metabolites in the LTP included age
nd GM tissue fraction as fixed effects, and was defined by the formula:
etabolite ∼ age + tissue fraction + (1 | participant). Sex did not show

ny significant effects and did not improve fit of any models. 
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Table 2 

Summary of age effects in the ACC. Significant age effects (corrected for multiple comparisons) are presented in 
bold. Total percent change for significant models based on predicted values at ages 2 and 8 years. 

Age effect 

Metabolite N obs. Intercept beta [95% CI] Std. beta [95% CI] p unc. p FDR % change predicted 

tNAA 112 14.61 .25 [.05, 0.46] .23 [.04, 0.41] .016 .045 10.10 

tCho 111 2.87 -0.07 [-0.12, -0.01] -0.22 [-0.4, -0.04] .018 .045 -14.67 

tCr 112 12.31 .10 [-0.07, 0.27] .11 [-0.07, 0.3] .239 .254 NA 
Glx 112 25.82 .25 [-0.18, 0.68] .11 [-0.08, 0.29] .254 .254 NA 
mI 110 8.61 -0.22 [-0.47, 0.03] -0.16 [-0.35, 0.02] .083 .138 NA 

Fig. 3. Relationships between age and metabo- 
lite concentrations (mmol/kg) in the ACC. 
Model fit lines shown in black for significant 
age effects only; individual participants’ fit 
lines shown in red and blue for participants 
with multiple scans. 

6 
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Table 3 

Summary of age effects in the LTP. Significant age effects (corrected for multiple comparisons) are presented in bold. Total 
percent change for significant models based on predicted values at ages 2 and 11 years. 

Age effect 

Metabolite N obs. Intercept beta [95% CI] Std. beta [95% CI] p unc. p FDR % change predicted 

tNAA 317 11.74 .18 [.12, 0.24] .33 [.22,.43] < 0.001 < 0.001 13.13 

tCho 318 3.07 -0.05 [-0.06, -0.03] -0.34 [-0.45, -0.23] < 0.001 < 0.001 − 14.37 

tCr 318 7.29 .05 [.01, 0.10] .11 [.01, 0.21] .025 .042 6.60 

Glx 317 12.49 .04 [-0.07, 0.14] .03 [-0.06, 0.12] .497 .621 NA 
mI 314 5.58 0[-0.08, 0.07] 0[-0.12, 0.12] .958 .958 NA 

Table 4 

Mean concentrations of metabolites (mmol/kg) and mean gray mat- 
ter tissue fraction (GM/[GM + WM]) in the participants with ≥ 3 LTP 
datasets. “N obs. ” indicates total number of observations accounting 
for longitudinal data within participants. 

N obs. Mean SD 

tNAA 249 14.97 1.08 
tCho 250 2.29 0.28 
tCr 250 10.84 0.95 
Glx 249 21.62 2.18 
mI 247 6.40 1.20 
GM Tissue Fraction 250 0.65 0.11 
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Our models showed age-related increases in tNAA ( beta = 0.18,
 < .001) and tCr ( beta = 0.05, p = .025). tCho concentration decreased
ith age ( beta = − 0.05, p < 0.001). Age was not significantly associated
ith mI or Glx. Results are summarized in Table 3 and depicted in Fig. 4 .

.4. Post-hoc analysis of quality metrics 

We tested relationships between age and quality metrics (linewidth
nd SNR of the NAA peak) and found that SNR increased with age in
he LTP dataset only ( beta = 2.13, p < .001; Supplementary Table S1
 Fig. S1); no significant age effects were found for linewidth in either
oxel (Supplementary Tables S1 & S2). Thus, SNR of the NAA peak was
dded to the models testing age-metabolite relationships in the LTP. Age
ffects for tNAA and tCho remained consistent with the main analyses
tNAA: beta = 0.16, p < .001; tCho: beta = − 0.04, p < .001), however
he tCr effect was no longer significant ( beta = 0.04, p = .118). Statistics
or metabolite-age effects for models including SNR as a covariate are
eported in Supplementary Table S3. 

.5. Analysis of nonlinear age effects in participants with LTP data from 3 

r more time points 

We conducted a follow-up analysis in a sub-set of participants who
ompleted ≥ 3 scans in the LTP ( n = 51 subjects; total datasets = 250) to
est for nonlinear relationships between age and metabolite concentra-
ions. We first tested the linear age models controlling for tissue fraction
n this longitudinal sub-sample, then added a quadratic age term to see
f it significantly improved model fit. 

Table 4 
For tNAA and tCr, the quadratic age term did not improve model

t, and the linear age effects were significant and positive (tNAA:
eta = 0.18, p < 0.001; tCr: beta = 0.07, p = 0.011), consistent with
he effects observed in the full sample. The quadratic age term sig-
ificantly improved model fit for tCho ( beta age = − 0.19, p age < 0.001;
eta ageˆ2 = 0.01, p ageˆ2 = 0.011) and Glx ( beta age = 1.17, p age = 0.001;
eta ageˆ2 = − 0.08, p ageˆ2 = 0.003). tCho decreased in early childhood,
hen slowed and hit a predicted minimum at age 8.8 years. Glx showed
 modest increase across early childhood to peak at age 6.9 years fol-
owed by a decrease. No significant linear or quadratic effects of age
7 
ere found for mI, consistent with the full LTP sample. Results are sum-
arized in Table 5 and depicted in Fig. 5 . 

. Discussion 

Here, we show that multiple brain metabolites (tNAA, tCho, tCr,
nd Glx) continue to change substantially across early-middle childhood
age 2–11 years), indicating that maturation continues after the rapid
evelopment in infancy ( Blüml et al., 2013 ). These changes likely un-
erlie ongoing structural and functional brain development during this
ge range. tNAA concentrations increased with age throughout child-
ood. This finding corroborates evidence from cross-sectional studies
 Blüml et al., 2013 ; Costa et al., 2002 ; Degnan et al., 2014 ; Hashimoto
t al., 1995 ; Kadota et al., 2001 ; Kreis et al., 1993 ; van der Knaap et al.,
990 ) and a smaller longitudinal study ( Holmes et al., 2017 ), provid-
ng strong evidence that tNAA levels rise across childhood within indi-
iduals. Increases in tNAA may be related to several aspects of fiber
ract development as well as changes in metabolic activity. NAA is
ighly concentrated in neuron bodies and axons, so increasing levels
f tNAA across childhood may indicate axonal development including
longation, increasing axon diameter, and/or increasing axon packing
 Blüml et al., 2013 ; Ross and Sachdev, 2004 ). This interpretation is con-
istent with evidence from diffusion MRI studies, which show increases
n axon packing and fiber cross-section across childhood ( Dimond et al.,
020 ; Genc et al., 2017 ; Mah et al., 2017 ). Developmental increases
n tNAA could also reflect myelination, given that NAA is present at
ubstantial levels in myelin and oligodendrocyte cell bodies and plays
 role in the synthesis of myelin ( Nordengen et al., 2015 ; Rae, 2014 ).
n gray matter, increasing tNAA levels could reflect elevated metabolic
ctivity ( Rae, 2014 ) and/or intracortical myelination, which continues
o develop through childhood and adolescence ( Norbom et al., 2020 ).
n addition, NAAG may account for some of the observed increase in
NAA, and could mark metabolic activity and availability for synthe-
is of glutamate ( Rae, 2014 ). Baslow (2015) proposed a role of NAAG
etabolism in complex task performance, so NAAG may increase as chil-
ren engage in more cognitively demanding tasks (e.g., reading, math).
his is especially relevant in the two regions investigated here, which
re involved in executive functioning and language/reading processes
hat develop throughout childhood ( Braver et al., 2021 ; Numssen et al.,
021 ; Richlan, 2012 ). 

tCho levels decreased with age in both regions studied. We observed
 curvilinear trajectory in the longitudinal sub-sample, such that tCho
ecreased most rapidly in early childhood and stabilized in middle
hildhood, reaching a minimum value just before 9 years. Prior stud-
es have shown the most rapid tCho decreases in the first two years of
ife ( Blüml et al., 2013 ; Degnan et al., 2014 ; Hashimoto et al., 1995 ;
reis et al., 1993 ; Vigneron, 2006 ), coinciding with a period of rapid
yelination ( Deoni et al., 2011 ). Phosphorylcholine, a main constituent

f the tCho signal, is incorporated into myelin sheath macromolecules
uring myelination ( Blüml et al., 1999 ). This process may drive devel-
pmental decreases in tCho. Cross-sectional evidence has shown that
Cho declines into early childhood, but our longitudinal analysis sug-
ests that minimum tCho levels are reached several years later than pre-
iously thought ( Blüml et al., 2013 ). Much like the rapid tCho changes
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Fig. 4. Relationships between age and metabo- 
lite concentrations in the LTP, controlling for 
tissue fraction. Model fit lines shown in black 
for significant age effects only; individual par- 
ticipants’ fit lines shown in red and blue for par- 
ticipants with multiple scans. 

Table 5 

Summary of linear and quadratic age effects in sub-sample of participants with ≥ 3 scans in the LTP. Significant age and age 2 effects (corrected for multiple 
comparisons) are presented in bold. 

Age effect Quadratic age effect 

Metabolite N obs. Intercept beta [95% CI] Std. Beta [95% CI] p unc. p FDR beta[95% CI] Std. Beta[95% CI] p unc. p FDR 

tNAA 249 11.62 0.18 [.11, 0.25] .32 [.19, 0.44] < 0.001 < 0.001 NA NA NA NA 
tCho 250 3.41 -0.19 [-0.29,-0.09] -1.31 [-2.03, -0.59] < 0.001 < 0.001 .01 [.00, 0.02] 1.0 [.27, 1.73] .008 .011 

tCr 250 6.97 .07 [.02, 0.13] .15 [.03, 0.26] .011 .01 NA NA NA NA 
Glx 249 9.43 1.17 [.48, 1.86] 1.02 [.41, 1.62] .001 .001 -0.08 [-0.14, -0.03] -0.98 [-1.6, -0.37] .002 .003 

mI 247 5.46 0 [-0.09,.08] 0 [-0.14, 0.13] .955 .955 NA NA NA NA 

8 
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Fig. 5. Linear and quadratic relationships be- 
tween age and metabolite concentrations in the 
LTP sub-sample with ≥ 3 scans. Model fit lines 
shown in black for significant effects only; in- 
dividual participants’ fit lines shown in red and 
blue. 
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n the first two years of life, decreasing tCho in childhood coincides
ith ongoing myelination in major white matter tracts and within the

ortex ( Lebel and Deoni, 2018 ; Norbom et al., 2020 ). The curvilinear
attern of decrease in our longitudinal sub-sample aligns with a slow-
ng of myelination in childhood ( Lebel and Deoni, 2018 ). Importantly,
Cho effects are not limited to myelin, and tCho reflects turnover and
ontent of membranes more broadly and may be a marker of cell density
 Rae, 2014 ). Thus, tCho decreases in gray matter could reflect changes
n cell density in addition to intracortical myelination. 

We found a small age-related increase in tCr levels in the LTP re-
ion, with linear effects in both the full sample and longitudinal sub-
9 
ample. However, this effect did not remain significant when including
NR in the model; likely because the inclusion of SNR accounted for
 substantial amount of age-related variance for this already small ef-
ect. An age-related increase in tCr is consistent with gradual age-related
hanges reported in prior studies ( Blüml et al., 2013 ; Degnan et al.,
014 ; Girard et al., 2006 ; Holmes et al., 2017 ; Kreis et al., 1993 ). tCr
s involved in maintaining energy homeostasis in the brain and is abun-
ant in areas of high synaptic activity ( Rae, 2014 ); increasing tCr across
evelopment may reflect greater energy demands as the brain matures
 Blüml et al., 2013 ). tCr levels may also be related to the amount of lo-
al synaptic activity ( Rae, 2014 ). Our result may be associated with age-
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elated increases in LTP activity, consistent with a prior finding from our
ab which showed increases in resting-state local activity and global con-
ectivity across early childhood in a corresponding region ( Long et al.,
017 ). Age-related effects in tCr levels raise an important methodolog-
cal consideration: tCr has been used as an internal reference for calcu-
ating metabolite ratios under the assumption that tCr levels are con-
istent over time and between individuals. However, this assumption is
ncreasingly shown to be incorrect, hence a preference for water refer-
ncing ( Near et al., 2020 ; Rae, 2014 ). The age-related increase in tCr
bserved here confirm that tCr-referencing is unsuitable in children. 

Our longitudinal sub-sample analysis revealed a significant nonlin-
ar pattern of age-related changes in Glx, even though no significant
inear relationships were found in the full sample for either voxel. In
he longitudinal sample, Glx increased gradually in early childhood,
eaked at age 6.9 years, and subsequently declined. Prior studies have
hown age-related increases in Glx in infancy and childhood, but find-
ngs have been mixed with regard to the timing of Glx fluctuation
 Blüml et al., 2013 ; Degnan et al., 2014 ; Holmes et al., 2017 ). Stud-
es of adolescents and young adults have shown age-related decreases
n Glu-and Glx ( Devito et al., 2007 ; Ghisleni et al., 2015 ; Hädel et al.,
013 ; Marsman et al., 2013 ; Perica et al., 2022 ; Raininko and Matts-
on, 2010 ; Shimizu et al., 2017 ; Volk et al., 2019 ), indicating that the
ecline in Glx observed in the older range of our sample likely con-
inues through adolescence and into adulthood. Our longitudinal data
rovide additional power over prior cross-sectional and smaller stud-
es to detect nonlinear patterns of development based on change within
ndividuals, and to predict the age at which Glx levels peak (6.9 years
ased on our fitted model). The individual fit lines shown in Fig. 5 re-
eal variability in individual trajectories ( ∩ and U shapes) and ages at
hich Glx levels peak, highlighting the inter-individual variability in
evelopment. These individual growth patterns are of interest for fu-
ure work investigating metabolites development in relation to cogni-
ive and behavioral traits. Notably, Glx measurements exhibit higher
evels of interindividual variability and measurement error relative to
ther metabolites ( Soreni et al., 2010 ), so replication of this finding in
n independent longitudinal sample is needed. 

Glx may reflect metabolism, excitatory neural activity/excitability,
nd neuronal synchronization ( Rae, 2014 ; Rodriguez et al., 2013 ;
tagg et al., 2011 ), but the interpretation of developmental changes in
lx levels is complicated due to the multifaceted role of glutamate as
 metabolite and neurotransmitter. As a result, simultaneous develop-
ental processes can involve co-occurring increases and decreases in
lx. For example, increasing Glx related to increasing excitatory neural
ctivity may be counterbalanced by decreasing Glx related to pruning.
he balance of these processes likely varies over time and across brain
egions, contributing to interindividual variability in Glx measurements.
he contribution of glutamine to the MRS signal further complicates
atters, but the isolated Gln signal was not sufficiently reliable to facil-

tate examination of independent patterns of Glu and Gln development
n our study. This should be a target of future research given that op-
osite directions of change in Glu and Glnhave been observed across
dulthood ( Hädel et al., 2013 ) and in a rat model of infancy-early child-
ood development ( Ramu et al., 2016 ). Glu-and Gln-are also involved
n the synthesis of GABA ( Rae, 2014 ), and could thus be associated with
evelopmental changes in GABA ( Porges et al., 2021 ). 

Our finding of initial increase and later decrease in Glx may reflect
uning of excitability in neural networks that support cognition and lan-
uage. An optimal balance of excitatory and inhibitory activity is needed
or efficient functioning ( Ferguson and Gao, 2018 ). Hyperexcitability
ue to imbalance in the glutamatergic system has been proposed as a
ource of impairment in developmental disorders including autism spec-
rum disorder ( Rubenstein, 2010 ) and reading disorder ( Hancock et al.,
017 ). In contrast, over-inhibition has been associated with stress and
ffective disorders ( Page and Coutellier, 2019 ). The initial phase of in-
reasing Glx observed here coincides with our previous findings of in-
reasing activity and connectivity of the LTP from ages 2 to 6 years
10 
n an overlapping sample of participants ( Long et al., 2017 ). The de-
line in Glx over the later ages of our sample (7–12 years) may reflect
 phase of balancing excitatory and inhibitory activity through pruning
f excitatory glutamatergic synapses ( Lieberman et al., 2019 ) and/or in-
reasing inhibitory GABAergic activity ( Porges et al., 2021 ). Our data
ikely captures only the beginning of this phase; recent evidence shows
eclining Glu/Cr and increasing balance of Glu/Cr and GABA/Cr from
dolescence into early adulthood ( Perica et al., 2022 ). 

We did not find significant changes in mI across the age-range
tudied, though we observed a trending decrease in the ACC dataset
 p = .083). Prior cross-sectional studies show a decline in mI from in-
ancy to adulthood ( Blüml et al., 2013 ; Degnan et al., 2014 ; Kreis et al.,
993 , 2002 ), with effects likely driven by the rapid changes that occur

n utero and during infancy ( Girard et al., 2006 ; Kreis et al., 1993 ). mI
oncentration varies regionally across the brain and is higher in gray
atter than white matter ( Rae, 2014 ), which may explain the presence

f an age-related trend in the ACC, but not the LTP in our study. Further
esearch is needed to test for region- and tissue-specific changes in mI
rom infancy through childhood. 

We did not find any sex effects or interactions in our models, con-
istent with a previous longitudinal study in an overlapping age range
 Holmes et al., 2017 ). Nonetheless, the null findings do not provide con-
lusive evidence for a lack of sex differences in metabolite development
nd future studies should continue to examine possible sex-related ef-
ects, especially in adolescent and adult samples, as such effects may
merge later in development. 

. Limitations 

Our study was limited by several methodological constraints.
etabolite levels differ between gray matter and white matter

 Rae, 2014 ), and differences in developmental patterns have been re-
orted based on tissue type ( Blüml et al., 2013 ). We corrected for cere-
rospinal fluid and tissue specific relaxation effects in the calculation
f metabolite concentrations according to recommended best practice
 Gasparovic et al., 2006 ; Near et al., 2020 ). Gray matter tissue frac-
ion was included as a covariate in our statistical models for the LTP
ata to control for individual differences in the tissue content of the
oxels (tissue fraction improved model fit for the LTP data, but not for
he ACC data, as the ACC voxels consisted almost exclusively of gray
atter). Nonetheless, we cannot draw conclusions about different pat-

erns of metabolite development in gray and white matter. In addition,
he ACC and LTP datasets differed in numbers of participants, numbers
f longitudinal timepoints, and ages at data collection, so the region-
pecific effects we report require replication in matched datasets. Fur-
her, we cannot generalize our findings to other regions of the brain.
ata quality is a concern in young participants, and differences in data
uality across development may have impacted results. We made an ef-
ort to ensure best data quality based on most recent recommendations
or data processing and analysis, including retrospective frequency and
hase correction and analysis with a customized basis set ( Near et al.,
020 ; Simpson et al., 2017 ), along with visual inspection of all fitted
pectra to confirm quality. Post-hoc analysis including quality metrics
SNR and linewidth) indicate that effects of data quality on our results
ere minimal. 

. Conclusion 

This study provides novel insight to the development of brain
etabolites across early-middle childhood, building on prior work that
as mainly focused on infancy. We found significant and substantial age-
elated effects in levels of tNAA and tCho across early-middle childhood
n the ACC and LTP. Additional regional effects were found for tCr and
lx in the LTP. In addition to the overall model fits, our longitudinal data

eveal inter-individual variability in the directions of change and ages
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f inflection points in metabolite development. These developmental ef-
ects parallel the structural and functional brain development of child-
ood ( Faghiri et al., 2018 ; Frangou et al., 2021 ; Lebel and Deoni, 2018 ;
ong et al., 2017 ; Norbom et al., 2021 ; Reynolds et al., 2019 ). Future
esearch that integrates other imaging modalities will help to elucidate
he mechanisms underlying these developmental changes. This knowl-
dge can further be linked to cognitive, behavioral, and clinical traits to
race the roots of disorders and diseases that emerge in childhood and
rovide new directions for intervention and treatment. 
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