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ARTICLE INFO ABSTRACT

Keywords: Metabolites play important roles in brain development and their levels change rapidly in the prenatal period

Ne“mCh.emiSth and during infancy. Metabolite levels are thought to stabilize during childhood, but the development of neuro-

I‘D’[etaf’ohtes chemistry across early-middle childhood remains understudied. We examined the developmental changes of key
evelopment

metabolites (total N-acetylaspartate, tNAA; total choline, tCho; total creatine, tCr; glutamate+glutamine, Glx; and
myo-inositol, mI) using short echo-time magnetic resonance spectroscopy (MRS) in the anterior cingulate cortex
(ACC) and the left temporo-parietal cortex (LTP) using a mixed cross-sectional/longitudinal design in children
aged 2-11 years (ACC: N = 101 children, 112 observations; LTP: N = 95 children, 318 observations). We found
that tNAA increased with age in both regions, while tCho decreased with age in both regions. tCr increased with
age in the LTP only. Glx did not show linear age effects in either region, but a follow-up analysis in participants
with >3 datapoints in the LTP revealed a quadratic effect of age following an inverted U-shape. These substantial
changes in neurochemistry throughout childhood likely underlie various processes of structural and functional

Magnetic resonance spectroscopy

brain development.

1. Introduction

The preschool and early school years are marked by extensive cogni-
tive, emotional, and social development as children gain independence,
learn to interact with peers, and begin formal education. Substantial
changes in brain structure and function occur alongside this behavioral
maturation (Long et al., 2017; Remer et al., 2017; Reynolds et al., 2019).
Less is known about the development of the brain’s chemical make-up -
specifically the metabolites that are involved in various aspects of brain
development, metabolism, and neural signaling. By characterizing the
changes in metabolites throughout childhood, we can understand the
neurochemistry underpinning healthy brain development. Such insight
may be useful to identify markers and mechanisms of disorders and dis-
ease, and to provide complementary information to our understanding
of structural and functional development.

The primary brain metabolites measured with MRS include
N-acetylaspartate, choline, creatine, glutamate/glutamine and
myo-inositol, and each has a distinct developmental pattern (see
Cichocka and Beres 2018 for a systematic review of metabolite develpo-

ment across the lifespan). N-acetylaspartate (NAA) is primarily found in
mature neurons and is thus considered a neuronal marker (Bliiml et al.,
2013; Ross and Sachdev, 2004). The interpretation of the NAA signal
is complex, with several roles proposed for this metabolite, including
neuronal metabolism, myelin lipid synthesis, synthesis of the neuro-
transmitter N-acetylaspartylglutamate (NAAG), and maintaining water
balance by removing water from neurons (Hirrlinger and Nave, 2014;
Moffett et al., 2007; Rae, 2014). NAA is often reported in combination
with NAAG (labeled NAA+NAAG or total NAA [tNAA]) because the sig-
nals of these metabolites are not reliably separated with conventional
MRS. Evidence from studies reporting water-referenced metabolite
concentrations and those reporting metabolite ratios (NAA/Cr or
NAA/Cho) converge to show rapid increases in tNAA from in utero
through infancy (Bliiml et al., 2013; Girard et al., 2006; Hashimoto
et al., 1995; Kato et al., 1997; Kimura et al., 1995; Kok et al., 2002;
Kreis et al., 1993, 2002; Patkee et al., 2021; van der Knaap et al.,
1990; Vigneron, 2006), followed by gradual increases in childhood and
adolescence (Bliiml et al., 2013; Costa et al., 2002; Degnan et al., 2014;
Hashimoto et al., 1995; Holmes et al., 2017; van der Knaap et al., 1990).
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Notably, there have also been reports of decrease (Bozgeyik et al., 2008;
Devito et al., 2007) or stability (Giménez et al., 2004; Lam et al., 1998)
of tNAA and NAA ratios (relative to Cr or Cho) in children/adolescents.
These findings indicate possible region- or tissue-dependent effects and
demonstrate the need for dense sampling across childhood along with
the use of current methodological best-practices to characterize tNAA
development.

Choline (Cho) is related to membrane turnover, including synthesis
and repair of the myelin sheath (Bliiml et al., 2013; Rae, 2014; Ross and
Sachdev, 2004). The total choline (tCho) signal measured by MRS is pri-
marily composed of phosphocholine and glycerophosphocholine, with
a small contribution of free Cho (Rae, 2014; Ross and Sachdev, 2004).
tCho levels and Cho/Cr ratios are highest during the prenatal and neona-
tal stages, decrease rapidly during infancy, and are thought to stabilize
in childhood (Bliiml et al., 2013; Cady et al., 1996; Cichocka and Beres,
2018; Degnan et al., 2014; Girard et al., 2006; Hashimoto et al., 1995;
Holmes et al., 2017; Kimura et al., 1995; Kok et al., 2002; Kreis et al.,
1993; Lam et al., 1998; van der Knaap et al., 1990). Patterns of change in
tCho levels vary by tissue type, with more rapid early decreases in gray
matter than white matter (Bliiml et al., 2013). Myelination may largely
account for the decreasing tCho levels during infancy, driven by the in-
corporation of phosphorylcholine into myelin sheath macromolecules
(Bliiml et al., 1999).

Creatine (Cr) contributes to the brain’s energy supply and is con-
sidered a marker of energy use (Bliiml et al., 2013; Rackayova et al.,
2017; Ross and Sachdev, 2004). The total creatine (tCr) signal consists
of creatine and phosphocreatine. Developmental studies show a gener-
ally increasing trend of tCr levels during the prenatal period and in-
fancy (Bliiml et al., 2013; Girard et al., 2006; Kreis et al., 1993, 2002)
which stabilizes by adolescence (Bliiml et al., 2013; Degnan et al., 2014;
Kreis et al., 1993). One longitudinal study showed increases in tCr from
age 5 to 10 years, calling its putative stability into question and rais-
ing concern for its use as a reference metabolite, especially in pediatric
samples (Holmes et al., 2017).

Glutamate is an excitatory neurotransmitter and serves metabolic
functions in the Krebs cycle, the glutamate-glutamine cycle, nitro-
gen regulation, and formation of gamma-amino-butyric acid (GABA;
Rae, 2014). Due to their overlapping peaks in the MRS spectrum, glu-
tamate is often reported in combination with glutamine, which is an
amino acid precursor of glutamate, GABA, and aspartate (Bliiml et al.,
2013; Ross and Sachdev, 2004). The combined glutamate + glutamine
concentration is referred to as Glx. Findings regarding developmental
changes in Glx levels are mixed. Several studies have reported increas-
ing Glx in infancy (Bliiml et al., 2013; Degnan et al., 2014; Kreis et al.,
2002), and Bliiml et al. (2013) found that Glx stabilized by two years
of age. However, a longitudinal study of 5-10-year-old children points
to more prolonged increases in Glx levels in both white matter and cor-
tical and subcortical gray matter regions (Holmes et al., 2017). Studies
with samples spanning childhood through young adulthood, including
a recent large study (N = 144) of adolescents and young adults, show
age-related decreases in Glx and Glu/Cr ratios (Ghisleni et al., 2015;
Perica et al., 2022; Raininko and Mattsson, 2010; Shimizu et al., 2017;
Volk et al., 2019). An additional interesting finding from Perica and
colleagues’ (2022) study revealed decreasing inter-subject variability in
Glu/Cr with age. The authors posit that this change in variability could
be driven by plasticity-related fluctuations in Glu/Cr during adolescence
that stabilize in adulthood. Together, the evidence points to a complex,
nonlinear trajectory of Glx development from infancy through young
adulthood.

Myo-inositol (ml) is involved in cellular signaling and lipid synthesis,
and is typically considered a glial marker (Bliiml et al., 2013; Ross and
Sachdev, 2004). Evidence converges to show that ml levels are high-
est in utero and rapidly decrease through infancy to stabilize by early
childhood (Bliiml et al., 2013; Cichocka and Beres, 2018; Degnan et al.,
2014; Girard et al., 2006; Kreis et al., 1993; Lam et al., 1998). The rapid
decline in mI levels in the late prenatal-early postnatal period indicates
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the importance of this metabolite in brain development and suggests a
likely role in myelination (Bliiml et al., 2013).

As summarized above, prior MRS studies reveal distinct patterns
of developmental change in brain metabolite levels, predominantly
in the early postnatal months (Bliiml et al., 2013; Kreis et al., 1993;
Vigneron, 2006). These findings have led researchers to speculate that
metabolite levels remain relatively stable across childhood and ado-
lescence (Bliiml et al., 2013; Lam et al., 1998). However, metabolite
changes across childhood have been understudied, leaving a gap in the
understanding of metabolic brain development. Few studies have ex-
amined metabolite changes across childhood, and those that have in-
clude small sample sizes with sparse data in the early childhood years,
and most have examined metabolite ratios rather than absolute con-
centrations (Cichocka and Beres, 2018). Furthermore, the existing data
is primarily cross-sectional, meaning that developmental trajectories
within individuals have not yet been characterized. Identifying patterns
of neurochemical changes is an important step toward understanding
the mechanisms that underlie the cognitive and behavioral changes dur-
ing this crucial developmental period.

In this study, we used a mixed cross-sectional/longitudinal design to
investigate changes in metabolite levels across childhood in the anterior
cingulate cortex (ACC) and the left temporo-parietal cortex (LTP). These
regions play important roles in cognitive development and have shown
substantial structural (Norbom et al., 2020; Remer et al., 2017) and func-
tional (Long et al., 2017; Xiao et al., 2016) changes in this age range.
The ACC plays key roles in cognitive control and emotion regulation net-
works (Braver et al., 2021; Stevens et al., 2011), and the LTP is involved
in attention, social cognition, and semantic processing (Numssen et al.,
2021), and supports language and reading skills (Richlan, 2012). Both
of these regions have been considered in prior MRS studies of child-
hood disorders (Horowitz-Kraus et al., 2018; Kossowski et al., 2019;
Puts et al., 2020); characterizing development of metabolites in these
regions will provide important context for interpreting these and fu-
ture studies. We measured concentrations of tNAA, tCho, tCr, Glx and
ml using short echo MRS in 124 children ranging in age from 2 to 11
years (analyses include 430 total observations across two datasets [ACC:
N = 112 observations; LTP: N = 318 observations). We predicted that
tNAA and tCr levels would increase across the age range, tCho and mI
would decrease to stabilize in middle childhood, and Glx would increase
slightly or show no clear developmental change. We expected similar
patterns of change in both regions of interest. The large sample size and
substantial longitudinal data within the LTP dataset afforded the abil-
ity to conduct additional analyses in a subset of participants with data
at 3 or more time points (51 individuals, N = 250 observations) to test
for nonlinear patterns of metabolite development and identify ages at
which metabolite levels reach minimum or maximum values.

2. Methods
2.1. Participants and data collection timeline

Data was drawn from an accelerated longitudinal study of brain
development across early-middle childhood conducted in Calgary, AB,
Canada (Reynolds et al., 2020). None of the participants had diagnosed
neurological, genetic, or neurodevelopmental disorders, and all were
born full term (>37 weeks gestation). Participants were invited to return
for MRI scans semi-annually between ages 2 and 4 years and annually
thereafter.

2.2. Ethics statement

Parents provided written informed consent and children provided
verbal assent. This study was approved by the conjoint health research
ethics board (CHREB) at the University of Calgary (REB13-0020).

The present analyses include 430 total datasets from 124 partici-
pants (61 female, mean age = 5.46, SD = 1.93, range 2.34-11.13 y).
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These data were drawn from a database of 598 scans completed as of
November 2021 and were selected based on completion of the MRS se-
quence and subsequent quality assurance. 130 of the 598 total scans
were excluded because no MRS data was collected (due to subjects want-
ing to get out of the scanner, time constraints, and/or poor quality of
T1-weighted scans preventing accurate voxel placement); 1 scan was
excluded due to MRS acquisition outside of the ACC or LTP (voxel ac-
quired in inferior frontal gyrus during study development); 20 scans
were excluded because the MRS data files could not be retrieved; an ad-
ditional 17 scans were excluded during the quality checking procedures,
detailed in the following sections). Median household income for the
sample was $150,000 - $174,999 CAD (range: <$25,000 - >$175,000),
median level of maternal education was undergraduate degree (range:
completed high school - postgraduate degree), and median level of pa-
ternal education was undergraduate degree (range: some high school -
postgraduate degree). The full sample includes two analysis subsets: (1)
data acquired from the midline ACC (N = 112 datasets, 101 participants
[47 females], mean age = 4.09 years, SD = 1.11, age range: 2.34 - 7.36
years) and (2) data acquired from the LTP region in an overlapping set
of participants (N = 318 datasets, 95 participants [47 female], mean
age = 5.96 years, SD = 1.92, age range: 2.41 - 11.13 years). MRS scans
were acquired from the ACC at visit 1 (though ACC data was acquired
at multiple time points for five subjects) and from the LTP at follow-
up visits for most participants, with up to nine longitudinal data points
(Fig. 1). This resulted in a primarily cross-sectional data set for the ACC
and a longitudinal dataset for the LTP.

2.3. Data acquisition

Prior to participation, families were provided with training materi-
als to familiarize children with MRI and were offered an opportunity
to complete a mock-MRI training session (see Reynolds et al. 2020 for
details). Our lab has demonstrated high success rates in MRI scanning
of young children with and without mock-MRI training (Thieba et al.,
2018).

MRI sessions were conducted using a research-dedicated scanner
at the Alberta Children’s Hospital (Calgary, AB, Canada) by staff who
are highly skilled in pediatric neuroimaging. Anatomical images and
metabolite data were acquired using a 3T GE MR750w MR system with
a 32-channel head coil. Children were scanned while watching a movie
or during natural sleep; no sedation was used. T1-weighted anatomical
images were acquired using a spoiled gradient echo sequence (210 axial
slices; 0.9 x 0.9 x 0.9 mm? resolution, TR = 8.23 ms, TE = 3.76 ms, flip
angle = 12°, matrix size = 512x512, inversion time = 540 ms). These
images were reformatted to provide axial, sagittal, and coronal views at
the scanner which were used for placement of spectroscopy voxels. MRS
data were acquired using short echo time Point RESolved spectroscopy
(PRESS; TE = 30 ms, TR = 2000 ms, 96 averages, 20x20x15 mm vox-
els). A strong body of literature demonstrates the test-retest reliability
and stability of PRESS sequences and supports the validity of MRS mea-
surements for longitudinal research (Baeshen et al., 2020; Fayed et al.,
2009; Gasparovic et al., 2011; Soreni et al., 2010; Volk et al., 2018,
2019). MRS voxels were placed in either the anterior cingulate cortex
(ACQ) or in the left temporal-parietal area (LTP) by trained members
of the research team according to detailed instructions and reference
images. The ACC voxel was localized anterior to and at approximately
the same level as the genu of the corpus callosum viewed on a midsagit-
tal slice and consisted almost entirely of gray matter (Fig. 2). The LTP
voxel was localized to capture the left angular gyrus based on all three
image planes, and included portions of the supramarginal gyrus, pari-
etal operculum, and posterior superior temporal gyrus due to the extent
of the voxel (Fig. 2). The LTP voxel consisted of gray and white matter,
excluding CSF to the extent possible.

This data was acquired as part of a larger neuroimaging study in-
cluding multiple sequences. MRS data were acquired in the second half
of the protocol, and ~20% of cases (130 of 598 datasets) stopped scan-
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ning prior to the MRS sequence due to time constraints and/or excessive
motion.

2.4. MRS data processing and analysis

The PRESS acquisition was pre-processed with the FID-A toolbox
(Simpson et al., 2017). Pre-processing included coil combination, re-
moval of bad averages, frequency alignment, and phase correction, ac-
cording to recent recommendations (Near et al., 2020). Metabolites
were then fit using LCModel v6.3 (Provencher, 1993). The metabolites
of interest were: tNAA, tCr, tCho, mI and Glx. The basis set used for
quantification included alanine, ascorbate, aspartate, choline, citrate,
creatine, ethanol, GABA, glycerophosphocholine, glutathione, glucose,
glycine, glutamine, glutamate, water, ml, lactate, NAA, NAAG, phos-
phocholine, phosphocreatine, phosphoryl ethanolamine, scyllo-inositol,
taurine and beta-Hydroxybutyrate, simulated using the FID-A tool-
box (Simpson et al., 2017) with sequence specific timings and RF
pulse shapes. Fitted spectra were visually inspected for quality as-
surance and datasets with poor spectra were excluded from analy-
sis (ACC: n = 5; LTP: n = 6). Quantitative quality metrics (signal-
to-noise ratio [SNR] and linewidth [LW] for NAA) were obtained us-
ing the “op_getLW.m” and “op_getSNR.m” functions in FID-A. The
Gannet CoRegStandAlone function (Harris et al., 2015), which calls
spm12 segmentation (Ashburner and Friston, 2005), was used to quan-
tify tissue content within the MRS voxels by co-registering them to
the T1-weighted image acquired during the same scanning session.
Co-registration and segmentation outputs were visually inspected to
ensure accurate localization and segmentation of the MRS voxels.
Datasets in which MRS voxels were not accurately located in the ACC
or LTP were excluded from analysis (ACC: n = 3; LTP: n = 1). Ab-
solute metabolite values are expressed in molal units (moles/kg), as
per the approach recommended in the MRS consensus statement on
metabolite quantification (Near et al., 2020) and also described by
Gasparovic et al. (2006). This method accounts for the differential wa-
ter T1- and T2-relaxation in white matter, gray matter and CSF in
the voxel to enable absolute metabolite measurements. The scripts for
the correction were developed by DeMayo et al. (2023), and are pub-
licly available (https://github.com/HarrisBrainLab/TissueCorrections).
However, this approach does not address differences in metabolite con-
centrations between white matter and gray matter (as suggested in
Gasparovic et al. (2018)) as this ratio is not agreed upon for all metabo-
lites (and may change with development). For this reason, the gray mat-
ter tissue fraction was included as a covariate in analyses.

The gray matter tissue fraction of each MRS voxel was calculated
for each participant as the fraction of voxel volume composed of gray
matter divided by total tissue within the voxel (sum of the fractions of
voxel volume for gray matter (GM) and white matter (WM; formula:
fGM/[fGM + fWM]). This tissue fraction was applied as a fixed effect in
subsequent analyses to account for individual differences in tissue com-
position of the voxels to ensure that the effects observed in our models
are driven by age and not tissue content of the voxels. The gray matter
tissue fraction was maintained in final models only if including tissue
fraction significantly improved model fit. Our model-fitting approach is
detailed in the following section.

2.5. Data analysis

Prior to analysis, distributions of metabolite values were checked for
outliers by visually inspecting box plots and performing Rosner’s Test
for Outliers with the EnvStats R package (Millard, 2013). In addition to
the previous quality assurance, spectra of datasets identified as outliers
were visually inspected and excluded from analysis if artifacts were ap-
parent around the peak value for the given metabolite and/or Cramer-
Rao lower bounds estimates exceeded 20% (ACC: 1 dataset excluded
from analysis of mI and tCho, 1 excluded from ml only; LTP: 2 datasets
excluded from all analyses, 1 excluded from tNAA, 1 excluded from GIx,
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Fig. 1. Age at scan acquisition for the ACC (left) and LTP (right). Each scan is represented by a circle; each participant is shown in a different row with their scans

connected by a straight line. Inset tables indicate the number of participants who completed each number of visits.

4 excluded from ml). The distributions were visually checked using den-
sity plots before and after removal of outliers to confirm normal distri-
bution of the data, and that the data meet the normality assumption
required for Rosner’s Test.

Relationships between metabolite concentrations and age were
investigated using linear mixed-effects modeling with the Ilme4
(Bates et al., 2015) and ImerTest (Kuznetsova et al., 2017) packages in
RStudio version 2021.9.0.351 (RStudio Team, 2020). Datasets from the
ACC and LTP voxels were analyzed independently, and separate models
were fitted for each metabolite. First, linear growth models were defined

with metabolite concentration as the dependent variable, age as a fixed

effect, and participant as a random effect to account for repeated mea-
sures using the formula: metabolite ~ age + (1 | participant). GM tissue
fraction, sex, and the interaction between age and sex were sequentially
added to the linear growth models and compared to the previous model
to identify the best-fitting model for each metabolite. The best-fitting
models were selected based on the likelihood ratio test criterion with
alpha set to 0.05, maintaining the more parsimonious model when the
likelihood ratio test did not show significant differences in model fit.
False Discovery Rate (FDR) correction was performed within each re-
gion (ACC and LTP) to correct for running five models (Benjamini and
Hochberg, 1995). Both corrected and uncorrected results are reported.
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Fig. 2. Example voxel placement and spectra (raw data shown in black; spectra fitted with LCModel shown in red) for the anterior cingulate cortex (ACC; top) and

left temporo-parietal (LTP; bottom).

2.6. Longitudinal analysis

To test for nonlinear effects of age, we conducted additional anal-
ysis of participants in the LTP sample who had MRS data for >3 time
points. This analysis included 250 datasets from 51 subjects (23 females,
mean age = 5.91 years, SD = 1.91, age range: 2.49-11.13). Based on
model fitting for the full sample, we first fit mixed-effects models for
each metabolite with metabolite concentration as the dependent vari-
able, age and GM tissue fraction as fixed effects, and participant as a
random effect using the formula: metabolite ~ age + GM tissue frac-
tion + (1 | participant). A quadratic age term was then added (formula:
metabolite ~ age + GM tissue fraction + age? + (1 | participant)). The
best-fitting model for each metabolite was selected based on the like-
lihood ratio test criterion with alpha set to 0.05. Multiple comparisons
for running 5 models were corrected within each factor (e.g., age) using
FDR (Benjamini and Hochberg, 1995). Both corrected and uncorrected
p-values are reported.

2.7. Post-hoc analysis of quality metrics

We conducted follow-up analyses to tests relationships between age
and quality metrics (SNR and LW) using mixed-effects models. Quality
metrics that were significantly associated with age were then included
in post-hoc analysis of age-metabolite relationships to test whether the
effects were driven by data quality.
3. Results

3.1. Sample characteristics

Mean metabolite concentrations, GM tissue fractions, and quality
metrics for each MRS voxel are reported in Table 1.

3.2. Age effects in the anterior cingulate cortex (ACC)

The best fitting model for all metabolites measured in the ACC was
defined by the formula: metabolite ~ age + (1 | participant). GM tissue

Table 1

Descriptive statistics for concentrations of metabolites (mmol/kg), Cramer-
Rao Lower Bounds (CRLBs), gray matter tissue fraction (fGM/[fGM+fWM]),
linewidth and signal-to-noise ratio (SNR) in each voxel. “N obs.” indicates
total number of observations including longitudinal data within partici-
pants. Linewidth (FWHM) and SNR are reported for NAA.

ACC LTP

N obs. Mean SD N obs. Mean SD
tNAA (mmol/kg) 112 15.66 1.26 318 14.98 1.03
tCho (mmol/kg) 111 2.60 0.34 318 2.29 0.27
tCr (mmol/kg) 112 12.72 1.03 318 10.82  0.91
Glx (mmol/kg) 112 26.84 2.58 317 21.53 2.16
mI (mmol/kg) 110 7.7 1.52 314 6.38 1.18
tNAA (CRLB) 112 2.64 0.60 318 2.20 0.47
tCho (CRLB) 111 4.60 1.28 318 4.16 0.82
tCr (CRLB) 112 2.81 0.56 318 2.54 0.55
Glx (CRLB) 112 4.82 1.04 317 4.95 0.80
mI (CRLB) 110 12.28  5.36 314 11.51 4.67
GM Tissue Fraction 112 0.96 0.03 318 0.64 0.11
linewidth (Hz) 112 7.38 3.17 318 6.67 2.22
SNR 112 57.29 10.64 318 71.48 13.82

fraction and sex had no significant effects and did not improve model fit,
so these variables were not included in the final models. tNAA concen-
tration increased with age (beta = 0.25, p = .016) and tCho decreased
with age (beta = -0.07, p = .018). A trending decrease was found for mI
(beta = -0.22, p = .083), but this effect was not significant. The models
did not show significant age effects for tCr or Glx. Results are summa-
rized in Table 2 and depicted in Fig. 3.

3.3. Age effects in the left-temporo-parietal region (LTP)

The best-fitting model for all metabolites in the LTP included age
and GM tissue fraction as fixed effects, and was defined by the formula:
metabolite ~ age + tissue fraction + (1 | participant). Sex did not show
any significant effects and did not improve fit of any models.
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tCr (mmol/kg)

Table 2
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Summary of age effects in the ACC. Significant age effects (corrected for multiple comparisons) are presented in
bold. Total percent change for significant models based on predicted values at ages 2 and 8 years.

Age effect
Metabolite ~ N obs.  Intercept  beta [95% CI] Std. beta [95% CI] Punec. ProR % change predicted
tNAA 112 14.61 .25 [.05, 0.46] .23 [.04, 0.41] .016 .045 10.10
tCho 111 2.87 -0.07 [-0.12, -0.01] -0.22 [-0.4, -0.04] 018 .045  -14.67
tCr 112 12.31 .10 [-0.07, 0.27] .11 [-0.07, 0.3] 239 254  NA
Glx 112 25.82 .25 [-0.18, 0.68] .11 [-0.08, 0.29] 254 254 NA
ml 110 8.61 -0.22 [-0.47, 0.03] -0.16 [-0.35, 0.02] .083 138 NA
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Fig. 3. Relationships between age and metabo-
lite concentrations (mmol/kg) in the ACC.
Model fit lines shown in black for significant
age effects only; individual participants’ fit
lines shown in red and blue for participants
with multiple scans.
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Table 3
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Summary of age effects in the LTP. Significant age effects (corrected for multiple comparisons) are presented in bold. Total
percent change for significant models based on predicted values at ages 2 and 11 years.

Age effect
Metabolite N obs. Intercept  beta [95% CI] Std. beta [95% CI] Dunc. Dror % change predicted
tNAA 317 11.74 .18 [.12, 0.24] .33 [.22,.43] <0.001  <0.001 13.13
tCho 318 3.07 -0.05 [-0.06, -0.03] -0.34 [-0.45, -0.23] <0.001 <0.001 —-14.37
tCr 318 7.29 .05 [.01, 0.10] .11 [.01, 0.21] .025 .042 6.60
Glx 317 12.49 .04 [-0.07, 0.14] .03 [-0.06, 0.12] 497 621 NA
ml 314 5.58 0[-0.08, 0.07] 0[-0.12, 0.12] .958 .958 NA

Table 4

Mean concentrations of metabolites (mmol/kg) and mean gray mat-
ter tissue fraction (GM/[GM+WM]) in the participants with >3 LTP
datasets. “N obs.” indicates total number of observations accounting
for longitudinal data within participants.

N obs. Mean SD
tNAA 249 14.97 1.08
tCho 250 2.29 0.28
tCr 250 10.84 0.95
Glx 249 21.62 2.18
ml 247 6.40 1.20
GM Tissue Fraction 250 0.65 0.11

Our models showed age-related increases in tNAA (beta = 0.18,
p < .001) and tCr (beta = 0.05, p = .025). tCho concentration decreased
with age (beta = —0.05, p < 0.001). Age was not significantly associated
with ml or Glx. Results are summarized in Table 3 and depicted in Fig. 4.

3.4. Post-hoc analysis of quality metrics

We tested relationships between age and quality metrics (linewidth
and SNR of the NAA peak) and found that SNR increased with age in
the LTP dataset only (beta = 2.13, p < .001; Supplementary Table S1
& Fig. S1); no significant age effects were found for linewidth in either
voxel (Supplementary Tables S1 & S2). Thus, SNR of the NAA peak was
added to the models testing age-metabolite relationships in the LTP. Age
effects for tNAA and tCho remained consistent with the main analyses
(tNAA: beta = 0.16, p < .001; tCho: beta = —0.04, p < .001), however
the tCr effect was no longer significant (beta = 0.04, p = .118). Statistics
for metabolite-age effects for models including SNR as a covariate are
reported in Supplementary Table S3.

3.5. Analysis of nonlinear age effects in participants with LTP data from 3
or more time points

We conducted a follow-up analysis in a sub-set of participants who
completed >3 scans in the LTP (n = 51 subjects; total datasets = 250) to
test for nonlinear relationships between age and metabolite concentra-
tions. We first tested the linear age models controlling for tissue fraction
in this longitudinal sub-sample, then added a quadratic age term to see
if it significantly improved model fit.

Table 4

For tNAA and tCr, the quadratic age term did not improve model
fit, and the linear age effects were significant and positive (tNAA:
beta = 0.18, p < 0.001; tCr: beta = 0.07, p = 0.011), consistent with
the effects observed in the full sample. The quadratic age term sig-
nificantly improved model fit for tCho (beta,g. = —0.19, p,g <0.001;
betygery = 0.01, Pagerp = 0.011) and GIx (betayge = 1.17, pyge =0.001;
beta,gey = —0.08, pagery = 0.003). tCho decreased in early childhood,
then slowed and hit a predicted minimum at age 8.8 years. Glx showed
a modest increase across early childhood to peak at age 6.9 years fol-
lowed by a decrease. No significant linear or quadratic effects of age

were found for ml, consistent with the full LTP sample. Results are sum-
marized in Table 5 and depicted in Fig. 5.

4. Discussion

Here, we show that multiple brain metabolites (tNAA, tCho, tCr,
and Glx) continue to change substantially across early-middle childhood
(age 2-11 years), indicating that maturation continues after the rapid
development in infancy (Bliiml et al., 2013). These changes likely un-
derlie ongoing structural and functional brain development during this
age range. tNAA concentrations increased with age throughout child-
hood. This finding corroborates evidence from cross-sectional studies
(Bliiml et al., 2013; Costa et al., 2002; Degnan et al., 2014; Hashimoto
et al., 1995; Kadota et al., 2001; Kreis et al., 1993; van der Knaap et al.,
1990) and a smaller longitudinal study (Holmes et al., 2017), provid-
ing strong evidence that tNAA levels rise across childhood within indi-
viduals. Increases in tNAA may be related to several aspects of fiber
tract development as well as changes in metabolic activity. NAA is
highly concentrated in neuron bodies and axons, so increasing levels
of tNAA across childhood may indicate axonal development including
elongation, increasing axon diameter, and/or increasing axon packing
(Bliiml et al., 2013; Ross and Sachdev, 2004). This interpretation is con-
sistent with evidence from diffusion MRI studies, which show increases
in axon packing and fiber cross-section across childhood (Dimond et al.,
2020; Genc et al., 2017; Mah et al., 2017). Developmental increases
in tNAA could also reflect myelination, given that NAA is present at
substantial levels in myelin and oligodendrocyte cell bodies and plays
a role in the synthesis of myelin (Nordengen et al., 2015; Rae, 2014).
In gray matter, increasing tNAA levels could reflect elevated metabolic
activity (Rae, 2014) and/or intracortical myelination, which continues
to develop through childhood and adolescence (Norbom et al., 2020).
In addition, NAAG may account for some of the observed increase in
tNAA, and could mark metabolic activity and availability for synthe-
sis of glutamate (Rae, 2014). Baslow (2015) proposed a role of NAAG
metabolism in complex task performance, so NAAG may increase as chil-
dren engage in more cognitively demanding tasks (e.g., reading, math).
This is especially relevant in the two regions investigated here, which
are involved in executive functioning and language/reading processes
that develop throughout childhood (Braver et al., 2021; Numssen et al.,
2021; Richlan, 2012).

tCho levels decreased with age in both regions studied. We observed
a curvilinear trajectory in the longitudinal sub-sample, such that tCho
decreased most rapidly in early childhood and stabilized in middle
childhood, reaching a minimum value just before 9 years. Prior stud-
ies have shown the most rapid tCho decreases in the first two years of
life (Bliiml et al., 2013; Degnan et al., 2014; Hashimoto et al., 1995;
Kreis et al., 1993; Vigneron, 2006), coinciding with a period of rapid
myelination (Deoni et al., 2011). Phosphorylcholine, a main constituent
of the tCho signal, is incorporated into myelin sheath macromolecules
during myelination (Bliiml et al., 1999). This process may drive devel-
opmental decreases in tCho. Cross-sectional evidence has shown that
tCho declines into early childhood, but our longitudinal analysis sug-
gests that minimum tCho levels are reached several years later than pre-
viously thought (Bliiml et al., 2013). Much like the rapid tCho changes
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A B Fig. 4. Relationships between age and metabo-
lite concentrations in the LTP, controlling for
tissue fraction. Model fit lines shown in black
for significant age effects only; individual par-
ticipants’ fit lines shown in red and blue for par-
ticipants with multiple scans.
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Table 5

Summary of linear and quadratic age effects in sub-sample of participants with >3 scans in the LTP. Significant age and age® effects (corrected for multiple
comparisons) are presented in bold.

Age effect Quadratic age effect
Metabolite N obs. Intercept  beta [95% CI] Std. Beta [95% CI] Punc. ProR beta[95% CI] Std. Beta[95% CI] Punc. ProR
tNAA 249 11.62 0.18 [.11, 0.25] .32 [.19, 0.44] <0.001 <0.001 NA NA NA NA
tCho 250 3.41 -0.19 [-0.29,-0.09] -1.31 [-2.03, -0.59] <0.001 <0.001 .01 [.00, 0.02] 1.0 [.27,1.73] .008 .011
tCr 250 6.97 .07 [.02, 0.13] .15 [.03, 0.26] .011 .01 NA NA NA NA
Glx 249 9.43 1.17 [.48, 1.86] 1.02 [.41, 1.62] .001 .001 -0.08 [-0.14, -0.03] -0.98 [-1.6, -0.37] .002 .003
ml 247 5.46 0 [-0.09,.08] 0 [-0.14, 0.13] .955 .955 NA NA NA NA




M.V. Perdue, M.M. DeMayo, T.K. Bell et al.

tNAA (residual)

Neurolmage 274 (2023) 120087

Fig. 5. Linear and quadratic relationships be-
tween age and metabolite concentrations in the
LTP sub-sample with >3 scans. Model fit lines
shown in black for significant effects only; in-
dividual participants’ fit lines shown in red and
blue.
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in the first two years of life, decreasing tCho in childhood coincides
with ongoing myelination in major white matter tracts and within the
cortex (Lebel and Deoni, 2018; Norbom et al., 2020). The curvilinear
pattern of decrease in our longitudinal sub-sample aligns with a slow-
ing of myelination in childhood (Lebel and Deoni, 2018). Importantly,
tCho effects are not limited to myelin, and tCho reflects turnover and
content of membranes more broadly and may be a marker of cell density
(Rae, 2014). Thus, tCho decreases in gray matter could reflect changes
in cell density in addition to intracortical myelination.

We found a small age-related increase in tCr levels in the LTP re-
gion, with linear effects in both the full sample and longitudinal sub-

567 8 9101112
Age (years)

* Male
* Female

sample. However, this effect did not remain significant when including
SNR in the model; likely because the inclusion of SNR accounted for
a substantial amount of age-related variance for this already small ef-
fect. An age-related increase in tCr is consistent with gradual age-related
changes reported in prior studies (Bliiml et al., 2013; Degnan et al.,
2014; Girard et al., 2006; Holmes et al., 2017; Kreis et al., 1993). tCr
is involved in maintaining energy homeostasis in the brain and is abun-
dant in areas of high synaptic activity (Rae, 2014); increasing tCr across
development may reflect greater energy demands as the brain matures
(Bliiml et al., 2013). tCr levels may also be related to the amount of lo-
cal synaptic activity (Rae, 2014). Our result may be associated with age-
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related increases in LTP activity, consistent with a prior finding from our
lab which showed increases in resting-state local activity and global con-
nectivity across early childhood in a corresponding region (Long et al.,
2017). Age-related effects in tCr levels raise an important methodolog-
ical consideration: tCr has been used as an internal reference for calcu-
lating metabolite ratios under the assumption that tCr levels are con-
sistent over time and between individuals. However, this assumption is
increasingly shown to be incorrect, hence a preference for water refer-
encing (Near et al., 2020; Rae, 2014). The age-related increase in tCr
observed here confirm that tCr-referencing is unsuitable in children.

Our longitudinal sub-sample analysis revealed a significant nonlin-
ear pattern of age-related changes in Glx, even though no significant
linear relationships were found in the full sample for either voxel. In
the longitudinal sample, Glx increased gradually in early childhood,
peaked at age 6.9 years, and subsequently declined. Prior studies have
shown age-related increases in Glx in infancy and childhood, but find-
ings have been mixed with regard to the timing of Glx fluctuation
(Bliiml et al., 2013; Degnan et al., 2014; Holmes et al., 2017). Stud-
ies of adolescents and young adults have shown age-related decreases
in Glu-and Glx (Devito et al., 2007; Ghisleni et al., 2015; Héadel et al.,
2013; Marsman et al., 2013; Perica et al., 2022; Raininko and Matts-
son, 2010; Shimizu et al., 2017; Volk et al., 2019), indicating that the
decline in Glx observed in the older range of our sample likely con-
tinues through adolescence and into adulthood. Our longitudinal data
provide additional power over prior cross-sectional and smaller stud-
ies to detect nonlinear patterns of development based on change within
individuals, and to predict the age at which Glx levels peak (6.9 years
based on our fitted model). The individual fit lines shown in Fig. 5 re-
veal variability in individual trajectories (n and U shapes) and ages at
which Glx levels peak, highlighting the inter-individual variability in
development. These individual growth patterns are of interest for fu-
ture work investigating metabolites development in relation to cogni-
tive and behavioral traits. Notably, Glx measurements exhibit higher
levels of interindividual variability and measurement error relative to
other metabolites (Soreni et al., 2010), so replication of this finding in
an independent longitudinal sample is needed.

Glx may reflect metabolism, excitatory neural activity/excitability,
and neuronal synchronization (Rae, 2014; Rodriguez et al., 2013;
Stagg et al., 2011), but the interpretation of developmental changes in
Glx levels is complicated due to the multifaceted role of glutamate as
a metabolite and neurotransmitter. As a result, simultaneous develop-
mental processes can involve co-occurring increases and decreases in
Glx. For example, increasing Glx related to increasing excitatory neural
activity may be counterbalanced by decreasing Glx related to pruning.
The balance of these processes likely varies over time and across brain
regions, contributing to interindividual variability in Glx measurements.
The contribution of glutamine to the MRS signal further complicates
matters, but the isolated Gln signal was not sufficiently reliable to facil-
itate examination of independent patterns of Glu and Gln development
in our study. This should be a target of future research given that op-
posite directions of change in Glu and Glnhave been observed across
adulthood (Hédel et al., 2013) and in a rat model of infancy-early child-
hood development (Ramu et al., 2016). Glu-and Gln-are also involved
in the synthesis of GABA (Rae, 2014), and could thus be associated with
developmental changes in GABA (Porges et al., 2021).

Our finding of initial increase and later decrease in Glx may reflect
tuning of excitability in neural networks that support cognition and lan-
guage. An optimal balance of excitatory and inhibitory activity is needed
for efficient functioning (Ferguson and Gao, 2018). Hyperexcitability
due to imbalance in the glutamatergic system has been proposed as a
source of impairment in developmental disorders including autism spec-
trum disorder (Rubenstein, 2010) and reading disorder (Hancock et al.,
2017). In contrast, over-inhibition has been associated with stress and
affective disorders (Page and Coutellier, 2019). The initial phase of in-
creasing Glx observed here coincides with our previous findings of in-
creasing activity and connectivity of the LTP from ages 2 to 6 years
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in an overlapping sample of participants (Long et al., 2017). The de-
cline in Glx over the later ages of our sample (7-12 years) may reflect
a phase of balancing excitatory and inhibitory activity through pruning
of excitatory glutamatergic synapses (Lieberman et al., 2019) and/or in-
creasing inhibitory GABAergic activity (Porges et al., 2021). Our data
likely captures only the beginning of this phase; recent evidence shows
declining Glu/Cr and increasing balance of Glu/Cr and GABA/Cr from
adolescence into early adulthood (Perica et al., 2022).

We did not find significant changes in mlI across the age-range
studied, though we observed a trending decrease in the ACC dataset
(p=.083). Prior cross-sectional studies show a decline in ml from in-
fancy to adulthood (Bliiml et al., 2013; Degnan et al., 2014; Kreis et al.,
1993, 2002), with effects likely driven by the rapid changes that occur
in utero and during infancy (Girard et al., 2006; Kreis et al., 1993). mI
concentration varies regionally across the brain and is higher in gray
matter than white matter (Rae, 2014), which may explain the presence
of an age-related trend in the ACC, but not the LTP in our study. Further
research is needed to test for region- and tissue-specific changes in mI
from infancy through childhood.

We did not find any sex effects or interactions in our models, con-
sistent with a previous longitudinal study in an overlapping age range
(Holmes et al., 2017). Nonetheless, the null findings do not provide con-
clusive evidence for a lack of sex differences in metabolite development
and future studies should continue to examine possible sex-related ef-
fects, especially in adolescent and adult samples, as such effects may
emerge later in development.

5. Limitations

Our study was limited by several methodological constraints.
Metabolite levels differ between gray matter and white matter
(Rae, 2014), and differences in developmental patterns have been re-
ported based on tissue type (Bliiml et al., 2013). We corrected for cere-
brospinal fluid and tissue specific relaxation effects in the calculation
of metabolite concentrations according to recommended best practice
(Gasparovic et al., 2006; Near et al., 2020). Gray matter tissue frac-
tion was included as a covariate in our statistical models for the LTP
data to control for individual differences in the tissue content of the
voxels (tissue fraction improved model fit for the LTP data, but not for
the ACC data, as the ACC voxels consisted almost exclusively of gray
matter). Nonetheless, we cannot draw conclusions about different pat-
terns of metabolite development in gray and white matter. In addition,
the ACC and LTP datasets differed in numbers of participants, numbers
of longitudinal timepoints, and ages at data collection, so the region-
specific effects we report require replication in matched datasets. Fur-
ther, we cannot generalize our findings to other regions of the brain.
Data quality is a concern in young participants, and differences in data
quality across development may have impacted results. We made an ef-
fort to ensure best data quality based on most recent recommendations
for data processing and analysis, including retrospective frequency and
phase correction and analysis with a customized basis set (Near et al.,
2020; Simpson et al., 2017), along with visual inspection of all fitted
spectra to confirm quality. Post-hoc analysis including quality metrics
(SNR and linewidth) indicate that effects of data quality on our results
were minimal.

6. Conclusion

This study provides novel insight to the development of brain
metabolites across early-middle childhood, building on prior work that
has mainly focused on infancy. We found significant and substantial age-
related effects in levels of tNAA and tCho across early-middle childhood
in the ACC and LTP. Additional regional effects were found for tCr and
Glx in the LTP. In addition to the overall model fits, our longitudinal data
reveal inter-individual variability in the directions of change and ages
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of inflection points in metabolite development. These developmental ef-
fects parallel the structural and functional brain development of child-
hood (Faghiri et al., 2018; Frangou et al., 2021; Lebel and Deoni, 2018;
Long et al., 2017; Norbom et al., 2021; Reynolds et al., 2019). Future
research that integrates other imaging modalities will help to elucidate
the mechanisms underlying these developmental changes. This knowl-
edge can further be linked to cognitive, behavioral, and clinical traits to
trace the roots of disorders and diseases that emerge in childhood and
provide new directions for intervention and treatment.
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