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Risk budgeting is an effective risk management tool that a decision-maker uses to create a risk portfolio with 
a pre-determined risk profile. This paper provides a rich discussion about the theory and practice on how to 
construct risk budgeting portfolios in a variety of settings. We revisit the usual portfolio selection setting with 
and without clustered risk budgeting targets, and we then provide an approach on how to extend the usual setting 
to situations in which a non-hedgeable risk is present or fixed sub-portfolios are aimed by the decision-maker. 
Another study of this paper is how to include risk budgeting targets in risk sharing, which has not been discussed 
in the literature. Implementation issues are also discussed, and some bespoke algorithms are provided to identify 
such risk budgeting portfolios. Numerical experiments are performed for real-life financial data, and we explain 
the risk mitigation effect of our proposed portfolio. Specifically, financial risk budgeting portfolios with social 
responsibility targets are constructed.

1. Introduction

The idea of risk diversification can be traced back to the origins of 
probability theory, mainly to Bernoulli’s 1954 paper (Bernoulli, 1954). 
Diversification has been reconsidered in a portfolio selection set-up by 
Markowitz in 1952 and it has been ever since the cornerstone of mod

ern finance (Markowitz, 1999). Capital markets and insurance markets 
originated and evolved somehow differently, but recently, there is an 
enhanced commonality in the approaches taken to manage risk in the 
two markets (Cummins and Weiss, 2016; Hainaut, 2017; Gatzert et al., 
2017). The integration was motivated and facilitated by optimization 
techniques applied to the decision making on constructing and manag

ing a portfolio of financial assets or a portfolio of insurance liabilities. 
The focus has shifted from risk optimization to Risk Budgeting/Parity 
(Roncalli, 2013), since the latter aims to distribute the overall risk in a 
pre-defined way across all risks. Risk Parity (RP), also known as Equal 
Risk Contribution,1 is a special case of Risk Budgeting (RB); for RP, all 
risks are allocated to have the same risk contribution, and represents 
the most common RB strategy; for RB, the risks contribute to the overall 
risk in pre-specified portions which are not necessarily to be equal.

* Corresponding author at: Bayes Business School, City St George’s, University of London, 106 Bunhill Row, EC1Y 8TZ, UK.

E-mail addresses: asimit@city.ac.uk (V. Asimit), chongwf@hku.hk (W.F. Chong), r.s.tunaru@icmacentre.ac.uk, r.s.tunaru@reading.ac.uk (R. Tunaru), 
feng.zhou@city.ac.uk, feng.zhou@mrc-bsu.cam.ac.uk (F. Zhou).

1 This should not be mistaken for Equal Weighted (EW) portfolio that is not a risk-based allocation strategy since each risk has the same weight in the portfolio, 
irrespective of the historical data.

The existing RB literature discusses RB/RP portfolios as a valuable 
alternative to the well-known portfolio selection methods that focus on 
reducing the overall risk of a portfolio. Notable work include Maillard 
et al. (2010) and other papers that have provided practical solutions for 
building RB/RP portfolios when the risk preferences are ordered by a 
specific risk measure; specifically, variance and standard deviation risk 
preferences are discussed in (Roncalli, 2013; Spinu, 2013; Bai et al., 
2016), Conditional-Value-at-Risk and expectiles risk preferences are inves

tigated in Mausser and Romanko (2018) and Bellini et al. (2021) respec

tively, while a larger class of risk preferences is investigated in Asimit et 
al. (2025). Such papers provide bespoke numerical methods for real-life 
implementations of RB/RP portfolios. Besides this strand of research, 
Roncalli and Weisang (2016) shows the connection between RB portfo

lios and risk factors, while Kaucic (2019) and Anis and Kwon (2022) 
consider portfolio construction under some cardinality constraints to 
achieve lower corresponding portfolio overhead. Recently, da Costa et 
al. (2023) and Cetingoz et al. (2024) discuss RB portfolios’ existence and 
uniqueness for a large class of risk measures.
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Portfolio selection is a risk management exercise that is more specific 
to financial assets, and it does not take into account any risk transfer 
from the (portfolio) risk holder to third parties; such risk shifting is 
known as risk sharing (RS). Conceptually, RS equally applies to financial 
and insurance liabilities, though the RS literature tends to focus more 
on portfolios of insurance liabilities, since RS is an effective risk man

agement exercise for insurance carriers to meet the regulatory require

ments and their shareholders’ objectives. Moreover, RS can not only 
improve capital allocation, but also stimulate further financial devel

opment (Pagano, 1993; Barattieri et al., 2020). RS problems have been 
widely studied in the literature (Ludkovski and Young, 2009; Asimit and 
Boonen, 2018; Asimit et al., 2020, 2021), and this strand of research is 
much related to intra-group risk transfers, in which an insurance group 
instructs its separate legal entities, i.e. risk holders, on sharing their li
abilities (Asimit et al., 2013, 2016; Weber, 2018; Hamm et al., 2020).

Our contributions to the literature can be described as follows. First, 
we investigate RB strategies for one risk holder across many assets i) 
with or without risk contribution constraints on clusters of risks, and 
ii) with background or non-hedgeable risk. Then, we consider the RS 
problem between two risk holders with risk budgeting constraints. We 
provide theoretical results demonstrating that solutions for such prob

lems exist for a large class of risk preferences, and we provide bespoke 
algorithms to identify these strategies in a practical context.

The paper is organized as follows. Section 2 provides the necessary 
background, while Section 3 contains the main theoretical results. Fur

ther, Section 4 provides extensive numerical exemplifications of our 
theoretical results, including a data analysis based on a unique database 
that helps us construct RB/RP portfolios with socially responsible invest

ment (SRI) constraints. Section 5 summarizes with our conclusions. All 
proofs are relegated in Appendix A, while further details about the al

gorithm and data used in Section 4 are provided in Appendix B and 
Appendix C, respectively.

2. Problem formulation

Throughout this paper, the economy field is represented by (Ω, ,ℙ), 
an atomless probability space, endowed with 𝐿0 ∶=𝐿0(Ω, ,ℙ), the set 
of all real-valued random variables on this probability space. A generic 
random variable 𝑌 ∈𝐿0 represents the future loss of a financial asset or 
an insurance liability. Let 𝐿𝑞 , 𝑞 ∈ (0,∞), be the set of random variables 
with finite 𝑞𝑡ℎ moment, and 𝐿∞ be the set of bounded random variables.

A risk measure 𝜑 is a function that maps an element of 𝐿0 to an ex

tended real number, i.e., 𝜑 ∶𝐿0 →ℜ ∶= [−∞,∞]. We recall below some 
properties for a generic risk measure. These properties are well-known 
in the literature; an extensive introduction on risk measures could be 
found in Föllmer and Schied (2011).

(P1) Homogeneity of order 𝜏 > 0: 𝜑 (𝑐𝑌 ) = 𝑐𝜏𝜑(𝑌 ) 

for any 𝑌 ∈𝐿0 and 𝑐 ≥ 0;

(P2) Convexity: 𝜑(𝑎𝑌1 + (1 − 𝑎)𝑌2) ≤ 𝑎𝜑(𝑌1) + (1 − 𝑎)𝜑(𝑌2) 

for any 𝑌1, 𝑌2 ∈𝐿0 and 𝑎 ∈ [0,1];

(P3) Shift invariance: 𝜑(𝑌 + 𝑐) = 𝜑(𝑌 ) 

for any 𝑌 ∈𝐿0 and 𝑐 ∈ℜ ∶= (−∞,∞) ;

(P4) Translation invariance: 𝜑 (𝑌 + 𝑐) = 𝜑(𝑌 ) + 𝑐 

for any 𝑌 ∈𝐿0 and 𝑐 ∈ℜ.

Three risk measures are often recalled in this paper, which are stan

dard deviation, variance, and Conditional-Value-at-Risk (CVaR), given 
that they are well-defined in a set 𝐿0 , 𝐿𝑞 , 𝑞 ∈ (0,∞), or 𝐿∞. For any 
𝑝 ∈ (0,1), CVaR at the probability level 𝑝 is defined by CVaR𝑝(𝑌 ) ∶=
inf 𝑡∈ℜ

(
𝑡+ 1 

1−𝑝𝔼
[
(𝑌 − 𝑡)+

])
, where (⋅)+ ∶= max(⋅,0) on ℜ. Table 1

summarizes whether each of the risk measures satisfies a property 
above. 

Table 1
Properties of standard deviation, variance, and 
Conditional-Value-at-Risk.

Risk measure 𝜑 P1 (𝜏) P2 P3 P4 
Standard deviation ✓ (1) ✓ ✓
Variance ✓ (2) ✓ ✓
CVaR at level 𝑝 ∈ (0,1) ✓ (1) ✓ ✓

In this paper, we study two RB problems, which are respectively 
formulated for one risk holder in Section 2.1, and for two risk holders 
in Section 2.2.

2.1. RB for one risk holder

We first define the RB problem of one risk holder (e.g. investor) 
that holds a portfolio of (e.g. assets with) 𝑑 ≥ 2 risks, i.e., X ∶=(
𝑋1,𝑋2,… ,𝑋𝑑

)𝑇
, where 𝑋𝑘, for 𝑘 ∈ {1,2,… , 𝑑}, represents the fu

ture loss of the 𝑘𝑡ℎ risk. A portfolio allocation vector is denoted as 
𝜶 ∶=

(
𝛼1, 𝛼2,… , 𝛼𝑑

)𝑇
, where 𝛼𝑘 represents the proportion of the 𝑘𝑡ℎ

risk in the portfolio. Therefore, the aggregate position of the risk holder 
is given as 𝜶𝑇X. Let 𝜑 be the risk measure that orders this risk holder’s 
risk preferences, and thus the overall portfolio risk is  (𝜶) ∶= 𝜑

(
𝜶
𝑇X

)
. 

We assume that the risk holder must hold these risks and does not short 
sell any of them, and hence 𝜶 ∈ℜ𝑑

++ ∶= (0,∞)𝑑 . Since 𝜶 are the pro

portions, any admissible 𝜶 ∈Δ𝑑 ∶= {𝜶 ∈ℜ𝑑
++ ∶ 1𝑇𝜶 = 1}.

Suppose that the risk measure 𝜑 is homogeneous of order 𝜏 > 0. By 
Euler’s Homogeneous Function Theorem, for any 𝜶 ∈Δ𝑑 ,

 (𝜶) =
𝑑∑
𝑘=1

𝑘(𝜶), with 𝑘(𝜶) ∶=
1 
𝜏
𝛼𝑘
𝜕 
𝜕𝛼𝑘

(𝜶) . (2.1)

Therefore, 𝑘(𝜶) represents the risk contribution by the 𝑘𝑡ℎ risk to the 
overall portfolio risk  (𝜶), and consequently 𝑏𝑘 (𝜶) ∶=𝑘(𝜶)∕ (𝜶)
represents the proportion of such risk contribution to the overall risk. To 
summarize, given an admissible allocation vector 𝜶 ∈ Δ𝑑 , the risk con

tribution proportion vector b (𝜶) ∶=
(
𝑏1 (𝜶) , 𝑏2 (𝜶) ,… , 𝑏𝑑 (𝜶)

)𝑇 ∈Δ𝑑 is 
determined.

The RB problem of the risk holder is essentially an inverse problem 
of the above. Given a pre-specified risk contribution proportion vector 
b ∶=

(
𝑏1, 𝑏2,… , 𝑏𝑑

)𝑇 ∈ Δ𝑑 , the risk holder would like to determine an 
admissible allocation vector 𝜶 (b) ∈ Δ𝑑 such that (2.1) holds. This is 
formalized in Definition 1.

Definition 1. Let b ∈Δ𝑑 . An allocation strategy 𝜶 ∈Δ𝑑 is said to be RB 
if

𝑘(𝜶) = 𝑏𝑘 (𝜶) for all 𝑘 ∈ {1,2,… , 𝑑} , 

where 𝑘(𝜶) is given in (2.1).
(2.2)

For any b ∈ Δ𝑑 , define (b) ∶= {𝜶 ∈ Δ𝑑 ∶ 𝜶 is RB} as the set of 
RB portfolios. In particular, if 𝑏𝑘 = 1∕𝑑, for all 𝑘 ∈ {1,2,… , 𝑑}, a RB 
allocation strategy 𝜶 ∈((1∕𝑑)1) is said to be RP.

Note that the set of RB portfolios depends on not only the given risk 
contribution proportion vector b, but also the risk holder’s risk mea

sure 𝜑, which is assumed to be homogeneous of order 𝜏 > 0, via the risk 
contribution terms 𝑘(⋅), for 𝑘 ∈ {1,2,… , 𝑑}, and the overall port

folio risk  (⋅). Table 2 summarizes the closed-form risk contributions 
for the three previously-mentioned risk measures, provided that these 
are well-defined.2 From this table, it is not difficult to deduce that the 

2 For example, Var
(
𝜶
𝑇X

)
≠ 0 is needed for the standard deviation case which 

happens only in the trivial case when X is degenerated. The risk contributions 
under the cases of variance and Conditional Value-at-Risk are always well

defined.
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Before Sharing

𝑋1

After Sharing

𝛼11𝑋1

𝛼12𝑋1

RH1

RH2

Before Sharing

𝑋2

After Sharing

𝛼21𝑋2

𝛼22𝑋2

RH1

RH2

Fig. 1. Risk sharing flowchart, where RH1 and RH2 denote the first and second risk holders. 

Table 2
Individual risk contributions for some well-known risk mea

sures.

Risk measure 𝜑 Individual risk contribution 𝑘 (⋅)

Standard deviation Cov
(
𝛼𝑘𝑋𝑘,𝜶

𝑇X
)
∕
√

Var
(
𝜶
𝑇X

)
Variance Cov

(
𝛼𝑘𝑋𝑘,𝜶

𝑇X
)

CVaR at level 𝑝 ∈ (0,1) 𝔼
[
𝛼𝑘𝑋𝑘|𝜶𝑇X ≥ VaR𝑝

(
𝜶
𝑇X

) ]
RB allocation strategies based on standard deviation and variance risk 
measures are equivalent.

Various numerical solutions have been proposed for computing RB 
portfolios in Definition 1. Spinu (2013) showed that the RB portfolios 
could be written as an efficient convex optimization problem, which 
is a much simpler numerical problem than solving the system of non

linear equations in (2.2), if the risk measure 𝜑 is given by the variance 
(or the standard deviation). The CVaR risk measure setting is discussed 
in Mausser and Romanko (2018), while Bellini et al. (2021) illustrates 
the expectile risk measure case; both papers provide computationally 
efficient algorithms that make the RB strategies to be implementable in 
practice, even for a relatively large number of risks.

2.2. RB for two risk holders

We now define a RS problem between two risk holders with RB con

straints. Let 𝑋𝑖 ∈ 𝐿0 be the pre-transfer random loss for the 𝑖𝑡ℎ risk 
holder, where 𝑖 ∈ {1,2}. In this setting, there are in total 𝑑 = 2 risks.

The risk holders aim to share their risks. Let 𝛼𝑖𝑗 be the proportion 
of the loss 𝑋𝑖, which is held by the 𝑖𝑡ℎ risk holder to be transferred 
to the 𝑗𝑡ℎ risk holder, where 𝑖, 𝑗 ∈ {1,2}; 𝛼𝑖𝑖 represents the proportion 
being retained by the 𝑖𝑡ℎ risk holder. Therefore, the post-transfer random 
loss held by the 𝑗𝑡ℎ risk holder is given by 𝛼1𝑗𝑋1 + 𝛼2𝑗𝑋2. A pictorial 
representation of the risk sharing is illustrated in Fig. 1.

For the 𝑗𝑡ℎ risk holder, where 𝑗 ∈ {1,2}, its risk allocation vector is 
denoted as 𝜶𝑗 ∶=

(
𝛼1𝑗 , 𝛼2𝑗

)𝑇
. Note that 𝜶1,𝜶2 ∈ [0,1] and 𝜶1 +𝜶2 = 1. 

This RS exercise aims to achieve a right balance of the risks between the 
risk holders; the price of the RS could be decided after the allocation is 
agreed. Therefore, the aggregate post-transfer risk positions for the first 
and the second risk holders are respectively 𝜶𝑇1 X and 𝜶𝑇2 X, where the 
pre-transfer risk vector is denoted as X ∶= (𝑋1,𝑋2)𝑇 .

Let 𝜑𝑗 be the risk measure that orders the risk preferences of the 𝑗𝑡ℎ
risk holder, where 𝑗 ∈ {1,2}. Then, the post-transfer overall risks for the 
first and the second risk holders are respectively 1

(
𝜶1

)
∶= 𝜑1

(
𝜶
𝑇
1 X

)
and 2

(
𝜶2

)
∶= 𝜑2

(
𝜶
𝑇
2 X

)
. Assuming that both risk measures 𝜑1, 𝜑2 are 

homogeneous of order 𝜏 > 0, the Euler’s Homogeneous Function Theo

rem implies that, for any 𝜶1,𝜶2 ∈ [0,1] such that 𝜶1 + 𝜶2 = 1, and for 
each 𝑗 ∈ {1,2},

𝑗

(
𝜶𝑗

)
=

2 ∑
𝑖=1 

𝑖𝑗 (𝜶𝑗 ), with 𝑖𝑗

(
𝜶𝑗

)
∶= 1 

𝜏
𝛼𝑖𝑗

𝜕𝑗

𝜕𝛼𝑖𝑗

(
𝜶𝑗

)
. (2.3)

Herein, 𝑖𝑗

(
𝜶𝑗

)
is the risk contribution from the 𝑖𝑡ℎ risk holder to the 

post-transfer overall risk 𝑗

(
𝜶𝑗

)
of the 𝑗𝑡ℎ risk holder; one could then, 

again, define 𝑏𝑖𝑗
(
𝜶𝑗

)
∶=𝑖𝑗

(
𝜶𝑗

)
∕𝑗

(
𝜶𝑗

)
be the proportion of such 

risk contribution to the 𝑗𝑡ℎ risk holder’s overall risk. Given a pair of risk 
allocation vectors of the first and the second risk holders 𝜶1,𝜶2 ∈ [0,1]
such that 𝜶1 +𝜶2 = 1, the 𝑗𝑡ℎ risk holder’s risk contribution proportion 
vector is given by b𝑗

(
𝜶𝑗

)
∶=

(
𝑏1𝑗

(
𝜶𝑗

)
, 𝑏2𝑗

(
𝜶𝑗

))𝑇 ∈Δ2.

The RS problem between the two risk holders with RB constraints is 
an inverse problem of the above, which is formalized in Definition 2, and 
is in line with Definition 1 for the case of one risk holder.

Definition 2. Let b𝑗 ∶=
(
𝑏1𝑗 , 𝑏2𝑗

)𝑇 ∈ Δ2, for 𝑗 ∈ {1,2}. A proportional 
risk sharing 

(
𝜶1,𝜶2

)
, that is 𝜶1,𝜶2 ∈ [0,1] such that 𝜶1 +𝜶2 = 1, is said 

to be RB if

𝑖1
(
𝜶1

)
= 𝑏𝑖11

(
𝜶1

)
and 𝑖2

(
𝜶2

)
= 𝑏𝑖22

(
𝜶2

)
(2.4)

for all 𝑖 ∈ {1,2}, where 𝑖𝑗

(
𝜶𝑗

)
is given in (2.3).

3. Main theoretical results

This section provides the main theoretical results on the RB problems 
for one risk holder and two risk holders formulated in Sections 2.1 and 
2.2. For the case of one risk holder, a clustered variant is provided in 
Section 3.2, and a variant with background risk or fixed sub-portfolios 
is discussed in Section 3.3.

3.1. Standard RB for one risk holder

The following theorem finds a RB portfolio in Definition 1. It ex

tends Theorem 4 of Bellini et al. (2021), which is focused on expectiles 
for the risk measure 𝜑. Our theorem’s proof is different from that of 
Theorem 4.1 in Asimit et al. (2025). In particular, the proof herein, to 
show that a solution of the corresponding optimization problem is an 
interior point, provides new elements which are useful to show for later 
results on clustered RB/RP for one risk holder, as well as RB for two risk 
holders, i.e., risk sharing.

Theorem 3. Let b ∈Δ𝑑 . Assume that the risk measure 𝜑 is homogeneous of 
order 𝜏 ≥ 1 and convex, and satisfies that

inf 
x∈Δ𝑑

(x) > 0. (3.1)

For any 𝜆 > 0, the following instance

min 
x∈ℜ𝑑++

1 
𝜏
(x) − 𝜆

𝑑∑
𝑘=1
𝑏𝑘 log𝑥𝑘, (3.2)

admits a unique solution, x∗(𝜆,b), that is an interior point of ℜ𝑑
++. If (x) is 

differentiable at x∗(1,b), then 𝜶∗(b) ∶= x∗(𝜆∗,b) = x∗(1,b)∕1𝑇 x∗(1,b) ∈
(b), where 𝜆∗ =

(
1𝑇 x∗(1,b)

)−𝜏
.
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While Theorem 3 solves a RB allocation strategy, an approximation 
for finding all RB strategies could be achieved by the Least Squares Esti

mation (LSE) formulation, which is defined in Roncalli (2013) as follows:

min 
𝜶∈Δ′

𝑑

𝑑∑
𝑘=1

(
𝑘(𝜶) − 𝑏𝑘(𝜶)

)2
, (3.3)

where Δ′
𝑑
∶= {𝜶 ∈ℜ𝑑

+ ∶ 1𝑇𝜶 = 1} is the standard unit 𝑑-simplex, and 
where ℜ𝑑

+ ∶= [0,∞)𝑑 . Note that, if there exists a 𝑘0 ∈ {1,2, .… , 𝑑} such 
that 𝛼𝑘0 = 0, then 𝑘0

(𝜶) = 0, and in turn 𝑏𝑘0 = 0 which contradicts 
the fact that b ∈ Δ𝑑 . Therefore, (3.3) yields the same set of solutions 
irrespective of the feasibility set choice, i.e., Δ𝑑 or Δ′

𝑑
, but Δ′

𝑑
is pre

ferred in numerical optimization. Bai et al. (2016) shows that, when the 
risk measure 𝜑 is variance, (3.3) could be efficiently solved for approx

imating all RB allocation strategies. In the next section, we make use of 
the same LSE methodology on clustered risk budgeting/parity for one risk 
holder.

3.2. Clustered RB for one risk holder

A standard RB allocation assumes a pre-specified risk contribution 
proportion for each individual risk as explained earlier; in this case, 
the dimension of the pre-specified proportion vector b has to be the 
same as that of the risk vector X. This standard RB formulation can be 
generalized to the so-called Clustered Risk Budgeting (CRB), where the 
risks in X are first clustered, and then a pre-specified risk contribution 
proportion applies to each cluster instead of each individual risk; that 
is, the number of pre-specified proportions in b could be less than the 
number of risks in X.

Definition 4. Let 𝑙 ∈ {2,3,… , 𝑑} be the number of clusters for the in

dividual risks, and let 
{
(1),(2),… ,(𝑙)} be an 𝑙-dimensional partition 

of 𝑑 ∶= {1,2,… , 𝑑}, i.e.,

𝑙⋃
𝑘=1

(𝑘) = 𝑑 , and (𝑘1)
⋂

(𝑘2) = ∅

for all 𝑘1, 𝑘2 ∈ {1,2,… , 𝑙} such that 𝑘1 ≠ 𝑘2.

Let b ∈ Δ𝑙 be the pre-specified risk contribution proportion vector ap

plying to these clusters. An allocation strategy 𝜶 ∈Δ′
𝑑

is said to be CRB 
if∑
𝑖∈(𝑘)

𝑖(𝜶) = 𝑏𝑘(𝜶) for all 𝑘 ∈ {1,2,… , 𝑙}. (3.4)

For any 𝑙 ∈ {2,3,… , 𝑑}, partition 
{
(1),(2),… ,(𝑙)} of 𝑑 , and 

b ∈ Δ𝑙 , define (b) ∶= {𝜶 ∈ Δ′
𝑑
∶ 𝜶 is CRB} as the set of CRB port

folios. In particular, if 𝑏𝑘 = 1∕𝑙, for all 𝑘 ∈ {1,2,… , 𝑙}, a CRB allocation 
strategy 𝜶 ∈ ((1∕𝑙)1) is said to be Clustered Risk Parity (CRP). Note 
that the set of CRB/CRP strategies actually depends on the choices for 
the number of clusters 𝑙 and the clusters themselves; they are omitted 
for the sake of notational brevity. Clearly, the standard (non-clustered) 
RB/RP allocation in Sections 2.1 and 3.1 is achieved when 𝑙 = 𝑑, which 
forces that each cluster holds only one individual risk.

Similar to (3.3), all CRB allocations could be approximated by the 
LSE formulation:

min 
𝜶∈Δ′

𝑑

𝑙∑
𝑘=1

( ∑
𝑖∈(𝑘)

𝑖(𝜶) − 𝑏𝑘(𝜶)

)2

. (3.5)

Appendix B provides a numerical solution to solve (3.5) when the risk 
measure is given by the variance or the standard deviation, which is a 
slight extension of Algorithm 3 in Bai et al. (2016) that focuses only 
on CRP allocations. Solving (3.5) for other risk measures would require 
general optimization algorithms, since we do not have bespoke efficient 
algorithms for other (than variance or standard deviation) risk mea

sures.

It is expected that, for any b ∈Δ𝑙 with 𝑙 ∈ {2,3,… , 𝑑 − 1}, (b)
contains multiple, if not infinitely many, CRB portfolios, which are 
solved by definition of (3.4), or are approximated by the LSE formu

lation of (3.5); but, each of these strategies 𝜶 ∈ (b) would induce a 
possibly different overall portfolio risk  (𝜶) of the risk holder. There

fore, define 𝜶∗∗(b) = arg min
𝜶∈(b)(𝜶) as the set of CRB allocation 

strategies which minimizes the overall portfolio risk. The following Ex

ample 5 illustrates how to find 𝜶∗∗(b) in a simple setting.

Example 5. Assume that 𝑋1,𝑋2,𝑋3 are three independent risks (𝑑 = 3), 
each with a unit variance, and the risk measure 𝜑 is given by the vari

ance. The risk holder aims to find CRB (more precisely, CRP) strategies 
with two clusters, namely 

(
𝑋1,𝑋2

)
and 𝑋3; that is, 𝑙 = 2, (1) = {1,2}, 

(2) = {3}, 𝑏1 = 𝑏2 = 1∕2. Therefore, by (3.4) and after simplifications, 
a CRP allocation strategy 𝜶 ∈Δ′

3 satisfies 𝛼21 + 𝛼
2
2 = 𝛼

2
3 ; in turn, the CRP 

set is given by:

((1∕2,1∕2)𝑇 )

=

{
𝜶(𝜉) ∶ 𝜶(𝜉) =

(
𝜉,

1 − 2𝜉
2 − 2𝜉

,1 − 𝜉 − 1 − 2𝜉
2 − 2𝜉

)𝑇
, 𝜉 ∈ [0,1∕2]

}
.
(3.6)

The minimal portfolio variance within the CRP set 
(
(1∕2,1∕2)𝑇

)
is obtained when 𝜉∗ = 1 −

√
2
2 , since

min 
𝜶∈((1∕2,1∕2)𝑇 )

(𝜶)

= min 
𝜶∈((1∕2,1∕2)𝑇 )

(
𝛼21 + 𝛼

2
2 + 𝛼

2
3
)

= min 
𝜉∈[0,1∕2]

(
𝜉2 +

(
1 − 2𝜉
2 − 2𝜉

)2
+
(
1 − 𝜉 − 1 − 2𝜉

2 − 2𝜉

)2
)
,

and hence, 𝜶∗∗((1∕2,1∕2)𝑇 ) = 𝜶(𝜉∗) =
(
1 −

√
2
2 ,1 −

√
2
2 ,

√
2 − 1

)𝑇
, 

which is an element of ((1∕2,1∕2)𝑇 ) in (3.6), with  (𝜶∗∗((1∕2,
1∕2)𝑇 )

)
= 6 − 4

√
2.

The analysis of CRP and their minimal portfolio risk is also applicable 
in the case of dependent risks. For simplicity of the illustration, assume 
that 𝑋1,𝑋2,𝑋3 have the same value for their pairwise correlations; for 
a valid correlation matrix, the value, being denoted as 𝜌, needs to lie 
between −1

2 and 1. When 𝜌 = −1
2 , i.e., the risks are most negatively 

correlated,

((1∕2,1∕2)𝑇 )

=

{
𝜶(𝜉) ∶ 𝜶(𝜉) =

(
𝜉,

1 − 2𝜉
2 − 3𝜉

,1 − 𝜉 − 1 − 2𝜉
2 − 3𝜉

)𝑇
, 𝜉 ∈ [0,1∕2]

}
,

and 𝜶∗∗((1∕2,1∕2)𝑇 ) = 𝜶(1∕3) = (1∕3,1∕3,1∕3)𝑇 , with  (𝜶∗∗((1∕2,
1∕2)𝑇 )

)
= 0. When 𝜌= 1, i.e., the risks are most positively correlated,

((1∕2,1∕2)𝑇 ) =
{
𝜶(𝜉) ∶ 𝜶(𝜉) =

(
𝜉,

1
2
− 𝜉, 1

2

)
, 𝜉 ∈ [0,1∕2]

}
,

and 𝜶∗∗((1∕2,1∕2)𝑇 ) = 𝜶(𝜉), for any 𝜉 ∈
[
0,1∕2

]
, with  (𝜶∗∗((1∕2,

1∕2)𝑇 )
)
= 1.

The CRP sets and their minimal portfolio risk, in terms of variance, 
are different among the cases with different dependence structure of 
the risks. When the risks are most negatively correlated, with 𝜌 = −1

2 , it 
can be easily shown that the CRP allocation to the third risk 𝑋3 , which 
is alone in the second cluster, can be less than those to the first and 
second risks 𝑋1,𝑋2 respectively, which are in the first cluster. When 
the risks are independent or most positively correlated, with 𝜌 = 0 or 
𝜌 = 1, it can also be easily shown that the CRP allocation to the third 
risk is always larger than those to the first and second risks 𝑋1 ,𝑋2 re

spectively; in particular, when the risks are positively correlated, with 
𝜌 = 1, the CRP allocation to the third risk 𝑋3 , which is 1∕2, matches the 
pre-specified risk contribution of the second cluster, which comprises 
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only the third risk, while the CRP allocation to the first and second risks 
𝑋1,𝑋2 respectively are arbitrary as long as their allocations add up to 
1∕2, which matches the pre-specified risk contribution of the first clus

ter, which comprises the first and second risks.

Within the CRP allocation, the optimal allocation is unique for most 
negatively correlated or independent risks, but it is not unique for most 
positively correlated risks. In fact, when risks are most positively corre

lated, no diversification is possible, and thus any allocations in Δ′
3 would 

yield a unit of risk, in terms of variance, since all the three risks have a 
unit of risk. Note also that, on the one hand, when the risks are indepen

dent, the optimal allocation with CRP is no longer equally weighted, but 
the optimal allocation without CRP is indeed equally weighted; recall 
that the aim of (C)RB is not to minimize the overall portfolio risk. On the 
other hand, when the risks are most negatively correlated, the equally 
weighted allocation is the optimal strategy, with or without CRP.

As illustrated by the example, in order to minimize the overall port

folio risk among CRB/CRP allocation strategies, one has to identify the 
full set of (b), for b ∈ Δ𝑙 . In a general setting, this often requires 
to solve the LSE formulation of (3.5), which relies on general but inef

ficient optimization algorithms when the risk measure is not given by 
the variance or the standard deviation. Another way of characterizing 
the full set of CRB/CRP strategies is to identify a parametric set of RB 
strategies. This is given in the following proposition.

Proposition 6. For any 𝑙 ∈ {2,3,… , 𝑑}, partition 
{
(1),(2),… ,(𝑙)} of 

𝑑 , and b ∈Δ𝑙 ,

(b) =
⋃

a∈(b)
(a),

where  (b) ∶=
{

a ∈Δ′
𝑑
∶
∑
𝑖∈(𝑘) 𝑎𝑖 = 𝑏𝑘, for all 𝑘 ∈ {1,2,… , 𝑙}

}
.

RB strategies with a ∈Δ′
𝑑
⧵Δ𝑑 should be understood as standard RB 

strategies, in Sections 2.1 and 3.1, with a number of individual risks 
of 𝑑′ = 𝑑 − 𝑑0, where 𝑑0 is the number of zero-valued elements in the 
vector a, i.e., the risk set does not include the individual risks with zero 
risk contribution.

Proposition 6 allows us to solve for CRB allocation strategies that 
minimize the overall portfolio risk in another way. In the following, 
let 𝑙 ∈ {2,3,… , 𝑑}, partition 

{
(1),(2),… ,(𝑙)} of 𝑑 , and b ∈ Δ𝑙 . By 

Proposition 6,

min 
𝜶∈(b)

(𝜶) = min 
𝜶∈

⋃
a∈(b)(a)

(𝜶) = min 
a∈(b)

min 
𝜶∈(a)

(𝜶).

For each a ∈  (b), define 𝜶∗∗∗(a) = arg min
𝜶∈(a)(𝜶); if (a) is 

a singleton, 𝜶∗∗∗(a) must be given by Theorem 3; if (a) is not a 
singleton, the LSE formulation of (3.3) is needed to solve for all RB 
strategies with respect to the risk contribution proportion vector a. With 
a slight abuse of its notation, we thus have that min

𝜶∈(b)(𝜶) =
mina∈(b)(𝜶∗∗∗(a)). Since (b) is a compact set, and since  is 
a continuous mapping (as 𝜑 is homogeneous), if 𝜶∗∗∗(a) is contin

uous in a ∈  (b),3 by the Weierstrass’ Theorem, define a∗∗∗(b) =
arg mina∈(b)(𝜶∗∗∗(a)). Therefore,

𝜶
∗∗(b) = arg min 

𝜶∈(b)
(𝜶) = 𝜶

∗∗∗(a∗∗∗(b)).

Yet, this alternative way could still involve inefficient steps, such as 
the need of solving the LSE formulation of (3.3) when (a) is not a 
singleton for some a ∈  (b), as well as the need of solving 𝜶∗(a) for 
all a ∈  (b) even though the method by Theorem 3 is efficient when 
(a) is a singleton for some a ∈ (b).

3 This can show to be true if 𝜶∗∗∗(a) is given by Theorem 3, as it is solved via 
(3.2).

Such equivalence is helpful, though, to develop an efficient algo

rithm to approximate CRB/CRP allocation strategies that minimize the 
overall portfolio risk, in the sense that the overall portfolio risk of an 
approximated strategy serves as an upper bound of the minimal overall 
portfolio risk among CRB/CRP strategies. To this end, for any a ∈ (b),

min 
𝜶∈(a)

(𝜶) ≤(𝜶∗(a)),

where 𝜶∗(a) ∈(a) (for example, being solved by Theorem 3), which 
implies that, for any a ∈ (b),

min 
𝜶∈(b)

(𝜶) = min 
a∈(b)

min 
𝜶∈(a)

(𝜶) ≤(𝜶∗(a)).

Since (b) is a compact set, and since  is a continuous mapping 
(as 𝜑 is homogeneous), by the Weierstrass’ Theorem, define a∗(b) =
arg mina∈(b)(a). Since, by definition, a∗(b) ∈ (b), we have

min 
𝜶∈(b)

(𝜶) = min 
a∈(b)

min 
𝜶∈(a)

(𝜶) ≤(𝜶∗(a∗(b))).

The motivation of choosing this particular a∗(b) ∈  (b) ⊆ Δ′
𝑑

is due to 
Theorem 4.1 c) of Asimit et al. (2025), which states that, for any a ∈Δ′

𝑑
, 

(𝜶∗(a)) ≤(a). Hence, for any a ∈ (b),

min 
𝜶∈(b)

(𝜶) = min 
a∈(b)

min 
𝜶∈(a)

(𝜶) ≤(𝜶∗(a)) ≤(a).

Since, in particular, (𝜶∗(a∗(b))) ≤(a∗(b)), for any a ∈ (b),

min 
𝜶∈(b)

(𝜶) = min 
a∈(b)

min 
𝜶∈(a)

(𝜶) ≤(𝜶∗(a∗(b))) ≤(a∗(b))

= min 
a∈(b)

(a) ≤(a).

That is, the choice of a∗(b) ∈  (b) is to ensure that the overall port

folio risk of the approximated CRB strategy, (𝜶∗(a∗(b))), gets closer 
to the minimal overall portfolio risk via the tightest upper bound, 
mina∈(b)(a), for itself.

The approximated CRB allocation strategy, 𝜶∗(a∗(b)), is thus the 
worst case, since the minimal overall portfolio risk among CRB strate

gies cannot exceed this upper bound. We call such approximated CRB 
allocation strategy as the worst-case-CRB (WC-CRB). Note that WC-CRB 
is denoted as WC-CRP whenever b = (1∕𝑙)1. Algorithm 1 summarizes 
the two-step procedures to obtain the WC-CRB strategy, as already out

lined above.

Algorithm 1: CRB algorithm for solving (3.4) by approxima

tion.

Result: Finding the WC-CRB portfolio to approximate 𝜶∗∗(b).
Step 1): Find the risk contribution proportion vector, a∗(b), that 
minimizes the overall portfolio risk subject to clusters’ constraints, i.e.,

a∗(b) = arg min
a∈(b) 

(a).

Step 2): Find 𝜶∗(a∗(b)
)
, i.e., the RB portfolio based on the proportion 

vector, a∗(b), via (3.2), (3.3), or any other standard RB computational 
procedures via numerical optimization. 

Algorithm 1 is efficient since a RB portfolio needs to be solved in the 
step 2), only for one proportion vector from the step 1). Also, for the 
RB portfolio, one can solve the convex instance as in (3.2) instead of 
solving the non-convex LSE formulation as in (3.3).

Applying the two-step procedures to Example 5 of the case of inde

pendent risks, the step 1) implies solving

min 
a∈((1∕2,1∕2)𝑇 )

((𝑎1, 𝑎2,1∕2)𝑇 ) = min 
a∈((1∕2,1∕2)𝑇 )

(
𝑎21 + 𝑎

2
2 + (1∕2)2

)
,

which is obviously solved by 𝑎∗1((1∕2,1∕2)
𝑇 ) = 𝑎∗2((1∕2,1∕2)

𝑇 ) = 1∕4
and 𝑎∗3((1∕2,1∕2)

𝑇 ) = 1∕2; herein, 𝑎∗3((1∕2,1∕2)
𝑇 ) = 𝑏2 = 1∕2 since, re

call that in the example, the second cluster (2) = {3}, which contains 
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only the third risk 𝑋3. The step 2) requires finding the RB portfo

lio with respect to the risk contribution proportion vector a∗(b) =
(1∕4,1∕4,1∕2)𝑇 ; that is, 𝜶∗(a∗(b)). It is not difficult to work out that 

𝜶
∗(a∗(b)) = 𝜶(𝜉∗) = 𝜶

∗∗((1∕2,1∕2)𝑇 ) =
(
1 −

√
2
2 ,1 −

√
2
2 ,

√
2 − 1

)𝑇
. 

That is, in this case, the WC-CRP even minimizes the overall portfo

lio risk among all CRP allocation strategies.

3.3. RB with background risk or fixed sub-portfolios for one risk holder

The background risk setting requires allocating the risk vector X =
(𝑋1,𝑋2,… ,𝑋𝑑 ) when a non-hedgeable risk (for a financial risk portfo

lio) or non-insurable risk (for an insurance risk portfolio) 𝑍 is present. 
For example, an investment house focuses on structured finance prod

ucts covering credit cards, student loans, Small and Medium Enterprise 
(SME) loans, and so on. Each LoB has a specific risk that is internally 
measured, and the investment house funds the purchase of these asset 
loans by borrowing funds from the market. The market funding risk af

fects all LoBs and the investment house cannot hedge this risk. Likewise, 
a maritime insurance portfolio -- e.g. a corporate account that includes 
a variety of insurance sub-portfolios such as hull, cargo, and protection 
& indemnity insurance, breakdown risk, business interruption risk, per

sonal accidents, etc. -- such that reputational perils of any kind are not 
included in the individual coverages. The losses due to such reputational 
perils are significantly associated with individual losses covered by this 
maritime insurance portfolio, and the reputational peril represents the 
(non-insurable) background risk for this bespoke portfolio. In general, 
for any 𝜶 ∈Δ𝑑 , the overall portfolio risk of the risk holder is then given 
by (𝜶) = 𝜑

(
𝑍 + 𝜶

𝑇X
)
. For any risk contribution proportion vector 

b ∈ℜ𝑑
++ such that 1𝑇 b < 1, an allocation strategy 𝜶 ∈ Δ𝑑 is said to be 

RB with background risk if

𝑘(𝜶) = 𝑏𝑘(𝜶) for all 𝑘 ∈ {1,2,… , 𝑑}, (3.7)

where, herein, 𝑘(𝜶) ∶=
1 
𝜏
𝛼𝑘

𝜕 
𝜕𝛼𝑘

(𝜶) = 1 
𝜏
𝛼𝑘

𝜕𝜑 
𝜕𝛼𝑘

(
𝑍 + 𝜶

𝑇X
)
. Note that 

the risk measure 𝜑 is tacitly assumed to be homogeneous of order 𝜏 ≥ 1
in (3.7).

The fixed sub-portfolio setting requires allocating the risk vector 
(𝑋1,𝑋2,… ,𝑋𝑑 ,𝑋𝑑+1,𝑋𝑑+2,… ,𝑋𝑑+𝑑1 ), where 𝑑1 ≥ 1, only for the first 
𝑑 risks X = (𝑋1,𝑋2,… ,𝑋𝑑 ), as the risk holder has already fixed an allo

cation strategy for the remaining 𝑑1 risks X̃ = (𝑋𝑑+1,𝑋𝑑+2,… ,𝑋𝑑+𝑑1 ). 
Formally, for any (𝜶, 𝜶̃) ∈ Δ𝑑+𝑑1 , the overall portfolio risk of the risk 
holder is given by (𝜶, 𝜶̃) = 𝜑

(
𝜶
𝑇X + 𝜶̃

𝑇 X̃
)
. For any risk contribution 

proportion vector b ∈ ℜ𝑑
++ such that 1𝑇 b < 1, and for any fixed sub

portfolio 𝜶̃ ∈ℜ𝑑1
++ such that 1𝑇 𝜶̃ < 1, an allocation strategy 𝜶 ∈ℜ𝑑

++, 
such that 1𝑇𝜶 < 1 and (𝜶, 𝜶̃) ∈ Δ𝑑+𝑑1 (in particular, 1𝑇𝜶 + 1𝑇 𝜶̃ = 1), is 
said to be RB with fixed sub-portfolio if

𝑘(𝜶, 𝜶̃) = 𝑏𝑘(𝜶, 𝜶̃) for all 𝑘 ∈ {1,2,… , 𝑑}, (3.8)

where, herein, 𝑘(𝜶, 𝜶̃) ∶=
1 
𝜏
𝛼𝑘

𝜕 
𝜕𝛼𝑘

(𝜶, 𝜶̃) = 1 
𝜏
𝛼𝑘

𝜕𝜑 
𝜕𝛼𝑘

(
𝜶
𝑇X + 𝜶̃

𝑇 X̃
)
. 

Note that 𝜶̃ is the a priori fixed sub-portfolio allocation vector for the 
risks X̃ by the risk holder, which means that we only need to solve (3.8)

in 𝜶.

Clearly, solving (3.8) is equivalent to solving (3.7) with the back

ground risk 𝑍 = 𝜶̃
𝑇 X̃

1−1𝑇 𝜶̃
and standardized weights 𝜶

1−1𝑇 𝜶̃
. This clarifies 

why the two settings are mathematically equivalent, and from now on, 
we only focus on the RB portfolios with background risk. The following 
Theorem 7 solves a RB portfolio with background risk.

Theorem 7. Let b ∈ ℜ𝑑
++ such that 1𝑇 b < 1. Assume that the risk mea

sure 𝜑 is homogeneous of order 𝜏 ≥ 1 and convex, and satisfies that 
infx∈Δ𝑑 (x) > 0, where (x) = 𝜑

(
𝑍+x𝑇X

)
. For any 𝜆 > 0, the following 

instance

min 
x∈ℜ𝑑++

1 
𝜏
(x) − 𝜆

𝑑∑
𝑘=1
𝑏𝑘 log𝑥𝑘, (3.9)

admits a unique solution, x∗(𝜆,b), that is an interior point of ℜ𝑑
++. If (x) is 

differentiable at x∗(𝜆,b) for some 𝜆 > 0, then x∗(𝜆,b) satisfies (3.7), where 
the sum-to-unity constraint 1𝑇 x∗(𝜆,b) = 1 is removed.

The main technical difference between Theorem 3 and Theorem 7 is 
the lack of homogeneity of the overall portfolio risk  in (3.9). There

fore, 𝜆 acts as a tuning parameter in Theorem 7; that is, we need to 
find 𝜆 > 0 such that 1𝑇 x∗(𝜆,b) = 1, and this solution is denoted as 𝜆∗(b)
if this solution exists (as its existence can not be guaranteed). Now, if 
𝜆∗(b) exists, then x∗(𝜆∗(b),b) solves (3.7). In a nutshell, RB portfolios 
satisfying either (3.7) or (3.8) could be found by iteratively solving (3.9)

through the tuning parameter 𝜆.

3.4. RS for two risk holders

Consider now the setting in Definition 2, where the RS problem for 
two risk holders is solved via RB. The following Theorem 8 tells us how 
to solve the RS problem for the two risk holders via RB.

Theorem 8. Let b1,b2 ∈ Δ2. Assume further that the risk measures 
𝜑1, 𝜑2 are homogeneous of order 𝜏1, 𝜏2 ≥ 1 and convex, and satisfy that 
infx∈Δ2

1(x) > 0 and infx∈Δ2
2(x) > 0, where

1(𝑥11, 𝑥21) = 𝜑1(𝑥11𝑋1 + 𝑥21𝑋2) and

2(𝑥12, 𝑥22) = 𝜑2(𝑥12𝑋1 + 𝑥22𝑋2).

Then, for any 𝜆1, 𝜆2 > 0,

min 
(𝑥11 ,𝑥21)∈ℜ2

++

1 
𝜏1

1(𝑥11, 𝑥21) − 𝜆1(𝑏11 log𝑥11 + 𝑏21 log𝑥21) (3.10)

and

min 
(𝑥12 ,𝑥22)∈ℜ2

++

1 
𝜏2

2(𝑥12, 𝑥22) − 𝜆2(𝑏12 log𝑥12 + 𝑏22 log𝑥22) (3.11)

admit a unique solution, x∗(𝜆1,b1;𝜑1) and x∗(𝜆2,b2;𝜑2), respectively, that 
are interior points of the feasibility set.

i) If 1 and 2 are differentiable at x∗(1,b1;𝜑1) and x∗(1,b2;𝜑2), re
spectively, then (𝛼∗11, 𝛼

∗
21) and (𝛼∗12, 𝛼

∗
22) solve (2.4), respectively, where 

𝛼∗
𝑖𝑗
= 𝑡∗

𝑗
𝑥∗
𝑖
(1,b𝑗 ;𝜑𝑗 ) for all 𝑖, 𝑗 ∈ {1,2} and

⎧⎪⎨⎪⎩
𝑡∗1 =

𝑥∗2(1,b2;𝜑2)−𝑥
∗
1(1,b2;𝜑2) 

𝑥∗1(1,b1;𝜑1)𝑥
∗
2(1,b2;𝜑2)−𝑥

∗
2(1,b1;𝜑1)𝑥

∗
1(1,b2;𝜑2)

𝑡∗2 =
𝑥∗1(1,b1;𝜑1)−𝑥

∗
2(1,b1;𝜑1) 

𝑥∗1(1,b1;𝜑1)𝑥
∗
2(1,b2;𝜑2)−𝑥

∗
2(1,b1;𝜑1)𝑥

∗
1(1,b2;𝜑2)

(3.12)

whenever(
𝑥∗1(1,b1;𝜑1) − 𝑥∗2(1,b1;𝜑1)

)
×
(
𝑥∗1(1,b2;𝜑2) − 𝑥∗2(1,b2;𝜑2)

)
< 0.

(3.13)

ii) Assume that b1 = b2, 𝜑1 = 𝜑2, and the fact that 1 is differentiable 
at x∗(1,b1;𝜑1). If 𝑥∗1(1,b1;𝜑1) = 𝑥∗2(1,b1;𝜑1), then (𝛼∗11, 𝛼

∗
21) = (𝜉, 𝜉)

and (𝛼∗12, 𝛼
∗
22) = (1 − 𝜉,1 − 𝜉) are also solutions of (2.4), respectively, 

for any 𝜉 ∈ (0,1).
iii) Let 𝜆∗1, 𝜆

∗
2 > 0 such that (𝛼∗11, 𝛼

∗
21) = x∗(𝜆∗1 ,b1;𝜑1), (𝛼∗12, 𝛼

∗
22) = 

x∗(𝜆∗2 ,b2;𝜑2) and 𝛼∗11 + 𝛼
∗
12 = 𝛼

∗
21 + 𝛼

∗
22 = 1, then

1 
𝜏1𝜆

∗
1

(
1(𝛼∗11, 𝛼

∗
21) −1(𝑥11, 𝑥21)

)
+ 1 
𝜏2𝜆

∗
2

(
2(𝛼∗12, 𝛼

∗
22) −2(𝑥12, 𝑥22)

)
≤ 0

for any (𝑥11, 𝑥12, 𝑥21, 𝑥22) ∈ℜ4
++ with 𝑥11 + 𝑥12 = 𝑥21 + 𝑥22 = 1.
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Theorem 8 i) shows that the risks are fully allocated, i.e., 𝛼∗11 +𝛼
∗
12 =

𝛼∗21 +𝛼
∗
22 = 1, for any given risk measures and RB under a mild condition 

stated in (3.13), if the risk profile and risk contribution proportions for 
the two risk holders are quite different. Condition (3.13) requires that 
the risk appetite for the two risks, (𝑋1,𝑋2), is not the same for the two 
risk holders; in other words, if 𝛼∗11 < 𝛼

∗
21, then 𝛼∗12 > 𝛼

∗
22, which means 

that there are incentives for both risk holders to initiate the risk sharing.

Contrary to Theorem 8 i) where there is at most one RB alloca

tion, Theorem 8 ii) suggests that there are infinitely many RB alloca

tions if the risk profile and risk contribution proportions for the two 
risk holders are identical, though a technical condition is required, i.e., 
𝑥∗1(1,b1;𝜑1) = 𝑥∗2(1,b1;𝜑1). This setting implies that the risk holder 1 re

tains the same risk proportion in (𝑋1,𝑋2), and the second risk holder has 
the same strategy. Now, 𝑥∗1(1,b1;𝜑1) = 𝑥∗2(1,b1;𝜑1) implies that the RB, 
i.e., b1 = b2, should be chosen such that 𝑥∗1(1,b1;𝜑1) = 𝑥∗2(1,b1;𝜑1); in 
other words, one should numerically find c ∈Δ2 such that 𝑦∗1(c) ≈ 𝑦

∗
2(c), 

where

(𝑦∗1(c), 𝑦
∗
2(c)) ∶= arg min 

(𝑦1 ,𝑦2)ℜ2
++

1 
𝜏1

1(𝑦1, 𝑦2) − 𝜆1(𝑐1 log𝑦1 + 𝑐2 log𝑦2).

Clearly, we can not guarantee that there exists c∗ ∈ Δ2 such that |𝑦∗1(c∗) − 𝑦∗2(c∗)| ≤ 𝜖 for a sufficiently small 𝜖 > 0, but numerical ex

plorations could answer this question.

Finally, Theorem 8 iii) states that, if the parameters 𝜆1 , 𝜆2 are tuned 
such that the unique solutions of (3.10) and (3.11) satisfy the sum-to

unity constraints between the two risk holders, say by 𝜆∗1, 𝜆
∗
2 (that is, 

if the sum of the first (resp. second) components of x∗(𝜆∗1 ,b1;𝜑1) and 
x∗(𝜆∗2 ,b2;𝜑2) equals to 1), then the resulting total overall risk of the 
two risk holders, where the sum of their risks is scaled by 1∕(𝜏1𝜆∗1) and 
1∕(𝜏2𝜆∗2), is minimized.

4. Numerical illustrations

This section provides numerical illustrations of how to construct 
portfolios based on the RB principle (note that, whenever the risk bud

gets are equal, more precisely we denote RB/CRB as RP/CRP). Our 
numerical implementations disseminate practical implementations on 
financial risks for our methods. We provide in Section 4.1 a slight ex

tension of Example 5. Section 4.2 focuses on RB portfolios for one risk 
holder with multiple financial risks where the risk preferences are or

dered by the Variance (or Standard Deviation) and CVaR risk measures.

4.1. CRP versus WC-CRP

As alluded to before, we extend Example 5 in Section 3.2 and assume 
a CRP setting based on variance risk measures for three independent 
risks with two clusters such that Σ11 = Σ33, i.e., assets 1 and 3 have 
the same variance. The CRP portfolio is constructed from the solution 
𝜶
∗
𝐶𝑅𝐵

, obtained with the Algorithm 2 in Appendix B. As explained in 
Section 3.2, the CRB/CRP solution is an element of a parametric set 
of RB solutions, which is obtained by searching for 𝜶 ∈ Δ3 such that 
Σ11𝛼

2
1 +Σ22𝛼

2
2 = Σ11𝛼

2
3 . Denoting 𝜎12 = 1− Σ22

Σ11
, the solution is described 

by

𝜶(𝜉) ∶=
(
𝜎12𝜉

2 − 2𝜉 + 1
2(1 − 𝜉) 

, 𝜉, 1 − 𝜉 −
𝜎12𝜉

2 − 2𝜉 + 1
2(1 − 𝜉) 

)𝑇
,

for all 0 ≤ 𝜉 ≤ 1−
√
1−𝜎12
𝜎12

if 𝜎12 ∈ (−∞,1) ⧵ {0}, and 0 ≤ 𝜉 ≤ 1
2 if 𝜎12 = 0, 

since 𝜎12 < 1. One may show that minimal variance amongst the 𝜶(𝜉)

portfolios is achieved when 𝜉∗ = 1 −
√

1−𝜎12
2−𝜎12

.

The WC-CRP portfolio (defined in Section 3.2) is an element of 𝜶(𝜉), 
and it can be found via Algorithm 1 in Section 3.2. For Step 1) we need 
to solve

arg min 
a∈((1∕2,1∕2)𝑇 )

Σ11𝑎
2
1 + Σ22𝑎

2
2 + Σ33(1∕2)2

∶= (𝑎∗1, 𝑎
∗
2)
𝑇 =

(
Σ22

2
(
Σ11 + Σ22

) , Σ11

2
(
Σ11 + Σ22

))𝑇 .
Step 2) requires finding the RB with the risk contribution proportions 
𝜶
∗(𝑎∗1 , 𝑎

∗
2 ,1∕2), which could be identified via a non-clustered version of 

Algorithm 2 in Appendix B, though a closed-form solution is possible 
since we only need solving in 𝜶 ∈Δ′

3 the following system of equations

𝛼21 = 2𝑎∗1𝛼
2
3 , Σ22𝛼

2
2 = 2𝑎∗2Σ11𝛼

2
3 , and 𝛼1 + 𝛼2 + 𝛼3 = 1.

The latter is solved by 𝜶∗
𝑊𝐶−𝐶𝑅𝑃 = (𝑐1, 𝑐2, 𝑐3)𝑇 ∕1𝑇 c, where

𝑐1 ∶=

√
Σ22

2Σ11(Σ11 + Σ22)
, 𝑐2 ∶=

√
Σ11

2Σ22(Σ11 + Σ22)
, and

𝑐3 ∶=

√
1 

2Σ11
.

The following three variance choices are further considered:

a) Σ11 = Σ33 = 1,Σ22 = 0.5, i.e. 𝜎12 = 0.5;

b) Σ11 = Σ22 = Σ33 = 1, i.e. 𝜎12 = 0;

c) Σ11 = Σ33 = 1,Σ22 = 1.5, i.e. 𝜎12 = −0.5.

Fig. 2 compares the risk position of the CRP portfolio (computed via 
Algorithm 2 in Appendix B) and WC-CRP portfolio (computed via Algo

rithm 1 in Section 3.2) with the risk position of the parametric portfolio 
with risk allocation 𝜶(𝜉). The results clearly show the advantage of us

ing the WC-CRP portfolio, besides its obvious computational advantage 
that was explained in Section 3.2, which reiterates the practical use of 
Algorithm 1.

Here, we also extend the three dependent risks with two clusters as 
addressed in Example 5 in Section 3.2 such that the assets have equal 
variances and the correlation coefficients 𝜌𝑘,𝑙 = 𝜌|𝑘−𝑙| for all 1 ≤ 𝑘, 𝑙 ≤ 3, 
i.e., Σ11 = Σ22 = Σ33 = Σ, 𝜌1,2 = 𝜌2,3 = 𝜌 between assets 1 and 2 or be

tween 2 and 3, while 𝜌1,3 = 𝜌2 between 1 and 3. Again, the CRP portfolio 
is constructed from the solution 𝜶∗

𝐶𝑅𝑃
, obtained with the Algorithm 2 in 

Appendix B. As explained in Section 3.2, the CRP solution is an element 
of a parametric set of RP solutions, which is obtained by searching for 
𝜶 ∈Δ3 such that 1(𝜶) +2(𝜶) =3(𝜶) =

1
2(𝜶) that is 𝛼21Σ11 +

𝛼22Σ22 + 2𝜌1,2𝛼1𝛼2
√
Σ11Σ22 + 𝜌2,3𝛼2𝛼3

√
Σ22Σ33 + 𝜌1,3𝛼1𝛼3

√
Σ11Σ33 =

𝛼23Σ33 + 𝜌2,3𝛼2𝛼3
√
Σ22Σ33 + 𝜌1,3𝛼1𝛼3

√
Σ11Σ33, which can be simplified 

as 𝛼21 + 𝛼
2
2 + 2𝜌𝛼1𝛼2 = 𝛼23 . Actually, the impact of 𝜌1,3 = 𝜌2 is cancelled 

out from each side of risk contributions, so the parametric set of RP so

lutions is identical to the case of dependent risks in Example 5 when 
the pairwise correlations are the same, i.e., 𝜌𝑘,𝑙 = 𝜌. However, the new 
extended setting of 𝜌1,3 = 𝜌2 can affect the asset allocations for the min

imal variance portfolio. The solution is described by

𝜶(𝜉) ∶=
(
𝜉, 1 − 2𝜉 

2(1 − (1 − 𝜌)𝜉)
, 1 − 𝜉 − 1 − 2𝜉 

2(1 − (1 − 𝜌)𝜉)

)𝑇
,

where 0 ≤ 𝜉 < 1
2 for all 𝜌 ∈ [−1,1] (note that, unlike the case of depen

dent risks 𝜌𝑘,𝑙 = 𝜌 in Example 5, here we do not need the assumption 
𝜌 ∈ [−1

2 ,1] to keep the total portfolio risk (𝜶) ≥ 0). Denoting 𝑃 = 1−𝜌, 
the solution can be simplified as

𝜶(𝜉) ∶=
(
𝜉, 1 − 2𝜉 

2(1 − 𝑃𝜉)
, 1 − 𝜉 − 1 − 2𝜉 

2(1 − 𝑃𝜉)

)𝑇
,

and by arranging elements in 𝛼3, it can show that 0 ≤ 𝜶(𝜉) ≤ 1 as 0 ≤
𝜉 <

1
2 for all 𝜌 ∈ [−1,1]

𝜶(𝜉) ∶=
(
𝜉, 1 − 2𝜉 

2(1 − 𝑃𝜉)
, 2𝑃𝜉

2 − 2𝑃𝜉 + 1
2(1 − 𝑃𝜉) 

)𝑇
. (4.1)
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Fig. 2. Portfolio variance for the parametric, CRP and WC-CRP portfolios for Case a) (top left), Case b) (top right) and Case c) (bottom). (For interpretation of the 
colours in the figure(s), the reader is referred to the web version of this article.)

Since the impact of 𝜌1,3 = 𝜌2 is removed, the set is identical to Example 5
when 𝜌 = −1

2 (i.e. 𝑃 = 1 − 𝜌 = 3
2 ) or 𝜌 = 1 (i.e. 𝑃 = 0). However, due to 

the new setting 𝜌1,3 = 𝜌2, the minimal variance among the 𝜶(𝜉) portfo

lios is different from Example 5 and it cannot be expressed in any simple 
form. By following the same procedure as described in Example 5, we 
start with

min 
𝜶∈((1∕2,1∕2)𝑇 )

(𝜶)

= min 
𝜶∈((1∕2,1∕2)𝑇 )

(
𝛼21 + 𝛼

2
2 + 𝛼

2
3 + 2𝜌𝛼1𝛼2 + 2𝜌𝛼2𝛼3 + 2𝜌2𝛼1𝛼3

)
Σ

= min 
𝜶∈((1∕2,1∕2)𝑇 )

(
𝛼3(𝛼3 + 𝜌𝛼2 + 𝜌2𝛼1)

)
Σ,

since 𝛼21 + 𝛼
2
2 + 2𝜌𝛼1𝛼2 = 𝛼23 as shown earlier. To get 𝜶∗∗((1∕2,1∕2)𝑇 )

or 𝜉∗, when 𝑃 ≠ 0 (as 𝜌 ≠ 1), after applying both Product and Quotient 
Rules for derivatives, the solution for the minimal variance portfolio 
can be achieved by solving the following quartic equation (i.e. 𝜉∗ will 
be one of the real roots that is between 0 and 12 , though we do not have 
a simpler expression):

𝜉4 − 𝑃 + 5
2𝑃 

𝜉3 + 3(𝑃 + 1)
2𝑃 2 𝜉2 − 2𝑃 + 1

2𝑃 3 𝜉 + 1 
4𝑃 3 = 0.

Therefore, when 𝑃 = 1 (as 𝜌2 = 𝜌 = 0), we have 𝜉∗ = 1−
√
2
2 , it becomes 

the case of independent risks. Also, when 𝑃 = 0 (as 𝜌2 = 𝜌 = 1), we 

have the same result in Example 5, i.e., 𝜶∗∗((1∕2,1∕2)𝑇 ) = 𝜶(𝜉), for any 
𝜉 ∈

[
0,1∕2).

Meanwhile, the WC-CRP portfolio (defined in Section 3.2) is an el

ement of 𝜶(𝜉), and it can be found via Algorithm 1 in Section 3.2. For 
Step 1) we need to solve

arg min 
a∈((1∕2,1∕2)𝑇 )

(𝑎21 + 𝑎
2
2 + 𝑎

2
3 + 2𝜌𝑎1𝑎2 + 2𝜌𝑎2𝑎3 + 2𝜌2𝑎1𝑎3)Σ

where 𝑎3 =
1
2 and 𝑎1 +𝑎2 +𝑎3 = 1. The optimal solution is solved by 𝑎∗1 =

1+𝜌
4 = 2−𝑃

4 and 𝑎∗2 =
1−𝜌
4 = 𝑃

4 . Step 2) requires finding the RB with the 
risk contribution proportions 𝜶∗(𝑎∗1 , 𝑎

∗
2 ,1∕2), which could be identified 

via a non-clustered version of Algorithm 2, though the solution in this 
case can also be solved in 𝜶 ∈Δ′

3 via the following system of equations

𝛼21 + 𝜌𝛼1𝛼2 + 𝜌
2𝛼1𝛼3 = 2𝑎∗1(𝛼

2
3 + 𝜌𝛼2𝛼3 + 𝜌

2𝛼1𝛼3),

𝛼22 + 𝜌𝛼1𝛼2 + 𝜌𝛼2𝛼3 = 2𝑎∗2(𝛼
2
3 + 𝜌𝛼2𝛼3 + 𝜌

2𝛼1𝛼3),

𝛼1 + 𝛼2 + 𝛼3 = 1.

Unlike the case of a portfolio with three independent risks earlier, 
the solution cannot be expressed in a simple term. Nevertheless, af

ter a few steps of simplification by combining the three equations 
above, we can get the following relations between 𝜶∗(𝑎∗1, 𝑎

∗
2 ,1∕2): 𝛼3 =

2(1−𝜌)𝛼21−2(1−𝜌)𝛼1+1
2(1−(1−𝜌)𝛼1) =

2𝑃𝛼21−2𝑃𝛼1+1
2(1−𝑃𝛼1) and 𝛼2 = 1−2𝛼1

2(1−𝑃𝛼1)
which have the 
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Fig. 3. Portfolio variance for the parametric, CRP and WC-CRP portfolios for Case d) (top left), Case e) (top right) and Case f) (bottom). 

same forms as in (4.1). As shown in Fig. 2 earlier and Fig. 3, both 
𝜶
∗∗((1∕2,1∕2)𝑇 ) in the parametric set and 𝜶∗(𝑎∗1 , 𝑎

∗
2 ,1∕2) here reach 

the same minimal variance portfolio (note, in numerical solutions, due 
to some specific levels of precision settings in different methods, it may 
have a tiny difference). Three different choices of 𝜌 are illustrated in 
Fig. 3, when Σ11 = Σ22 = Σ33 = 1 and Cases d) 𝜌 = 0.5, e) 𝜌 = 0 and f) 
𝜌 = −0.5.

4.2. RB/RP with clusters and SRI constraints

This section provides a data analysis based on our main results in 
Sections 3.1 and 3.2. That is, we reconsider the investment portfolio in 
Hallerbach et al. (2004) that was related to portfolio allocation satis

fying certain socially responsible investing (SRI) characteristics.4 The SRI 
scores determine the degree of social responsibility embedded in a firm 
and it enables the investor or portfolio manager to construct the oppor

tunity portfolio (i.e., decide which assets to invest in) by including only 
those companies that satisfy certain SRI targets before deciding upon 
the asset allocation (i.e., decide how much to invest in each asset). This 
two-stage approach provides a 360-degree approach to construct a SRI 

4 We would like to thank Aloy Soppe for making the original raw dataset 
available to us. The original dataset was put together by the Triodos bank, the 
first European green bank.

portfolio. Our data analysis focuses on the second stage that supports 
the decision-making process on portfolio composition that is based on 
RB/RP and CRB/CRP allocations. Given the new socio-economic envi

ronment that investors and fund managers ought to operate in, there 
is a growing emphasis on controlling the degree of risk absorbed from 
different asset classes, from different geographical economic regions or 
satisfying different ESG, SDG or SRI features. Traditional portfolio man

agement techniques were not designed with these social preferences in 
mind.

We work with a universe of 374 companies that are grouped in ten 
Global Industry Classification Standard (GICS) sectors.5 The companies 
data cover different regions, namely EU, UK, US and REST (firms from 
countries outside the EU, UK and US). Together with the SRI informa

tion, we have also collected historical stock prices (daily returns) for all 
firms in our sample from January 2010 to December 2020, from various 
sources: Datastream, WRDS-CRSP, Compustat, IBES and Yahoo!Finance. 
The summary information is reported in Appendix C.

Our data analysis relies on comparing three RB/CRB (or denoted as 
RP/CRP when the risk budgets are equal) portfolios, where the risk mea

sures are either standard deviation (SD) and/or Conditional-Value-at-Risk 

5 Note that the original investment portfolio in Hallerbach et al. (2004) con

sists of 590 companies, but 216 firms were delisted or vanished during the 
2010-2020 period.
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Fig. 4. Risk contributions of each region (EU, UK and US) for 2010-2019 (left) and 2020 (right). 

(CVaR). The first two portfolios, denoted as SD-RP and CVaR95%-RP, 
are standard RB portfolios, as explained in Section 3.1 with 𝜑 = 𝑆𝐷 and 
𝜑 = CVaR95%, respectively. The third portfolio, denoted as CVaR95%-SD

CRB, is built on compounding risk measures such that CVaR95%-SD-CRB 
matches the total portfolio risk as measured by SD to the risk measured 
by the CVaR95% equivalent portfolio, i.e., the aggregate level of risks 
measured via SD of the CVaR95%-SD-CRB and CVaR95%-RP portfolios is 
equal. This compound measure has the advantage that it meets the regu

latory requirement of using the CVaR as the market risk measure, whilst 
the portfolio allocations are based on the CRB procedure in Section 3.2

with 𝜑 = 𝑆𝐷.

Fig. 4 compares the (clustered) risk contributions for the three port

folios over the two periods, where the risk contributions are consistently 
computed with 𝜑 being the annualized SD. Each of the three portfolios is 
composed of 𝑛 = 165 assets by choosing the top 55 SRI ranked companies 
in each region, namely EU, UK and US.6 We observe that the US/UK/EU 
cluster has a higher/similar/lower SD risk contribution for CVaR95%

SD-CRB than the SD risk contribution for CVaR95%-RP. One possible 
explanation for this result is the degree of homogeneity or heterogene

ity in the companies that are selected in each region. The companies 
in the EU are subject to more intense regulation and the top compa

nies are expected to have similar SRI scores. This would lead to lower 
CVaR95%-SD-CRB. The US firms are more heterogeneous in behaviour, 
taking advantage of a more relaxed regulatory regime.

We now redo the previous computations by including in each of the 
three portfolios the top 10 SRI ranked companies in each of the ten 
GICS sectors (see list in Table C.4) and thus, the new three portfolios 
are composed of 𝑛 = 100 assets. These new three portfolios have no se

lection parity imposed at the regional level. The new risk allocations 
are computed as before, and the results are displayed in Fig. 5. The left 
radar chart in that figure shows the three portfolios are similar dur

ing low market risk, and in turn, CRP across sectors is now achieved. 
The right radar chart in Fig. 5 indicates that two sectors, namely Con

sumer Staples and Materials, have significantly larger risk allocations for 
CVaR95%-RP as compared to CVaR95%-SD-CRB, while the individual sec

tors with high annualized SD, namely Financials and Energy, have lower 
risk allocations for CVaR95%-RP as compared to CVaR95%-SD-CRB. This 
effect can be attributed to the COVID-19 pandemic that has engulfed 

6 The Rest of the World was dropped out because there are only 34 companies 
in the sample from this region.

the major economies and the destabilization of the world-wide supply 
chain.

5. Conclusions

This paper provides an extensive discussion about the theory and 
practice around constructing RB portfolios in a variety of settings. We 
have started out with revisiting the usual one risk holder setting with 
and without clustered risks, and we then show how those settings could 
be extended to situations in which a non-hedgeable risk is present or a 
fixed sub-portfolio has been aimed by the risk holder. The latter are 
novel approaches, which widen the application of RB portfolio con

struction. Another novel approach of this paper is a combination of the 
concepts of RS and RB, which has not been discussed in the wider risk 
analysis and risk management literature.

Our theoretical results are accompanied by numerical procedures to 
identify such RB and RB-RS portfolios. Numerical experiments are pro

vided for pure RB portfolios, where we show how to apply our methods 
to constructing RB and clustered RB (or CRP) by considering SRI fac

tors. Such SRI factors are now becoming more and more popular given 
changes in stakeholders’ preferences towards societal benefits.
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Fig. 5. Risk contributions of each of the ten GICS sectors for 2010-2019 (left) and 2020 (right). 

Appendix A. Proofs

A.1. Proof of Theorem 3

Note that (3.2) is a strictly convex optimization problem since 
−𝜆

∑𝑑

𝑘=1 𝑏𝑘 log𝑥𝑘 is a strictly convex function in x over the convex cone 
ℜ𝑑

++. Let 𝐹 (x;𝜆) be the objective function of (3.2). To show that the 
solution of (3.2) lies in the interior of ℜ𝑑

++, it suffices to show that

lim inf
x→x′

𝐹 (x;𝜆) =∞, for any x′ ∈ 𝜕ℜ𝑑
++ =𝐵1 ∪𝐵2, where (A.1)

𝐵1 ∶=
⋃

⊆{1,2,…,𝑑}; ||≥1
{

x ∶ 𝑥𝑘 =∞ for all 𝑘 ∈ , and 

𝑥𝑘 ∈ [0,∞) , for all 𝑘 ∈ {1,2,… , 𝑑}∖
}
,

𝐵2 ∶=
⋃

⊆{1,2,…,𝑑}; ||≥1
{

x ∶ 𝑥𝑘 = 0 for all 𝑘 ∈ , and 

𝑥𝑘 ∈ (0,∞) , for all 𝑘 ∈ {1,2,… , 𝑑}∖
}
.

Fix an x′ ∈𝐵1, and by the homogeneity of 𝜑, one may get that

𝐹 (x;𝜆) = 1 
𝜏

(
1𝑇 x

)𝜏
𝜑

(
x𝑇X

1𝑇 x

)
− 𝜆

𝑑∑
𝑘=1
𝑏𝑘 log

(
𝑥𝑘

1𝑇 x

)
− 𝜆 log

(
1𝑇 x

)
≥

1 
𝜏

(
1𝑇 x

)𝜏 inf 
y∈Δ𝑑

𝜑
(
y𝑇X

)
− 𝜆 sup 

y∈Δ𝑑

𝑑∑
𝑘=1
𝑏𝑘 log𝑦𝑘 − 𝜆 log

(
1𝑇 x

)
(A.2)

= 1 
𝜏

(
1𝑇 x

)𝜏 inf 
y∈Δ𝑑

𝜑
(
y𝑇X

)
− 𝜆

𝑑∑
𝑘=1
𝑏𝑘 log𝑏𝑘 − 𝜆 log

(
1𝑇 x

)
,

for any x ∈ℜ𝑑
++. Therefore,

𝐹 (x;𝜆)
1𝑇 x

≥
1 
𝜏

(
1𝑇 x

)𝜏−1 inf 
y∈Δ𝑑

𝜑
(
y𝑇X

)
− 𝜆 

1𝑇 x

𝑑∑
𝑘=1
𝑏𝑘 log𝑏𝑘 − 𝜆

log
(
1𝑇 x

)
1𝑇 x

for any x ∈ℜ𝑑
++.

Clearly, 
∑𝑑

𝑘=1 𝑏𝑘 log𝑏𝑘 < 0 since b ∈Δ𝑑 . Moreover, there exists an 𝑀 >

0 such that 1 
𝜏

(
1𝑇 x

)𝜏−1
> 𝑀 for any x sufficiently close to x′, since 

𝜏 ≥ 1. Furthermore, for any small 𝜖 > 0, there is a neighbourhood of x′
such that | log (1𝑇 x

)
∕1𝑇 x| < 𝜖 since log𝑦 = 𝑜 (𝑦) as 𝑦→∞ and x′ ∈𝐵1. 

Putting all these together with 𝜖 ↓ 0 and keeping (3.1) in mind, one may 
conclude that

lim inf
x→x′

𝐹 (x;𝜆)
1𝑇 x

> 0, and thus, lim inf
x→x′

𝐹 (x;𝜆) =∞ for any x′ ∈𝐵1.

Fix an x′ ∈ 𝐵2; then, there exists an  ⊆ {1,2,… , 𝑑} with || ≥ 1
such that 𝑥′

𝑘
= 0 for all 𝑘 ∈ , and 𝑥′

𝑘
∈ (0,∞) for all 𝑘 ∈ {1,2,… , 𝑑}∖. 

Similar to (A.2), one may get that

𝐹 (x;𝜆) ≥ 1 
𝜏

(
1𝑇 x

)𝜏 inf 
y∈Δ𝑑

𝜑
(
y𝑇X

)
− 𝜆

𝑑∑
𝑘=1
𝑏𝑘 log𝑥𝑘

for any x sufficiently close to x′. Since 𝜆 > 0 and b> 0, the above equa

tion implies that lim infx→x′ 𝐹 (x;𝜆) =∞ for any x′ ∈𝐵2.

Equation (A.1) implies that there exist an 𝑎 > 0 and an 𝜖 ∈ (0, 𝑎] such 
that

inf 
x∈ℜ𝑑++

𝐹 (x;𝜆) = inf 
x∈𝐵𝑎,𝜖

𝐹 (x;𝜆), where 𝐵𝑎,𝜖 ∶= {x ∈𝐵𝑎 ∶ min 
1≤𝑘≤𝑑

𝑥𝑘 ≥ 𝜖}

with 𝐵𝑎 ∶= {x ∈ℜ𝑑
++ ∶ ||x|| ≤ 𝑎} and || ⋅ || being the Euclidean distance. 

Since 𝐵𝑎,𝜖 is a compact set, the global minimum of 𝐹 (⋅;𝜆) on ℜ𝑑
++, i.e. 

x∗(𝜆,b), is an interior point of the feasibility set for any given 𝜆 > 0.

It remains to prove that

x∗(𝜆∗,b) =
(
1𝑇 x∗(1,b)

)−1
x∗(1,b) ∈(b). (A.3)

Firstly, we show that the unique solution of (3.2), i.e., x∗(𝜆,b), satisfies

x∗(𝜆,b) = 𝜆1∕𝜏x∗(1,b) for any 𝜆 > 0. (A.4)

Assume, on the contrary, that 𝜆1∕𝜏x∗(1,b) does not solve (3.2) for a 
given 𝜆 ∈ℜ++ ⧵ {1}; that is, there exists x̃ ∈ℜ𝑑

++ such that

1 
𝜏

(
x̃
)
−𝜆

𝑑∑
𝑘=1
𝑏𝑘 log 𝑥̃𝑘 <

1 
𝜏

(
𝜆1∕𝜏x∗(1,b)

)
−𝜆

𝑑∑
𝑘=1
𝑏𝑘 log

(
𝜆1∕𝜏𝑥∗

𝑘
(1,b)

)
.

By this inequality and the homogeneity of 𝜑,

𝜆

𝜏

(
𝜆−1∕𝜏 x̃

)
− 𝜆

𝑑∑
𝑘=1
𝑏𝑘 log

(
𝜆−1∕𝜏 𝑥̃𝑘

)
− 𝜆

𝑑∑
𝑘=1
𝑏𝑘

log𝜆
𝜏

<
𝜆

𝜏

(
x∗(1,b)

)
− 𝜆

𝑑∑
𝑘=1
𝑏𝑘 log

(
𝑥∗
𝑘
(1,b)

)
− 𝜆

𝑑∑
𝑘=1
𝑏𝑘

log𝜆
𝜏
,
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which further implies that

1 
𝜏
(𝜆−1∕𝜏 x̃) −

𝑑∑
𝑘=1
𝑏𝑘 log

(
𝜆−1∕𝜏 𝑥̃𝑘

)
<

1 
𝜏

(
x∗(1,b)

)
−

𝑑∑
𝑘=1
𝑏𝑘 log

(
𝑥∗
𝑘
(1,b)

)
.

This contradicts that x∗(1,b) solves (3.2) with 𝜆 = 1, as 𝜆−1∕𝜏 x̃ ∈ℜ𝑑
++, 

and concludes (A.4).

Secondly, we show that 
(
1𝑇 x∗(1,b)

)−1
x∗(1,b) ∈ Δ𝑑 ∩(b). Note 

that x∗(𝜆,b) ∈ ℜ𝑑
++, but not guaranteed to be in Δ𝑑 , and thus, is not 

necessarily in (b). Since (x) is differentiable at x∗(1,b) (and thus at 
x∗(𝜆,b) for any 𝜆 > 0 due to (A.4)) and the fact that  is a homogeneous 
function, the first-order conditions in (3.2) imply that 𝑘

(
x∗(𝜆,b)

)
=

𝑏𝑘
(
x∗(𝜆,b)

)
for all 𝑘 ∈ {1,2,… , 𝑑}. However, due to the homogeneity 

of 𝜑, 𝑘 is also homogeneous of the same order as 𝜑, and thus

𝑘

(
𝑡x∗(𝜆,b)

)
= 𝑏𝑘

(
𝑡x∗(𝜆,b)

)
, for all 𝑘 ∈ {1,2,… , 𝑑} and any 𝑡 > 0.

In particular, choose 𝑡 =
(
1𝑇 x∗(1,b)

)−1
to find that 

(
1𝑇 x∗(1,b)

)−1 ×
x∗(1,b) ∈ Δ𝑑 ∩(b).

Thirdly, x∗(𝜆∗,b) =
(
1𝑇 x∗(1,b)

)−1
x∗(1,b) is true due to (A.4), and 

in turn x∗(𝜆∗,b) ∈ Δ𝑑 . The latter justifies (A.3), which concludes our 
proof.

A.2. Proof of Proposition 6

Let 𝑙 ∈ {2,3,… , 𝑑}, partition 
{
(1),(2),… ,(𝑙)} of 𝑑 , and b ∈

Δ𝑙 . Let 𝜶 ∈ (b) ⊆ Δ′
𝑑
. By definition, for all 𝑘 ∈ {1,2,… , 𝑙}, ∑

𝑖∈(𝑘) 𝑖(𝜶) = 𝑏𝑘(𝜶). For each 𝑖∈ {1,2,… , 𝑑}, define 𝑎̃𝑖 =𝑖(𝜶)∕ 
(𝜶). Obviously, ã ∈Δ′

𝑑
. For each 𝑘 ∈ {1,2,… , 𝑙},∑

𝑖∈(𝑘)
𝑎̃𝑖 =

∑
𝑖∈(𝑘)

𝑖(𝜶)
(𝜶) 

=
𝑏𝑘(𝜶)
(𝜶) 

= 𝑏𝑘.

Thus, ã ∈ (b). Also, by definition, for each 𝑖 ∈ {1,2,… , 𝑑}, 𝑖(𝜶) =
𝑎̃𝑖(𝜶), and hence 𝜶 ∈ (ã) ⊆

⋃
a∈(b)(a). These show that 

(b) ⊆
⋃

a∈(b)(a).
Let 𝜶 ∈

⋃
a∈(b)(a). There exists an a ∈  (b) such that 𝜶 ∈

(a). By definition, a,𝜶 ∈ Δ′
𝑑
, for all 𝑘 ∈ {1,2,… , 𝑙}, 

∑
𝑖∈(𝑘) 𝑎𝑖 =

𝑏𝑘, and for all 𝑖 ∈ {1,2,… , 𝑑}, 𝑖(𝜶) = 𝑎𝑖(𝜶). Then, for each 𝑘 ∈
{1,2,… , 𝑙},∑
𝑖∈(𝑘)

𝑖(𝜶) =
∑
𝑖∈(𝑘)

𝑎𝑖(𝜶) = 𝑏𝑘(𝜶).

Hence, 𝜶 ∈ (b). These show that 
⋃

a∈(b)(a) ⊆ (b).

A.3. Proof of Theorem 7

Let 𝐹 (x;𝜆) be the objective function in (3.9). One could show that the 
equivalence of (A.1) holds, and in turn, the global minimum of 𝐹 (⋅;𝜆) on 
ℜ++, i.e., x∗(𝜆,b), is an interior point of the feasibility set.7 As before, 
the first order conditions imply that x∗(𝜆,b) solves (3.7). The proof is 
now complete.

A.4. Proof of Theorem 8

The proof is similar to the proof of Theorem 3, and thus, we only 
provide the necessary arguments. We apply the conclusions of (3.2) from 
Theorem 3 with 𝜆 ∈ {𝜆1, 𝜆2} in (3.10) and (3.11), and conclude that 

7 Therefore, the main innovation of the proof here is via the proof of Theo

rem 3, which shows that a solution of the corresponding optimization problem 
is an interior point.

(3.10) and (3.11) admit unique solutions that are interior points of the 
feasibility set.

We now show part i). Due to the homogeneity of 𝜑1 and 𝜑2, then 
for any 𝑡1, 𝑡2 > 0, 𝑡1x∗

(
1,b1;𝜑1

)
solves (3.10) with 𝜆1 = 𝑡−1∕𝜏11 , and 

𝑡2x
∗(1,b2;𝜑2

)
solves (3.11) with 𝜆2 = 𝑡−1∕𝜏22 . Thus, we need to find 

(𝑡1, 𝑡2) such that the risks are fully allocated within the LoB, i.e., solving

𝑡1𝑥
∗
1
(
1,b1;𝜑1

)
+ 𝑡2𝑥∗1

(
1,b2;𝜑2

)
= 𝑡1𝑥∗2

(
1,b1;𝜑1

)
+ 𝑡2𝑥∗2

(
1,b2;𝜑2

)
= 1,

(A.5)

which is solved by (3.12). Now, (3.12) leads to a feasible risk allocation 
if and only if 𝑡∗1 , 𝑡

∗
2 > 0, which is equivalent to (3.13). The proof of part 

i) is concluded.

Part ii) could be argued in the same way as part i). Since 𝑥∗1(1,b1;𝜑1) 
= 𝑥∗2(1,b1;𝜑1), then (A.5) is guaranteed for any (𝑡1, 𝑡2) ∈ℜ2

++ such that 
𝑡1 + 𝑡2 = 1∕𝑥∗1(1,b1;𝜑1), which concludes this part ii).

We now show part iii). Since (𝛼∗11, 𝛼
∗
21) solves (3.10) with 𝜆 = 𝜆∗1 , 

then

1 
𝜏1𝜆

∗
1

(
1(𝛼∗11, 𝛼

∗
21) −1(𝑥11, 𝑥21)

)
≤ 𝑏11 log

𝛼∗11
𝑥11

+ 𝑏21 log
𝛼∗21
𝑥21

, (A.6)

for any (𝑥11, 𝑥21) ∈ ℜ2
++. Similarly, since (𝛼∗12, 𝛼

∗
22) solves (3.11) with 

𝜆 = 𝜆∗2 , then

1 
𝜏2𝜆

∗
2

(
2(𝛼∗12, 𝛼

∗
22) −2(𝑥12, 𝑥22)

)
≤ 𝑏12 log

𝛼∗12
𝑥12

+ 𝑏22 log
𝛼∗22
𝑥22

, (A.7)

is true for any (𝑥12, 𝑥22) ∈ℜ2
++. Combining (A.6) and (A.7) imply that

1 
𝜏1𝜆

∗
1

(
1(𝛼∗11, 𝛼

∗
21) −1(𝑥11, 𝑥21)

)
+ 1 
𝜏2𝜆

∗
2

(
2(𝛼∗12, 𝛼

∗
22) −2(𝑥12, 𝑥22)

)
≤ min 

(𝑥11 ,𝑥12)∈Δ2
(𝑥21 ,𝑥22)∈Δ2

𝑏11 log
𝛼∗11
𝑥11

+ 𝑏12 log
𝛼∗12
𝑥12

+ 𝑏21 log
𝛼∗21
𝑥21

+ 𝑏22 log
𝛼∗22
𝑥22

= 𝑏11 log
𝛼∗11
𝑏11

+ 𝑏12 log
𝛼∗12
𝑏12

+ 𝑏21 log
𝛼∗21
𝑏21

+ 𝑏22 log
𝛼∗22
𝑏22

+(𝑏11 + 𝑏12) log(𝑏11 + 𝑏12) + (𝑏21 + 𝑏22) log(𝑏21 + 𝑏22)

≤ max 
(𝑥11 ,𝑥12)∈Δ2

𝑏11 log
𝑥11
𝑏11

+ 𝑏12 log
𝑥12
𝑏12

+ max 
(𝑥21 ,𝑥22)∈Δ2

𝑏21 log
𝑥21
𝑏21

+ 𝑏22 log
𝑥22
𝑏22

+(𝑏11 + 𝑏12) log(𝑏11 + 𝑏12) + (𝑏21 + 𝑏22) log(𝑏21 + 𝑏22)

= (𝑏11 + 𝑏12) log
1 

𝑏11 + 𝑏12
+ (𝑏21 + 𝑏22) log

1 
𝑏21 + 𝑏22

+(𝑏11 + 𝑏12) log(𝑏11 + 𝑏12) + (𝑏21 + 𝑏22) log(𝑏21 + 𝑏22)

= 0,

where the second inequality is due to 𝛼∗11 +𝛼
∗
12 = 𝛼

∗
21 +𝛼

∗
22 = 1. The proof 

is now complete.

Appendix B. SD/variance-based CRB

The SD and variance-based CRB portfolios are the same, and thus, 
this is true for CRP counterparts. The mathematical formulation of 
variance-based CRB portfolio is as follows:

∑
𝑖∈(𝑘)

𝑑∑
𝑗=1 
𝛼𝑖𝛼𝑗Σ𝑖𝑗 = 𝑏𝑘𝜶𝑇Σ𝜶 for all 𝑘 ∈ {1,… , 𝑙},

s.t. 1𝑇𝜶 = 1 and 𝜶 ≥ 0.

(B.1)

Solving (B.1) is quite challenging, and the only efficient solution is to 
rely on the equivalent LSE-like formulation in (3.3), which is given as

min
𝜶≥0

𝑙∑
𝑘=1

( ∑
𝑖∈(𝑘)

𝑑∑
𝑗=1 
𝛼𝑖𝛼𝑗Σ𝑖𝑗 − 𝑏𝑘𝜶𝑇Σ𝜶

)2
s.t. 1𝑇𝜶 = 1. (B.2)
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Table C.3

Summary of the financial performance per region.

REGION 
EU UK US REST Total 

No. of companies 188 56 96 34 374 

EQUAL WEIGHTED PORTFOLIO (daily returns) 

11 years: 
2010 - 2020 

Annualized average return 0.0888 0.0724 0.1279 0.1038 0.0996 
Annualized standard deviation 0.1998 0.2039 0.1759 0.1433 0.1651 
Mean 0.0004 0.0004 0.0005 0.0004 0.0004 
Standard deviation 0.0126 0.0128 0.0111 0.0090 0.0104 
Skewness -0.5116 -0.7272 -0.5146 -0.2725 -0.7435 
Kurtosis 7.6460 14.9598 15.8433 3.3927 11.4002 

10 years: 
2010 - 2019 

Annualized average return 0.0833 0.0869 0.1284 0.0864 0.0974 
Annualized standard deviation 0.1889 0.1823 0.1478 0.1357 0.1492 
Mean 0.0004 0.0004 0.0005 0.0004 0.0004 
Standard deviation 0.0119 0.0115 0.0093 0.0085 0.0094 
Skewness -0.2089 -0.8002 -0.4618 -0.3067 -0.4145 
Kurtosis 4.7198 13.3674 4.1551 2.5442 5.2876 

1 year: 
2020 

Annualized average return 0.0898 -0.1106 0.0780 0.1502 0.0627 
Annualized standard deviation 0.2879 0.3446 0.3512 0.2091 0.2761 
Mean 0.0005 -0.0002 0.0005 0.0006 0.0004 
Standard deviation 0.0181 0.0217 0.0221 0.0132 0.0174 
Skewness -1.5274 -0.5124 -0.3906 -0.1649 -1.2751 
Kurtosis 10.7350 7.4429 7.2376 5.1527 10.2675 

The optimization problem from (B.2) is non-convex and any off-the

shelf general optimization tools may lead to unstable solutions. Alterna

tively, a relaxation of (B.2) is suggested in Bai et al. (2016), which could 
be efficiently solved via the Alternating Linearisation Method (ALM). An 
appropriation of the ALM approach is provided, and (B.2) is reformu

lated as

min 
𝜶≥0,𝜃

𝑙∑
𝑘=1

1 
𝑏𝑘

( ∑
𝑖∈(𝑘)

𝑑∑
𝑗=1 
𝛼𝑖𝛼𝑗Σ𝑖𝑗 − 𝑏𝑘𝜃2

)2
s.t. 1𝑇𝜶 = 1. (B.3)

Algorithm 3 from Bai et al. (2016) precisely solves (B.3) when an 
equal budget problem (i.e., CRP is sought), and we now adapt the same 
algorithm for our non-level CRB setting. For ease of notation, we denote 
x𝑇 = (𝜶𝑇 , 𝜃) ∈ ℜ1×(𝑑+1) and |(𝑘)| = 𝑑𝑘, where 𝑑1 + 𝑑2 + … + 𝑑𝑙 = 𝑑, 
since 

{
(1),… ,(𝑙)} is a partition of 𝑑 . Note that

∑
𝑖∈(𝑘)

𝑑∑
𝑗=1 
𝛼𝑖𝛼𝑗Σ𝑖𝑗−𝑏𝑘𝜃2 = x𝑇𝑀𝑘x, where 𝑀𝑘 ∶=

[
Σ(𝑘) Γ(𝑘) 0

0𝑇 −𝑏𝑘

]
,

and Σ(𝑘) ∈ℜ𝑑×𝑑𝑘 is a submatrix of Σ where the columns of Σ are ex

tracted based only on the indexes of (𝑘). Moreover, Γ(𝑘) ∈ℜ𝑑𝑘×𝑑 is a 
binary matrix such that 

(
Γ(𝑘)

)
𝑠𝑡
= 1𝑡=𝜋𝑘(𝑠), where 1𝐴 is the indicator 

function that takes the value 1 if 𝐴 is true, and 0 otherwise. Further, 
𝜋𝑘 ∶ {1,2,… , 𝑑𝑘}→ 𝑑 maps the columns of Σ(𝑘) of Σ. Therefore, the 
system of equations in (B.1) is solved by running a much simpler task:

min
x≥0

𝐹 (x) ∶=
𝑙∑
𝑘=1

1 
𝑏𝑘

(
x𝑇𝑀𝑘x

)2
s.t. c𝑇 x = 1, where c𝑇 = (1𝑇 ,0) ∈ℜ1×(𝑑+1).

(B.4)

We solve (B.4) by approximating x∗, a local optimum of (B.4). That 
is, we generate two sequences {x𝑠 ∶ 𝑠 ≥ 0} and {y𝑠 ∶ 𝑠 ≥ 0} such that 
x𝑠 → x∗ and/or y𝑠 → x∗. Similar to Algorithm 3 in Bai et al. (2016), a 
two-block variant of (B.4) is required to solve:

min 
x,y∈

𝐺(x,y) ∶=
𝑙∑
𝑘=1

1 
𝑏𝑘

(
x𝑇𝑀𝑘y

)2
s.t. x = y, (B.5)

where  ∶= {x ≥ 0 ∶ c𝑇 x = 1} is the feasible set. Note that (B.5) is a con

vex quadratic programming (QP) instance in x for any given y that could 
be efficiently solved; the same holds if x and y are swapped. Further, 
note that the partial derivatives of 𝐺 are

𝐺1(x,y) ∶=
𝜕𝐺

𝜕x
= 2

𝑙∑
𝑘=1

x𝑇𝑀𝑘y

𝑏𝑘
𝑀𝑘y and

𝐺2(x,y) ∶=
𝜕𝐺

𝜕y
= 2

𝑙∑
𝑘=1

x𝑇𝑀𝑘y

𝑏𝑘
𝑀𝑇
𝑘

x.

Denote

𝐻1(x,y;𝜇) ∶=𝐺(x,y) + ⟨ 𝐺2(y,y),x − y⟩+ 1 
2𝜇

‖x − y‖22,
𝐻2(x,y;𝜇) ∶=𝐺(x,y) + ⟨ 𝐺1(x,x),y − x⟩+ 1 

2𝜇
‖x − y‖22,

with 𝜇 > 0. The algorithm for solving (B.4), and thus (B.5), is described 
next as Algorithm 2.

Algorithm 2: CRB algorithm for solving (B.5).

Result: (x𝑠∗ ,y𝑠∗ ) that approximates x∗, a local optimum of (B.4), where 
𝑠∗ is the termination step

𝜇1,0 = 𝜇2,0 = 𝜇0 > 0, 𝛼 ∈ (0,1), and x0 = y0 ∈ ; 
for 𝑠 ∈ {0,1,…} do

x𝑠+1 ∶= arg min
x∈ 

𝐻1(x,y𝑠;𝜇1,𝑠); 

if 𝐹 (x𝑠+1) ≤𝐻1(x𝑠+1,y𝑠;𝜇1,𝑠) then

choose 𝜇1,𝑠+1 ≥ 𝜇1,𝑠; 
else

find the lowest 𝑛1,𝑠 ≥ 1 such that 𝐹 (z1,𝑠) ≤𝐻1(z1,𝑠,y𝑠;𝜇∗1,𝑠), 
where 𝜇∗1,𝑠 = 𝜇1,𝑠𝛼𝑛1,𝑠 and z1,𝑠 ∶= arg min

x∈ 
𝐻1(x,y𝑠;𝜇∗1,𝑠); 

𝜇1,𝑠+1 ∶= 𝜇∗1,𝑠∕𝛼 and x𝑠+1 ∶= z1,𝑠; 
end

y𝑠+1 ∶= arg min
y∈ 

𝐻2(x𝑠+1,y;𝜇2,𝑠); 

if 𝐹 (y𝑠+1) ≤𝐻2(x𝑠+1,y𝑠+1;𝜇2,𝑠) then

choose 𝜇2,𝑠+1 ≥ 𝜇2,𝑠; 
else

find the lowest 𝑛2,𝑠 ≥ 1 such that 𝐹 (z2,𝑠) ≤𝐻2(x𝑠+1, z2,𝑠;𝜇∗2,𝑠), 
where 𝜇∗2,𝑠 = 𝜇2,𝑠𝛼𝑛2,𝑠 and z2,𝑠 ∶= arg min

y∈ 
𝐻2(x𝑠+1,y;𝜇∗2,𝑠); 

𝜇2,𝑠+1 ∶= 𝜇∗2,𝑠∕𝛼 and y𝑠+1 ∶= z2,𝑠; 
end

end 
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Table C.4

Number of firms for each country within each of the ten GICS sectors and four regions. GICS sectors: Consumer 
Discretionary (CD), Consumer Staples (CS), Energy (E), Financials (F), Health Care (HC), Industrials (I), Informa

tion Technology (IT), Materials (M), Telecommunication Services (TS), Utilities (U).

GICS SECTOR 
REGION COUNTRY C.D. C.S. E. F. H.C. I. I.T. M. T.S. U. Total 

EU (188)

Austria 1 1 1 1 1 5 
Belgium 1 1 3 1 1 1 8 
Denmark 1 1 2 
Finland 1 1 2 1 5 
France 13 5 1 5 2 7 4 2 1 40 
Germany 7 3 5 2 4 2 4 1 2 30 
Greece 1 1 2 
Ireland 2 1 1 4 
Italy 2 1 6 1 1 1 2 14 
Netherlands 2 3 1 2 2 1 3 1 15 
Norway 1 2 1 1 5 
Portugal 1 1 1 3 
Spain 2 1 3 1 1 3 11 
Sweden 1 4 7 1 2 2 17 
Switzerland 3 1 6 4 6 2 4 1 27 

UK (56) UK 12 7 1 16 3 8 2 2 5 56 
US (96) US 13 12 5 16 13 17 15 1 2 2 96 

REST (34)

Australia 2 2 4 
Canada 1 1 2 4 
China 3 2 1 1 7 
Japan 3 1 2 3 1 6 1 17 
Korea 1 1 
Singapore 1 1 

Total 62 34 14 76 29 61 37 22 18 21 374 

Table C.5

Granular financial performance for EW portfolios per GICS sector by including all 374 companies across all four 
regions in three periods: 2010 - 2020 (top), 2010-2019 (middle) and 2020 only (bottom).

GICS SECTOR 
C.D. C.S. E. F. H.C. I. I.T. M. T.S. U. 

No. companies 62 34 14 76 29 61 37 22 18 21 

EQUAL WEIGHTED PORTFOLIO (daily returns) 
11 years: 2010 - 2020 
Annual. Return 0.097 0.086 -0.006 0.062 0.115 0.114 0.166 0.125 0.042 0.062 
Annual. Stdev 0.186 0.135 0.237 0.215 0.131 0.195 0.169 0.190 0.161 0.162 
Mean 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.000 0.000 
Stdev 0.012 0.009 0.015 0.014 0.008 0.012 0.011 0.012 0.010 0.010 
Skewness -0.663 -0.602 -0.552 -0.497 -0.575 -0.538 -0.714 -0.308 -0.459 -1.082 
Kurtosis 12.967 8.552 16.407 12.326 8.069 9.400 8.825 4.902 7.170 15.943 

10 years: 2010-2019 
Annual. Return 0.101 0.089 0.019 0.068 0.115 0.107 0.156 0.106 0.049 0.060 
Annual. Stdev 0.165 0.123 0.196 0.195 0.116 0.174 0.151 0.185 0.153 0.144 
Mean 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 
Stdev 0.010 0.008 0.012 0.012 0.007 0.011 0.010 0.012 0.010 0.009 
Skewness -0.547 -0.278 -0.112 -0.349 -0.466 -0.292 -0.454 -0.168 -0.156 -0.303 
Kurtosis 5.569 2.913 2.180 7.920 2.175 4.552 3.075 3.367 3.895 3.559 

1 year: 2020 
Annual. Return 0.043 0.027 -0.207 -0.065 0.104 0.139 0.271 0.237 -0.030 0.074 
Annual. Stdev 0.321 0.219 0.475 0.365 0.218 0.326 0.299 0.258 0.251 0.287 
Mean 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.000 0.000 
Stdev 0.020 0.014 0.030 0.023 0.014 0.021 0.019 0.016 0.016 0.018 
Skewness -0.624 -1.144 -0.643 -0.735 -0.727 -0.817 -1.065 -0.931 -1.532 -2.136 
Kurtosis 6.312 10.920 7.968 7.932 7.440 6.917 7.935 10.693 11.804 15.615 

Appendix C. Empirical data

The financial performance of these 374 companies is measured by 
various measures and the summary is tabulated in Table C.3. Note that 
the performance is evaluated for two periods of time, namely before 
and after the COVID-19 pandemic, but also for the combined period 
from 2010 until 2020. Table C.3 suggests that the financial performance 
in 2020 alone is significantly different from the performance observed 
before the COVID-19 pandemic, excepting perhaps the EU. Note that the 
portfolio performance tabulated in Table C.3 assumes that each asset has 
equal weight in the total portfolio, which is known as the Equal Weighted 

(EW) portfolio, and thus, is considered as a benchmark portfolio that is 
not easy to outperform in practice, see DeMiguel et al. (2013). Granular 
financial performance for EW portfolios per GICS sector is in Table C.5.

Fig. C.6 replicates the sector comparison displayed in Fig. 5, but only 
for one specific region, namely the EU. The other two regions (UK and 
US) are not discussed since the pattern is similar to the EU region. That 
is, we redo the computations shown in Fig. 5 by creating the three port

folios when including only the top 35 and 55 SRI ranked EU companies 
as displayed on the upper and lower panels, respectively; that is, the 
upper and the lower panels contain portfolios composed of 𝑛 = 35 and 
𝑛 = 55 assets, respectively. For the period 2010-2019, working with a 
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Fig. C.6. Risk contributions of each of the ten GICS sectors for 2010-2019 (left) and 2020 (right). The numbers in each bracket indicate the number of EU companies 
selected from that particular sector.

larger pool of companies helps to reduce the risk contributions to each 
sector, possibly, as a side effect of diversification. The exogenous shock 
of COVID-19 pandemic in 2020 produces more total risk in all sectors. 
The general shape in the spider plots is very similar for plots done with 
the same number of companies, suggesting that the market structure did 
not change in 2020 but the overall risk levels increased substantially.

Data availability

The authors do not have permission to share data.
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