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ARTICLE INFO ABSTRACT

JEL classification: Risk budgeting is an effective risk management tool that a decision-maker uses to create a risk portfolio with

Gl11 a pre-determined risk profile. This paper provides a rich discussion about the theory and practice on how to

G22 construct risk budgeting portfolios in a variety of settings. We revisit the usual portfolio selection setting with
i and without clustered risk budgeting targets, and we then provide an approach on how to extend the usual setting
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to situations in which a non-hedgeable risk is present or fixed sub-portfolios are aimed by the decision-maker.
Another study of this paper is how to include risk budgeting targets in risk sharing, which has not been discussed
in the literature. Implementation issues are also discussed, and some bespoke algorithms are provided to identify
such risk budgeting portfolios. Numerical experiments are performed for real-life financial data, and we explain

the risk mitigation effect of our proposed portfolio. Specifically, financial risk budgeting portfolios with social
responsibility targets are constructed.

1. Introduction

The idea of risk diversification can be traced back to the origins of
probability theory, mainly to Bernoulli’s 1954 paper (Bernoulli, 1954).
Diversification has been reconsidered in a portfolio selection set-up by
Markowitz in 1952 and it has been ever since the cornerstone of mod-
ern finance (Markowitz, 1999). Capital markets and insurance markets
originated and evolved somehow differently, but recently, there is an
enhanced commonality in the approaches taken to manage risk in the
two markets (Cummins and Weiss, 2016; Hainaut, 2017; Gatzert et al.,
2017). The integration was motivated and facilitated by optimization
techniques applied to the decision making on constructing and manag-
ing a portfolio of financial assets or a portfolio of insurance liabilities.
The focus has shifted from risk optimization to Risk Budgeting/Parity
(Roncalli, 2013), since the latter aims to distribute the overall risk in a
pre-defined way across all risks. Risk Parity (RP), also known as Equal
Risk Contribution,' is a special case of Risk Budgeting (RB); for RP, all
risks are allocated to have the same risk contribution, and represents
the most common RB strategy; for RB, the risks contribute to the overall
risk in pre-specified portions which are not necessarily to be equal.

The existing RB literature discusses RB/RP portfolios as a valuable
alternative to the well-known portfolio selection methods that focus on
reducing the overall risk of a portfolio. Notable work include Maillard
et al. (2010) and other papers that have provided practical solutions for
building RB/RP portfolios when the risk preferences are ordered by a
specific risk measure; specifically, variance and standard deviation risk
preferences are discussed in (Roncalli, 2013; Spinu, 2013; Bai et al.,
2016), Conditional-Value-at-Risk and expectiles risk preferences are inves-
tigated in Mausser and Romanko (2018) and Bellini et al. (2021) respec-
tively, while a larger class of risk preferences is investigated in Asimit et
al. (2025). Such papers provide bespoke numerical methods for real-life
implementations of RB/RP portfolios. Besides this strand of research,
Roncalli and Weisang (2016) shows the connection between RB portfo-
lios and risk factors, while Kaucic (2019) and Anis and Kwon (2022)
consider portfolio construction under some cardinality constraints to
achieve lower corresponding portfolio overhead. Recently, da Costa et
al. (2023) and Cetingoz et al. (2024) discuss RB portfolios’ existence and
uniqueness for a large class of risk measures.
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Portfolio selection is a risk management exercise that is more specific
to financial assets, and it does not take into account any risk transfer
from the (portfolio) risk holder to third parties; such risk shifting is
known as risk sharing (RS). Conceptually, RS equally applies to financial
and insurance liabilities, though the RS literature tends to focus more
on portfolios of insurance liabilities, since RS is an effective risk man-
agement exercise for insurance carriers to meet the regulatory require-
ments and their shareholders’ objectives. Moreover, RS can not only
improve capital allocation, but also stimulate further financial devel-
opment (Pagano, 1993; Barattieri et al., 2020). RS problems have been
widely studied in the literature (Ludkovski and Young, 2009; Asimit and
Boonen, 2018; Asimit et al., 2020, 2021), and this strand of research is
much related to intra-group risk transfers, in which an insurance group
instructs its separate legal entities, i.e. risk holders, on sharing their li-
abilities (Asimit et al., 2013, 2016; Weber, 2018; Hamm et al., 2020).

Our contributions to the literature can be described as follows. First,
we investigate RB strategies for one risk holder across many assets i)
with or without risk contribution constraints on clusters of risks, and
ii) with background or non-hedgeable risk. Then, we consider the RS
problem between two risk holders with risk budgeting constraints. We
provide theoretical results demonstrating that solutions for such prob-
lems exist for a large class of risk preferences, and we provide bespoke
algorithms to identify these strategies in a practical context.

The paper is organized as follows. Section 2 provides the necessary
background, while Section 3 contains the main theoretical results. Fur-
ther, Section 4 provides extensive numerical exemplifications of our
theoretical results, including a data analysis based on a unique database
that helps us construct RB/RP portfolios with socially responsible invest-
ment (SRI) constraints. Section 5 summarizes with our conclusions. All
proofs are relegated in Appendix A, while further details about the al-
gorithm and data used in Section 4 are provided in Appendix B and
Appendix C, respectively.

2. Problem formulation

Throughout this paper, the economy field is represented by (Q, F, P),
an atomless probability space, endowed with L := LO(Q, F, P), the set
of all real-valued random variables on this probability space. A generic
random variable Y € L° represents the future loss of a financial asset or
an insurance liability. Let L4, g € (0, ), be the set of random variables
with finite ¢’ moment, and L*® be the set of bounded random variables.

A risk measure ¢ is a function that maps an element of L° to an ex-
tended real number, i.e., ¢ : L0 — R:= [—o0, 00]. We recall below some
properties for a generic risk measure. These properties are well-known
in the literature; an extensive introduction on risk measures could be
found in Follmer and Schied (2011).

(P1) Homogeneity of order = > 0: ¢ (cY) =c"@(Y)
forany Y € L% and ¢ > 0;
(P2) Convexity: p(aY; + (1 —a)Y;) <ap(Y;)+ (1 —a)p(Y,)
forany Y|, Y, € L’andae [0,1];
(P3) Shift invariance: (Y +¢) = @(Y)
for any Y eLllandceR := (-, );
(P4) Translation invariance: ¢ (Y +¢)=@(Y)+c
forany Y € L% and c € R.

Three risk measures are often recalled in this paper, which are stan-
dard deviation, variance, and Conditional-Value-at-Risk (CVaR), given
that they are well-defined in a set L°, L4, g € (0, 0), or L*®. For any
p €(0,1), CVaR at the probability level p is defined by CVaR,(Y) :=

inf,eq (z+ =E [(Y—t)+]), where (1), := max(-,0) on R. Table 1

summarizes whether each of the risk measures satisfies a property
above.
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Table 1
Properties of standard deviation, variance, and
Conditional-Value-at-Risk.

Risk measure ¢ P1 (7) P2 P3 P4
Standard deviation v (1) v v
Variance v (2) v v
CVaR at level p € (0,1) V(1) v v

In this paper, we study two RB problems, which are respectively
formulated for one risk holder in Section 2.1, and for two risk holders
in Section 2.2.

2.1. RB for one risk holder

We first define the RB problem of one risk holder (e.g. investor)
that holds a portfolio of (e.g. assets with) d > 2 risks, i.e., X :=
(Xl,Xz,.A.,Xd)T, where X, for k € {1,2,...,d}, represents the fu-
ture loss of the k™ risk. A portfolio allocation vector is denoted as
a = (al,az, ,ad)T, where q; represents the proportion of the k'
risk in the portfolio. Therefore, the aggregate position of the risk holder
is given as a” X. Let ¢ be the risk measure that orders this risk holder’s
risk preferences, and thus the overall portfolio risk is R () := ¢ (aTX) .
We assume that the risk holder must hold these risks and does not short
sell any of them, and hence a € ERdJr 4+ =0, 0)?. Since a are the pro-
portions, any admissible @ € Ay :={a e R? :1Ta=1}.

Suppose that the risk measure ¢ is homogeneous of order 7 > 0. By
Euler’s Homogeneous Function Theorem, for any @ € A,

d
- 1, 0R
R(x)= /; RC (), with RCi(a):= Tak P (o). 2.1)

Therefore, RC,(a) represents the risk contribution by the k'# risk to the
overall portfolio risk R (@), and consequently b, (@) :=RC;(@)/R (a)
represents the proportion of such risk contribution to the overall risk. To
summarize, given an admissible allocation vector a € A, the risk con-
tribution proportion vector b(a) := (b; (@), b, (@), ..., by (a))T EA,is
determined.

The RB problem of the risk holder is essentially an inverse problem
of the above. Given a pre-specified risk contribution proportion vector
b:=(by,bs,... ,bd)T € A, the risk holder would like to determine an
admissible allocation vector a (b) € A; such that (2.1) holds. This is
formalized in Definition 1.

Definition 1. Let b € A ;. An allocation strategy @ € A, is said to be RB
if
RC(ax)=bR(a) forallke(1,2,...,d},

(2.2)
where RC, () is given in (2.1).

For any b € A, define RB(b) :={a € A; : a is RB} as the set of
RB portfolios. In particular, if b, = 1/d, for all k € {1,2,...,d}, a RB
allocation strategy a € RB((1/d)1) is said to be RP.

Note that the set of RB portfolios depends on not only the given risk
contribution proportion vector b, but also the risk holder’s risk mea-
sure @, which is assumed to be homogeneous of order 7 > 0, via the risk
contribution terms RC,;(-), for k € {1,2,...,d}, and the overall port-
folio risk R (-). Table 2 summarizes the closed-form risk contributions
for the three previously-mentioned risk measures, provided that these
are well-defined.? From this table, it is not difficult to deduce that the

2 For example, Var (aTX) # 0 is needed for the standard deviation case which
happens only in the trivial case when X is degenerated. The risk contributions
under the cases of variance and Conditional Value-at-Risk are always well-
defined.
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Fig. 1. Risk sharing flowchart, where RH1 and RH2 denote the first and second risk holders.

Table 2
Individual risk contributions for some well-known risk mea-
sures.

Risk measure ¢ Individual risk contribution RC, (-)
Cov (@, X, a’X) /\/Var (aTX)
Cov (o, X, a"X)

E[o, X, la”X > VaR, (a’X) |

Standard deviation
Variance
CVaR at level p e (0, 1)

RB allocation strategies based on standard deviation and variance risk
measures are equivalent.

Various numerical solutions have been proposed for computing RB
portfolios in Definition 1. Spinu (2013) showed that the RB portfolios
could be written as an efficient convex optimization problem, which
is a much simpler numerical problem than solving the system of non-
linear equations in (2.2), if the risk measure ¢ is given by the variance
(or the standard deviation). The CVaR risk measure setting is discussed
in Mausser and Romanko (2018), while Bellini et al. (2021) illustrates
the expectile risk measure case; both papers provide computationally
efficient algorithms that make the RB strategies to be implementable in
practice, even for a relatively large number of risks.

2.2. RB for two risk holders

We now define a RS problem between two risk holders with RB con-
straints. Let X; € L° be the pre-transfer random loss for the i risk
holder, where i € {1,2}. In this setting, there are in total d =2 risks.

The risk holders aim to share their risks. Let o;; be the proportion
of the loss X;, which is held by the i"" risk holder to be transferred
to the j risk holder, where i,j € {1,2}; a;; represents the proportion
being retained by the i” risk holder. Therefore, the post-transfer random
loss held by the j” risk holder is given by «a; X1+ az;X,. A pictorial
representation of the risk sharing is illustrated in Fig. 1.

For the j* risk holder, where j € {1,2}, its risk allocation vector is
denoted as «; := (alj,(xzj)T. Note that oy, @, €[0,1] and a; + a, =1.
This RS exercise aims to achieve a right balance of the risks between the
risk holders; the price of the RS could be decided after the allocation is
agreed. Therefore, the aggregate post-transfer risk positions for the first
and the second risk holders are respectively alTX and a;X, where the
pre-transfer risk vector is denoted as X := (X, X,)T.

Let ¢; be the risk measure that orders the risk preferences of the j th
risk holder, where j € {1,2}. Then, the post-transfer overall risks for the
first and the second risk holders are respectively R, (al) =g (alTX)
and R, (@) := ¢, (@] X). Assuming that both risk measures ¢, , ¢, are
homogeneous of order 7 > 0, the Euler’s Homogeneous Function Theo-
rem implies that, for any &, a, € [0,1] such that a; + @, =1, and for
each j € {1,2},

2
. 1 OR;
Rj(aj)=ZRC,-j(aj), with RC[j(aj):=;aijﬁ(aj). (2.3)
i=1 ij

Herein, RC;; («;) is the risk contribution from the i risk holder to the
post-transfer overall risk R (a j) of the j" risk holder; one could then,
again, define b;; (a;) :=RC,; (a;) /R; (;) be the proportion of such
risk contribution to the j” risk holder’s overall risk. Given a pair of risk
allocation vectors of the first and the second risk holders o, @, €[0,1]
such that @ + @, = 1, the j” risk holder’s risk contribution proportion

vector is given by b (aj) 1= (blj (aj) 2by; (aj))T EA,.
The RS problem between the two risk holders with RB constraints is
an inverse problem of the above, which is formalized in Definition 2, and

is in line with Definition 1 for the case of one risk holder.

Definition 2. Let b; := (blj,sz)T € A,, for j € {1,2}. A proportional
risk sharing (al,az), thatis @, a, €[0,1] such that &| + @, = 1, is said
to be RB if

RC;y (@) =b; Ry (a;) and RCp () =byR, (ay) (2.4)

for all i € (1,2}, where RC;, (aj) is given in (2.3).
3. Main theoretical results

This section provides the main theoretical results on the RB problems
for one risk holder and two risk holders formulated in Sections 2.1 and
2.2. For the case of one risk holder, a clustered variant is provided in
Section 3.2, and a variant with background risk or fixed sub-portfolios
is discussed in Section 3.3.

3.1. Standard RB for one risk holder

The following theorem finds a RB portfolio in Definition 1. It ex-
tends Theorem 4 of Bellini et al. (2021), which is focused on expectiles
for the risk measure ¢. Our theorem’s proof is different from that of
Theorem 4.1 in Asimit et al. (2025). In particular, the proof herein, to
show that a solution of the corresponding optimization problem is an
interior point, provides new elements which are useful to show for later
results on clustered RB/RP for one risk holder, as well as RB for two risk
holders, i.e., risk sharing.

Theorem 3. Let b € A ;. Assume that the risk measure ¢ is homogeneous of
order T > 1 and convex, and satisfies that

inf R(x)>0. 3.1
XEA,
For any 4 > 0, the following instance
1 d
min —R(x) -4 Z by logx,, (3.2)
xeRy{, T k=1

admits a unique solution, x*(A,b), that is an interior point of fﬂi R s
differentiable at x*(1,b), then a*(b) := x*(A*,b) = x*(1,b)/17x*(1,b) €
RB(b), where 1* = (1Tx*(1,b)) "
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While Theorem 3 solves a RB allocation strategy, an approximation
for finding all RB strategies could be achieved by the Least Squares Esti-
mation (LSE) formulation, which is defined in Roncalli (2013) as follows:

d
min Y (RC(a) - byR(@))’, (3.3)

aEAd =1

where A:i ={ae §Ri : 1Ta =1} is the standard unit d-simplex, and
where 9{‘1 :=[0, ). Note that, if there exists a ko€ {1,2,....,d} such
that a, = 0, then RC ko (@) =0, and in turn b, =0 which contradicts
the fact that b € A;. Therefore, (3.3) yields the same set of solutions
irrespective of the feasibility set choice, i.e., A; or A;, but Afi is pre-
ferred in numerical optimization. Bai et al. (2016) shows that, when the
risk measure ¢ is variance, (3.3) could be efficiently solved for approx-
imating all RB allocation strategies. In the next section, we make use of
the same LSE methodology on clustered risk budgeting/parity for one risk
holder.

3.2. Clustered RB for one risk holder

A standard RB allocation assumes a pre-specified risk contribution
proportion for each individual risk as explained earlier; in this case,
the dimension of the pre-specified proportion vector b has to be the
same as that of the risk vector X. This standard RB formulation can be
generalized to the so-called Clustered Risk Budgeting (CRB), where the
risks in X are first clustered, and then a pre-specified risk contribution
proportion applies to each cluster instead of each individual risk; that
is, the number of pre-specified proportions in b could be less than the
number of risks in X.

Definition 4. Let / € {2,3,...,d} be the number of clusters for the in-
dividual risks, and let {I(l), @, ..., I(’)} be an /-dimensional partition
of I,:={1,2,....d}, ie,

1
U 700 — 1,. and 7k n 7k = 5
k=1

for all k;,k, € {1,2,...,1} such that k| # k.

Let b € A, be the pre-specified risk contribution proportion vector ap-
plying to these clusters. An allocation strategy a € Afi is said to be CRB
if

> RC(@)=bR(@) forallk € {1.2,....1}. (3.4)

ie1®)

For any ! € {2,3,...,d}, partition {Z(l),l(z),l..,l(’)} of I, and
b e A, define CRB(b) :={a € A:i . a is CRB} as the set of CRB port-
folios. In particular, if b, =1//, for all k € {1,2,...,/}, a CRB allocation
strategy @ € CRB((1/1)1) is said to be Clustered Risk Parity (CRP). Note
that the set of CRB/CRP strategies actually depends on the choices for
the number of clusters / and the clusters themselves; they are omitted
for the sake of notational brevity. Clearly, the standard (non-clustered)
RB/RP allocation in Sections 2.1 and 3.1 is achieved when / = d, which
forces that each cluster holds only one individual risk.

Similar to (3.3), all CRB allocations could be approximated by the
LSE formulation:

i 2
min Z( > RC[(a)—ka(a)> . (3.5)

!
G R

Appendix B provides a numerical solution to solve (3.5) when the risk
measure is given by the variance or the standard deviation, which is a
slight extension of Algorithm 3 in Bai et al. (2016) that focuses only
on CRP allocations. Solving (3.5) for other risk measures would require
general optimization algorithms, since we do not have bespoke efficient
algorithms for other (than variance or standard deviation) risk mea-
sures.

Insurance Mathematics and Economics 125 (2025) 103139

It is expected that, for any be A, with / € {2,3,...,d — 1}, CRB(b)
contains multiple, if not infinitely many, CRB portfolios, which are
solved by definition of (3.4), or are approximated by the LSE formu-
lation of (3.5); but, each of these strategies « € CR3(b) would induce a
possibly different overall portfolio risk R (@) of the risk holder. There-
fore, define a**(b) = argmingecr by R(a) as the set of CRB allocation
strategies which minimizes the overall portfolio risk. The following Ex-
ample 5 illustrates how to find a**(b) in a simple setting.

Example 5. Assume that X, X,, X5 are three independent risks (d = 3),
each with a unit variance, and the risk measure ¢ is given by the vari-
ance. The risk holder aims to find CRB (more precisely, CRP) strategies
with two clusters, namely (X, X,) and X3; thatis, ] =2, I = {1,2},
1@ = {3}, b, = b, = 1/2. Therefore, by (3.4) and after simplifications,
a CRP allocation strategy a € A’s satisfies ocf + oc% = a§ ; in turn, the CRP
set is given by:

CRB((1/2,1/2)T)
1-2 1-2¢\" 3.6
={a(:>:a(¢>=<¢ Sl-e- ‘f) ,:e[o,l/ZJ}.( )

T 2-2¢

The minimal portfolio variance within the CRP set CRB ((1 /2,1/ 2)T)
V2

is obtained when &* =1 — N since

min R(a)
aeCRB(1/2.1/2)T)

- 2, 2., 2
min rad+a
aeCRB((l/Z,l/Z)T)( Tt Ta)

. , [(1-28\° 1-26\°
:er[%}%(‘s +<2—2§> +<1_5_2—2§> >
T

and hence, a*((1/2,1/2)7) = a(&*) = (1—%1—%@—1) ,

which is an element of CRB((1/2,1/2)T) in (3.6), with R (a**((1/2,
1/2)7)) =6 —4v/2.

The analysis of CRP and their minimal portfolio risk is also applicable
in the case of dependent risks. For simplicity of the illustration, assume
that X, X,, X3 have the same value for their pairwise correlations; for
a valid correlation matrix, the value, being denoted as p, needs to lie
between —i and 1. When p= —%, i.e., the risks are most negatively
correlated,

CRB((1/2,1/2)T)

B ) (. 1-2 12 T
—{a(é)-a(é)—<é,2_3§,1 ¢ 2_35) ,56[0,1/2]},

and a**((1/2,1/27) = a(1/3) = (1/3,1/3,1/3)T, with R (a**((1/2,
1/2)T)) =0. When p = 1, i.e., the risks are most positively correlated,

crRB(1/2.1/2") ={ @ @@ = (63 -3). c€l0.1/21},

and a**((1/2,1/2)7) = a(&), for any & € [0,1/2], with R (a**((1/2,
1/2h) = 1.

The CRP sets and their minimal portfolio risk, in terms of variance,
are different among the cases with different dependence structure of
the risks. When the risks are most negatively correlated, with p = —%, it
can be easily shown that the CRP allocation to the third risk X5, which
is alone in the second cluster, can be less than those to the first and
second risks X, X, respectively, which are in the first cluster. When
the risks are independent or most positively correlated, with p =0 or
p =1, it can also be easily shown that the CRP allocation to the third
risk is always larger than those to the first and second risks X, X, re-
spectively; in particular, when the risks are positively correlated, with
p =1, the CRP allocation to the third risk X5, which is 1/2, matches the
pre-specified risk contribution of the second cluster, which comprises
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only the third risk, while the CRP allocation to the first and second risks
X1, X, respectively are arbitrary as long as their allocations add up to
1/2, which matches the pre-specified risk contribution of the first clus-
ter, which comprises the first and second risks.

Within the CRP allocation, the optimal allocation is unique for most
negatively correlated or independent risks, but it is not unique for most
positively correlated risks. In fact, when risks are most positively corre-
lated, no diversification is possible, and thus any allocations in A’3 would
yield a unit of risk, in terms of variance, since all the three risks have a
unit of risk. Note also that, on the one hand, when the risks are indepen-
dent, the optimal allocation with CRP is no longer equally weighted, but
the optimal allocation without CRP is indeed equally weighted; recall
that the aim of (C)RB is not to minimize the overall portfolio risk. On the
other hand, when the risks are most negatively correlated, the equally
weighted allocation is the optimal strategy, with or without CRP.

As illustrated by the example, in order to minimize the overall port-
folio risk among CRB/CRP allocation strategies, one has to identify the
full set of CRB(b), for b € A,. In a general setting, this often requires
to solve the LSE formulation of (3.5), which relies on general but inef-
ficient optimization algorithms when the risk measure is not given by
the variance or the standard deviation. Another way of characterizing
the full set of CRB/CRP strategies is to identify a parametric set of RB
strategies. This is given in the following proposition.

Proposition 6. For any | € {2,3,...,d}, partition {Z(”,Z(z), ...,I(’)} of
I1;,andbeA,,

CRBb)= || RB@),
aeB(b)

where B(b) := {aEA; P Yiez a;=by, forallk € {1,2,“.,1}}.

RB strategies with a € A:i \ A, should be understood as standard RB
strategies, in Sections 2.1 and 3.1, with a number of individual risks
of d’ =d — d, where d,, is the number of zero-valued elements in the
vector a, i.e., the risk set does not include the individual risks with zero
risk contribution.

Proposition 6 allows us to solve for CRB allocation strategies that
minimize the overall portfolio risk in another way. In the following,
let I €{2,3,....d}, partition {71, 1®,... I} of I;, and b € A;. By
Proposition 6,

a)= min min R(a).

)= min
aeB(b) aeR B(a)

min = R(a)= R(
aeCRB(b) @€l e pp) RB@)
For each a € B(b), define a*™*(a) = argmingep g R(@); if RB(a) is
a singleton, a***(a) must be given by Theorem 3; if R/3(a) is not a
singleton, the LSE formulation of (3.3) is needed to solve for all RB
strategies with respect to the risk contribution proportion vector a. With
a slight abuse of its notation, we thus have that minyccr pp) R(@) =
min,e g,y R(@***(a)). Since B(b) is a compact set, and since R is
a continuous mapping (as ¢ is homogeneous), if a***(a) is contin-
uous in a € B(b),> by the Weierstrass’ Theorem, define a***(b) =
arg min,eppy R(a**(a)). Therefore,

a™(b) = argmin R(a) = a™**(@***(b)).

aeCRAB(b)
Yet, this alternative way could still involve inefficient steps, such as
the need of solving the LSE formulation of (3.3) when R/B(a) is not a
singleton for some a € B(b), as well as the need of solving a*(a) for
all a € B(b) even though the method by Theorem 3 is efficient when
R B(a) is a singleton for some a € 3(b).

3 This can show to be true if a***(a) is given by Theorem 3, as it is solved via
(3.2).
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Such equivalence is helpful, though, to develop an efficient algo-
rithm to approximate CRB/CRP allocation strategies that minimize the
overall portfolio risk, in the sense that the overall portfolio risk of an
approximated strategy serves as an upper bound of the minimal overall
portfolio risk among CRB/CRP strategies. To this end, for any a € 5 (b),

in R(a)< *
wn (@) < R(a”(a)),
where a*(a) € RB(a) (for example, being solved by Theorem 3), which
implies that, for any a € B(b),

min  R(x)= min min R(a) <R(a*(a)).
a€ECRB(b) @ aeB(b) acR B(a) @ <R(a"@)
Since B(b) is a compact set, and since R is a continuous mapping
(as @ is homogeneous), by the Weierstrass’ Theorem, define a*(b) =

argmin,e ) R(a). Since, by definition, a*(b) € 3(b), we have

- i H < # ok )
R(a) SRR R(a) <R(a”(a*(b)))

min
aeCRB(b)
The motivation of choosing this particular a*(b) € B(b) C Ail is due to
Theorem 4.1 ¢) of Asimit et al. (2025), which states that, for any a € A’,,

R(a*(a)) < R(a). Hence, for any a € B(b),

R(ax)= min min R(a) < R(a*(a)) < R().

min
a€CRB(b) aeB(b) acRB(a)

Since, in particular, R(a*(a*(b))) < R(a*(b)), for any a € B(b),

R(x)= min min R(a)<R(a*(a*(b))) < R(a*(b))

min
acCRB(b) acB(b) acR B(a)

= mi < .
aIEIIBl{]l)) R(a) < R(a)

That is, the choice of a*(b) € B(b) is to ensure that the overall port-
folio risk of the approximated CRB strategy, R(a*(a*(b))), gets closer
to the minimal overall portfolio risk via the tightest upper bound,
min,e gy R(@), for itself.

The approximated CRB allocation strategy, a*(a*(b)), is thus the
worst case, since the minimal overall portfolio risk among CRB strate-
gies cannot exceed this upper bound. We call such approximated CRB
allocation strategy as the worst-case-CRB (WC-CRB). Note that WC-CRB
is denoted as WC-CRP whenever b = (1//)1. Algorithm 1 summarizes
the two-step procedures to obtain the WC-CRB strategy, as already out-
lined above.

Algorithm 1: CRB algorithm for solving (3.4) by approxima-
tion.
Result: Finding the WC-CRB portfolio to approximate a**(b).
Step 1): Find the risk contribution proportion vector, a*(b), that
minimizes the overall portfolio risk subject to clusters’ constraints, i.e.,

a*(b) = argmin R(a).
acB(b)
Step 2): Find a* (a*(b)), i.e., the RB portfolio based on the proportion
vector, a*(b), via (3.2), (3.3), or any other standard RB computational
procedures via numerical optimization.

Algorithm 1 is efficient since a RB portfolio needs to be solved in the
step 2), only for one proportion vector from the step 1). Also, for the
RB portfolio, one can solve the convex instance as in (3.2) instead of
solving the non-convex LSE formulation as in (3.3).

Applying the two-step procedures to Example 5 of the case of inde-
pendent risks, the step 1) implies solving

min R Jar,1/2)T) = min
aeB((1/2,1/2)T) (@.a2.1/2)7) aeB((1/2,1/2)T)
which is obviously solved by af((1/2,1/2)") = a5((1/2,1/2)") = 1/4
and a3((1/2,1/2)") = 1/2; herein, a}((1/2,1/2)") = b, = 1/2 since, re-
call that in the example, the second cluster I® = {3}, which contains

(a}+ a3 +(1/2)%),
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only the third risk X;. The step 2) requires finding the RB portfo-
lio with respect to the risk contribution proportion vector a*(b) =
(1/4,1/4,1/2)T; that is, a*(a*(b)). It is not difficult to work out that

@@ b)) = a) = a*(1/2.1/27) = (1 S o2

That is, in this case, the WC-CRP even minimizes the overall portfo-
lio risk among all CRP allocation strategies.

3.3. RB with background risk or fixed sub-portfolios for one risk holder

The background risk setting requires allocating the risk vector X =
(X, X,,...,X ;) when a non-hedgeable risk (for a financial risk portfo-
lio) or non-insurable risk (for an insurance risk portfolio) Z is present.
For example, an investment house focuses on structured finance prod-
ucts covering credit cards, student loans, Small and Medium Enterprise
(SME) loans, and so on. Each LoB has a specific risk that is internally
measured, and the investment house funds the purchase of these asset
loans by borrowing funds from the market. The market funding risk af-
fects all LoBs and the investment house cannot hedge this risk. Likewise,
a maritime insurance portfolio — e.g. a corporate account that includes
a variety of insurance sub-portfolios such as hull, cargo, and protection
& indemnity insurance, breakdown risk, business interruption risk, per-
sonal accidents, etc. — such that reputational perils of any kind are not
included in the individual coverages. The losses due to such reputational
perils are significantly associated with individual losses covered by this
maritime insurance portfolio, and the reputational peril represents the
(non-insurable) background risk for this bespoke portfolio. In general,
for any @ € A, the overall portfolio risk of the risk holder is then given
by R(a) = (p(Z + aTX). For any risk contribution proportion vector
be ?I‘i + such that 17b < 1, an allocation strategy & € A, is said to be
RB with background risk if
RC(a)=b,R(x) forall k € {1,2,...,d}, 3.7)

where, herein, RC(a) := %ak% () = lak S (Z +aTX). Note that

the risk measure ¢ is tacitly assumed to be homogeneous of order 7 > 1
in (3.7).

The fixed sub-portfolio setting requires allocating the risk vector
(X1, X2, X4 Xqp1: X 42, - Xy, )» where d) > 1, only for the first
d risks X = (X, X>, ..., X), as the risk holder has already fixed an allo-
cation strategy for the remaining d; risks X = (X .1, X442, --- »Xaa))-
Formally, for any (a,&) € A, 4 0 the overall portfolio risk of the risk
holder is given by R(a, &) = (p(aTX + &Tf(). For any risk contribution

proportion vector b € R? %, such that 17b < 1, and for any fixed sub-

portfolio & € R ‘ such that 17& < 1, an allocation strategy a € R? s
such that 17 & < 1 and (@, &) € Ay, (in particular, 1Ta+1Ta=1),is
said to be RB with fixed sub-portfolio if

RCi(a,@)=b R(e,&) for all k e {1,2,...,d}, (3.8)

where, herein, RCy(a,&) := lOtk—(ﬂl a) =

a2 (aX +a"X).
Note that @ is the a priori fixed sub- portfoho allocatlon vector for the
risks X by the risk holder, which means that we only need to solve (3.8)
ina.

Clearly, solving (3.8) is equivalent to solving (3. 7) with the back-

ground risk Z = 1"1;( — and standardized weights ———. This clarifies
why the two settings are mathematically equlvalent and from now on,
we only focus on the RB portfolios with background risk. The following

Theorem 7 solves a RB portfolio with background risk.

Theorem 7. Let b € R? such that 17b < 1. Assume that the risk mea-
sure ¢ is homogeneous of order = > 1 and convex, and satisfies that
infycp, R(x) > 0, where R(x) = ¢(Z +x" X). For any 4 > 0, the following
instance
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min —R(x) A Z by log x;. (3.9)
xe&R =1
admits a unique solution, x*(4,b), that is an interior point of ER‘i R is

differentiable at x*(A,b) for some A > 0, then x*(4,b) satisfies (3.7), where
the sum-to-unity constraint 17x*(4,b) =1 is removed.

The main technical difference between Theorem 3 and Theorem 7 is
the lack of homogeneity of the overall portfolio risk R in (3.9). There-
fore, A acts as a tuning parameter in Theorem 7; that is, we need to
find A > 0 such that 17x*(A,b) = 1, and this solution is denoted as A*(b)
if this solution exists (as its existence can not be guaranteed). Now, if
A*(b) exists, then x*(A*(b),b) solves (3.7). In a nutshell, RB portfolios
satisfying either (3.7) or (3.8) could be found by iteratively solving (3.9)
through the tuning parameter A.

3.4. RS for two risk holders

Consider now the setting in Definition 2, where the RS problem for
two risk holders is solved via RB. The following Theorem 8 tells us how
to solve the RS problem for the two risk holders via RB.

Theorem 8. Let b,,b, € A,. Assume further that the risk measures
@1, @, are homogeneous of order 7,7, > 1 and convex, and satisfy that
infen, R1(x) >0 and inf,cn) Ry(x) > 0, where

Ri(xpy, %) = @1 (x 11 X +x3;X;) and

Ro(X12:X0) = @ (x10. X + x5 X))

Then, for any 4,4, >0,

min —Rl(xll,xZI)— 1(byy logxyy + byy log xy) (3.10)
GrxDERY, 71
and

min —R2(x12,x22) Ay(byp log xyp + by, log xyy) (3.11)

(x12:%20)ERT
admit a unique solution, x*(4;,b;; @) and x*(4,,b,; @,), respectively, that

are interior points of the feasibility set.

) If R, and R, are differentiable at x*(1,b;; @) and x*(1,b,; @,), re-
specavely, then (a“, ) and (alz, *2) solve (2.4), respectively, where
—t*x (1, bj,q;j)foralll j€{1,2} and

x;(]sbz;tpz)—XT(l,bz;(Pz)

1= - !
I x¥(Lby:o)x5(1.bys00)—x5 (1bys01)xt (1,b:907)
1 1
= X%(Lbl:wl)—xz(l,bl:rpl) (3.12)
27 X(Lbpie))xy (Lbyiwn)—x5 (Lb1ig )X (Lbyier)
whenever
(XT(l,blﬂm)—X;(l,bl;fﬂl)) (3.13)

X (x}(1,by: @) — X5 (1, by ) <O0.

ii) Assume that by =b,, ¢, = ¢,, and the fact that R, is differentiable
at x*(Lbys o). If x7(Lbys @) = x5(1,bs @), then (o), a5,) = (£,6)

and (a12, '2) =(1—-¢,1 —¢&) are also solutions of (2.4), respectively,
forany £ € (0,1).

iii) Let /1’1*,/1* > 0 such that (a?l,a;l) = x*(ﬂ’f,bl;(pl), (afz,azz) =

2
K * . * ¥ * ko __
X (/lz,bz,(pz) and aj, o, =ay +aj, = 1, then

1 *
7(7{1(&;‘1,062,)—Rl(xn,le))
T14]
1 3 *
+ Py (Rz(“u’”’zz) —Ry(x12:%)) 0
74

4 ; — —
fOr any (X]],xlz,X21,X22) S 9{++ with X11 + X127 = Xp1 + X = 1.
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Theorem 8 i) shows that the risks are fully allocated, i.e., a;‘] + aTz =
aj, + a5, =1, for any given risk measures and RB under a mild condition
stated in (3.13), if the risk profile and risk contribution proportions for
the two risk holders are quite different. Condition (3.13) requires that
the risk appetite for the two risks, (X, X»), is not the same for the two
risk holders; in other words, if a}, < aJ,, then a}, > aJ,, which means
that there are incentives for both risk holders to initiate the risk sharing.

Contrary to Theorem 8 i) where there is at most one RB alloca-
tion, Theorem 8 ii) suggests that there are infinitely many RB alloca-
tions if the risk profile and risk contribution proportions for the two
risk holders are identical, though a technical condition is required, i.e.,
x’]*(l,bl ;@)= x;(l,b] ; @1). This setting implies that the risk holder 1 re-
tains the same risk proportion in (X, X,), and the second risk holder has
the same strategy. Now, x’lk(l,bl 1) = x;(l,b] ;@) implies that the RB,
i.e., b; = b,, should be chosen such that x7(1,b;; @) = x3(1,b;; ¢}); in
other words, one should numerically find ¢ € A, such that yT(c) ~ y; (),
where

(¥{(e),y5(c)) := argmin lRl(yl,yz) — A (cqlogy; + ¢y logy,).
GLyIR3, g

Clearly, we can not guarantee that there exists ¢* € A, such that

[¥](e*) = y5(c")| < € for a sufficiently small € > 0, but numerical ex-

plorations could answer this question.

Finally, Theorem 8 iii) states that, if the parameters A,, 4, are tuned
such that the unique solutions of (3.10) and (3.11) satisfy the sum-to-
unity constraints between the two risk holders, say by 4}, 4] (that is,
if the sum of the first (resp. second) components of x* (/l’l‘,bl;wl) and
x*(/l;,bz;(pz) equals to 1), then the resulting total overall risk of the
two risk holders, where the sum of their risks is scaled by 1/(z;4]) and
1/ (12/1;), is minimized.

4. Numerical illustrations

This section provides numerical illustrations of how to construct
portfolios based on the RB principle (note that, whenever the risk bud-
gets are equal, more precisely we denote RB/CRB as RP/CRP). Our
numerical implementations disseminate practical implementations on
financial risks for our methods. We provide in Section 4.1 a slight ex-
tension of Example 5. Section 4.2 focuses on RB portfolios for one risk
holder with multiple financial risks where the risk preferences are or-
dered by the Variance (or Standard Deviation) and CVaR risk measures.

4.1. CRP versus WC-CRP

As alluded to before, we extend Example 5 in Section 3.2 and assume
a CRP setting based on variance risk measures for three independent
risks with two clusters such that X;; = X5, i.e., assets 1 and 3 have
the same variance. The CRP portfolio is constructed from the solution
a’e rp> Obtained with the Algorithm 2 in Appendix B. As explained in
Section 3.2, the CRB/CRP solution is an element of a parametric set
of RB solutions, which is obtained by searching for & € A; such that

Zh a% + 2220{% =2 a%. Denoting 6, =1 — % , the solution is described
~ 11
by
T
0pEr —2E+1 082 —2E+1
a(é):=<127,§,1—§—127 ,
2(1-9) 2(1-8)

forall 0< &< V"2 if 5 € (=00, 1)\ {0}, and 0 < £ < § if 0, =0,
since oy, < 1. Onelinay show that minimal variance amongst the a(¢)
Lzopp
2-01y :

The WC-CRP portfolio (defined in Section 3.2) is an element of a (&),
and it can be found via Algorithm 1 in Section 3.2. For Step 1) we need
to solve

portfolios is achieved when &* =1 —
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argmin ZHa% + 22205 +345(1/2)°
aEB((1/2,1/2)T)

T
=(d} a*)T=< *n el > .
2 22 +20) 2(5)) +20)

Step 2) requires finding the RB with the risk contribution proportions
ot (ai‘, a;, 1/2), which could be identified via a non-clustered version of
Algorithm 2 in Appendix B, though a closed-form solution is possible
since we only need solving in a € A; the following system of equations

2

*

= Za*l‘ag, Zzzag = QaZZHag, and a;+a,+az=1.

we-crp = €162,

¢ = —222 cy i= —E” and
! 25, +5y)] 255 (241 +Zp)’
Cry 1= _1
7V 2z,

The following three variance choices are further considered:

The latter is solved by « ¢3)T /17 ¢, where

a) le 2233 = 1,222 :05, ie. 012 :05,
b) X =Zp=253=1,ie. 0,=0;
Q) I =%55= 1,5, =15, ie 6, = -05.

Fig. 2 compares the risk position of the CRP portfolio (computed via
Algorithm 2 in Appendix B) and WC-CRP portfolio (computed via Algo-
rithm 1 in Section 3.2) with the risk position of the parametric portfolio
with risk allocation a(¢). The results clearly show the advantage of us-
ing the WC-CRP portfolio, besides its obvious computational advantage
that was explained in Section 3.2, which reiterates the practical use of
Algorithm 1.

Here, we also extend the three dependent risks with two clusters as
addressed in Example 5 in Section 3.2 such that the assets have equal
variances and the correlation coefficients p; ; = p=! forall 1 < k,I<3,
ie, Xy =Xy =233 =X, p;p = pp3 = p between assets 1 and 2 or be-
tween 2 and 3, while p; 3 = p? between 1 and 3. Again, the CRP portfolio
is constructed from the solution (.  ,, obtained with the Algorithm 2 in
Appendix B. As explained in Section 3.2, the CRP solution is an element
of a parametric set of RP solutions, which is obtained by searching for
a € Az such that RC (@) + RCy(a) = RC3(a) = %R(a) that is afZ“ +

“5222 + 2pi 000\ E 120 + pr300a31/EnE33 + pr3aazy/ Iy X33 =
a§233 + 30031/ Zn 33 + py 301234/ Z11 L33, which can be simplified
as af + a% +2pajay = ag. Actually, the impact of p; 3 = p* is cancelled
out from each side of risk contributions, so the parametric set of RP so-
lutions is identical to the case of dependent risks in Example 5 when
the pairwise correlations are the same, i.e., p; ; = p. However, the new
extended setting of p; 3 = p? can affect the asset allocations for the min-
imal variance portfolio. The solution is described by

_ -2 _g_iy
21=(1=pe&)’ 20-(1=-p&) ) ~

where 0 <€ < % for all p € [-1, 1] (note that, unlike the case of depen-
dent risks p, ; = p in Example 5, here we do not need the assumption
pE [—%, 1] to keep the total portfolio risk R(a) > 0). Denoting P = 1—p,
the solution can be simplified as

-2 o 12
T 2(1- Py’ 20-pP8 ) °

and by arranging elements in a3, it can show that 0 < a(é) <1 as0<
g<;forallpe[-1,1]

a(f) := (-f,

a(®) := <§

1-2¢
2(1 - P&y’

2 _ T
2P& —2P&E+ 1 ) @1

a®) = (e:, P
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Fig. 2. Portfolio variance for the parametric, CRP and WC-CRP portfolios for Case a) (top left), Case b) (top right) and Case c) (bottom). (For interpretation of the

colours in the figure(s), the reader is referred to the web version of this article.)

Since the impact of p 5 = p? is removed, the set is identical to Example 5
when p = —% (iie. P=1-p= %) or p=1 (i.e. P =0). However, due to
the new setting p; 3 = p?, the minimal variance among the a(¢) portfo-
lios is different from Example 5 and it cannot be expressed in any simple
form. By following the same procedure as described in Example 5, we
start with

min R(a)
a€CRB((1/2,1/2)T)

(a2 + ag + a§ +2paay +2payaz + 2p2a1a3) z

= min 1

aeCRB((1/2,1/2)T)

= min

2
az(ay + pay, + pay)) X,
aeCRB((l/2,1/2)T)( 3BT IRTI M )

since a2 + ag + 2payay = (x§ as shown earlier. To get a**((1/2,1/2)T)
or &*, when P #0 (as p # 1), after applying both Product and Quotient
Rules for derivatives, the solution for the minimal variance portfolio
can be achieved by solving the following quartic equation (i.e. &* will
be one of the real roots that is between 0 and %, though we do not have
a simpler expression):

_2P+1 1

P+5 3 3(P+1) 2
2P ¢ 2P2 ¢ 2P3 ¢ 4p3

& =0.

y

Therefore, when P = 1 (as p? = p =0), we have £* =1 — 72, it becomes
the case of independent risks. Also, when P =0 (as p2 =p=1), we

have the same result in Example 5, i.e., a**((1/2,1/2)7) = a(&), for any
¢e0,1/2).

Meanwhile, the WC-CRP portfolio (defined in Section 3.2) is an el-
ement of a(¢), and it can be found via Algorithm 1 in Section 3.2. For
Step 1) we need to solve

arg min (a% + ag + a% +2pa a, +2paya; +2p7a a;)E
aeB((1/2,1/2)T)

where a; = %
% = ZTTP and a} = % = f. Step 2) requires finding the RB with the
risk contribution proportions a*(aj, a3, 1/2), which could be identified
via a non-clustered version of Algorithm 2, though the solution in this
case can also be solved in a € Ag via the following system of equations

and a; +4a, +a3 = 1. The optimal solution is solved by a} =

a% + paja, + p2a1a3 = ZaT(Oé + payay + p2a1a3),
ag + paja, + pajo; = 2a§(a§ + payas + pragaz),
apt+a, +ay= 1.

Unlike the case of a portfolio with three independent risks earlier,
the solution cannot be expressed in a simple term. Nevertheless, af-
ter a few steps of simplification by combining the three equations
above, we can get the following relations between a*(a}, a3, 1/2): a3 =
2(1—p)af—2(1—p)a,+1 2Paf—2Pal+1
2A1—(1-p)ay) 2(1-Pay)

1729 ) which have the

and a, = =Pal)
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Fig. 3. Portfolio variance for the parametric, CRP and WC-CRP portfolios for Case d) (top left), Case e) (top right) and Case f) (bottom).

same forms as in (4.1). As shown in Fig. 2 earlier and Fig. 3, both
a**((1/2,1/2)T) in the parametric set and a*(aT,a;, 1/2) here reach
the same minimal variance portfolio (note, in numerical solutions, due
to some specific levels of precision settings in different methods, it may
have a tiny difference). Three different choices of p are illustrated in
Fig. 3, when X; =X, =X33 =1 and Cases d) p=0.5, e) p =0 and f)
p=-0.5.

4.2. RB/RP with clusters and SRI constraints

This section provides a data analysis based on our main results in
Sections 3.1 and 3.2. That is, we reconsider the investment portfolio in
Hallerbach et al. (2004) that was related to portfolio allocation satis-
fying certain socially responsible investing (SRI) characteristics.* The SRI
scores determine the degree of social responsibility embedded in a firm
and it enables the investor or portfolio manager to construct the oppor-
tunity portfolio (i.e., decide which assets to invest in) by including only
those companies that satisfy certain SRI targets before deciding upon
the asset allocation (i.e., decide how much to invest in each asset). This
two-stage approach provides a 360-degree approach to construct a SRI

4 We would like to thank Aloy Soppe for making the original raw dataset
available to us. The original dataset was put together by the Triodos bank, the
first European green bank.

portfolio. Our data analysis focuses on the second stage that supports
the decision-making process on portfolio composition that is based on
RB/RP and CRB/CRP allocations. Given the new socio-economic envi-
ronment that investors and fund managers ought to operate in, there
is a growing emphasis on controlling the degree of risk absorbed from
different asset classes, from different geographical economic regions or
satisfying different ESG, SDG or SRI features. Traditional portfolio man-
agement techniques were not designed with these social preferences in
mind.

We work with a universe of 374 companies that are grouped in ten
Global Industry Classification Standard (GICS) sectors.”> The companies
data cover different regions, namely EU, UK, US and REST (firms from
countries outside the EU, UK and US). Together with the SRI informa-
tion, we have also collected historical stock prices (daily returns) for all
firms in our sample from January 2010 to December 2020, from various
sources: Datastream, WRDS-CRSP, Compustat, IBES and Yahoo!Finance.
The summary information is reported in Appendix C.

Our data analysis relies on comparing three RB/CRB (or denoted as
RP/CRP when the risk budgets are equal) portfolios, where the risk mea-
sures are either standard deviation (SD) and/or Conditional-Value-at-Risk

5 Note that the original investment portfolio in Hallerbach et al. (2004) con-
sists of 590 companies, but 216 firms were delisted or vanished during the
2010-2020 period.
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Portfolio across regions (Top 55, Year 2020)

CVaR95-RP —-= CVaR95-SD-CRB

Fig. 4. Risk contributions of each region (EU, UK and US) for 2010-2019 (left) and 2020 (right).

(CVaR). The first two portfolios, denoted as SD-RP and CVaRgs¢,-RP,
are standard RB portfolios, as explained in Section 3.1 with ¢ = S'D and
@ = CVaRy;,, respectively. The third portfolio, denoted as CVaRgsq,-SD-
CRB, is built on compounding risk measures such that CVaRgys,-SD-CRB
matches the total portfolio risk as measured by SD to the risk measured
by the CVaRysq equivalent portfolio, i.e., the aggregate level of risks
measured via SD of the CVaRgsq,-SD-CRB and CVaRgs¢,-RP portfolios is
equal. This compound measure has the advantage that it meets the regu-
latory requirement of using the CVaR as the market risk measure, whilst
the portfolio allocations are based on the CRB procedure in Section 3.2
with ¢ = §D.

Fig. 4 compares the (clustered) risk contributions for the three port-
folios over the two periods, where the risk contributions are consistently
computed with ¢ being the annualized SD. Each of the three portfolios is
composed of n = 165 assets by choosing the top 55 SRI ranked companies
in each region, namely EU, UK and US.® We observe that the US/UK/EU
cluster has a higher/similar/lower SD risk contribution for CVaRgsq-
SD-CRB than the SD risk contribution for CVaRgsq,-RP. One possible
explanation for this result is the degree of homogeneity or heterogene-
ity in the companies that are selected in each region. The companies
in the EU are subject to more intense regulation and the top compa-
nies are expected to have similar SRI scores. This would lead to lower
CVaRgs¢,-SD-CRB. The US firms are more heterogeneous in behaviour,
taking advantage of a more relaxed regulatory regime.

We now redo the previous computations by including in each of the
three portfolios the top 10 SRI ranked companies in each of the ten
GICS sectors (see list in Table C.4) and thus, the new three portfolios
are composed of n =100 assets. These new three portfolios have no se-
lection parity imposed at the regional level. The new risk allocations
are computed as before, and the results are displayed in Fig. 5. The left
radar chart in that figure shows the three portfolios are similar dur-
ing low market risk, and in turn, CRP across sectors is now achieved.
The right radar chart in Fig. 5 indicates that two sectors, namely Con-
sumer Staples and Materials, have significantly larger risk allocations for
CVaRgsq,-RP as compared to CVaRgsq -SD-CRB, while the individual sec-
tors with high annualized SD, namely Financials and Energy, have lower
risk allocations for CVaRgs¢-RP as compared to CVaRgysq-SD-CRB. This
effect can be attributed to the COVID-19 pandemic that has engulfed

6 The Rest of the World was dropped out because there are only 34 companies
in the sample from this region.
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the major economies and the destabilization of the world-wide supply
chain.

5. Conclusions

This paper provides an extensive discussion about the theory and
practice around constructing RB portfolios in a variety of settings. We
have started out with revisiting the usual one risk holder setting with
and without clustered risks, and we then show how those settings could
be extended to situations in which a non-hedgeable risk is present or a
fixed sub-portfolio has been aimed by the risk holder. The latter are
novel approaches, which widen the application of RB portfolio con-
struction. Another novel approach of this paper is a combination of the
concepts of RS and RB, which has not been discussed in the wider risk
analysis and risk management literature.

Our theoretical results are accompanied by numerical procedures to
identify such RB and RB-RS portfolios. Numerical experiments are pro-
vided for pure RB portfolios, where we show how to apply our methods
to constructing RB and clustered RB (or CRP) by considering SRI fac-
tors. Such SRI factors are now becoming more and more popular given
changes in stakeholders’ preferences towards societal benefits.
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Fig. 5. Risk contributions of each of the ten GICS sectors for 2010-2019 (left) and 2020 (right).

Appendix A. Proofs
A.1. Proof of Theorem 3

Note that (3.2) is a strictly convex optimization problem since
—A ZZ=1 by log x,, is a strictly convex function in x over the convex cone
§Rd+ 4 Let F (x; 1) be the objective function of (3.2). To show that the
solution of (3.2) lies in the interior of 9{1 it suffices to show that

li)I‘l’_l)ixI,lf F(x;A) =00, forany x e 0?{f_+ =B, UB,, where (A1)

B, := {x:x;=c0forall k€1, and
IC(1.2,...d}; | T|21
x; €[0,00), forall k € {1,2,...,d}\1},
B, := {x:xk=0f0rallkel, and
IC{1.2,...d}; |T|21
x; €(0,00), forall k € {1,2,...,d}\I}.
Fix an X’ € B;, and by the homogeneity of ¢, one may get that
1, 7. [(xTX d Xk T
Fx;A)=-(1"x — -1 b, log| — | —Alog (1" x
A= ( )¢<1Tx> ;k g<1Tx> g (17x)
1 d
>-(17x)" inf ¢ y'X) — A sup b logy, — Alog (1Tx
£ it p(5"X) ~4 sup 3 by logy, —og (17
(A.2)
1 d
=-(1"x)" inf @ (y"X) =21 bylogh, — Alog (17x),
2 (17)" inf o (77X) =4 3, blogby — dlog (17x)
for any x € RY . Therefore,
Fx;A) (1 7o \o=1 . T
>— (1 f X
e 2y (%) inf o (y'X)
d T
h log(l x) J
——— ) b logh, —A———— foranyxe R .
lTx,; K080k 17x Y +

Clearly, 21:1 b;logb, <0 since b€ A,. Moreover, there exists an M >

0 such that % (lTx)T_1 > M for any x sufficiently close to x’, since
7 > 1. Furthermore, for any small € > 0, there is a neighbourhood of x’
such that | log (17x) /17| < e since logy =0 (y) as y - co and x’ € B,.
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Putting all these together with € | 0 and keeping (3.1) in mind, one may
conclude that

liminf L5

>0, and thus, liminf F(x; 1) = co for any x’ € B;.
x—x/ 1'x x—x/

Fix an X' € B,; then, there exists an 7 C {1,2,...,d} with |I| > 1
such that x; =0 forall k € 7, and x; € (0,00) forall k € {1,2,...,d}\T.
Similar to (A.2), one may get that

d
1 T_\T - T
Fx;A)>—-(1"x) inf X)—4 b, log x
Az — )yeAdw(y ) ;k g Xk

for any x sufficiently close to x’. Since A >0 and b > 0, the above equa-
tion implies that liminf, s F(x; 1) = oo for any x’ € B,.

Equation (A.1) implies that there exist an @ > 0 and an ¢ € (0, a] such
that

inf F(x;A)= inf F(x;4), where B, :={x€ B, : mi >

xelg‘h (x5 4) xg}ig,g (x;4), where B, {x ; 1rgnk12dxk €}

with B, :={x€ iRiJr : ||x|| £ a} and || - || being the Euclidean distance.

Since B, is a compact set, the global minimum of F(-; 1) on §Rd+ -

x*(4,b), is an interior point of the feasibility set for any given 4 > 0.
It remains to prove that

i.e.

x*(4*,b) = (1Tx*(1,b))‘1 x*(1,b) € RB(b). (A.3)

Firstly, we show that the unique solution of (3.2), i.e., x*(4,b), satisfies

x*(4,b)=A/"x*(1,b) for any 4> 0. (A.4)

Assume, on the contrary, that AY7x*(1,b) does not solve (3.2) for a
given A€ R, \ {1}; that is, there exists X € R __such that

d d
1R (%)-4 Y b log%, < LR (A1 (1.b)) - 4 Y bilog (A'/7x(1,b)).
T k=1 T k=1

By this inequality and the homogeneity of ¢,

d d
%R(/I‘I/Ti) — 1Y blog (77 x,) =2 Y by 105/1
k=1 k=1

d

d
< 4R(x*(1,b)) .y Z by log (x7(1,b)) — A Zbkloﬂ,
T k=1 k=1 T
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which further implies that

d
%R(/I‘I/Ti) =Y blog (477 %,)
k=1

d
1 * *
<-R(x'(Lb)) - l;lbk log (x}(1,b)).
This contradicts that x*(1, b) solves (3.2) with A=1, as 1~!/"x € ERﬁ’r "
and concludes (A.4).

Secondly, we show that (lrx*(l,b))_l x*(1,b) € A, N RB(b). Note
that x*(4,b) € RY G but not guaranteed to be in A, and thus, is not
necessarily in R B(b). Since R(x) is differentiable at x*(1, b) (and thus at
x*(4,b) for any A > 0 due to (A.4)) and the fact that R is a homogeneous
function, the first-order conditions in (3.2) imply that RC, (x*(l, b)) =

R (x* (4, b)) forall k € {1,2,...,d}. However, due to the homogeneity
of @, RC,, is also homogeneous of the same order as ¢, and thus
RC, (1x*(A,b)) =, R

(rx*(4,b)), forallk € {1,2,...,d} and any ¢ > 0.

In particular, choose ¢ = (lTx*(l,b))_1 to find that (lrx*(l,b))_l X
x*(1,b) € A, N RB(D).

Thirdly, x*(4*,b) = (17x*(1,b)) ™' x*(1,b) is true due to (A.4), and
in turn x*(4*,b) € A,. The latter justifies (A.3), which concludes our
proof.

A.2. Proof of Proposition 6

Let [ € {2,3,...,d}, partition {I(l),1(2),...,1(1)} of 7,, and b €
A;. Let @« € CRB(b) C A’d. By definition, for all k € {1,2,...,1},
Z[eﬂk) RC(a)=b,R(a).Foreachi e {1,2,...,d}, define g, = RC;(a)/
R(a). Obviously, a € A;. For each k€ {1,2,...,1},

RC(a) _bR(@) _

T L Ra@ | R@
ieTk)

ie1®)
Thus, & € B(b). Also, by definition, for each i € {1,2,...,d}, RC;(a) =
d;R(a), and hence @ € RB(a) C UaeB(b) RB(a). These show that
CRB(b) C UaeB(b) RB(a).

Let a € UaeB(b) RB(a). There exists an a € B(b) such that @ €
RB(a). By definition, a,a € A/, for all k € {1.2,...,1}, ¥crm0 a; =
by, and for all i € {1,2,...,d}, RC;(a) = a;R(e). Then, for each k €

{1,2,...,1},
Y RC(@)= Y, aR(@)=bR@).
ie1® ier®)

Hence, @ € CRB(b). These show that |, By RB@) € CRB(D).
A.3. Proof of Theorem 7

Let F(x; A) be the objective function in (3.9). One could show that the
equivalence of (A.1) holds, and in turn, the global minimum of F(-; 1) on
R,,,i.e., x*(4,b), is an interior point of the feasibility set.” As before,
the first order conditions imply that x*(4,b) solves (3.7). The proof is
now complete.

A.4. Proof of Theorem 8
The proof is similar to the proof of Theorem 3, and thus, we only

provide the necessary arguments. We apply the conclusions of (3.2) from
Theorem 3 with A € {4;,4,} in (3.10) and (3.11), and conclude that

7 Therefore, the main innovation of the proof here is via the proof of Theo-
rem 3, which shows that a solution of the corresponding optimization problem
is an interior point.
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(3.10) and (3.11) admit unique solutions that are interior points of the
feasibility set.

We now show part i). Due to the homogeneity of ¢; and ¢,, then
for any 1,1, > 0, 1;x*(1,b;;¢,) solves (3.10) with 4, = 11_1/7‘, and
1,x*(1,by;,) solves (3.11) with 4, = t;/rz. Thus, we need to find
(t,,1,) such that the risks are fully allocated within the LoB, i.e., solving

11x] (1 b; qal) +1x] (1 b,; gaz)

—t]x (1 b1,¢1)+12x (1 b2 @2) 1
which is solved by (3.12). Now, (3.12) leads to a feasible risk allocation
if and only if %, t; > 0, which is equivalent to (3.13). The proof of part
i) is concluded.

Part ii) could be argued in the same way as part i). Since x;‘(l,bl J91)
= xz(l,bl ;@1), then (A.5) is guaranteed for any (¢,,1,) € mi+ such that
1) +1, =1/x7(1,by; @), which concludes this part ii).

We now show part iii). Since (a 1) solves (3.10) with A = A%,

(A.5)

11’

then

1 @) @,
7(Rl(afl,azl)—Rl(xll,le)) <bjlog— + by log—, (A.6)
A X11 X21
for any (x;,x,;) € ﬂi Similarly, since (a12’ 22) solves (3.11) with
A= /1’2‘, then
P ﬂ* (Rz(a12, 22) Rz(xn,xzz)) < blzlog — + by, log —2 (A7)

is true for any (x5, x,,) € iRi - Combining (A.6) and (A.7) imply that

1 % 1
7(Rl(a“va21)_Rl(xllvx21)> /1* (Ra(ay,, a5) = Ry(x12, X20))
14 )

a* a* a* a*
< min b“log +b1210g +b21 log +b2210g—

(x11.x12)€4) X922

(x21:%22)€A,
s % s %

a a a a
=by; logi +b1210g£ + by logﬁ +b2210gﬁ
byy by by by,

+(byy + b|2)log(b11 +b12)+ (bzl + byy)log(by + b))

< max by lo +b log —
(1 e, 11 g b 12 g b12
+ max by lo L 45,10
(oo e, 21 g b 22 g b =

+(by1 + byo)log(by + byo) + (byy + byy)log(byy + byy)

=(b; +byp)log + (by) + byy)log

.
by + by

by + by
+(b11 + b12) lOg(bll + blz) + (bzl + b22) lOg(bzl + b22)
= 0’
where the second inequality is due to a + a a;‘I + 0’;2 = 1. The proof

is now complete.
Appendix B. SD/variance-based CRB

The SD and variance-based CRB portfolios are the same, and thus,
this is true for CRP counterparts. The mathematical formulation of
variance-based CRB portfolio is as follows:

d
Y Yawr
ie1® j=1
st.17a

=balSa forallke{l,....1},
i =bea’ Za forallk € } B.1)

=landa >0.

Solving (B.1) is quite challenging, and the only efficient solution is to
rely on the equivalent LSE-like formulation in (3.3), which is given as

I 2
g]>13 Z( z Za, o;Z; —ba 2a> st. 1Ta=1.

k=1 \je1®) j=

(B.2)
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Table C.3
Summary of the financial performance per region.
REGION
EU UK Us REST Total
No. of companies 188 56 96 34 374
EQUAL WEIGHTED PORTFOLIO (daily returns)
Annualized average return 0.0888 0.0724 0.1279 0.1038 0.0996
Annualized standard deviation 0.1998 0.2039 0.1759 0.1433 0.1651
11 years: Mean 0.0004 0.0004 0.0005 0.0004 0.0004
2010 - 2020 Standard deviation 0.0126 0.0128 0.0111 0.0090 0.0104
Skewness -0.5116 -0.7272 -0.5146 -0.2725 -0.7435
Kurtosis 7.6460 14.9598 15.8433 3.3927 11.4002
Annualized average return 0.0833 0.0869 0.1284 0.0864 0.0974
Annualized standard deviation 0.1889 0.1823 0.1478 0.1357 0.1492
10 years: Mean 0.0004 0.0004 0.0005 0.0004 0.0004
2010 - 2019 Standard deviation 0.0119 0.0115 0.0093 0.0085 0.0094
Skewness -0.2089 -0.8002 -0.4618 -0.3067 -0.4145
Kurtosis 4.7198 13.3674 4.1551 2.5442 5.2876
Annualized average return 0.0898 -0.1106 0.0780 0.1502 0.0627
Annualized standard deviation 0.2879 0.3446 0.3512 0.2091 0.2761
1 year: Mean 0.0005 -0.0002 0.0005 0.0006 0.0004
2020 Standard deviation 0.0181 0.0217 0.0221 0.0132 0.0174
Skewness -1.5274 -0.5124 -0.3906 -0.1649 -1.2751
Kurtosis 10.7350 7.4429 7.2376 5.1527 10.2675
- . . 1
The optimization problem from (B.2) is non-convex and any off-the- Gixy) = G _ 5 Z xI' M Wy M and
shelf general optimization tools may lead to unstable solutions. Alterna- 1Y) =5 = & by 4
tively, a relaxation of (B.2) is suggested in Bai et al. (2016), which could
be efficiently solved via the Alternating Linearisation Method (ALM). An P 0G 9 L x"Mm, kyMT
appropriation of the ALM approach is provided, and (B.2) is reformu- 2(x.y) 1= E - I; by KX
lated as B
Denote

i d 2
. 1 2 Ty —
,,f‘;}{‘g Z bk( E E a;a; % —bif > st. 17a=1.

ie1®) j=1

(B.3)

Algorithm 3 from Bai et al. (2016) precisely solves (B.3) when an
equal budget problem (i.e., CRP is sought), and we now adapt the same
algorithm for our non-level CRB setting. For ease of notation, we denote
xI' = (al,) € RX€+D and |I®| = d,, where d| +d, + ... + d; = d,
since {1(1), ,I(’)} is a partition of . Note that

d
2 Za,ajZ,-j—bkezszka, where M, :=

[ Zrol 1w 0 ]
T >
ie1® j=1

0 —b,

and X, € RI%dk is a submatrix of ¥ where the columns of ¥ are ex-
tracted based only on the indexes of (). Moreover, I';¢ € R94*? is a
binary matrix such that (Fl(k))st = 1,4k (5)> Where 1, is the indicator
function that takes the value 1 if A is true, and O otherwise. Further,
% {1,2, ...,d;} = 1, maps the columns of X;« of X. Therefore, the

system of equations in (B.1) is solved by running a much simpler task:

I
o P03 L (T b )’
min F(x) .—/; b (x" M%)
s.t. ¢’x=1, where ¢! =(7,0) e RIXW@+D,

(B.4)

We solve (B.4) by approximating x*, a local optimum of (B.4). That
is, we generate two sequences {x, : s >0} and {y, : s > 0} such that
X, —» X* and/or y, — x*. Similar to Algorithm 3 in Bai et al. (2016), a
two-block variant of (B.4) is required to solve:

(B.5)

where X :={x >0 : ¢Tx =1} is the feasible set. Note that (B.5) is a con-
vex quadratic programming (QP) instance in x for any given y that could
be efficiently solved; the same holds if x and y are swapped. Further,
note that the partial derivatives of G are

13

1
Hi(x,y: 1) :=Gxy) +(Gy(y.y).x—y) + 2= yli3.

1
Hy(x,y; ) :=G(X,¥) + (G (X,X),y —X) + Enx—yng,

with g > 0. The algorithm for solving (B.4), and thus (B.5), is described
next as Algorithm 2.

Algorithm 2: CRB algorithm for solving (B.5).

Result: (x,.,y,.) that approximates x*, a local optimum of (B.4), where
s* is the termination step

Hio= Moo=ty >0, a€(0,1), and x, =y, € X;

for s € {0,1,...} do

Xgy c=argmin Hy (X, Y5 4y );
x€X

if F(x,) < H (xg1,¥, 4y,5) then
| choose ;o) >y 3

else

find the lowest n, ; > 1 such that F(z, ;) < H,(z,,¥,: 4] ),

where ;= " and 2, :=argmin Hy (6y,; 4] )
XE.

Hisy i= 47 Joand X, 1=2,
end
Vop s=argmin Hy (X, 1,5 4 ,);

yEX

if F(Yop)) < Hy(Xg415 Y5415 Has) then
| choose py 1 > py s
else
find the lowest n, ; > 1 such that F(z, ) < H,(Xy1, 25,53 45 ),

* — Ny L— 3 . * .
where i} =y " and z, , = argmin Hy (X, ¥: 45 )
yE

. i .
Hosy1 - = ﬂzys/“ andy,,, 1=2,
end

end
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Number of firms for each country within each of the ten GICS sectors and four regions. GICS sectors: Consumer
Discretionary (CD), Consumer Staples (CS), Energy (E), Financials (F), Health Care (HC), Industrials (I), Informa-
tion Technology (IT), Materials (M), Telecommunication Services (TS), Utilities (U).

GICS SECTOR
REGION COUNTRY C.D. C.s. E. F. H.C. I LT. M. T.S. U. : Total
Austria 1 1 1 1 1 | 5
Belgium 1 1 3 1 1 1 ;8
Denmark 1 1 ;2
Finland 1 1 2 1 , 5
France 13 5 1 5 2 7 4 2 1, 40
Germany 7 3 5 2 4 2 4 1 2 | 30
Greece 1 1 ;2
Ireland 2 1 1 | 4
EU (188) Italy 2 1 6 1 1 1 2 |1 14
Netherlands 2 3 1 2 2 1 3 1 | 15
Norway 1 2 1 1 I 5
Portugal 1 1 1 1 3
Spain 2 1 3 1 1 3 1 11
Sweden 1 4 7 1 2 2 17
Switzerland 3 1 6 4 6 2 4 1 27
T UK(6) UK 12 7 "1 "1 3 8 2 7 2~ 5 756
RO 13° 127757 T16 13 17 15 1 2~ "2 179
T T T Australa T T T T T T2 T T 2 - T R
Canada 1 1 2 : 4
China 3 2 1 1 7
REST (34) Japan 3 1 2 3 1 6 1 : 17
Korea 1 | 1
Singapore 1 1
Total 62 34 14 76 29 61 37 22 18 21 ‘ 374
Table C.5

Granular financial performance for EW portfolios per GICS sector by including all 374 companies across all four
regions in three periods: 2010 - 2020 (top), 2010-2019 (middle) and 2020 only (bottom).

GICS SECTOR

C.D. C.S. E. F. H.C. L LT. M. T.S. U.
No. companies 62 34 14 76 29 61 37 22 18 21
EQUAL WEIGHTED PORTFOLIO (daily returns)
11 years: 2010 - 2020
Annual. Return ~ 0.097 0.086 -0.006 0.062 0.115 0.114 0.166 0.125 0.042 0.062
Annual. Stdev 0.186 0.135 0.237 0.215 0.131 0.195 0.169 0.190 0.161 0.162
Mean 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.000 0.000
Stdev 0.012 0.009 0.015 0.014 0.008 0.012 0.011 0.012 0.010 0.010
Skewness -0.663 -0.602 -0.552 -0.497 -0.575  -0.538  -0.714  -0.308 -0.459 -1.082
Kurtosis 12,967  8.552 16.407 12.326  8.069 9.400 8.825 4.902 7.170 15.943
10 years: 2010-2019
Annual. Return ~ 0.101 0.089 0.019 0.068 0.115 0.107 0.156 0.106 0.049 0.060
Annual. Stdev 0.165 0.123 0.196 0.195 0.116 0.174 0.151 0.185 0.153 0.144
Mean 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000
Stdev 0.010 0.008 0.012 0.012 0.007 0.011 0.010 0.012 0.010 0.009
Skewness -0.547 -0.278 -0.112 -0.349 -0.466  -0.292  -0.454  -0.168 -0.156 -0.303
Kurtosis 5.569 2.913 2.180 7.920 2.175 4.552 3.075 3.367 3.895 3.559
1 year: 2020
Annual. Return ~ 0.043 0.027 -0.207 -0.065 0.104 0.139 0.271 0.237 -0.030 0.074
Annual. Stdev 0.321 0.219 0.475 0.365 0.218 0.326 0.299 0.258 0.251 0.287
Mean 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.000 0.000
Stdev 0.020 0.014 0.030 0.023 0.014 0.021 0.019 0.016 0.016 0.018
Skewness -0.624 -1.144 -0.643 -0.735 -0.727  -0.817  -1.065  -0.931 -1.532 -2.136
Kurtosis 6.312 10.920  7.968 7.932 7.440 6.917 7.935 10.693 11.804 15.615

Appendix C. Empirical data

The financial performance of these 374 companies is measured by
various measures and the summary is tabulated in Table C.3. Note that
the performance is evaluated for two periods of time, namely before
and after the COVID-19 pandemic, but also for the combined period
from 2010 until 2020. Table C.3 suggests that the financial performance
in 2020 alone is significantly different from the performance observed
before the COVID-19 pandemic, excepting perhaps the EU. Note that the
portfolio performance tabulated in Table C.3 assumes that each asset has
equal weight in the total portfolio, which is known as the Equal Weighted
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(EW) portfolio, and thus, is considered as a benchmark portfolio that is
not easy to outperform in practice, see DeMiguel et al. (2013). Granular
financial performance for EW portfolios per GICS sector is in Table C.5.

Fig. C.6 replicates the sector comparison displayed in Fig. 5, but only
for one specific region, namely the EU. The other two regions (UK and
US) are not discussed since the pattern is similar to the EU region. That
is, we redo the computations shown in Fig. 5 by creating the three port-
folios when including only the top 35 and 55 SRI ranked EU companies
as displayed on the upper and lower panels, respectively; that is, the
upper and the lower panels contain portfolios composed of n = 35 and
n =55 assets, respectively. For the period 2010-2019, working with a
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Fig. C.6. Risk contributions of each of the ten GICS sectors for 2010-2019 (left) and 2020 (right). The numbers in each bracket indicate the number of EU companies

selected from that particular sector.

larger pool of companies helps to reduce the risk contributions to each
sector, possibly, as a side effect of diversification. The exogenous shock
of COVID-19 pandemic in 2020 produces more total risk in all sectors.
The general shape in the spider plots is very similar for plots done with
the same number of companies, suggesting that the market structure did
not change in 2020 but the overall risk levels increased substantially.

Data availability
The authors do not have permission to share data.
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