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Key Points:

e Data assimilation (DA) has been
shown to be a powerful tool for
reducing land surface model (LSM)
parametric uncertainty

® Machine learning can facilitate
parameter estimation by enhancing
computational efficiency and replacing
poorly represented processes

e Collaboration is key to advancing LSM
calibration and DA, promoting
knowledge exchange and standard
methods
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Abstract Accurately predicting terrestrial ecosystem responses to climate change over long-timescales is
crucial for addressing global challenges. This relies on mechanistic modeling of ecosystem processes through
land surface models (LSMs). Despite their importance, LSMs face significant uncertainties due to poorly
constrained parameters, especially in carbon cycle predictions. This paper reviews the progress made in using
data assimilation (DA) for LSM parameter optimization, focusing on carbon-water-vegetation interactions, as
well as discussing the technical challenges faced by the community. These challenges include identifying
sensitive model parameters and their prior distributions, characterizing errors due to observation biases and
model-data inconsistencies, developing observation operators to interface between the model and the
observations, tackling spatial and temporal heterogeneity as well as dealing with large and multiple data sets,
and including the spin-up and historical period in the assimilation window. We outline how machine learning
(ML) can help address these issues, proposing different avenues for future work that integrate ML and DA to
reduce uncertainties in LSMs. We conclude by highlighting future priorities, including the need for international
collaborations, to fully leverage the wealth of available Earth observation data sets, harness ML advances, and
enhance the predictive capabilities of LSMs.

Plain Language Summary Improving the accuracy of land surface models (LSMs) is crucial for
reducing uncertainties in climate change projections. Parameter data assimilation (DA), which fine-tunes model
parameters to better match observed data, is key to enhancing LSM performance. However, the complexity of
LSMs poses challenges for global optimization. Advances in computational power, novel data sets, and machine
learning (ML) offer promising solutions to improve LSMs. ML can streamline the DA process, handling large
data sets and reducing computational demands. This article discusses the progress made in LSM parameter
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estimation and the challenges faced by the community. We then discuss how ML can help address these
challenges and outline future priorities. International collaboration, fostered by initiatives like the Analysis,
Integration and Modeling of the Earth System Land DA Working Group and the International Land Model
Forum, is essential for accelerating progress, facilitating knowledge exchange, and developing standardized
methods for more accurate climate modeling.

1. Introduction and Premise

Our world faces unprecedented climate change, water scarcity, and food security challenges. To tackle these
issues effectively, we need to predict the responses of terrestrial ecosystem dynamics to future global change at
inter-annual to centennial timescales. This strongly relies on our ability to accurately model the underlying in-
teractions between the Earth's surface and the atmosphere at the global scale (Watson-Parris, 2021). Such global-
scale, mechanistic or process-based models of the terrestrial biosphere, are often embedded in Earth system
models (ESMs) (wherein they are called land surface models—LSMs; Blyth et al., 2021). LSMs mathematically
represent complex interacting ecosystem vegetation, carbon, water and energy cycling processes over half-hourly
to centennial time scales. Thus, for a given atmospheric CO, or anthropogenic emissions scenario, LSMs are used
to predict the response of terrestrial ecosystems to climate change, rising CO, and land use change, and the
resultant feedbacks to climate. LSMs are indispensable tools not only for assessing climate change mitigation
strategies—such as evaluating the effectiveness of nature-based solutions like reforestation in curbing rising CO,
emissions—but also for broader applications in carbon monitoring systems. They often serve as prior estimates
for atmospheric inversion studies, which are critical for quantifying global and regional land-atmosphere carbon
exchanges.

LSMs are highly complex and subject to large uncertainties, both in terms of missing processes, inadequate or
incorrect representation of processes, uncertainties in meteorological forcing, and poorly constrained parameters.
Adding new processes to address model structural uncertainty often introduces additional parameters increasing
parametric uncertainty. Furthermore, current LSMs differ significantly in how they represent many terrestrial
processes (Gier et al., 2024; Green et al., 2024; Varney et al., 2024), reflecting differences in model structure,
assumptions, and parameterization choices. As a result, their projections of ecosystem responses to future climate
change often diverge. For example, LSMs disagree on the magnitude of the land carbon sink (Koven et al., 2022;
Z. Shi et al., 2024), and the potential constraints on CO, fertilization due to water (Green et al., 2019) and nutrient
(Davies-Barnard et al., 2022) limitations.

Parametric uncertainty remains one of the largest sources of uncertainty in all types of process-based land models,
along with unrepresented processes (which we do not address in this paper). This is particularly true for long
timescale predictions of carbon cycling, vegetation dynamics and climate-carbon cycle feedbacks (Booth
et al., 2012; Dietze, 2017; Fisher et al., 2019; Smallman et al., 2021), where LSM predictions can be highly
sensitive to parameter choices (Buotte et al., 2021; Exbrayat et al., 2014; Oberpriller et al., 2022; Zachle,
Friedlingstein, & Friend, 2010). Indeed, perturbing a single carbon flux parameter within its range of uncertainty
can result in a wider spread in projected atmospheric CO, levels by the year 2100 than using different emissions
scenarios (Booth et al., 2012). Additionally, while some parameters can be directly observed (e.g., photosynthetic
capacity, wood density, hydraulic and thermal properties of snow and soil, bark thickness, tissue nutrient stoi-
chiometry), many parameters either cannot be easily measured (e.g., rooting depth) or are essentially only
“effective” parameters in that they have no physical meaning (e.g., water stress factor). Those parameters that can
be directly measured are often only observable at scales that differ from the LSM model grid resolution (typically
0.5° or coarser). We urgently need to reduce parametric uncertainty to ensure we can utilize the full potential of
LSMs—parameter optimization is one way to achieve this. Fortunately, we are in an era of unprecedented data
availability, where different satellite products can help constrain specific processes and their associated pa-
rameters (Figure 1).

Historically, LSM parameters have been manually tuned—adjusted by trial-and-error or expert-elicitation to
produce more realistic model behavior or to better fit a given important model variable to a given data set.
However, manual tuning has increasingly become inefficient and unsustainable; the introduction of new model
components or updates to model structure frequently disrupts previous tuning, requiring the entire process to be
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Figure 1. Conceptual schematic illustrating how various in situ and satellite products can be used to constrain different processes, thereby enabling the calibration of each
process's parameters. The lists of parameters in each box are a handful illustrative examples; actual parameters may vary across different land surface models (LSMs)
and configurations of a given LSM. Likewise, the examples of processes and observational products are not exhaustive, nor are the process-product relationships shown.
In situ measurements are categorized into flux data and above- and below-ground (AG and BG) biophysical measurements, shown with examples of the type of
processes they can help constrain. Satellite products shown include vegetation indices and fraction of absorbed photosynthetically active radiation, vegetation optical
depth and surface soil moisture, solar-induced fluorescence, and land surface temperature. For an overview of the typical spatiotemporal scales of these observational
data types, refer to Figure 2 in Scholze et al. (2017).

repeated—a task that becomes untenable as LSMs grow more complex. In the last two decades, improvements in
computational power and data availability have made statistically robust parameter calibration feasible,
prompting LSM groups to begin applying DA techniques. A selective history of these efforts—spanning early
carbon cycle calibration systems to recent large-scale, multi-variable DA experiments—is summarized in
Table 1.

DA methods are powerful as they allow observational data to be combined with numerical methods to optimize
estimates of chosen variables (state and/or parameters) while accounting for uncertainties in both the model and
the data (Rayner et al., 2019). In contrast to LSMs, the atmospheric and ocean components of Earth system
models (ESMs) rely on fluid dynamic models governed by well-established physical laws—even if difficult to
solve numerically—and many of their parameters are known or directly observable. DA activities in these
components have thus far been heavily focused on numerical weather forecasting and reanalysis applications, for
which estimating and correcting the optimal model state at each time step is the primary goal (de Rosnay
et al., 2022; Hersbach et al., 2018; Zuo et al., 2019). In LSMs, however, which contain processes that are not as
readily observable or instrumented, and run at timescales beyond sub-seasonal, parametric and structural un-
certainties become increasingly important, eventually dominating their spread at multi-year and longer time
horizons (Bonan & Doney, 2018; Draper, 2021; Luo et al., 2015). Additionally, LSM parameters are often linked
to biological processes and organismal traits and are dependent on plant functional type (PFT) and so have a wide
range of possible values. Characterizing and simplifying the wide variety of vegetation types, functional traits,
and ecosystem processes into relatively few parameters is thus a challenge faced in LSM development that is less
of an issue for atmospheric and ocean modeling.

While substantial progress in global DA experiments for complex LSM parameter estimation has been made,
several challenges remain—most notably the high computational cost associated with utilizing the full high-
dimensional parameter space (even when run in standalone mode). Groups are opting for computationally
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Figure 2. Schematic of the parameter data assimilation (PDA) workflow for land surface models, illustrating the interactions between model, observations, and
assimilation components. Boxes show the main elements of the pipeline, with arrows indicating the typical PDA workflow. Methods (blue triangle, Section 2),
challenges (green stars, Section 3) and future priorities (purple diamonds, Section 5) are mapped onto the relevant parts of the workflow, with numbering corresponding
to subsections in the text. Section 4, which discusses how machine learning can facilitate the workflow is not shown on this figure, but is instead included as part of

Figure 3 at the beginning of Section 4.

cheap inversion methods over extensive statistical parameter searches to calibrate their models. Currently, there is
no overall community strategy for objective parameter estimation for complex LSMs. However, this rapidly
expanding field offers a unique opportunity to learn from each other and address common technical challenges.
Efforts to build a Land DA Community (https://land-da-community.github.io/) by the Analysis, Integration and
Modeling of the Earth System (AIMES) Land DA Working Group (MacBean, Liddy, et al., 2022) and the In-
ternational Land Model Forum (ILMF—https://hydro-jules.org/international-land-modeling-forum-ilmf) have
precipitated this sharing of knowledge through online workshops and town halls. Capitalizing on this momentum
is vital given the importance of this problem. The rapid advancements in machine learning (ML) and the
increasing availability of global Earth observations and networks of in situ data create new opportunities for
advancing land/Earth system modeling with the help of DA.

In this paper, we review the current state of LSM parameter estimation (Section 2), discuss key challenges and
opportunities (Section 3), explore potential solutions via ML and computational advances (Section 4), and
propose priorities for advancing the field given the urgent need for improved model projections (Section 5). To
aid navigation, we also provide a graphical Table of Contents (Figure 2) that illustrates the parameter estimation
pipeline and situates the structure of the paper within this framework. The focus of this paper is on parameter
estimation for carbon-vegetation-water interactions, complementing Kumar et al. (2022)'s review paper on state
estimation for vegetation and hydrology, and De Lannoy et al. (2022)'s paper on joint parameter-station esti-
mation for the water cycle.

2. Data Assimilation Methods for Parameter Estimation in Land Surface Models

With the emergence of novel in situ and satellite observation data sets came the advent and development of
techniques to combine them with models in a field of mathematics originally coined DA (Talagrand & Cour-
tier, 1987). Data Assimilation (DA) techniques attempt to find an optimal balance between the knowledge

RAOULT ET AL.

6 of 42

85U807 SUOWWOD 3AIIERID 3ol dde U Aq peuienob ake ssjoile YO ‘8sN JO S|NJ 10} Ariq 17 8UIUO A1 UO (SUORIPUOD-PUR-SLLBILI0D™A8 | IM"ATe1q]1[BU U0//:SdNL) SUORIPUOD PUe Swie | 8U188s *[520z/0T/62] U0 Ateiqiaulluo AB]1M ‘80us|[pox3 8120 PUe Ui eaH 10} aimisu euoteN ‘3OIN AQ £6/00S K202/620T OT/I0pAuoo™As|mArelq1jput|uo sqndnBe//sdny woiy pepeojumoq ‘TT ‘G202 ‘99vZZr6T


https://land-da-community.github.io/
https://hydro-jules.org/international-land-modeling-forum-ilmf

NI

ADVANCING EARTH
AND SPACE SCIENCES

Journal of Advances in Modeling Earth Systems 10.1029/2024MS004733

acquired from both the models and the observations whilst incorporating their respective uncertainty information.
There are essentially two types of DA methods that differ in the nature of the temporal assimilation of the
available observations; DA methods that assimilate all available observations over a given time window are
known as batch (or offline/smoothers) techniques whereas those that incorporate the observations at the time they
become available are referred to as sequential (or online/filters). We note here that there is some confusion in the
community regarding the terminology used when describing DA methods, for example, the false dichotomies
sometimes used between “variational versus sequential” and “optimization-based versus Bayesian”—these di-
chotomies have been marred over time with hybridization and the continual development of the techniques.
Rayner et al. (2019) have made a significant effort to harmonize the notation by clarifying overlapping termi-
nology within the community.

Although DA is primarily used in numerical weather forecasting to correct the model state—as this is the primary
source of uncertainty on hourly to weekly timescales—in LSMs, DA is often employed to reduce parametric
uncertainty against observational data, a process referred to here as parameter data assimilation (PDA). By
calibrating parameters based on observational data, the problem of PDA in LSMs becomes the solution to the
inverse problem (Tarantola, 1987, 2005): find the parameter set © given the observations y such that Y = G(0©).
In the context of PDA, G includes a mapping from parameters to states and propagates states through time via a
forward model as well as an observation operator (Kaminski & Mathieu, 2017) that maps states to observation
space. Typically, a unique solution to the exact inverse problem does not exist and often the logical step is to cast
the approximate inverse problem into a loss minimization effort that locates the argument of a cost function that
minimizes the discrepancy between y and G(®). However, many techniques of this type only provide point
estimates (i.e., a single solution), which have significant limitations when applied to LSM calibration. LSMs are
inherently complex, involving many interacting processes, uncertain observations, and non-linear relationships.
By focusing only on the best-fit parameters, point estimates ignore the range of plausible values that could explain
the data equally well. This can lead to overconfident predictions, underestimating the variability and uncertainty
in model outcomes, which is crucial for understanding the full spectrum of possible future climate scenarios.
Instead, we want to be able to account for uncertainties in the model, data, and parameters, and reduce the un-
certainty in the parameters by creating observationally constrained posterior distributions.

Hence, an approach more desirable for its ability to quantify the uncertainty in the estimated parameters and its
inherent natural regularization, is the Bayesian approach. Bayesian methods include information on the prior
distribution of the parameters p(@) to define an entire posterior distribution:

p(Oly) x p(y|®) p(®) 1)

where O is regarded as a random variable as opposed to a fixed value to be estimated. In this case, the maximum a
posteriori estimate—the argument that maximizes the posterior distribution (i.e., its mode)—provides a point
estimate for ® and is equivalent to a loss minimization estimate regularized with prior parameter information
under Gaussian assumptions. Under such assumptions, maximizing the posterior distribution corresponds to
minimizing the so-called variational cost function:

J(©) =1/2[(G(©) ~y)'R™'(G(©) ~y) + (0~ ©,)'B~' (0 - ©,)], @)

where R and B are the model/data and prior error covariance matrices, respectively, and @, is the prior parameter
vector.

2.1. Methods for Minimizing Cost Functions

Methods commonly used to minimize cost functions, such as in Equation 2, often require numerical optimization
due to their complex structure, particularly in LSM PDA. For this reason, and for computational prudence,
parameter estimation attempts in LSM thus far have mostly employed gradient-descent techniques for
minimization.

Gradient-descent methods require the gradient of the cost function; either exactly, which requires differentiating
the entire LSM (see Section 3.7), or approximately when analytical differentiation is not possible or desirable.
These methods can result in the identification of a local minimum, as opposed to the desired global one, because
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they rely primarily on local gradient information, which may not capture the broader structure of the cost function.
The most common gradient-based minimization method used in LSM PDA is the quasi-Newton algorithm L-
BFGS-B (limited memory Broyden-Fletcher—Goldfarb—Shanno algorithm with bound constraints—Byrd
et al., 1995). This approach can leverage exact gradients derived from either the tangent linear (forward sensi-
tivity propagation) or adjoint (backward sensitivity propagation) of the model as well as approximated gradients.
Exact gradients can be obtained by hand or using automatic differentiation software (Gelbrecht et al., 2023;
Griewank, 1989). While L-BFGS-B is powerful when exact gradients are available, practical challenges—such as
the complexity and computational burden of maintaining the tangent linear/adjoint (see Section 3.7)—often
necessitate alternatives. To address this, approximate gradient methods can be incorporated in place of exact
gradients. One approach is to estimate gradients using finite differences, calculating the change in model output
relative to changes in parameters. This method is especially useful for parameters related to threshold functions,
such as those controlling phenology. However, the choice of perturbation size to be applied to each parameter
individually is crucial, as inappropriate values can lead to inaccuracies and the number of model iterations
required is potentially large compared to other techniques. In cases where gradient information including finite
differences is difficult to obtain or unreliable, derivative-free methods offer a solution. The Nelder-Mead simplex
algorithm (Nelder & Mead, 1965), for instance, iteratively adjusts a simplex (geometric shape) in parameter space
to converge toward the minimum of a cost function, eliminating the need for direct gradient calculations or
approximations. Additionally, more advanced approaches, such as the ensemble-based 4DVar (4DEnVar) al-
gorithm proposed by C. Liu et al. (2008) use an ensemble of model trajectories to approximate gradient infor-
mation via a control variable transform.

Although less commonly used in LSM PDA due to their computational intensity, global search methods provide
an alternative to gradient-descent methods for cost function minimization. These techniques scan the full
parameter space and in doing so avoid the pitfall of identifying a local minimum. These global search methods are
categorized as Monte Carlo (MC), named so since they are methods that make use of repeated trials (or sampling)
generated using random numbers (Owen, 2013). An example of one such method is the genetic algorithm
(Goldberg & Holland, 1988; Haupt & Haupt, 2004), which is based on the laws of natural selection and belongs to
the class of evolutionary algorithms.

Gradient descent and global search find point estimates but do not provide posterior uncertainty. The Hessian at
the optimum can approximate this, but computing and inverting it can be costly, even with adjoint methods.
Alternatives like sampling or variational inference can estimate uncertainty but add further computational cost.

2.2. Methods to Extract the Full Posterior Distribution

In contrast to methods that obtain point-estimates for the parameters, other approaches aim to extract useful
information from the full posterior distribution P(®ly), usually at a much higher computational expense and tend
to be applied to computationally inexpensive LSMs, carbon cycle, and ecosystem models. Similarly to global
search algorithms for objective function optimization, as opposed to gradient-descent methods, these techniques
are often MC in nature and hence also derivative-free.

Techniques include importance sampling (Kloek & Van Dijk, 1978), a relatively simple approach that samples
random values from the prior distribution p(®) and accumulates accepted parameterizations based on importance
weights and aims to estimate expectations of interest such as mean, variance, etc. This approach can run into
limitations when the problem becomes more complicated (e.g., dimensionality increases or target distribution gets
more complex), as demonstrated by Ziehn et al. (2012). When the computational budget permits, Markov Chain
MC (MCMC; Hastings, 1970) algorithms have emerged as the gold standard for quantifying uncertainty in the
solution of Bayesian inverse problems. This class of iterative algorithms seeks to draw samples from the posterior
distribution P(®ly), which can in turn be used to estimate posterior statistics of interest. The cost of such
comprehensive uncertainty quantification is that standard MCMC algorithms often require a large number (>10*—
107) of iterations that build on previously accepted values and so must be performed serially that is, not taking
advantage of parallel high-performance computing. This essentially means that the full LSM must be run using a
new parameter vector during each iteration, and while it is possible to run different information-sharing chains in
parallel to accelerate sampling around a global optimum (Vrugt, 2016), within chain iterative model evaluations
still precludes parallelization.
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Particle filters offer an alternative to MCMC for sampling the posterior in time-evolving systems by representing
it with particles updated at each new data point. Though computationally intensive and prone to degeneracy, they
are effective for real-time tracking of system states and time-varying parameters. Similarly, the Ensemble Kalman
Filter (EnKF; Evensen, 2003) uses an ensemble approach with Gaussian error assumptions and Kalman updates to
efficiently estimate parameters. Many parameters in LSMs relate to biological processes and can vary over time
due to acclimation, plasticity, adaptation, and evolution. While some studies explore seasonal parameter vari-
ability (Rowland et al., 2014; Verbeeck et al., 2011), most land model parameter estimation assumes fixed pa-
rameters. Consequently, particle and ensemble Kalman filters are rarely used in PDA (Speich et al., 2021) except
for joint state-parameter estimation (e.g., H. Zhang et al., 2017).

Due to their computational demands and assumptions, the different methods outlined above have been applied to
varying degrees across models and scales; representative applications are summarized in Table 2, as well as their
advantages and disadvantages.

3. Challenges
3.1. Selecting Parameters and Their Prior Distributions

A big challenge in parameter estimation studies is defining the experiment, starting with selecting the parameters
to be constrained. A common first step is to select from the (potentially quite large) number of model parameters
to find a subset i.e. deemed the most influential on the variables to be optimized by some metric or method, while
the rest of the parameters are fixed at their default values to reduce dimensionality. This challenge is amplified by
large numbers of interconnected parameters influencing different parts of the model as parameters with strong
enough covariances need to be considered jointly. Furthermore, the strong co-variations between parameters and
forcing and boundary conditions further complicate the parameter selection process. It is vital to identify the key
internal parameters that have the most impact on a given model output because (a) PDA techniques are
computationally demanding, (unlike an adjoint computation) they scale with the number of parameters used in the
optimization, and (b) due to the high degree of equifinality in most inverse problems (i.e., different parameter
vectors giving the same fit to the observed data), attempting to estimate an excessive number of parameters can
lead to overfitting and a severe degradation in model performance when the model is run in predictive mode. In
other words, increasing model complexity for improved prediction is only justified when there are adequate
observational constraints to its parameters (Famiglietti et al., 2021). Note that identifying key internal parameters
is not a solution in itself to the equifinality issue—it is still possible to have only two key parameters and end up
with equifinality. It is also important to reduce the risk of error compensation, where model biases are aliased onto
parameters to which the optimized variable is less sensitive, which can occur when diverse data constraints with
different observation influence are used in the optimization. This risk can be reduced by aligning observational
constraints with physically related parameters (Bacour et al., 2015, 2023; Wutzler & Carvalhais, 2014).

In parameter sensitivity analyses, the choice of model variable, timescale, and evaluation metric (e.g., RMSE vs.
mean bias if relying on a model-data comparison) fundamentally affects the parameter selection. The most common
parameter sensitivity experiment is a one-factor-at-a-time parameter perturbation experiment. However, this does
not account for covariance between parameters, which can vary along ecological tradeoffs and are known to
strongly impact LSM outputs (Prihodko et al., 2008). One way to mitigate this is by using spatial pattern corre-
lations to select parameters with low inter-correlation (Dagon et al., 2020). More robust methods, which provide a
more comprehensive assessment of parameter influence, include local sensitivity analysis using adjoint models and
global methods like Morris screening (Morris, 1991), Sobol variance decomposition (Saltelli et al., 2008; Sobol
’,2001) and Fourier amplitude sensitivity tests (FAST; Cukier et al., 1973). These methods have been applied to
wide range of LSMs including BEPS (Xing et al., 2023), CABLE (X. Lu et al., 2013), CLASSIC (Deepak
et al., 2024), CLM4.5(FATES) (Massoud et al., 2019), JULES (Pianosi et al., 2017), Noah-MP (H. Wang
et al., 2023) and ORCHIDEE (Dantec-Nédélec et al., 2017; Kuppel et al., 2012; Novick et al., 2022). However,
these methods can be computationally intensive—e.g., Sobol often requires O(10,000) runs—or technically
complex, especially when adjoint models are involved (see Section 3.7). Still, once an adjoint or ensemble is
available, assessing the sensitivity of various model outputs becomes relatively straightforward.

In complex LSMs, even after selecting the most influential parameters, the large number of vegetation (e.g., 15
PFTs in ORCHIDEE) and soil texture classes (e.g., 13 USDA textural classes) used to represent the diversity of
terrestrial ecosystems quickly increases the dimensionality of global calibrations, as each parameter can be varied
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Table 2

llustrative Applications of Inversion Methods for Parameter Estimation in Land Surface Models, With Representative Models, Key Studies, and Method Pros and Cons
(Definition for the Different Process-Based Models Can Be Found in Table Al)

Method Applications Example models Key studies Advantages Disadvantages
MCMC (Markov Chain Monte Computationally inexpensive SIPNET, TECOS, Fer et al. (2018), M. Liu — Full posterior — High computational
Carlo) land/carbon/eco models; FoBAAR, BETHY, et al. (2015), Sacks distribution cost
isolated process modules DALEC, et al. (2006), Keenan — Strong uncertainty — Rarely used in
CARDAMOM, LPJ- et al. (2012), Knorr and quantification complex LSMs
GUESS Kattge (2005), Famiglietti
et al. (2021), Bloom
et al. (2016), Smallman
et al. (2021), Jones
et al. (2024), Kallingal
et al. (2024)
4DVar Complex LSMs with adjoint/ ORCHIDEE, BETHY, Bacour et al. (2015), Kaminski — Efficient gradient- — Requires adjoint
tangent linear models JULES, BEPS et al. (2012), Knorr based models
et al. (2025), Kuppel optimization
et al. (2012), Raoult — Enables posterior — Difficult
etal. (2016), Zhu, Wu, error estimation implementation
et al. (2024), Zhu, Xing,
et al. (2024)
4DEnVar Avoids adjoint; ensemble-based JULES E. Pinnington et al. (2020) — No adjoint needed ~ — Computationally
gradient estimation intensive
— Hybrid flexibility — Potentially less
precise gradients
Nelder-Mead Simplex Derivative-free local optimization ~JULES E. Pinnington et al. (2018) — Simple to — Slow convergence
implement
— Works without — Prone to local minima
gradients
Finite Differences Gradient approximation ORCHIDEE, JULES Bacour et al. (2019), Bastrikov — No need for — Computationally
for 4DVar-like DA et al. (2018), MacBean adjoint- heavy
et al. (2015) Straightforward — Accuracy depends on
step size
EnKF (Ensemble Kalman Filter) ~ State and parameter estimation; CLM, SiB W. Chen et al. (2015), D. Lii — Real-time DA — Produces time-varying
soil moisture focus etal. (.2()1 1), Nieetal. (2011), Ermdles parameters
Y. Shi et al. (2014, 2015), H. uncertainty
Zhang et al. (2017), Deng
et al. (2016), Xiong — Popular in — Sensitive Alo ensemble
et al. (2019) hydrology properties
Monte Carlo type (GLUE, Global search and uncertainty JSBACH, ORCHIDEE, Mikeli et al. (2019), Bastrikov — Flexible and — Very expensive
Genetic Algorithms, quantification at site level SiB, BEPS, CLM, et al. (2018), Prihodko model-agnostic
DREAM(z5)) LPJ-GUESS etal. (2008), Xing — Global search — Typically limited to
et al. (2023), Vrugt methods site-level
et al. (2009), Post eifraden

et al. (2017), Bagnara
et al. (2019)

independently. One way to tackle this issue is to assume that the parameter differences among different groups
vary proportionally and, therefore, optimize a parameter scaling factor instead of targeting each parameter per
group (Fer et al., 2018; McNeall et al., 2024). However, for some plant traits, the “within functional type” un-
certainty can be as large as the “across functional type” uncertainty (e.g., Trugman et al., 2020), possibly due to
the traits being either weakly constrained by available data or genuinely plastic traits that vary spatially. In the
latter case, this variability suggests that regionalizing parameters rather than using PFT-specific parameteriza-
tions may be more appropriate. As such, methods that allow for independent tuning of parameters within each
PFT, or even regionalization of parameters, may be necessary. Scaling factors can also be used to target processes
without needing to deeply explore detailed parameterizations.
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Selecting parameters is only part of the challenge; defining realistic prior distributions is equally critical, as they
shape the entire assimilation outcome. Parameter sensitivity itself often depends on these priors, yet for many
parameters, our knowledge remains limited. A key difference between simple local sensitivity analyses—where
all parameters might be varied by an arbitrary amount (e.g., £10%)—and formal uncertainty partitioning
methods, such as global sensitivity analyses (e.g., Morris or Sobol), is whether the input ranges meaningfully
reflect prior knowledge before calibration. Such priors can come from empirical data, formal expert elicitation, or
other informed sources (Dietze et al., 2014; LeBauer et al., 2013; Raczka et al., 2018). In model calibration, it can
be common to assume uniform priors, either explicitly in Bayesian frameworks or implicitly by applying uniform
parameter bounds in the optimization. This contrasts with variational DA methods like 4DVar (Equation 2),
which typically use explicit Gaussian priors. Often, these uniform ranges are chosen based on informal “expert
judgment” or ad hoc trial and error, rather than grounded in evidence. Where available, parameter uncertainties
can be informed by in situ measurements (e.g., the TRY database; Kattge et al., 2020), or as a last resort, by
applying simple percentage ranges (e.g., £20% the operational value of the parameter). It is also essential to
ensure priors are biogeophysically meaningful—avoiding negative values for inherently positive parameters,
preserving dependencies between parameters, and respecting ecological plausibility (e.g., wood longevity
exceeding foliage longevity).

While uniform priors can be practical, they rarely reflect true prior knowledge because they assume all values
within the range are equally likely, while, in reality, some parameter values are often known a priori to be more
plausible than others. More realistic alternatives include adopting probability distributions that better reflect
expected parameter behavior, guided by structural constraints such as non-negativity. These can be implemented
through transformations of Gaussian PDFs (Kaminski et al., 2012, 2013; Rayner et al., 2005; Ziehn et al., 2011),
or informed by synthesizing trait data via meta-analyses and structured expert elicitation (Dietze, 2017; Dietze
et al., 2014; LeBauer et al., 2013). Priors informed by trait data act as a kind of data fusion, combining multiple
lines of evidence (e.g., Bloom & Williams, 2015). In practice, including prior trait constraints can radically alter
which parameters must be estimated. For instance, highly sensitive but well-constrained traits (e.g., the parameter
controlling the maximum rate of carboxylation—V, ,.) may need less focus than poorly constrained, low-
sensitivity parameters that plausibly span multiple orders of magnitude and thus contribute more to overall
model predictive uncertainty (Dietze, 2017; LeBauer et al., 2013). Parameter importance can also shift with the
forecast horizon (e.g., weekly to decadal; Raczka et al., 2018).

Non-uniform priors can also embed known correlations and trade-offs within or across PFTs (Shiklomanov
et al., 2018), though these are often ignored in practice by assuming zero covariances, which can lead to ill-posed
inversions. Using informative priors also supports the iterative nature of Bayesian calibration, allowing posteriors
to be recycled as new priors when new data become available, which offers significant computational and practical
benefits. However, selecting alternative priors still be as problematic as choosing uniform ones, especially when
true distributions are unknown, highlighting the need for formal prior predictive checks to validate assumptions
(e.g.,Bacouretal., 2023). Ultimately, no matter which method is used for parameter estimation, solutions only exist
in the parameter space defined by the chosen parameters and their prior ranges (Williamson et al., 2013). Changing
the number of parameters, their prior distributions, the observational data sets and/or the model process repre-
sentation will yield different results due to new parameter interactions and the equifinality of solutions.

3.2. Characterization of Model and Data/Observation Errors

The state-of-the-art way to account for model and observation errors is through a Bayesian framework.
However, properly characterizing these errors (especially data bias) can be a challenge and potential model-data
biases are not always properly treated with this formalism (Cameron et al., 2022; MacBean et al., 2016). Model
discrepancy, or model process error, refers to the inherent inability of a model to replicate observations (J.-L.
Wu et al., 2023), stemming from factors such as missing processes, choice of process representation, ecosystem
heterogeneity, stochastic processes (e.g., dispersal, recruitment, mortality, disturbance), biases in the model
forcing data, uncertainties in the initial model state, and the resolution of numerical solvers. Observation error
encompasses sampling variability, instrument inaccuracies, and any errors involved in deriving the data
products making up the observations. Furthermore, observation error also usually includes a modeling step
from the raw data measurement to any given physical quantity (see Section 3.3). Even though conceptually it is
important to distinguish model error covariance and observational error covariance, the standard mathematical
formalism expressed in Equation 2 uses as matrix R the sum of both these error covariances.
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Although common, combining model error with observational error can lead to an overestimation of predictive
uncertainty (van Oijen, 2017). Another approach to deal with model error is to ignore it (i.e., assume the model
structure is correct), however, this means only the input uncertainty is propagated. A final approach is to treat
model uncertainty as a separate parameter needing calibration. If a prior for the model error uncertainties can be
specified explicitly, model and data error terms can theoretically be fitted separately. However, in practice,
specifying an informative prior on the model error term is challenging due to incomplete theoretical under-
standing of the underpinning processes (Brynjarsdéttir & O’Hagan, 2014). Fortunately, it is often much easier to
specify an informative prior on the observation error, as these are frequently reported in data products or estimable
via sampling theory, and this is often useful to allow model error to be separately identifiable. We note, however,
that model uncertainty is difficult to characterize, even when it is separately identifiable. Moreover, reported
observational product uncertainty can be overconfident (D. Kennedy et al., 2024; R. E. Kennedy et al., 2024).

There are a number of arguments for keeping process and observation errors distinct. Process error propagates in
space and time when making predictions, while observation error does not. Reducing process error requires
improving model structure, whereas reducing observation error calls for better data quality. Furthermore, cali-
brating models with cost functions that rely only on fixed observation errors can distort parameter uncertainty and
the relative weight given to each data stream, especially since model skill is not always proportional to mea-
surement accuracy. The overall weight of a data stream also depends on the number of observations: a large
volume of uncertain data can outweigh a small but precise data stream if not balanced properly, directly affecting
the posterior estimates. There are clear examples where model uncertainty and measurement uncertainty for the
same variable do not align. For example, at local scale, predictions of net ecosystem exchange (NEE) are often
more uncertain than gross primary productivity (GPP), which only accounts for carbon uptake by photosynthesis.
Yet eddy covariance GPP estimates carry extra uncertainty because they rely on an additional step to remove
ecosystem respiration from NEE.

Quantifying both observation and model process error correlations, such as autocorrelated measurement error,
presents an additional challenge. These correlations yield non-diagonal covariance structures, which are rarely
well understood and are often ignored. Nevertheless, accounting for these correlated errors has been shown to
improve DA results (Waller et al., 2016), for example, by increasing the information content of observations
(Stewart et al., 2008). Since observation error correlations are more prevalent in dense observation networks
(Bannister et al., 2020), strategies to mitigate not modeling them include observation thinning (reducing the
number of observations assimilated in data-rich regions) and super-obbing (combining many observations into
one (Lorenc, 1981)). Another common approach to inflate variances is to reduce the weight of observations in DA
(Chevallier, 2007; Kuppel et al., 2013; Scholze et al., 2019; M. Wu et al., 2018). However, all these approaches
are subjective and potentially reject meaningful information (Cameron et al., 2022).

Finally, addressing systematic errors in models and data is becoming increasingly crucial as the volume of data
grows. With larger data sets, random errors tend to average out, leaving systematic errors to dominate. These
errors have long been recognized by the LSM calibration community, such as when a model's ability to predict
one variable worsens after assimilating data for another. However, the underlying causes and potential solutions
have not been widely recognized. Since all models are approximations, systematic errors in both models and data
require greater attention. To combat these biases, various approaches are emerging, ranging from incorporating
simple linear bias correction factors in the cost function (Cameron et al., 2022; Fer et al., 2018) to more complex
and flexible statistical models of bias, applied either within the assimilation process or post-hoc (M. C. Kennedy
& O’Hagan, 2001; Oberpriller et al., 2021). Additionally, hybrid models that integrate ML with process-based
models are being explored as a means to address these challenges (see Section 4.2).

Ultimately, interconnected efforts, including characterisating data errors together with the data providers, post-
PDA analysis of remaining model-data discrepancies, multi-model PDA protocols that highlight relative
model structural errors, and novel PDA algorithms are all valuable ways forward for distinguishing errors in the
data from those in the model structure.

3.3. Developing Observation Operators

The term “observation operator” refers to any transformation of modeled quantities that enables comparison
against observations (Kaminski & Mathieu, 2017). Note that often, what we call observations are themselves
complex transformations of raw data measurements into physical quantities comparable to the LSM output. For
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example, satellite-measure radiances at the top of the atmosphere can be translated into any number of land
surface data products (such as leaf area index), through intricate retrieval processes (Pinty et al., 2007).
Furthermore, these data are usually prepared in such a way that they are available on the model grid.

Sometimes, it is possible to prepare an observational product such that there is a one-to-one relationship between
the model output and assimilated data, making the observation operator the identity matrix. More often, however,
a more complex observation operator is needed, and its choicecan significantly impact DA results (Cooper
et al., 2019). A common use of an observation operator is to bridge the spatial scale between model and ob-
servations— aggregating or interpolating the gridded observations and model outputs to compatible resolutions
(Anderson et al., 2009; Huo et al., 2024; E. Pinnington et al., 2021; Raczka et al., 2021). More advanced spatial
operators use weighted averaging to account for more detailed descriptions of the observation, such as modeling
the point spread function of satellite data, or the footprint of an eddy-covariance flux measurement. For example,
Vergopolan et al. (2020) developed a cluster-based operator mapping satellite Gaussian footprints to sub-grid
scales of high-resolution LSMs, enabling assimilation of coarse soil moisture data alongside fine-scale obser-
vations (Vergopolan et al., 2021). E. M. Pinnington et al. (2017) partitioned flux tower data to assimilate
separately in logged and unlogged forest stands.

Observation operators can also map surface fluxes to atmospheric concentrations via transport models, as in the
assimilation of CO, flask measurements to constrain terrestrial biosphere models (Bacour et al., 2023; Kaminski
etal., 2002, 2012; Knorr & Heimann, 1995; Peylin et al., 2016; Rayner et al., 2005, 2011; Scholze et al., 2007; M.
Wu et al., 2020, 2024) and to evaluate simulated net CO, fluxes after optimizing against eddy-covariance data
(Kuppel et al., 2014). For non-reactive gas species, it is sufficient to have data on atmospheric transport to drive
the observation operator, but for reactive species such as CH,, the process is more complex as atmospheric
chemistry needs to be included.

Another key application is using observation operators to predict observed quantities that are not directly
computed by the model itself, such as the assimilation of solar-induced fluorescence (SIF) data, which is typically
used to constrain GPP. Observation operators of SIF range from simple linear relationships with GPP (Bloom
et al., 2020; MacBean et al., 2018) to empirical and mechanistic models of canopy photochemistry and radiative
transfer (Bacour et al., 2019; Knorr et al., 2025; R. Li et al., 2022; Norton et al., 2019). Another example is
vegetation optical depth which has been used to constrain above-ground biomass and leaf area index (LAI; Knorr
et al., 2025; Scholze et al., 2019).

Scholze et al. (2016, 2019) also developed observation operators to map model state variables onto retrievals
(including root zone soil moisture) of surface soil moisture (SSM), which were also used by M. Wu et al. (2018,
2020, 2024). Since SSM is subject to large biases, such transformations are essential (see Section 3.2 on sys-
tematic errors). Methods such as cumulative density function matching (Reichle & Koster, 2004) or focusing on
dynamics (e.g., dry down events, Raoult et al., 2021) are common when assimilating SSM. Dynamics-based
assimilation is also often used with vegetation indices (VIs), FAPAR or LAI retrievals are normalized to esti-
mate the seasonality of phenology instead of the absolute values (MacBean et al., 2015). The optimization then
targets a reduced set of phenology-related parameters, rather than those related to photosynthesis (Bacour
et al., 2015).

Forward modeling of remote sensed data—simulating satellite observations from LSM outputs via an observation
operator—and then assimilating low level (minimally processed) satellite products (as in example of SIF above),
is the alternative to assimilating high-level satellite products such as LAI or GPP (i.e., products that are derived
from a model and/or highly processed). These products often embed assumptions inconsistent with those in
LSMs. For instance, GPP retrievals frequently use light use efficiency models (e.g., MODIS GPP; Running
et al., 2021), whereas LSMs typically employ enzyme-kinetic schemes (Collatz et al., 1992; Farquhar
et al., 1980), and satellite-derived GPP estimates often rely on environmental drivers like downwelling shortwave
radiation, which may differ from those used in the LSM. Furthermore, processing raw observations often in-
troduces complex and unreported uncertainty correlations into the product, complicating the structure of the
uncertainty covariance in the assimilation (Kaminski & Mathieu, 2017). Assimilating such products risks tuning
model parameters to reflect retrieval assumptions rather than underlying biophysical processes. To avoid this, we
recommend assimilating the lowest-level data possible (e.g., fAPAR or surface reflectance when considering
GPP; Quaife et al., 2008), thereby minimizing structural mismatch and improving consistency between model and
observation. Finally, satellite-derived estimates of variables like GPP or LAI often differ significantly, and any

RAOULT ET AL.

13 of 42

85U807 SUOWWOD 3AIIERID 3ol dde U Aq peuienob ake ssjoile YO ‘8sN JO S|NJ 10} Ariq 17 8UIUO A1 UO (SUORIPUOD-PUR-SLLBILI0D™A8 | IM"ATe1q]1[BU U0//:SdNL) SUORIPUOD PUe Swie | 8U188s *[520z/0T/62] U0 Ateiqiaulluo AB]1M ‘80us|[pox3 8120 PUe Ui eaH 10} aimisu euoteN ‘3OIN AQ £6/00S K202/620T OT/I0pAuoo™As|mArelq1jput|uo sqndnBe//sdny woiy pepeojumoq ‘TT ‘G202 ‘99vZZr6T



NI

ADVANCING EARTH
AND SPACE SCIENCES

Journal of Advances in Modeling Earth Systems 10.1029/2024MS004733

single product is likely biased relative to the true state. As a result, discrepancies between high-level observations
and LSM outputs can be difficult to interpret and quantify. This is why seasonal dynamics are often used instead
of absolute values (as noted earlier), as they are less sensitive to such systematic biases.

Assimilating low-level products such as SIF or canopy reflectance (Quaife et al., 2008) often requires radiative
transfer models, analogous to radiance assimilation in weather prediction. This approach allows attribution of
systematic errors to the land model and observation operator itself. For example, Shiklomanov et al. (2021)
enhanced the Ecosystem Demography v2 (ED2) model to predict full hyperspectral waveforms for airborne
AVIRIS DA across eastern temperate US forests, later applied to tropical liana PFT development (Meunier
et al., 2022). However, low-level products exhibit spatial and directional variability not fully resolved by LSMs,
requiring compromises between model complexity, operator consistency, and accepting unresolved observation
variability. For instance, directional effects of sun-sensor geometry in SIF and reflectance are not routinely
modeled in global LSMs, which typically predict integrated fluxes. Strategies like space-time binning of SIF
observations can reduce these effects, improving consistency. Practically, assimilation of raw data demands
expertise in remote sensing and radiative transfer, underscoring the need for close collaboration between mod-
elers and remote sensing scientists.

As observation operators become more complex, especially in the case of radiative transfer calculations, they also
become more computationally expensive. This is a clear example of where ML may offer a unique opportunity
within DA applications, as discussed in Section 4.3. To address the sensitivity of assimilation results with respect
to the observation operators used, it is useful to develop community collections of observation operators. Ex-
amples are the Community Microwave Emission Model (CMEM, Drusch et al., 2009; de Rosnay et al., 2020;
Holmes et al., 2008) and the Terrestrial Carbon Community Assimilation System (TCCAS), which provides,
among others, several observation operators for SIF.

3.4. Tackling Spatial and Temporal Heterogeneity

The large variability in the surface properties of terrestrial ecosystems, arising from diverse climates, soil
properties, and variations in plant and soil species composition, plasticity, and evolution, is an additional chal-
lenge in LSM parameter estimation. Calibration of the model at one location may not be applicable at another.
Moreover, most LSMs are too computationally demanding to support calibration across large spatial domains. As
such, it is important to develop strategies to ensure results offer a good compromise across different locations, as
well as perform rigorous evaluation checks against data not used in the calibration.

A common approach to tackle this spatial heterogeneity is to perform “multi-site” optimizations, grouping sites
and performing a single optimization over this group to obtain a more generic set of parameters. The multi-site
approach has been shown to be very effective, at times out-performing site-specific optimizations (Knorr
et al., 2010; Kuppel et al., 2012; Raoult et al., 2016). Another approach is to average the results of single-site
optimizations. While usually less effective than multi-site optimizations, this is often a more practical solution
and can still result in an improved parameter set. For example, Olivera-Guerra et al. (2024) found that the median
values of optimized parameters improved simulated land-surface temperature performance.

Both approaches can be seen as end-members (all sites the same vs. all sites different) in a continuum of statistical
independence across sites. While only recently applied to ecosystem model calibration (Dokoohaki et al., 2022;
Fer, Shiklomanov, et al., 2021), hierarchical (or multilevel) models have long been used in ecology and other
fields. A hierarchical model allows parameters to vary across groups (e.g., sites) but constrains that variation
using higher-level statistical distributions. For example, site-specific parameters are drawn from an overarching
distribution that describes variability across all sites. This structure captures the continuum from full pooling
(same parameters everywhere) to no pooling (each site fully independent), enabling parameters to vary in space
and time while sharing information—borrowing strength—across sites. By fitting across-site and within-site
calibrations together, LSMs can reduce equifinality without forcing parameters to be identical everywhere. Hi-
erarchical models also provide a formal way to account for greater uncertainty in out-of-sample predictions
(where parameter vectors must be predicted) than in-sample ones. To date, most hierarchical calibrations assume
simple random effects (site parameters drawn from one distribution), but there are opportunities to develop
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models with explicit spatiotemporal covariances (nearby sites more similar) and site-level covariates that help
explain and predict parameter differences.

A further alternative is the use of intermediate complexity models (e.g., DALEC; the DA Linked Ecosystem
Carbon model), which, due to their reduced computational complexity, can retrieve parameters at the pixel scale
utilizing spatially continuous information from Earth Observation (EO) data and thus derive unique information
about the spatial variability of key underlying parameters, such as tissue residence times (Bloom et al., 2016) and
the impact of fire (Exbrayat et al., 2018). The parameters and emergent ecosystem properties estimated from these
models provide valuable insights into the spatial variability and magnitude of parameters. This can reduce the
parameter space that needs to be searched when calibrating larger models. Furthermore, these optimized pa-
rameters may inform the calibration of more complex models and support exploration of their internal dynamics
(Caen et al., 2022), although their direct transfer should be approached with caution due to potential structural
differences between models.

Similarly, the interannual variability of atmospheric conditions means we also need to be careful which period is
used for the assimilation. Ideally, we want to calibrate over multiple years to capture both the seasonal cycle and
this interannual variability, while still retaining a number of years for evaluation (although using different sites for
calibration and evaluation can help to relax this latter requirement). However, in practice, we are often limited by
short time series (e.g., only a few years for some in situ experiments and recently launched satellite missions), data
gaps, and the availability of meteorological forcing for corresponding periods, particularly for in situ data sets.
Additionally, when transitioning from site-specific (tower-based meteorology) to regional or global simulations,
the boundary conditions provided by meteorological forcing data (e.g., atmospheric reanalysis products) differ in
both spatial and temporal resolution, which will change the effectiveness of the calibrated parameters. Therefore,
parameters should ideally be calibrated using forcing data representative of the target scale, or with multi-site/
multi-scale approaches that account for variability in input.

3.5. Dealing With Large and Multiple Observational Data Sets

Although EO instruments can provide global gridded data sets for model, fully exploiting these opportunities is
challenging. Running experiments at the same resolution as the satellite products (e.g., 500 m MODIS resolution;
Justice et al., 2002) is computationally intensive, and we do not always have access to matching meteorological
forcing data. Furthermore, the resolution of EO products may also not align with the objectives of the experiment.
When assimilating multiple EO data sets, conflicting spatial resolutions introduce further complexity, requiring
choices about scaling—i.e., whether to upscale (aggregate) or downscale (interpolate) specific products (see
Section 3.3). Generally, EO are scaled to match the chosen model grid, which is usually dictated by the resolution
of the forcing data. Aggregating the satellite data to the model grid avoids spatial mismatches; however, this
scaling can result in an over-generalization or loss of information. Moreover the propagation of observational
uncertainty through the aggregation procedure is not straight forward, as spatial and temporal uncertainty cor-
relations are typically not provided with the product. Biases resulting from spatial mismatches or errors resulting
from data aggregation should be accounted for in the cost function, but in practice are rarely known.

Furthermore, the quality of EO data can differ hugely across different regions since they are impacted by at-
mospheric conditions (e.g., cloud cover) and topography, as well as the different data processing algorithms and
calibration/validation strategies used to develop the different products. This can lead to regional and biome biases
in the products that are very hard to circumvent due to measurement limitations, potentially generating structural
model biases. Therefore, for many LSMs, it is common to select representative pixels for optimization (e.g.,
MacBean et al., 2015), although defining what is representative is a challenge in itself. Once selected, the
representative pixel approach helps to (a) reduce the dimensionality of the problem, allowing for efficient and
multi-data-stream calibrations, (b) focus on points with close to homogenous coverage to be able to calibrate
class-specific parameters (e.g., plant functional types), and (c) define a different evaluation set of pixels with
which to assess the optimizations, especially sites with additional ground data. After selecting representative
pixels, multi-pixel optimizations are performed (as described in Section 3.4), focusing on estimating parameters
for different ecosystem/edaphic conditions by spanning the various model plant functional types and soil textures
all over the globe.
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Another way to include more constraints to an optimization is by calibrating against multiple data streams. There
is now an unprecedented wealth of in situ and EO data available, with even more satellite missions and in situ field
measurement sites being planned (Balsamo et al., 2018; Ustin & Middleton, 2021). Different data streams offer
information over different footprints and at different spatial and temporal resolutions offering unique opportu-
nities to constrain different processes in the models. As LSMs become more complex through increased process
representation and greater interconnectedness between the different terrestrial cycles (e.g., water, energy, carbon,
nitrogen), multi-data stream optimizations are becoming paramount to provide adequate constraints since pa-
rameters are likely to impact different parts of the model. By optimizating only one specific data, we risk
degrading the model's overall predictive capacity if some of the optimized parameters are loosely constrained
(Bacour et al., 2015, 2023).

There are two possible approaches when assimilating multiple data streams. We can either calibrate against each
data stream in turn, often referred to as “stepwise” assimilation, or include all data streams in one single opti-
mization, known as “simultaneous” assimilation. Although mathematically equivalent when the posterior
parameter uncertainties are properly estimated and propagated in the stepwise case (MacBean et al., 2016; Peylin
et al., 2016), simultaneous assimilation is often preferable, since it ensures consistency (Kaminski et al., 2012)
and avoids issues linked to accurately propagating the information gained about the parameter values from one
step to the next. However, simultaneous optimizations may not always be practical, especially when running a
computationally demanding LSM experiment, which is why the stepwise approach is often the pragmatic choice.
In particular, there may be technical difficulties associated with the different number of observations for each data
stream (which affects their influence in the cost function) and the characterization of error correlations between
them (Bacour et al., 2023). Nevertheless, it must be emphasized that issues with unbalanced data streams are not
solely due to imbalance but stem from the model's inability to accommodate both data sources when structural
errors exist in either the model or the data (Oberpriller et al., 2021). In fact, properly quantifying and accounting
for the uncertainty in the model structural error and data bias leads to better results than using ad-hoc methods
such as reweighting different data streams (Cameron et al., 2022) (see Section 3.2).

3.6. Including the Pre-Observation Historical Period in the Assimilation to Better Constrain the Initial
Carbon State

There is a large spread in model estimates of soil C content (Varney et al., 2024), which is due to poorly con-
strained, slow acting soil C cycling parameters (e.g., C allocation and turnover rates), poorly represented
disturbance processes, and/or inaccurate historical climate and land use/cover change forcing data. As cumulative
net carbon fluxes over long timescales depend on changes in soil C stock magnitudes (Le Noéet al., 2023), biases
in model predictions of the magnitude of soil C pools during the current observation period contribute to inac-
curate current and future projections of carbon-climate feedbacks (Arora et al., 2020; Friedlingstein et al., 2023).
Because many of the key parameters involved in predicting soil C pools act over long timescales, most LSM
carbon cycle parameter DA studies at multi-site or global scale have included these slow-acting carbon cycle
parameters in their optimizations (Peylin et al., 2016; Raoult et al., 2016; Schiirmann et al., 2016). To do so would
require including 100-1,000 s of years of the pre-observation historical period in the optimization (the length of
which is dependent upon individual model structure, but likely includes both spin-up and transient runs). For most
models this is computationally prohibitively expensive.

To make up for incorrect carbon pool magnitudes and the fact that including the pre-observation historical
period in the assimilation is not yet feasible for computationally expensive LSMs, most past LSM carbon cycle
parameter DA studies have included scalars on the initial C pools in the optimization, resulting in an improved
fit to NEE and atmospheric CO, data (Carvalhais et al., 2008, 2010; Castro-Morales et al., 2019; Peylin
et al., 2016; Schiirmann et al., 2016). These scalars alter the initial carbon pool size at the start of the
assimilation window. We also note that to date many of the carbon cycle assimilation studies have only
performed a spin-up that brings the model to equilibrium immediately prior to the assimilation/observation
window. They have not performed the full historical transient run with global change drivers i.e. now standard
practice in global carbon cycle simulations (e.g., in the TRENDY protocol—Sitch et al., 2024). Thus, this
scalar accounts for both the model structure, parameter, and forcing errors mentioned above that contribute to
incorrect soil carbon pool magnitudes.
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Other options for avoiding spin-up include directly initializing models with carbon stock observations, and
including parameter calibration within iterative state DA approaches (e.g., A. M. Fox et al., 2018; A. Fox
etal., 2022), as is common in hydrology model DA (e.g., W. Chen et al., 2015; H. Zhang et al., 2017). However, in
all of these cases, calibrating the “right” model parameters to the “wrong” model pools is going to produce poor
fits, complex sets of compensating errors, and potentially incorrect hypothesis testing around alternative model
structures. In other words, adjusting initial carbon pools by including an initial C pool scalar or using joint state-
parameter DA approaches to update the initial C state and the parameters, but without optimizing all the “slow”
carbon cycle parameters to which the initial carbon pool magnitude is sensitive, is only useful if the purpose of the
carbon cycle assimilation experiment is to update model estimates of current carbon budgets. If the desired goal is
an accurate prediction of future carbon stock trajectories—for predicting carbon mitigation potentials or carbon-
climate feedbacks under different scenarios of climate and disturbance trajectories—then simply adjusting initial
carbon stocks via any method is insufficient. This is because in longer multi-decadal to centennial runs, any non-
optimized C cycle parameters to which the initial carbon pools (and carbon pool trajectories) are sensitive will act
to push the model back to a different equilibrium, resulting in an artificial trend in the modeled carbon pools (and
resultant biases in carbon fluxes and land carbon sink estimates). Thus, for medium- to long-term projections of
the land carbon sink and carbon-climate feedbacks, all parameters to which the initial carbon pools are sensitive
need to be included in the optimizations. As the key C cycle parameters to which initial C pools are sensitive act
over 100-1,000 s of years, this means that much longer time windows (depending on soil carbon model structure)
will need to be included in the assimilation experiments (Raiho et al., 2021; Thum et al., 2017), despite the
computational cost.

Methods for increasing the simulation speed (e.g., model emulation—see Section 4.2) will potentially solve the
issue of prohibitive computational cost for these longer-term assimilation experiments. One opportunity for
accelerating the spin-up is by adopting the matrix approach, where carbon balance equations are expressed as a
single matrix equation without altering any processes of the original model, which has now been applied to
multiple LSMs and used for both parameter sensitivity analyses and DA (Hararuk et al., 2014; Huang et al., 2018;
Luo et al., 2022; Tao et al., 2020, 2024). Intermediate-complexity ecosystem models that optimize initial carbon
conditions, rather than running a full spin-up and transient simulation, can help by providing more constrained
priors for soil carbon pool turnover times and other parameters that strongly influence equilibrium or initial
carbon stocks (Bloom et al., 2016).

In addition to longer assimilation time windows, assimilating time series of aboveground biomass or soil C stocks
—in conjunction with carbon fluxes—is required to provide a useful additional constraint on carbon pools
magnitude and trajectory (Thum et al., 2017). However, data on soil carbon stocks are relatively scarce compared
to carbon fluxes, highly uncertain, lack timestamp metadata, and are often difficult to link to the conceptual
carbon pools in many CENTURY-type models Parton et al. (1987), though this is changing (Abramoff
et al., 2018). Additionally, these data sets often contain only one or a few time points. While assimilating some
information on carbon stocks is better than not having any data, constraining long-term changes in C stocks will
require multiple observations of both above- and belowground C stocks over time (Raiho et al., 2021) (or data
representing rates of carbon cycling). Other data sets that may be useful in constraining long-term carbon stocks
include nighttime and soil respiration data, or estimates of biomass derived from paleo fossil pollen records (e.g.,
Raiho et al., 2022) that so far have typically not been utilized in LSM DA studies. Just how long a time series we
need to include to accurately estimate slow carbon cycle parameters will likely depend upon which parameters are
important for estimating future carbon stock trajectories over the timescales of interest and the uncertainties
associated with observations. More parameter sensitivity studies are needed to assess which slow carbon cycling
parameters control carbon stock trajectories at different temporal scales (Huang et al., 2018; Raczka et al., 2018;
Deepak et al., 2024). Ideally, these sensitivity studies should be performed with different scenarios of global
change drivers, as changing inputs may alter the relative importance of slow carbon cycling parameters. The
community can learn from the calibration and validation activities of soil biogeochemical models being approved
for use in voluntary carbon markets (Mathers et al., 2023).
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3.7. Choice and Implementation of Minimization Algorithms

To perform optimizations effectively, careful consideration must be given to the choice of algorithm and its
implementation. As discussed in Section 2, various algorithms are available, each with distinct characteristics,
such as local versus global optimization, each having different computational demands. Different DA algorithms
make different assumptions on the parameters and this inevitably results in differing optimized parameter values.
Additionally, every algorithm comes with a variety of configurable options. For instance, a Genetic Algorithm
implementation by Scrucca (2013) offers a range of functions for parent selection (six options), crossover (five
options), and mutation (three options), resulting in 90 possible combinations. Users can also adjust crossover and
mutation probabilities. The success of the optimization process greatly depends on how the optimization is
implemented, which may vary on a case-by-case basis. Systematically testing all possible combinations is un-
feasible due to the large computational demand of an LSM. A more efficient approach is to use an emulator (see
Section 4.1) rather than an LSM to find an optimal experimental design (Dagon et al., 2020); once the design has
been identified, the optimization can be carried out using the LSM.

Furthermore, for gradient-based methods, implementing and maintaining the tangent linear or adjoint model is a
huge challenge in LSM DA. For complex LSMs, which are historically coded in Fortran, developing the tangent
linear and adjoint models can take years, even with automatic differentiation tools. This is because the model code
must comply with the differentiation software without changing the model output. Moreover, to maximize the
usefulness of the derivative code, it is important to expand the validity domain of the linear approximation by
avoiding discontinuities or sharp transitions in the cost function (Kaminski & Mathieu, 2017; Kaminski
et al., 2013). Examples include replacing look-up tables with their continuous formulations, reformulating
minimum and maximum calculations to allow a smooth transition at boundaries (Schiirmann et al., 2016), and
developing smooth phenology schemes (Knorr et al., 2010). Once compliance with an automatic differentiation
tool is achieved, it is recommended to develop that new modules with automatic differentiation in mind and to
update the derivative code after each update of the underlying model and its observation operator. This approach
is particularly crucial for models and development teams where variational DA is a high priority. This has been a
challenge for complex community model like JULES and ORCHIDEE, where new processes are added
approximately every six months. For JULES, the adjoint was developed for v2.2 (Raoult et al., 2016), while the
model is at v7.3 at the time of writing. Similarly, the tangent linear exists for an older version of ORCHIDEE,
(ARS), but predates major updates like the multi-layered soil hydrology scheme and nitrogen cycle. To address
this, the ORCHIDEE DA team has been developing a preprocessing tool to allow automatic differentiation of any
model version. On the other hand, owing to the high demand of up-to-date derivative code for variational DA
applications, BETHY, with its comparatively lower complexity, has remained compatible with automatic dif-
ferentiation for decades, providing efficient derivative code for the current model version. The same applies to its
successor D&B (Knorr et al., 2025), used in the ESA-supported TCASS system, and to the Nanjing University
Carbon Assimilation System (NUCAS; Zhu, Wu, et al., 2024). Alternatively, models written directly in an auto-
differentiable language (Julia or python-JAX; see Section 5.4) can ease these challenges by making differentiable
code easier to implement (Gelbrecht et al., 2023; Shen et al., 2023). However, developers must still ensure that the
model's structure and parameterizations remain differentiable.

As discussed in Section 2, in the absence of the tangent linear or adjoint model, one can use finite differences.
However, this necessitates the selection of an appropriate step size for accuracy and convergence speed, which
will differ based on the sensitivities of the parameter estimated. Other methods to bypass the need for tangent
linear and adjoint models include LAVENDAR's ensemble 4D Var approach (E. Pinnington et al., 2020) or the use
of emulators, which can be used to either avoid gradient-based approaches in favor of MC ones, make numerical
approximations of gradients viable, or both (e.g., Hamiltonian MCMC). However, these algorithms also come
with a number of hyperparameters that need to be selected including the number of ensembles and convergence
criteria.

4. Opportunities Through Machine Learning for Parameter Estimation

Despite the challenges and knowledge gaps discussed above, our community has never been in a better position to
calibrate LSMs and rigorously diagnose their uncertainties. We now have access to large observational data sets at
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Figure 3. Examples of where machine learning (ML) can facilitate each part of the land surface model parameter data assimilation (PDA) workflow. The standard PDA
workflow is represented by the gray arrows, where the processed model output and observations, along with their representative errors, are passed through to the
assimilation system to derive optimal parameters and uncertainty. The ML facilitation is represented in two ways. First, by using emulators of the model output,
represented by the red arrows. Second, more generally, the processes ML can assist with are written in blue—these are discussed more fully in the rest of this section.

high spatio-temporal resolutions and increased computational capacity and efficiency. These factors, combined
with recent advances in ML, potentially allow us to make significant progress in model calibration.

The recent surge in ML has been evident in every aspect of society with the most relevant examples coming from
numerical weather prediction (Lam et al., 2023) or remote sensing (Lary et al., 2016). These examples can help us
identify ways in which ML can assist with land PDA. In this section, we specifically focus on how ML can be
integrated into the land PDA process to help us address the current challenges and limitations outlined in previous
sections (Figure 3). For example, ML can (a) reduce computational costs, making available optimization tech-
niques that were previously prohibitively expensive, (b) overcome limitations posed by a lack of accurate process
knowledge and inform the development of improved process knowledge, (c) expedite the optimization process, or
(d) facilitate the use of multi-variate, sparse, or biased observations. With an increasing number of studies
currently being published in the field of ML, we only provide a short overview of such applications and the most
relevant literature for land PDA here. Given the diversity in both methodologies and applications of existing
studies, evaluating the advantages and limitations of individual algorithms in a comprehensive manner remains a
significant challenge. In this paper, we present a selection of sample applications of ML for parameter estimation,
categorized into three distinct categories: (a) the use of ML to emulate the relationship between LSM parameters
and its outputs or performance (Section 4.1), (b) the creation of “hybrid models” in which ML replaces or
complements a component of a larger LSM by emulating the relationship between model inputs and observations
for that component (Section 4.2), and (c) the use of ML to optimize the parameter estimation process itself
(Section 4.3). This categorization aims to provide a rough guide for readers navigating the complexities of ML
algorithm selection and implementation for PDA studies.

ML has the potential to significantly advance land PDA. The use of ML emulators can reduce the computational
cost often associated with parameter calibration and ML techniques can improve the optimization process itself.
Additionally, ML substitutes, trained on model inputs and observational outputs, can provide meaningful insights
into model processes that are poorly captured or understood and thus contribute to improved parameterizations in
process-based models. However, ML approaches are unlikely to fully replace process-based models due to
several inherent limitations. These include susceptibility to issues such as equifinality (Kraft et al., 2022;
Sawada, 2020), compensation for structural model errors, reduced accuracy outside of the training data range, and
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a lack of physical constraints. We note that any ML approaches need substantial data to perform well and thus the
ML components in the hybrid part need to be targeting processes for which data is plentiful. ML approaches often
have a large number of parameters in their training which gives them a larger degree of flexibility that can
compensate for errors in physical models, but can also lead to overfitting. Some of the above issues can be
partially mitigated through the use of multi-variate independent observation constraints in the calibration. Given
the limitations of both ML and process-based models, hybrid models that integrate the strengths of each are
expected to play a central role in future LSM developments.

4.1. Parameter Perturbation Emulators

ML methods can improve the PDA process by mitigating the computational cost of high-complexity LSMs that
has traditionally hindered the use of computationally demanding calibration techniques such as MCMC. By
building an ML-based statistical relationship between input parameter settings and the LSM output or an
aggregate of the LSM output (for instance over time or space), the LSM output can be estimated for a new set of
input parameters. The statistical relationship serves as a computationally efficient surrogate model for the
expensive LSM and is most frequently called an emulator (although this term is not exclusive to this application),
while surrogate, meta-model, or reduced-order model are also used to refer to this tool. Indeed, emulators already
have a rich history in climate sciences (Knutti et al., 2003; Sanderson et al., 2008; Watson-Parris, 2021). In the
following, we provide a guide to key aspects for using emulators for PDA, including strategies for sampling the
parameter space, the selection of the emulation method, the impact of computational cost reductions, and the
emerging history matching (HM) technique. We also note that—as with all parameter estimation methods—PPEs
can be subject to increased uncertainties when applied outside of the initial training data set.

4.1.1. Parameter Sampling Strategies

The training of an emulator requires an ensemble of LSM simulations with perturbations to the input parameters
often called a perturbed parameter ensemble (PPE; e.g., D. Kennedy et al., 2024; R. E. Kennedy et al., 2024;
McNeall et al., 2024). The design of the initial PPE depends on the intended use; for uncertainty quantification, it
is often preferable to sparsely sample the entire parameter space using Latin hypercube sampling (McKay
et al., 1979). However, for calibration applications discussed here, it can be more cost effective to use a non-
random and targeted sampling strategy, such as active learning which tries to optimize the selection of the
next sample (e.g., H. Zhao & Kowalski, 2022). Alternatively, an Ensemble Kalman Filter approach (Even-
sen, 2003) can be used to place the initial design points in regions of significant posterior mass to optimize the
calibration process (e.g., Cleary et al., 2021). When building emulators for model calibration it can be particularly
effective to treat this as an iterative design process, whereby an initial set of parameter vectors (e.g., Latin hy-
percube) is used to generate a rough idea of where in parameter space the optimum lies, then additional parameter
vectors are sampled from this region, refining the emulator in a way conceptually similar to a nested grid in
parameter space (Fer et al., 2018). How to optimally propose points in parameter space remains an important
research question.

4.1.2. Emulation Methods

There are many ML methods appropriate for emulating the LSM response to parameter modifications. When it
comes to the calibration problem specifically, an alternative to emulating the LSM output is to directly emulate
the cost function (i.e., the response surface of model error as a function of parameter value) which is of much
lower dimension and often much smoother that the model output itself (Y. Cheng et al., 2023, 2024; Dagon
et al., 2020; Fer et al., 2018; Fer, Shiklomanov, et al., 2021).

Gaussian processes are commonly applied as they are well-suited to interpolate non-linear surfaces in data-scarce
settings and moreover provide a measure of prediction uncertainty that can be used to quantify the emulator
uncertainty. However, since the computational cost of Gaussian processes dramatically increases with the size of
the data set, they are less feasible for larger data sets. A possible solution are sparse Gaussian processes (Baker
et al., 2022), whereby a subset of coordinates representative of different parameter settings and forcing data
regimes is selected under the assumption of no lateral information exchange between LSM grid cells. Another
popular method for emulating LSMs are neural networks (NNs), as they are straightforward and fast to implement
(Hatfield et al., 2021), with fast evaluation speeds and good predictive skill within the bounds of the training data.
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However, NNs are sensitive to biases in the selection of the training data as well as the tuning of the algorithm
hyperparameters, which means that they generally cannot extrapolate to scenarios beyond the training data or be
transferred to new data sets without performance degradation (Shwartz-Ziv & Armon, 2022). Examples of NNs
used to emulate LSMs include applications for carbon modeling parameter perturbation and uncertainty (D. Lu &
Ricciuto, 2019), the emulation of CLMS outputs given important biophysical parameter values (Dagon
et al., 2020), and to emulate the ensemble mean of several urban LSMs (Meyer et al., 2022). While artificial NNs
do not provide a probabilistic prediction, new methods are emerging such as neural processes (Garnelo
et al., 2018) or randomized prior networks (Bhouri et al., 2023). Regression trees can also be extended to include
probabilistic prediction such as with NGBoost (Duan et al., 2020) or XGBoost (Donnerer, 2024), as used, for
example, to emulate ELM-FATES (L. Li et al., 2023). XGBoost has been shown to generally outperform NNs
while requiring little parameter tuning and is able to achieve robust performance even when extrapolating to
scenarios beyond the training data (Grinsztajn et al., 2022; Shwartz-Ziv & Armon, 2022). A disadvantage of tree-
based methods is their slower evaluation speeds and the fact that they are not differentiable, which can limit their
usability for certain applications (e.g., coupled DA, Hatfield et al., 2021). Long-Short Term Memory methods
include memory mechanisms by leveraging long-term dependencies in the training data time series, allowing
them to effectively emulate model processes across different time scales without performance loss at longer lead
times, as is the case for XGBoost (e.g., Wesselkamp et al., 2024). This makes them particularly suited for the
emulation of large-scale forecasting systems that encompass physical processes acting at different time scales
(Datta & Faroughi, 2023; Guo et al., 2021; Wesselkamp et al., 2024).

4.1.3. History Matching

In the field of uncertainty quantification, one key method that can be used in combination with emulators and that
is gaining traction for LSM parameter estimation is the so-called HM method (Hourdin et al., 2023). This method
is not about finding the most likely parameter values, but rather ruling out implausible ones based on some given
metrics (Williamson et al., 2013). An advantage of this more conservative approach is that it is less subject to
equifinality, thus ensuring that the true parameters are contained in the posterior parameter distribution. Using
emulators to facilitate computation, HM is commonly applied using successive iterations (also known as iterative
refocusing) to reduce parameter space and retain the least implausible parameters. Like the cost function used in
variational DA, the implausibility takes the observation and model structure errors into account. While these
errors are still hard to determine (Peatier et al., 2023), HM gives a clear diagnostic if the errors are overestimated,
by ruling out little to no parameter space. If the errors are underestimated, HM will rule everything out, suggesting
the errors have been misspecified, whereas other optimization approaches would yield a solution every time. HM
also allows the user to test many different metrics to see if parameters can capture specific features, similar to
multi-objective optimizations, giving a clear diagnosis of model structure error. HM in combination with emu-
lators has successfully been tested with some of the major high-complexity LSMs: CLM (Dagon et al., 2020),
JULES (Baker et al., 2022; McNeall et al., 2024), and ORCHIDEE (Raoult, Beylat, et al., 2024), for example.
These studies highlight how HM can be used to identify sensitive parameters, redefine ranges of variation and
identify non-Gaussian relationships between parameters. This information could potentially be used to determine
the prior error covariances (i.e., to set up the background error covariance matrix in variational DA) or provide
ecological constraints to an optimization.

4.2. Hybrid Modeling

An alternative approach for enhancing land PDA through ML is the strategic substitution of physical model
components with an ML approximation (Eyring et al., 2024), known as hybrid modeling. The appeal of the hybrid
approach is that it can address known model inadequacies and computational bottlenecks in a targeted manner
while retaining the use of physical process knowledge and constraints where they are reliable. For example, the
hybrid approach can mitigate model structural errors, by replacing model processes that are missing or poorly
understood with data-driven substitutes, assuming adequate data exists (Arsenault et al., 2018; Reichstein
et al., 2019). At the same time, the hybrid approach can add physical constraints to the ML model components,
thus maintaining physical consistency and interpretability (e.g., Beucler et al., 2021; Kraft et al., 2022; Reichstein
et al., 2019). The hybrid approach offers a strategic combination of the advantages of ML and physically-based
approaches and leverages their complementarity. Here we introduce three major applications of hybrid modeling
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for land PDA: (a) substituting a specific model parameterization with an ML approximation, (b) deriving
spatial parameterizations that better capture observed physical behavior, and (c) training on model-data residuals
to predict process-model biases and characterize structural errors. Hybrid modeling has been implemented
successfully in a number of LSM applications, including for streamflow (Yang et al., 2019), evapotranspiration
(W. L. Zhao et al., 2019), subsurface flow (N. Wang et al., 2020), rainfall-runoff modeling (Xie et al., 2021), as
well as more generally for the prediction of sea surface temperatures (de Bézenac et al., 2019), atmospheric
convection (Gentine et al., 2018), and high impact weather events (McGovern et al., 2017).

4.2.1. Substitution of Uncertain or Missing Parameterizations and Processes

A common application of hybrid modeling is to improve the representation of complex processes that are poorly
captured or missing completely in traditional LSMs. An example of this are human processes, which can be
effectively accounted for with ML approaches trained in an aggregate manner (e.g., one NN trained on all lo-
cations) and using a combination of observations and process-model outputs to map observations into the model
climatology (thus removing global biases). This approach retains the independent information on human pro-
cesses i.e. inherent in the observations but typically removed in traditional bias correction approaches (e.g.,
Kumar et al., 2012) and has been used for example, to introduce the impact of irrigation and tile drainage in a
physical LSM (Kolassa et al., 2017) as well as to predict water flow in urban areas from runoff estimates
generated by a physical LSM (Assem et al., 2017). Hybrid modeling can also be used in cases when the naturally
occurring physical processes are poorly understood. For example, Arsenault et al. (2018) used an ANN with a
combination of remote sensing observations and model predicted states to generate improved estimates of snow
depth within the Land Information System.

4.2.2. Observation Operators

One specific application of an ML-based process substitution is the use of ML-generated observation operators to
translate satellite-observed radiances into model states or parameters (see challenges raised in Section 3.3). The
use of ML techniques in this context has several advantages: (a) ML-based observation operators are relatively
simple to implement compared to physically-based approaches, which often involve the inversion of radiative
transfer models, (b) they are able to easily accommodate the simultaneous assimilation of multiple observation
types, (c) they can inherently correct climatological biases between model and observations (see also section
“Substitution of Uncertain or Missing Parameterizations and Processes”), and (d) they facilitate the assimilation
of radiance observations rather than retrieval products, thus reducing errors stemming from possible in-
consistencies between retrieval algorithm assumptions and models. ML-based observation operators can provide
uncertainty estimates for their outputs, as they typically retain some observation data to assess performance after
training. Due to these advantages, ML-based observation operators have been applied in several land DA studies,
including for soil moisture (Kolassa et al., 2017; Rodriguez-Fernandez et al., 2019), LAI (Durbha et al., 2007),
snow water equivalent (Kwon et al., 2019), and as a combined forward model for soil moisture and LAI (Shan
et al., 2022).

4.2.3. Improved Spatial Parameterizations

Hybrid modeling techniques have also been used successfully to generate model parameterizations that better
capture the parameter spatial distribution and thus the observed physical behavior (Tao et al., 2020, 2024).
Process-model parameterizations can be limited by observation sparsity, which can lead to ad hoc decisions when
assigning parameter values globally. Similarly, many global LSMs significantly simplify biogeochemical and
physical mechanisms into empirical parametric functions. Hybrid modeling can address these issues by mapping
environmental variables into model parameters or using high-resolution, high-fidelity model simulations to derive
new parameterizations for coarse-resolution models (e.g., Gentine et al., 2018). Bao et al. (2023) replaced the
traditional PFT-based parameterization of a light use efficiency model with an ecosystem-property-based
parameterization derived from a multi-layer perceptron NN to better capture the spatial variability of GPP
within PFTs. Several studies have used a hybrid ML approach to improve the representation of evapotranspiration
in LSMs, either by directly estimating evapotranspiration (W. L. Zhao et al., 2019) from observations or by
inferring related prognostic variables, such as the stomatal and aerodynamic resistances (ElGhawi et al., 2023), or
transpiration stress (Koppa et al., 2022). In each case, the hybrid model was able to learn unknown latent pro-
cesses and thus outperform traditional physics-based schemes.
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4.2.4. Model Error Identification/Characterization

Additionally, hybrid modeling implementations can serve as effective diagnostic tools to identify model errors.
For an independently evaluated ML approximation, systematic differences between predictions from a physical
model component and its ML counterpart can provide insights into missing or flawed model process represen-
tations as well as identify inadequate model parameters (e.g., McGovern et al., 2017), especially when the ML
model is not only trained to represent the model outputs but uses other observational constraints in the learning
phase. For example, Finn et al. (2023) and Gregory et al. (2023) used an ML trained on model-data residuals to
predict model biases and characterize structural errors, while Gregory et al. (2024) extended this approach to
implement an online bias correction within a DA framework. Similarly, Farchi et al. (2021, 2023) integrated a
deep-learning step into a DA framework to create a hybrid model that dynamically learns and corrects model
errors at each DA time step.

4.3. Optimization Process

Finally, ML can be integrated in land PDA to improve the optimization process itself. Since optimization is a key
component to both ML and DA, there are many algorithms common to both fields including gradient-based and
evolutionary algorithms (Section 2). Indeed, the strong mathematical similarities between ML and DA mean that
both fields can learn from each other and share methodologies (Geer, 2021).

4.3.1. Optimisation Algorithm

ML approaches can be used to improve optimization algorithms themselves by helping speed up the search
process and improve the quality of solutions (Song et al., 2019). Furthermore, ML can be used to automatically
choose the setting of adjustable parameters found in some optimization algorithms. For example, clustering
methods can be used to set the population size, crossover probability and mutation probability parameters in
genetic algorithms (J. Zhang et al., 2007) and maintain population diversity. Tree-based random forest models
have been used to dynamically construct, search, and prune the parameter space to efficiently optimize ML
structure and hyperparameters (Akiba et al., 2019). ML techniques can also be used to choose the best-performing
algorithm for a particular optimization problem (Kerschke et al., 2019). While the emerging ML methods are
promising, they are very novel and—to the best of our knowledge—have not yet been applied to optimizing the
parameter estimation algorithm hyperparameters themselves.

4.3.2. Differentiability

Finally, a novel and emerging use of ML is the use of large language models (e.g., ChatGPT). Modern open-
source coding languages like Julia and Python through the Google JAX library (Bradbury et al., 2018) can be
automatically differentiated to generate the tangent linear model (see Section 2). Many high-complexity LSMs
are written in Fortran code; large language models can help translate Fortran code to more modern languages
(Zhou et al., 2024), facilitating the derivative of such models. Alternatively, we can use NNs to emulate the
tangent linear and adjoint models since NNs can be differentiated trivially (Hatfield et al., 2021).

4.3.3. Computational Cost Reduction

ML techniques significantly reduce computational costs of complex LSMs and DA systems, enabling previously
prohibitively expensive parameter calibration approaches, such as MCMC methods that require numerous
parameter distribution samples. For instance, Fer et al. (2018) showed ML emulators accelerated MCMC by over
100x for SIPNET and over 200,00x for the more complex ED2 model. Other studies (e.g., Sawada, Cleary
et al., 2021) used emulators for Bayesian inversion, making costly MCMC sampling of the approximate posterior
parameter distribution feasible. Torres-Rojas et al. (2022) used surrogate modeling with Pareto analysis to infer
optimal LSM parameters at just 1% of the original computational cost. Coining the method “Calibrate, emulate,
sample,” Cleary et al. (2021) showed how the method could be successfully applied to models of different
complexity, while other groups have also demonstrated the suitability of ensemble approaches for parameter
selection (e.g., Couvreux et al., 2021).

Hybrid modeling can also reduce cost when used to replace computationally intensive model components. For
instance, Sun et al. (2023) used bagging decision trees (an ensemble ML method based on Breiman (1996)) to
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Table 3
Summary of Challenges Outlined in Section 3 and Their Machine Learning (ML) Opportunities

PDA challenge ML opportunity

Selecting parameters and their prior distributions (Section 3.1)

— Identifying which model parameters to optimize is challenging, due to ~ — Emulators can reduce the computational demand of running models with many
high dimensionality and strong parameter covariances different parameter settings needed for sensitivity analyses (Section 4.1)

— Choosing prior distributions for parameters is crucial yet difficult, — Emulators can be used to aid uncertainty quantification, for example, by facilitating
requiring detailed structural insights and data history matching (Section 4.1)

Characterization of model and data/observation errors (Section 3.2)

— Model errors are difficult to quantify due to uncertainties in process — Hybrid modeling can be used to replace model processes that are missing or poorly
representation, missing processes, and the challenge of specifying an understood, helping to diagnose model structural errors (Section 4.2)
informative prior

— Quantifying data errors is tricky because of sampling variability, — ML methods can be used to generate improved estimates of derived quantities, thus
instrument inaccuracies, and complex error correlations that are often reducing observation errors (Section 4.3)
ignored

Developing observation operators (Section 3.3)

— Matching model outputs to observations require transformations that can — ML-generated observation operators can be used to directly translate satellite-
introduce biases observed radiances into model states or parameters (Section 4.3)

Tackling spatial and temporal heterogeneity (Section 3.4)

— Variability in surface properties, driven by diverse climates, soils, and ~ — Hybrid modeling can be used to improve spatial parameterizations (Section 4.2)
ecosystems, complicates parameter estimation across locations

— High computational demands make it difficult to calibrate LSMs across — Emulators can help reduce the computational demand of running the model over large

large spatial domains domains (Section 4.1)
— Temporal variability and short data series hinder the capture of both — Long Short-Term Memory encoder-decoder networks consider long-term
seasonal cycles and long-term trends dependencies and therefore may help capture seasonal and interannual trends

(Section 4.1)
Dealing with large and multiple observational data sets (Section 3.5)

— Products may be subject to regional biases due to varying data quality and — ML-based observation operators are able to easily accommodate multiple observation
processing methods types and remove global biases with respect to the model (Section 4.2)

— Assimilating multiple data streams in model calibrations presents
challenges in consistency, error characterization, and balancing different
data sources

Including the historical period in the assimilation window (Section 3.6)

— Spin-up and transient parts of model runs can be computationally — Hybrid modeling can be used to replace computationally costly parts of the model
demanding (Section 4.2)

Choice and implementation of minimization algorithms (Section 3.7)

— Algorithms requiring a large number of model runs are computationally — ML can enhance computational efficiency, enabling the use of algorithms that require

costly and therefore rarely applied to complex LSMs numerous model runs (Section 4.1)
— For different algorithms, there can be a large number of configuration — ML can help find the best configurations and hyperparameters to use when optimizing
options and tuneable hyperparameters (Section 4.4)

— Maintaining tangent linear/adjoint models for gradient-based optimization — Large language models can be used to translate LSMs to modern coding languages
in complex LSMs is challenging that are easier to differentiate and can better exploit GPU. Alternatively, we can
emulate the LSM using NNs, which are easily differentiable (Section 4.4)

emulate the spin-up phase of the ORCHIDEE model, which can normally account for up to 98% of total
computation time. Similarly, Koppa et al. (2022) integrated deep learning with a physical LSM and satellite
observations to estimate global evaporation, improving both predictive accuracy and computational efficiency.

5. Future Priorities in Land Model Parameter Estimation

Moving beyond the ML avenues outlined in the previous section and summarized in Table 3, here, we discuss the
opportunities and future priorities where land PDA promises to have some large impacts, building on recent
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successes. We argue that more funding for technical DA studies and software engineering support would
significantly aid this work.

5.1. Testing Novel Data Sets and Experimental Configurations

In addition to the traditional data sets used to optimize LSM parameters (e.g., leaf area index, VIs, SIF, in situ
carbon and water fluxes, atmospheric CO, mole fraction data, or soil moisture—see Section 1 and Figure 1), our
data-rich world offers access to a wide array of novel and underutilized data streams enabling new and exciting
constraints on multiple different processes in LSMs (as have been used for parameter DA in smaller scale
ecosystem and ecology models). These include (to name a few):

o Manipulation experiments: For example, elevated CO, experiments can be used to constrain the fertilization
effect at nitrogen-limited sites (Jiang et al., 2020; Mahmud et al., 2018; Raoult, Edouard-Rambaut, et al., 2024;
Thomas et al., 2017).

e Data about soil carbon stocks: Data from the International Soil Carbon Network (Harden et al., 2018; Nave
etal., 2016) and the global soil respiration database (Jian et al., 2021) can provide valuable insights. Similarly,
soil radiocarbon measurements (C. R. Lawrence et al., 2020) can help constrain rates of soil carbon cycling (Z.
Shi et al., 2020) and carbon isotope concentrations can be used to improve simulated soil organic matter
decomposition (Mékeld et al., 2022).

o Tree ring data: Annual biomass increments derived from tree ring widths can help infer carbon accumulation
(Babst et al., 2014; Jeong et al., 2021). Similarly, tree ring isotopic data (carbon and oxygen) can act as
constraints for leaf physiology and growth (Barichivich et al., 2021).

o Other aboveground biomass products: Products from the ESA BIOMASS mission (Quegan et al., 2019) help
constrain carbon allocation and woody biomass turnover parameters (Smallman et al., 2021). Similarly, land-
use and land-cover products (e.g., MapBiomas Collection 3.1, based on Landsat) can be used to create
regrowth curves (Heinrich et al., 2021, 2023), which together with forest inventory data, can help constrain
disturbance processes.

e Additional remote sensing data sets: New data sets, such as full-waveform lidar data from the Global
Ecosystem Dynamics Investigation (GEDI) mission (Dubayah et al., 2020), can help constrain canopy
structural parameters, including canopy height (Potapov et al., 2021). Similarly, improved observations of
land surface temperature and total surface/groundwater content from GRACE instruments also can offer
additional constraints on the energy and water cycles.

o Trace gas flux measurements: Carbonyl sulfide measurements (Whelan et al., 2018) can be used to constrain
GPP and stomatal conductance (Abadie et al., 2023; Zhu, Xing, et al., 2024). There is also a growing number
of nitrous oxide flux measurements (Nicolini et al., 2013), which can be used to calibrate LSMs that include
nitrogen cycles. Methane flux measurements, such as those over peatlands (Salmon et al., 2022), can also be
utilized to improve the representation of methane production processes.

As with all past carbon cycle DA studies, before novel data sets can be reliably used in a DA experiment, it will
take time to test the best approaches for how to best use these data streams within a DA experimental framework.
It should be standard practice to run synthetic DA experiments to test which types of observations provide the best
constraint and which observational characteristics (temporal sampling interval, record length, observation un-
certainty, choice of minimization algorithm and its configuration, etc.—Section 3.7) are required to retrieve the
correct parameter values and/or reduction in uncertainty in associated variables, with the strong assumption that
there is no modeling bias. Synthetic experiments, also known as “twin” experiments, use “pseudo data” that have
been output from the model and modified according to known observational characteristics (see REFLEX and
Optic experiments; Trudinger et al., 2007; A. Fox et al., 2009). As these data are model outputs, the “true” value of
the parameters is known. Synthetic DA experiments can be conducted before data collection or instrument design
to optimize sampling across space, time, and methodology.

5.2. Testing DA Experiment Configurations

In the introduction we outlined a number of studies in the early development of carbon cycle DA systems
that aimed to better understand how different DA experimental set-up at site scale impacted posterior
parameter values and their uncertainties. In recent years, such “technical” DA experiment configuration
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studies have become less common; however, many questions about the most appropriate methods and
approaches for parameter calibration using DA and ML remain. Existing studies have shown optimized
estimates of various parameters are very dependent on the experimental setup and so few of the optimized
parameter values are actually used in the operational version of each LSM—although this is something to
strive for in future efforts. Indeed, even when calibrated parameters have been shown to improve model
performance, getting them to be the new defaults in coupled models is non-trivial (Kyker-Snowman
et al., 2022). In addition to the synthetic experiments that should be conducted when novel data sets are
used (Section 5.1), additional tests of DA experimental configuration that are rarely performed (or rarely
reported in the literature) but which are sorely needed include testing: (a) how parameters estimated at
individual sites compare to parameters estimated when including multiple sites in the assimilation (Kuppel
et al., 2012; Raoult et al., 2016) or using hierarchical approaches (Fer, Shiklomanov, et al., 2021; Tian
et al., 2020) (see Section 3.4); (b) the utility of PFT dependent parameters versus alternative approaches for
grouping parameters (e.g., regionally dependent PFTs—e.g., Bao et al., 2023; Dahlin et al., 2017); (c) how
estimated parameters vary with the forcing data set used in the simulations; (d) how estimated values
depend on which parameters and/or PFTs are optimized or which terms and observations to include in the
cost function, (e) how estimated parameters vary in space and time within PFTs and what this tells us about
missing processes, among other factors; (f) what the impact of record length is on estimated parameter
values and uncertainties; (g) validation of estimated parameters over longer timescales than used in the
assimilation; and (h) the impact on the posterior parameters of spatial mismatches between the data and
model versus aggregating data to the resolution of the model. A critical test of any parameterization process
is that the newly trained model must have improved predictive skill for independent data. For example,
Famiglietti et al. (2021) demonstrated that different data combinations impact the resultant predictive skill
and that the amount of data used in model calibration must be commensurate with the complexity of the
model. Such technical tests are required each time a new process is optimized or a novel data set is used in
the assimilation. Building DA frameworks to include this technical testing will give confidence in using
estimated parameter values in operational versions of the models.

As parameter estimation methods and systems become more developed, we can run more experiments to
quantify and reduce uncertainty due to poorly constrained parameters using different driving data sets and
versions of the model that account for different representations of processes. In the wider climate science
literature, there exist promising approaches to provide objective assessments of structural and parametric
components of model error (Peatier et al., 2023). Moreover, the proposed move to more modular LSMs (Fisher
& Koven, 2020) will also allow for different processes in the model to be isolated and calibrated sequentially,
reducing the scale of parameter subspaces to be calibrated and enabling better testing of alternative hypotheses
(e.g., different stomatal optimization theories) and facilitate collaboration across different modeling groups.

5.3. Identifying and Improving Structural Errors and Model Representation

By combining novel data and implementing testing DA approaches, as described in Sections 5.1 and 5.2, we can
aspire not only to quantify and constrain parametric uncertainty and associated model predictive ability, but also
to assess how this information influences our understanding of model processes. If we cannot match observations
within the bounds of their known uncertainties by simply changing the parameter values or if “edge-hitting”
posterior parameters are identified, this suggests that a process is poorly represented or missing from the model.
This critical information is fed back to the model developers. The focus should then be on refining core processes
driving ecosystem-scale carbon and water fluxes, understanding their underlying mechanisms, and testing their
responses to global change, beyond just fitting historical data. We can also learn from the use of DA methods that
produce time-varying parameters to determine if processes may be missing (e.g., Nie et al., 2011; Verbeeck
et al., 2011; Xiong et al., 2019).

However, careful consideration is needed to avoid equating increased model complexity with progress. While
addressing structural errors is vital, adding complexity does not always improve predictive power and may hinder
validation and management. Balancing accuracy with parsimony is key. Model modifications should further be
guided by the quality and availability of observational data to ensure new processes or parameters are well-
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constrained. Without sufficient observational support, added complexity risks overparameterization and reduced
predictive value.

5.4. Moving Toward Land Surface-Atmospheric Transport and Full Earth System Model Coupling With
Uncertainty Quantification

Many studies have successfully constrained parameter uncertainty in LSMs, leading to reduced uncertainty in
contemporary land-atmosphere carbon fluxes. However, this reduction in uncertainty has not been fully propa-
gated to constrain future projections. There is a clear opportunity to take this extra step, enabling observationally
constrained probabilistic statements about the future of the land biosphere.

Atmospheric CO, mole fraction measurements from tall towers worldwide have proven valuable for improving
NEE predictions at regional to global scales within carbon cycle DA frameworks (Bacour et al., 2023; Castro-
Morales et al., 2019; Kaminski et al., 2002, 2012, 2013; Knorr & Heimann, 1995; Koffi et al., 2012; Peylin
etal., 2016; Rayner et al., 2005; Scholze et al., 2007, 2016; Schiirmann et al., 2016). While atmospheric CO, data
provide a direct constraint on net surface CO, exchange, reliable representation of terrestrial carbon sources and
sinks ideally requires accurate simulations of the gross carbon fluxes. However, while global scale estimates of
GPP are available for model evaluation or assimilation purposes (e.g., Joiner et al., 2018; Nelson et al., 2024) the
currently available RECO products are still subject to large uncertainties. For instance, empirically upscaled
RECO from eddy covariance measurements provided by FLUXCOM are inconsistent with inversion-based
products in the tropics, possibly due to low sampling density in the region (Jung et al., 2020). In situ data are
sparse and site history does not reflect larger-scale disturbance adequately. A key benefit of assimilating at-
mospheric CO, concentration data is that it provides one of the few large-scale (albeit indirect) constraints on
RECO, which is strongly influenced by soil carbon stocks. Assimilating CO, data can therefore help improve how
LSMs represent both soil carbon fluxes and stock trajectories, which is crucial for predicting the future carbon
sink capacity of terrestrial ecosystems.

However, assimilating atmospheric CO, data requires coupling LSMs with atmospheric transport models in order
to map the simulated land surface fluxes to atmospheric CO, concentrations at specified vertical levels (for station
data) or integrated over the atmospheric column (for space-borne data). The observational constraints of atmo-
spheric CO, data on LSM parameters is also more “diffuse” than when assimilating surface observations. This is
due to the inclusion of additional modeling errors associated with the atmospheric model itself (physics and
spatial/vertical discretization) and with the other CO, fluxes required as inputs (mainly ocean fluxes, fossil fuel
emissions, and biomass burning). The coupling also presents technical and computational challenges. Compared
to LSMs, the derivation of the tangent linear and adjoint models of atmospheric transport models is more
straightforward (Kaminski et al., 1999; Meirink et al., 2008; Rodenbeck et al., 2003), but their implementation
increases the computational load. One approach to overcome this issue is to use pre-calculated transport fields of
the sensitivity of mean atmospheric concentrations at selected stations to the surface net CO, flux (see Peylin
et al. (2016); or Bacour et al. (2023) for further details). However, this method has limited spatial and temporal
coverage due to the finite time period of the precalculated sensitivities (estimating these sensitivities is also
technically and computationally expensive). Assimilation of space-borne retrievals of XCO, (column-averaged
carbon dioxide) with global coverage and pre-computed transport in SDBM and BETHY was demonstrated by
Kaminski et al. (2010, 2017). Recent advances in the use of graphics accelerators (Chevallier et al., 2023) offer
hope for significantly reducing computational times and enabling full coupling between LSMs and atmospheric
transport models in the near future.

While coupling to an atmospheric transport model at least permits the use of atmospheric CO, data in parameter
DA experiments, the ultimate goal for LSM parameter calibration is within a fully coupled ESM. This would
allow representation of carbon-climate and land-atmosphere feedbacks within the optimizations. However, the
difficulty of spinning up slow carbon pool processes and ocean circulation in ESMs remains a challenge for
probabilistic coupled projections with ESMs (without flux corrections, Irvine et al., 2013). Additionally, to date,
there has been limited assessment of whether posterior parameter values from offline DA experiments compare to
estimated values from fully coupled runs (nor how estimated values vary when different offline climate reanalysis
forcing products are used). As fully coupled simulations introduce systematic errors in atmospheric transport and
land-atmosphere coupling, the likelihood of estimating similar parameter values is low, with significant potential
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for compensating errors. To achieve this goal, LSM DA groups should learn from advances made in the numerical
weather forecasting community (de Rosnay et al., 2022). As discussed at length in this review, while compu-
tational cost has so far been a prohibiting factor in achieving full ESM coupling, new ML techniques for model
emulation (Section 4.1) (Watson-Parris et al., 2021) and automatic differentiation of model code (Gelbrecht
et al., 2023; Griewank, 1989) should help considerably in alleviating this problem (see Section 3.7 for remaining
challenges).

With increased computational power, we are acquiring the capability to run LSMs as ensembles rather than
relying on a single realization, thereby enabling us to better capture the uncertainty of model predictions
(Arora et al., 2023). Such efforts are already commonplace in ensembles of reduced complexity models
(Sanderson, 2020; Smith et al., 2024), where large ensembles of future projections are computationally efficient
due to the simplified model structures and reduced computational demands.

By sampling from the posterior distributions after a PDA experiment, we can generate ensemble simulations
which can be used to explore future scenarios and idealized experiments (e.g., 1%/yr CO, concentration in-
crease) and quantify constrained distributions of carbon-climate-CO, feedbacks. For example, by weighting the
probability of each of the ensemble members, we can create probability density functions of future land carbon
storage for different locations, thus narrowing the associated uncertainty of the future land sink and subsequently
leading to more accurate calculations of carbon budget estimates. Although this can easily be done for simpler
models where MCMC can be applied, for computational demanding models, there are two critical yet distinct
questions in this area that need addressing. The first is how to generate joint posterior distributions for large
models. This is demonstrated in Section 2 for ORCHIDEE and BETHY and may alternatively be addressed
through emulators (Section 4.1). The second is how to intelligently select parameter vectors from those dis-
tributions. Currently, simple models might propagate uncertainty by using 100-1,000 ensemble members, but
protocols like that used in the Coupled Model Intercomparison Project (CMIP) are not yet adopting such large
ensembles, again due to computational expense and constraints on data storage. As a climate community, we
should be striving to move toward using data-constrained ensemble simulations in CMIP or the TRENDY model
intercomparison project (Sitch et al., 2024) to quantify uncertainties in model predictions reported in the
Intergovernmental Panel on Climate Change eighth Assessment Report, the annual Global Carbon Budget and
other emerging frameworks quantifying land carbon trajectories. Therefore, we must develop methods to
maximize the propagation and partitioning of uncertainty with a limited number of ensemble runs. Constraining
parameter uncertainty via improved DA and ML techniques should also help to reduce or exploit inter-model
spread in CMIP and TRENDY, as model differences are likely partly attributable to variations in parameter
values between models.

Other international frameworks that oversee policies and socioeconomic management of terrestrial carbon stocks
—such as the voluntary carbon market and national emissions reporting for Nationally Determined Contributions
under the Paris Agreement—already require estimates of model uncertainty; however, so far the models used in
voluntary carbon market offset project verification tend to be of simple to intermediate complexity, and not full
complexity LSMs. Better estimating uncertainty in LSMs via methods such as parameter DA should therefore
facilitate their use in a wider range of policy and carbon management initiatives.

5.5. International Collaboration: Intercomparison Studies and Shared Toolboxes

Efforts by the Analysis, Integration and Modeling of the Earth System (AIMES) Land DA Working Group
and the ILMF to build a Land DA Community have significantly advanced knowledge sharing through
online workshops and town halls, highlighting the importance of continued collaboration. The goal is to
facilitate cross-group interaction for DA methods training, knowledge exchange on technical DA de-
velopments and calibrated model intercomparison projects. The learning curve associated with learning DA
for land surface modeling is steep. This is exacerbated by the lack of community-wide educational materials
(although some resources exist, see https://land-da-community.github.io/training/ for a selective list, last
accessed 27 August 2024). Understanding of DA methods is also hampered by the fact that technical studies
testing different DA configurations are generally buried in supplementary materials or not published at all.
Parameter DA system intercomparison studies would help to determine how much parameter uncertainty is
contributing to the spread in model projections. This would signal to the wider LSM community that

RAOULT ET AL.

28 of 42

85U807 SUOWWOD 3AIIERID 3ol dde U Aq peuienob ake ssjoile YO ‘8sN JO S|NJ 10} Ariq 17 8UIUO A1 UO (SUORIPUOD-PUR-SLLBILI0D™A8 | IM"ATe1q]1[BU U0//:SdNL) SUORIPUOD PUe Swie | 8U188s *[520z/0T/62] U0 Ateiqiaulluo AB]1M ‘80us|[pox3 8120 PUe Ui eaH 10} aimisu euoteN ‘3OIN AQ £6/00S K202/620T OT/I0pAuoo™As|mArelq1jput|uo sqndnBe//sdny woiy pepeojumoq ‘TT ‘G202 ‘99vZZr6T


https://land-da-community.github.io/training/

NI

ADVANCING EARTH
AND SPACE SCIENCES

Journal of Advances in Modeling Earth Systems 10.1029/2024MS004733

parameter uncertainty quantification and reduction are needed to improve future projections of carbon-
climate feedbacks and land-atmosphere interactions. One desirable outcome may be to create and share
statistical toolboxes utilizing community cyberinfrastructure, for example, following the pioneering example
of PEcAn (Predictive Ecosystem Analyzer; Fer, Gardella, et al., 2021; LeBauer et al., 2013), which offers a
complete end-to-end informatic structure, as well as open-source LSM benchmarking tools (iLAMB: Collier
et al., 2018; Seiler et al., 2022). Another key asset is the TCCAS, built around D&B (Knorr et al., 2025) and
funded by ESA. It provides observation operators for diverse EO data streams, along with tangent and
adjoint code for the core model and operators. Its modular design enables easy transfer of observation
operators to other community models, enhancing interoperability and knowledge sharing. While LSMs with
established DA systems may not switch to a community toolbox, such shared toolboxes will facilitate
knowledge sharing, intercomparison studies and training of early career researchers. Simultaneously, if LSMs
with established DA systems made more of their tools available within established community toolboxes, it
would help reduce redundant research efforts and make the adoption of such tools easier. This is one of the
big lessons we can learn as a community from the recent boom in ML. In addition to the improved hardware
(e.g., GPUs), new algorithms and huge data sets, one of the reasons ML has been so successful is because
the research has been done with a collaborative spirit and developed using open-source frameworks (e.g.,
TensorFlow, PyTorch, JAX).

6. Summary and Conclusion

Improving the accuracy of LSMs is of vital importance since land surface feedbacks on climate change represent
one of the largest sources of uncertainty in climate change projections. Parameter DA is critical for enhancing the
performance and reliability of these LSMs. This process involves determining the best estimates of model pa-
rameters, and their uncertainties, that best align the model outputs with observed data. Effective parameter
estimation helps in capturing the complex dynamics of land-atmosphere interactions and improves the model's
ability to simulate real-world phenomena. However, LSMs used to predict future climate scenarios (e.g., when
coupled to ESMs) are complex in nature leading to many challenges when performing global scale optimizations.
Nevertheless, advances in computational capability, novel data sets and emerging technologies offer promising
avenues for improving parameter accuracy and model calibration.

Machine learning (ML) clearly has a pivotal part to play in the future of LSM DA, helping to streamline the
assimilation process, manage large data sets and speed up otherwise computationally demanding processes.
International collaboration is crucial in this endeavor, as shared knowledge and resources can significantly
accelerate the advancement of LSM calibration and DA. Efforts to build a Land DA Community, such as those by
the AIMES Land DA Working Group and the International Land Model Forum, have already made substantial
progress in facilitating cross-group interactions. These collaborative platforms are essential for training,
knowledge exchange, and the development of standardized methodologies, ultimately leading to more accurate
LSMs.

Appendix A

The process-based models mentioned throughout the paper are listed in Table Al. This list covers a wide
spectrum of land models ranging in complexity and computational demand, including land surface model (LSMs)
that simulate interactions between carbon, water, and energy cycles, often incorporating other biogeochemical
cycles (e.g., nitrogen cycling) and dynamic vegetation processes; stand-alone DGVMs that have more complex
representation of vegetation demography (so-called vegetation demographic models, VDMs) but may not fully
represent energy and hydrology components; and ecosystem models that primarily represent carbon cycling and
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Table A1

References for the Process-Based Models Mentioned in This Article

Acronym Full name Model reference
BETHY Biosphere Energy Transfer Hydrology Knorr (2000)
BEPS Biosphere Exchange Process Simulator B. Chen et al. (2007), J. M. Chen et al. (2012)
CABLE Community Atmosphere Biosphere Land Exchange Kowalczyk et al. (2006)
CARDAMOM CARbon DAta MOdel fraMework Bloom et al. (2016), Smallman et al. (2021)
CLASSIC Canadian Land Surface Scheme Including Biogeochemical Cycles Melton et al. (2020)
CLM Community Land Model D. M. Lawrence et al. (2019)
D&B DALEC and BETHY Knorr et al. (2025)
DALEC Data Assimilation Linked Ecosystem Carbon Williams et al. (2005)
ED Ecosystem Demography Ma et al. (2022), Moorcroft et al. (2001)
ECLand European Center for Medium-range Weather Forecasts Land model (based on CHTESSEL: Boussetta et al. (2021)
Carbon-Hydrology Tiled Scheme for Surface Exchanges over Land)
FATES Functionally Assembled Terrestrial Ecosystem Simulator Fisher et al. (2015), Koven et al. (2020)
FoBAAR Forest Biomass, Assimilation, Allocation and Respiration Keenan et al. (2012)
JULES Joint UK Land Environment Simulator Best et al. (2011), Clark et al. (2011)
JSBACH Jena Scheme for Biosphere-Atmosphere Coupling in Hamburg Mauritsen et al. (2019), Reick et al. (2021)
LPJ-GUESS Lund-Potsdam-Jena General Ecosystem Simulator Smith (2007)
Noah - Ek et al. (2003)
ORCHIDEE Organizing Carbon and Hydrology In Dynamic Ecosystems Krinner et al. (2005), Vuichard et al. (2019),
Zaehle, Friend, et al. (2010)
SDBM Simple Diagnostic Biosphere Model Knorr and Heimann (1995)
SiB Simple Biosphere Model Sellers et al. (1996)
SIPNET Simplified Photosynthesis and Evapotranspiration Braswell et al. (2005)
TECOS Terrestrial ecosystem Xu et al. (2006)
simple representations of vegetation and hydrology processes but may lack the full mechanistic representation of
energy and hydrological processes or vegetation dynamics seen in LSMs and VDMs.
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