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Abstract
Popular (ensemble) Kalman filter data assimilation (DA) approaches assume
that the errors in both the a priori estimate of the state and the observations
are Gaussian. For constrained variables, for example, sea-ice concentration or
stress, such an assumption does not hold. The variational autoencoder (VAE) is
a machine-learning (ML) technique that allows us to map an arbitrary distribu-
tion to/from a latent space in which the distribution is supposedly closer to a
Gaussian. We propose a novel hybrid DA–ML approach in which VAEs are incor-
porated in the DA procedure. Specifically, we introduce a variant of the popular
ensemble transform Kalman filter (ETKF) in which the analysis is applied in the
latent space of a single VAE or a pair of VAEs. In twin experiments with a simple
circular model, whereby the circle represents an underlying submanifold to be
respected, we find that the use of a VAE ensures that a posteriori ensemble mem-
bers lie close to the manifold containing the truth. Furthermore, online updating
of the VAE is necessary and achievable when this manifold varies in time, that
is, when it is non-stationary. We demonstrate that introducing an additional sec-
ond latent space for the observational innovations improves robustness against
detrimental effects of non-Gaussianity and bias in the observational errors but
lessens the performance slightly if observational errors are strictly Gaussian.

K E Y W O R D S

data assimilation, ensemble Kalman filter, machine learning, non-Gaussianity, variational
autoencoder

1 INTRODUCTION

Data assimilation (DA) aims to provide a more precise
estimate of the true state of a system by combining a
prior guess in the form of a probability distribution with
observations (Carrassi et al., 2018). Data assimilation is
widely used in operational atmosphere, ocean, and sea-ice

forecasting (Buehner et al., 2025; De Rosnay et al., 2022;
Inverarity et al., 2023; Qin et al., 2023; Waters et al., 2015)
and will also be used by the neXtSIMDG sea-ice model
(Jendersie et al., 2024; Richter et al., 2023), which is cur-
rently being developed as part of the Scale-Aware Sea Ice
Project (SASIP).1 In previous studies, we have explored
the possibilities of tailoring DA to the discontinuous
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Galerkin numerical core used by neXtSIMDG (Pasmans
et al., 2024) and inferring sea-ice parameters using an
ensemble Kalman filter (EnKF: Chen et al., 2024). Though
intentionally fully conceptual in its nature, this work
is also motivated by the challenges posed to DA by
the complex physics of sea ice, in particular the pres-
ence of nonlinear relations and constraints in sea-ice
dynamics. These issues are, however, not exclusive to
sea-ice modelling, but instead pervasive in many other
branches of climate and weather prediction at large; see,
for example, the modelling of humidity in atmospheric
models.

The EnKF (Evensen, 1994) is one of the most popular
DA methodologies. In the EnKF, the probability distri-
bution for the true state is assumed to be a Gaussian
with mean and covariance estimated from an ensemble
of model runs. During the update step, a correction is
added to the ensemble members by taking into account
the information from the observations. Following this, the
ensemble members are propagated to the next time step
with a dynamical model. In real scenarios, the use of the
EnKF can be challenging. The computational demands of
geophysical models can easily make running large ensem-
bles prohibitive. The use of smaller, computationally more
affordable, ensembles introduces sampling errors that
need to be mitigated. Remediation of the effect of these
errors requires the application of additional techniques
such as ensemble inflation (Ehrendorfer, 2007; Whitaker
& Hamill, 2012) and localisation (Ehrendorfer, 2007;
Morzfeld & Hodyss, 2022). The EnKF assumes that the
errors in the prior estimate, background errors, and obser-
vations are unbiased and Gaussian. Such assumptions
generally do not hold. Finally, EnKF is derived by linear
estimation theory, that is, apart from (structured) noise
there is a linear relationship between observed differences
between observations and model predictions (a.k.a. the
innovation) on one hand and the DA correction on the
other hand. This implies that there is an affine space, con-
sisting of elements that can be decomposed as the initial
guess plus a possible DA correction, in which all elements
are model solutions as well. Although such spaces of pos-
sible solutions exist for linear models, their existence is
not guaranteed for nonlinear models. This implies that,
for nonlinear models, the DA process might produce phys-
ically non-realisable states. These assumptions are espe-
cially problematic when using sea-ice models with a brittle
rheology (Dansereau et al., 2016; Ólason et al., 2022), such
as neXtSIMDG. These models contain strong nonlinear
relationships between sea-ice damage and sea-ice vis-
cosity and elasticity. Furthermore, errors and physically
realisable sea-ice states are constrained by several bounds.
While some of these are simple—for example, sea-ice
concentration must lie between 0 and 1—other bounds

imposed on sea-ice stresses by the Mohr–Coulomb relation
are a nonlinear function of the sea-ice state themselves.

1.1 DA in latent space

Over the last years, there has been a proliferation of works
fusing DA with machine learning (ML). Some exemplary
studies use corrections produced by DA to train neural net-
works to produce either model dynamics and/or model
error corrections (Arcucci et al., 2021; Bocquet et al., 2020a,
2020b; Brajard et al., 2020, 2021; Farchi et al., 2021, 2023),
or replace the code that produces the DA correction with
neural networks (Bocquet et al., 2024; Boudier et al., 2023;
Chinellato & Marcuzzi, 2024; McCabe & Brown, 2021).
In other cases, ML is blended with DA in an attempt to
address some of the aforementioned challenges of DA: the
computational cost, the need for inflation and localisa-
tion, physical imbalances, and the violation of Gaussian
or quasi-linear assumptions. In the following, we pro-
vide a very short and inevitably non-exhaustive overview
of these attempts; they are reported schematically in
Table 1. Our scope is to provide essential elements of
the context within which our current study is rooted.
Hence we focus primarily on studies in which the
issues are addressed with the aid of a second, often
lower-dimensional, space, called the latent space. The
reader may find more extensive reviews in Buizza
et al. (2022), Cheng et al. (2023), Bach et al. (2024), and
Shlezinger et al. (2024).

One aim of the ML-for-DA schemes is to reduce
the computational burden of DA. For instance, Maulik
et al. (2022) reduce the computational cost of the forecast
model by (1) reducing the dimensionality of the model
states with the aid of a principal orthogonal decomposi-
tion (POD) and (2) training a recurrent neural network
(RNN) to predict those coefficients. These coefficients
are then corrected by four-dimensional variational data
assimilation (Carrassi et al., 2018), a variational DA
method, exploiting automatic differentiation of the RNN.
A similar concept is followed by Amendola et al. (2021),
Peyron et al. (2021), and Akbari et al. (2023), but they
replace the POD with either convolutional neural net-
works (CNN) or an autoencoder that maps the states
to/from a low-dimensional latent space where the DA
correction takes place. They propagate an ensemble of
model trajectories in this latent space and apply an EnKF
to it. However, this approach introduces another source
of nonlinearity, since the observation operator becomes
the composition of the operator on the original state space
with the generally nonlinear decoder. To avoid or miti-
gate this problem, Cheng et al. (2022) introduce a second
autoencoder for observations, while Pawar and San (2022)
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PASMANS et al. 3 of 27

T A B L E 1 Summary of various ML–DA studies leveraging on the small-dimension latent space. We list the ML algorithms used, the way
states are propagated forward in time, the DA method used, the space to which it is applied, and additional information on how the
observation operator that acts on a physical state (default operator) is modified to act on the latent space. Here VAE refers to the variational
autoencoder, EnKF to the ensemble Kalman filter, and ETKF to the ensemble transform Kalman filter.

Study ML methods Forward propagation DA method Observation operator

Canchumuni et al. (2019) VAE identity latent ensemble
smoother

default

Mack et al. (2020) autoencoder physical model latent 3DVar Penrose inverse, decoder,
identity on the latent space

Amendola et al. (2021) CNN, LSTM latent model latent EnKF embedding

Grooms (2021) VAE none physical EnOI default

Peyron et al. (2021) autoencoder, residual
network

latent ensemble latent ETKF decoder, default

Bao et al. (2022) VAE identity latent EnKF decoder, default

Cheng et al. (2022) autoencoder, LSTM latent model latent 3DVAR identity in latent space

Maulik et al. (2022) LSTM, POD principal component
model

4DVAR Penrose inverse—default

Pawar and San (2022) LSTM principal component
model

DEnKF Penrose inverse—identity
latent space

Rozet and
Louppe (2023)

diffusion model physical model deep Kalman filter default

Finn et al. (2024a) diffusion model physical model ETKF default

Huang et al. (2024) diffusion model physical model latent state nudging embedding

Luk et al. (2024) linear transformation physical model physical default

Melinc and
Zaplotnik (2024)

VAE physical model latent 3DVAR decoder mean—default

Qu et al. (2024) diffusion model physical score-function
nudging

default

Si and Chen et al. (2024) VAE, diffusion model physical model score-function
nudging

identity on latent space

replace the autoencoder with a linear projection on the
principal components.

Machine-learning schemes capable of generating large
ensembles cheaply have also been proposed to elimi-
nate the need for inflation and localisation. One such
scheme is the variational autoencoder (VAE: Kingma &
Welling, 2019). Like the autoencoder, the VAE consists of
an encoder–decoder pair, but now these functions output
probability distributions instead of a single state. Exam-
ples of this approach can be found in Grooms (2021), in
which ensemble members are drawn from probability dis-
tributions produced by applying the encoder–decoder to
the a priori state. A similar approach, but with a denois-
ing diffusion model instead of a VAE, can be found in
Finn et al. (2024a). In contrast to Grooms (2021), Melinc
and Zaplotnik (2024) applied DA in the latent space of
a VAE. The posterior distribution in latent space is then

mapped by the decoder back to the physical space. As the
decoder has been trained to reproduce the climatological
distribution of atmospheric states, the mapped physical
states are expected to respect physical relations in the
atmosphere. As the probability distribution depends on
the a priori state, the generated ensemble will vary in time.
However, the spread of the ensemble in latent space has to
be specified by the data assimilator and hence the uncer-
tainty in the prior and posterior states might not converge
to its true value over time.

The presence of non-Gaussian errors in DA has
traditionally been addressed by transforming realisa-
tions of the non-Gaussian distribution to realisations
of a Gaussian distribution using anamorphosis, after
which a conventional DA method can be applied. One
common application of Gaussian anamorphosis is the
transformation of strictly positive variables, such as
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4 of 27 PASMANS et al.

sea-ice concentration, from a log-normal to a normal
or Gaussian distribution (Bocquet et al., 2010; Fletcher
& Zupanski, 2006; Polavarapu et al., 2005; Simon &
Bertino, 2012; Song et al., 2012). Gaussian distributions
can also be constructed from arbitrary distributions using
quantile matching (Béal et al., 2010; Bertino et al., 2003;
Grooms, 2022; Kotsuki et al., 2017; Metref et al., 2014;
Simon & Bertino, 2012). However, the method is not
applicable practically in all circumstances. The flexible
quantile-matching method requires the availability of
histograms of the background errors to infer the random
variable distribution. Construction of such histograms
necessitates the ergodic error assumption or large ensem-
bles, in the case of, for example, the rank regression
Kalman filter (Anderson, 2010, 2019). The former limits
the amount of spatial variability of the distribution that
can be captured by the transformation, and the latter
is computationally costly. In high-dimensional applica-
tions, quantile matching is only practical for univariate
variables. A ML alternative to quantile matching is pro-
vided by normalizing flows (Tabak & Turner, 2013). In
these flows, the relation between the arbitrary probabil-
ity distribution and the standard normal is constructed
by neural networks performing a sequence of coordi-
nate transformations. However, this approach could
face its own challenges in high-dimensional appli-
cations, due to the need for multiple-determinant
computations.

An alternative way to deal with non-Gaussianity is by
applying DA in the latent space of a diffusion model. This
is an approach followed by Amendola et al. (2021), Rozet
and Louppe (2023), Huang et al. (2024), Qu et al. (2024),
and Cheng et al. (2024). These models can deal with arbi-
trary background and observation-error distributions, but
conditioning the model output generated on the obser-
vations is, however, non-trivial. Furthermore, the reverse
denoising algorithm used to generate the corrected states
can suffer from numerical instabilities (Qu et al., 2024).
Consequently, DA with diffusion models will not be
pursued in this work.

1.2 The double ETKF–VAE

In this work, we propose applying the ensemble trans-
form Kalman filter (ETKF), a flavour of DA, in the latent
space of a VAE. One of the reasons for doing so is that we
want to address the concern around non-Gaussianity men-
tioned before. The variational autoencoder is trained to
relate an arbitrary distribution to a standard normal distri-
bution. Although the relationship is not perfect, we expect
that the distribution of the ensemble members in latent

space ends up closer to normal than the one in physical
space. Hence, when the ETKF is applied in latent space,
the Gaussian assumptions under which the ETKF solution
is optimal are closer to being satisfied. Consequently, we
hypothesise that this ETKF–VAE setup will outperform a
conventional ETKF.

As shown in the last column of Table 1, the definition
of the observation operator and observational error
covariance is non-trivial in DA when using a latent space.
In this work, we will also present our solution to this
problem: a second VAE. The objective of this second VAE
is twofold. First, it should bring the distribution of the
ensemble members projected into the space of observa-
tions to be more Gaussian. Second, it should remove any
non-Gaussianity in the observational errors. As such,
we expect that, certainly when the observational errors
are non-Gaussian, the double ETKF–VAE would outper-
form the setup in which the VAE is applied solely to the
ensemble members.

Finally, we expect that, by mapping the corrected
ensemble members from latent space back to physical
space using the VAE, the post-DA ensemble members will
remain physically consistent. In this aspect, we are build-
ing on the work by Canchumuni et al. (2019) and Bao
et al. (2022), who also apply DA in the latent space of a
VAE. However, we expand on their work in two direc-
tions: first, by adding the aforementioned second VAE,
and, second, by using a cycling setup, propagating the DA
correction forward in time, while Canchumuni et al. (2019)
and Bao et al. (2022) try to find a correction for a single
time only. To the best of our knowledge, this will be the
first time the VAE–ETKF hybrid is used to correct a state
that evolves over time.

The outline of the article is as follows. In Section 2,
the mathematics behind the VAE is explained, our novel
double VAE–DA method is introduced, and the neces-
sary modifications to the classical EnKF algorithm are
discussed. Section 3 contains the description of the ideal
test-ground model and VAE architecture used in the
experiments. The experiments themselves and their out-
comes can be found in Section 4, while the discussion
of the results, together with the conclusions drawn, is in
Section 5.

2 ENSEMBLE KALMAN
FILTER-VARIATIONAL
AUTOENCODER HYBRIDS

The hybrid DA–ML scheme introduced in this study is
based on the cornerstone idea of applying a modified
ensemble transform Kalman filter (ETKF) in the latent
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PASMANS et al. 5 of 27

space. In this section, we will first introduce the VAE in a
general setting and then explain how it can be combined
with the ETKF.

2.1 Variational autoencoder

The VAE is a type of generative ML technique consisting
of an encoder and a decoder. Let {x1, … , xM} ⊂  ⊆ RN

be a set of realisations from an unknown probability dis-
tribution. In this section, no assumptions are imposed on
the probability distribution, but from Section 2.3 onward it
is assumed that the realisations will be either members of
the forecast ensemble or members of the ensemble of inno-
vations at the time at which a DA correction is calculated.
The probability density function (PDF) for this distribu-
tion can be expressed by explanatory latent variables z ∈
RN with

p (x) = ∫ p(x|z)p(z) dz.

Here, p(z)
def
=  (z; 0, I) is the PDF of the standard nor-

mal distribution, with 0 and I being the zero vector
and the identity matrix in RN respectively. The decoder,
p𝜃(x|z), provides the PDF of the transformation from
a given latent state z to a state x in  . Similarly, the
encoder, q𝜙(z|x), provides a PDF for the transformation
of a state x to a latent state z. The VAE aims to find
parameters such that the parameterised PDF p𝜃(x) approx-
imates the PDF p as well as possible by minimising
the Kullback–Leibner (KL) divergence KL

[
p (x)||p𝜃(x)]

(Kingma & Welling, 2019; Rezende et al., 2014). The
KL divergence is a positive measure that obtains its
minimum of 0 if and only if p = p𝜃 nearly every-
where. Expanding KL divergence and introducing the
decoder gives

KL
[
p (x)||p𝜃(x)]

def
= ∫ p (x) ln

p (x)
p𝜃(x)

dx = ∫ p (x) ln p (x) dx

+ ∫ p (x)q𝜙(z|x) ln
q𝜙(z|x)p𝜃(z|x)

p𝜃(x)q𝜙(z|x)p𝜃(z|x) dz dx,

(1a)

= ∫ p (x) ln p (x) dx

− ∫ p (x)KL[q𝜙(z|x)||p𝜃(z|x)] dx

− ∫ p (x)(𝜙, 𝜃, x) dx, (1b)

with the encoder q𝜙(z|x) defined as a parameterised
PDF, and

(𝜙, 𝜃, x) def
= ∫ q𝜙(z|x) ln

p𝜃(x, z)
q𝜙(z|x) dz

= ∫ q𝜙(z|x) ln p𝜃(x|z) dz

− ∫ q𝜙(z|x) ln
q𝜙(z|x)

p𝜃(z)
dz (1c)

being the evidence lower bound (ELBO). In the second line
of Equation (1a), we made use of the relation

ln 1
p𝜃(x)

= ln 1
p𝜃(x) ∫ q𝜙(z|x) dz

=∫ q𝜙(z|x) ln 1
p𝜃(x)

dz. (2)

The weights of the VAE 𝜙 and 𝜃 are found by max-
imising the expectation value of the ELBO (last term
in Equation 1b). Loosely stated, the maximisation of
the expectation value of the ELBO will result in a
decoder that approximately minimises the left-hand side of
Equation (1b) while simultaneously producing an encoder
p𝜙(z|x) that is an approximate “inverse” of the decoder
p𝜃(x|z). Alternatively, one can view maximisation of the
ELBO as maximisation of the reconstruction probabil-
ity, p𝜃(x|z), in the first term on the right-hand side of
Equation (1c), regularised by the need for the learned
encoder, q𝜙(z|x), to stay close to the standard normal,
p𝜃(z).

As is conventional, the encoder and decoder distribu-
tions are assumed to be Gaussian with diagonal covari-
ances. That is to say, p𝜙(z|x) =  (z;𝜇𝜙(x),Σ𝜙(x)) and
p𝜃(x|z) =  (x;𝜇𝜃(z),Σ𝜃(z)), in which 𝜇𝜙, 𝜇𝜃 , lnΣ𝜙, and
lnΣ𝜃 are provided as outputs from neural networks. The
exact architectures of these networks as used in this study
are given in Section 4. When the expectation value of the
ELBO (i.e., the last term in Equation 1b) is replaced by
its single-sample Monte-Carlo approximation, it can be
written as

z𝜙 ∼  (𝜇𝜙(x),Σ𝜙(x)), (3a)

lnΣ′
𝜃

def
= (1 − 𝛾) lnΣ𝜃(z𝜙) + 𝛾 lnΣdef, (3b)

2∫ p (x)q𝜙(z|x) ln p𝜃(x|z) dz dx

≈ − ln det(Σ′
𝜃
) − ||Σ′−1∕2

𝜃
(x − 𝜇𝜃(z𝜙))||2

− || lnΣ′
𝜃
− lnΣ𝜃(z𝜙)||2, (3c)

2∫ p (x)q𝜙(z|x) ln
q𝜙(z|x)

p𝜃(z)
dz dx

≈ ||𝜇𝜙(x)||2 + tr(Σ𝜙(x)) − ln det(Σ𝜙(x)) − N, (3d)

with the evaluation of the z-integral in Equation (3d) taken
from Zhang et al. (2023), Equation (3a) indicating that z𝜙
is drawn from a Gaussian distribution with mean 𝜇𝜙(x)
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6 of 27 PASMANS et al.

and covariance Σ𝜙(x), 𝛾 an epoch-dependent regularisa-
tion factor that goes to zero as the number of epochs goes to
infinity, andΣdef a reference covariance to be specified. The
𝛾 regularization is there to avoid well-documented conver-
gence issues with the ELBO (Dai & Wipf, 2019; Rezende &
Viola, 2018), without having to resort to fixing the decoder
variance Σ𝜃 .

2.2 Ensemble transform Kalman filter
revisited

The Kalman filter (KF) is the analytic complete solu-
tion of the sequential Bayesian filter problem, under the
assumption of Gaussian errors and linear dynamical and
observation models. The KF estimates the unknown Gaus-
sian PDF of the true state of the system of interest xtruth ∼
 (𝜇X,PX), with 𝜇X and PX being a function of both time
and assimilated noisy observations yt ∼  (H(xtruth

t ),R),
with H = H the linear observation operator. The posterior
mean (𝜇a

X) and covariance (Pa
X) are given by (section 6.1 of

Evensen et al., 2022)

𝜇a
X = 𝜇f

X + Pf
XHT(HPf

XHT + R)−1(y − H𝜇f
X), (4a)

Pa
X = Pf

X − Pf
XHT(HPf

XHT + R)−1HPf
X. (4b)

Here, ⋅f denotes the a priori, that is, the state just before
the DA is applied, while ⋅a refers to the state directly after
application of the DA, that is, the posterior state. The EnKF
relaxes the requirement that the dynamical model and
observation operator have to be linear and estimates the
mean 𝜇X and covariance PX from an ensemble of (possibly
nonlinear) member runs that are collected as columns in
a matrix X, that is,

𝜇X = 1
M

X1M, PX = 1
M − 1

X̃X̃T
, and Y = HX.

Here, ∼
⋅ indicates that the ensemble mean has been

removed from each column to form the anomaly matrices,
that is,

X̃ = X
(

I − 1
M

1M1T
M

)
,

and 1M ∈ RM is a vector having ones as its elements.
With these ensemble approximations, the equalities in
Equation (4) can be satisfied, provided that

Xa = Xf + X̃fYTUS−1UT
(

y − 1
M

HXf1M

)
1T

M

+ X̃fYTU(I − S−1)1∕2, (5a)
1

M − 1
ỸỸT + R

SVD
= USUT, (5b)

Xa = 1
M

Xf1M1T
M + X̃fỸTC−1

(
y − 1

M
HXf1M

)
1T

M

+ X̃fUS1∕2UT, (6a)

C
def
= 1

M − 1
ỸTỸ + R, (6b)

USUT def
= IM − ỸTC−1Ỹ, (6c)

with USUT in Equation (6c) defining a singular-value
decomposition (SVD). These filters, in which ensem-
ble members undergo a deterministic transformation
such that the first two statistical moments satisfy the
ensemble approximation of the relations in Equation (4),
are known as square-root filters. These filters produce
more accurate analysis covariances as, in contrast to
stochastically EnKF schemes, they do not use sampled
observational errors to account for uncertainty in the
observations (Evensen, 2004; Tippett et al., 2003). Several
square-root schemes have been conceived for DA; see
Tippett et al. (2003) for an overview. The ETKF (Bishop
et al., 2001) and its localised equivalent the local ensem-
ble transform Kalman filter (LETKF: Hunt et al., 2007)
have emerged as the most popular variants, due to the
ability to assimilate all observations simultaneously,
computational efficiency, as they require the eigensys-
tem decomposition of only a M × M matrix, and ease
of parallelisation. Consequently, they have been widely
adapted by several numerical weather prediction agen-
cies (Buehner et al., 2025; Jun et al., 2024; Matsugishi
et al., 2025; Vobig et al., 2021). For these reasons we
will use a variation on the ETKF in this work, which
uses the same eigenvectors as ETKF but still calculates
C−1 separately.

In anticipation of the work in Section 2.3, we modify
the ETKF in Equation (6) slightly using

HPf
XHT + R ≈ 1

K − 1
D̃KD̃T

K

from Desroziers and Ivanov (2001), with DK ∈ R
Ny×K a

matrix having perturbed innovations as ensemble mem-
bers, that is, the kth column of DK is given by y + 𝜖y

mk
−

Hxmk , with K ≫ M, N the number of observations, 𝜖y
mk

a
realisation of the observational error distribution, and each
mk chosen randomly from {1, 2, … ,M}. Simultaneously,
we rewrite

HPf
X = 1

M − 1
YX̃f = −D̃MX̃ f

,

with DM = y1T
M − HXf ∈ RN×M, the matrix having

the innovation of each ensemble member as columns.
After making these substitutions, Equation (6) can
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PASMANS et al. 7 of 27

be rewritten as

Xa = Xf − 1
M

X̃fD̃T
MUS−1UTDM1M1T

M

− X̃fD̃T
MU(I − S−1)1∕2, (7a)

1
K − 1

D̃KD̃T
K

SVD
= USUT. (7b)

2.3 Single and double VAE–DA

In this section, the DA configurations that are going to
be used in the experiments of Section 4 are formulated.
In particular, we describe how the matrices Xf, Xa, DK ,
and DM, as well as the anomaly matrices (X̃f

, X̃f
, … ) intro-

duced in Section 2.2, are replaced with equivalents lying
in the latent space of one (single ETKF–VAE configura-
tion) or two VAEs (double ETKF–VAE configuration). The
description of the architecture and training procedures
for these VAEs is postponed to Section 3.2. The main
work hypothesis at the basis of the proposed approaches
is that in the latent space the ensembles, that is, the col-
umn vectors in Xf, Xa, DK , and DM, respectively, are more
Gaussian-distributed in the latent space than in the state
space.

2.3.1 Single ETKF–VAE

In the single ETKF–VAE, Xf and Xa in Equation (7a), which
represent a model state directly before and directly after

the application of DA, are replaced by their latent-space
counterparts, Zf ∈ R

N1×M and Za ∈ R
N1×M, respectively,

representing states in the latent space of the VAE just
before and just after the application of the DA. With
the necessary alterations, the same is happening with X̃f

and X̃a. Their vector columns, the ensemble members
in the latent space, zf

m and za
m, are related to the origi-

nal ensemble members in the physical space, the column
vectors xf

m and xa
m, via a VAE trained on model states

(see Section 3 for details). Their statistical relations are
zf

m ∼  (𝜇𝜙I (x
f
m),Σ𝜙I (x

f
m)) and xa

m ∼  (𝜇𝜃I (z
a
m),Σ𝜃I (z

a
m)).

Next to this, the linear observation operator H appear-
ing in Section 2.2 is replaced with a potentially non-
linear operator H. In the single ETKF–VAE, DK and
DM remain as defined in Section 2.2. In particular, any
non-Gaussianity present in DK and DM stemming from
the ensemble contained in Xf via H, the nonlinearity
of H, or the non-Gaussianity of the observational errors
remains unaddressed. This single ETKF–VAE is illus-
trated in the first row of Figure 1 and in Algorithm 2
in Appendix A.

2.3.2 Double ETKF–VAE

In the double ETKF–VAE, a second VAE is trained on
samples of the form H(xf

mi
) + 𝜖y

mi
− H(xf

m𝑗
), with mi, m𝑗

chosen randomly from {1, 2, … ,M} and 𝜖y
(i) a realisation

of the observational error probability distribution under

F I G U R E 1 Schematic overview of (top) single ETKF–VAE and (top+bottom) double ETKF–VAE approaches. (a) Alternative
innovations (see Section 2.3.2) are generated by drawing ensemble members and adding realisations of the observational error, (b) the first
and second VAE are trained on the forecast ensemble and alternative innovations, respectively, (c) the first encoder is used to sample one
ensemble member in latent space for each ensemble member in state space, (d) the innovation encoder is used to sample K perturbed
innovations and M unperturbed innovations in latent space, (e) the ETKF is performed using the ensembles of states, perturbed innovations,
and innovations, and (f) for each member in the analysis ensemble, the first decoder samples a member in the state space.
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8 of 27 PASMANS et al.

the condition that xtruth = xmi . This assumes that the
true observational error distribution is known. Given
that in this study we defined the truth, this assumption
holds trivially. In a realistic setup, estimating the obser-
vational error distribution is more difficult; see, for
example, Tandeo et al. (2020), but this is no different
from what is currently common in DA practice. These
vectors represent possible innovations associated with
different ensemble members in the absence of addi-
tional knowledge about the truth state. This includes
any knowledge contained in the observation. Notice that,
had the ensemble been infinite, the columns of DM
and DK would be among the innovations created in
this way.

The encoder part of this second VAE is then used
to sample, for each of the columns in DM, a vector in
the second latent space 2. These are then collated as
columns of FM ∈ R2×M. Similarly, a vector is sampled for
each of the columns of DK , creating FK ∈ R

N2×K . FM and
FK replace DM and DK respectively in Equation (7a). In
addition to this, Xf and Xa are replaced with Zf ∈ R1×M

and Za ∈ R
N1×M, respectively, as was already outlined

in Section 2.3.1. Equation (7a) after these substitutions
becomes

Za = Zf − 1
M

Z̃fF̃T
MUS−1UTFM1M1T

M

− Z̃fF̃T
MU(I − S−1)1∕2, (8a)

1
K − 1

F̃K F̃K
SVD
= USUT. (8b)

The procedure is visualised in Figure 1 and sum-
marised as Algorithm 3 in Appendix A. A diagram
with an overview of the steps in one iteration of the
ETKF, ETKF–VAEsingle, and ETKF–VAEdouble algorithms is
included as Figure 2.

3 EXPERIMENTAL SETUP

This section starts with a description of the model and VAE
used in the experiments testing different scenarios. These
are followed by the results produced in the experiments.

3.1 The dynamical model

The single and double ETKF–VAEs are tested using a con-
ceptual model, a discrete map that moves a point along a
circle in a 2D plane ( = R2). The position at time t + 1 is
given in polar coordinates by

r(tp+1) = r(tp) + ΔtA𝜔 cos(𝜔tp), (9a)
𝜓(tp+1) = (1 + 𝛼Δt)𝜓(tp), (9b)

with 𝜓 ∈ [0, 2𝜋), or, in Cartesian coordinates,

x(tp+1) = x(tp) cos 𝛼Δt𝜓(x(tp)) − y(tp) sin 𝛼Δt𝜓(x(tp))

+ Δt
x(tp)

||x(tp)||A𝜔 cos(𝜔tp), (10a)

y(tp+1) = x(tp) sin 𝛼Δt𝜓(x(tp)) + y(tp) cos 𝛼𝜓(x(tp))

+ Δt
y(tp)

||x(tp)||A𝜔 cos(𝜔tp), (10b)

𝜓(x(tp)) = 2 arctan
y(tp)

x(tp) + ||x(tp)|| mod 2𝜋, (10c)

with Δt = 1, 𝛼 = 0.1, 𝜔 = 2𝜋∕50, x(tp) the position in the
2D plane at time step p, time tp, x the position along the
horizontal axis, A the amplitude of the oscillation of the
radius around 1, y the position along the vertical axis, and
𝜓(x) the polar coordinate of x between 0 and 2𝜋. From
Equation (9), it is easy to see that the model has a set of
stationary points given by {(r, 𝜓) ∶ 𝜓 = 0} if A = 0, that is,

F I G U R E 2 Overview of the different steps in a single iteration of (a) ETKF, (b) ETKF–VAEsingle, and (c) ETKF–VAEdouble, together with
references to the equations/architecture used in each step.
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PASMANS et al. 9 of 27

the positive x-axis. Furthermore, it is also a chaotic discrete
mapping with a Lyapunov exponent> 0 (see Appendix B).
Despite being simple, this model poses two difficulties for
the EnKF that are exemplars of those it would face when
applied to sea-ice models. First, if A = 0, the solution is
constrained to a submanifold: the unit circle. Second, near
𝜓 ≈ 0 the ensemble has the potential to become bimodal,
as positions with polar coordinate 𝛿𝜓 , 0 < 𝛿𝜓 ≪ 2𝜋, are
moved to (1 + 𝛼)𝛿𝜓 , whilst those with coordinate −𝛿𝜓
are mapped to −(1 + 𝛼)𝛿𝜓 + 2𝛼𝜋. This last feature makes
the model in the study more challenging than the com-
monly used Lorenz-63, for which trajectories also lie in
a submanifold, but which does not possess a discontinu-
ity. Because of these challenges, we opted for this model
over Lorenz-63, for which it is already known that the con-
ventional ETKF works well (Bocquet, 2011; Bowler, 2006;
Sakov et al., 2012).

3.2 Network architecture

The means and logarithms of variance appearing in
Equation (3a–3d) are produced by a multilayer percep-
tron. The architecture of this type of network is depicted
in Figure 3. The encoder network consists of a single input
layer accepting x and two sequences of six fully connected

hidden layers with 32 nodes each, activations layers, an
output layer, and a rescaling layer. One of the six-layer
sequences renders 𝜇𝜙, the other Σ𝜙. The activation layers
are leaky rectified linear units with a leakage factor of 0.1
and the diagonal elements Σ′

def in Equation (3b) set equal
to 0.052. The latent space is chosen to be one-dimensional.
The rescaling layer represents an affine transformation
zf → azf + b. Prior to the training of weights 𝜙1 and 𝜃1,
xf

1, … , xf
M are fed through the decoder and a, b are chosen

such that zf
1, … , zf

M have a sample mean of 0 and sample
variance of 1. This rescaling layer is applied in an attempt
to speed up this maximisation, setting the first two statisti-
cal moments of the distribution equal to that of the desired
distribution  (0, 1). After fixing a, b, the ELBO is max-
imised to find 𝜙1 and 𝜃1. The decoder consists of a similar
pair of six-layer networks. One member of the pair pro-
duces 𝜇 and the other lnΣ. Before entering the six-layer
network, the inverse affine transformation is applied to the
latent state, that is, z → (1∕a)(z − b). The architecture of
the second VAE is the same; the number of input nodes for
the encoder and output nodes for each six-layer network
of the decoder is equal to N = 1.

Prior to any DA, the first VAE is trained on what will
be called the climatology run. This climatology run is
generated by running the model in Equation (10a)–(10c)
with A = 0 for 10,000 steps. Each 10th time step is set

F I G U R E 3 Architecture of the first variational autoencoder. The encoder consists of (a) common input nodes, (b) six hidden layers for
the encoder predicting the mean of the conditional distribution 𝜇𝜙, and (c) six layers for the encoder predicting its variance lnΣ𝜙. Latent
mean and log variance are (d) rescaled using an affine transformation (see text) and (e) outputted. The decoder (f) accepts a latent state as
input, (g) applies the inverse of the latent affine transformation to the value and feeds the value to (h,i) a pair of six hidden layers outputting
the (j) mean 𝜇𝜃 and (k) log of variance lnΣ𝜃 in state space. For clarity, only eight of the 32 nodes in each hidden layer are shown.
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10 of 27 PASMANS et al.

aside and the VAE is trained on this following a He nor-
mal procedure (He et al., 2015) to initialise 𝜙1, 𝜃1 before
training. For minimisation of the ELBO Equation (1c), an
Adaptive Momentum Estimation (ADAM) solver (Kingma
& Ba, 2017) is used. The initial learning rate is 5.0 × 10−3,
but this is halved every time the reduction in the ELBO is
smaller than 0.1 for two epochs in a row, until the learn-
ing rate reaches its minimum of 1.0 × 10−6. Minimisation
is ended when the reduction in ELBO is less than 0.1 for
five epochs in a row or after 50 epochs, but not before 20
epochs have passed. ELBO values vary depending on the
training data, but typically they are reduced from values
between 10 and 100 to values between −10 and 0.

Before settling on an architecture with six hidden lay-
ers and 32 nodes per layer, alternative layers/nodes per
layer were tried. It was found that architectures with 6–10
hidden dense layers and 32–64 nodes are capable of recon-
structing the unit circle. To illustrate this capability of the
VAE, 1000 samples zi were drawn from  (0, I). For each
i, xi ∼  (𝜇𝜃1 (zi),Σ𝜃1(zi)) was drawn and added as a dot
to Figure 4a. The resulting point cloud is circular; how-
ever, somewhat spread out in a band around the circle.
Next to this, a sample z𝑗 ∼  (

𝜇𝜙1(x𝑗),Σ𝜙1(x𝑗)
)

was taken
for each sample x𝑗 from the climatology run. The PDF
estimated from these samples z𝑗 is shown in Figure 4b.
The figure testifies that the latent distribution approxi-
mates a standard normal, as expected based on the rela-
tion p(x) = ∫ p(x|z) (z; 0, I) dz in Section 2, but it also
shows that the relation is not perfect, as the estimated
PDF is more strongly weighted towards z = 0 than the
standard normal.

3.3 Configurations under study

For both the single ETKF–VAE and double ETKF–VAE
architectures outlined in Section 2.3, two configurations
are created, which differ in the type of training. In con-
figurations with names that contain clima, the weights
of the first VAE (i.e., the VAE concerned with the model
states) are copied from the VAE trained on the clima-
tology run (see Section 3.2). In particular, 𝜙1 and 𝜃1
are left unchanged during the execution of the exper-
iments. This choice, intentionally referred to as clima,
mimics a general situation whereby one interrogates a
dataset representing an (assumed) stationary process. As
mentioned in the previous section, the training is done
using a 10,000-time-step long trajectory, sampled every
10 time steps.

On the other hand, in the transfer configurations,
the weights of the first VAE are retrained at each anal-
ysis step using the ensemble-member current forecasts
xf

1, … , xf
M as a training set. At each analysis time step, the

weights, prior to training, are initialised by copying from
the weights trained on the climatology run.

The second VAE is always trained at each analysis
step in both the clima and transfer configurations. Dur-
ing the initialisation, weights are copied from the first
VAE where possible, that is, for the nodes that have the
same number of connections in the first and second VAEs.
The remaining weights are initialised using He normal-
isation. An alternative approach, in which weights were
initialised from 𝜙1, 𝜃1 obtained during the previous analy-
sis time step, has been tried. This approach was found to be

F I G U R E 4 (a) Climatology run in physical space generated by feeding samples from a standard normal distribution and drawing a
sample from each of these using the first decoder. (b) Climatology run in latent space obtained by taking states from the climatology run, and
for each state drawing a sample in latent space using the first encoder (red) together with the standard normal (black). The network
architecture used six dense hidden layers and 32 nodes per hidden layer.
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PASMANS et al. 11 of 27

T A B L E 2 DA system configurations, together with (first column) states that are mapped to/from the latent space(s), and the datasets
used for VAE training (second column) prior to the first DA step and (third column) prior to each DA step. Here Im stands for image, X
contains the ensemble members in physical space, Z the ensemble members in the latent space of the first VAE, D the (perturbed)
innovations in observation space, and F the (perturbed) innovations in the latent space of the second VAE.

Configuration VAE mappings Offline training set Online training set

No DA – – –

ETKF – – –

ETKF–VAEsingle
clima Xf → Zf, Za → Xa {xclima(tp) ∶ p ∈ Pclima} —

ETKF–VAEdouble
clima Xf → Zf, Za → Xa, Df → Ff {xclima(tp) ∶ p ∈ Pclima} Im Df(tp)

ETKF–VAEsingle
transfer Xf → Zf, Za → Xa {xclima(tp) ∶ p ∈ Pclima} Im Xf(tp)

ETKF–VAEdouble
transfer Xf → Zf, Za → Xa, Df → Ff {xclima(tp) ∶ p ∈ Pclima} Im Xf(tp), Im Df(tp)

unstable, as over time the weights lost information about
the shape of the circle and the members of the ensem-
ble ended up spreading out through the domain, losing
any information in it. Consequently, this approach was not
pursued further.

In addition to these configurations, a configuration
without DA (no DA) and one using the standard ETKF
(ETKF) have been added to facilitate comparison and
benchmarking. An overview of the six configurations can
be found in Table 2.

4 NUMERICAL EXPERIMENTS
AND RESULTS

Using the experimental setup in Section 3, four twin
experiments are carried out. In each of these experi-
ments, 65 model instances are run forward for 500 time
steps. One of these model runs serves as the artificial
truth, while the remaining 64 form the ensemble. Ini-
tially, all 65 members are located on the unit circle
with polar angles drawn from a uniform distribution on
[−0.1𝜋, 0.1𝜋]. A summary of the different model settings
and observations can be found in Table 3. Each exper-
iment is repeated 49 times using seven different long
“climatology runs” used for training of the VAE. Each
of these climatology runs differs only in the initial posi-
tion of the particle, and for each of them the experiments
are repeated using seven different initial ensembles and
observations.

Initially we will use two evaluation metrics in
Section 4.1: the root-mean-square error (RMSE) and the
correlation between forecasts and truth. Evaluating DA
performance by comparing the ensemble mean with the
truth is standard practice for EnKFs. This is because, in
an EnKF, the ensemble mean represents the most likely
estimate for the truth state of the system. However, this
equivalence between mean and mode does not hold if the

T A B L E 3 Model setting in different experiments. Here  is
the normal, or Gaussian, distribution, while  is the skewed
normal distribution (see Equation 12).

Experiment Climate type Obs. error

I Stationary
(A = 0)

Gaussian x ∼  (xtruth, 0.12)

II Non-stationary
(A = 0.2)

Gaussian x ∼  (xtruth, 0.12)

III Stationary
(A = 0)

Non-Gaussian x ∼ 
(mode = xtruth, var = 0.12)

a priori distribution is non-Gaussian, as is the case with
the experiments in this work. Loosely formulated, when
the distribution is Gaussian, the mean, as the most likely
state, is indicative of what the true state can be, while for
a non-Gaussian distribution the mean provides insuffi-
cient (or misleading) information about the true state. The
mean may even be an unrealisable state if the distribution
is non-Gaussian. Next to this, an accurate representation
of the distribution itself could be of practical interest, for
example, to assess the probability that extremes occur.
Therefore, metrics based on the ensemble mean might
not be the best measure to evaluate the performance
of the DA system. Instead, we resort to the continuous
rank probability score (CRPS) as our preferred metric
of performance. The CRPS is a measure for the L2 error
in the cumulative probability distribution (CDF) and is
defined as

CRPS = ∫
∞

−∞
E[

(
CDF(w) −(w − wtruth)

)2] dw, (11)

where  is the Heaviside function and w can be either
the x-coordinate, y-coordinate, radius, or angle, the inte-
gral is approximated with a numerical Lebesgue inte-
gral using the ensemble values w(m) for 1 ≤ m ≤ M, and

 1477870x, 0, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/qj.70070 by A
nne-M

arie van D
odew

eerd - <
Shibboleth>

-m
em

ber@
reading.ac.uk , W

iley O
nline L

ibrary on [19/12/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



12 of 27 PASMANS et al.

the expectation value is calculated over all times for
which observations are available and over repetitions
of the experiment. See Tödter and Ahrens (2012) for
details.

4.1 Stationary climate

In this experiment, the truth moves along the unit circle.
The system is autonomous and stationary: the circle has a
constant unit radius. Every 10 time steps, the x-coordinate
is assimilated. Observations are drawn from the Gaussian
distribution with a standard deviation of 0.1 and cen-
tred on the x-coordinate of the truth; they are therefore
unbiased.

The x-coordinate, y-coordinate, radius (distance to ori-
gin), and polar angle of the mean of the forecast/analysis
ensemble are calculated just before (after) the DA correc-
tion is applied. These mean values in the different DA con-
figurations are compared with their true values. For each
repetition of the experiment, the variance of the ensem-
ble mean, that is, the forecast/analysis, over time and the
correlation of the ensemble mean with the truth are com-
puted. These are then averaged over all repetitions of the
experiment. For the correlations, a weighted average is
used, that is, the correlation for the forecast as shown in

Figure 5 is produced as

𝜌f =
∑999
𝑗=1𝜌

f
𝑗
𝜎truth
𝑗

𝜎f
𝑗∑999

𝑗=1𝜎
truth
𝑗

𝜎f
𝑗

,

with 𝜌f
𝑗

the correlation between the time series of a variable
(x-coordinate/y-coordinate/radius/angle) obtained from
the truth on one hand and the forecast mean for said vari-
able of the 𝑗th bootstrap sample on the other hand, 𝜎truth

𝑗

the time-series standard deviation for the true value of
the variable in the 𝑗th bootstrap sample, and 𝜎f

𝑗
the stan-

dard deviation of the forecast mean over time in the 𝑗th
bootstrap sample. The same procedure is followed for 𝜌a.
Results are shown in Figures 5 and 6. The confidence
intervals for standard deviations and correlations, as well
as other metrics in the subsequent sections, have been
determined using bias-corrected and accelerated boot-
strapping (Efron, 1987) with 999 bootstrap samples. They
are shown as error bars in Figures 5 and 6. Some of
them are so small that they disappear below the mark-
ers. Also shown in these diagrams, as dashed lines, are the
average RMSEs between the forecast/analysis means and
the truth.

Figure 5 shows that, in both x- and y-coordinates and
in the polar angle, the ETKF and the ETKF–VAE have

F I G U R E 5 Taylor diagrams
for (a) x-coordinate, (b) y-coordinate,
(c) radius, and (d) angle. The
standard deviation of the time series
of the forecast mean is shown along
the radial, the correlation with the
truth along the azimuthal, and the
RMSE as dashed lines. Bars indicate
the 90% confidence interval.

F I G U R E 6 As Figure 5,
but now showing standard
deviations and correlations
with the mean of the analysis
ensemble.
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similar RMSEs, though the ETKF–VAE configurations all
underestimate the variability in the x- and y-coordinates
slightly. The situation is different for the radius. Note first
that, for the truth and No DA, this value is constant, the
standard deviation is zero, and it is not possible to cal-
culate correlations between the different configurations
and the truth. In the ETKF configuration, the standard
deviation of the radius time series is 0.17 ± 0.04, indicat-
ing that in this experiment the reconstructed (forecast)
radius is far from being a constant unit. The ETKF–VAE
configurations perform better in this regard and have stan-
dard deviations smaller than (2.8 ± 0.4) × 10−2. Overall,
the double ETKF–VAE configurations perform worse, in
terms of the RMSE, than their single ETKF–VAE coun-
terparts. We attribute this to the fact that sampling the
innovation vector in latent space adds an additional error.
Part of this comes from the inherent stochastic nature
of the encoder encapsulated in Σ𝜙 (see Appendix C for
details), apart from the imperfect training of the VAE.
These errors increase the spread in the latent innova-
tion ensemble and consequently increase the covariance
HPf

XHT + R as well as the ensemble mean of the latent

innovation vectors and consequently make smaller DA
corrections. When we compare the forecast with the anal-
ysis metric in Figure 6, the performance of the different
configurations is qualitatively the same. The main differ-
ence can be found in Figure 6a, which shows that all con-
figurations, except No DA, exhibit higher correlations with
the truth and smaller RMSEs. This is in line with expecta-
tion, as the x-coordinate is assimilated directly during the
experiment.

The CRPS values for the different configurations and
variables in this experiment are shown in Figure 7a. CRPS
values for the single ETKF–VAE configurations are smaller
(i.e., better) than those for the ETKF for all variables,
though not significantly at the 90% confidence level for the
angle. When using the double ETKF–VAE configurations,
no CRPS reduction is achieved compared with ETKF for
the x-coordinate, y-coordinate, and angle. Measured by the
CRPS of the radius, all ETKF–VAE configurations perform
better than the ETKF. The reason for the improved per-
formance for the radius is clearly visible in Figure 7a. In
this figure the truth, together with the forecast and analysis
ensembles, is shown for time 360. In the ETKF, ensemble

F I G U R E 7 CRPS of the x-coordinate, y-coordinate, radius, and angle for the experiments with (a) stationary climatology run and (b)
non-stationary climatology run. Black lines indicate the 90% confidence interval.

F I G U R E 8 Truth
(black), forecast ensemble
(blue), and analysis ensemble at
time 360 (green) for (a) ETKF,
(b) ETKF–VAEsingle

clima , and (c)
ETKF–VAEsingle

transfer. Ensemble
means are depicted as triangles.
The assimilated value of the
x-coordinate is depicted as a
dashed black line.
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14 of 27 PASMANS et al.

members are moved very close to the truth, sometimes
even closer than in the ETKF–VAE configurations. This
reduces the RMSE effectively, but in doing so they move off
the circle. On the other hand, in the ETKF–VAE configura-
tions, the analysis lies in the image of the first decoder and,
if properly trained, this ensures that the analysis members
end up with the correct radius close to the circle. There-
fore the benefit of using the VAE lies mainly in its ability to
restrict the analysis ensemble to the manifold of physically
possible solutions.

4.2 Non-stationary climate

In the previous section, it was shown that the use of the
ETKF–VAE improves the CRPS for the radius drastically
compared with ETKF, as the use of a decoder for the states
ensures that ensemble members stay close to the circle.
This raises the question of what would happen if the sub-
manifold containing the model solution, in our case the
circle, were to change over time. This is done to mimic the
effects of, for example, the change in seasons in a sea-ice
model or the effects of climate change in a general circu-
lation model. To this end, we set A = 0.2 in Equation (10),
so that the radius of the truth will vary slowly between 0.8
and 1.2 in this experiment.

Results relative to the CRPS from this non-stationary
experiment are shown in Figure 7b. By comparing it with
Figure 7a, we see that the CRPS for the x-coordinate in
the ETKF is not impacted by the variation in radius of the
truth, but the forecasting capacity for the non-observed
y-coordinate is diminished. A larger increase in CRPS

for all variables can be observed for the ETKF–VAEsingle
clima

and ETKF–VAEdouble
clima configurations, while CRPS values

for ETKF–VAEsingle
transfer and ETKF–VAEdouble

transfer are not signifi-
cantly different at the 90% confidence level. We can deduce
the cause of this difference by comparing Figures 8 and 9.
When the submanifold is stationary (A = 0), ETKF places
analysis members outside the submanifold (Figure 8a),
while the first VAE ensures that, in ETKF–VAEsingle

clima
(Figure 8b) and ETKF–VAEsingle

transfer (Figure 8c), the members
stay on the circle. In the ETKF–VAEsingle

clima configuration (see
Figure 9b), DA brings the ensemble members closer to the
truth. However, in this non-stationary experiment the VAE
in this configuration was trained on a climatology run in
which the radius was fixed to 1 and it is therefore unaware
of the fact that the radius of the truth changes during the
model run. Consequently, the first decoder creates analysis
ensemble members with a radius of 1 instead of the radius
equal to that of the truth at that specific analysis time
(1.12). In ETKF–VAEsingle

transfer (Figure 9c), the weights of the
VAE are updated at each analysis time using the forecast
ensemble. This results in the analysis ensemble mem-
bers being positioned at similar polar angles to those in
ETKF–VAEsingle

clima , but now at the appropriate radius. Hence
we conclude that online training of the VAE is essential if
the submanifold holding the model solutions changes over
time. The solution we adopted here is based on the use
of the ensemble members that are already at our disposal
whenever running any ensemble-based DA, thus making
the method very versatile.

To test the robustness of our transfer learning
approach, we have studied its performance against the

F I G U R E 9 Truth (black), forecast ensemble (blue), and analysis ensemble (green) with (dashed line) observed x-coordinate at time
360 for the same configurations as in Figure 9. Shown are the results for the model in Equation (10) with A = 0.2 instead of A = 0.0. A circle
with the same radius as the truth at time 360 is depicted in black. In (b), the first VAE is trained on a climatological run in which the particle
moves over the unit circle. This circle has been added in grey for reference.
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PASMANS et al. 15 of 27

F I G U R E 10 CRPS for
(a) observed x-coordinate, (b)
y-coordinate, (c) radius, and
(d) polar angle as a function
of the circle radius rate of
change A in Equation (10).
Results are shown for the no
DA, ETKF, ETKF–VAEsingle

clima ,
and ETKF–VAEsingle

transfer
configurations. Bands
indicate the 90% confidence
interval of the CRPS.

parameter A in Equation (10), which modulates the rate
at which the radius of the circle changes over time. The
results for the CRPS in different variables are shown in
Figure 10. For the sake of clarity, ETKF–VAEdouble

clima and
ETKF–VAEdouble

transfer are not shown, as the ratio of their CRPSs
(see Figure 7b) is qualitatively comparable with the ratio
of the CRPSs for ETKF–VAEsingle

clima and ETKF–VAEsingle
transfer.

The ETKF is unaware of the submanifold in which the
truth moves and, consequently, also any changes in this
manifold. Hence, the ETKF exhibits little dependence
on A. The CRPS of ETKF–VAEsingle

clima , on the other hand,
increases sharply with increasing A for all variables. This
is consistent with the idea that, as A increases, the place-
ment of the analysis ensemble member near the unit circle
places them further and further away from the truth. On
the other hand, ETKF–VAEsingle

transfer succeeds in keeping the
CRPS almost insensitive to A for A ≤ 0.3. It grows for
A > 0.3, but keeps its values well below ETKF–VAEsingle

clima .
The deterioration of the ETKF–VAEsingle

transfer skill for A > 0.3

suggests that updating the weights of the first VAE using
the ensemble fails when the actual radius of the truth is
very different from the climatology run. In that case, the
analysis ensemble members are placed in the vicinity of
the unit circle (not shown).

4.3 Non-Gaussian observations

So far, non-Gaussianity was limited to the ensemble mem-
bers and, indirectly, to the projection of those ensemble
members into the space of observations via the observation
operator. Observation errors were assumed to be Gaussian
with zero mean. In this section, we relax this assumption
and instead assume that the observation errors are real-
isations from a skew normal distribution (Henze, 1986;
O’Hagan & Leonard, 1976):

(x) = 1
𝜋𝜎2 e−

(x−𝜇)2

2𝜎2 ∫
𝜆x

−∞
e−

(𝜉−𝜆𝜇)2

2𝜎2 d𝜉, (12)
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F I G U R E 11 Skew normal probability distributions for the
observational errors for different values of the skewness parameter.

where 𝜆 is the skewness parameter and 𝜇 and 𝜎 are cho-
sen such that the mode of the distribution is zero and
the standard deviation equal to 0.1. By doing so, the skew
normal distribution reverts to the Gaussian distribution
used in Sections 4.1 and 4.2 if 𝜆 = 0. On the other hand,
whenever 𝜆 ≠ 0, the distribution Equation (12) is asym-
metric with non-zero mean. The shape of the skew normal
distribution for various values of the skewness parame-
ter 𝜆 is illustrated in Figure 11. The use of a skew nor-
mal violates the assumptions behind the KF, but it is
not unlike a situation one encounters when assimilat-
ing, for example, satellite radiances (Saunders et al., 2013;
Zhu et al., 2014). We are interested in exploring the
capabilities of our ETKF–VAE approaches to cope with
this scenario.

Given that our focus here is on the impact of
non-Gaussian observational errors, in this section we con-
sider only configurations in which the training is solely
on the climatology run (no transfer learning) and the
true circle’s radius is fixed to one. CRPS values for the
x-coordinate, y-coordinate, radius, and polar are shown
in Figure 12 as functions of the skewness parameter 𝜆.
The figure shows that the performance of ETKF in all
variables deteriorates as long as the observational error dis-
tribution becomes more skewed and consequently more
biased. This agrees with the findings of Dee (2005), Lea
et al. (2008), and Huang et al. (2020) that the EnKF per-
formance can degenerate if observational errors are biased
and no bias-correction scheme is applied. ETKF–VAEsingle

clima
follows a similar pattern, but the impact of the bias
is less pronounced. We believe that this is due to the

decoder effectively limiting the extent to which the bias
can impact the position of the ensemble members, given
that it restricts them to the circle. The situation is radically
different when looking at ETKF–VAEdouble

clima . The observa-
tional error bias is contained in the synthetic innovations
on which the second VAE, part of the ETKF–VAEdouble

clima
configuration, is trained. When the biased distribution is
mapped by the encoder to a standard normal in latent
space, the bias is removed. Consequently, ETKF–VAEdouble

clima
does not exhibit a dependence on skewness and outper-
forms ETKF–VAEsingle

clima whenever the absolute value of the
skewness parameter exceeds 5.

To see how this compares with a conventional
bias-correction scheme, CRPS scores were also compared
with an ETKF in which the observation part of the
cost function 1

2
(y − Hx)TR−1(y − Hx) is replaced with

1
2
(y − 𝜖y − Hx)TR−1(y − 𝜖y − Hx). Here, 𝜖y is the exact

mean of the observational error distribution. The CRPS
scores for this configuration have been added to Figure 12
as ETKF-BC. ETKF-BC outperforms the ETKF and, for
very skewed observational errors, also ETKF–VAEsingle

clima
when looking at the CRPS scores for the x-, y-coordinates
and the angle. However, ETKF–VAEdouble

clima still renders
lower CRPS scores than ETKF-BC. For the radius, all
ETKF–VAE configurations produce significantly lower
CRPS scores than both ETKF and ETKF-BC. Here the lat-
ter behaves more like the ETKF and yields scores that are
many times worse than those produced by the ETKF–VAE
configuration. Overall, the results in Figure 12 indicate
two main aspects: (1) only a portion of the improvement
brought by ETKF–VAEdouble is due to its ability to esti-
mate and remove the observational error bias, and (2) the
bias correction does not help the ETKF to confine the
analysis to the circle manifold, a benefit unique to the
ETKF–VAE.

It is worth noting that in these experiments the obser-
vational error distribution is known exactly. This knowl-
edge is used in ETKF-BC to provide the mean used
in the scheme and in ETKF–VAEdouble

clima to generate the
synthetic innovations used to form DK . If the actual
observation-error distribution used to train the second
VAE differs significantly from the true distribution, the
risk exists that the second encoder will send the ensem-
ble of innovations to the “wrong” part of latent space.
This may cause an incorrect rescaling of the error distri-
bution and the benefits of using a second VAE may be
small or, in the worst scenario, null. A similar issue can
emerge with the bias-correction scheme if the specified
mean observational error is erroneous.

In Figure 4b, it was shown that the VAE is not capable
of transforming the distribution into a perfect Gaussian,
although it gets a unimodal and almost symmetric one. To
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PASMANS et al. 17 of 27

F I G U R E 12 CRPS for (a)
the observed x-coordinate, (b)
y-coordinate, (c) radius, and (d)
polar angle as function of the
skewness parameter 𝜆 for the
observational error distribution
as appearing in Equation (12).
Results are shown for the no
DA, ETKF, ETKF–VAEsingle

clima , and
ETKF–VAEdouble

clima configurations.
Bands indicate the 90%
confidence interval of the CRPS.
In the No DA configuration,
CRPS is zero, as it is unaltered
by the model when A = 0.

quantify the “degree of Gaussianity”, we have calculated
the Anderson–Darling statistic for a Gaussian distribu-
tion for the forecast ensemble at each assimilation time in
ETKF–VAEsingle

clima , ETKF–VAEdouble
clima , and ETKF. The square

of this metric is given by

A2 = −M −
M∑

m=1

2m − 1
M

[ln(F(zm)) − ln(1 − F(zM+1−m))].

(13)

In the former two experiments, the zm in Equation (13) are
the latent values produced by the first VAE of the different
ensemble members sorted in ascending order, while in the
latter zm are the sorted values of either the x-coordinates
or the y-coordinates and F is the cumulative distribution
of a Gaussian with mean and variance equal to that of the
ensemble. The values for the Anderson–Darling statistic
(Stephens, 1979) are binned and the relative occurrence of
each value is shown in Figure 13a when the observational
errors are unbiased and in Figure 13b when the errors
are drawn from a skew normal distribution with 𝜆 = −1.2.

Also shown in the figure, as the vertical dashed line, is
the value for the statistic above, where the null hypothesis
that the ensemble is drawn from a Gaussian distribution is
rejected at the 95% confidence level. The figure shows that
the latent ensembles are more likely to lie below this confi-
dence level. In particular, for the case 𝜆 = 0, 852 ensembles
have an Anderson–Darlington statistic below this level in
ETKF–VAEdouble

clima , which is more than the 594 ensembles in
ETKF–VAEsingle

clima and the 425 for ETKF. This indicates that
the latent ensemble, though not a perfect Gaussian distri-
bution itself, satisfies the Gaussian assumption underlying
the Kalman filter better than the ETKF. When the obser-
vation errors are not normally distributed but are taken
from a skew normal distribution with skewness parameter
𝜆 = −1.2, somehow, counterintuitively, the introduction
of non-Gaussian observation errors increases the number
of ensembles below the 95% confidence threshold (except
for ETKF–VAEdouble

clima ). Nevertheless, even in this case, the
ETKF–VAE experiments produce ensembles that are closer
to a Gaussian distribution.
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18 of 27 PASMANS et al.

F I G U R E 13 Left: probability distribution of the Anderson statistic for the different forecast ensembles of the latent variable in
experiment ETKF–VAEsingle

clima (blue), the latent variable in ETKF–VAEdouble
clima (yellow), the x-coordinate in ETKF (green), and the y-coordinate in

ETKF (red) in the case in which the observational error is not skewed. Right: same but now with the observational errors drawn from a
skewed Gaussian distribution with skewness parameter 𝜆 = −1.2. Also shown is the Anderson value above which the ensemble is different
from Gaussian at 95% confidence and, between brackets, the number of times the Anderson metric of the ensemble is below this level.

5 DISCUSSION AND
CONCLUSIONS

Models in the geosciences, including the new neXtSIMDG
sea-ice model, generally do not satisfy the conditions
underlying the KF. Background and observational errors
are non-Gaussian and model and observation operators
are nonlinear. EnKFs can operate successfully when weak
nonlinearity and/or small non-Gaussianity are present.
In that case, however, filter updates will be suboptimal
(Fowler, 2019; Lei et al., 2010), that is, the a posteriori
distribution of the ensemble members does not reflect
p(x|y). In this work, we investigated the use of VAE to map
ensemble members onto realisations sampled from Gaus-
sian distributions. This work falls under the umbrella of
studies aimed at using ML to mitigate or, in the best case,
correct weaknesses of the DA procedure. We focus specif-
ically on ensemble-based DA and, as a prototype of the

latter, we choose to work with the ETKF, among the most
celebrated and widely used ensemble-based approaches
(Bishop et al., 2001; Majumdar et al., 2002; Wei et al., 2006).
We introduced two novel formulations of the ETKF, in
which either one or two VAEs are merged into the ETKF’s
workflow. In the single ETKF–VAE, the goal is to tackle the
non-Gaussianity in the physical model outputs and their
physical balance. The latter is identified as a phase-space
submanifold, to which all realisations of the model must
be confined. In this work, this submanifold is the unit cir-
cle. With the double ETKF-VAE, we aimed also to address
the non-Gaussianity in the observational errors.

The single and double ETKF–VAE configurations fea-
ture either an offline (climatological-like) or an online
approach, in which weights are retrained using trans-
fer learning. The latter allowed us to study the impact
of, and the skill against, a time-varying physical sub-
manifold for the model states. Hence, in this work
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PASMANS et al. 19 of 27

T A B L E 4 Overview of the different DA algorithms in this study, together with order-of-magnitude estimates of the number of
floating-point operations necessary for each step. Operations are expressed as number of ensemble members M, dimension of the state space
N , observation-space dimension N , number of hidden layers in the encoder/decoder NL, number of nodes per layer NN , maximum
number of epochs used during training Ne, and the dimension of both latent spaces N.

ETKF ETKF–VAEsingle
clima

ETKF–VAEsingle
transfer

Step Order Step Order Step Order

Xf → Ỹ MN Xf → D̃M MN Xf → D̃M MN
Y → R1∕2Y NM D̃M → D̃K D̃T

K KN2 D̃M → D̃K D̃T
K KN2

SVD R−1∕2Y MN min(N ,M) Xf → Zf MNLN2
N Retrain first VAE NLN2

N MNe

ETKF → Xa max(N ,M)M2 SVD Equation (7b) N3 Xf → Zf MNLN2
N

ETKF Equation (7a) NNM SVD Equation (7b) N3
Za → Xa MNLN2

N ETKF Equation (7a) NNM

Za → Xa MNLN2
N

ETKF–VAEdouble
clima ETKF–VAEdouble

transfer

Step Order Step Order

Xf → D̃M MN Xf → D̃M MN
Retrain 2nd VAE MNLN2

N Ne Retrain 2nd VAE MNLN2
N Ne

DN → FK KNLN2
N DN → FK KNLN2

N

FK → F̃K F̃T
K KN2 FK → F̃K F̃T

K KN2
Xf → Zf MNLN2

N Retrain first VAE MNLN2
N Ne

SVD Equation (8b) N3 Xf → Zf MNLN2
N

ETKF Equation (8a) N2M SVD Equation (8b) N3
Za → Xa MNLN2

N ETKF Equation (8a) N2M

Za → Xa MNLNN

we have tested our approaches on non-autonomous
dynamics with explicit dependence on time, such
as one would encounter in a scenario with climate
change.

We tested these setups in a conceptual model in which
a point rotates around a circle, the de facto submanifold
in these experiments. We find that the main advantage
of application of the ETKF in the latent space of the
VAE is that the posterior ensemble members stay close
to the circle manifold, whereas the conventional ETKF
places members at “unphysical” positions in and outside
the circle. This means that the VAE is able to identify
the existence of the submanifold containing the physi-
cally possible model states. The ensemble also provides a
more accurate representation for the distribution of the
truth. To quantify this, we have used the CRPS. All the
ETKF–VAE configurations yield better CRPS values than
the standard ETKF. Our work has also shown that updat-
ing weights for the first VAE using the ensemble members
and transfer learning is essential if the manifold changes
over time. Fine-tuning the VAE in this way is, in our view,

a viable way of doing this. Its success in the idealistic
setup employed in this study encourages its application
and testing in more complex and higher-dimensional
scenarios.

The benefits of using a second VAE for the innova-
tions, aimed at coping with non-Gaussian observational
errors, are mixed. When the observational error is Gaus-
sian or only weakly non-Gaussian, the second VAE intro-
duces additional variability in the innovations, weakening
the correlations between innovations and ensemble mem-
bers and thus reducing performance compared with the
offline “clima” configurations. On the other hand, when
the non-Gaussian character of the observational error and
its bias are predominant, our findings highlight the benefit
of using a second VAE for the innovations.

Motivated by the large and continuously growing
amount of available satellite data, compression methods
that make the number of assimilated observations compu-
tationally affordable (while simultaneously maintaining
high informational content) have received increased
interest in recent years (Cheng et al., 2021b; Pasmans
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et al., 2024; Xu, 2011). In these studies, special attention
was paid to how the presence of correlations in observa-
tional errors (Cheng et al., 2021a; Fowler, 2019) impacts
the compression that can be achieved, that is, what
percentage of observations can be removed without dete-
riorating the DA performance significantly. Although
not pursued among the specific goals here (and made
impossible by the low dimensionality of our model), we
believe that in higher dimensions the second VAE will
achieve effective data compression by using a latent space
of smaller dimension than the number of observations.
The key advantage of our approach, in which innova-
tions, instead of observations (see Cheng et al., 2024),
are mapped to the latent space, is that the compression
will depend on both the forecast and the observational
error statistics. This is important, because, according to
the findings of Fowler (2019), the covariance reduction
by the DA as a function of the number of observa-
tions depends on both the correlation length-scales
in the observational errors and the scales in the fore-
cast errors. Extending this study to the presence of
correlated observations is one of the venues left for
future work.

The ensemble-size-versus-dimensionality ratio in this
work is 32, much higher than the ≪ 1 ratios typical of
operational forecasting systems. Therefore, future work
should also investigate how the proposed approach scales
to higher-dimensional models. In particular, the ability
to train the VAE weights using the ensemble members
and transfer learning might falter for more realistic model
setups. One possible way to mitigate this would be the
inclusion of time-lagged or time-shifted ensemble mem-
bers in the training dataset (Lorenc, 2017), or somewhat
shifting the physical fields in space: an approach similar
to the application of covariance localisation using con-
volution (Berre & Desroziers, 2010; Courtier et al., 1998;
Gaspari & Cohn, 1999). This, in combination with a switch
to a convolutional variational auto-encoder in which the
forward neural networks are replaced with convolutional
networks (Sohn et al., 2015), could make it feasible to
retrain the VAE at each analysis time using an ensem-
ble that is relatively small compared with the model’s
dimension. This is because in a convolutional network the
number of neural-network nodes does not scale with the
size of the model state, but with the size of the convolution
kernel, usually 3 × 3, and the number of convolution ker-
nels used. Alternatively, one could use model emulators,
for example, like the partial neXtSIM simulator convo-
lutional emulator developed by Durand et al. (2024), to
generate larger background ensembles in a computation-
ally effective way (Chattopadhyay et al., 2022), or draw
the ensemble members using diffusion models explicitly

trained to represent the background probability distribu-
tion correctly (Finn et al., 2024a; Li et al., 2024; Price
et al., 2025). This would allow one to generate an arbitrary
amount of training data. However, this would not reduce
the size of the neural networks used in the VAE, so this
method might be more memory-intensive, which would
increase training times. The latter would be an issue for
ETKF–VAEtransfer especially.

Another point that could not be addressed in our
low-dimensional setup is the tendency of VAEs to
over-smooth the small scales (see, e.g., fig. 2 of Finn
et al., 2024b). This could lead to an underestimation of
the smaller scales in the analysis ensemble. For example,
in a sea-ice model, deformation, a process rich in small
scales in areas in which the ice is damaged, might be
underestimated. If a plastic rheology is used, the stress
depends on the deformation rate of the sea ice. This defor-
mation rate is in turn a function of the spatial deriva-
tives of the sea-ice velocity field. Therefore, underesti-
mation of the small scales in the velocity will result
in an overly smooth field in which the magnitudes of
the derivatives, and consequently the deformation rate
and stress, will be too small. In elastic rheologies, time
changes in sea-ice stress, instead of the stress itself,
depend on the deformation rate. Consequently, a consis-
tent underestimate of the magnitude of the deformation
will gradually build up into an underestimate of the mag-
nitude of the stress. The straightforward mitigation fix
for this effect is to increase the latent space’s dimension
(Finn et al., 2024b).

The training of VAEs is notably highly computationally
demanding. Here, we found that training in the trans-
fer configurations can take up a considerable amount
of time (≈ 0.3 hour for a single realisation on a laptop
with a NVIDIA RTX A2000) compared with running the
ETKF (≈ 1 minute per realisation). In order to understand
how our approach might scale to higher-dimensional
systems, estimates of the computational cost, expressed
as the number of floating-point operations using big-O
or Bachmann–Landau notation, have been included as
Table 4. The cost for running the model has not been
included in these estimates, as this cost is the same for
all configurations. Neither has the cost for training the
offline training on the climatology run been included, as
this is a one-time cost, which becomes irrelevant in the
limit in which time goes to infinity. When the dimensions
of observational and state spaces are small compared with
the number of nodes in the VAE encoder/decoder, as is
the case in this study, the ETKF is considerably cheaper
than the ETKF–VAE. As training takes place twice per
DA step in the ETKF–VAEdouble

transfer configuration, this is by
far the most costly. For large numbers of observations,
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the cost of the SVD in Equation (7b) could overtake that
of the VAE. In this situation, the ETKF–VAEdouble might
actually become the better choice, even performance-wise,
as the SVD in Equation (8b) scales with the dimen-
sion of the latent space, which might be set to be
smaller than the number of observations. Therefore, for
high-dimensional systems the ETKF–VAE might actually
scale very well, although ultimately this has to be tested in
future work.
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APPENDIX A. ETKF–VAE ALGORITHMS

This Appendix contains pseudocode running the total
DA system using either single ETKF–VAE or double
ETKF–VAE configurations. The  (a, b) appearing in the
algorithms stands for a uniform probability distribution on
the integers between a up to and including b (Algorithm 1).

Algorithm 1. Clima training

Draw x ∼ p0(x)
for t = 0, 1,… do

if yt ≠ [] then
Add x as column to X.

end if
x ← Mt→t+1x

end for
Find 𝜙1, 𝜃1 = argmax

𝜙1,𝜃1
Em∼ (1,rankX)

[(𝜙1, 𝜃1,X column m)]

Algorithm 2. Single ETKF–VAE

Find 𝜙1, 𝜃1 using Algorithm 1
for m = 1,… ,M do

Draw xf
m ∼ p0(xf )

end for
for t = 0, 1,… do

if y(t) ≠ [] and transfer configuration then
Find 𝜙1, 𝜃1 = argmax

𝜙1,𝜃1
Em∼ (1,M)[(𝜙1, 𝜃1, xf

m)]

end if
if y(t) ≠ [] then

for k = 1,… ,K do
DK column k ← y + 𝜖y

k − H(xf
mk
)

end for
for k = 1,… ,M do

DM column m ← y − H(xf
m)

end for
for m = 1,… ,M do

Zf column m ←∼  (𝜇𝜙1(x
f
m),Σ𝜙1(x

f
m))

end for
Obtain Za from Equation (7a) using Zf , DK and
DM .
for m = 1,… ,M do

za
m ← Za column m

Draw xa
m ∼  (𝜇𝜃1(z

a
m),Σ𝜃1 (z

a
m))

end for
end if
for m = 1,… ,M do

xf
m ← Mt→t+1xa

m
end for

end for
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Algorithm 3. Double ETKF–VAE

Find 𝜙1, 𝜃1 using Algorithm 1
for m = 1,… ,M do

Draw xf
m ∼ p0(xf )

end for
for t = 0, 1,… do

if y(t) ≠ [] and transfer configuration then
Find 𝜙1, 𝜃1 = argmax

𝜙1,𝜃1
Em∼ (1,M)[(𝜙1, 𝜃1, xf

m)]

end if
if y(t) ≠ [] then

for k = 1,… ,K do
di𝑗 ← H(xf

mi
) + 𝜖y

k − H(xf
m𝑗
)

end for
Find 𝜙2, 𝜃2 = argmax

𝜙2,𝜃2
Ei,𝑗∼ (1,M)[(𝜙2, 𝜃2,di𝑗)]

for k = 1,… ,K do
d ← y + 𝜖y

k − H(xf
mk
)

DK column k ←∼  (𝜇𝜙2(d),Σ𝜙2(d))
end for
for k = 1,… ,M do

d ← y − H(xf
m)

DM column m ←∼  (𝜇𝜙2(d),Σ𝜙2(d))
end for
for m = 1,… ,M do

Zf column m ←∼  (𝜇𝜙1(x
f
m),Σ𝜙1(x

f
m))

end for
Obtain Za from Equation (7a) using Zf , DK
and DM .
for m = 1,… ,M do

za
m ← Za column m

Draw xa
m ∼  (𝜇𝜃1 (z

a
m),Σ𝜃1(z

a
m))

end for
end if
for m = 1,… ,M do

xf
m ← Mt→t+1xa

m
end for

end for

APPENDIX B. LYAPUNOV EXPONENT OF
THE MODEL

Let (x(tp+1), y(tp+1) = M(x(tp, yp)), with M the homoge-
neous (A = 0) mapping outlined in Equation (10). For a
discrete map, the Lyapunov spectrum is defined as the
eigenvalues of

lim
p→∞

1
2p

p−1∑
p′=0

logΛp′ , (B1)

with Λp the eigenvalues of DM|x(tp)DM|Tx(tp)
and DM the

derivative of M at x(tp). Since DM(tp)DM(tp)T is a constant
in the homogeneous model, the limit in Equation (B1) is

equal to half the log of the eigenvalues of DM|x(tp)DM|Tx(tp)
.

The numerically calculated values of the largest Lyapunov
exponents are shown for different angular accelerations 𝛼
in Figure B1a. The figure shows that, in all cases shown,
including the 𝛼 = 0.1 case used in this study, the maximum
Lyapunov exponent is larger than zero. This indicate that
it is a map that grows perturbations over time, making it
chaotic.

To test the ergodicity of the system, 4000 angles
were selected randomly and their associated positions
on the unit circle were used as initial conditions for
a 8000-time-step long model runs. After discarding the
first 4000 time steps as spin-up, the 4000 states at
time 4000 were used to estimate the CDFs for the x-
and y-coordinates. These ensemble CDFs are shown in
Figure B1b. For each of the 4000 ensemble members,
a time CDF has also been calculated based on the last
4000 time steps of the ensemble member model tra-
jectory. The range of these time CDFs is depicted in
Figure B1b as a shaded region. In a ergodic system, the
ensemble-based and time-based CDFs should match in
the limit in which the number of time steps and ensem-
ble members go to infinity. Though not a formal proof,
Figure B1b shows that this, to a good approximation,
is satisfied and that the system at least behaves like an
ergodic one.

APPENDIX C. KALMAN EQUATIONS IN
LATENT SPACE

In order to gain some insight into what the KF in the latent
spaces of VAEs looks like, we expand the expressions for
the states in the latent space and their mean and covari-
ance around the truth as functions of the observational
and forecast errors. We will use a linear approximation,
that is, terms that are second order or higher in the errors
are neglected. The following derivation holds for the dou-
ble ETKF–VAE configurations. However, the equivalent for
the single ETKF–VAE can be obtained by setting𝜇𝜙2(d) = d
and Σ𝜙2(d) = 0.

For a state x ∈  and observation y ∈  , we define

z = 𝜇𝜙1(x) + 𝜖
z ≈ 𝜇𝜙1(x

truth) + D𝜇𝜙1𝜖
x + 𝜖z, (C1a)

f = 𝜇𝜙2(y + 𝜖y − H(x)) + 𝜖d ≈ 𝜇𝜙2(y − H(xtruth))
− D𝜇𝜙2 H𝜖x + D𝜇𝜙2𝜖

y + 𝜖d, (C1b)
g = 𝜇𝜙2(y − H(x)) ≈ 𝜇𝜙2(y − H(xtruth)) − D𝜇𝜙2 H𝜖x + 𝜖d,

(C1c)

with xtruth the unknown true state of the model, H the
derivative of the potentially nonlinear observation opera-
tor H, 𝜖y the observational error, 𝜖x the forecast error in
state x, 𝜇𝜙1 the function for the conditional mean in the
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F I G U R E B1 (a) Largest Lyapunov exponent as a function of the angular acceleration 𝛼 (see Equation 9). (b) Cumulative probability
distribution of the x- (blue) and y-coordinate (red) estimated for a 4000-member ensemble (line) and 4000 time steps of a model trajectory
(shading).

first VAE, 𝜇𝜙2 the function for the conditional mean in the
second VAE,

D𝜇𝜙1 =
d𝜇𝜙1

dx
(xtruth), D𝜇𝜙2 =

d𝜇𝜙2

dd
(y − H(xtruth))

indicating their derivatives, 𝜖z a realisation from a Gaus-
sian with zero mean and covariance Σ𝜙1(x), and 𝜖d a real-
isation from a Gaussian with zero mean and covariance
Σ𝜙2(d).

If M,K ≫ 1, the matrix products appearing in
Equation (8) can now be approximated as

1
M − 1

Z̃f(Z̃f)T ≈ E[zzT] = D𝜇𝜙1 Pf
XD𝜇T

𝜙1
+ Σ𝜙1 , (C2a)

1
K − 1

F̃K F̃T
K ≈ E[f̃f̃T] = D𝜇𝜙2 RD𝜇T

𝜙2

+ D𝜇𝜙2 HPf
XHTD𝜇T

𝜙2
+ Σ𝜙2 , (C2b)

− 1
M − 1

Z̃F̃T
M ≈ E[z̃(−g̃)T] = D𝜇𝜙1 Pf

XHTD𝜇T
𝜙2
, (C2c)

1
M

FM1M ≈ E[g] = 𝜇𝜙2(y − H(xtruth))

− D𝜇𝜙2 HE[𝜖x], (C2d)
1
M

Z1M ≈ E[z] = 𝜇𝜙1(x
truth) + D𝜇𝜙1E[𝜖

x]. (C2e)

Here it is assumed for simplicity that observational errors
are unbiased (E[𝜖y] = 0) and, as is conventional in DA,
that 𝜖x, 𝜖y, 𝜖z, and 𝜖d are statistically independent.

The post-DA ensemble mean (𝜇a
z) and covariance (Pa

z)
in the latent space are given by X with Z in Equation (4),

with ⋅x replaced by ⋅z. Substitution of 𝜇Z and PZ with their
ensemble estimates based on Z, FM, and FK as defined in
Section 2.3.2 then gives, after inserting the approximations
in Equation (C2a–e),

K
def
= D𝜇𝜙1 Pf

XHTD𝜇T
𝜙2

(
D𝜇𝜙2 HPf

XHTD𝜇T
𝜙2

+ D𝜇𝜙2 RD𝜇T
𝜙2

+ Σ𝜙2

)−1
, (C3a)

𝜇a
Z ≈ 𝜇𝜙1(x

truth) + D𝜇𝜙1E[𝜖
x]

+ K(𝜇𝜙2(y − H(xtruth)) − D𝜇𝜙2 HE[𝜖x]), (C3b)
Pa

z ≈ D𝜇𝜙1 Pf
XD𝜇T

𝜙1
+ Σ𝜙1 − KHPf

XD𝜇T
𝜙1
. (C3c)

Based on Equation (C3a–c), the following two obser-
vations can be made. First, if we write down the SVD
of D𝜇𝜙1 and D𝜇𝜙2 , for example, D𝜇𝜙1 = U1S1VT

1 , then we
can see that the right singular vectors (the columns of Vi)
of D𝜇𝜙i with i ∈ {1, 2} basically act as feature selectors
determining which features in the state space dominate
the uncertainty in the latent space. Here, the singular
values on the diagonal of Si emphasize or de-emphasize
the importance of the different features. Second, the
VAEs introduce additional uncertainty in the ensem-
ble. The additional uncertainty from the first VAE, Σ𝜙1 ,
takes on the same role as the model error covariance in
the conventional KF. The uncertainty introduced by the
second VAE, Σ𝜙2 , behaves as a representativeness error
(Janjić et al., 2018).
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