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A B S T R A C T

Downscaled climate projections provide regionally relevant information for climate adaptation and planning 
purposes. Updated climate projections (~12-km) are presented here for the New Zealand region, downscaling 6 
global climate models (GCMs) from the Coupled Model Intercomparison Project (CMIP6) under a high emissions 
scenario (SSP3-7.0). Three regional climate models (RCMs) are used to explore differences when downscaling 
select GCMs. For end of century projections (relative to 1986–2005), the national multi-model annual mean 
warming is 3.1◦C (model range 2.0–3.8◦C) across downscaled simulations. Downscaling generally enhances 
warming over New Zealand relative to the GCMs, with the largest increases across high-elevation regions. There 
can be important differences in the projections across RCMs, including at national scales for temperature and 
across local-to-regional scales for precipitation. Averaged across models, annual extreme heatwaves become 
3–5◦C hotter for most regions. More frequent, intense, and longer duration meteorological drought is projected 
across northern and eastern regions of both islands. In terms of model uncertainty based on sign agreement, 
while summer mean precipitation projections carry the largest uncertainty, projections of summer meteoro
logical drought and precipitation extremes can be made with greater confidence. These results provide a foun
dation for further targeted regional climate change impact and adaptation studies.

1. Introduction

The provision of robust quantitative projections of climate extremes 
on regional scales remains a grand challenge for climate science 
(Marotzke et al., 2017; Palmer and Stevens, 2019; Jakob et al., 2023). 
Alongside the scientific challenge, since planning for climate adaptation 
typically occurs across local and regional scales, there is growing de
mand from stakeholders for higher-resolution information about 
changing climate risk (Giorgi, 2019; Fiedler et al., 2021; Gonçalves 
et al., 2022).

Especially in complex terrain and island settings, the output from 
global climate models (GCMs) generally has limited direct utility across 
local through regional scales (Giorgi, 2019; Gibson et al., 2024a; Evans 
et al., 2024). Across much of Aotearoa New Zealand, orographic pre
cipitation, mountain-valley winds, and land-sea breezes are highly 
important features of the mesoscale circulation yet are generally poorly 
represented in coarse resolution GCMs (Stone et al., 2022; Gibson et al., 

2024a). Other important features of the synoptic scale atmospheric 
circulation are also challenging to represent in GCMs, which are often 
better captured in downscaling from high-resolution regional climate 
models (RCMs). These include tropical and ex-tropical cyclones (Gibson 
et al., 2024a) and atmospheric rivers and associated precipitation 
(Rhoades et al., 2020; Payne et al., 2020), which are key drivers of 
extreme precipitation across New Zealand (e.g. Lorrey et al., 2014; 
Prince et al., 2021; Shu et al., 2021; Harrington et al., 2023). This 
highlights the important role of dynamical downscaling for refining 
climate projections of extreme events, especially for island nations and 
regions of complex terrain like New Zealand.

Earlier regional climate model simulations for New Zealand have 
been produced through dynamical downscaling of reanalysis and 
Coupled Model Intercomparison Project Phase 3 (CMIP3, and earlier) 
(MfE et al., 2008). Most of these early regional modelling studies for 
New Zealand focused on model setup and evaluation (e.g. Renwick 
et al., 1998; Drost et al., 2007; Ackerley et al., 2012), with less direct 
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focus on future climate projections.
For CMIP5, future downscaled projections with HadAM3P/ 

HadRM3P (~30-km resolution over New Zealand) were documented in 
MfE (2018), which are summarized here. Future warming is projected to 
be largest in summer, with the highest rates of warming in 
high-elevation regions. Daily maximum temperatures warm faster than 
minimum temperatures overall, increasing the diurnal temperature 
range. For mean precipitation, the largest and most consistent pro
jections were for winter, with increases of up to 40 % in parts the South 
Island West Coast under the high-emissions scenario of RCP8.5 by 
end-of-century. Moderate intensity precipitation extremes are projected 
to increase over most of the country. Drought intensity, as defined by 
potential evapotranspiration deficit, is projected to increase in most 
places, with the largest increases often occurring in already dry 
water-stressed regions such as the north and east of the North Island, and 
the lee of the Southern Alps in the South Island. Various downstream 
climate change applications have also been studied through these 
CMIP5 downscaled projections, including for hydrological projections 
(Jobst et al., 2018; Akhter et al., 2019; Collins, 2020), fire weather 
(Melia et al., 2022), and rainfall-induced damages from flooding and 
landslips (Pastor-Paz et al., 2020).

More recently, for CMIP6 projections, Gibson et al. (2024b) docu
mented the spread in precipitation projections for New Zealand across 
the full GCM ensemble (prior to downscaling) through a ‘storylines’ 
framework. A regional process-based context for projections of mean 
precipitation was provided, highlighting the important role of how 
projected changes in associated large-scale circulation features (e.g. the 
jet, Hadley cell, Rossby waves) differ between summer and winter. It 
was also pointed out that summer precipitation projections can be 
strongly dominated by internal variability alone in certain GCMs, 
providing important context for interpreting uncertainty in regional 
projections.

For CMIP6 downscaling, a recent accompanying study (Gibson et al., 
2024a) has described the experiment design, with the Conformal Cubic 
Atmospheric Model (CCAM, Thatcher and McGregor, 2009) used as the 
primary model for downscaling. That study comprehensively evaluated 
the downscaled output over the historical period, from the perspective 
of added value versus the driving GCMs. Some of the main areas of 
added value include wide-spread and improvements to the maximum 
and minimum temperature climatology, and large improvements to 
orographic precipitation. Interannual variability in temperature was 
also shown to be in close agreement with observations. For extreme 
events, large and consistent improvements were also found for several 
temperature and precipitation-based extreme indices. Large improve
ments to the representation of tropical cyclone statistics are also 
apparent in the downscaled output, especially across the category 2 and 
3 intensity range, though very intense tropical cyclones (category 4+) 
are still underrepresented in CCAM and to a similar degree in ERA5 
reanalysis (Gibson et al., 2023). CCAM has also been comprehensively 
evaluated for this region from the perspective of large-scale atmospheric 
circulation conditions, when driven from prescribed/observed sea sur
face temperature (SST) and sea ice concentration (SIC) (Gibson et al., 
2023).

Building upon these historical evaluation studies (Gibson et al., 
2023, 2024a), the overarching goal of this study is to provide a 
wide-ranging summary of updated (i.e. CMIP6) national climate pro
jections for New Zealand, including for extreme events. We explore the 
following research questions: How do the RCMs modify the climate 
projections relative to the GCMs? How do the projections differ across 
RCMs for downscaling a given GCM? How are extreme events, such as 
heatwaves and drought, projected to change? How does uncertainty in 
the projections compare across variables, extreme indices, and seasons? 
Many of these research questions, such as RCM intercomparisons and 
uncertainty quantification, have not been investigated before for this 
region. We anticipate that by covering a wider range of research ques
tions, this will provide the necessary foundations for future research on 

extremes with more in-depth process-based examinations of the drivers. 
The remainder of the paper is structured as follows. Section 2 (Methods) 
provides an overview of the downscaling experiment design and various 
indices for extreme events. Section 3 (Results and Discussion) presents 
the updated climate projections and discusses these in the context of 
earlier CMIP3/5 projections. Lastly, the main findings are summarized 
in Section 4 (Conclusions).

2. Methods

2.1. CMIP6 downscaling experiment design

The experiment design has been comprehensively described in a 
recent separate paper (Gibson et al., 2024a). Here, we briefly summarize 
the most relevant and important points. The primary dynamical model 
used for downscaling was CCAM (Thatcher and McGregor, 2009), spe
cifically version CCAM-2206. A global stretched grid configuration 
(C288) was implemented in CCAM focusing high-resolution over New 
Zealand (~12-km) accompanied by relatively high resolution 
(~12-35-km) over a much wider region spanning the South Pacific. As 
discussed in Gibson et al. (2023), this stretched grid configuration has 
additional attractive properties, including for the representation of 
storms as they approach the domain of interest. Additionally, the 
stretched grid removes certain issues concerning the size and placement 
of domain boundaries from traditional limited area RCMs. Further 
technical details on the CCAM configuration, including the grid and 
physics schemes, are provided in Gibson et al., (2024a).

As described in Gibson et al. (2024a), the GCM selection for down
scaling was based on carefully balancing several factors: model perfor
mance in the region over the historical period (including for features of 
the large-scale circulation and teleconnections), model independence, 
rate of future warming, and data availability. Details of the six CMIP6 
GCMs selected for downscaling are shown in Table 1. As shown in 
Gibson et al. (2024a), the six selected GCMs span the overall CMIP6 
ensemble warming range well (in both a global and New Zealand 
context), while additionally being constrained to the Intergovernmental 
Panel on Climate Change (IPCC) ‘very likely range’ for Equilibrium 
Climate Sensitivity (ECS) to avoid the oversampling of ‘hot models’ 

Table 1 
Details for the downscaling experiment design. Each RCM has an atmospheric 
grid resolution of approximately 12 km over the New Zealand region. Further 
details of the model setup are given in Section 2. For ACCESS-CM2, r4i1p1f1 was 
used due to data availability. GCM atmospheric resolution is approximate. RCM 
simulations marked with asterisks are primarily used for exploring RCM un
certainty and were not included when computing multi-model mean statistics.

Host GCM (variant label) 
Atmospheric resolution

RCM (12 
km)

Model setup for downscaling

ACCESS-CM2 (r4i1p1f1) 
1.875◦ x 1.25◦

CCAM Global spectral nudging to atmospheric 
and SST/SIC fields from GCM

WRF* Lateral boundary conditions from 
atmospheric and SST fields from GCM

NZESM (r1i1p1f1) 
1.875◦ x 1.25◦

CCAM* Global spectral nudging to atmospheric 
and SST/SIC fields from GCM

UM* Lateral boundary conditions from 
atmospheric and SST fields from GCM

NorESM2-MM (r1i1p1f1) 
1.0◦ x 1.0◦

CCAM Global spectral nudging to atmospheric 
and SST/SIC fields from GCM

EC-Earth 3 (r1i1p1f1) 
0.7◦ x 0.7

CCAM Global spectral nudging to atmospheric 
and SST/SIC fields from GCM

GFDL-ESM4 (r1i1p1f1) 
1.0◦ x 1.0◦

CCAM Global atmospheric CCAM simulation 
(no atmospheric nudging) with SST/SIC 
fields from GCM

AWI-CM-1-1-MR 
(r1i1p1f1) 
0.94◦ x 0.94◦

CCAM Global atmospheric CCAM simulation 
(no atmospheric nudging) with SST/SIC 
fields from GCM

CNRM-CM6-1 (r1i1p1f2) 
1.4◦ x 1.4◦

CCAM Global atmospheric CCAM simulation 
(no atmospheric nudging) with SST/SIC 
fields from GCM
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(Hausfather et al., 2022). Other aspects of the ensemble, such as the 
sampling of rainfall and circulation projections are discussed in Gibson 
et al. (2024a,b).

Additionally, there is flexibility in how the input data from the GCMs 
is used to drive CCAM. One option is to apply spectral nudging to a range 
of atmospheric fields (i.e. temperature, pressure, and wind fields at 
multiple vertical levels) from the host GCM (e.g. Thatcher and McGre
gor, 2009). Another option is to run CCAM in ‘AMIP’-mode, driven only 
by global SST/SIC fields from the host GCM (e.g. Hoffmann et al., 2016; 
Chapman et al., 2023). The latter option further enables an opportunity 
to bias-correct SST fields from the host GCM before being ingested into 
CCAM which can lead to improvements in the representation of down
scaled precipitation and other fields (Hoffmann et al., 2016; Chapman 
et al., 2023). Both approaches carry their own advantages and disad
vantages (see Gibson et al., 2024a for further details), and have been 
combined and considered part of an ensemble of regional climate pro
jections (Grose et al., 2023). As detailed in Table 1, three GCMs have 
been downscaled through direct spectral nudging and another three 
GCMs downscaled through bias-corrected SST/SIC-driven simulations. 
Each of these GCMs was downscaled with time varying CMIP6 forcings 
(i.e. greenhouse gas, aerosol, ozone, and solar) over the historical period 
(years 1960–2014) and for various future scenarios (SSP1-2.6, SSP2-4.5, 
SSP3-7.0, years 2015–2099).

For the analysis presented here, we focus on the SSP3-7.0 scenario as 
it represents a high-emissions scenario from which the climate change 
response can more readily be separated from internal variability, while 
alleviating some of the concerns expressed around the realism and 
suitability of the stronger forcing scenario represented by SSP5-8.5 (e.g. 
Hausfather and Peters, 2020). The results presented here for SSP3-7.0 
should not be interpreted as the ‘most likely’ scenario but instead as a 
feasible and approximate upper limit for change. While the focus here is 
not directly on scenario uncertainty, comparisons of the climate pro
jections across other SSPs (in terms of the spatial pattern of the change) 
were assessed for select variables.

While CCAM was the primary dynamical model for downscaling, two 
other limited area RCMs were also run in a more limited setting (see 
Campbell et al., 2024a for details). These were: the Advanced Research 
version of the Weather Research and Forecasting (WRF) (version 4.3) 
RCM (Skamarock and Klemp, 2008) and the Unified Model (UM) RCM 
based on the Global Atmosphere 7 (GA7, Walters et al., 2019) configu
ration of the UK Met Office Unified Model. To address important 
research questions, future climate projections from these two other 
RCMs were compared against CCAM by downscaling a common GCM 
(see Table 1). For example, how do the climate projections compare 
when WRF is used instead of CCAM for downscaling ACCESS-CM2? 
While not officially part of CMIP6, New Zealand Earth System Model 
(NZESM) GCM (Williams et al., 2016; Behrens et al., 2020) was also 
downscaled by both CCAM and the UM (Table 1) with the downscaled 
output is compared here. We note that the atmospheric component in 
NZESM is very similar to ACCESS-CM2 (Bi et al., 2020), both based on 
UM GA7.1, but with different ocean models and resolutions.

2.2. ETCCDI indices

Climate projections were assessed for select temperature and 
precipitation-based indices (Table 2) from the Expert Team on Climate 
Change Detection and Indices (ETCCDI, Zhang et al., 2011). This 
enabled different parts of the statistical distribution to be considered as 
well as duration-based aspects (e.g. the length of wet and dry spells). For 
these indices, and other fields/indices, climate projections were 
computed as the time-averaged difference between years 2080–2099 
and years 1986–2005, under SSP370. The base period of 1986–2005 was 
used here to facilitate comparisons against earlier CMIP5 projections 
MfE (2018). We also assess the ratio of the change in TXx (hottest annual 
day) and ‘tas’ (annual-mean daily mean temperature). This ratio is used 
to assess whether the warm tail of the daily temperature distribution is 

warming faster than the mean, across different regions and models. This 
ratio (i.e. TXx/tas) has been commonly applied in other regions and 
studies, often in the context of studying land-atmosphere feedbacks (e.g. 
Seneviratne et al., 2016; Donat et al., 2017, 2018; Vogel et al., 2017).

2.3. Heatwave indices

While some aspects of hot extremes are included in Table 2, these do 
not include duration-based considerations, such as multi-day heatwaves. 
For this reason, we extend our analysis to include heatwaves following 
the framework of Perkins and Alexander (2013). Through this approach, 
heatwaves are calculated based on the daily maximum temperature 
(‘tasmax’) exceeding the 95th percentile relative to the time of year (i.e. 
15-day moving window) and location (i.e. percentiles computed on a 
grid cell basis). Additionally, the exceedance of the 95th percentile must 
occur for at least 3 consecutive days to be counted as part of a heatwave. 
The percentiles are computed across the historical period (1960–2014). 
From this, we consider three heatwave metrics, as defined in Perkins and 
Alexander (2013). These are the heatwave frequency (HWF, i.e. the 
annual number of heatwave days), the heatwave amplitude (HWA, the 
temperature on the hottest day of the hottest annual heatwave), the 
heatwave duration (HWD, the duration of the longest heatwave event 
annually). We restrict the analysis to an extended southern hemisphere 
summer period (November through March).

2.4. Drought indices

We analyse meteorological drought (i.e. rainfall deficits) following 
the method described in Ukkola et al. (2020). This approach defines 
drought based on the 15th percentile of the 3-month running mean of 
precipitation, then applied to each month. The percentiles are computed 
for each location (i.e. grid cell) across the historical period (1960–2014). 
From this, following Ukkola et al. (2020), a drought event is defined as a 
month, or a number of consecutive months, when the running mean 
precipitation is below the drought threshold. Drought frequency is 
defined as the annual (or seasonal) number of drought events according 
to the drought threshold. Drought duration is longest consecutive 
drought event for a given period (i.e. annual or seasonal). Drought in
tensity is defined as the difference between the drought threshold and 
the monthly running mean precipitation.

2.5. Uncertainty metric

A relatively simple and informative way to present uncertainty in 
climate projections is to assess the level of sign agreement across indi
vidual models within the ensemble. This is particularly relevant for 
projections of precipitation, where the multi-model mean may obfuscate 
changes across models due to sign disagreement, including across the 
New Zealand region (Gibson et al., 2024b). This is commonly used in 

Table 2 
Extreme event ETCCDI indices evaluated across models in this study.

Index 
name

Description Input variable 
(daily)

CWD Annual maximum wet spell length (consecutive 
days pr ≥ 1 mm)

pr

R1mm Annual number of wet days (pr ≥ 1 mm) pr
Rx1day Annual maximum 1-day precipitation pr
Rx3day Annual maximum 3-day precipitation pr
SDII Average daily precipitation on wet days (pr ≥ 1 

mm)
pr

DTR Daily temperature range tmin, tmax
FD Annual number of frost days (daily tmin < 0◦C) tmin
Tmax Annual average of daily tasmax tmax
Tmin Annual average of daily tasmin tmin
TXx Annual maximum of daily tasmax tmax
TNn Annual minimum of daily tasmin tmin
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IPCC Assessment reports (e.g. Lee et al., 2021), where hatching on maps 
is used to indicate model sign agreement above a certain threshold. 
From this we quantify the percentage of land (i.e. over New Zealand) in 
which there is sign agreement across models at a particular level (e.g. 4 
of 6 models agree, or 5 of 6 models agree). This provides a summary 
metric where projection uncertainty can be readily compared across 
multiple climate variables, indices and seasons. Given limitations of the 
ensemble size here, it is important to caveat that this does not encompass 
the full extent of uncertainty (Palmer and Räisänen, 2002; Giorgi, 2019), 
and even when all models in the ensemble agree this should not be 
interpreted that there is no uncertainty in the projections. This is related 
to the practical necessity of selecting a subset of models, which inher
ently limits the range of all possible modelling options, including across 
both global and regional models (Knutti et al., 2013).

3. Results and Discussion

3.1. Temperature

We begin by showing climate projections, defined as the future 
period climatology minus historical climatology (years 2080–2099 
minus years 1986–2005), for temperature across different GCMs. We 
also explore how downscaling modifies the climate change pattern 
response relative to the raw GCM output, and how this differs across 
RCMs. Spatial maps for projections of daily mean annual temperature 
(‘tas’) are shown in Fig. 1. The national average projected warming is 
3.1◦C (model range 2.0–3.8◦C) across downscaled models. Relative the 
host GCM, downscaling from CCAM enhances the nationally averaged 
tas warming by up to +0.5◦C. Compared to other seasons and temper
ature statistics, the warming for summer tasmax is overall the largest. 
For tasmax in summer, warming tends to be enhanced more so across 
inland regions of the North Island (Supplementary Material Fig. S1), 
with national average projected warming of 3.9◦C (model range 
2.8–4.8◦C) across downscaled models.

Compared to the GCM, downscaling tends to also show enhanced 
warming over regions of high elevation of the South Island, which is 
shown in greater detail in Fig. 2 by separating daily maximum (tasmax) 
and minimum temperature (tasmin) changes. This elevation-dependent 
warming is most apparent in winter (JJA), where all RCMs (CCAM, 
WRF, UM) show evidence for this, though the spatial patterns and 
magnitudes differ somewhat across RCMs when driven by the same 
GCM. Enhanced high elevation warming is consistent with previous 
CMIP5 downscaled projections MfE (2018) and appears primarily 
related to reduced surface albedo from reduced snow cover and reduced 
snowfall with warming into the future. This is suggested to be more 
pronounced in the RCMs than the GCMs due to representation of 
topography that is lacking at the typical GCM resolution. Given the 
differences between the tasmax and tasmin changes shown in Fig. 2, and 
the differences across RCMs, it is likely that more complex changes to 
clouds, water vapor and radiative fluxes (Pepin et al., 2015; Campbell 
et al., 2024) are also playing an important role which will be explored in 
future work.

The nationally averaged projections for tasmax are further analysed 
in Fig. 3 to examine differences between RCMs. Downscaling CCAM in 
‘AMIP mode’ (driven only by SST/SIC) tends to produce a greater 
warming rate relative to the GCM. This is evident in Fig. 3 where the red 
points (CCAM driven with SST/SIC) are typically further from the 1:1 
warming slope compared to the grey points (CCAM driven with atmo
spheric nudging), where the 1:1 warming slope indicates equal warming 
from the GCM and RCM. The use of multiple RCMs also allows us to 
compare projections when downscaling select GCMs (i.e. ACCESS-CM2 
is downscaled by both CCAM and WRF; the NZESM is downscaled by 
both CCAM and UM). Overall, for tasmax across different seasons, the 
changes are very similar across CCAM and UM, where both RCMs 
slightly enhance warming by +0.1◦C relative to NZESM. In contrast, 
larger differences are apparent when comparing CCAM and WRF. For 
example, in summer, the warming from CCAM is approximately +0.9◦C 
relative to WRF, when both RCMs are downscaling ACCESS-CM2. 

Fig. 1. Climate projections (years 2080–2099 minus years 1986–2005) under SSP370 for annual mean temperature (tas). The values in the top left of each panel are 
for the NZ-averaged change. The top row shows the RCM (CCAM) and the bottom row shows each GCM (i.e. prior to downscaling). Asterisks indicate that only the 
SST/SIC fields from the GCM have been used to drive CCAM.
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Further processed-based evaluations of these two model simulations 
would be useful for shedding light on what is responsible for this dif
ference, including analysis of cloud cover changes (Campbell et al., 
2024) and land-atmosphere feedbacks (e.g. Donat et al., 2017).

Another important consideration is understanding why warming 
appears to be enhanced more so in CCAM SST/SIC-driven simulations 
compared to the nudged simulations relative to each host GCM, espe
cially in the summer season. While both approaches are commonly used 
for downscaling with CCAM (Grose et al., 2023; Chapman et al., 2023), 
to our knowledge this appears to be the first time this has been docu
mented and investigated. In contrast, the direct impact of 
bias-correcting input SST/SIC (versus not) has been investigated more 
thoroughly (e.g. Hoffmann et al., 2016). Enhanced high elevation 
warming is not the driver of this difference, noting that high elevation 
warming is more pronounced in winter (instead of summer). Instead, 
one possible explanation for this result is that the regional atmospheric 
circulation associated with warmer temperatures over New Zealand (i.e. 
more northerly flow conditions and/or more stable high-pressure 
ridging) tends to be enhanced into the future in the SST/SIC-driven 
simulations relative to the host GCM. In contrast, the nudged simula
tions will have trends in atmospheric circulation that are nearly iden
tical to the GCM, due to the way the spectral nudging is performed.

Indeed, evidence directly supporting this is presented in Supple
mentary Material Figs. S2–S4. For each of the SST/SIC-driven CCAM 
simulations, the downscaled simulations across summer months tend to 
enhance ridging over New Zealand or to the east of New Zealand (shown 
in the MSLP projections) which drives more northerly flow conditions 
directly over New Zealand (indicated by the negative change in merid
ional flow [v850]). These northerly flow conditions are well known 
drivers of warmer conditions across New Zealand (Dean and Stott, 
2009). These conditions are most pronounced in the downscaled pro
jections from CNRM-CM6-1 and GFDL-ESM4. As shown in the near 
surface air temperature changes across the much wider South Pacific 

region (top row, Supplementary Material Figs. S2–S4), as expected, 
these regional circulation changes impact the enhanced warming only 
on a regional basis (i.e. over New Zealand) whereas the downscaled 
simulations have a much more similar warming rate to the driving GCM 
when averaged over this wider South Pacific region. The magnitude of 
the bias correction on climatological SST fields in the CCAM simulations 
is further shown in Supplementary Material Figs. S5–S6. As shown, bias 
correction tends to increase SSTs slightly on the western coasts of New 
Zealand and decrease SSTs on the eastern coasts. Notably, these differ
ences around New Zealand remain consistent across both the historical 
and future periods, hence they cannot directly explain the change in 
warming over New Zealand.

3.2. Mean precipitation

Projections for mean precipitation are explored in Fig. 4. Here 
magenta shading is used to detail model projection uncertainty, based 
on sign agreement of the change across the ensemble. As before, pro
jections are presented separately for the RCM (CCAM) and GCM 
ensemble to highlight how downscaling modifies the change patterns. 
For the RCM ensemble, the largest model agreement is typically seen in 
winter months. In winter, projections are for relatively large increases 
on the west coast of the South Island, exceeding 20 % in some places, 
accompanied by drying in the eastern and northern parts of both islands. 
A 20 % increase would be substantial for the west coast, given that 
observed annual rainfall can exceed 10 m in parts of this region, with 
total rainfall fairly consistent across seasons (Macara, 2016). The GCMs 
for winter show a similar overall spatial pattern, though the drying on 
the east coast of both islands is substantially reduced.

Despite using different RCMs and GCMs, this overall spatial pattern 
of precipitation change is generally similar to that reported from pre
vious CMIP5 downscaling (MfE et al., 2008). As described in Gibson 
et al. (2024b), this overall spatial pattern is related to the intensification 

Fig. 2. Climate projections (years 2080–2099 minus years 1986–2005) under SSP370 for daily minimum temperatures (tasmin, panel a) and daily maximum 
temperatures (tasmax, panel b) in winter (JJA). The ACCESS-CM2 model is downscaled with CCAM and WRF; NZESM is downscaled with CCAM and UM.
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and southward shift of the jet, while the far north (i.e. of the North Is
land) drying appears related to shifts in Hadley cell extent which can 
differ between GCMs. Given the intensification of the jet, the enhanced 
drying on the east coast of the South Island in CCAM (relative to the 
GCMs) is very likely related to the better representation of topography in 
the RCM which creates a rain shadow effect under westerly flow con
ditions. The spring season (i.e. SON) projections in the RCM ensemble 
are very similar spatially to the winter change patterns, suggesting 
similar changes across large-scale drivers. However, the magnitude of 
the precipitation reductions is generally more pronounced in spring 
across most regions.

Compared to winter, the summer (i.e. DJF) projections are consid
erably more uncertain in the downscaled projections in terms of sign 
agreement. For winter, 66 % (i.e. 4 of 6) of the models in the ensemble 
agree on the sign of the change across 93.5 % of the country compared to 
only 66.9 % of the country for summer (Fig. 4). In summer, the changes 
are also much more spatially heterogenous indicating a lack of consis
tency in the associated large-scale circulation drivers. This was previ
ously documented in Gibson et al. (2024b) highlighting the substantially 
larger uncertainty in mean precipitation projections in summer across 
CMIP6 models, where the relative role of internal variability is large. 
Since this uncertainty appears largely driven by a lack of consistent and 
robust drivers of large-scale circulation, it is not surprising that the RCM 
projections for summer do not reduce this uncertainty. It is important to 
note, as discussed by Giorgi (2019), the value of downscaled projections 
should not be thought of as reducing overall uncertainty, since down
scaling/RCM uncertainty is not negligible and can be an important 
component of the full uncertainty.

We further explore the role of RCM uncertainty in the context of 
winter mean precipitation projections in Fig. 5. We have focused pri
marily on winter as this has been identified as the season with generally 
the most consistent change pattern (Fig. 4), including in CMIP6 GCMs 
(Gibson et al., 2024b) and earlier climate downscaling studies MfE 
(2018). This analysis is also presented for the spring season in Supple
mentary Material Fig. S7. Even for the winter pattern, Fig. 5 shows that 
notable RCM uncertainty on smaller scales can remain. While the main 
themes of the change pattern remain (i.e. wetter on the west, drier to the 
north and east), uncertainties become more important when considering 
location-specific changes (i.e on the scale of individual towns/cities) and 
their magnitudes. Since each of these RCM pairs (CCAM vs WRF; CCAM 
vs UM) is driven by the same GCM, we can be confident that these dif
ferences across RCMs are mostly driven by differences in the smaller 
scale RCM physics themselves. For spring, the strong drying identified 
earlier across northern and eastern regions (Fig. 4) is also apparent in the 
WRF and UM RCMs, which can show an even larger drying pattern in 
places (Fig. S7).

While the importance of RCM uncertainty has been noted in CORDEX 
projections in other regions, including across Australia (Evans et al., 
2021), Europe (Sørland et al., 2018; Giorgi, 2019), North America 
(Bukovsky and Mearns, 2020), and Africa (Paeth et al., 2011), it is the 
first time to our knowledge that it has been quantified for New Zealand. 
This highlights that future downscaling exercises for New Zealand (i.e. 
for CMIP7) would benefit from placing greater emphasis on sampling 
RCM uncertainty, by including additional RCMs across the so-called 
GCM/RCM matrix (Giorgi, 2019). Since the main limitation to filling 
in the GCM/RCM matrix is computational resources, the use of RCM 

Fig. 3. Comparison of GCM (x-axis) and RCM (y-axis) projected warming (years 2080–2099 minus years 1986–2005) for daily maximum temperature (tasmax) 
under SSP370 averaged over New Zealand land-based grid cells. Different RCM configurations are shown according to colour. Solid vertical lines join (i.e. compare) 
different RCM warming responses for a given GCM, where available (see Table 1).
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emulators based on machine learning (ML) and artificial intelligence 
(AI) could play an important role, alongside continued investment in 
dynamical regional models (Rampal et al., 2024; Evans et al., 2024). For 
building trust in AI-based projections, it will be important that both the 
historical biases and climate change patterns are carefully evaluated and 
understood alongside the dynamical models which they have been 
tasked with emulating (Rampal et al., 2024, 2025). Interpretable AI 
approaches, developed around process-based evaluation, could also help 
to build trust and community uptake (e.g. Gibson et al., 2021; Rampal 
et al., 2022). Additionally, exploring avenues for enhancing the RCM 
resolution beyond 12 km will be a focus of future work. Given the 
complex terrain of New Zealand, moving towards convection-permitting 
RCM resolutions (~2 km) will likely add further value in terms of more 
realistically representing orographic precipitation and precipitation 
extremes (Pirooz et al., 2023).

While scenario uncertainty was not the focus here, the downscaled 
projections for CCAM include three different scenarios (SSP126, 
SSP245, SSP370) which can be explored. The similarities and differences 
across scenarios for projections of mean precipitation is summarized in 
Fig. 6. To do so, the pattern correlation is computed between SSPs for 
different seasons and different downscaled models. As expected, the 
spatial patterns of change are overall more similar (i.e. higher pattern 
correlation) for comparing between SSP370 and SSP245 (Fig. 5b) than 
for SSP370 and SSP126 (Fig. 5a). The projections across SSPs are most 
consistent for JJA, SON (and annually). This finding generally agrees 
with findings in other regions globally, namely that when there is a 
robust and consistent climate change signal, the differences between 
SSPs mainly act to amplify the magnitude while preserving the spatial 
pattern (e.g. Neelin et al., 2013).

3.3. Temperature extremes

We begin by showing projections for several relatively simple 
temperature-based ETCCDI indicators followed by an analysis of heat
waves. Compared to the projections for daily mean temperature (Fig. 1), 
the ETCCDI indicators shown in Fig. 7 for the downscaled simulations (i. 
e. RCM) can show considerably larger changes in certain regional 
characteristics of extremes. This is especially apparent for TNn (annual 
minimum temperature) and number of frost days, indicating that the 
RCM (i.e. CCAM) warm the coldest extremes of the temperature distri
bution in the coldest regions more so than in the GCM. Given that these 
differences are clearly associated with elevation (i.e. more enhanced 
warming in the RCM in high elevation regions), it again seems likely that 
reduced snow cover and reduced albedo in winter months has contrib
uted to this enhanced warming, again highlighting the added value of 
downscaling and improved representation of topography. Also notable 
is the enhanced diurnal temperature range in the downscaled simula
tions compared to the host GCM. This is related to the daily maximum 
temperatures generally warming faster than the daily minimum tem
peratures (hence widening the daily temperature range), with this 
finding generally consistent across regions and seasons (Supplementary 
Material Figs. S8–S10).

Before analysing future projections of heatwaves, the historical 
climatology (i.e. averaged over years 1986–2005) of heatwave metrics 
are presented in Supplementary Material Fig. S11. As represented in 
CCAM, the historical frequency and duration of heatwave days is rela
tively uniform across the country, as expected since heatwaves are 
defined based on the location-specific 95th percentiles. In particular, the 
average number of days per year belonging to a heatwave differs be
tween 2 and 5 days, while the average duration is generally between 3 
and 5 days. The amplitude, defined as the temperature on the hottest day 

Fig. 4. Climate projections (years 2080–2099 minus years 1986–2005) under SSP370 for mean precipitation in each season. The top row shows the multi-model 
mean (n = 6) across RCMs (CCAM) and the bottom row shows the multi-model mean (n = 6) across the GCMs (i.e. prior to downscaling). Magenta shading in
dicates regions where there is less than 66 % agreement in the sign of the change across models, the ‘A’ value indicates the percentage of land area with non magenta 
shaded cells.
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of the hottest annual heatwave, shows much larger regional variation, as 
expected. The hottest heatwaves generally occur in eastern regions of 
the country over relatively flat terrain, often associated with foehn 
winds. These regional details in heatwave amplitude are clearly missing 
from the GCMs (bottom row of Fig. S11), again highlighting the added 
value of downscaling, as previously reported for the representation of 
hot extremes in Gibson et al. (2024a) and more broadly for heatwaves 
across Australia (Trancoso et al., 2020).

For downscaled projections of heatwaves (Fig. 8), large increases in 
heatwave frequency and duration are shown, particularly enhanced 
across the northern half of the North Island. These increases are sub
stantial, going from a historical heatwave frequency of ~3 days per 
season to over 60 days in some regions. This corresponds to roughly 40 
% of days per extended summer season (NDJFM) being classed as 

heatwaves, based on the historical 95th percentile 3-day definition of 
heatwaves. Similarly for duration, the average length of the longest 
duration heatwaves is projected to increase from 3 to 5 days to being 
multi-week events (i.e. exceeding 20 days in some regions). For heat
wave amplitude, the downscaled projections show increases in the 
hottest days of between 3 and 5◦C, broadly consistent with the pro
jections shown earlier for TXx (single hottest day of year). The down
scaled and GCM (raw) projections for heatwaves show similar overall 
patterns, especially for heatwave frequency and duration, while differ
ences are larger for heatwave amplitude with the RCM ensemble 
showing larger increases in many regions.

These relatively large projected increases for heatwave frequency 
and duration are consistent with heatwave projections in other regions 
globally when similar levels of mean warming are reached (e.g. Cowan 

Fig. 5. Climate projections (years 2080–2099 minus years 1986–2005) under SSP370 for mean precipitation in winter (JJA) showing the sensitivity of the choice of 
RCM when downscaling ACCESS-CM2 and NZESM GCMs. ACCESS-CM2 is downscaled with CCAM and WRF; NZESM is downscaled with CCAM and UM.
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Fig. 6. Pattern correlation (PCOR) between select SSPs for different seasons and models for mean precipitation projections (years 2080–2099 minus years 
1986–2005). Here each model refers to the CCAM downscaled output from that model.

Fig. 7. Climate projections (years 2080–2099 minus years 1986–2005) under SSP370 for select temperature-based ETCCDI indices. The top row shows the multi- 
model mean (n = 6) across RCMs (CCAM) and the bottom row shows the multi-model mean (n = 6) across the GCM (i.e. prior to downscaling). Magenta shading 
indicates regions where there is less than 66 % agreement in the sign of the change across models, the ‘A’ value indicates the percentage of land area with non 
magenta shaded cells.
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et al., 2014; Perkins-Kirkpatrick and Gibson, 2017). For example, at 
+3◦C warming, Perkins-Kirkpatrick and Gibson (2017) report heatwave 
frequency increases of between 40 and 120 heatwave days annually, 
with large regional differences across the globe. As described therein, 
regions with relatively low historical variability in daily maximum 
temperatures (i.e. the tropics and parts of the sub-tropics) show much 
larger increases in heatwave frequency and duration for a given 
warming level, which can somewhat complicate the practical interpre
tation of these changes. This contributes to why the northern parts of 
New Zealand show the largest projected increases in heatwave fre
quency and duration (Fig. 8), despite showing similar increases in 
summer tasmax (Fig. S9) and TXx (Fig. 7) to other regions across the 
country. As shown in Supplementary Material Fig. S12, these northern 
regions are those with the lowest historical variability in daily maximum 
temperatures, with this evident in both gridded observations and the 
downscaled output.

The change in TXx relative to the change in mean temperature (tas) is 
shown for each downscaled GCM (downscaled with CCAM) in Fig. 9. 
This change ratio shows how much faster the warm extremes (temper
ature tails) are projected to increase compared to the overall mean 
temperature. As shown in the multi-model mean of the downscaled 

ensemble, there is generally agreement that the tails are projected to 
warm faster than the mean (i.e. as indicated by TXx/tas >1). However, 
closer inspection of individual models and regions reveals important 
regional differences. There is some indication, in at least four of the 
downscaled models, that parts of the central North Island may show a 
“hotspot” for this change. Parts of Southland (the southernmost region 
of the South Island) is another region that stands out for the largest in
creases across models. When comparing across RCMs (CCAM, WRF, UM) 
for downscaling select GCMs (Fig. 10) regional differences in these 
hotspot regions are also apparent. This result highlights that the regional 
uncertainty in this ratio is driven both by differences in the driving fields 
from the GCM (as shown in Fig. 9) and by differences in the smaller scale 
RCM physics parameterizations (as shown in Fig. 10), including land- 
atmosphere interactions, and possibly by differences in the RCM ancil
lary files (e.g. land use, vegetation, soil properties).

Other studies, mostly focused on parts of North America and Europe, 
have used this ratio of TXx/tas in the context of studying land- 
atmosphere feedbacks in enhancing (or dampening) projected trends 
in temperature extremes (Seneviratne et al., 2016; Donat et al., 2017, 
2018; Vogel et al., 2017). Future processed-based studies could extend 
our analysis to better understand and evaluate the role of soil moisture 

Fig. 8. Climate projections (years 2080–2099 minus years 1986–2005) under SSP370 for extended summer (months NDJFM) heatwave indices (frequency, duration, 
and amplitude). The top row shows the multi-model mean (n = 6) across RCMs (CCAM) and the bottom row shows the multi-model mean (n = 6) across the GCM (i.e. 
prior to downscaling). The corresponding heatwave indices for the historical climatology are shown in Supplementary Material Fig. S11.

P.B. Gibson et al.                                                                                                                                                                                                                               Weather and Climate Extremes 49 (2025) 100784 

10 



and surface fluxes across the different GCMs/RCMs and their influence 
on regional climate projections of temperature extremes for New Zea
land (Harrington, 2021). Given our finding that regional differences in 
TXx/tas projections can stem from both GCM and RCM uncertainty, 
changes in cloudiness and circulation regimes (e.g. Gibson et al., 2017; 
Vautard et al., 2023) and land surface model uncertainty all likely play 
an important role, warranting further analysis for this understudied 
region.

3.4. Precipitation extremes

Climate projections for selected precipitation extremes from the 
ETCCDI indices is shown in Fig. 11. The annual number of wet days (>1 
mm, R1mm) is projected to decrease in the downscaled simulations 
across most of the country, with the largest decreases widespread across 
the North Island. The downscaled projections for annual wet days 
closely resemble the overall spatial pattern of change from the raw GCM 
output. While the number of wet days is decreasing, the average pre
cipitation rate on wet days (SDII) and the extreme precipitation rates 
(Rx1day and Rx3day) are both increasing, consistent with expectations 
from the thermodynamic drivers of precipitation extremes with warm
ing (Trenberth, 2011; Pfahl et al., 2017; Fowler et al., 2021). Further
more, the extremes are projected to increase faster than the mean 
precipitation increase on wet days. This implies that even where total 

annual precipitation is not projected to increase, the mean and extreme 
precipitation rates will increase but occur across fewer and shorter 
duration events, as also indicated by the general decrease in consecutive 
wet days (CWD).

As discussed in Harrington et al. (2024), this highlights the need to 
consider both the wet and dry extreme tails of the precipitation pro
jections, as these changes can be masked when considering projections 
of total annual precipitation alone. Further analysis of this is provided in 
Fig. 12, showing changes in different quantiles of the daily precipitation 
distribution at select locations. As shown, even at locations where the 
total annual precipitation is projected to decrease (e.g. Gisborne, 
Auckland) the most extreme upper quantiles of the distribution (i.e. 0.99 
and 0.999 quantiles) can still show pronounced projected increases at 
these locations.

For extreme precipitation indices, the projections from the raw GCM 
output are broadly consistent with the downscaled output, at least in 
terms of the change magnitude at the national scale. This is despite 
relatively large historical biases in the GCM output for a number of these 
indices, as documented in Gibson et al. (2024a). However, across finer 
regional scales, certain differences are notable. For the annual number 
of wet days (R1mm) the downscaled projections are more clearly 
impacted by terrain, especially over the South Island where the reduc
tion in dry days is amplified in the lee of the Southern Alps. Since the 
topography is poorly represented in the GCMs, these changes are not 

Fig. 9. Ratio of annual TXx/tas climate projections (years 2080–2099 minus years 1986–2005) under SSP370, where each model has been downscaled by CCAM. 
Positive values indicate that TXx is warming faster than tas, where TXx and tas are both defined locally (i.e. at each grid cell). The values in the top left of each panel 
are for the NZ-averaged change. Magenta shading indicates regions where there is less than 66 % agreement in the sign of the change across models, here defined as 
greater or less than 1. The agreement value (A) indicates the percentage of land area with non magenta shaded cells.
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well accounted for, highlighting the benefits of downscaling here. 
Furthermore, the downscaled simulations generally show much larger 
increases in the wettest annual events (Rx1day and Rx3day) across the 
top half of the North Island, which can exceed 20 %. Precipitation ex
tremes in this region are often caused by ex-tropical cyclones, and 
associated atmospheric rivers, which are generally much better repre
sented in the downscaled simulations relative to the raw GCMs (Gibson 
et al., 2024a). Differences in these driving processes may have 
contributed to the differences in the RCM versus GCM projections here. 
In terms of projection uncertainty, compared to the GCMs, the down
scaled simulations can show slightly higher levels of uncertainty when 
expressed as a fraction of agreement across New Zealand (i.e. lower A 
values in Fig. 11) for certain indices (e.g. SDII, CWD), which may be 
related to the greater spatial detail provided by the RCM.

3.5. Meteorological drought

Climate projections for meteorological drought are shown in Fig. 13. 
The extended summer period (NDJFM) is shown here, while the change 
across individual downscaled GCMs is shown in Supplementary Material 
Figs. S13–15 for the same season. For drought frequency, relatively large 
increases (>50 %) in the number of events is projected across the models 
over large parts of the northern and eastern regions of both islands. For 
projections of drought frequency, there can be large differences between 
the RCM and raw GCM output. As discussed earlier, the better repre
sentation of topography is apparent in the RCM change patterns, driving 
the west/east gradient in the response across the South Island that is not 
captured in the GCMs. Another notable difference is the overall larger 
increase in drought frequency over the North Island in the downscaled 

Fig. 10. Ratio of annual TXx/tas climate projections (years 2080–2099 minus years 1986–2005) under SSP370, showing the sensitivity of the choice of RCM when 
downscaling ACCESS-CM2 and NZESM GCMs. The values in the top left of each panel are for the NZ-averaged change. ACCESS-CM2 is downscaled with CCAM and 
WRF; NZESM is downscaled with CCAM and UM. The ACCESS-CM2 downscaled by CCAM projection panel is identical to that in Fig. 9.
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output compared to the raw GCM. It appears both large-scale circulation 
conditions and smaller scale RCM physics play a role in driving this. For 
example, as shown in Fig. S13, there are reasonably large differences 
across the individual downscaled CCAM simulations at regional scales, 
with the SST-driven simulations showing the largest increases in 
drought frequency across this region and season. Extending beyond the 
simple circulation projections shown earlier (Supplementary Material 
Figs. S2–S4), further detailed process-based analysis of these down
scaled simulations would be useful, targeting both differences and 
trends in large-scale circulation patterns (i.e. blocking) relevant to 
drought, and smaller scale land-atmosphere feedbacks that can promote 
drying trends.

The projections for downscaled drought duration and intensity 
generally align with drought frequency projections. Namely, the largest 
and most consistent projected increase in drought duration and intensity 
are across the north and east regions of both islands. When comparing 
the uncertainty in projections across downscaled models, it is notable 
that the projections for summer drought statistics (Fig. 13) are more 
consistent (i.e. lower uncertainty) than projections for summer mean 
precipitation (Fig. 4). For example, when sign agreement is defined at 
the 66 % level (i.e. 4 of 6 models) there is agreement for mean precip
itation change across only ~67 % of the country, compared to ~90 % of 
the country for drought intensity. As such, for regions of the country 
where the summer mean precipitation change is highly uncertain, more 
confident statements around drought statistics may still be possible for 
this same region. The explanation for this is that the processes driving 
mean precipitation can differ from those driving meteorological 
drought, with the latter also impacted considerably by future changes in 
long-term precipitation variability (Sheffield and Wood, 2012; Ukkola 
et al., 2020). This finding, that projected changes in meteorological 
drought statistics are generally more consistent and robust than for 

mean precipitation, was reported and discussed in Ukkola et al. (2020)
for multiple other global land regions from GCMs.

Despite differences in the models (both GCMs and RCM), and the 
approach for defining drought, the projections reported here for mete
orological drought are broadly consistent with those from previous 
CMIP5 downscaled projections for New Zealand MfE (2018). Namely, 
previous downscaled projections also emphasized the largest increases 
in drought frequency and severity across northern and eastern regions of 
both islands, which are climatologically dry areas. Here we adopt a 
simpler meteorological drought definition (i.e. a sustained deficit of 
precipitation) compared to previous approaches that used offline cal
culations of potential evapotranspiration (PET) in combination with an 
offline water balance model to define potential evapotranspiration 
deficits (PED). While each approach can be useful in certain contexts, we 
suggest that the simpler meteorological drought approach adopted here 
has a number of benefits. When used in a climate change context, recent 
studies have expressed concern that offline use of PET may overestimate 
future drought, including through potentially ‘double-counting’ impor
tant feedbacks on surface humidity and temperature (Swann et al., 2016; 
Yang et al., 2019; Ukkola et al., 2020). Furthermore, it is a difficult task 
for state-of-the-art RCMs to faithfully represent all variables that go into 
calculations of PET. Indeed, as discussed in MfE (2018), previous pro
jections of PET/PED were considered preliminary given the relatively 
large disparities between the model historical climatology for these 
quantities and observational estimates, while noting that observational 
estimates also have a relatively high degree of uncertainty.

3.6. Summary of projection uncertainty

For the climate projections presented earlier, uncertainty estimates 
were assigned based on model sign agreement computed across the 

Fig. 11. Climate projections (years 2080–2099 minus years 1986–2005) under SSP370 for select precipitation based ETCCDI indices. The top row shows the multi- 
model mean (n = 6) across RCMs (CCAM) and the bottom row shows the multi-model mean (n = 6) across the GCM (i.e. prior to downscaling). Magenta shading 
indicates regions where there is less than 66 % agreement in the sign of the change across models, the ‘A’ value indicates the percentage of land area with non 
magenta shaded cells.
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country (e.g. Fig. 4). In those figures, agreement was defined based on 4 
of 6 model (i.e. >66 %) sign agreement threshold. In Fig. 14, we present 
a summary of these findings across indices and seasons, as well as testing 
the sensitivity to a stricter threshold for model agreement (i.e. 5 of 6 
models, >83 %). For the sake of brevity, we only present precipitation- 
based indices/variables, given that most temperature-based indices/ 
variables analysed have complete agreement (i.e. 100 %). As discussed 
earlier, projections of the meteorological drought statistics for summer 
(i.e. frequency, duration, intensity) are more consistent than for summer 
mean precipitation, and this finding holds across both thresholds of 
model agreement. Similarly, extreme precipitation indices (i.e. Rx1day/ 
Rx3day) are more consistent than annual mean precipitation pro
jections. Projections of mean precipitation in winter (JJA) are also more 
consistent than for summer (DJF), as discussed earlier this is likely 
related to more robust large-scale circulation trends in winter across the 
models.

As discussed in Gibson et al. (2024b), for projections of summer 
mean precipitation over New Zealand, it appears it will be difficult to 

further constrain this uncertainty, given the apparent role of internal 
variability which is enhanced in this season even under a high emissions 
scenario. As such, for climate adaptation and planning purposes, it may 
be more appropriate to focus on projections of the tails of the distribu
tion (i.e. heavy precipitation extremes or drought) where confidence is 
larger, or to communicate a storylines approach for defining risk 
(Shepherd et al., 2018; Narsey et al., 2022; Gibson et al., 2024b) based 
on different physically plausible pathways describing how these quan
tities may change regionally into the future. Ongoing efforts to improve 
RCM resolution towards convection-permitting scales over New Zealand 
will likely also further improve the representation of precipitation ex
tremes and related processes (Pirooz et al., 2023; Campbell et al., 2024).

4. Conclusions

Downscaled climate projections provide high-resolution information 
important for planning and climate adaptation purposes, which is not 
readily available from GCM output directly. In terms of providing 

Fig. 12. Daily precipitaiton at different quantiles of the distribution for historical (years 1986–2005) and SSP370 (years 2080–2099) from the CCAM RCM ensemble. 
Three example locations are shown based on ‘mean wetting’ (panel a) and ‘mean drying’ (panel b and c) from the mean annual precipitation projections shown 
earlier in Fig. 4.
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century-long projections from a range of GCMs and emissions scenarios, 
the updated projections presented here encompass the highest- 
resolution ensemble of physics-based model projections for New Zea
land to date. Focusing on a relatively high emissions scenario (SSP3- 
7.0), a summary of some of the main findings from these updated CMIP6 
projections are: 

• Daily maximum temperatures are generally projected to increase 
faster than daily minimum temperatures, with the largest projected 
increases in summer. This leads to projected increases in daily tem
perature range across most of the country. In general, high-elevation 
regions warm the most. These findings are qualitatively consistent 
with earlier CMIP5 projections.

• For mean precipitation, the most consistent projections are for 
winter and spring, associated with a wetting response on the west 
and south of New Zealand and drying to the north and east. Model 
projections diverge more considerably for summer mean precipita
tion projections. At a regional to national scale, these broad patterns 
of change and seasonal variability are generally consistent with 
earlier CMIP5 projections.

• Downscaling tends to enhance the overall warming from the GCMs. 
This can differ between RCMs and differ depending on how the RCM 
is driven by the GCM (i.e. whether driven by spectral nudging or 
driven in AMIP mode from SST/SIC fields). The differences are 
largest for daily maximum temperatures in summer.

• Although the winter mean precipitation projections are the most 
consistent of any season, at smaller scales and in some regions, dif
ferences can arise when comparing different RCMs driven by the 
same GCM.

• Compared to the projections from GCMs which lack important 
orography, downscaling adds considerable detail for certain extreme 
temperature indices. Most notably, larger increases in high elevation 
regions are evident for the warming of cold-tail temperature ex
tremes (i.e. TNn). Similarly, the projected decease in frost days with 
warming is much more pronounced, highlighting a key aspect of 
added value from downscaling.

• Summer heatwave projections from the downscaled simulations 
indicate relatively large increases in frequency, duration and 
amplitude (3–5◦C warmer) towards the end-of-century, particularly 
for the northernmost regions of the country. The warm tail of the 
temperature distribution generally warms faster than the mean, 

Fig. 13. Climate projections (years 2080–2099 minus years 1986–2005) under SSP370 for summer (months NDJFM) meteorological drought indices (frequency, 
duration, and intensity). The top row shows the multi-model mean (n = 6) across RCMs (CCAM) and the bottom row shows the multi-model mean (n = 6) across the 
GCM (i.e. prior to downscaling). Magenta shading indicates regions where there is less than 66 % agreement in the sign of the change across models, the ‘A’ value 
indicates the percentage of land area with non magenta shaded cells.
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consistent across most regions and downscaled models. However, the 
rate at which this occurs differs regionally between models, 
requiring further investigation into the relevant driving processes 
across scales.

• Consistent with expectations from thermodynamic drivers of 
extreme precipitation, the largest relative projected increases are in 
the tails of the distribution (i.e. Rx1day increases faster than the 
mean). Across most regions, the number of wet days is also projected 
to decrease, indicating more extreme precipitation spread across 
fewer and shorter duration periods. An exception to this is for the 
west coast of the South Island, where all precipitation indicators 
increase, likely further enhanced by dynamical drivers (Gibson et al., 
2024b).

• A summary of uncertainty is presented based on quantifying the 
percentage of land area where there is sign agreement across the 
models. Given the importance of thermodynamic drivers, projections 
of precipitation extremes have greater model agreement than mean 
precipitation. Similarly, projections of drought in summer have 
greater model agreement than summer mean precipitation.

By covering a wide range of projections here, including various 
extreme indices, we anticipate that this will provide a useful foundation 
for future impact and adaptation studies. The uncertainty metrics pro
vided will help users of the model projections better understand where 
the largest uncertainties lie in terms of the direction of change. Lastly, 
we have shown that RCM uncertainty can be non-negligible for certain 
regions and variables/indicators, which has been historically under
studied. Improved sampling of uncertainty, stemming from both GCM 
and RCM uncertainty, would require significantly larger computational 
resources than currently allocated. To address this, one avenue currently 
being explored is the extent to which AI-based RCM emulators can 
alleviate some of this computational burden, while still providing 
scientifically credible projections (Rampal et al., 2024, 2025).
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