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Downscaled climate projections provide regionally relevant information for climate adaptation and planning
purposes. Updated climate projections (~12-km) are presented here for the New Zealand region, downscaling 6
global climate models (GCMs) from the Coupled Model Intercomparison Project (CMIP6) under a high emissions
scenario (SSP3-7.0). Three regional climate models (RCMs) are used to explore differences when downscaling
select GCMs. For end of century projections (relative to 1986-2005), the national multi-model annual mean
warming is 3.1°C (model range 2.0-3.8°C) across downscaled simulations. Downscaling generally enhances
warming over New Zealand relative to the GCMs, with the largest increases across high-elevation regions. There
can be important differences in the projections across RCMs, including at national scales for temperature and
across local-to-regional scales for precipitation. Averaged across models, annual extreme heatwaves become
3-5°C hotter for most regions. More frequent, intense, and longer duration meteorological drought is projected
across northern and eastern regions of both islands. In terms of model uncertainty based on sign agreement,
while summer mean precipitation projections carry the largest uncertainty, projections of summer meteoro-
logical drought and precipitation extremes can be made with greater confidence. These results provide a foun-

dation for further targeted regional climate change impact and adaptation studies.

1. Introduction

The provision of robust quantitative projections of climate extremes
on regional scales remains a grand challenge for climate science
(Marotzke et al., 2017; Palmer and Stevens, 2019; Jakob et al., 2023).
Alongside the scientific challenge, since planning for climate adaptation
typically occurs across local and regional scales, there is growing de-
mand from stakeholders for higher-resolution information about
changing climate risk (Giorgi, 2019; Fiedler et al., 2021; Goncalves
et al., 2022).

Especially in complex terrain and island settings, the output from
global climate models (GCMs) generally has limited direct utility across
local through regional scales (Giorgi, 2019; Gibson et al., 2024a; Evans
et al., 2024). Across much of Aotearoa New Zealand, orographic pre-
cipitation, mountain-valley winds, and land-sea breezes are highly
important features of the mesoscale circulation yet are generally poorly
represented in coarse resolution GCMs (Stone et al., 2022; Gibson et al.,
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2024a). Other important features of the synoptic scale atmospheric
circulation are also challenging to represent in GCMs, which are often
better captured in downscaling from high-resolution regional climate
models (RCMs). These include tropical and ex-tropical cyclones (Gibson
et al.,, 2024a) and atmospheric rivers and associated precipitation
(Rhoades et al., 2020; Payne et al., 2020), which are key drivers of
extreme precipitation across New Zealand (e.g. Lorrey et al., 2014;
Prince et al., 2021; Shu et al., 2021; Harrington et al., 2023). This
highlights the important role of dynamical downscaling for refining
climate projections of extreme events, especially for island nations and
regions of complex terrain like New Zealand.

Earlier regional climate model simulations for New Zealand have
been produced through dynamical downscaling of reanalysis and
Coupled Model Intercomparison Project Phase 3 (CMIP3, and earlier)
(MfE et al., 2008). Most of these early regional modelling studies for
New Zealand focused on model setup and evaluation (e.g. Renwick
et al., 1998; Drost et al., 2007; Ackerley et al., 2012), with less direct
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focus on future climate projections.

For CMIP5, future downscaled projections with HadAM3P/
HadRM3P (~30-km resolution over New Zealand) were documented in
MIfE (2018), which are summarized here. Future warming is projected to
be largest in summer, with the highest rates of warming in
high-elevation regions. Daily maximum temperatures warm faster than
minimum temperatures overall, increasing the diurnal temperature
range. For mean precipitation, the largest and most consistent pro-
jections were for winter, with increases of up to 40 % in parts the South
Island West Coast under the high-emissions scenario of RCP8.5 by
end-of-century. Moderate intensity precipitation extremes are projected
to increase over most of the country. Drought intensity, as defined by
potential evapotranspiration deficit, is projected to increase in most
places, with the largest increases often occurring in already dry
water-stressed regions such as the north and east of the North Island, and
the lee of the Southern Alps in the South Island. Various downstream
climate change applications have also been studied through these
CMIP5 downscaled projections, including for hydrological projections
(Jobst et al., 2018; Akhter et al., 2019; Collins, 2020), fire weather
(Melia et al., 2022), and rainfall-induced damages from flooding and
landslips (Pastor-Paz et al., 2020).

More recently, for CMIP6 projections, Gibson et al. (2024b) docu-
mented the spread in precipitation projections for New Zealand across
the full GCM ensemble (prior to downscaling) through a ‘storylines’
framework. A regional process-based context for projections of mean
precipitation was provided, highlighting the important role of how
projected changes in associated large-scale circulation features (e.g. the
jet, Hadley cell, Rossby waves) differ between summer and winter. It
was also pointed out that summer precipitation projections can be
strongly dominated by internal variability alone in certain GCMs,
providing important context for interpreting uncertainty in regional
projections.

For CMIP6 downscaling, a recent accompanying study (Gibson et al.,
2024a) has described the experiment design, with the Conformal Cubic
Atmospheric Model (CCAM, Thatcher and McGregor, 2009) used as the
primary model for downscaling. That study comprehensively evaluated
the downscaled output over the historical period, from the perspective
of added value versus the driving GCMs. Some of the main areas of
added value include wide-spread and improvements to the maximum
and minimum temperature climatology, and large improvements to
orographic precipitation. Interannual variability in temperature was
also shown to be in close agreement with observations. For extreme
events, large and consistent improvements were also found for several
temperature and precipitation-based extreme indices. Large improve-
ments to the representation of tropical cyclone statistics are also
apparent in the downscaled output, especially across the category 2 and
3 intensity range, though very intense tropical cyclones (category 4+)
are still underrepresented in CCAM and to a similar degree in ERA5
reanalysis (Gibson et al., 2023). CCAM has also been comprehensively
evaluated for this region from the perspective of large-scale atmospheric
circulation conditions, when driven from prescribed/observed sea sur-
face temperature (SST) and sea ice concentration (SIC) (Gibson et al.,
2023).

Building upon these historical evaluation studies (Gibson et al.,
2023, 2024a), the overarching goal of this study is to provide a
wide-ranging summary of updated (i.e. CMIP6) national climate pro-
jections for New Zealand, including for extreme events. We explore the
following research questions: How do the RCMs modify the climate
projections relative to the GCMs? How do the projections differ across
RCMs for downscaling a given GCM? How are extreme events, such as
heatwaves and drought, projected to change? How does uncertainty in
the projections compare across variables, extreme indices, and seasons?
Many of these research questions, such as RCM intercomparisons and
uncertainty quantification, have not been investigated before for this
region. We anticipate that by covering a wider range of research ques-
tions, this will provide the necessary foundations for future research on
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extremes with more in-depth process-based examinations of the drivers.
The remainder of the paper is structured as follows. Section 2 (Methods)
provides an overview of the downscaling experiment design and various
indices for extreme events. Section 3 (Results and Discussion) presents
the updated climate projections and discusses these in the context of
earlier CMIP3/5 projections. Lastly, the main findings are summarized
in Section 4 (Conclusions).

2. Methods
2.1. CMIP6 downscaling experiment design

The experiment design has been comprehensively described in a
recent separate paper (Gibson et al., 2024a). Here, we briefly summarize
the most relevant and important points. The primary dynamical model
used for downscaling was CCAM (Thatcher and McGregor, 2009), spe-
cifically version CCAM-2206. A global stretched grid configuration
(C288) was implemented in CCAM focusing high-resolution over New
Zealand (~12-km) accompanied by relatively high resolution
(~12-35-km) over a much wider region spanning the South Pacific. As
discussed in Gibson et al. (2023), this stretched grid configuration has
additional attractive properties, including for the representation of
storms as they approach the domain of interest. Additionally, the
stretched grid removes certain issues concerning the size and placement
of domain boundaries from traditional limited area RCMs. Further
technical details on the CCAM configuration, including the grid and
physics schemes, are provided in Gibson et al., (2024a).

As described in Gibson et al. (2024a), the GCM selection for down-
scaling was based on carefully balancing several factors: model perfor-
mance in the region over the historical period (including for features of
the large-scale circulation and teleconnections), model independence,
rate of future warming, and data availability. Details of the six CMIP6
GCMs selected for downscaling are shown in Table 1. As shown in
Gibson et al. (2024a), the six selected GCMs span the overall CMIP6
ensemble warming range well (in both a global and New Zealand
context), while additionally being constrained to the Intergovernmental
Panel on Climate Change (IPCC) ‘very likely range’ for Equilibrium
Climate Sensitivity (ECS) to avoid the oversampling of ‘hot models’

Table 1

Details for the downscaling experiment design. Each RCM has an atmospheric
grid resolution of approximately 12 km over the New Zealand region. Further
details of the model setup are given in Section 2. For ACCESS-CM2, r4i1p1f1 was
used due to data availability. GCM atmospheric resolution is approximate. RCM
simulations marked with asterisks are primarily used for exploring RCM un-
certainty and were not included when computing multi-model mean statistics.

Host GCM (variant label) RCM (12 Model setup for downscaling
Atmospheric resolution km)
ACCESS-CM2 (r4i1p1fl) CCAM Global spectral nudging to atmospheric

1.875° x 1.25° and SST/SIC fields from GCM

WRF* Lateral boundary conditions from

atmospheric and SST fields from GCM

Global spectral nudging to atmospheric

and SST/SIC fields from GCM

UM* Lateral boundary conditions from
atmospheric and SST fields from GCM

NZESM (rlilplfl) CCAM*

1.875° x 1.25°

NorESM2-MM (r1ilp1f1) CCAM Global spectral nudging to atmospheric
1.0°x 1.0° and SST/SIC fields from GCM

EC-Earth 3 (r1ilplfl) CCAM Global spectral nudging to atmospheric
0.7° x 0.7 and SST/SIC fields from GCM

GFDL-ESM4 (rlilplfl) CCAM Global atmospheric CCAM simulation
1.0° x 1.0° (no atmospheric nudging) with SST/SIC

fields from GCM

AWI-CM-1-1-MR CCAM Global atmospheric CCAM simulation
(rlilplfl) (no atmospheric nudging) with SST/SIC
0.94° x 0.94° fields from GCM

CNRM-CM6-1 (rlilplf2) CCAM Global atmospheric CCAM simulation
1.4°x1.4° (no atmospheric nudging) with SST/SIC

fields from GCM
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(Hausfather et al., 2022). Other aspects of the ensemble, such as the
sampling of rainfall and circulation projections are discussed in Gibson
et al. (2024a,b).

Additionally, there is flexibility in how the input data from the GCMs
is used to drive CCAM. One option is to apply spectral nudging to a range
of atmospheric fields (i.e. temperature, pressure, and wind fields at
multiple vertical levels) from the host GCM (e.g. Thatcher and McGre-
gor, 2009). Another option is to run CCAM in ‘AMIP’-mode, driven only
by global SST/SIC fields from the host GCM (e.g. Hoffmann et al., 2016;
Chapman et al., 2023). The latter option further enables an opportunity
to bias-correct SST fields from the host GCM before being ingested into
CCAM which can lead to improvements in the representation of down-
scaled precipitation and other fields (Hoffmann et al., 2016; Chapman
et al., 2023). Both approaches carry their own advantages and disad-
vantages (see Gibson et al., 2024a for further details), and have been
combined and considered part of an ensemble of regional climate pro-
jections (Grose et al., 2023). As detailed in Table 1, three GCMs have
been downscaled through direct spectral nudging and another three
GCMs downscaled through bias-corrected SST/SIC-driven simulations.
Each of these GCMs was downscaled with time varying CMIP6 forcings
(i.e. greenhouse gas, aerosol, ozone, and solar) over the historical period
(years 1960-2014) and for various future scenarios (SSP1-2.6, SSP2-4.5,
SSP3-7.0, years 2015-2099).

For the analysis presented here, we focus on the SSP3-7.0 scenario as
it represents a high-emissions scenario from which the climate change
response can more readily be separated from internal variability, while
alleviating some of the concerns expressed around the realism and
suitability of the stronger forcing scenario represented by SSP5-8.5 (e.g.
Hausfather and Peters, 2020). The results presented here for SSP3-7.0
should not be interpreted as the ‘most likely’ scenario but instead as a
feasible and approximate upper limit for change. While the focus here is
not directly on scenario uncertainty, comparisons of the climate pro-
jections across other SSPs (in terms of the spatial pattern of the change)
were assessed for select variables.

While CCAM was the primary dynamical model for downscaling, two
other limited area RCMs were also run in a more limited setting (see
Campbell et al., 2024a for details). These were: the Advanced Research
version of the Weather Research and Forecasting (WRF) (version 4.3)
RCM (Skamarock and Klemp, 2008) and the Unified Model (UM) RCM
based on the Global Atmosphere 7 (GA7, Walters et al., 2019) configu-
ration of the UK Met Office Unified Model. To address important
research questions, future climate projections from these two other
RCMs were compared against CCAM by downscaling a common GCM
(see Table 1). For example, how do the climate projections compare
when WREF is used instead of CCAM for downscaling ACCESS-CM2?
While not officially part of CMIP6, New Zealand Earth System Model
(NZESM) GCM (Williams et al., 2016; Behrens et al., 2020) was also
downscaled by both CCAM and the UM (Table 1) with the downscaled
output is compared here. We note that the atmospheric component in
NZESM is very similar to ACCESS-CM2 (Bi et al., 2020), both based on
UM GA7.1, but with different ocean models and resolutions.

2.2. ETCCDI indices

Climate projections were assessed for select temperature and
precipitation-based indices (Table 2) from the Expert Team on Climate
Change Detection and Indices (ETCCDI, Zhang et al., 2011). This
enabled different parts of the statistical distribution to be considered as
well as duration-based aspects (e.g. the length of wet and dry spells). For
these indices, and other fields/indices, climate projections were
computed as the time-averaged difference between years 2080-2099
and years 1986-2005, under SSP370. The base period of 1986-2005 was
used here to facilitate comparisons against earlier CMIP5 projections
MIfE (2018). We also assess the ratio of the change in TXx (hottest annual
day) and ‘tas’ (annual-mean daily mean temperature). This ratio is used
to assess whether the warm tail of the daily temperature distribution is
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Table 2
Extreme event ETCCDI indices evaluated across models in this study.

Index Description Input variable
name (daily)
CWD Annual maximum wet spell length (consecutive pr

days pr > 1 mm)
Rlmm Annual number of wet days (pr > 1 mm) pr
Rx1lday Annual maximum 1-day precipitation pr
Rx3day Annual maximum 3-day precipitation pr
SDII Average daily precipitation on wet days (pr > 1 pr

mm)
DTR Daily temperature range tmin, tmax
FD Annual number of frost days (daily tmin < 0°C) tmin
Tmax Annual average of daily tasmax tmax
Tmin Annual average of daily tasmin tmin
TXx Annual maximum of daily tasmax tmax
TNn Annual minimum of daily tasmin tmin

warming faster than the mean, across different regions and models. This
ratio (i.e. TXx/tas) has been commonly applied in other regions and
studies, often in the context of studying land-atmosphere feedbacks (e.g.
Seneviratne et al., 2016; Donat et al., 2017, 2018; Vogel et al., 2017).

2.3. Heatwave indices

While some aspects of hot extremes are included in Table 2, these do
not include duration-based considerations, such as multi-day heatwaves.
For this reason, we extend our analysis to include heatwaves following
the framework of Perkins and Alexander (2013). Through this approach,
heatwaves are calculated based on the daily maximum temperature
(‘tasmax’) exceeding the 95th percentile relative to the time of year (i.e.
15-day moving window) and location (i.e. percentiles computed on a
grid cell basis). Additionally, the exceedance of the 95th percentile must
occur for at least 3 consecutive days to be counted as part of a heatwave.
The percentiles are computed across the historical period (1960-2014).
From this, we consider three heatwave metrics, as defined in Perkins and
Alexander (2013). These are the heatwave frequency (HWF, i.e. the
annual number of heatwave days), the heatwave amplitude (HWA, the
temperature on the hottest day of the hottest annual heatwave), the
heatwave duration (HWD, the duration of the longest heatwave event
annually). We restrict the analysis to an extended southern hemisphere
summer period (November through March).

2.4. Drought indices

We analyse meteorological drought (i.e. rainfall deficits) following
the method described in Ukkola et al. (2020). This approach defines
drought based on the 15th percentile of the 3-month running mean of
precipitation, then applied to each month. The percentiles are computed
for each location (i.e. grid cell) across the historical period (1960-2014).
From this, following Ukkola et al. (2020), a drought event is defined as a
month, or a number of consecutive months, when the running mean
precipitation is below the drought threshold. Drought frequency is
defined as the annual (or seasonal) number of drought events according
to the drought threshold. Drought duration is longest consecutive
drought event for a given period (i.e. annual or seasonal). Drought in-
tensity is defined as the difference between the drought threshold and
the monthly running mean precipitation.

2.5. Uncertainty metric

A relatively simple and informative way to present uncertainty in
climate projections is to assess the level of sign agreement across indi-
vidual models within the ensemble. This is particularly relevant for
projections of precipitation, where the multi-model mean may obfuscate
changes across models due to sign disagreement, including across the
New Zealand region (Gibson et al., 2024b). This is commonly used in
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IPCC Assessment reports (e.g. Lee et al., 2021), where hatching on maps
is used to indicate model sign agreement above a certain threshold.
From this we quantify the percentage of land (i.e. over New Zealand) in
which there is sign agreement across models at a particular level (e.g. 4
of 6 models agree, or 5 of 6 models agree). This provides a summary
metric where projection uncertainty can be readily compared across
multiple climate variables, indices and seasons. Given limitations of the
ensemble size here, it is important to caveat that this does not encompass
the full extent of uncertainty (Palmer and Raisanen, 2002; Giorgi, 2019),
and even when all models in the ensemble agree this should not be
interpreted that there is no uncertainty in the projections. This is related
to the practical necessity of selecting a subset of models, which inher-
ently limits the range of all possible modelling options, including across
both global and regional models (Knutti et al., 2013).

3. Results and Discussion
3.1. Temperature

We begin by showing climate projections, defined as the future
period climatology minus historical climatology (years 2080-2099
minus years 1986-2005), for temperature across different GCMs. We
also explore how downscaling modifies the climate change pattern
response relative to the raw GCM output, and how this differs across
RCMs. Spatial maps for projections of daily mean annual temperature
(‘tas’) are shown in Fig. 1. The national average projected warming is
3.1°C (model range 2.0-3.8°C) across downscaled models. Relative the
host GCM, downscaling from CCAM enhances the nationally averaged
tas warming by up to +0.5°C. Compared to other seasons and temper-
ature statistics, the warming for summer tasmax is overall the largest.
For tasmax in summer, warming tends to be enhanced more so across
inland regions of the North Island (Supplementary Material Fig. S1),
with national average projected warming of 3.9°C (model range
2.8-4.8°C) across downscaled models.

ACCESS-CM2 EC-Earth3

+3.8°C

RCM (CCAM)

2

ACCESS-CM2

GCM

NorESM2-MM

Weather and Climate Extremes 49 (2025) 100784

Compared to the GCM, downscaling tends to also show enhanced
warming over regions of high elevation of the South Island, which is
shown in greater detail in Fig. 2 by separating daily maximum (tasmax)
and minimum temperature (tasmin) changes. This elevation-dependent
warming is most apparent in winter (JJA), where all RCMs (CCAM,
WRF, UM) show evidence for this, though the spatial patterns and
magnitudes differ somewhat across RCMs when driven by the same
GCM. Enhanced high elevation warming is consistent with previous
CMIP5 downscaled projections MfE (2018) and appears primarily
related to reduced surface albedo from reduced snow cover and reduced
snowfall with warming into the future. This is suggested to be more
pronounced in the RCMs than the GCMs due to representation of
topography that is lacking at the typical GCM resolution. Given the
differences between the tasmax and tasmin changes shown in Fig. 2, and
the differences across RCMs, it is likely that more complex changes to
clouds, water vapor and radiative fluxes (Pepin et al., 2015; Campbell
et al., 2024) are also playing an important role which will be explored in
future work.

The nationally averaged projections for tasmax are further analysed
in Fig. 3 to examine differences between RCMs. Downscaling CCAM in
‘AMIP mode’ (driven only by SST/SIC) tends to produce a greater
warming rate relative to the GCM. This is evident in Fig. 3 where the red
points (CCAM driven with SST/SIC) are typically further from the 1:1
warming slope compared to the grey points (CCAM driven with atmo-
spheric nudging), where the 1:1 warming slope indicates equal warming
from the GCM and RCM. The use of multiple RCMs also allows us to
compare projections when downscaling select GCMs (i.e. ACCESS-CM2
is downscaled by both CCAM and WRF; the NZESM is downscaled by
both CCAM and UM). Overall, for tasmax across different seasons, the
changes are very similar across CCAM and UM, where both RCMs
slightly enhance warming by +0.1°C relative to NZESM. In contrast,
larger differences are apparent when comparing CCAM and WRF. For
example, in summer, the warming from CCAM is approximately +0.9°C
relative to WRF, when both RCMs are downscaling ACCESS-CM2.

GFDL-ESM4 * AWI-CM-1-1-MR*  CNRM-CM6-1 *

1 15 2 25 3 35 4 45 5

Fig. 1. Climate projections (years 2080-2099 minus years 1986-2005) under SSP370 for annual mean temperature (tas). The values in the top left of each panel are
for the NZ-averaged change. The top row shows the RCM (CCAM) and the bottom row shows each GCM (i.e. prior to downscaling). Asterisks indicate that only the

SST/SIC fields from the GCM have been used to drive CCAM.
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(a) Tasmin JJA
ACCESS-CM2

GCM (raw)

RCM

RCM

|
27 3 3336394245438
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(b) Tasmax JJA
ACCESS-CM2

NZESM

RCM GCM (raw)

RCM

[°C]
\ \
27 3 333639424548

Fig. 2. Climate projections (years 2080-2099 minus years 1986-2005) under SSP370 for daily minimum temperatures (tasmin, panel a) and daily maximum
temperatures (tasmax, panel b) in winter (JJA). The ACCESS-CM2 model is downscaled with CCAM and WRF; NZESM is downscaled with CCAM and UM.

Further processed-based evaluations of these two model simulations
would be useful for shedding light on what is responsible for this dif-
ference, including analysis of cloud cover changes (Campbell et al.,
2024) and land-atmosphere feedbacks (e.g. Donat et al., 2017).
Another important consideration is understanding why warming
appears to be enhanced more so in CCAM SST/SIC-driven simulations
compared to the nudged simulations relative to each host GCM, espe-
cially in the summer season. While both approaches are commonly used
for downscaling with CCAM (Grose et al., 2023; Chapman et al., 2023),
to our knowledge this appears to be the first time this has been docu-
mented and investigated. In contrast, the direct impact of
bias-correcting input SST/SIC (versus not) has been investigated more
thoroughly (e.g. Hoffmann et al., 2016). Enhanced high elevation
warming is not the driver of this difference, noting that high elevation
warming is more pronounced in winter (instead of summer). Instead,
one possible explanation for this result is that the regional atmospheric
circulation associated with warmer temperatures over New Zealand (i.e.
more northerly flow conditions and/or more stable high-pressure
ridging) tends to be enhanced into the future in the SST/SIC-driven
simulations relative to the host GCM. In contrast, the nudged simula-
tions will have trends in atmospheric circulation that are nearly iden-
tical to the GCM, due to the way the spectral nudging is performed.
Indeed, evidence directly supporting this is presented in Supple-
mentary Material Figs. S2-S4. For each of the SST/SIC-driven CCAM
simulations, the downscaled simulations across summer months tend to
enhance ridging over New Zealand or to the east of New Zealand (shown
in the MSLP projections) which drives more northerly flow conditions
directly over New Zealand (indicated by the negative change in merid-
ional flow [v850]). These northerly flow conditions are well known
drivers of warmer conditions across New Zealand (Dean and Stott,
2009). These conditions are most pronounced in the downscaled pro-
jections from CNRM-CM6-1 and GFDL-ESM4. As shown in the near
surface air temperature changes across the much wider South Pacific

region (top row, Supplementary Material Figs. S2-54), as expected,
these regional circulation changes impact the enhanced warming only
on a regional basis (i.e. over New Zealand) whereas the downscaled
simulations have a much more similar warming rate to the driving GCM
when averaged over this wider South Pacific region. The magnitude of
the bias correction on climatological SST fields in the CCAM simulations
is further shown in Supplementary Material Figs. S5-S6. As shown, bias
correction tends to increase SSTs slightly on the western coasts of New
Zealand and decrease SSTs on the eastern coasts. Notably, these differ-
ences around New Zealand remain consistent across both the historical
and future periods, hence they cannot directly explain the change in
warming over New Zealand.

3.2. Mean precipitation

Projections for mean precipitation are explored in Fig. 4. Here
magenta shading is used to detail model projection uncertainty, based
on sign agreement of the change across the ensemble. As before, pro-
jections are presented separately for the RCM (CCAM) and GCM
ensemble to highlight how downscaling modifies the change patterns.
For the RCM ensemble, the largest model agreement is typically seen in
winter months. In winter, projections are for relatively large increases
on the west coast of the South Island, exceeding 20 % in some places,
accompanied by drying in the eastern and northern parts of both islands.
A 20 % increase would be substantial for the west coast, given that
observed annual rainfall can exceed 10 m in parts of this region, with
total rainfall fairly consistent across seasons (Macara, 2016). The GCMs
for winter show a similar overall spatial pattern, though the drying on
the east coast of both islands is substantially reduced.

Despite using different RCMs and GCMs, this overall spatial pattern
of precipitation change is generally similar to that reported from pre-
vious CMIP5 downscaling (MfE et al., 2008). As described in Gibson
et al. (2024b), this overall spatial pattern is related to the intensification
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different RCM warming responses for a given GCM, where available (see Table 1).

and southward shift of the jet, while the far north (i.e. of the North Is-
land) drying appears related to shifts in Hadley cell extent which can
differ between GCMs. Given the intensification of the jet, the enhanced
drying on the east coast of the South Island in CCAM (relative to the
GCMs) is very likely related to the better representation of topography in
the RCM which creates a rain shadow effect under westerly flow con-
ditions. The spring season (i.e. SON) projections in the RCM ensemble
are very similar spatially to the winter change patterns, suggesting
similar changes across large-scale drivers. However, the magnitude of
the precipitation reductions is generally more pronounced in spring
across most regions.

Compared to winter, the summer (i.e. DJF) projections are consid-
erably more uncertain in the downscaled projections in terms of sign
agreement. For winter, 66 % (i.e. 4 of 6) of the models in the ensemble
agree on the sign of the change across 93.5 % of the country compared to
only 66.9 % of the country for summer (Fig. 4). In summer, the changes
are also much more spatially heterogenous indicating a lack of consis-
tency in the associated large-scale circulation drivers. This was previ-
ously documented in Gibson et al. (2024b) highlighting the substantially
larger uncertainty in mean precipitation projections in summer across
CMIP6 models, where the relative role of internal variability is large.
Since this uncertainty appears largely driven by a lack of consistent and
robust drivers of large-scale circulation, it is not surprising that the RCM
projections for summer do not reduce this uncertainty. It is important to
note, as discussed by Giorgi (2019), the value of downscaled projections
should not be thought of as reducing overall uncertainty, since down-
scaling/RCM uncertainty is not negligible and can be an important
component of the full uncertainty.

We further explore the role of RCM uncertainty in the context of
winter mean precipitation projections in Fig. 5. We have focused pri-
marily on winter as this has been identified as the season with generally
the most consistent change pattern (Fig. 4), including in CMIP6 GCMs
(Gibson et al., 2024b) and earlier climate downscaling studies MfE
(2018). This analysis is also presented for the spring season in Supple-
mentary Material Fig. S7. Even for the winter pattern, Fig. 5 shows that
notable RCM uncertainty on smaller scales can remain. While the main
themes of the change pattern remain (i.e. wetter on the west, drier to the
north and east), uncertainties become more important when considering
location-specific changes (i.e on the scale of individual towns/cities) and
their magnitudes. Since each of these RCM pairs (CCAM vs WRF; CCAM
vs UM) is driven by the same GCM, we can be confident that these dif-
ferences across RCMs are mostly driven by differences in the smaller
scale RCM physics themselves. For spring, the strong drying identified
earlier across northern and eastern regions (Fig. 4) is also apparent in the
WRF and UM RCMs, which can show an even larger drying pattern in
places (Fig. S7).

While the importance of RCM uncertainty has been noted in CORDEX
projections in other regions, including across Australia (Evans et al.,
2021), Europe (Sgrland et al., 2018; Giorgi, 2019), North America
(Bukovsky and Mearns, 2020), and Africa (Paeth et al., 2011), it is the
first time to our knowledge that it has been quantified for New Zealand.
This highlights that future downscaling exercises for New Zealand (i.e.
for CMIP7) would benefit from placing greater emphasis on sampling
RCM uncertainty, by including additional RCMs across the so-called
GCM/RCM matrix (Giorgi, 2019). Since the main limitation to filling
in the GCM/RCM matrix is computational resources, the use of RCM



P.B. Gibson et al.

DJF MAM

RCM (CCAM)

GCM

)

Weather and Climate Extremes 49 (2025) 100784

Annual

o

(%]

[ [TTI
-30 -24 -18-12 6 0 6

[ M
12 18 24 30

Fig. 4. Climate projections (years 2080-2099 minus years 1986-2005) under SSP370 for mean precipitation in each season. The top row shows the multi-model
mean (n = 6) across RCMs (CCAM) and the bottom row shows the multi-model mean (n = 6) across the GCMs (i.e. prior to downscaling). Magenta shading in-
dicates regions where there is less than 66 % agreement in the sign of the change across models, the ‘A’ value indicates the percentage of land area with non magenta

shaded cells.

emulators based on machine learning (ML) and artificial intelligence
(AD) could play an important role, alongside continued investment in
dynamical regional models (Rampal et al., 2024; Evans et al., 2024). For
building trust in Al-based projections, it will be important that both the
historical biases and climate change patterns are carefully evaluated and
understood alongside the dynamical models which they have been
tasked with emulating (Rampal et al., 2024, 2025). Interpretable Al
approaches, developed around process-based evaluation, could also help
to build trust and community uptake (e.g. Gibson et al., 2021; Rampal
et al., 2022). Additionally, exploring avenues for enhancing the RCM
resolution beyond 12 km will be a focus of future work. Given the
complex terrain of New Zealand, moving towards convection-permitting
RCM resolutions (~2 km) will likely add further value in terms of more
realistically representing orographic precipitation and precipitation
extremes (Pirooz et al., 2023).

While scenario uncertainty was not the focus here, the downscaled
projections for CCAM include three different scenarios (SSP126,
SSP245, SSP370) which can be explored. The similarities and differences
across scenarios for projections of mean precipitation is summarized in
Fig. 6. To do so, the pattern correlation is computed between SSPs for
different seasons and different downscaled models. As expected, the
spatial patterns of change are overall more similar (i.e. higher pattern
correlation) for comparing between SSP370 and SSP245 (Fig. 5b) than
for SSP370 and SSP126 (Fig. 5a). The projections across SSPs are most
consistent for JJA, SON (and annually). This finding generally agrees
with findings in other regions globally, namely that when there is a
robust and consistent climate change signal, the differences between
SSPs mainly act to amplify the magnitude while preserving the spatial
pattern (e.g. Neelin et al., 2013).

3.3. Temperature extremes

We begin by showing projections for several relatively simple
temperature-based ETCCDI indicators followed by an analysis of heat-
waves. Compared to the projections for daily mean temperature (Fig. 1),
the ETCCDI indicators shown in Fig. 7 for the downscaled simulations (i.
e. RCM) can show considerably larger changes in certain regional
characteristics of extremes. This is especially apparent for TNn (annual
minimum temperature) and number of frost days, indicating that the
RCM (i.e. CCAM) warm the coldest extremes of the temperature distri-
bution in the coldest regions more so than in the GCM. Given that these
differences are clearly associated with elevation (i.e. more enhanced
warming in the RCM in high elevation regions), it again seems likely that
reduced snow cover and reduced albedo in winter months has contrib-
uted to this enhanced warming, again highlighting the added value of
downscaling and improved representation of topography. Also notable
is the enhanced diurnal temperature range in the downscaled simula-
tions compared to the host GCM. This is related to the daily maximum
temperatures generally warming faster than the daily minimum tem-
peratures (hence widening the daily temperature range), with this
finding generally consistent across regions and seasons (Supplementary
Material Figs. S8-S10).

Before analysing future projections of heatwaves, the historical
climatology (i.e. averaged over years 1986-2005) of heatwave metrics
are presented in Supplementary Material Fig. S11. As represented in
CCAM, the historical frequency and duration of heatwave days is rela-
tively uniform across the country, as expected since heatwaves are
defined based on the location-specific 95th percentiles. In particular, the
average number of days per year belonging to a heatwave differs be-
tween 2 and 5 days, while the average duration is generally between 3
and 5 days. The amplitude, defined as the temperature on the hottest day
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RCM when downscaling ACCESS-CM2 and NZESM GCMs. ACCESS-CM2 is downscaled with CCAM and WRF; NZESM is downscaled with CCAM and UM.

of the hottest annual heatwave, shows much larger regional variation, as
expected. The hottest heatwaves generally occur in eastern regions of
the country over relatively flat terrain, often associated with foehn
winds. These regional details in heatwave amplitude are clearly missing
from the GCMs (bottom row of Fig. S11), again highlighting the added
value of downscaling, as previously reported for the representation of
hot extremes in Gibson et al. (2024a) and more broadly for heatwaves
across Australia (Trancoso et al., 2020).

For downscaled projections of heatwaves (Fig. 8), large increases in
heatwave frequency and duration are shown, particularly enhanced
across the northern half of the North Island. These increases are sub-
stantial, going from a historical heatwave frequency of ~3 days per
season to over 60 days in some regions. This corresponds to roughly 40
% of days per extended summer season (NDJFM) being classed as

heatwaves, based on the historical 95th percentile 3-day definition of
heatwaves. Similarly for duration, the average length of the longest
duration heatwaves is projected to increase from 3 to 5 days to being
multi-week events (i.e. exceeding 20 days in some regions). For heat-
wave amplitude, the downscaled projections show increases in the
hottest days of between 3 and 5°C, broadly consistent with the pro-
jections shown earlier for TXx (single hottest day of year). The down-
scaled and GCM (raw) projections for heatwaves show similar overall
patterns, especially for heatwave frequency and duration, while differ-
ences are larger for heatwave amplitude with the RCM ensemble
showing larger increases in many regions.

These relatively large projected increases for heatwave frequency
and duration are consistent with heatwave projections in other regions
globally when similar levels of mean warming are reached (e.g. Cowan
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prior to downscaling). The corresponding heatwave indices for the historical climatology are shown in Supplementary Material Fig. S11.

et al., 2014; Perkins-Kirkpatrick and Gibson, 2017). For example, at
+3°C warming, Perkins-Kirkpatrick and Gibson (2017) report heatwave
frequency increases of between 40 and 120 heatwave days annually,
with large regional differences across the globe. As described therein,
regions with relatively low historical variability in daily maximum
temperatures (i.e. the tropics and parts of the sub-tropics) show much
larger increases in heatwave frequency and duration for a given
warming level, which can somewhat complicate the practical interpre-
tation of these changes. This contributes to why the northern parts of
New Zealand show the largest projected increases in heatwave fre-
quency and duration (Fig. 8), despite showing similar increases in
summer tasmax (Fig. S9) and TXx (Fig. 7) to other regions across the
country. As shown in Supplementary Material Fig. S12, these northern
regions are those with the lowest historical variability in daily maximum
temperatures, with this evident in both gridded observations and the
downscaled output.

The change in TXx relative to the change in mean temperature (tas) is
shown for each downscaled GCM (downscaled with CCAM) in Fig. 9.
This change ratio shows how much faster the warm extremes (temper-
ature tails) are projected to increase compared to the overall mean
temperature. As shown in the multi-model mean of the downscaled
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ensemble, there is generally agreement that the tails are projected to
warm faster than the mean (i.e. as indicated by TXx/tas >1). However,
closer inspection of individual models and regions reveals important
regional differences. There is some indication, in at least four of the
downscaled models, that parts of the central North Island may show a
“hotspot” for this change. Parts of Southland (the southernmost region
of the South Island) is another region that stands out for the largest in-
creases across models. When comparing across RCMs (CCAM, WRF, UM)
for downscaling select GCMs (Fig. 10) regional differences in these
hotspot regions are also apparent. This result highlights that the regional
uncertainty in this ratio is driven both by differences in the driving fields
from the GCM (as shown in Fig. 9) and by differences in the smaller scale
RCM physics parameterizations (as shown in Fig. 10), including land-
atmosphere interactions, and possibly by differences in the RCM ancil-
lary files (e.g. land use, vegetation, soil properties).

Other studies, mostly focused on parts of North America and Europe,
have used this ratio of TXx/tas in the context of studying land-
atmosphere feedbacks in enhancing (or dampening) projected trends
in temperature extremes (Seneviratne et al., 2016; Donat et al., 2017,
2018; Vogel et al., 2017). Future processed-based studies could extend
our analysis to better understand and evaluate the role of soil moisture
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and surface fluxes across the different GCMs/RCMs and their influence
on regional climate projections of temperature extremes for New Zea-
land (Harrington, 2021). Given our finding that regional differences in
TXx/tas projections can stem from both GCM and RCM uncertainty,
changes in cloudiness and circulation regimes (e.g. Gibson et al., 2017;
Vautard et al., 2023) and land surface model uncertainty all likely play
an important role, warranting further analysis for this understudied
region.

3.4. Precipitation extremes

Climate projections for selected precipitation extremes from the
ETCCDI indices is shown in Fig. 11. The annual number of wet days (>1
mm, R1lmm) is projected to decrease in the downscaled simulations
across most of the country, with the largest decreases widespread across
the North Island. The downscaled projections for annual wet days
closely resemble the overall spatial pattern of change from the raw GCM
output. While the number of wet days is decreasing, the average pre-
cipitation rate on wet days (SDII) and the extreme precipitation rates
(Rx1day and Rx3day) are both increasing, consistent with expectations
from the thermodynamic drivers of precipitation extremes with warm-
ing (Trenberth, 2011; Pfahl et al., 2017; Fowler et al., 2021). Further-
more, the extremes are projected to increase faster than the mean
precipitation increase on wet days. This implies that even where total
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annual precipitation is not projected to increase, the mean and extreme
precipitation rates will increase but occur across fewer and shorter
duration events, as also indicated by the general decrease in consecutive
wet days (CWD).

As discussed in Harrington et al. (2024), this highlights the need to
consider both the wet and dry extreme tails of the precipitation pro-
jections, as these changes can be masked when considering projections
of total annual precipitation alone. Further analysis of this is provided in
Fig. 12, showing changes in different quantiles of the daily precipitation
distribution at select locations. As shown, even at locations where the
total annual precipitation is projected to decrease (e.g. Gisborne,
Auckland) the most extreme upper quantiles of the distribution (i.e. 0.99
and 0.999 quantiles) can still show pronounced projected increases at
these locations.

For extreme precipitation indices, the projections from the raw GCM
output are broadly consistent with the downscaled output, at least in
terms of the change magnitude at the national scale. This is despite
relatively large historical biases in the GCM output for a number of these
indices, as documented in Gibson et al. (2024a). However, across finer
regional scales, certain differences are notable. For the annual number
of wet days (Rlmm) the downscaled projections are more clearly
impacted by terrain, especially over the South Island where the reduc-
tion in dry days is amplified in the lee of the Southern Alps. Since the
topography is poorly represented in the GCMs, these changes are not
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Fig. 10. Ratio of annual TXx/tas climate projections (years 2080-2099 minus years 1986-2005) under SSP370, showing the sensitivity of the choice of RCM when
downscaling ACCESS-CM2 and NZESM GCMs. The values in the top left of each panel are for the NZ-averaged change. ACCESS-CM2 is downscaled with CCAM and
WREF; NZESM is downscaled with CCAM and UM. The ACCESS-CM2 downscaled by CCAM projection panel is identical to that in Fig. 9.

well accounted for, highlighting the benefits of downscaling here.
Furthermore, the downscaled simulations generally show much larger
increases in the wettest annual events (Rx1day and Rx3day) across the
top half of the North Island, which can exceed 20 %. Precipitation ex-
tremes in this region are often caused by ex-tropical cyclones, and
associated atmospheric rivers, which are generally much better repre-
sented in the downscaled simulations relative to the raw GCMs (Gibson
et al., 2024a). Differences in these driving processes may have
contributed to the differences in the RCM versus GCM projections here.
In terms of projection uncertainty, compared to the GCMs, the down-
scaled simulations can show slightly higher levels of uncertainty when
expressed as a fraction of agreement across New Zealand (i.e. lower A
values in Fig. 11) for certain indices (e.g. SDII, CWD), which may be
related to the greater spatial detail provided by the RCM.
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3.5. Meteorological drought

Climate projections for meteorological drought are shown in Fig. 13.
The extended summer period (NDJFM) is shown here, while the change
across individual downscaled GCMs is shown in Supplementary Material
Figs. S13-15 for the same season. For drought frequency, relatively large
increases (>50 %) in the number of events is projected across the models
over large parts of the northern and eastern regions of both islands. For
projections of drought frequency, there can be large differences between
the RCM and raw GCM output. As discussed earlier, the better repre-
sentation of topography is apparent in the RCM change patterns, driving
the west/east gradient in the response across the South Island that is not
captured in the GCMs. Another notable difference is the overall larger
increase in drought frequency over the North Island in the downscaled
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output compared to the raw GCM. It appears both large-scale circulation
conditions and smaller scale RCM physics play a role in driving this. For
example, as shown in Fig. S13, there are reasonably large differences
across the individual downscaled CCAM simulations at regional scales,
with the SST-driven simulations showing the largest increases in
drought frequency across this region and season. Extending beyond the
simple circulation projections shown earlier (Supplementary Material
Figs. S2-54), further detailed process-based analysis of these down-
scaled simulations would be useful, targeting both differences and
trends in large-scale circulation patterns (i.e. blocking) relevant to
drought, and smaller scale land-atmosphere feedbacks that can promote
drying trends.

The projections for downscaled drought duration and intensity
generally align with drought frequency projections. Namely, the largest
and most consistent projected increase in drought duration and intensity
are across the north and east regions of both islands. When comparing
the uncertainty in projections across downscaled models, it is notable
that the projections for summer drought statistics (Fig. 13) are more
consistent (i.e. lower uncertainty) than projections for summer mean
precipitation (Fig. 4). For example, when sign agreement is defined at
the 66 % level (i.e. 4 of 6 models) there is agreement for mean precip-
itation change across only ~67 % of the country, compared to ~90 % of
the country for drought intensity. As such, for regions of the country
where the summer mean precipitation change is highly uncertain, more
confident statements around drought statistics may still be possible for
this same region. The explanation for this is that the processes driving
mean precipitation can differ from those driving meteorological
drought, with the latter also impacted considerably by future changes in
long-term precipitation variability (Sheffield and Wood, 2012; Ukkola
et al., 2020). This finding, that projected changes in meteorological
drought statistics are generally more consistent and robust than for
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mean precipitation, was reported and discussed in Ukkola et al. (2020)
for multiple other global land regions from GCMs.

Despite differences in the models (both GCMs and RCM), and the
approach for defining drought, the projections reported here for mete-
orological drought are broadly consistent with those from previous
CMIP5 downscaled projections for New Zealand MfE (2018). Namely,
previous downscaled projections also emphasized the largest increases
in drought frequency and severity across northern and eastern regions of
both islands, which are climatologically dry areas. Here we adopt a
simpler meteorological drought definition (i.e. a sustained deficit of
precipitation) compared to previous approaches that used offline cal-
culations of potential evapotranspiration (PET) in combination with an
offline water balance model to define potential evapotranspiration
deficits (PED). While each approach can be useful in certain contexts, we
suggest that the simpler meteorological drought approach adopted here
has a number of benefits. When used in a climate change context, recent
studies have expressed concern that offline use of PET may overestimate
future drought, including through potentially ‘double-counting’ impor-
tant feedbacks on surface humidity and temperature (Swann et al., 2016;
Yang et al., 2019; Ukkola et al., 2020). Furthermore, it is a difficult task
for state-of-the-art RCMs to faithfully represent all variables that go into
calculations of PET. Indeed, as discussed in MfE (2018), previous pro-
jections of PET/PED were considered preliminary given the relatively
large disparities between the model historical climatology for these
quantities and observational estimates, while noting that observational
estimates also have a relatively high degree of uncertainty.

3.6. Summary of projection uncertainty

For the climate projections presented earlier, uncertainty estimates
were assigned based on model sign agreement computed across the
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Fig. 12. Daily precipitaiton at different quantiles of the distribution for historical (years 1986-2005) and SSP370 (years 2080-2099) from the CCAM RCM ensemble.
Three example locations are shown based on ‘mean wetting’ (panel a) and ‘mean drying’ (panel b and c) from the mean annual precipitation projections shown

earlier in Fig. 4.

country (e.g. Fig. 4). In those figures, agreement was defined based on 4
of 6 model (i.e. >66 %) sign agreement threshold. In Fig. 14, we present
a summary of these findings across indices and seasons, as well as testing
the sensitivity to a stricter threshold for model agreement (i.e. 5 of 6
models, >83 %). For the sake of brevity, we only present precipitation-
based indices/variables, given that most temperature-based indices/
variables analysed have complete agreement (i.e. 100 %). As discussed
earlier, projections of the meteorological drought statistics for summer
(i.e. frequency, duration, intensity) are more consistent than for summer
mean precipitation, and this finding holds across both thresholds of
model agreement. Similarly, extreme precipitation indices (i.e. Rx1day/
Rx3day) are more consistent than annual mean precipitation pro-
jections. Projections of mean precipitation in winter (JJA) are also more
consistent than for summer (DJF), as discussed earlier this is likely
related to more robust large-scale circulation trends in winter across the
models.

As discussed in Gibson et al. (2024b), for projections of summer
mean precipitation over New Zealand, it appears it will be difficult to
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further constrain this uncertainty, given the apparent role of internal
variability which is enhanced in this season even under a high emissions
scenario. As such, for climate adaptation and planning purposes, it may
be more appropriate to focus on projections of the tails of the distribu-
tion (i.e. heavy precipitation extremes or drought) where confidence is
larger, or to communicate a storylines approach for defining risk
(Shepherd et al., 2018; Narsey et al., 2022; Gibson et al., 2024b) based
on different physically plausible pathways describing how these quan-
tities may change regionally into the future. Ongoing efforts to improve
RCM resolution towards convection-permitting scales over New Zealand
will likely also further improve the representation of precipitation ex-
tremes and related processes (Pirooz et al., 2023; Campbell et al., 2024).

4. Conclusions

Downscaled climate projections provide high-resolution information
important for planning and climate adaptation purposes, which is not
readily available from GCM output directly. In terms of providing
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century-long projections from a range of GCMs and emissions scenarios,
the updated projections presented here encompass the highest-
resolution ensemble of physics-based model projections for New Zea-
land to date. Focusing on a relatively high emissions scenario (SSP3-
7.0), a summary of some of the main findings from these updated CMIP6
projections are:

Daily maximum temperatures are generally projected to increase
faster than daily minimum temperatures, with the largest projected
increases in summer. This leads to projected increases in daily tem-
perature range across most of the country. In general, high-elevation
regions warm the most. These findings are qualitatively consistent
with earlier CMIP5 projections.

For mean precipitation, the most consistent projections are for
winter and spring, associated with a wetting response on the west
and south of New Zealand and drying to the north and east. Model
projections diverge more considerably for summer mean precipita-
tion projections. At a regional to national scale, these broad patterns
of change and seasonal variability are generally consistent with
earlier CMIP5 projections.
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Downscaling tends to enhance the overall warming from the GCMs.
This can differ between RCMs and differ depending on how the RCM
is driven by the GCM (i.e. whether driven by spectral nudging or
driven in AMIP mode from SST/SIC fields). The differences are
largest for daily maximum temperatures in summer.

Although the winter mean precipitation projections are the most
consistent of any season, at smaller scales and in some regions, dif-
ferences can arise when comparing different RCMs driven by the
same GCM.

Compared to the projections from GCMs which lack important
orography, downscaling adds considerable detail for certain extreme
temperature indices. Most notably, larger increases in high elevation
regions are evident for the warming of cold-tail temperature ex-
tremes (i.e. TNn). Similarly, the projected decease in frost days with
warming is much more pronounced, highlighting a key aspect of
added value from downscaling.

Summer heatwave projections from the downscaled simulations
indicate relatively large increases in frequency, duration and
amplitude (3-5°C warmer) towards the end-of-century, particularly
for the northernmost regions of the country. The warm tail of the
temperature distribution generally warms faster than the mean,
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Fig. 14. Summary of the sign agreement over land for climate projections across models for different precipitation-based indices/seasons. Panel a shows agreement
when defined as being greater than ~66 % sign agreement across models (i.e. 4 of 6), panel b shows agreement when defined as being greater than ~83 % sign

agreement across models (i.e. 5 of 6).

consistent across most regions and downscaled models. However, the
rate at which this occurs differs regionally between models,
requiring further investigation into the relevant driving processes
across scales.

Consistent with expectations from thermodynamic drivers of
extreme precipitation, the largest relative projected increases are in
the tails of the distribution (i.e. Rxlday increases faster than the
mean). Across most regions, the number of wet days is also projected
to decrease, indicating more extreme precipitation spread across
fewer and shorter duration periods. An exception to this is for the
west coast of the South Island, where all precipitation indicators
increase, likely further enhanced by dynamical drivers (Gibson et al.,
2024b).

A summary of uncertainty is presented based on quantifying the
percentage of land area where there is sign agreement across the
models. Given the importance of thermodynamic drivers, projections
of precipitation extremes have greater model agreement than mean
precipitation. Similarly, projections of drought in summer have
greater model agreement than summer mean precipitation.

By covering a wide range of projections here, including various
extreme indices, we anticipate that this will provide a useful foundation
for future impact and adaptation studies. The uncertainty metrics pro-
vided will help users of the model projections better understand where
the largest uncertainties lie in terms of the direction of change. Lastly,
we have shown that RCM uncertainty can be non-negligible for certain
regions and variables/indicators, which has been historically under-
studied. Improved sampling of uncertainty, stemming from both GCM
and RCM uncertainty, would require significantly larger computational
resources than currently allocated. To address this, one avenue currently
being explored is the extent to which Al-based RCM emulators can
alleviate some of this computational burden, while still providing
scientifically credible projections (Rampal et al., 2024, 2025).
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