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Abstract The skill of numerical weather forecasts strongly depends on the quality of the initial conditions
(analyses), which are created by assimilating observations into previous short-range model forecasts. Therefore,
it is important to carefully assess the influence of different observations on the analysis. The degrees of freedom
for signal (DFS) is a useful metric for quantifying this influence. While DFS has long been used in variational
data assimilation (DA) systems, its application in ensemble-based DA systems remains limited. In this study, we
propose two novel approaches for estimating the DFS in ensemble-based systems. One approach uses the
weighting vector calculated in ensemble transform Kalman filters, while the other uses the innovation vector
and observation-space increment vector. We also propose a new strategy for implementing the DFS approaches
in the presence of domain localization, which first estimates DFS locally and then aggregates the results to
derive a global DFS value for each observation. Our numerical results show that the DFS per observation
decreases as the localization radius increases. More generally, the proposed DFS approaches and
implementation strategy have the potential to be used in practice to inform the optimization of observation
networks and DA systems.

Plain Language Summary Our daily weather forecasts rely on the use of weather observations (e.g.,
those from weather stations, satellites and radar). A better forecast can be achieved by improvements to the
observation network and better use of the observations. To this end, we need to understand which types of
observations are more valuable and whether they are being used optimally. Therefore, we propose new
approaches for quantifying the value of different observations for weather forecasting. These approaches are
specifically used in ensemble forecasting systems, which are widely used to predict high-impact weather events
such as heavy precipitation.

1. Introduction

Weather observations are used to generate initial conditions (analyses) for numerical weather prediction (NWP)
through a process called data assimilation (DA) (Ballard et al., 2016; Brousseau et al., 2012; Fischer et al., 2005;
Lorenc et al., 2000; Rabier et al., 2000; Rawlins et al., 2007). They contribute greatly to improving the accuracy of
weather forecasting (e.g., Bauer et al., 2015). Different observation types (e.g., satellite data, radar data, and
aircraft data) provide different information on a variety of model variables. In addition, they have different spatial
distributions, frequencies and error statistics and are often associated with different observation operators.
Therefore, their influence on the analysis should be quantified so that we can understand the relative importance
of different observation types for constraining the analysis.

An assessment of observation influence provides evidence to inform further development of current observation
networks or the design of future ones. In addition, it can help diagnose problems with the assimilation of ob-
servations (Ota et al., 2013; Stiller, 2022). Some observation types may not be assimilated optimally due to
reasons such as incorrectly specified observation error statistics (e.g., Fowler et al., 2020). Another purpose of
quantifying the influence of observations is to assess changes to the DA system, for example, tuning the
observation error covariance matrix (Chapnik et al., 2006; Desroziers & Ivanov, 2001) and localization radius
(Diefenbach et al., 2022; Vural et al., 2024). Mostly, we are interested in the influence of a given type of
observation, but sometimes it is also useful to separate the influence of each observation within a group in
different ways (e.g., time of day, geographical area, etc.). This allows us to identify the dependence of the in-
fluence of observations on underlying meteorology.
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The degrees of freedom for signal (DFS) is an information content measure used to quantify how much infor-
mation the analysis has extracted from the observations (Rodgers, 1998, 2000). The DFS has been used in
operational variational DA systems to select satellite channels (e.g., Collard, 2007) and tune observation error
covariance matrices (Chapnik et al., 2006; Desroziers & Ivanov, 2001). How to estimate the DFS depends on how
the assimilation system is implemented. In variational DA systems, there are a few different approaches for
estimating it. Fisher (2003) has shown that the DFS can be expressed as the trace of a function of the Hessian
matrix, which can be efficiently estimated using the algorithm of Bai et al. (1996). An alternative approach uses a
randomized trace estimation method (Desroziers, Brousseau, & Chapnik, 2005; Fisher, 2003; Wahba et al., 1995).
In addition, Cardinali et al. (2004) estimated the DFS using a low-rank approximation of the analysis error
covariance matrix. More recently, Fowler et al. (2020) advocated using assimilation residuals in observation
space to simultaneously estimate the theoretical DFS (i.e. consistent with the assumptions made in the assimi-
lation) and the actual DFS (that accounts for violations of these assumptions). This makes the DFS useful for
assessing not only the influence of the observations but also whether this influence is optimal.

Ensemble Kalman filters represent another category of operational DA systems (Carrera et al., 2015; Schraff
et al., 2016). Due to advantages such as the use of flow-dependent background error statistics, the ability to
generate initial conditions for ensemble forecasts, computational efficiency, and relative ease of implementation,
ensemble Kalman filters are gaining popularity and feasibility for convection-permitting NWP (e.g., Hu
et al., 2023), among other applications. Estimating the DFS in such systems is different from estimating it in
variational DA systems. On the one hand, in ensemble Kalman filters, the Kalman gain can be explicitly formed
using background or analysis ensemble perturbations (Liu et al., 2009), making the estimation of the DFS
potentially easier (Hotta & Ota, 2021). On the other hand, the ensemble estimate of the background error
covariance matrix is flow-dependent and contains ensemble sampling error, leading to spatial and temporal
variations in the influence of the same type of observations. This means that it is more difficult to obtain sta-
tistically significant estimates of DFS. In practice, we need to decide on which time period and in which region to
average the DFS.

Domain localization provides a method for the local implementation of ensemble Kalman filters. It divides a large
global DA problem into many smaller independent local DA problems (Greybush et al., 2011; Janjié et al., 2011;
Schraff et al., 2016). Each local analysis process calculates the analysis state at one or several model grid points
using only observations within a certain distance from those grid points. Consequently, each local analysis uses a
local background ensemble perturbation matrix, a local background ensemble perturbation matrix in observation
space, and a local observation error covariance matrix. These local matrices are composed of selected elements of
their global counterparts (for a detailed example see Section 6.1). As a result, the local Kalman gains differ across
local analyses and do not correspond to rows of a single global Kalman gain calculated using global error
covariance matrices. While domain localization brings computational benefits to ensemble Kalman filters, it
complicates the estimation of the DFS (Hotta & Ota, 2021).

To the best of our knowledge, the literature on the use of the DFS in ensemble-based DA systems remains limited,
and the answers to the following questions are not yet clear.

¢ Which approaches can be used to estimate the DFS in ensemble-based DA systems?
* How can the DFS be reliably and efficiently estimated in the presence of domain localization?

In this work, we revisit existing state-of-the-art approaches (Fowler et al., 2020; Hotta & Ota, 2021) and propose
two novel approaches for estimating the DFS in various ensemble Kalman filter frameworks. In addition, we
propose a new strategy for implementing the DFS approaches in the presence of domain localization and compare
it with the strategy proposed by Hotta and Ota (2021).

This paper is organized as follows. In the next section, we introduce some notation and basic concepts of
ensemble-based DA. In Section 3, we introduce the definition of the DFS, including both the actual and theo-
retical DFS formulations. In Section 4, we propose two novel approaches for estimating the DFS and revisit
several existing approaches. In Section 5, we propose a new strategy for implementing the DFS approaches in the
presence of domain localization. In Section 6, we conduct numerical experiments to study the uncertainty in the
estimates of the actual DFS, the sensitivity of DFS estimates to ensemble size, the effect of domain localization on
DFS estimation, and the spatial variability of the DFS for individual observations. Finally, in Section 7, we
summarize the advantages and disadvantages of the different DFS approaches and our new strategy for handling
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domain localization, and address practical considerations for applying these approaches in operational
environments.
2. Mathematical Concepts and Notation for Data Assimilation
In this section, we introduce some basic concepts for ensemble-based DA (following standard notation; e.g.,
Livings et al., 2008). Let x € R" be a model state vector. The ensemble mean of x is
>
X=— Xk
Ko
where k denotes the kth ensemble member and K the ensemble size. The ensemble perturbation matrix is the
n X K matrix defined by
X=[X]—i Xz—i eee XK_i]-
The corresponding ensemble covariance matrix is the n X n matrix given by
P=—_ 1 XX (1)
TK-1"77
where the superscript T denotes the transpose of a matrix. This ensemble covariance matrix is subject to ensemble
sampling error, as it is computed from a finite ensemble of size K.
Let 1 : R" — R™ denote a nonlinear observation operator. The ensemble mean of the model state vector in
observation space is
1 &
h(x) = % D h(xp).
k=1
Let y € R™ be an observation vector. The ensemble mean of the innovation vector is
d=y—h(x,), 2
where x,, is the background model state vector and we omit the ensemble index k. Let H € R"*" be the linearized
observation operator. The ensemble perturbation matrix in observation space is
Y = HX, 3)
which is an m X K matrix. It should be noted that the definition of the matrix Y can be extended to nonlinear
observation operators by computing each column as h(x;) — h(x). Let R € R"*™ be the assumed observation
error covariance matrix. The term “assumed” indicates that it is the matrix used in the DA and may not represent
the true error statistics. The corresponding assumed innovation covariance matrix is then
D =HP,H' +R, )
where P, € R"*" is the ensemble background error covariance matrix defined by Equation 1 (Todling
et al., 1998). The matrix D is considered to follow an unbiased Gaussian distribution. The Kalman gain is the
n X m matrix defined by
K=P,H' D, ©)
which is equivalent to
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K=PH' R, (6)

where P, € R"*" is the ensemble analysis error covariance matrix (Kalnay et al., 2012). Using the Kalman gain,
the ensemble mean of the analysis state vector can be calculated by

X, =X, + Kd, (M

which corresponds to the best linear unbiased estimator (Nichols, 2010).

To account for inaccuracies in the assumed error statistics, we define the frue innovation covariance matrix as
—=T
E[dd ] ~ HBH +R,, ®)

where E[-] denotes the statistical expectation, and R, € R"*" and B, € R"*" are the true observation and
background error covariance matrices, respectively. If the background ensemble perturbations are representative
of the true background error statistics, then B, = E[P}]. The derivation of Equation 8 is provided in Appendix A,
following Desroziers, Berre, et al. (2005). The true innovation covariance matrix can be empirically estimated as

©)

=z~
™M=
=Y
1

E[aaT] ~

<
[N

where j is the sample index and N the total number of samples. The expectation is taken over the probability
density function of actual innovation samples, which are expected to follow an unbiased Gaussian distribution
when the observation operator is linear. The estimated covariance matrix is subject to innovation sampling error,
which arises from two main sources: (a) sampling of observations and (b) sampling of the background mean
(Equation 2). To avoid biased estimates, the sampled innovation vector d should reflect consistent innovation
statistics. Therefore, innovation samples should be collected from different analysis times and/or regions where
observation and background error statistics are assumed to be consistent or sufficiently similar. Otherwise, the
resulting estimate would represent an average over a mixture of different innovation covariance matrices.

3. Degrees of Freedom for Signal

The DFS is named after the idea that model state space can be spanned by p orthogonal vectors so that it can vary
statistically independently in p directions (“degrees of freedom”; Section 2.4 of Rodgers, 2000). If the obser-
vations constrain the uncertainty well in one direction, it can be considered to represent one “degree of freedom
for signal.” The unconstrained directions, on the other hand, represent the “degrees of freedom for noise”. Hence,
a larger DFS means that the observations have a larger influence on the analysis. By definition, the smallest value
of the DFS is zero, and the largest value is the smaller of the number of observations () and the dimension of the
model (n). However, in ensemble-based DA, the background error covariance matrix is estimated using the
ensemble perturbation matrix (Equation 1) and thus has a maximum rank of K — 1. In this case, the value of the
DFS is bounded by K — 1, much smaller than m or n (Hotta & Ota, 2021). If background error covariance
localization is applied, then the upper bound can increase to K - rank(L,,) — 1, where L, € R"*" is a model-
space localization matrix (Hotta & Ota, 2021). In ensemble-based DA, we may think of the DFS as measuring
how many of the directions spanned by the ensemble members are constrained by the observations.

For a given background error covariance matrix, the DFS can be expressed as
DFS = E[(X, — %) P} (X, — %)), (10)

following Section 2.4 of Rodgers (2000). Here, we use a pseudoinverse Py that satisfies PP P, = Py, (Chapter
5 of Golub & Van Loan, 1996), as the matrix P, may not be invertible. Since this expression can later be

. ==T . Lo . .
reformulated in terms of E[dd ], we can consider that the expectation is taken over an unbiased Gaussian
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distribution, as in Equation 9. A direct interpretation of Equation 10 is that a larger DFS implies a larger update to
the background state vector due to the assimilation of observations. Moreover, since the analysis is the best linear
unbiased estimate, a larger DFS also indicates a larger reduction in the variance of the analysis error (with respect
to the variance of the background error) and, hence, a more accurate analysis.

The equation for the actual DFS can be obtained by substituting Equations 7 and 5 into Equation 10. As derived in
Appendix B, we obtain

DES,, = tr(E[aaT] D“HK), (1)

which measures the actual influence of observations, taking into account the difference between assumed and true
innovation covariance matrices (Fowler et al., 2020). It should be noted that DFS, is derived under the
assumption of stationary background and observation error statistics. In ensemble-based DA, the background
error statistics are flow-dependent, and samples of d should be carefully selected to ensure this assumption is
reasonably satisfied.

If the two innovation covariance matrices are identical, then Equation 11 becomes
DFS e = tr(HK), (12)

which gives the theoretical value of the DFS. The theoretical DFS may also be seen as the trace of the derivative
of analysis in observation space with respect to observations (Cardinali et al., 2004; Chapnik et al., 2006). In
practice, if the background and observation error covariance matrices used in DA represent the true error statistics
well and the observation operator is close to linear, then the theoretical and actual values of the DFS are expected
to be similar. The difference between the theoretical and actual DFS can be used to evaluate deviations from these
assumptions. When the deviations are large, the actual DFS provides an accurate estimate of Equation 10,
properly accounting for these deviations.

The theoretical DFS is determined by the background and observation error statistics and the observation
operator. In DA systems with no cycling, this means that it is independent of the numerical values of the ob-
servations. In other words, observations with different values can have the same theoretical DFS as long as the
error statistics are the same and the observation operators are the same. However, the numerical value of ob-
servations starts to play a role in cycling systems because it affects the forecast ensemble used to estimate the
background error statistics in the next cycle. Compared to the theoretical DFS, the actual DFS also involves the
true innovation covariance, which is estimated using a sample of the vector d (Equation 9). Therefore, the exact
value of the observations affects the estimate of the actual DFS.

4. Methodology for Estimating DFS

In this section, we describe how to efficiently estimate the theoretical and actual DFS in ensemble-based DA
systems. The equations used to define the DFS may not be directly usable in practice. The estimation of the
theoretical DFS (Equation 12) requires an explicit formulation of the Kalman gain acted on by a linear observation
operator or some approximation of the matrix product, HK. The estimation of the actual DFS (Equation 11) is
more complicated because we also need an estimate of the true innovation covariance matrix.

4.1. Weighting-Vector-Based Approach

We first introduce a novel approach for estimating the actual DFS in ensemble transform Kalman filters (ETKF;
Bishop et al., 2001; Hunt et al., 2007), where the ensemble mean of the analysis state vector is calculated by

ia = ib + wa, (]3)

with w € R being a weighting vector. Using this vector, the actual DFS can be estimated by
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Sy = KoL S0 4
DF actw — N Zw/ Wj~ (1 )
Jj=1

Ideally, samples of the vector w should be collected under stationary background error statistics. However, this is
difficult in practice due to the flow-dependent nature of background error statistics. Therefore, we recommend
collecting samples from assimilation times and/or regions where the background error statistics are supposed to
be sufficiently similar (e.g., during a specific weather event).

The DFS,, ,, approach is computationally inexpensive, as the vector w is an intermediate product calculated in the
ETKEF algorithm. Since the vector w is not typically an output of operational systems, we may need to apply
Equation 14 alongside the assimilation rather than as a post-processing method.

It is not possible to separate the influence of a subset of observations directly from Equation 14 as the vector w is
in ensemble space (of size K). We define II; as a projection operator that selects the vector elements corre-
sponding to the subset i of observations, for example, II; y (Desroziers, Brousseau, & Chapnik, 2005; Fowler
et al., 2020; Stiller, 2022). The operator II; is a row vector or a matrix that contains only elements of zero and one.
We further define the matrix S; = l'Il-T II;. Then, the actual DFS for the subset i of observations can be calcu-
lated by

1Y T
DFS e . =NZ(dj—Ywaj) R7'S; Y, w;, (15)
j=1

where Yy, ; denotes the jth sample of the matrix Y}, (Equation 3). The vector d and the matrix Yy, are usually readily
available in ETKF systems. They are sampled alongside the vector w. For the derivation of the weighting-vector-
based approach, see Appendix C.

4.2. Ensemble Perturbation Approaches

This type of approach has been used by Hotta and Ota (2021) to estimate the theoretical DFS. The idea is
straightforward: we can use either background or analysis ensemble perturbations to explicitly form the Kalman
gain (Liu et al., 2009) and then compute the matrix HK. Using the Kalman gain given by Equation 5, along with
Equations 1 and 3, the theoretical DFS can be estimated by

DFSpeoy, = tr(Yb YT (Y, YT + (K — 1)R)‘1), (16)
and the contribution of the subset i of observations to the total DFS is
DFS 0.y, = tr(Yb Y7 (Y, Y7 + (K — 1)R)‘1s,-). (17)

Alternatively, using the expression for the Kalman gain in Equation 6, the theoretical DFS can be estimated from
the analysis ensemble perturbation as

1

DFSlheo,Ya = K—1

(Y, Y;R™"), (18)
with the contribution of observation subset i given by
1
DFStheo,Ya,i = ﬁtr(Ya YIR_] Si)' (19)

The DFS,¢,,y, formulation is computationally cheaper than DFS;;,, y, if the matrix Y, is readily available or can
be efficiently computed.
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In ETKF systems, assuming a linear observation operator, the matrix Y, can be calculated as
Y, = Y, W, (20)

where
\12
W= ((K - I)Pa)

is a transformation matrix obtained during the assimilation process (e.g., Hunt et al., 2007) and the matrix ﬁa is
given by Equation C3.

In stochastic ensemble Kalman filters, the matrix Y, can be obtained by subtracting the ensemble mean from each
member of the analysis ensemble in observation space (calculated using a nonlinear observation operator). This is
not desirable when domain localization is used, as the observation operator is often non-local (see Section 5).
Alternatively, we may use a linearized observation operator to compute the matrix Y, as HX,. A potential issue
with this is that the matrix X, is typically inflated in operational DA systems (Whitaker & Hamill, 2012; Zhang
et al., 2004), and using an artificially inflated X, can distort the estimation of the DFS. Therefore, the application
of the DFS,., v, approach in stochastic filters is less straightforward than in ETKF systems, where Equation 20 is
applicable.

4.3. Innovation-Based Approaches

The innovation-based approaches were originally proposed for variational DA systems (Fowler et al., 2020; Lupu
et al., 2011). They provide estimates of both the theoretical and actual DFS. We describe how to use them in
ensemble-based DA systems and provide a new formulation for estimating the theoretical DFS. We may consider
that the idea of the innovation-based approaches is to form the Kalman gain using the innovation, residual and
observation-space increment vectors. The innovation vector is defined in Equation 2 as it is required for DA. The
residual and observation-space increment vectors are defined as

r=y - ), @D
and
v = h(X,) — (). (22)

Depending on the DA system, these two vectors may also be calculated using the ensemble mean of 4(x,) and
h(xp) or the control member (see discussion in Appendix D). We further normalize the vectors by the square root
of the observation error precision matrix, which can be expressed as

R4,
= R r, (23)

Ry,

- R
Il

<>
Il

The purpose of the normalization is explained in Section 4.3.1. For diagonal observation error covariance
matrices, the three vectors are simply scaled by the observation error standard deviation.

4.3.1. Fowler et al. (2020) Approach

The actual DFS (Equation 11) can be estimated by

19 T,
DFS,qq = NZ £, 24
j=1
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and the influence of the subset i of observations is
1Y,
DFS, .4, = N Z £'S9;. (25)

The theoretical DFS (Equation 12) can be estimated by

N N -1
DSy = [z 537247 ) 6

and

J

N N -1
DFSyess, =tr(zo,f;(zajf;) si]. @
=

For the derivation of these equations, see Fowler et al. (2020).

In the above equations, samples of the vectors d, # and ¥ should be collected at different assimilation times and/or
regions where the background error statistics are similar. In general, how the sample is selected for averaging
should depend on the practical application, such as the type of observation or the purpose of the observation
influence assessment.

As shown by Equation 26, matrix inversion is required for estimating the theoretical DFS. This may lead to large

numerical errors if the matrix is ill-conditioned. Without the normalization given by Equation 23 we need to
invert the matrix Z —14d; ] , while with the normalization, we need to invert the matrix zj which is

expected to be better conditioned (Fowler et al., 2020; Tabeart et al., 2018).

lJ/’

4.3.2. New Alternative Approach

In addition to the original approach, DFS,, 4, we propose a new alternative approach to estimate the theoretical
DEFS (for a derivation, see Appendix E). The equations for the alternative approach are obtained by replacing the
residual vector in the original equations (Equations 26 and 27) with the innovation vector. The new equations are

N N -1
A AT A AT
DFS eo.d.ati = n{ D 9d; ( >, dd, ) ] (28)

J=1 J=

for all observations and

|| Mz
Q.)

-1
]T) si] 9

The original and alternative approaches each have their own advantages. An advantage of the alternative approach

N
DFStheo,d,alt,i = (Z (

for the subset i of the observations.

is that it simplifies the computation by using only the innovation and observation-space increment vectors. For the
original approach, the better the assimilation is (i.e., the closer the assumed innovation covariance matrix is to the
true innovation covariance matrix), the closer the matrix to be inverted (Zjl.vzl (Aljf';—) will be to the identity matrix.
Therefore, we may assume this matrix to be diagonal and use only the diagonal elements to estimate the theo-
retical DFS (Fowler et al., 2020). This reduces the computational cost and avoids the numerical error that may be
caused by matrix inversion. For the alternative approach, the matrix to be inverted is the normalized innovation
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. . AT . .. . . . ..
covariance matrix (zj{v:1 did; ) In general cases, this matrix is unlikely to be a diagonal matrix because it includes

the background error covariances (A special case is when the matrix HP,H' is similar to the matrix R).

4.4. Comparison Between Different DFS Approaches

In this section, we compare the six different DFS approaches introduced in the last section. Among them, the
DFS,. approach (Equation 14) and the DFS, 4 (Equation 24) approach estimate the actual DFS, while the
DFS 0.y, approach (Equation 16), the DFSy,, y, approach (Equation 18), the DFS;,., 4 approach (Equation 26)
and the DFSy;,¢, 4 .1 approach (Equation 28) estimate the theoretical DFS.

We begin by comparing the two approaches for estimating the actual DFS. The DFS,,, approach can be
rewritten as

N
DFS ., = 3aD Y, YD 4.
Jj=1

1
(K— 1N &

where D is the assumed innovation covariance matrix but calculated using a nonlinear observation operator (for a
derivation, see Appendix C). The DFS,, 4 approach uses normalized residual and observation-space increment
vectors, both of which can be expressed in terms of the innovation vector as follows

f~ RV20-HK)d (30)
and
¥ ~ R™?HKd, 31)

where the approximation error is caused by the linearization of the nonlinear observation operator. Substituting
Equations 30 and 31 into Equation 24, we obtain the following approximation

N
DFS, g ~ > d'D HX,Y{D d,

1
(K-1N =)
When the observation operator is linear, this approximation becomes exact and we have Y, = HX,. Therefore,
the two actual DFS approaches are equivalent in the case of a linear observation operator.

We now demonstrate the equivalence between the theoretical DFS approaches. We substitute Equation 30 into
Equation 26, which gives

N N -1
>ovd (I- HK)TR—W(Z dd; (I1- HK)TR‘I”)

J=1 J=1

N (N -1
=l Y ¥d; [ Ddd; | |
j=l j=l

DFStheo,d ~ tr(

By further applying Equation 23, we find that the DFSy,, 4 approach is equivalent to the DFS, 4 51 approach.
Using Equation 31, we can show that the two approaches approximate tr(HK) when the observation operator is
nonlinear, and yield exactly tr(HK) when the observation operator is linear. Similarly, the DFSy,,y, and
DFSpco,y, approaches also produce results equal to tr(HK) in the linear case. Therefore, all four theoretical DFS
approaches are equivalent when the observation operator is linear.

When the observation operator is nonlinear, the DFS, ,, DFSyc, v, and DFS,, y, approaches can use either the
nonlinear operator or its linearized version, consistent with the implementation in the DA system. Differences in
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L (Estimate) Actual DFS
-— —> il
Z W-ij | DFSct = tr(]E[dcTr]D_ll'lK)

>-1 \ (f[ddT] =D7?)

I (Estimate) » | Theoretical DFS
DFStheo = tr(HK)

DFStheoy, = tr (Yo¥] (¥o¥] + (K ~ DR) ")

1
DFStheoy, = mtr(yaYaT R™)

s s s

‘\ (Identical if the observation operator is linear) %
~ '

Figure 1. Overview of equations and their relationships for different degrees of freedom for signal approaches. Samples of
vectors V, T, d and w are collected from different assimilation times and/or regions where background error statistics are
assumed to be sufficiently similar. For details on their equivalence, see the main text.

the resulting DFS estimates depend on the magnitude of the linearization error. Nonlinear observation operators
introduce errors into the innovation-based approaches (DFS,. 4, DFSyeoq and DFSye, ga1), as discussed in
Fowler et al. (2020). Although Fowler et al.’s discussion was presented in the context of variational DA, it also
applies to ensemble Kalman filters.

The relationships among the DFS approaches discussed above are summarized in Figure 1. When applying these
approaches, it is important to note that—except for the DFS,,, approach, which is specifically designed for
ETKEF systems—all other approaches are applicable to both deterministic and stochastic ensemble Kalman filters.
For the innovation-based approaches (DFS,. 4, DFSye0q and DFSye, ga¢), there is no difference in their
implementation between deterministic and stochastic filters. For the DFS;,., v, approach, the key distinction lies
in how the matrix Y, is calculated (see Section 4.2).

In the next section, we discuss how to estimate the DFS in the presence of domain localization, which may
introduce differences in the results produced by different DES approaches (see Figure 7 for an example).

5. Estimating DFS in the Presence of Domain Localization

Domain localization is a commonly used practical technique in ensemble Kalman filters, but it complicates the
estimation of the DFS. To address this issue, Hotta and Ota (2021) proposed a strategy (hereafter referred to as the
H&O strategy) that constructs a global Kalman gain (Kt) from locally computed Kalman gains and estimates the
DEFS for each observation as the corresponding diagonal element of the matrix HK.

In this work, we propose a novel strategy for estimating the DFS in the presence of domain localization, which is
applicable to all DFS approaches considered in this study. Our strategy allows estimation to be performed locally
on smaller matrices or vectors, which reduces computational costs and simplifies implementation in operational
environments. In general, DFS estimates produced by our strategy are comparable, though not identical, to those
obtained using the H&O strategy (see Section 6.4). The theoretical differences between the two strategies are
discussed in detail in Appendix F.

Since each local analysis process can be considered an independent analysis process, our idea is to apply the DFS
approaches described in Section 4 to each local process and then average the DFS for the same observation over
local processes. The steps are described as follows.

1. For each local analysis process, estimate the DFS corresponding to each observation used in that process. We
use the notation DFS;; to denote the DFS for the ith observation in the Ith local analysis process. If the ith
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Figure 2. Illustration of the estimation of the influence of each observation

° observation is used in the /th local analysis process, then DFS;; may be
calculated using any of Equations 15, 17, 19, 25, 27, and 29. Other-
wise, DFS;; = 0.

2. Average the DFS for the same observation over the local analysis pro-
cesses which use that observation, namely, the DFS for the ith observation
in the entire DA system, is computed as DFS; = niz; DFS;;, where n; is
the number of local analysis processes that use the ith observation.

An illustration of the above steps is given in Figure 2.

To obtain the total influence of all observations, we add up the influence of
each observation obtained in Step 2, i.e., Z:" DFS;. In practice, domain
localization is often combined with R-localization, whereby observations
. farther from the state variable being updated are assigned larger error vari-
ances to reduce their influence on that variable (e.g., Hotta & Ota, 2021). Our

strategy is applicable with R-localization, but caution is needed when inter-

with domain localization. The red dots represent the location of preting the results. Under R-localization, an observation may have a large
observations, and the black dots represent the model grid points. The DFS value in a local domain centered near its location, but very small DFS

analyses at x5 and x4 are calculated by two independent local data
assimilation (DA) processes, each using observations within the localization
radius (). To obtain the influence of the observation y, in the entire DA system,
we first estimate its influence on x5 and xg, respectively, and then average the

two estimates.

values in domains centered farther away. Averaging these local DFS values,
as in Step 2, can therefore lead to a small final DFS value. This might be
wrongly interpreted as meaning that the observation is not particularly useful.
However, downweighting of observations is a deliberate choice by the user.
Moreover, DFS is a relative measure: it is more useful to focus on which
observations have larger DFS values than to focus on the exact size of the DFS value, since this varies across DA
systems. To provide a more complete assessment, it can be helpful to consider not only the average DFS, but also
the distribution of DFS values across all domains.

In the first step, the innovation-based approaches (Equations 25, 27, and 29) are applied as post-processing
methods, which use elements of the global innovation, residual and observation-space increment vectors that
correspond to the observations used in the local analysis process. The weighting-vector-based approach
(Equation 15) and analysis ensemble perturbation approach (Equation 19) are applied along with the assimilation
process because they use the intermediate products (the vector w or the matrix W) generated in each local analysis
process.

In addition to domain localization, several other practical techniques are commonly used in ensemble Kalman
filters. When covariance localization is applied (Hamill et al., 2001; Houtekamer & Mitchell, 2001), the localized
background or observation error covariance matrices should be used in any DFS approach that involves these two
matrices. This includes the ensemble perturbation approaches (DFSy,,y, and DFSy,,y,) and the innovation-
based approaches (DFS, 4, DFSye0q and DFSy,, 4a11). Covariance localization does not affect the DFS,
approach, as the weighting vector w is already computed using the localized matrices. The effect of covariance
inflation (Anderson & Anderson, 1999; Mitchell & Houtekamer, 2000) on the estimation of the DFS can be easily
accounted for, as it typically involves applying a scalar factor to the background or analysis error statistics.
Finally, when observations are assimilated serially (Anderson, 2001; Dance, 2004; Whitaker & Hamill, 2002) the
DFS must be estimated after all observations have been assimilated (Hu et al., 2025).

6. Idealized Data Assimilation Experiments

In this section, we examine the DFS approaches in idealized DA experiments without cycling. We use the local
ensemble transform Kalman filter (LETKF; Hunt et al., 2007) as our DA method. Since we do not perform
cycling, a forecast model is not needed. Moreover, to further simplify the experiments, we use a linear observation
operator and calculate the analysis error vector instead of the analysis state vector. This avoids the need for
background state and observation vectors. Our experiments only require background and observation error
vectors, a background ensemble perturbation matrix and an observation error covariance matrix. In addition to
using LETKF, we also conducted DA experiments with the ensemble Kalman filter (EnKF; Evensen, 2003) and
obtained consistent DFS estimates. Therefore, we present only the LETKF experiments in this study.
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Figure 3. Tllustration of two spatial distributions of observations. (Left panel) Observations (red crosses) are regularly
distributed on the model grid points (black dots). (Right panel) The location of the observations is randomly selected from a
Gaussian distribution.

Since the DFS, 4 and DFS,, ,, approaches are sensitive to the sample of vectors used in the estimation, we first
investigate an appropriate sample size for these approaches and then use it in the subsequent experiments. Then,
we investigate the sensitivity of the DFS estimates to ensemble size. After that, we examine our strategy for
implementing the DFS approaches in the presence of domain localization. Finally, we look into the spatial
variation of the DFS for individual observations due to flow-dependent background error statistics and their
relative locations to other observations.

6.1. Experimental Design

Our 20 X 10 model grid points are regularly distributed on a latitude-longitude grid over a region from 2.5°S to
2.5°N and 5°W to 5°E. We consider a region near the equator due to the small differences in grid lengths; the grid
length is about 58.5 km in the east-west direction and 61.8 km in the north-south direction. In addition, a small
number of model grid points is used to ensure computational efficiency.

We consider two spatial distributions of observations, as shown in Figure 3. In the first case, 50 observations are
regularly placed at alternate model grid points, similar to geostationary satellite observations. In the second case,
observations are irregularly distributed at locations with longitudes (latitudes) randomly chosen from a Gaussian
distribution: the mean is the longitude (latitude) of the grid at the center of the domain, and the standard deviation
is 10% of the difference between the maximum and minimum longitudes (latitudes). This distribution is similar to
that of radar observations. We further thin the observations to ensure that each grid box contains no more than one
observation. After thinning, only 20 of the original 50 observations are left. The Gaussian distribution of ob-
servations is used exclusively in Section 6.5, and all the other experiments use the regular distribution.

The true and assumed observation error covariance matrices are identical (i.e., R = R,), and both are identity
matrices. Nevertheless, it is important to note that the DFS approaches are also applicable when observation
errors are correlated. In such cases, the correlation lengthscale affects the influence observations can have on
the analysis (e.g., Fowler et al., 2018). The true background error covariance matrix is modeled by the
second-order autoregressive (SOAR) correlation function (Daley, 1994; Tabeart et al., 2018), with the (i,j)th
element given by

|4,

) —IA.
B(i,j)) = |1+ Jl exp —| i N
Iy I

where I, = 80 km is the background error correlation lengthscale and A;; the great circle distance between two

background state variables. The condition number of the resultant matrix B, is approximately 1,348.

The background ensemble perturbation matrix (X;) is generated as follows: each column of the matrix Xy is
given by random values drawn from a Gaussian distribution with mean zero and covariance B, (i.e.,
Xy [*,k] ~ N(0,B)). As the ensemble size (i.e., number of columns of the matrix X;) increases, the ensemble
background error covariance matrix (Equation 1) becomes closer to the true background error covariance matrix,
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50 - as shown in Figure 4. Due to ensemble sampling error, the sum of the columns
+ of the matrix X, may not be a zero vector, resulting in an invalid ensemble
perturbation matrix (Livings et al., 2008). To solve this, we remove the bias
401 by subtracting the sample mean from each column.
f; 30 4 + For observations located on the model grid (left panel of Figure 3), the back-
I ground ensemble perturbation matrix in observation space (Yy) is formed by
g ) extracting the rows of the matrix X, that correspond to the observation loca-
20 A tions. For irregularly distributed observations (right panel of Figure 3), the
¢ matrix Y} is obtained by linearly interpolating the background ensemble
10 A L perturbations to the observation locations. The interpolation is performed
° . using scipy.interpolate.LinearNDInterpolator (Virtanen et al., 2020).
(IJ 2(I)0 4(I)0 6(I)O 8(I)0 10I00 12I00 Since our observation operator is linear, calculating the analysis error vector
Ensemble size (K) (g,) is equivalent to calculating the analysis state vector. The analysis error at

. ) ) each model grid point is computed independently, following Hunt
Figure 4. The Frobenius norm of the difference between the ensemble and

true background error covariance matrices (P, and B,) as a function of
ensemble size (K). For each ensemble size, the mean of 100 estimates of
[P, — B||g, obtained from different realizations of the matrix Py, is plotted.
The error bar represents the standard deviation of those estimates.

et al. (2007). The details of our experiment are described below.

1. Calculate the global mean innovation vector (defined by Equation 2) as
d =¢, — Hey, (32)

where £, ~ N(0,R) and &, ~ N(0,B,) are observation and background error vectors, respectively.
2. Perform the local analysis process at each grid point:

(a) For the /th model grid point, select observations within the localization radius r (see Figure 2). If ob-
servations are available, form the local matrices, R; and Yy, and the local innovation vector, H,. If no
observations are within the localization radius, set the analysis error to the background error.

(b) Calculate

C =Y R,
and perform the following eigendecomposition,
(K- DI+C Yy, =UAU",

where U is a matrix whose columns are eigenvectors and A is a diagonal matrix whose elements are

eigenvalues. The eigenvalue decomposition is performed using numpy.linalg.eigh (Virtanen et al., 2020).
(c) Calculate the weighting vector as

W, = UA_IUTCIEI,

and implement the DFS, ,, approach using the vector w;, the vector d,, the matrix Y}, and the matrix R,

(Equation 15).
(d) Calculate the analysis error as

e [l] = e [1] + X, [, *]w,,
where g,[/] and &,[1] denote the /th element of the vectors &, and &, respectively, and X[/, *] denotes the

Ith row of the matrix Xj,.
(e) Calculate the matrix

W, = VK — ITUA"2UT,

which is used to calculate the matrix Y, (see Equation 20) and then to implement the DFSy,,, y, approach.
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Table 1
Summary of Experiment Configurations in Each Section, Including Observation Distribution, Vector Sample Size (N),
Ensemble Size (K), and Localization Radius (r)
Section Obs. dist. N K r (km)
6.2 Regular 50, 100, 200, 400, 800 B, 1,300
6.3 Regular 800 20, 40, 60, 80, 100 1,300
6.4 Regular 800 1,000 50, 100, 200, 400, 800, 1,300
6.5 Regular, Gaussian 800 20, 1,000 1,300
Note. The symbol B, indicates that the true background error covariance matrix is used.
3. Calculate the global residual and observation-space increment vectors as
r =¢, — He,
and
v=d-r,
whose subvectors are used by the innovation-based approaches (DFS,q 4, DFShe0.q and DFS 0. ait)-
To obtain samples of the three observation-space vectors (d, r and v) as well as the weighting vector (w), we
repeat Steps 1 through 3 a total of N times using different innovation vectors d, each calculated using a different
sample of observation and background errors (Equation 32).
Table 1 lists the observation distribution, vector sample size (N), ensemble size (K) and localization radius (r)
used in the experiments in the following subsections. Note that Section 6.2 uses the true background error
covariance matrix (B,), while the other sections use the ensemble background error covariance matrix. In
addition, a localization radius of = 1300 km is equivalent to not having domain localization, as it is longer than
the largest separation between any two model grid points.
6.2. Uncertainty in Estimates of Actual DFS
In this section we investigate the role of innovation sampling error in esti-
—®  DFStheo mating the DFS. As we have seen in Section 3, the definition of the actual
0.385 7 —&~ DFSaut DFS (DFS,.; Equation 11) involves the true innovation covariance matrix
s E[a ET], which is approximated in practice by a sample mean. In particular,
S 0.380 A
s the DFS,., and DFS, 4 approaches (Equations 14 and 24) rely on finite
[
§ 0.375 samples of vectors that are functions of the innovation vector, and are
g '  db dainln dninininintn e 9 therefore subject to innovation sampling error. Since the ratio of the vector
o sample size (N) to the number of observations (m) is a more informative
8 03701 quantity than sample size alone (Ledoit & Wolf, 2004), we investigate how
the innovation sampling error varies with the ratio N/m. The number of
0.365 1 observations is fixed at m = 50, as shown in the left panel of Figure 3. We use
1 2 4 8 16 the true background error covariance matrix (B,), avoiding additional un-

Nim

Figure 5. Uncertainty in the estimates of the actual degrees of freedom for
signal (DFS) (DFS,,) versus the ratio of the vector sample size (N) to the
number of observations (). The theoretical DFS (DFSy,,), estimated by the
DFS 0.4 approach, is plotted as a reference and is independent of N/m. DFS,
is estimated by the DFS,, 4 approach, and the uncertainty is quantified by the
standard deviation of 100 estimates based on different samples of background
and observation error vectors. Observations are regularly distributed, as shown
in the left panel of Figure 3.

certainty that would arise from using the ensemble background covariance
matrix (P,) that contains ensemble sampling error. The experimental design
is summarized in Table 1.

Figure 5 shows the uncertainty in the estimates of the actual DFS as a function
of the ratio N/m. We use the DFS, 4 approach for the estimation, but it
should be noted that the DFS,,, approach is equivalent to the DFS, 4
approach (see Section 4.4). In addition, the theoretical DFS (DFSy,;
Equation 12) is used as a reference as it does not contain innovation sampling
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error, and in this plot it is estimated by the DFSy,, 4 approach (Equation 26). As expected, we find that the
uncertainty of the estimates of the actual DFS decreases as the ratio N/m increases. At the smallest ratio
considered (N/m = 1), the standard deviation of the actual DFS estimates is about 0.01, which is approximately
3% of the mean estimate. At the largest ratio considered (N/m = 16), the standard deviation of the estimates is
less than 1% of the mean value. In later experiments, we will use a ratio of N/m = 16 for the DFS,,, and
DFS,. 4 approaches.

In Figure 5, we used DFSy,, as a reference as it is not affected by innovation sampling error. Although both the
DFSpeod and DFSye, 4.2 approaches do involve samples of innovation vectors in their computations, the sam-
pling error effectively cancels. We explain this using the DFSy,, 4.¢ approach as an example, but it can be
extended to the DFSy.,4 approach. Using Equation 31, the first matrix used in the DFSy., 4. approach
(Equation 28) can be approximated as
Sl ~ R-1/2 (
>.%d; ~ R"’HK

J=l

M=

dd ) R,
J

under the assumption that the matrix K remains constant across different samples of d. The second matrix can be
rewritten as

—
&
=

—

Il

N -1

1/2 i 172

R (Z;djdj) R"Z,
=

assuming that the matrix R is constant across samples of d. When these two matrices are multiplied, the sample

-1
. . N 55T . N =551 . . .
covariance estimate, ), djdi , and its inverse, (Z =1 djd]. > , cancel out, such that noise in the sample estimate

does not affect the final result of the DFS;¢, g a1 approach. Similarly, by using Equations 30 and 31, we can show
that the DFS,.,, 4 approach also does not contain innovation sampling error.

One potential problem with the application of the DFSy,., 4 and DFSy,, 4 approaches is that the matrix

ZJI.V:I aijT (or ZJI.V:I H]H]T) can be ill-conditioned if the ratio N/m is too small (If this ratio is smaller than one, then
the matrices are rank deficient and not even invertible). In this case, unrealistic DFS estimates (e.g., negative
values) may appear due to the large numerical errors in inverting ill-conditioned matrices. In practice, the use of
domain localization can greatly reduce the number of observations considered in each local analysis process, thus

helping to achieve favorable N/m ratios.

Our results may provide some ideas for choosing an appropriate ratio N/m in practice. In addition, the innovation
sampling error is expected to be larger if the true innovation variance is larger (e.g., Hu & Dance, 2024). A
practical challenge in using the innovation-based approaches (DFS,q 4, DFSycoq and DFSyeq 4:) and the
weighting-vector-based approach (DFS, ,) is the selection of samples that contain consistent background error
statistics. In practice, background error statistics are flow-dependent, and it is generally not possible to collect
samples of vectors with exactly the same background error statistics. This introduces an additional source of
uncertainty in the DFS estimates.

6.3. Sensitivity to Ensemble Size

The previous experiment uses the true background error covariance matrix (B,), such that the assumed innovation
. . . . . . . ==T
covariance matrix (D) closely approximates the true innovation covariance matrix (E[d d D Therefore, the

actual DFS and the theoretical DFS are expected to be similar, as shown in Figure 5. In contrast, this experiment
uses the ensemble background error covariance matrix (Py), under which the assumed and true innovation
covariance matrices can differ substantially. The magnitude of this discrepancy depends on ensemble size (K).

As shown in Figure 6, both the actual and theoretical DFS increase with ensemble size. As explained by Hotta and
Ota (2021), a possible reason is that the DFS is bounded by the rank of the matrix P}, which in turn is bounded by
K — 1. Therefore, a smaller K imposes a smaller upper bound on the DFS. While Figure 6 shows the DFS
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0.350 A . Drs = estimates only up to K = 100, we note that as the ensemble size increases to

0.325 - DFS:":’ PR 1,000, the DFS estimates asymptote to those obtained using the true back-

¥ ground error covariance matrix. Figure 6 also shows that the difference be-
_§ 0.300 1 o’ tween the theoretical and actual DFS becomes larger with smaller ensemble
3 0.275 R sizes. This behavior is expected because the ensemble sampling error in the
Q ¥ T . . . P
4 // approximation of the true background error covariance matrix increases as
o
5 0250 1 /’ ensemble size decreases. In Figure 6, the actual and theoretical DFS are
o
D 0225 .,’ estimated using the DFS,, , and DFSy;., 4 . approaches, respectively. When
e alternative approaches are used, the results remain consistent.
0.200 A
This experiment may provide us with some insights into the practical use of the
0.175 1 ! ! ! ! actual and theoretical DFS. In this simple experiment, we can use an ensemble
20 40 60 80 100

Figure 6. Actual and theoretical degrees of freedom for signal (DFS,; and
DFS,.,) for the ensemble background error covariance matrix with different
ensemble sizes (K). DFS, is estimated by the DFS,,, approach, and
DFS¢, is estimated by the DFSy;c, 4.1 approach, both using a vector sample
size of 800. The uncertainty in DFS, , is represented by the standard deviation
of 100 estimates based on different samples of background and observation
error vectors. Observations are regularly distributed, as shown in the left panel

of Figure 3.

of the same order of magnitude in size as the model state variables. However,
this is not feasible in practice, and thus, we may not see a good agreement

Ensemble size (K)

between the actual and theoretical DFS. Instead, we may use the difference
between them to inform the quality of a DA system and tune the system pa-
rameters (e.g., covariance inflation factor and localization radius). The chal-
lenge is that this requires expert knowledge to conjecture whether the
difference is mainly due to errors in the observation error covariance matrix,
errors in the background error covariance matrix, or errors in the linearization
of the observation operator (Fowler et al., 2020). In extreme cases, the back-
ground and observation error covariance matrices can be completely wrong
while the assumed and true innovation covariance matrices are identical.

6.4. Effect of Domain Localization

Previous experiments did not incorporate domain localization. In this experiment, we use our strategy to
implement the DFS approaches under domain localization (see Section 5). The DFSy,., y, approach is not shown,
as it produces results identical to those of the DFSy,, vy, approach. For comparison, we adopt the H&O strategy,
which constructs a global Kalman gain from locally computed gains and then estimates the theoretical DFS using
this global gain. In our experiments, the local Kalman gains for the H&O strategy are computed using Equation 5,
although they can also be calculated by other ways. The ensemble size and innovation sample size are selected to
keep the difference between the actual and theoretical DFS, as well as the innovation sampling error, sufficiently
small. This allows us to focus on differences arising from the two different strategies and various DFS approaches.

As shown by Figure 7, the DFS generally decreases as the localization radius increases. Particularly, all DFS
approaches produce estimates of approximately 0.5 at a localization radius of 50 km. This radius is shorter than
our grid spacing, meaning that each local analysis involves only one grid point and one observation. Given that the
background and observation errors have the same standard deviation, and the observation operator is 1 in this
scalar case, the Kalman gain and, consequently the DFS should be 0.5. As the localization radius increases further,
although more observations are assimilated locally and the total influence of observations is expected to grow, we
find that the DFS per observation actually decreases. This occurs because neighboring observations contain
similar information, and the information is spread by the background error covariance structure. Beyond a
localization radius of 400 km, further increases result in relatively small changes in the DFS per observation. This
behavior is expected, as the true background error correlation coefficients approach zero at separation distances of
400 km.

Despite their generally similar behavior, different DES approaches exhibit some differences. We group them into
three panels (panels b, c and d of Figure 7) based on the similarity of their behaviors. In panels (b) and (c), the DFS
is around 0.5 at a localization radius of 100 km, for a similar reason as the result at 50 km; both are specific
outcomes of our experimental design. As shown in panel (b), when applying our strategy to the DFSy,, 4 and
DFS, 4 approaches, they produce results consistent with the H&O strategy. This is because both approaches are
based on relationships among the innovation, residual, and observation-space increment vectors (Equations 30
and 31), where the Kalman gain can be interpreted as the one constructed by the H&O strategy (see Appendix F6).
Panel (c) shows that, under our strategy, the DFS,; 4 .1« approach produces results that differ from those of the
DFS 0,4 and DFS,, 4 approaches. This is due to the fact that the DFSy,, 4 . approach does not use the residual
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Figure 7. Degrees of freedom for signal (DFS) per observation estimated by various approaches under different localization
radii. (a) Heatmap of DFS estimates from each approach. (b) Line plot of DFS estimates from the DFSy, 4 and DFS ¢, 4
approaches, as well as the H&O strategy. (c) Line plot of DFS estimates from the DFS ¢, 4 a1 approach. (d) Line plot of DFS
estimates from the DFSy,,y, and DFS,,, approaches. Observations are regularly distributed, as shown in the left panel of
Figure 3.

vector, whereas the other two approaches do (see Appendix F6). Panel (d) shows a difference in the DFS between
localization radii of 50 and 100 km. The reason is that, when using our strategy, the DFSy,.,y, and DFS,,,

approaches use local counterparts of the matrix HK (or E[a HT] D~'HK for actual DFS), rather than applying the

observation operator to a global Kalman gain (see Appendix F). Therefore, our strategy estimates the DFS for
each observation by accounting for its various combinations with other observations in each local analysis
process. In comparison, the H&O strategy estimates the DFS for each observation by considering that all ob-
servations are assimilated in a single global analysis process.

6.5. Spatial Variation in DFS for Individual Observations

This experiment examines how the DFS for an observation varies with background error statistics and the relative
locations of other observations. In addition to placing observations directly on the model grid, we also consider
randomly selecting observation locations following a Gaussian distribution (Figure 3).

Figure 8 shows the theoretical DFS for each observation (estimated by the DFSy,.,, y, approach) in physical space
for an ensemble size of 1,000. We find that the spatial mean (shown in the top-right corner of the plot) of the
theoretical DFS is larger when observations are regularly distributed than when they are unevenly distributed.
This is because the observations in the latter case are more clustered, and therefore, the influence per observation
is smaller (Cardinali et al., 2004). We also observe that observations located at the boundary tend to have a
slightly greater influence than those located elsewhere. This further highlights that the influence of an observation
is affected by the relative locations of others: if there is another observation extremely close to an observation, or
if there are many observations surrounding this observation, then this observation is expected to have a smaller
influence.

When ensemble size is reduced to 20, the background error statistics become less spatially homogeneous in space
due to ensemble sampling error in Equation 1. This means that the background error variance may vary greatly
from one grid point to another. In this case, we observe a larger variation of the theoretical DFS for individual
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Figure 8. Theoretical degrees of freedom for signal (DFS) for each observation in physical space with two different
distributions of observations. The ensemble size is 1,000. Circles represent the locations of the observations, and their color
increases with the value of the DFS. Numbers in the upper right corner are spatial averages of the DFS. Contours show the
background error standard deviation.
observations (Figure 9). We may explain the variation of the theoretical DFS using Equation 18. Assuming that
observation errors are uncorrelated and their variance is the same, the theoretical DFS for the ith observation is
DFSheo,v,,i = mYa[i, ]+ Yoli, ],
where o, is the observation error standard deviation and Y,[i, *] denotes the row of the matrix Y, corresponding
to the ith observation. This equation acts as taking the sum of squares of each element of one row of the matrix Y,,.
Using Equation 20, we obtain
DFS ;= ;Y (5, x]WWTY] [,i]
theo,Y,,i U(Z)(K _ l) bl b L™ E]e
Using Equation 3, we further obtain
1 ; TTHT [ ;
DFSipeoy,,i = mH[h *] X, WW' X H [+, 1],
which shows that the theoretical DFS for the ith observation is affected by the background ensemble perturbation
of the model state variables used to calculate the model equivalent to that observation. In addition, the effect of the
relative locations of observations is reflected by the elements of the matrix W.
Compared to the theoretical DFS, the spatial variation of the actual DFS is more complicated to explain. Figure 10
shows the actual DFS for each observation (estimated by the DFS, 4 approach) in physical space when ensemble
— p—
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Figure 9. As Figure 8, but for an ensemble size of 20.
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Figure 10. As Figure 8, but for the actual degrees of freedom for signal and an ensemble size of 20.

size is 20. For regularly distributed observations, the spatial mean of the actual DFS is smaller than that of the
theoretical DFS (left panel of Figure 9), which is consistent with previous experimental results. However, for
observations distributed following a Gaussian distribution, the spatial mean of the actual DFS is found to be larger
than that of the theoretical DFS (right panel of Figure 9). Nevertheless, the spatial mean of the actual DFS is still
smaller than the “optimal” value obtained with an ensemble size of 1,000 (right panel of Figure 8). The factors
influencing the actual DFS estimates are complicated. According to Equation 11, the actual DFS for the ith
observation is

1 [&__
DFS,; = N[( > djdjT)D] HK] ,
J ii

where [-];; denotes the ith diagonal element of the matrix. Using Equations 1 and 6 and assuming uncorrelated
observation errors with equal variance, we obtain

! 72T oy T
DFS,.; = m[(}j: dd; )D HX, X, H

Since X; = X, W, we have

1 T -1 T Ty’
acl’i=m[(;djdj )D HX,WW'X/HT |,

ii

DFS

which is equal to

1 7T\ et TYTH [ i
DFS,.; = m(;dj[,] -d; )D HX,WW X/ H'[*,i].
This equation indicates that in addition to the factors affecting the theoretical DFS (e.g., relevant background
ensemble perturbations and observation locations), the actual DFS for the ith observation is also affected by the
specific sample of the corresponding innovation.

7. Summary

We investigated how to accurately quantify the influence of observations on the analysis in ensemble-based DA
systems using a metric called degrees of freedom for signal (DFS; Equation 10). The DFS measures how much
information the analysis has extracted from observations. Existing DFS approaches include the innovation-based
approaches (Fowler et al., 2020) and ensemble perturbation approaches (Hotta & Ota, 2021). In addition,
we developed a novel weighting-vector-based approach (DFS,,) and an alternative formulation of the
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Table 2

Comparison of the Advantages of Various Degrees of Freedom for Signal (DFS) Approaches, Including the Weighting-Vector-Based Approach (DFS,,,,), the
Innovation-Based Approaches (DFS,; 4, DFSye0q and DFSy,o 4 a) and the Ensemble Perturbation Approaches (DFS ..y, and DFS ., y,)

Approach

Estimate theoretical DFS Estimate actual DFS Applicable to ETKF Applicable to EnKF No innovation sampling error

The weighting-vector-based approach
The innovation-based approaches

The ensemble perturbation approaches

X X
X X X X
X X X X

Note. The symbol X indicates “yes”.

innovation-based approach (DFSy¢, g 1)- A summary of the advantages and disadvantages of each DFS approach
is provided in Table 2.

Another novel contribution of this work is the development of a general strategy for implementing the DFS
approaches in the presence of domain localization. The key idea is that, since local analysis processes are mutually
independent, we can apply the DFS approaches separately to each local analysis process to obtain local DFS
estimates, and then compute the global DFS for each observation by averaging its local DFS values across the
local processes. This novel strategy produces DFS estimates comparable to those produced by the H&O strategy
(Hotta & Ota, 2021) that constructs a global Kalman gain for the local analyses. An advantage of our strategy is
that it is easier to implement in an operational environment and more computationally efficient, as the DFS
estimation is performed locally on small matrices and/or vectors. When R-localization is applied, our strategy
may lead to small DFS values, which reflects the user's choice to downweight the observations. The absolute
value of the DFS is not particularly meaningful as it varies across different data assimilations systems. We should
compare the relatively size of DFS values among observations within the same system. To obtain a more complete
assessment, it can also be useful to consider not only the average DFS but also the distribution of DFS values
across all local domains.

When quantifying the influence of observations, approaches that use quantities readily available from the DA
system are generally preferable due to their computational efficiency (Hu et al., 2025). For example, the
innovation-based approaches (DFS, 4, DFS0 4 and DFSyp¢, 4 411) Use innovation, residual and observation-space
increment vectors that are by-products of deterministic or stochastic ensemble Kalman filters (Houtekamer &
Zhang, 2016) and can be applied as postprocessing tools. The novel DFS,, ,, approach and the analysis ensemble
perturbation approach (DFSy, v,) instead use intermediate quantities calculated within ETKF systems, and are
best incorporated directly into the assimilation workflow. The intermediate quantities can be discarded once the
DFS calculation is complete. For example, when applying the DFSy,,y, approach in the presence of domain
localization, we can first compute Y, = Y, W within each local domain, and then compute the diagonal elements
of 1/(K — 1)-Y, (Y,)"R™ as the local DFS contributions for the relevant observations. These contributions are
accumulated over local domains for each observation, together with a count of how many times the observation is
used. Once this assignment has been done, the matrices Y, and W can be discarded. In practice, our strategy
requires storing two vectors, each with the length equal to the number of observations. In contrast, the H&O
strategy requires storing a full Kalman gain matrix. Finally, estimating the actual DFS is generally more
computationally expensive than estimating the theoretical DFS, as it requires an estimate of the true innovation
covariance matrix based on a sample.

In practical applications, although the observation operator and error statistics are typically fixed for a given
observation type, the DFS for each observation may still vary across analysis times and regions due to flow-
dependent background error statistics. To deal with this, we may target a weather event of interest and
average the DFS for observations over the time period and region of the event. The DFS,,, and DFS,. 4 ap-
proaches are subject to innovation sampling error, and thus the resulting estimates inherently carry uncertainty in
addition to the spatial and temporal variation introduced by the background error statistics. The magnitude of
innovation sampling error depends on the ratio of the innovation sample size (V) to the number of observations
(m), as well as the magnitude of the elements in the innovation vector (Hu & Dance, 2024). When domain
localization is applied, these two approaches operate on local subsets of observations, which improves the N/m
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ratio and thereby helps reduce innovation sampling error. The effect of flow-dependent background error sta-
tistics on the estimation of DFS warrants further investigation in an operational environment. In addition, the
estimation of DFS under highly nonlinear observation operators is another promising direction for future
research. Our DFS estimation strategy is being implemented in the Joint Effort for DA Integration (JEDI)
framework, and will be used in the Met Office's operational system to explore these future directions.

There are other conceptually different methods that can be used to assess the influence of observations and to
identify problems with the assimilation of observations (Diefenbach et al., 2022; Stiller, 2022). Comparing these
methods with the DFS approaches would be a valuable direction for future work. In addition, this study focuses
solely on the influence of observations on the analysis. However, a greater influence on the analysis does not
necessarily correspond to a larger impact on forecast skill, and vice versa. Therefore, the impact of observations
on forecast skill should be assessed separately (e.g., Hu et al., 2025).

In summary, the main contributions of this work are the development of novel approaches for estimating the DFS
in ensemble-based DA systems and a novel strategy for implementing these approaches in the presence of domain
localization. These contributions help to accurately and efficiently quantify the influence of observations, thereby
providing valuable guidance for improving both observation networks and DA systems.

Appendix A: True Innovation Covariance

This appendix shows the derivation of the approximation to the true innovation covariance matrix, as given in
Equation 8, following Desroziers, Berre, et al. (2005). Let x, € R" be the unknown true model state vector, then
the observation vector, the ensemble mean of the background state vector and kth ensemble member of the
background state vector can be expressed as
y = h(x) + &,
ib =X+ &, (AI)

and

Xpx = Xp + Xp[*, k], (A2)
respectively, where X, [*,k] denotes the kth column of the matrix X,. Applying the observation operator to
Equation A2 and using a first-order Taylor expansion successively around the ensemble mean and true state, we
obtain

h(xv) ~ h(x,) + Hey, + HX, [+, k].

Since the matrix X has zero column sum by definition, taking the ensemble mean gives

h(xy) =~ h(x,) + Hey,.
Using this equation, the ensemble mean of the innovation vector (Equation 2) is approximately

d ~ ¢, — Hg,,.
Then, the true innovation covariance matrix (Equation 9) is approximately
=T
E[dd"| ~ Ele.e,"] + HE[eye) | HT
where we have assumed that the observation and background errors are mutually uncorrelated, that is,

E[soeg ]

E[sbeg ] = B, is the true background error covariance matrix, we obtain Equation § as required.

E[ebsOT] = 0. Furthermore, since E[eoeoT] = R, is the true observation error covariance matrix and
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Appendix B: Derivation of Actual DFS
This appendix shows how to derive the actual DFS (Equation 11) in ensemble Kalman filters. By sequentially
substituting Equations 5 and 7 into Equation 10 we obtain
DFS = E[HTD—IHPbP; PbHTD-la].
Since the pseudoinverse (Chapter 5 of Golub & Van Loan, 1996) satisfies
PbP;— Pb = Pb,
we obtain
DFS = E[&TD-IHK&].
Since the trace of a scalar is the scalar itself and the trace is invariant under cyclic permutations (Section 2.2 of
Bernstein, 2009), we further have
DFS = E[(dd'D™'HK)|.
Now, assuming that the observation and background error statistics are constant, the above equation becomes
DFS = tr(JE[H&T] D‘lHK),
as Equation 11.
Appendix C: Derivation of Weighting-Vector-Based Approach
Our new weighting-vector-based approach (DFS,,; Equation 14) estimates the actual DFS defined by Equa-
tion 11. The derivation proceeds as follows. We first show that the weighting vector calculated in the LETKF
system can be rewritten as
- vip'a (1)
WSk @
with
~—1 1 T -
D = X le Y, +R
being the inverse of the innovation covariance matrix computed using a nonlinear observation operator. Using the
Sherman-Morrison-Woodbury formula (Equation 2.1.4 of Golub & Van Loan, 1996), we have
1 - -
(R + 1Y YbT) =R —R'Y,[(K- DI+ Y R'Y,] 'YTR,
where we assume that the matrices R and [(K - DI+ YbTR_le] are nonsingular. Substituting this equation
into Equation C1, we obtain
w=P,Y/R'd, (C2)
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with
P, = [(K- DI+ Y[R'Y,], (C3)
which are exactly the equations used in the LETKF (Hunt et al., 2007). Thus, we have shown that the weighting
vector can be expressed in terms of Equation C1, which is further used to prove the DFS, ,, approach.
Using Equation C1, we may write the DFS, ,, approach as
T 1 —=T=-1 T 15
(K= 1-E[w'w] = —E[a'D Y, ¥]D ']
Using the properties of the trace and assuming constant observation and background error statistics as in Ap-
pendix B, we obtain
T 1 —T] =1 T=-1
K= 1-E[ww] = ——u(E[ad’|D v, ¥[D ).
Assuming a linear observation operator, we finally obtain
(K—1)-E[w'w] = tr(]E[HHT] D—‘HK),
which shows that the DFS, ,, approach estimates the actual DFS.
The equation used to estimate the DFS for a subset of observations (DFS, , ;, Equation 15) can be proved in a
similar way. Using Equation C1, we obtain
E|(@- Yow) R™'Yyw| = E[d D' HKd]
for linear observation operators. Again, using the properties of the trace and assuming constant observation and
background error statistics, we obtain
E[(& - wa)TR“wa] - tr(JE[&HT] D—‘HK),
which is the actual DFS. Since the vectors d — Y,w and Y, w are in observation space, we can isolate the DFS
contribution of a subset of observations as
1y,
DFSyei = 3 >, (Id; — IL; Yy w;) "ILR 'L, T, Y, w,
=
1 &
_ I TQR-!
= ﬁz;(dj =Yy, W) 'SRT'S; Yy .
=
where we have S; = l'IiT II; as defined. Since S; commutes with R™! (as R™! is typically block-diagonal) and
S:S; = S; (Desroziers, Brousseau, & Chapnik, 2005), we finally recover Equation 15, as required.
Appendix D: Calculation of Innovation, Residual and Observation-Space Increment
Vectors
In Equations 21 and 22, we use A(X,) and A(X;) rather than h(x,) and h(x;) to calculate the residual and
observation-space increment vectors because X, and X;, are used in the analysis equation (Equation 7). To obtain
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the relationship between h(X,) and h(Xp), we can apply a nonlinear observation operator to both sides of the
analysis equation and expand the right-hand side using the Taylor expansion.

If the observation operator is linear, then h(x,) = h(X,) and h(x,) = h(X,). If the observation operator is
nonlinear, we can use the Taylor expansion to obtain the approximations, 2(x,) ~ h(X,) and h(x) ~ h(X,), where
the approximation error depends on the size of the ensemble spread and the degree of nonlinearity of the
observation operator.

Depending on the DA system, it is also possible to calculate the innovation, residual and observation-space
increment vectors using a selected ensemble member (the control member) instead of the ensemble mean.
These two different choices should give us the same value of the theoretical DFS because it is determined by the
assumed background and observation error statistics only (Equation 12). However, the estimation of the actual

. . . . . . ==T
DEFS also requires a sample estimate of the true innovation covariance matrix, E[d d ] In ensemble-based DA,

the background ensemble mean is defined as the first guess (Evensen, 2003). The control member can be
considered as adding a perturbation to the first guess. Consequently, innovation vectors calculated using the
ensemble mean and the control member contain different error statistics, resulting in different values of the
actual DFS.

Appendix E: Derivation of Alternative Innovation-Based Approach

This appendix presents the derivation of the alternative innovation-based approach (DFS¢, 4 ..1i; Equation 28),
which estimates the theoretical DFS (Equation 12). Using Equations 23 and 31, we have

9d' ~ R™V?HKR2dd’.

Taking the statistical expectation of both sides while assuming the matrices R™2, H and K are invariant, we
obtain

E[%d'](E[dd"])” ~ R"V°HKR'?,

where the matrix E[&&T] is assumed to be invertible. Using the cyclic property of the trace, we can then show that
the DFSy0,4.21 approach estimates the theoretical DFS.

Appendix F: Comparison of Two Strategies

In this appendix, we clarify the difference between our strategy (Section 5) and the H&O strategy (Hotta &
Ota, 2021) for estimating the DFS in the presence of domain localization. For simplicity, we focus on the esti-
mation of the theoretical DFS. We let {x;|i = 1,...,n} denote n grid points and {yj| j=1.. ,m} denote m ob-
servations. Furthermore, we assume that the analyses for each point are calculated independently using m,, <m
local observations.

F1. H&O Strategy

The key idea behind the H&O strategy is to construct the global Kalman gain by aggregating local Kalman gains.
Here, these local Kalman gains are calculated using background error statistics, but they can alternatively be
derived from analysis error statistics. For the grid point x;, the jth element of the local Kalman gain is

K
k[ j] = D) Xpli. kIS, [k, (F1)
k=1

where X, [i,k] denotes the (i,k)th element of the matrix Xy, and S, is the N X m, matrix given by
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Sy, = (Yo L), # )T (Yo 2], #1(Yo [Z],#])T + (K — 1)R[I£;,lfi])71, (F2)

with I} € R™ being a vector containing the indices of observations used to create the analysis at x;,
Y, [I),%] € R™ XK peing the submatrix of the matrix Y}, consisting of the rows selected according to T Y, and
R[I},1)] € R™*™: being the submatrix of the matrix R, consisting of the rows and columns selected according

v
to I)}i .

Let K; € R"*™ be a global Kalman gain, whose ith row is given by
Ke[o. [/ = ko[ )] (F3)

forj’ = 1,...,m,, with all other columns set to 0. For example, if we have four equally spaced grid points on a

circle with periodic boundary conditions, direct observations and a localization radius of one grid point, then we
have I;I = {4,1,2}, 1;2 = {1,2,3}, I)é = {2,3,4} and I;A = {3,4, 1}, and the global Kalman gain is

as given by Equation F3.

After obtaining the matrix K, the DFS for observation y; is the jth diagonal elements of HK;, which is

K
DFS, = > > H[j,ilXy[i, kIS, [k.j'], (F4)

€I, k=1

where H € R”*" is the linear (or linearized) observation operator, I} is a vector containing the indices of grid
J
points that are used to compute the model equivalence to observation y;, and the index j* € {1,2,...,m} sat-

isfies I} [j'] = J.

F2. Our Strategy

Our strategy is applicable to all DFS approaches considered in this work. To facilitate comparison with the H&O
strategy, we illustrate it here using the DFS;,,y, approach (Equation 16). The application of our strategy to

innovation-based approaches (DFSy;., 4 and DFSy¢, 4 1) is discussed later in Appendix F6.

Our strategy starts with calculating a local matrix as
Q[T = 2 YL [/ 1K1 Sy [k.j'] (F5)

forj’ = 1,...,m,. The diagonal elements of the matrix Q,. are the local DFS for each observation used in the
local analysis process for x;. Since the same observation may be used in multiple local analysis processes, we
average the DFS for the same observation across the local analysis processes which use that observation. Spe-
cifically, the total DFS for observation y; is defined as

* 1 s . .
DFS; =— R JKIS,, Tk j']. (F6)

Titer: k=l
g
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where I, € R" is a vector containing the indices of grid points whose analysis is created using observation y;,
Jj

and the index j* € {1,2,...,m,,} is such that I}, [j'] = j.

F3. Linear Observation Operators

The difference between our strategy and the H&O strategy is affected by whether a linear or nonlinear observation
operator is used. In the linear case, the matrix Yy, can be expressed as

Yoljkl = 3 BLLX,[i.k]. (F7)

iel;,i
Substituting Equation F7 into Equation F6, the DFS for observation y; under our strategy becomes

K
DFS; = 1 > 3 HI Xy [i. kIS, , [k./']. )

Miiep: =liet,
3 'j

where the index j’ € {1,2,...,m,,} satisfies I [j’] = j. Comparing Equation F8 with Equation F4, we observe
that a key difference lies in the choice of matrices S, . The H&O strategy uses S, withi € I"j, that is, the matrices

associated with the grid points linked to observation y; through the observation operator (Equation F4). In
contrast, our strategy employs S, , with i’ € If,j , that is, the matrices corresponding to the grid points located

within the localization length from observation y; (Equation F8).

F4. Nonlinear Observation Operators

The above discussion assumes that the observation operator is linear. However, in many practical applications, the
observation operator is nonlinear. In such cases, the relationship between Y, and X, can no longer be expressed in
the form of Equation F7, and the difference between our strategy and the H&O strategy may become more
pronounced.

When the nonlinear observation operator involves multiple grid points (e.g., for satellite radiances and radio
occultation observations), our strategy uses the nonlinear operator directly and the H&O strategy applies a
linearized operator to the constructed global Kalman gain. Therefore, the difference between the two strategies
depends on the linearization error of the observation operator. If the matrix Y, in Equation F5 is computed using a
linearized observation operator (noting that the matrix S, can still be computed using the nonlinear observation
operator), the difference between the results of the two strategies can be reduced.

F5. When Do the Two Strategies Produce Identical Results?

Although our strategy and the H&O strategy do not generally produce exactly the same results, they can be shown
to be equivalent under certain conditions. For example, if model grid points are observed directly and the
observation operator is linear, then Equation F4 simplifies to

K
DFS, = > H[i,i]X[i. k]S, [k.j']. (F9)
k=1

where the index j’ € {1,2,...,m,} satisfies Z)'[j’] = i. Similarly, Equation F6 becomes

1 - .
DFS; = > ZH[z,l]Xb[z,k]Sx/[k,]’], (F10)

Vil e k=1
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where the index j/ € {1,2,... Sy ,} satisfies Ij , [J'] = j. 1f all matrices SX’ , withi’ € I;,. are equal to S, , then
Equation F10 reduces to Equation F9.

According to Equation F2, the equivalence of matrices S, requires that both Yy [Z}, ] and R[Z],Z)] remain
consistent across local analysis processes that include observation y;. This requires several conditions, including
spatially heterogeneous background error statistics, identical observation operators, identical observation error

statistics, and the absence of observation error inflation.

F6. In the Case of Innovation-Based Approaches

This appendix discusses the application of our strategy to the DFSy,., 4 and DFSy,¢, 4 .i¢ approaches. Under our
strategy, the DFSy,, 4 approach operates on subvectors of the innovation, residual and increment vectors. In this
case, the relationships between the residual and innovation vectors (Equation 30) and between the increment and
innovation vectors (Equation 31) become

r[7)] ~ d[1)] - H[T},+] Kid (F11)
and
v[Z)] ~ H[I}, %] Kd, (F12)

where unnormalized vectors are used for brevity. Substituting Equations F11 and F12 into Equation 26, we find
that the local DFS for individual observations corresponds to the diagonal elements of the matrix

H[I}.#] K.

The global DFS for each observation is then computed as the average of the corresponding local DFS estimates
across all relevant local analysis processes, which is

DFSrheo,d = Z [H[I)%/ > *]Kf]jlj/ > (F13)

1
il e

¢l
where the index j’ € {1,2,...,m,,} satisfies I, ¥[j'] = j. Equation F13 shows that the DFS,4 approach

provides DFS estimates based on the constructed global Kalman gain as the H&O strategy does. Therefore, our
strategy produces results that are more aligned with the H&O strategy when using the DFSy,, 4 approach
compared to other approaches (see Figure 7).

The DFS ;0 441 approach produces different results than the DFSy;,., 4 approach under our strategy. Substituting

Equation F12 into Equation 28, we obtain the local matrix for the DFSy,¢, 4 o1 approach, which is

—1
i H[I) %] Kfaja[z;;f(fj H[z;]a[z;f) ,
j=1

=

where the innovation vector cannot be canceled out. This highlights a key distinction between the DFSy;,, 4 and
DFSeo,4.a1t approaches when applied using our strategy.
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