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Abstract. In this paper we study 2nd-order L∞-variational problems by seek-
ing to minimise a supremal functional involving the Hessian of admissible func-

tions as well as their lower-order terms, considering for fixed Ω ⊆ Rn open, and

H : Ω×
(
R× Rn × Rn⊗2

s

)
→ R, the functional

E∞(u,O) := ess sup
O

H(·, u,Du,D2u), u ∈ W2,∞(Ω), O ⊆ Ω measurable.

Specifically, we establish the existence of minimisers subject to (first-order)
Dirichlet data on ∂Ω under natural assumptions, and, when n = 1, we also show

the existence of absolute minimisers. We further derive a necessary fully non-

linear PDE of third-order which arises as the analogue of the Euler-Lagrange
equation for absolute minimisers, and is given by

HX(·, u,Du,D2u) : D
(
H(·, u,Du,D2u)

)
⊗D

(
H(·, u,Du,D2u)

)
= 0 in Ω.

We then rigorously derive this PDE from smooth absolute minimisers, and
prove the existence of generalised (merely measurable) solutions to the (first-

order) Dirichlet problem on bounded domains. This generalises the key results
obtained in [27] which first studied problems of this type, providing at the same

time some simpler streamlined proofs.

1. Introduction. Let Ω ⊆ Rn be open, n ∈ N, and H : Ω×
(
R×Rn ×Rn⊗2

sym

)
→ R

a Carathéodory function. The central object of study in this paper is the supremal
(or L∞) functional

E∞(u,O) := ess sup
x∈O

H
(
x, u(x),Du(x),D2u(x)

)
, u ∈ W2,∞(Ω), O ⊆ Ω,

(1)
where O ⊆ Ω is measurable, viewed as an extension of the functional

(u,O) 7→ ess sup
x∈O

H(D2u(x)) (2)
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2 BEN DUTTON AND NIKOS KATZOURAKIS

to include lower-order terms. The functional (2) was investigated in [27], wherein
the second appearing author and Pryer initiated the study of second-order L∞-

variational problems. Herein we show that if H ∈ C1(Ω × R × Rn × Rn⊗2

sym), the
necessary PDE which arises as the analogue of the Euler-Lagrange equation for the
supremal functional (2) is the fully nonlinear PDE of third-order given by

A2
∞u := HX(J

2u) : D
(
H(J2u)

)
⊗D

(
H(J2u)

)
= 0 in Ω. (3)

In index form, (3) can be rewritten as

n∑
i,j=1

HXij
(J2u)Di

(
H(J2u)

)
Dj

(
H(J2u)

)
= 0 in Ω. (4)

In the above, J2u is the second-order jet of u, where in general the k-th order jet is
the map

Jku :=
(
·, u,Du,D2u, . . . ,Dku

)
, k ∈ N, (5)

with the derivatives (of first, second, and k-th order) of u ∈ Ck(Ω) denoted by

Du = (Diu)
n
i=1 : Ω → Rn,

D2u =
(
D2

iju
)n
i,j=1

: Ω → Rn⊗2

sym,

Dku =
(
Dk

i1...ik
u
)n
i1,...,ik=1

: Ω → Rn⊗k

sym ,

(6)

and valued into their respective (symmetric) tensor space defined as

Rn⊗k

sym :=

{
V ∈ Rn ⊗ · · · ⊗ Rn︸ ︷︷ ︸

k times

: Vi1···ik = Vσ(i1···ik), σ permutation on {i1, . . . , ik}
}
.

Finally, A :B := tr(A⊤B) denotes the Euclidean (Frobenius) inner product in Rn⊗2

,
and we symbolise the arguments of the supremand H throughout as H(x, η,p,X),
and in particular HX,Hp, and Hη denote the derivatives of H with respect to the
subscripted arguments. Our functional spaces and PDE notation are generally
standard, as in [19], or self-explanatory.

The aim of this paper is to study variational problems for the general second-
order supremal functional (1), generalised solutions to the corresponding third-order
fully-nonlinear PDE (3), as well as the deeper connection between these two objects.

Supremal variational problems were first considered in the 1960s in the work of
Aronsson, the pioneer of this field (see [3, 4, 5, 6] and [7]). One of the advantages
of minimising the L∞-norm is that it provides a uniformly small pointwise energy,
whereas minimising an integral norm may allow for large spikes of the maximum
pointwise energy, though the area under the graph might be small. This former
approach offers better models in applications when this difference is relevant, but
the theory is interesting from a pure mathematical standpoint nonetheless. The
(scalar) first-order theory of L∞-variational problems, in which the supremand de-
pends on the gradient of admissible real-valued functions and possibly lower-order
terms, is well established (see e.g. [10] and [11] from the early 2000s). Without
any attempt to be exhaustive, we refer to the following interesting relevant works:
[2, 29, 30, 31, 32, 33, 34]. Most notably, we observe in [12] a correspondence between
absolute minimisers of first-order supremal functionals and viscosity solutions of the
associated necessary PDE.

The vectorial first-order case with u : Rn ⊇ Ω → RN , N ∈ N, proved substan-
tially harder and is still under development (see e.g. [1, 9, 20, 28] from the 2010s).
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All of this leads to the consideration of the (scalar) second-order case as a natural
next step. An interesting conclusion of [27] is that the second-order case does not
follow by analogy from the first-order case. Recent literature on the second-order
case includes [14, 23, 24, 26] and [25].

The lack of Gâteaux differentiability of E∞ (which is true regardless of the
smoothness or convexity of the supremand H) is a fundamental difficulty of the
theory. Danskin’s theorem on differentiating maxima [17] could apply, but it re-
quires too much regularity, and that the argmax set could be a singleton, which
is unrealistic. This challenge is usually overcome using the following method: A
central technique in exploring L∞-variational problems is to approximate the func-
tional E∞ using Lp functionals (with p ≥ 1) of the form

(u,O) 7→
(
−
∫
O

∣∣H(x, u(x),Du(x),D2u(x))
∣∣p dx

) 1
p

, (7)

and then pass to the limit as p → ∞ to explore L∞ phenomena (temporarily
ignoring the fact that H in (1) might attain negative values). This is based on
the observation that the Lp-norm tends to the L∞-norm as p → ∞, provided the
integrand is in the space L∞(Ω).

Let us define below the central notions of minimality which we will utilise in this
paper.

Definition 1.1 (Global and absolute minimisers). A function u ∈ W2,∞
g (Ω) :=

g +W2,∞
0 (Ω) is a global minimiser of (1) on Ω, if the following inequality holds:

E∞(u,Ω) ≤ E∞(u+ φ,Ω), ∀ φ ∈ W2,∞
0 (Ω). (8)

A function u ∈ W2,∞(Ω) is an absolute minimiser of (1) on Ω if the following
inequality holds:

E∞(u,Ω′) ≤ E∞(u+ φ,Ω′), ∀ Ω′ ⋐ Ω, ∀ φ ∈ W2,∞
0 (Ω′). (9)

Another major hindrance in L∞ is that minimisers are not automatically op-
timal on subdomains, in contrast to the integral calculus of variations. As such,
minimisers need to be assumed to minimise on subdomains from the outset, which
is the justification of the notion of absolute minimisers. Moreover, the PDEs which
arise in the second-order case are fully nonlinear, of third-order, and not elliptic,
necessitating the development of new forms of generalised solutions. This is a non-
trivial task, as standard approaches fail, and in particular neither viscosity nor weak
solutions apply. As shown in [27], in general, solutions to (3) cannot be in C3(Ω),
even when n = 1, there are no lower-order terms, and we restrict our attention to
(absolutely) minimising solutions of u 7→ ∥u′′∥L∞(Ω) (see Section 5 for more details).

We therefore need to resort to appropriately defined generalised solutions to (3).
To this aim, D-solutions for the Dirichlet problem for A2

∞u = 0 are considered
(see also [20, 21, 15]). This approach was first introduced in [21] as an indepen-
dent general framework to treat fully nonlinear systems of PDEs of any order, and
has been subsequently utilised in the L∞ context in a number of works (see e.g.
[9, 22]). The theory of D-solutions uses Young measures to allow for a merely mea-
surable map to be interpreted as a solution to a PDE by exploring weak* limits
of difference quotients, the latter viewed as probability-valued maps in appropriate
compactifications.

The investigation of D-solutions to A2
∞u = 0 is necessary due to the nature of

the operator A2
∞-being fully nonlinear and not (degenerate) elliptic, which is not
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amenable to the extant standard notions of generalised solutions. Secondly, the
natural regularity class of this second-order variational problem is W2,∞(Ω), while
the operator A2

∞ is of third-order. This is easily seen when considering the expanded
form of the equation (3), which is expressed in the operator

A∞ : Ω× R× Rn × Rn⊗2

sym × Rn⊗3

sym −→ R,
defined as

A∞(x, η,p,X,Z) :=
∑

i,j,k,l,p,q=1

HXij (x, η,p,X)
(
Hxi(x, η,p,X) + Hη(x, η,p,X)pi

+Hpk
(x, η,p,X)Xki +HXkl

(x, η,p,X)Zikl

)
·

·
(
Hxj

(x, η,p,X) + Hη(x, η,p,X)pj

+Hpp
(x, η,p,X)Xpj +HXpq

(x, η,p,X)Zjpq

)
.

(10)
For brevity, we will symbolise A∞ in compact tensor notation as

A∞(x, η,p,X,Z) =HX(x, η,p,X):
(
Hxi

(x, η,p,X) + Hη(x, η,p,X)p

+ Hp(x, η,p,X)X + HX(x, η,p,X):Z
)⊗2

,

where the exact meaning of the above is given by (10). Then, the contracted form
of equation (3) can be rewritten in an expanded form as

A∞(J2u,D3u) = 0 in Ω (11)

(and, equivalently, also as A∞(J3u) = 0). Even though A∞ only makes sense,
strictly speaking, when u ∈ C3(Ω), it is the appropriate form in order to define and
study twice weakly differentiable (generalised) D-solutions to the Dirichlet problem
for A∞(J2u,D3u) = 0 in Ω.

Let us now outline the content of this paper. This introduction is followed by
Section 2, in which we discuss some basic elements of the theory of D-solutions
for fully nonlinear third-order PDEs, to the extent they are utilised in the present
paper.

In Section 3, we present the existence of global and absolute minimisers of E∞
on Ω. Existence of global minimisers is established in Proposition 3.1, following the
structure of the similar proofs in [27] and [10], using Lp approximations and Young
measures. Even though the direct method applied straight to the supremal func-
tional would work (under natural assumptions that render it sequentially weakly*
lower semicontinuous and coercive), it provides “too many minimisers”, whereas
the method of Lp approximations seems to “select” the preferable one, and we see
in Theorem 3.4 that this is indeed the case, at least when n = 1. The assumptions
on the supremand H are quite weak, namely a growth bound for coercivity and
level-convexity in the final argument (convex sublevel sets). See the recent paper
[34] for a thorough contemporary review of notions of convexity in L∞ variational
problems.

In Section 4, we (formally) derive the analogue of the Euler-Lagrange equation
for E∞, which is the third-order PDE A2

∞u = 0 defined in (3) (rewritten in (4) and
(11)), and is obtained by “taking the limit” of the Euler-Lagrange equation for the
approximating Lp functionals. Let us note that in [8, Remark 4.9] this PDE was also
previously derived, but it was not studied at all, and the derivation itself did not
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apply as it stands when H attained negative values, as in our case. Subsequently, we
consider the satisfaction of this PDE by absolute minimisers of E∞, at least under
additional regularity assumptions for C3 absolute minimisers. Note that this won
not necessarily hold for global minimisers as they lack the locality required. The
method we follow is new and, in particular, offers a simpler proof of ([27], Theorem
14(A)), even when there are no lower-order terms.

In Section 5, we focus our attention on the PDE (3) in its own right. Without
imposing any convexity assumptions on H, we first establish the existence of solu-
tions in W2,∞(Ω) to the (first-order) Dirichlet problem for the auxiliary implicit
PDE given by

H(J2u) = C a.e. in Ω; u = g, Du = Dg on ∂Ω, (12)

for some compatible C > 0 and any g ∈ W2,∞(Ω). The solvability of (12), which
is of independent mathematical interest, is based on an application of the Baire
category method (see e.g. [16]). The key observation is that satisfaction of (12)
implies D(H(J2u)) = 0 a.e. on Ω, and the latter appears as a multiplicative term
in (3). Using this observation and some basic technical machinery from [21], the
existence of D-solutions in W 2,∞

g (Ω) for the Dirichlet problem for (3) on Ω is then
proved. In particular, we obtain a more concise streamlined method of proof in the
case of no lower-order terms, in comparison to the first-principles approach used in
[27]. Let us finally close this introduction by noting that further results for higher-
order supremal variational problems through different means and with a different
focus which do not involve the PDE (3) have recently been obtained in [22, 23, 25].

2. Preliminaries. In this section we recall, for the convenience of the reader, some
well-known results on Young measures. These are required in order to define D-
solutions, as well as for some of our proofs involving non-convex variational prob-

lems. Young measures valued into the Euclidean space Rn⊗2

sym are used in the proof
of existence of global minimisers, and Young measures valued in the compactified

space Rn⊗3

sym are used when looking at D-solutions to capture the limiting behaviour
of possibly escaping difference quotients. The latter space is defined as the 1-point

compactification of Rn⊗3

sym, through Rn⊗3

sym := Rn⊗3

sym ∪ {∞}. We refer to [19] for Eu-
clidean Young measures and [18] for Young measures valued into compact spaces.

Recall the dual of C(Rn⊗3

sym) is the space of signed Radon measures M(Rn⊗3

sym).

Definition 2.1 (Young measures). The set Y (Ω,Rn⊗3

sym) of Young measures valued

in the compact space Rn⊗3

sym consists of weakly* measurable maps x 7→ ϑ(x) for a.e.

x ∈ Ω, where ϑ is a probability measure. This set Y (Ω,Rn⊗3

sym) is a subset of the

unit sphere of L∞
w∗(Ω,M(Rn⊗3

sym)), which in turn is the dual of L1(Ω, C(Rn⊗3

sym)). The
associated duality pairing is

⟨ϑ,Φ⟩ :=
∫
Ω

∫
Rn⊗3

sym

Φ(x,Z) d[ϑ(x)](Z) dx, (13)

where ϑ ∈ L∞
w∗(Ω,M(Rn⊗3

sym)) and Φ ∈ L1(Ω, C(Rn⊗3

sym)).

Every measurable map v : Ω → Rn⊗3

sym generates a Young measure δv ∈ Y (Ω,Rn⊗3

sym)

given by δv(x) =: δv(x). Let (vi)
∞
1 , vi : Ω → Rn⊗3

sym, be a sequence of measurable

functions. We have δvi
∗−−⇀δv∞ in Y (Ω,Rn⊗3

sym) if and only if vi(x) −−→ v∞(x) for
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a.e. x ∈ Ω (possibly along a subsequence), for some v∞ measurable. Further-

more, the set Y (Ω,Rn⊗3

sym) is sequentially weakly* compact and convex. This means
that, even without any pointwise convergence assumption, there always exists some

ϑ ∈ Y (Ω,Rn⊗3

sym) such that δvi
∗−−⇀ϑ along a subsequence as i → ∞. We can now

define diffuse derivatives as an essential object in defining D-solutions.

Definition 2.2 (Difference quotients and diffuse derivatives). The difference quo-
tient of a function v ∈ L1

loc(Ω), for h ̸= 0, is given by

D1,h
k v(x) :=

1

h

(
v(x+ hek)− v(x)

)
,

D1,hv :=
(
D1,h

1 v, . . . ,D1,h
n v

)
,

(14)

where ek is the k-th standard basis vector in Rn. Consider now u ∈ W2,1
loc(Ω), and

take v := D2u : Ω → Rn⊗2

sym. The diffuse third-order derivatives D3u ∈ Y (Ω,Rn⊗3

sym)

are obtained as the weak* subsequential limits of the difference quotients D1,hD2u in

Y (Ω,Rn⊗3

sym) along infinitesimal sequences (hm)∞1 , which is to say δD1,hmD2u
∗−−⇀D3u

in Y (Ω,Rn⊗3

sym), as m→ ∞.

The sequential weak* compactness of the space of Young measures implies that
any function has diffuse derivatives of all orders. We can now make rigorous the
notion of twice (weakly) differentiable D-solutions of the third-order PDE A2

∞u = 0
in its expanded form A∞(J2u,D3u) = 0. For technical reasons dictated by the proof
of Theorem 5.2, we actually state it more generally for arbitrary fully nonlinear
third-order systems.

Definition 2.3 (Twice weakly differentiable D-solutions of a third-order PDE).

Let N ∈ N, and let F : Ω × R × Rn × Rn⊗2

sym× Rn⊗3

sym → RN be a Borel measurable

mapping. We say that u ∈ W2,1
loc(Ω) is a D-solution of the PDE system

F(J2u,D3u) = 0 in Ω,

if, for any diffuse third-order derivative D3u ∈ Y (Ω,Rn⊗3

sym), we have that∫
Rn⊗3

sym

Φ(Z)F(J2u(x),Z) d[D3u(x)](Z) = 0,

for a.e. x ∈ Ω, and for any test function Φ ∈ Cc(Rn⊗3

sym).

It can easily be seen that D-solutions are compatible with other pointwise notions
of solution. In particular, if the Hessian of the D-solution is differentiable in measure
(or is C3), then we have a strong a.e. solution on Ω (or classical). Conversely, any
thrice differentiable in measure strong solution is a D-solution to the same equation.

We close this section with the following equivalent formulation of Definition 2.3
that will be utilised in the proof of Theorem 5.2.

Remark 2.4. In view of [21, Proposition 21], we have the following restatement of

Definition 2.3: For any diffuse third-order derivative D3u ∈ Y (Ω,Rn⊗3

sym), we have

sup
Z∈supp∗(D3u(x))

∣∣F(J2u(x),Z)
∣∣ = 0, a.e. x ∈ Ω,

where “ supp∗” is the reduced support of the Young measure away from the point

at infinity of the compactification of Rn⊗3

sym:

supp∗(D3u(x)) := supp(D3u(x)) ∩ Rn⊗3

sym.
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For more details on the properties and structure of D-solutions, we refer to [21].

3. Existence of minimisers. In this section, we present a result on the exis-
tence of global minimisers of the functional (1) given arbitrary (first-order) Dirichlet
boundary conditions on a fixed open and bounded domain Ω ⊆ Rn. Our assump-
tions require only a coercivity lower-bound and level-convexity of H in the final
(Hessian) argument, which is to say that the sublevel sets are convex. Even though
this can be seen as a simple application of the direct method by utilising the weak*
lower-semicontinuity of E∞ in W2,∞(Ω), instead, following [27], we adopt a more
complicated approach and construct a “good” minimiser by using the method of Lp

approximations as p→ ∞. The reason for this is that, as is well known, in general
L∞ minimisers are non-unique, but the method of Lp approximations allows one to
select “the best one” which satisfies additional properties and can usually be shown
to be absolute. This is indeed the case in our work as well, at least when n = 1.

We note, however, that level-convexity is a weaker condition than Morrey’s qua-
siconvexity, which is necessary to ascertain that the approximating sequences of Lp

functionals attain their infima for all p finite (up to extra growth bounds on the
integrand).

Indeed, in view of the results in [13] about the relation of quasiconvexity of higher
order to that of first order, it suffices to dicuss only quasiconvexity of first order. A
function F : RN×n → R is (Morrey) quasiconvex if

F (Q) ≤
∫
Q

F (Q+Dφ) dLn,

for all φ ∈ W1,∞
0 (Q;RN ), where Q ⊆ RN is the unit cube (−1/2, 1/2)n. On the

other hand, F is level convex if for any t ∈ R the sublevel set {F ≤ t} is a convex set
in RN×n. By [34] and [11], it follows that the latter condition implies that the corre-
sponding supremal functional is sequentially weakly* lower semicontinuous (and in
fact can be weakened considerably), whilst it is strictly weaker than quasiconvexity.

Thus, inspired by [10], we pass through approximate minimisers in the Lp approx-
imating sequence utilising Young measures, invoking the supremal Jensen inequality
(18). Since this only holds in the Hessian argument, some care has to be taken into
account for the inclusion of lower-order terms. A (diagonal) lower semicontinuity of
E∞, which is useful for Theorem 3.4, is then shown in a separate result. We then
turn to the existence of absolute minimisers, and prove that, if n = 1, the minimiser
obtained through Lp approximations is in fact an absolute minimiser.

We now present the main result of the section. Since H will not be assumed to
be non-negative, the integral functional (7) cannot be used directly to approximate
(1) as p→ ∞. Instead, we will use the modified approximations

Ep(u,O) :=

(
−
∫
O

(
M +H(x, u(x),Du(x),D2u(x))

)p
dx

) 1
p

−M, (15)

which works as long as we have a lower bound of the form H ≥ −m, for somem > 0,
by choosing any fixed M > m.

Proposition 3.1 (Existence of global minimisers). Let Ω ⋐ Rn be open and bounded

with Lipschitz boundary ∂Ω, and n ∈ N. Let H : Ω ×
(
R × Rn × Rn⊗2

sym) → R
be a Carathéodory function, which is bounded below and level-convex in its final
argument. Namely, for all (x, η,p) ∈ Ω×R×Rn and t ∈ R, the set {H(x, η,p, ·) ≤ t}
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is convex. We further suppose that H satisfies the following coercivity condition:
there exist C1, C2 > 0 and 0 ≤ s, t < 1 such that

H(x, η,p,X) ≥ C1|X| − C2(1 + |η|s + |p|t) (16)

for a.e. x ∈ Ω and all (η,p,X) ∈ R × Rn × Rn⊗2

sym. We also assume the following
continuity assumption holds true: For any R > 0. There exists ℓ = ℓ(R) > 1 and
an increasing modulus of continuity ωR ∈ C[0,∞) with ωR(0) = 0 such that∣∣∣H(x, η′,p′,X)−H(x, η′′,p′′,X)

∣∣∣ ≤ ωR

(
|η′ − η′′|+ |p′ − p′′|

)
(1 + |X|ℓ) (17)

for a.e. x ∈ Ω, any η′, η′′ ∈ (−R,R), any p′,p′′ ∈ BR(0), and any X ∈ Rn⊗2

sym.

Then, for any boundary data g ∈ W2,∞(Ω), there exists a global minimiser u∞ ∈
W2,∞

g (Ω) of the functional (1) on Ω. Furthermore, for any fixed q ∈ (1,∞), u∞ is

the subsequential weak W2,q(Ω)-limit of approximate minimisers of the functionals
{Ep : p ∈ (1,∞)} as p→ ∞.

Remark 3.2 (More general supremands). We note that, even though the assump-
tions are rather natural and non-restrictive, Proposition 3.1 applies to a much
wider class of supremands H than those it appears to. Indeed, Proposition 3.1 also
applies to

F∞(u,O) := ess sup
O

Φ
(
H(J2u)

)
, u ∈ W2,∞(Ω), O ⊆ Ω measurable,

where Φ : R → R is any strictly increasing lower semicontinuous function, (possibly
discontinuous, non-differentiable, and of arbitrary growth). This is based on the
observation that Φ commutes with the (essential) supremum, therefore E∞ and
F∞ = Φ ◦ E∞ have the same sets of minimisers (and absolute minimisers).

A key ingredient for the proof is the supremal Jensen inequality (see [10]), which,
adapted to our setting, states that for any level-convex continuous function F :

Rn⊗2

sym → R and any probability measure ϑ ∈ P(Rn⊗2

sym), we have

F

(∫
Rn⊗2

sym

X dϑ(X)

)
≤ ϑ− ess sup

X∈Rn⊗2
sym

F (X). (18)

Proof of Proposition 3.1. Fix p > 1 + 1/s + 1/t. Let (up,i)
∞
i=1 ⊆ W2,∞

g (Ω) be a
minimising sequence of the integral functional Ep(·,Ω) satisfying

Ep(up,i,Ω) → inf
{
Ep(v,Ω) : v ∈ W2,∞

g (Ω)
}

as i → ∞. Since minimisers of Ep may not exist, we consider instead approximate
minimisers by selecting i = i(p) large enough such that

Ep(up,Ω) ≤ 2−p + inf
{
Ep(v,Ω) : v ∈ W2,∞

g (Ω)
}
,

where up := up,i(p). By applying the Hölder inequality, we have

Eq(up,Ω) ≤ 2−p + E∞(ψ,Ω), (19)

for any ψ ∈ W2,∞
g (Ω), when q ≤ p. In particular, this implies

Ep(up,Ω) ≤ 1 + E∞(g,Ω). (20)

We now seek to bound the sequence (up)
∞
1 in W2,k(Ω), where 1 < k < ∞. By

assumption (16), for any v ∈ W2,∞(Ω), we have

−
∫
Ω

(
M +H(J2v)

)k ≥ 1

2k−1
Ck

1 −
∫
Ω

|D2v|k − 3k−1Ck
2

(
1 +−
∫
Ω

|v|sk +−
∫
Ω

|Dv|tk
)
.
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Since 0 ≤ s, t < 1, by applying the Hölder inequality, we obtain(
−
∫
Ω

(
M +H(J2v)

)k) 1
k

≥ C1

(
−
∫
Ω

|D2v|k
) 1

k

− C2

[
1 +

(
−
∫
Ω

|v|sk
) 1

k

+

(
−
∫
Ω

|Dv|tk
) 1

k
]

≥ C1

(
−
∫
Ω

|D2v|k
) 1

k

− C2

[
1 +

(
−
∫
Ω

|v|k
) s

k

+

(
−
∫
Ω

|Dv|k
) t

k
]
.

In particular, for any p ≥ k, using the Hölder inequality again, the above estimate
implies

Ep(v,Ω) ≥ C1

(
−
∫
Ω

|D2v|k
) 1

k

− C2

[
1 +

(
−
∫
Ω

|v|k
) s

k

+

(
−
∫
Ω

|Dv|k
) t

k
]
−M. (21)

Suppose now that v ∈ W2,∞
g (Ω). We estimate

Ep(v,Ω) ≥ C1

(
−
∫
Ω

∣∣D2v −D2g
∣∣k) 1

k

− C2

[
1 +

(
−
∫
Ω

|v − g|k
) s

k

+

(
−
∫
Ω

|Dv −Dg)|k
) t

k
]

− (C1 + C2)

[(
−
∫
Ω

|D2g|k
) 1

k

+

(
−
∫
Ω

|g|k
) s

k

+

(
−
∫
Ω

|Dg|k
) t

k
]
−M.

(22)

Since v − g ∈ W2,∞
0 (Ω), by repeated applications of the Poincaré inequality, there

exists C3 = C3(k) > 1 (depending also on Ω) such that

(C3(k)− 1)

(
−
∫
Ω

∣∣D2v −D2g
∣∣k) 1

k

≥
(
−
∫
Ω

∣∣Dv −Dg
∣∣k) 1

k

+

(
−
∫
Ω

∣∣v − g
∣∣k) 1

k

. (23)

By combining (22)-(23), we obtain

Ep(v,Ω) ≥
C1

C3(k)
∥v − g∥W2,k(Ω) − C2

[
1 +

(
∥v − g∥W2,k(Ω)

)s
+
(
∥v − g∥W2,k(Ω)

)t]
− 2(C1 + C2)

(
2 + ∥g∥W2,k(Ω)

)
−M.

The above estimate implies

Ep(v,Ω) ≥
C1

C3(k)
∥v∥W2,k(Ω) − C2

[
1 +

(
∥v∥W2,k(Ω)

)s
+
(
∥v∥W2,k(Ω)

)t]
−
[
2C1 + 3C2 +

C1

C3(k)

](
2 + ∥g∥W2,k(Ω)

)
−M,

(24)

for any v ∈ W2,∞
g (Ω), and any fixed k ∈ (1,∞) with p ≥ k. Consider now the real

function

f : [0,∞) → R, f(λ) :=
C1

C3(k)
λ− C2(1 + λs + λt).

Since f ′′ > 0 on (0,∞), the function is convex, and by the mean value theorem
there exists λ0 > 0 such that f(λ0) = 0, and the graph of f lies above its tangent



10 BEN DUTTON AND NIKOS KATZOURAKIS

at this root, whilst f ′(λ0) > 0 as well. Therefore,

C1

C3(k)
λ− C2(1 + λs + λt) = f(λ)

≥ f(λ0) + f ′(λ0)(λ− λ0)

= f ′(λ0)λ− f ′(λ0)λ0

=: A(k)λ−B(k),

(25)

where A(k), B(k) > 0 are constants depending on k through C3(k), as well as on
s, t, C1, andC2. By combining (24) with (25), we deduce

Ep(v,Ω) ≥ A(k)∥v∥W2,k(Ω)

−
{
B(k) +

[
2C1 + 3C2 +

C1

C3(k)

](
2 + ∥g∥W2,k(Ω)

)
+M

}
,

(26)

for any v ∈ W2,∞
g (Ω), and any fixed k ∈ (1,∞) with p ≥ k. Selecting v := up in

(26), we infer that (up)p>1 is bounded in W2,k(Ω) for all k ∈ (1,∞). Since W2,k(Ω)
is reflexive for 1 < k < ∞, we have up −−⇀ u∞ in W2,k(Ω) as p → ∞, along
a subsequence. Further, by uniqueness of weak limits, u∞ ∈

⋂
1<k<∞ W2,k(Ω).

Additionally, since W2,k(Ω) ⋐ C1,α(Ω), by passing to a further subsequence if
necessary, we have up −→ u∞ strongly in C1,α(Ω) for all α ∈ (0, 1). We now return
to (21) with v = up. Using the weak lower semicontinuity of the Lk-norm and

noting that up −→ u∞ in C1(Ω) and D2up −−⇀ D2u∞ in Lk(Ω;Rn⊗2

sym) as p → ∞
along a subsequence, we deduce by (20) that(

−
∫
Ω

|D2u∞|k
) 1

k

≤ 1

C1

{
1 + E∞(g,Ω) + C2

[
1 +

(
−
∫
Ω

|u∞|k
) s

k

+

(
−
∫
Ω

|Du∞|k
) t

k
]}
.

By letting k → ∞, we infer that D2u∞ ∈ L∞(Ω;Rn⊗2

sym), whence u∞ ∈ W2,∞(Ω).
Consider now the Young measures

(δD2up
)p>1 ⊆ Y (Ω,Rn⊗2

sym)

generated by the Hessians D2up ∈ Lp(Ω;Rn⊗2

sym). Since (D2up)p>1 is bounded in

Lk(Ω;Rn⊗2

sym) for all k ∈ (1,∞), it is equi-integrable and tight, and, therefore, by

passing to a further subsequence there exists a Young measure ϑ∞ ∈ Y (Ω,Rn⊗2

sym)
with

δD2up

∗−−⇀ϑ∞ in Y (Ω,Rn⊗2

sym),

as p → ∞. Further, since D2u∞ ∈ L∞(Ω;Rn⊗2

sym), it follows that ϑ∞ has compact

support in Rn⊗2

sym, which is to say there exists some R > 0 such that supp{ϑ∞(x)} ⊆
BR(0) for a.e. x ∈ Ω, where BR(0) is the ball of radius R centred at the origin in

Rn⊗2

sym. Additionally, ϑ∞ has barycentre D2u∞, which is to say

D2u∞(x) =

∫
Rn⊗2

sym

X d[ϑ∞(x)](X) for a.e. x ∈ Ω.
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Now, since H is level-convex in the last variable, by the supremal Jensen inequality
(18), we have

H
(
J2u∞(x)

)
= H

(
J1u∞(x),

∫
Rn⊗2

sym

X d[ϑ∞(x)](X)

)
≤ [ϑ∞(x)]− ess sup

X∈Rn⊗2
sym

H(J1u∞(x),X),

for a.e. x ∈ Ω. Hence, we may estimate

ess sup
Ω

H(J2u∞) = ess sup
x∈Ω

(
M +H(J2u∞(x))

)
−M

≤ ess sup
x∈Ω

(
[ϑ∞(x)]− ess sup

X∈Rn⊗2
sym

(
M +H

(
J1u∞(x),X

)))
−M.

Therefore,

ess sup
Ω

H(J2u∞) ≤ lim
q→∞

(
−
∫
Ω

∫
Rn⊗2

sym

(
M +H(J1u∞(x),X)

)q
d[ϑ∞(x)](X) dx

)1
q

−M

≤ lim inf
q→∞

[
lim inf
p→∞

(
−
∫
Ω

∫
Rn⊗2

sym

(
M +H(J1u∞,X)

)q
d[δD2up

](X)

)1
q
]

−M

= lim inf
q→∞

[
lim inf
p→∞

(
−
∫
Ω

(
M +H(J1u∞,D

2up)
)q)1

q
]
−M.

Since up −→ u∞ in C1(Ω) as p → ∞ along a sequence (pj)
∞
1 , there exists R > 0

such that

u∞(Ω)
⋃( ⋃

j∈N
upj (Ω)

)
⊆ (−R,R), Du∞(Ω)

⋃( ⋃
j∈N

Dupj

)
⊆ BR(0),

where here BR(0) refers to the ball of radius R, centred at the origin of Rn. By
assumption (17), there exists ℓ > 1 and a modulus of continuity ωR ∈ C([0,∞))
such that

|H(J1u∞,D
2up)| = |H(J1u∞,D

2up)−H(J1up,D
2up) + H(J1up,D

2up)|

≤ |H(J1u∞,D
2up)−H(J1up,D

2up)|+ |H(J2up)|

≤ ωR

(
|u∞ − up|+ |Du∞ −Dup|

)
(1 + |D2up|ℓ) + |H(J2up)|,

a.e. on Ω. Let us now define the function Γ : Ω× R× Rn × Rn⊗2

sym −→ R by setting

Γ(x, η,p,X) := ωR

(
|u∞(x)− η|+

∣∣Du∞(x)− p
∣∣)(1 + |X|ℓ).

This allows us to write

|H(J1u∞,D
2up)| ≤ Γ(J2up) + |H(J2up)|,
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and, in view of the above and (19), we deduce

E∞(u∞,Ω) = ess sup
Ω

H(J2u∞)

≤ lim inf
q→∞

[
lim inf
p→∞

[(
−
∫
Ω

Γ(J2up)
q

)1
q

+

(
−
∫
Ω

(
M +H(J2up)

)q)1
q
]]

−M,

≤ lim inf
q→∞

{
lim inf
p→∞

[
ωR

(
∥up − u∞∥W1,∞(Ω)

)(
−
∫
Ω

(
1 + |D2up|ℓ

)q)1
q

+

(
−
∫
Ω

(
M +H(J2up)

)q)1
q
]}

−M,

≤ lim inf
q→∞

[
lim inf
p→∞

(
2−p + E∞(ψ,Ω)

)]
,

= E∞(ψ,Ω),

for any ψ ∈ W2,∞
g (Ω). This establishes that u∞ is a global minimiser, which

completes the proof.

The next result will be useful for the proof of the existence of absolute minimisers.

Corollary 3.3 (Diagonal lower semicontinuity). Let O ⊆ Ω be a measurable set

of positive measure. If H ∈ C(Ω × R × Rn × Rn⊗2

) satisfies the assumptions of
Proposition 3.1, then the functional E∞ is (diagonally) weakly lower semicontinuous
in the following sense:

E∞(u∞,O) ≤ lim inf
j→∞

(
−
∫
O

(
M +H(J2upj

)
)pj

) 1
pj

−M,

where (upj
)∞j=1 is the subsequence along which up −−⇀ u∞ in W2,q(Ω), for all q ∈

(1,∞).

Proof of Corollary 3.3. This proof follows the exact same structure as [20, Lemma
5.1], so the details are omitted.

We now present a result on the existence of absolute minimisers in dimension
one.

Theorem 3.4 (Existence of absolute minimisers in 1D). Let Ω ⊆ R be open and
bounded. If H ∈ C(Ω×R×R×R) satisfies the assumptions of Proposition 3.1 with
n = 1, then the minimiser constructed therein is an absolute minimiser of E∞ on
Ω, i.e.

E∞(u,Ω′) ≤ E∞(u+ φ,Ω′), ∀ Ω′ ⋐ Ω, ∀ φ ∈ W2,∞
0 (Ω′). (27)

This proof, which is very similar to that in [27], makes essential use of the topol-
ogy of R. Nonetheless, we provide it for the convenience of the reader.

Proof of Theorem 3.4. We begin with a general observation.
Given A,B,A′, B′, a, b ∈ R with a < b, there exists a unique cubic Hermite inter-
polant Q : R → R satisfying

Q(a) = A,Q(b) = B,Q′(a) = A′, Q′(b) = B′.

Further, let (vp)
∞
p=1 ⊆ W2,∞(a, b) be any sequence of functions satisfying vp → v∞

in C1[a, b] as p→ ∞. If Qp is the cubic polynomial such that Qp − vp ∈ W2,∞
0 (a, b)

for p ∈ N ∪ {∞}, namely

Qp(a) = vp(a), Qp(b) = vp(b), Q
′
p(a) = v′p(a), Q

′
p(b) = v′p(b), (28)
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then we have Qp −−→ Q∞ strongly in W2,∞(a, b) as p → ∞. Let (up)
∞
p=1 be the

sequence of approximate minimisers of Proposition 3.1 which satisfies up −−⇀ u∞ in
W2,q(Ω) as p → ∞ along a subsequence for any q > 1. Fix an open subset Ω′ ⊆ Ω

and φ ∈ W2,∞
0 (Ω′). Since any open set in R can be expressed as a countable disjoint

union of intervals, we may assume Ω′ = (a, b). In order to conclude, it suffices to
show that

E∞(u∞, (a, b)) ≤ E∞(u∞ + φ, (a, b)) (29)

for arbitrary φ ∈ W2,∞
0 (a, b). Consider, for any p ∈ N∪{∞}, the unique cubic poly-

nomial such that Qp−up ∈ W2,∞(a, b). By the above observations and Proposition
3.1, along a subsequence we have

Qp −−→ Q∞ in W2,∞(a, b) as p→ ∞. (30)

We define for p ∈ N the function φp := φ + u∞ − up + Qp − Q∞. Since all three

functions φ, u∞ − Q∞, andup − Qp are in W2,∞
0 (a, b), the same is true for φp. By

Corollary 3.3 and the additivity of the integral, we have

Ep(up, (a, b)) ≤ 2−p + Ep

(
up + φp, (a, b)

)
≤ 2−p + Ep

(
u∞ + φ+ [Qp −Q∞], (a, b)

)
≤ 2−p +

(
b− a

|Ω|

) 1
p

E∞
(
u∞ + φ+ [Qp −Q∞], (a, b)

)
.

(31)

By invoking (30) and passing to the limit as p→ ∞, we deduce (29).

4. Variational characterisation of A2
∞ through absolute minimisers. Let us

recall that the lack of Gâteaux differentiability of E∞ implies that we cannot simply
deduce that minimisers of E∞ yield “stationary points” of the functional through
variations. Hence, we follow an alternative approach to derive a PDE as a necessary
condition for minimality. To this end, we follow [27] and use Lp approximations to
discover the relevant PDE, in the limit of Euler-Lagrange equations of Lp integral
functionals as p → ∞. Of course, this well-known formal derivation method does
not yield a variational characterisation through absolute minimisers, but rather
it allows us merely to discover the “correct” nonlinear PDE associated with the
supremal functional. We then show that absolute minimisers of E∞, at least if they
are in C3(Ω), are classical solutions of equation (3) on Ω.

Derivation 4.1 (Formal derivation of A2
∞u = 0). Let u ∈ C4(Ω), and suppose

that H is C2 and bounded below by −m, where m > 0. Let p ∈ (1,∞) and fix
M > m. Consider the Euler-Lagrange equation of the p-integral functional

Ep(u,Ω) :=

(
−
∫
Ω

(
M +H(J2u)

)p) 1
p

−M,

which is given by

n∑
i,j=1

D2
ij

((
M +H(J2u)

)p−1
HXij (J

2u)
)
−

n∑
k=1

Dk

((
M +H(J2u)

)p−1
Hpk

(J2u)
)

+
(
M +H(J2u)

)p−1
Hη(J

2u) = 0 in Ω.
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By distributing derivatives and rescaling, we obtain

n∑
i,j=1

Di

(
H(J2u)

)
Dj

(
H(J2u)

)
HXij

(J2u)

=

(
M +H(J2u)

)3−p

p− 2

n∑
i,j,k=1

{
−
(
M +H(J2u)

)p−1

p− 1

[
Hη(J

2u)

−Dk

(
Hpk

(J2u)
)
−D2

ij

(
HXij (J

2u)
)]

+
(
M +H(J2u)

)p−2
[
Dk

(
H(J2u)

)
Hpk

(J2u)

−Di

(
Dj

(
H(J2u)

)
HXij

(J2u)
)

−Di

(
H(J2u)

)
Dj

(
HXij

(J2u)
)]}

,

which implies

n∑
i,j=1

Di

(
H(J2u)

)
Dj

(
H(J2u)

)
HXij

(J2u) = O
( 1

p− 2

)
, as p→ ∞.

Since (M +H(J2u)) is positive on Ω, we obtain in the limit as p→ ∞ that

n∑
i,j=1

HXij
(J2u)Di

(
H(J2u)

)
Dj

(
H(J2u)

)
= 0 in Ω,

which in effect is (3). Recall that since we have the approximation of the functionals

Ep(u,Ω) −→ ess sup
Ω

(
M +H(J2u)

)
−M = E∞(u,Ω),

as p→ ∞, this equation is the “correct” PDE associated to the supremal functional
E∞.

We now present a tertiary lemma to Theorem 4.3.

Lemma 4.2. Let Ω ⊆ Rn be open and bounded, and H ∈ C1(Ω×R×Rn ×Rn⊗2

sym).

Let u ∈ C2(Ω) be an absolute minimiser of E∞ on Ω. Fix any O ⋐ Ω, and set

O(u) := argmax
x∈O

H
(
x, u(x),Du(x),D2u(x)

)
.

Then, we have

max
O(u)

[
Hη(J

2u)φ+Hp(J
2u) ·Dφ+HX(J

2u) : D2φ

]
≥ 0, (32)

and

min
O(u)

[
Hη(J

2u)φ+Hp(J
2u) ·Dφ+HX(J

2u) : D2φ

]
≤ 0, (33)

for any φ ∈ C2
0 (O) := W2,∞

0 (O) ∩ C2(O).
Note that (33) follows from (32) via the substitution φ↔ −φ.

The proof of Lemma 4.2 is essentially an aplication of Danskin’s theorem on
differentiating maxima for continuous functions [17].
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Proof of Lemma 4.2. Fix O ⋐ Ω and φ ∈ C2
0 (O). Since u ∈ C2(Ω) is an absolute

minimiser, we have E∞(u+ φ,Ω) ≥ E∞(u,Ω). This implies

h(t) := max
O

H
(
·, u+ tφ,Du+ tDφ,D2u+ tD2φ

)
≥ max

O
H(J2u) = h(0) (34)

for any t ∈ R. Hence, if h′(0+) exists, we must have h′(0+) ≥ 0, and if h′(0−)
exists, we must have h′(0−) ≤ 0. By Danskin’s theorem [17], we can compute

h′(0+) =
d

dt

∣∣∣∣
t=0+

max
O

H
(
·, u+ tφ,Du+ tDφ,D2u+ tD2φ

)
= max

O

[
Hη(J

2u)φ+Hp(J
2u) ·Dφ+HX(J

2u) : D2φ

]
,

(35)

and therefore the semiderivative from the right exists. Similarly,

h′(0−) =
d

dt

∣∣∣∣
t=0−

max
O

H
(
·, u+ tφ,Du+ tDφ,D2u+ tD2φ

)
= max

O

[
Hη(J

2u)φ+Hp(J
2u) ·Dφ+HX(J

2u) : D2φ

]
.

(36)

The lemma follows.

Theorem 4.3 (Absolute minimisers in C3 solve A2
∞u = 0). Let Ω ⊆ Rn be open,

and suppose that H ∈ C1(Ω×R×Rn×Rn⊗2

sym). If u ∈ C3(Ω) is an absolute minimiser
of the functional (1) on Ω, then u is a classical solution of (3), that is,

A2
∞u = HX(J

2u) : D
(
H(J2u))⊗D

(
H(J2u)

)
= 0 on Ω.

The method utilised below is new, and in particular provides a considerably
simpler alternative proof of Theorem 14(A) in [27] in the case of no lower-order
terms.

Proof of Theorem 4.3. Fix x ∈ Ω and ρ ∈ (0,dist(x, ∂Ω)). Then, Bρ(x) ⊆ Ω, i.e.
Bρ(x) ⋐ Ω. Also, fix also any ζ ∈ C2[0, 1] satisfying

ζ ′(0) = ζ ′′(0) = 0; ζ(1) = ζ ′(1) = 0; ζ ′′(1) = 1. (37)

We define φx,ρ ∈ C2
0 (Bρ(x)) by setting

φx,ρ(y) := ρ2ζ

(
|y − x|
ρ

)
. (38)

Then, we compute

Dφx,ρ(y) = ρζ ′
(
|y − x|
ρ

)
y − x

|y − x|
,

D2φx,ρ(y) = ζ ′′
(
|y − x|
ρ

)
y − x

|y − x|
⊗ y − x

|y − x|

+ ρζ ′
(
|y − x|
ρ

)
1

|y − x|

[
I− y − x

|y − x|
⊗ y − x

|y − x|

]
.

In view of (37), Dφx,ρ and D2φx,ρ are continuous on Bρ(x), and φx,ρ as well as
Dφx,ρ vanish on ∂Bρ(x). Further,

D2φx,ρ(y) =
y − x

|y − x|
⊗ y − x

|y − x|
, for y ∈ ∂Bρ(x). (39)
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By Lemma 4.2 for O := Bρ(x), φ := φx,ρ, we have that there exist x± ∈ Bρ(x)
(realising the max/min) such that

(
Hη(J

2u)φx,ρ +Hp(J
2u) ·Dφx,ρ +HX(J

2u) : D2φx,ρ

)
(x+ρ ) ≥ 0,(

Hη(J
2u)φx,ρ +Hp(J

2u) ·Dφx,ρ +HX(J
2u) : D2φx,ρ

)
(x−ρ ) ≤ 0.

(40)

If x+ρ ∈ Bρ(x), i.e. if it is an interior maximum of H(J2u) over Bρ(x), then

D(H(J2u))(x+ρ ) = 0. If x+ρ ∈ ∂Bρ(x), then note that

Bρ(x) ⊆
{
H(J2u) ≤ H

(
x+ρ , u(x

+
ρ ),Du(x

+
ρ ),D

2u(x+ρ )
)}

=: H (x+ρ ). (41)

If D(H(J2u))(x+ρ ) = 0, then we have as in the previous case. If D(H(J2u))(x+ρ ) ̸= 0,

then (41) implies that H (x+ρ ) satisfies an interior sphere condition at x+ρ and

∂H (x+ρ ) =

{
H(J2u) = H

(
x+ρ , u(x

+
ρ ),Du(x

+
ρ ),D

2u(x+ρ )
)}

(42)

near x+ρ . Thus, the vector (x−xρ) is parallel to D(H(J2u))(x+ρ ). Then, (40) implies
(in view of (39)) that

HX(J
2u)(x+ρ ) :

x− x+ρ
ρ

⊗
x− x+ρ
ρ

≥ 0 (43)

which yields, since (x− xρ) is parallel to D(H(J2u))(x+ρ ), that

HX(J
2u)(x+ρ ) : D

(
H(J2u)

)
(x+ρ )⊗D

(
H(J2u)

)
(x+ρ ) ≥ 0, (44)

and the above is also true when x+ρ is interior or D
(
H(J2u)

)
(x+ρ ) = 0 and x+ρ ∈

Bρ(x). Arguing similarly for x−ρ , we have

HX(J
2u)(x−ρ ) : D

(
H(J2u)

)
(x−ρ )⊗D

(
H(J2u)

)
(x−ρ ) ≤ 0. (45)

We conclude by letting ρ→ 0+.

5. Existence of D-solutions for the Dirichlet problem for A2
∞u = 0. In this

section, we focus on the third-order fully nonlinear PDE (3). We study the (first-
order) Dirichlet problem for this equation on bounded domains, disregarding its
connections to the variational problem for (1). We impose rather weak assumptions
on H, which may not suffice to guarantee the existence of even global minimisers of
(1) as it may not be weakly* lower semicontinuous.

Recall that the operator A2
∞ is third-order, yet the natural regularity class for

our variational problem is W2,∞(Ω). As shown in [27], solutions (in general) to
(3) cannot be classical in C3(Ω), not even when n = 1, there are no lower-order
terms, and we restrict our attention to minimising solutions. In particular, for
any a, b, A,B,A′, B′ ∈ R with a < b, there exists a unique (absolute and global)
minimiser of u 7→ ∥u′′∥L∞(Ω) satisfying

u(a) = A, u′(a) = A′, u(b) = B, u′(b) = B′,

but, unless the endpoint data A,B,A′, andB′ can be interpolated by a quadratic
polynomial (in which case this is the absolute minimiser), in all other cases the
absolute minimiser is piecewise C2 with exactly one jump discontinuity point in the
second derivative. Hence, following [27], we also consider generalised D-solutions
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to (3). This concept however applies to the expanded form (11) of the PDE (3),
namely

A∞(J2u,D3u) = 0 in Ω,

which in view of (10) can be written as

HX(J
2u) :

(
Hx(J

2u) + Hη(J
2u)Du+Hp(J

2u)D2u+HX(J
2u) : D3u

)⊗2

= 0 in Ω.

(46)
The two forms of the PDE (46) and (3) are of course equivalent when u ∈ C3(Ω),
but the expanded form is the appropriate one to define D-solutions, and our method
of proof is inspired by the equivalence between the two. The idea is if for a function
u ∈ C3(Ω) we have H(J2u) ≡ C on Ω for some C ∈ R, then A2

∞u = 0 in Ω. The
main technical obstacle is then to show that if we have merely that u ∈ W 2,∞

g (Ω),

which is the natural regularity class, then A∞(J2u,D3u) = 0 in the D-sense in Ω.
This section is structured as follows. We first prove the existence of infinitely

many strong a.e. solutions inW 2,∞
g (Ω) to the Dirichlet problem for the second-order

implicit PDE

H(J2u(x)) = C for a.e. x ∈ Ω, (47)

for some compatible C > 0 large enough, understood as an “energy level” deter-
mined on the boundary data g ∈ W2,∞(Ω). For this we utilise the results of [16]
on an implicit fully nonlinear PDE, which rely on the Baire category method. We
then establish that all strong solutions u ∈ W2,∞

g (Ω) to H(J2u) = C a.e. on Ω are

D-solutions to the Dirichlet problem for A∞(J2u,D3u) = 0 on Ω. To this end, we
utilise some basic general machinery of D-solutions established in [21]. As a result,
we provide a proof which is not only new, even in the special setting of [27] in which
no lower-order terms are considered, but also considerably shorter than the “first
principles” proof provided therein.

We begin with the existence of solutions to our implicit second-order PDE.

Lemma 5.1 (Solvability of H(J2u) = C). Suppose that H : Ω×R×Rn×Rn⊗2

sym → R
satisfies

H(x, η,p,X) = h(x, η,p,X⊤X),

for some h ∈ C1
(
Ω×R×Rn ×Rn⊗2

sym

)
. We further assume that, for any (x, η,p) ∈

Ω × R × Rn, h(x, η,p, ·) is strictly increasing along the direction of the identity
matrix, namely the function t 7→ h(x, η,p, tI) is strictly increasing on R. Further,
we assume there exists δ0 > 0 such that

sup
Ω×R×Rn

h
(
·, ·, ·, δ0I

)
<∞. (48)

Then, for any C > 0 selected such that

C ≥ max

{
sup

Ω×R×Rn

h
(
·, ·, ·, δ0I

)
, ess sup

Ω
h
(
J1g,

(
1 + ∥D2g∥2L∞(Ω)

)
I
)}

, (49)

the Dirichlet problem {
H(J2u) = C, a.e. in Ω,

u = g,Du = Dg, on ∂Ω,
(50)

has (infinitely many) strong solutions u ∈ W2,∞
g (Ω).
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Proof of Lemma 5.1. Fix g ∈ W2,∞(Ω). For any matrix X ∈ Rn⊗2

sym, let {λ1(X),
...,λn(X)} denote its eigenvalues in increasing order. Let f : Ω × R × Rn → R be
a continuous function satisfying f ≥ δ0 for some δ0 > 0. By [16, Theorem 7.31,
Remark 7.29 & Corollary 7.34], the following Dirichlet problem involving singular
values of the Hessian matrix{

λi(D
2u⊤D2u) = f(J1u), a.e. on Ω, i = 1, . . . , n,

u = g, Du = Dg, on ∂Ω,
(51)

has (infinitely many) solutions in W2,∞
g (Ω), as long as the boundary condition is a

“strict subsolution” in the sense that

λn(D
2g⊤D2g) ≤ f(J1g)− ε0 a.e. on Ω, (52)

for some ε0 > 0. When such solutions exist, by the spectral theorem we have that
there exists a measurable map of orthogonal matrices O ∈ L∞(Ω;O(n,R)

)
such

that

D2u⊤D2u = O

λ1(D
2u⊤D2u) O

. . .

O λn(D
2u⊤D2u)

O⊤

= f(J1u)OIO⊤

= f(J1u)I,

(53)

a.e. on Ω. Let C > 0 be selected as in (49). It follows that

C ≥ h
(
J1g,

(
1 + ∥D2g∥2L∞(Ω)

)
I
)

a.e. on Ω,

and by the monotonicity assumption on h, this implies

h
(
J1g, (·)I

)−1
(C) ≥ 1 + ∥D2g∥2L∞(Ω) a.e. on Ω.

Therefore, by selecting

f(x, η,p) := h(x, η,p, (·)I)−1(C), (54)

we obtain

f(J1g) ≥ 1 + ∥D2g∥2L∞(Ω)

pointwise on Ω. Again, by (48)-(49), it follows that there exists δ0 > 0 such that

C ≥ h
(
x, η,p, δ0I

)
.

for all (x, η,p) ∈ Ω× R× Rn. This yields that

f(x, η,p) = h(x, η,p, (·)I)−1(C) ≥ δ0, a.e. on Ω.

It follows that the necessary conditions for the solvability of problem (51) are sat-
isfied, as

λn(D
2g⊤D2g) ≤ ∥D2g∥2L∞(Ω)

= (1 + ∥D2g∥2L∞(Ω))− 1

≤ f(J1g)− 1,
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a.e. on Ω, which is (52) with ε0 = 1. We conclude by showing how the solvability
of (51) implies the solvability of (50). In view of (53)-(54), we may compute

H(J2u) = h
(
J1u,D2u⊤D2u

)
= h

(
J1u, f(J1u)I

)
= h

(
J1u, (·)I

)(
f(J1u)

)
=
(
h
(
J1u, (·)I

)
◦ h
(
J1u, (·)I

)−1
)
(C)

= C,

a.e. on Ω. The conclusion ensues.

Now we proceed to establish the existence of D-solutions to the Dirichlet problem
for the fully nonlinear PDE (46).

Theorem 5.2 (Existence of D-solutions). Suppose that H : Ω×R×Rn×Rn⊗2

sym → R
satisfies

H(x, η,p,X) = h(x, η,p,X⊤X),

for some h ∈ C1
(
Ω× R× Rn × Rn⊗2

sym

)
. We further assume that for any (x, η,p) ∈

Ω × R × Rn, h(x, η,p, ·) is strictly increasing along the direction of the identity
matrix, and that there exists δ0 > 0 such that

sup
Ω×R×Rn

h
(
·, ·, ·, δ0I

)
<∞.

Then, for any g ∈ W2,∞(Ω), the Dirichlet problem{
A∞(J2u,D3u) = 0, in Ω,

u = g, Du = Dg, on ∂Ω,
(55)

has (infinitely many) D-solutions u ∈ W2,∞
g (Ω). In view of Definition 2.3 and

expression (10) of A∞, this means that∫
Rn⊗3

sym

Φ(Z)HX(J
2u) :

(
Hx(J

2u) + Hη(J
2u)Du

+Hp(J
2u)D2u+HX(J

2u) :Z

)⊗2

d[D3u](Z) = 0,

a.e. on Ω for any third-order diffuse derivative D3u ∈ Y (Ω;Rn⊗3

sym) and for any test

function Φ ∈ Cc(Rn⊗3

sym).

Proof of Theorem 5.2. Since the assumptions of Lemma 5.1 are satisfied, we may
select C > 0 as in (49) to guarantee that the Dirichlet problem (50) for the fully-
nonlinear PDE H(J2u) = C is solvable in the strong sense in W2,∞

g (Ω). By the
result [21, Theorem 30, p. 665] on the differentiation of equations in the D-sense, u
solves

n∑
i,j=1

(
Hxk

(J2u)+Hη(J
2u)Dku+Hpj

(J2u)D2
jku+HXij

(J2u)D3
kiju

)
= 0 in Ω, (56)
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in the D-sense, for any k = 1, . . . , n. We define the map L∞ : Ω×R×Rn×Rn⊗2

sym ×
Rn⊗3

sym → Rn by setting

H∞(x, η,p,X,Z) : =

n∑
i,j,k=1

(
Hxk

(x, η,p,X) + Hη(x, η,p,X)pk

+Hpj (x, η,p,X)Xjk +HXij (x, η,p,X)Zkij

)
ek.

(57)

Then, in view of Remark 2.4, we have that any third-order diffuse derivative D3u ∈
Y (Ω;Rn⊗3

sym) of u satisfies the inclusion

supp∗(D3u(x)) ⊆
{
H∞(J2u(x), ·) = 0

}
,

for a.e. x ∈ Ω. Note now that Definitions 10 and 57 imply that

A∞(J2u,Z) = HX(J
2u) : H∞(J2u,Z)⊗ H∞(J2u,Z),

a.e. on Ω. Therefore, we have{
H∞(J2u(x), ·) = 0

}
⊆
{
A∞(J2u(x), ·) = 0

}
for a.e. x ∈ Ω, which by the above yields that

supp∗(D3u(x)) ⊆
{
A∞(J2u(x), ·) = 0

}
,

for a.e. x ∈ Ω. Therefore, by Remark 2.4 again, it follows that u is a D-solution to
A∞(J2u,D3u) = 0 in Ω. The conclusion follows.
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