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Abstract

Buildings significantly impact the environment, accounting for 36% of global final energy
consumption and 37% of total carbon emissions. Therefore, reducing energy consumption
and mitigating carbon emissions in the building sector is of paramount importance. To
achieve this, several factors should be considered. Among them, building occupants are
key drivers in the operation of building services that directly influence energy consumption
and energy-related emissions. In this paper, one year of raw energy consumption data from
a high-density higher education building in the UK was processed to study the correlation
between energy consumption and occupancy level. Additionally, a simulation model was
developed to measure the impact of occupancy numbers on building energy consumption.
Various data analyses were performed, including correlation, regression, and sensitivity
analysis. The results demonstrate a strong correlation between occupancy numbers and
electricity consumption of 71.5%. Conversely, 18% was found between occupancy numbers
and heat energy consumption, indicating no correlation. The sensitivity analysis results on
the impact of changing occupancy numbers in the simulated model, ranging from –30% to
+30%, aligned with the results of the analyses performed.

Keywords: energy consumption; energy simulation; high-density building; educational
building; sensitivity analysis

1. Introduction
In recent years, climate change has received massive attention [1]. Among the sectors

that should be managed for climate change effects, the building industry is one of the
most vital sectors because it directly impacts the health and well-being of humans. This
industry is also regarded as a major contributor to climate change, primarily because it
consumes a large amount of energy and natural resources and generates a significant
carbon footprint [2,3]. In 2020, buildings and the construction industry were responsible
for more than 36% of global final energy consumption and 37% of global process-based
carbon emissions [4]. Energy consumption and greenhouse gases (GHGs) emanate from
various building phases, including the construction, operation, and maintenance phases of
the built environment. Owing to the high energy consumption and associated emissions,
there is a critical obligation to reduce energy consumption in buildings and mitigate carbon
dioxide emissions. Therefore, the adoption of renewable energy is increasing through the
assessment of available domestic technologies and the integration of these systems into
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both current and future buildings. The aim is to reduce dependency on fossil fuels and
lower carbon emissions [5].

There are buildings, such as libraries of higher educational institutes, that have fixed
schedules of operation, which can be attributed to a significant amount of energy [6].
The operational schedule of buildings varies based on several factors, including the type,
location, and operating hours of buildings. Consequently, the number of occupants in a
building significantly impacts energy consumption, primarily through heating, cooling,
ventilation, and lighting systems during workdays and weekends. The lack of knowledge
of occupancy numbers, patterns, and schedules in buildings during different periods can
lead to energy loss [7,8]. Notably, these factors vary across different academic terms and
vacations. This makes occupancy data of educational buildings more challenging to collect
and generalize over the entire year when compared with occupancy data of office buildings,
which tend to have a stable rate of occupancy numbers [9]. Educational buildings in the
United Kingdom (UK) account for more than 10% of the nation’s total service energy
consumption, with 2% attributed to primary and secondary schools and the remaining
8% to tertiary institutions [10]. Overall, buildings used for higher education studies are
significant GHG emission contributors, mainly because some buildings, such as those used
as libraries, are active throughout the day and night (24/7) [11–13]. In such buildings,
the heating, ventilation, and air conditioning (HVAC) systems tend to operate across all
zones from early morning until the end of the day based on the assumption that the
building is occupied at maximum capacity, which could lead to significant energy wastage
if the building is unoccupied [14,15]. The common belief is that occupants consume more
energy during working hours. However, several studies have indicated that, in commercial
buildings, more than 50% of energy wastage occurs during unoccupied or out-of-working
hours [16–18].

Occupancy data are often overlooked during the building design process, particularly
when estimating energy consumption, regardless of their direct impact on building energy
consumption [19]. Educational buildings with high occupancy rates have not been studied
sufficiently. They can be attributed to a significant energy performance gap, mainly based
on projections made during their design phases compared with actual data observed during
the operation phase [20,21]. Various tools for building energy simulations have been used in
previous studies for several types of buildings. The simulation models were developed for
various reasons, including analyzing the simulated energy consumption, predicting future
energy consumption, reducing the gap between actual and simulated energy consumption,
and measuring the impact of building occupants on building energy consumption.

A study conducted by Englund et al. [22] developed a simulation model to investigate
the impact of occupant presence on the energy consumption of a school building. Field
measurements were conducted to collect occupancy data, energy consumption, and tem-
perature for five months to be used as input for the IDA ICE simulation tool. The results of
the developed simulation model were evaluated during a non-occupied period of six days,
showing a variation of 9.6%, equal to 139 kWh, which was higher than the actual consump-
tion data. Another evaluation was performed during working hours for a period of 46
days, which showed a variation of up to 10.6%. Mokhtari and Jahangir [23] examined the
effect of occupant distribution on the energy consumption of HVAC systems at a university
building. Random sets of occupancy patterns were distributed in the building to measure
the energy consumption differences of each pattern. EnergyPlus was used to evaluate
energy consumption based on occupancy patterns over ten days in one-hour intervals. The
results of the study illustrate occupants’ energy consumption for five workdays during
the hot and cold seasons. The proposed model was able to reduce energy consumption
by 28% when limiting student time in the classroom, which is obviously not practicable.
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Litardo et al. [24] developed a simulation model using EnergyPlus and OpenStudio to
estimate the energy consumption of a building on a university campus. Several datasets,
including occupancy data, HVAC system, lighting, and equipment consumption, were
collected over one year in monthly intervals. The collected and estimated data focused on
office hours during working days, ignoring the weekends and holidays. The simulation
results in estimated energy consumption for one year on a monthly basis, with a 6% reduc-
tion in energy consumption. Bernardo et al. [25] developed building energy simulation
models to measure the effect of improving ventilation systems on energy consumption in
a school building. Energy consumption data was collected for 12 months. A simulation
model was developed using DesignBuilder software package V3. Several inputs were used,
including the building envelope, HVAC system, thermal zones, internal loads, and weather
data. Due to the lack of data on occupancy numbers and energy consumption, the study
used a thermal zone equivalent for different spaces. A total of 83 thermal zones in the
building were considered. These inputs were used in developing the simulation model
to estimate one year of energy consumption at a resolution of one month. The estimated
energy consumption was lower than the actual energy consumption in the building, which
indicates the importance of occupancy data.

Lee et al. [26] developed a building energy simulation model to examine the effect
of occupant presence in residential buildings on energy consumption. A survey was
conducted in over 5000 single-person households to generate a profile of occupant activity
schedules. The data collected were clustered based on occupancy characteristics, including
age, gender, occupation, and income. A 3D geometry model of the buildings was modelled
using the Google SketchUp plugin version 2017, and the collected occupancy data was
used as the input to develop a building energy simulation model using EnergyPlus. The
results of the simulation show a variation of over 20 times from 446 kWh to 926 kWh
based on occupant characteristics. In another study, Mora et al. [27] investigated the
importance of incorporating occupancy profiles into estimating energy consumption using
a building energy simulation model. The preferences of occupant energy usage were
collected from 110 residential buildings through surveys, interviews, and energy bills.
DesignBuilder software was employed to use the collected data as input for developing a
building energy simulation model. The model results show energy consumption for one
day at hourly intervals based on the input of occupancy profiles of the different zones
in buildings. The influence of occupants on energy consumption varies based on several
factors, including building type, occupant activity, and thermal gain. Martinaitis et al. [28]
used EnergyPlus and DesignBuilder software to simulate the energy consumption of a
one-story apartment building. The default occupancy schedule was based on the simulation
tools provided for four building occupants. The model estimated energy consumption at
one-hour intervals for one year. The results showed a considerable difference in energy
consumption in relation to the different inputs of the occupancy profiles. Electrical and
heat energy consumption increased by 6% and 12%, respectively, with the assumption
of two occupants in the building. Another assumption was that increasing the operating
building system for occupants led to a 30% increase in energy consumption for heating.
These results show that changing the schedule of operation based on occupant profiles
increases energy consumption.

A study conducted by Asadi et al. [29] developed a building energy simulation model
using EnergyPlus to measure the differences between the actual impact of occupants on
energy consumption and the simulation results. The case study took place in an office
building. The energy consumption data was collected over six months using sensors linked
to the primary circuits in the building. Several inputs were used to develop the model,
including occupancy schedule, building envelope, thermal properties, weather data, and
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the schedules of the HVAC systems. The effects of occupant behavior on building energy
consumption were collected through surveys. The results of the study in simulating energy
consumption showed high accuracy compared with the occupant behavior information
collected from the surveys. Pang et al. [30] aimed to generate occupancy schedules for
office buildings based on the occupancy location data. The occupant positions were
detected for six months using smartphone signals. Several types of data were collected to
be used in estimating building energy consumption, including the occupancy schedule,
building envelope, building scheme, internal loads, and HVAC and lighting systems. The
simulation results of using EnergyPlus showed that occupancy smartphone positioning
could help increase simulation accuracy. Zhao et al. [31] developed a simulation model
using EnergyPlus to optimize the energy consumption of an HVAC system. The occupancy
data was collected from an office building for three months, in addition to a web-based
survey that was conducted to collect data on thermal comfort. The EnergyPlus program
uses occupancy schedules, equipment and lighting usage, and weather data as inputs.
The energy consumption of the HVAC system was simulated for seven days. The results
indicate that energy consumption could be reduced while maintaining occupant thermal
comfort. Chenari et al. [32] developed an energy simulation model using EnergyPlus and
OpenStudio to examine ventilation systems in office space. Occupancy schedules and
carbon dioxide data collected to be used as inputs. Four scenarios were simulated for one
day at one-hour intervals based on the occupancy schedule and the level of carbon dioxide
concentration in the office room. The results showed the potential for energy savings of
15% when increasing the ventilation system’s minimum setpoint.

The comprehensive review of the available studies revealed several gaps in examining
case study buildings and the methods used for data collection. One notable gap is the
lack of occupancy data for specific building types, such as higher education buildings,
which have not been studied as extensively as residential and office buildings. This gap
is attributed to the stochastic behavior of occupants, high density, and the challenges in
accurately collecting occupancy data in these buildings. Another limitation involves the
method of data collection, such as using ambient sensors. There are uncertainties associated
with these technologies, as sensors can be affected by rapid changes in air temperature
or carbon dioxide levels caused by opening windows or doors. Furthermore, studies
conducted on higher education buildings have often limited their data collection to small
areas and short time frames.

This study aims to measure the impact of occupancy numbers on energy consumption
in a high-density higher education building by addressing the following objectives:

• To preprocess and organize a full year of raw energy consumption data to enable
comprehensive and accurate analysis.

• To develop a building energy simulation model that incorporates real occupancy
patterns and building characteristics as input variables.

• To estimate the energy consumption of the case study building under varying occupancy
rates and across different periods of the day, capturing temporal usage dynamics.

• To analyze the statistical relationships between actual energy consumption and occupant presence.
• To evaluate the impact of varying occupancy levels on total building energy consumption.

2. Methods
This section presents the case study building and the methodology used to collect

occupancy data, followed by a description of the energy consumption dataset and the
simulation model selected for this study. Table 1 shows the steps taken in processing the
collected data on occupancy and energy.
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Table 1. Description of the steps taken for data processing.

Step Description

Data Cleaning Removed invalid records and aligned timestamps.
Missing Data The used sensor was able to collect the occupancy data without a missing datapoint.

Outlier Detection The outlier or the value zero has not been removed, as it is not an outlier or missing data.
It is the period, for instance, during the weekend when the building is closed.

Normalization Standardized the values of occupancy and energy for comparability.
Integration Combined processed occupancy and energy into the dataset.

2.1. Case Study Building

The case study building selected in this paper is the Urban and Regional Studies (URS)
building at the University of Reading in Reading, England. The building covers an area
of 7200 m2 in the university’s Whiteknights Campus. In 2016, the library building was
categorized as a heritage building [33]. The building’s general specifications are in Table 2.
The building consists of seven levels allocated for students and staff, with a capacity of
830 people. Students had access to the first three levels, while the remaining levels (fourth
to seventh) were for staff members to serve as their workplace.

Table 2. URS building properties.

Building URS

Location Reading, UK
Size 7200 m2

Number of Floors 7
Constructed Year 1970

Occupied Year 1972
Building Usage Library

Building Capacity 830

The URS building is open based on academic terms and vacations. During the three
academic terms, Spring, Summer, and Autumn, the building is open 24 h from Monday
to Friday. During weekends, for these academic terms, the building closes at 9:00 p.m.
on Saturday and opens on Sunday at 8:30 a.m. Conversely, during vacations, including
Easter, Summer, and Christmas Breaks, the building is open from 8:30 a.m. to 5:00 p.m.
on workdays and closed on weekends. Table 3 summarizes the workdays and weekend
operating hours during academic terms and vacation.

Table 3. Opening hours of the URS building during different academic terms and vacations of
workdays and weekends.

Day
Opening Hours

During Academic Terms During Vacation

Monday To Friday Open 24 h 08:30 a.m. to 05:00 p.m.
Saturday Open until 09:00 p.m. Closed
Sunday Open At 08:30 a.m. Closed

2.2. Occupancy Data Collection

The occupancy number in the building was captured using infrared video camera
sensors. The data was collected for 12 months (one academic year) at a high accuracy of
five-minute intervals. The data was processed and then aggregated at 30 min intervals to
ensure proper alignment with the energy consumption data. This approach helped facilitate
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a more accurate comparison and analysis of the datasets, providing a consistent basis for
subsequent evaluations. The sensors used are suitable and reliable for data collection
from high-density building occupants, which increases the reliability of the study results.
The infrared sensor is incorporated with a video camera, which works simultaneously
for more accurate detection of occupant numbers and their direction, whether they are
entering or leaving the building. The data collection system reportedly has an accuracy
of 98% in detecting occupants in buildings [34]. The operation of this technology is based
on the principle of visual tracking [35]. The system shows real-time data on the number
of occupants at five-minute intervals. The collected data was then sent to a cloud-based
server that carried out the analysis. The sensor, equipped with a wide 90◦ angle lens, can
be conveniently installed on a ceiling at heights of up to 11.7 m above the floor. Also, it
is embedded with +/− 2 cm image filtering to distinguish between counting people and
other objects below a certain height threshold, based on the height of the sensors, such as a
trolley or a pet crossing the counting area. Figure 1 shows the location of the sensor with
respect to the main entrance [36].

Figure 1. Sensor location at the front of the main entrance of the URS building, highlighted by a
red circle.

2.3. Building Energy Consumption Data

The collected building energy consumption data, consisting of electrical and heat data,
covering 12 months, was obtained from building facility management, measured at 30 min
intervals, covering one academic year. The raw data were processed to identify changes in
energy usage across different periods and temporal resolutions (hours, days, workdays,
weekends, months, academic terms, and vacations). The analysis covered various times of
the day, such as early, peak, late, working hours, and out-of-work hours. The working and
out of working hours in the case study of the URS building were considered the period
from 9:00 a.m. to 5:00 p.m. as working hours, and out of working hours, from 6:00 p.m.
to 8:00 a.m. Several studies show that 40–60% of the energy consumed in buildings takes
place outside working hours [16,18]. Several types of analyses were conducted on the raw
energy data. Correlation analysis was used to identify relationships between different
variables, including occupancy numbers and the building’s energy use (electricity and
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heat). Regression analysis was applied to evaluate the effect of specific variables on a
dependent variable.

2.4. Building Energy Simulation Software

DesignBuilder software (v7.0.2.006) was used to develop a 3D building energy simula-
tion model to estimate the energy consumption of a higher education case study building,
including electricity and heat. The simulation tool was chosen based on the work to be
performed in measuring the impact of occupancy numbers on energy consumption and
the nature of the data format. In addition, the system offers user-friendly interfaces and
compatibility with other software, along with an engine that processes input and output
files and performs data analyses and calculations. DesignBuilder library contains detailed
heating, ventilation, and air-conditioning (HVAC) templates for the most complex HVAC
systems, whereas other simulation tools only contain limited templates. The 3D geometry
comprises various inputs, including the building properties of walls, windows, doors,
floors, and roofs, with a total floor area of 7200 m2. Some of the data collected was imported
into the software; others were selected from the variety of built-in building component li-
braries, including building properties, occupancy rate, schedule, building location, weather
data, and building system details.

Figure 2 illustrates the layers of the URS building constructed using DesignBuilder.
The thickness of the building’s walls is 0.29 m and consists of four layers based on the
construction detail plans provided by the building facility management team. Table 4
provides the external walls’ construction details and resistance values. The different values
presented for the convective heat transfer coefficient between internal and external walls
are related to heat transfer. The higher the value of the exterior walls, the more they are
exposed to/affected by various factors, including heat transfer and outdoor temperature,
such as wind speed, outside temperature, and wall surface properties. In contrast, the
internal wall has less value because it is less affected by different factors. Additionally,
this logic applies to other components of the building, including the floor and roof. The
details of the roof are provided in Table 5, and the details of the building floors are listed
in Table 6 [37]. The radiative heat transfer coefficient of various building elements is
commonly determined using empirical correlations incorporated into simulation tools.
These tools take into account factors such as surface properties, temperature differences
between surfaces, surface geometry and orientation, and the surrounding environment.

Figure 2. Layers of the URS building in DesignBuilder.



Buildings 2025, 15, 3598 8 of 20

Table 4. Construction details of building walls.

Inner Surface Outer Surface

Convective heat transfer coefficient (W/m2 K) 2.152 Convective heat transfer coefficient (W/m2 K) 19.870
Radiative heat transfer coefficient (W/m2 K) 5.540 Radiative heat transfer coefficient (W/m2 K) 5.130

Surface resistance (m2 K/W) 0.130 Surface resistance (m2 K/W) 0.040
Layer thickness (m) 0.2925 U-Value surface to surface (W/m2 K) 0.372

Km—internal heat capacity (KJ/m2 K) 134.80 R-Value (m2 K/W) 2.856
Upper resistance limit (m2 KW) 2.856 U-Value (W/m2 K) 0.350
Lower resistance limit (m2 KW) 2.856

Table 5. Construction details of building roofs.

Inner Surface Outer Surface

Convective heat transfer coefficient (W/m2 K) 4.460 Convective heat transfer coefficient (W/m2 K) 19.870
Radiative heat transfer coefficient (W/m2 K) 5.540 Radiative heat transfer coefficient (W/m2 K) 5.130

Surface resistance (m2 K/W) 0.100 Surface resistance (m2 K/W) 0.040
Thickness (m) 0.3675 U-Value surface to surface (W/m2 K) 0.259

Km—internal heat capacity (KJ/m2 K) 32.6144 R-Value (m2 K/W) 3.999
Upper resistance limit (m2 KW) 3.999 U-Value (W/m2 K) 0.250
Lower resistance limit (m2 KW) 3.999

Table 6. Construction details of building floors.

Inner Surface Outer Surface

Convective heat transfer coefficient (W/m2 K) 0.342 Convective heat transfer coefficient (W/m2 K) 4.460
Radiative heat transfer coefficient (W/m2 K) 5.540 Radiative heat transfer coefficient (W/m2 K) 5.540

Surface resistance (m2 K/W) 0.170 Surface resistance (m2 K/W) 0.100
Thickness (m) 0.10 U-Value surface to surface (W/m2 K) 14.00

Km—internal heat capacity (KJ/m2 K) 88.20 R-Value (m2 K/W) 0.341
Upper resistance limit (m2 KW) 0.341 U-Value (W/m2 K) 2.929
Lower resistance limit (m2 KW) 0.341

The building features a uniform opening style for its doors and windows. The win-
dows have an aluminum frame with a thickness of 0.003 m. The occupancy schedule was
used as input in developing the model, as DesignBuilder provides flexibility in adjusting
the occupancy schedule inputs as desired, compared to the fixed or restricted changes of
other simulation tools. Such input increases the accuracy of the model and the reliability of
the simulation results for building energy consumption.

The operational schedule used as input in the simulation model was connected to the
occupancy schedule. The electrical energy consumption in the building is mainly used
for lighting and library equipment, including desk lighting features, charging and socket
plugs, computers, and printers. The HVAC system used in the building consisted of hot
water radiators and mechanical ventilation in some spaces, as well as cooling in others. The
operating hours during working days are from 8 a.m. to 5 p.m. The information regarding
the setpoint temperature (air dry-bulb temperature) was used as input in DesignBuilder,
which was obtained from the maintenance department of the URS building. The air dry-
bulb temperature is different than the operative temperature. The operative temperature
takes into account both the air temperature and the mean radiant temperature. The heating
temperature in the building was set at 20 ◦C. The percentage of RH humidification and
dehumidification setpoints were set at 10% and 90%, respectively, and the minimum
ventilation temperature was 22 ◦C. The different temperature setpoints of heating and
ventilation can be due to various reasons, including seasonal variations. During cold
months, the heating setpoint can be higher than the ventilation setpoint to minimize the
amount of cold air entering the building and vice versa during hot months. Figure 3
shows the input data for the occupancy schedule used to develop the simulation model in
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DesignBuilder software. It shows the average daily occupancy percentage for the reference
building on each day over a 12-month period. The input of occupancy data accurately
reflects the actual levels observed in the case study building, ensuring realistic and reliable
simulation results.

 

Figure 3. Input the Occupancy schedule into DesignBuilder.

3. Results and Discussion
This section presents the study results, starting with the identified occupancy patterns

from the collected data in the case study of the URS building. It is followed by a process
to analyze the one-year actual energy consumption data that was derived from building
facility management. The developed 3D energy model is utilized to estimate energy
consumption based on actual occupancy data. Then it is used to measure the impact on
building energy consumption under various occupancy rates.

3.1. Occupancy Patterns

The occupancy data of the case study building were analyzed using several data
analysis methods as presented in Alfalah et al. [36]. Three occupancy patterns were
identified based on the presence of the occupants in the building. Pattern 1 repre-
sents a medium occupancy rate, Pattern 2 represents the highest occupancy rate, and
Pattern 3 represents the lowest occupancy rate. The patterns were distributed over a
one-day cycle as shown in Figure 4 [36]. There was a variation in the building’s occupied
capacity between the identified patterns: 11% between Pattern 1 and Pattern 2, and 45%
between Pattern 2 and Pattern 3. The variation in patterns related to the associated period,
as the highest occupancy rate (Pattern 2) occurred during the examination period, the
medium rate (Pattern 1) is seen at the start of the academic year, and the lowest occupancy
rate (Pattern 3) appears during Summer Vacation and term.
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Figure 4. Average daily distribution of identified occupancy patterns in the URS building based on
utilization capacity.

3.2. Energy Consumption Data

The 12 months of raw electrical and heat energy consumption data from the case study
building were analyzed to understand occupants’ behavior using correlation analysis.
Additionally, this data served as input for the building energy simulation model.

The electrical energy consumption in the building is mainly used for lighting and
library equipment, including desk lighting features, charging and socket plugs, computers,
and printers. Figure 5 illustrates the monthly energy consumption and the percentage
changes from month to month over a 12-month period [36]. Energy consumption has
experienced a slight fluctuation over the months, being high at the beginning of the year.
Followed by frequent fluctuations, and then lower energy consumption at the end of
the year. There was a noticeable 17% decrease in energy consumption starting in May,
representing the change in electrical energy consumption between April and May. Due
to fewer occupants in the building during Summer Vacation from June to September,
energy consumption decreased. Electrical energy consumption sharply increased by 62% in
October compared to that in September, which was the most significant positive percentage
change that occurred during the entire 12 months of the academic year. Quantitatively,
the sharp increase in usage trend can be associated with the start of the academic term,
when a high volume of occupants returns to the building after Summer Vacation. Notably,
the most considerable percentage change in the descending trend occurred in December,
during which there was a 52% reduction in energy consumption compared to November.
This shows the difference in electrical energy consumption during different periods of
the academic term and the vacation months. Table 7 presents the results of performing
descriptive analysis, including the monthly mean, median, standard deviation, minimum,
and maximum energy consumption over 12 months [36]. The highest average daily value
of electrical energy consumption in the building (1169.52 kWh) was recorded in February,
which is a month after the beginning of the academic term. In contrast, the lowest average
daily energy consumption over the months was observed in July, during the Summer
Vacation, at 584.45 kWh.
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Figure 5. Total monthly electrical energy consumption in the building, including the percentage of
the changes from one month to another.

Table 7. Descriptive statistics of electrical energy consumption data covering 12 months.

Month
Measure of Central Tendency Measure of Variability

Mean Median SD Min Max Sum

January 1084.37 1207.75 234.40 389.13 1369.00 33,615.58
February 1169.52 1200.25 177.61 762.42 1430.88 32,746.43

March 1137.80 1267.25 273.77 521.13 1494.55 35,271.77
April 1154.79 1240.76 249.15 511.50 1427.25 34,643.72
May 1103.02 1152.51 146.00 827.25 1368.13 28,678.46
June 663.75 688.00 169.14 306.00 930.50 19,912.56
July 584.45 655.38 121.09 393.13 692.00 18,118.08

August 602.76 662.32 118.92 396.13 693.63 18,082.84
September 593.05 647.63 130.68 375.50 753.38 17,791.45

October 928.70 941.75 145.04 650.88 1172.00 28,789.70
November 1024.13 1085.00 173.69 710.00 1229.50 29,699.70
December 1047.10 1143.25 202.23 779.38 1276.75 17,612.28

Figure 6 shows the total weekly electrical energy consumption of the building over a
52-week period. The duration of academic terms and vacations was identified, as well as
showing the gradual changes in electrical energy consumption across consecutive weeks.
During the academic terms (Spring, Summer, and Autumn terms), electrical energy con-
sumption was high, which may be related to student workloads. However, during Summer
Vacation (weeks 24–38), electrical energy consumption decreased sharply because the build-
ing was only open on workdays and closed at 5:00 p.m., which limited access hours. After
Summer Vacation, energy consumption increased again in October (week 39) as students
returned to the university and opening hours went back to 24 h during workdays. This
indicates that electrical energy consumption was higher during the academic term than
during the vacation period.

Figure 7 illustrates the monthly total heat energy consumption and the percentage
changes from one month to another. Energy consumption started to decrease after an
increase of 3% in February. A very low energy consumption was observed from May to
September (during the Summer Vacation) compared to other months. The building’s heat
energy consumption began to increase in October and then dropped in December. Table 8
presents the results of performing descriptive analysis, including the daily mean, median,
standard deviation, minimum, and maximum energy consumption over 12 months. It is
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observed that the highest energy consumption occurred during an academic term, which
was in February, at 198,501 kWh. In contrast, the lowest energy consumption was during
Summer Vacation (June to September), with an average of 5700 kWh. However, the URS
building was still open with some hours restrictions during the workdays and closed during
the weekends. The heat energy consumption in the building is primarily determined by its
thermal performance rather than the number of occupants, since the occupants have no
control over the building’s thermostat.

Figure 6. Total weekly electric energy consumption of 52 weeks, including information on the
beginning and end of each term and vacation that occurred in the 12 months.

Figure 7. Total heat energy consumption of the URS building for each month, including the percentage
of the changes from one month to another.

Figure 8 presents the total heat energy consumption data and the duration of the
academic terms and vacations over 52 weeks. During the academic terms (Spring, Summer,
and Autumn terms), the heat energy consumption gradually increased, then dropped at the
end of the Summer Term. On the other hand, during the Summer Vacation, the heat energy
consumption was low compared to other academic terms, as the library was only open on
workdays and closed at 5:00 p.m. After Summer Vacation, the heat energy consumption
increased again in October (week 39) as students returned to the university and the building
opening hours went back to 24 h during workdays. The heat energy consumption was
higher during the academic terms compared to the vacation periods.
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Table 8. Descriptive statistics of heat energy consumption data covering 12 months.

Month
Measure of Central Tendency Measure of Variability

Mean Median SD Min Max Sum

January 6187.10 6400.00 926.91 3700.00 7700.00 191,800.00
February 7089.32 7091.50 1195.98 5100.00 9400.00 198,501.00

March 4651.65 3900.00 2505.60 1200.00 9900.00 144,201.00
April 2330.57 1908.50 1926.51 200.00 8400.00 69,917.00
May 434.62 200.00 626.70 0.00 2400.00 11,300.00
June 196.67 200.00 41.38 100.00 300.00 5900.00
July 183.87 200.00 37.39 100.00 200.00 5700.00

August 186.67 200.00 34.57 100.00 200.00 5600.00
September 656.67 200.00 1024.42 200.00 4200.00 19,700.00

October 2370.97 2200.00 1809.46 200.00 6300.00 73,500.00
November 4393.10 3900.00 1494.26 1800.00 7500.00 127,400.00
December 5123.08 5400.00 1303.30 2700.00 7500.00 66,600.00

Figure 8. Total weekly heat energy consumption of 52 weeks, including information on the beginning
and end of each term and vacation that occurred in the 12 months.

The results of performing a correlation analysis between the number of occu-
pants during workdays in the building and energy consumption are presented in
Figures 9 and 10. Figure 9 shows a weak correlation between the number of occupants and
electrical energy consumption during workdays, with an R2 of 0.53. In contrast, Figure 10
shows no correlation between the number of occupants and heat energy consumption
(R2 0.18). The low correlation in heat energy consumption can be attributed to the build-
ing’s operation and the variability of external climate conditions rather than occupancy
levels, as occupants have no control over the heating system. In addition, the random pres-
ence of occupants at varying rates during different periods reduces the correlation between
their numbers and heat energy consumption, as estimating the number of occupants in a
high-density library building is challenging [38,39]. The building’s heating system is fully
controlled by building management, and occupants cannot adjust it. Therefore, heating is
provided according to predefined schedules and setpoints rather than reacting to real-time
occupancy. As a result, changes in the number of people in the building do not significantly
impact energy use. However, such an arrangement can result in higher heating energy
consumption even when most of the space is empty.
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Figure 9. Results of correlation analysis between occupancy numbers and electrical energy consumption.

Figure 10. Results of correlation analysis between occupancy numbers and heat energy consumption.

3.3. Impact Measurements

This section presents the results of measuring the impact of occupancy numbers on
building energy consumption, including electricity and heat in the URS building, through
various data analyses, including correlation, regression, and sensitivity analyses.

The results of conducting a correlation analysis were to illustrate the performance of
the simulation model in estimating the electrical and heat energy consumption concerning
the building’s occupants in the URS building. Figures 11 and 12 show the strength of the
correlation between the daily number of occupants and energy consumption (electricity
and heat) over one year. Figure 11 shows the correlation results of the estimated electrical
energy consumption using the simulation tool. The coefficient correlation results were at
71.15%. The level of correlation could be linked to the use of the actual occupancy schedule
as the input for simulating the building’s electrical energy consumption. However, the
remaining correlation with electricity consumption is influenced by factors unrelated to
occupancy, such as lighting. This illustrates the importance of occupancy rates in increasing
the accuracy of the simulation models.

Figure 12 presents the correlation between heat energy consumption and occupancy
levels in the building. The results show a low correlation of 19%, indicating no significant
link between the number of occupants in the building and heat energy consumption. The
low correlation values support the claim that heat energy consumption can be attributed
to the building operation without considering the number of occupants. This is further
evidenced in the results, which indicate similar energy consumption for different occupancy
rates, such as 1000 and 3000 occupants in the building. Heat energy consumption was
approximately 2000 kWh when there were fewer than 500 occupants and when there were
more than 3000 occupants in the building. Furthermore, the simulation results showed
that including occupancy numbers in the simulation model did not significantly impact the
total heat energy consumption.
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Figure 11. Results of the correlation analysis between the occupancy numbers and simulation results
of electrical energy consumption.

Figure 12. Results of the correlation analysis between the occupancy numbers and the simulation
results of heat energy consumption.

The use of regression analysis was performed to determine the energy consumption
of the identified occupancy patterns in the building. According to the daily number of
occupants in the building, the energy consumption was calculated for every 100 occupants
across different temporal resolutions (early, peak, and late hours) and weekdays (workdays
and weekends). The early hours are from 5:00 to 8:00 a.m., the peak hours are from
10:00 a.m. to 2:00 p.m., and the late hours are from 6:00 to 8:00 p.m. For clarity regarding
the regression results, the lower value of energy consumption indicates a large number
of occupants in the building for a given amount of electrical or heat energy consumption,
which is a favorable situation, unlike when a few occupants consume large amounts of
energy. Figure 13 presents the analysis results for the three patterns of the actual electrical
and heat energy consumption in the URS building.

 

Figure 13. Measuring energy usage (kWh) per 100 occupants using the actual building energy
consumption of electrical and heat energy consumption for the three patterns during different
periods of the day, covering workdays and weekends.
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The energy consumption of electricity per 100 occupants during workdays was signifi-
cantly high during the early and late hours and decreased during peak hours. During the
early hours of workdays, the most significant electrical energy consumption was observed
in Pattern 1, at 59.1 kWh/100 occupants, followed by Pattern 2 and Pattern 3, at 17.42 and
18.01 kWh/100 occupants, respectively. During workdays, peak hours exhibited the lowest
energy consumption, which is understandable given the high number of occupants in the
building during this period, which is associated with the amount of electrical energy con-
sumption. However, the building continued to consume electrical energy during vacation
periods. During weekends, energy consumption related to the number of occupants was
nearly zero, as the analysis was based on the actual occupancy schedule where the building
opened at 9:00 a.m. on Saturdays (Pattern 1 and Pattern 2). In contrast, in Pattern 3, the
building was closed. During peak and later hours, Pattern 3 showed the highest actual
energy consumption, with 2.11 kWh per 100 occupants.

On the other hand, the heat energy consumption by occupants was high during all
hours compared to the electrical energy consumption. The results in Pattern 1 showed high
energy consumption during the early hours on workdays and weekends, at 2059.55 and
7145.84 kWh/100 occupants, respectively. Followed by Pattern 3, the energy consumption
was 133.37 and 117.54 kWh/100 occupants. In Pattern 2, the consumption was the lowest
compared to other patterns at 10.08 and 19.09 kWh/100 occupants during workdays and
weekends, respectively. During peak hours, the building usually hosts a large number
of occupants. Pattern 1 showed the most significant energy consumption at 264 and
4112.26 kWh/100 occupants. The lowest was Pattern 2, with 4.23 kWh during workdays
and 1.55 kWh/100 occupants during weekends. This energy consumption is related to the
large number of occupants during the period of exams. During weekends, high energy
consumption of heat is observed, which is associated with maintaining the building’s
indoor environment requirements. The result presented indicated the importance of the
occupancy data. The availability and sufficiency of the occupancy data (schedules and rates)
can serve as inputs in the building energy simulation model, which can positively influence
the results obtained for energy savings. Therefore, during the design, operation, and
construction phases, the building can benefit more from highly accurate energy simulations,
considering many aspects, such as energy savings.

The sensitivity analysis was conducted to assess the impact of occupancy numbers on
simulation results of electrical and heat energy consumption covering the three identified
patterns during different times of the day (early, peak, and later hours). The one-at-a-time
(OAT) sensitivity analysis method tests the impact of changing one factor of the model
inputs on the model results. The occupancy number was used as input in the simulation
model, which was the factor chosen to be adjusted by increasing and decreasing its value
from −30% to +30%. Figures 14 and 15 show the results of the sensitivity analysis of
electrical and heat energy consumption, respectively, across different times of the day.

 

Figure 14. Sensitivity analysis of changing the occupancy numbers (−30% to 30%) and their impact
on the electrical energy consumption of (a) Pattern 1, (b) Pattern 2, and (c) Pattern 3 during early,
peak, and late hours.



Buildings 2025, 15, 3598 17 of 20

 
Figure 15. Sensitivity analysis of changing the occupancy numbers (−30% to 30%) and their impact
on the heat energy consumption of (a) Pattern 1, (b) Pattern 2, and (c) Pattern 3 during early, peak,
and late hours.

Figure 14 shows the impact of changing occupancy numbers on electrical energy
consumption. The results of the sensitivity analysis show that electrical energy consumption
in all three patterns was positively correlated with fluctuations in occupancy numbers,
which aligned with the findings of the correlation analysis, as shown in Figure 11. Therefore,
it can be concluded that a high correlation exists between the occupancy numbers in the
building and electrical energy consumption, which can be associated with the manual
operation of electricity in the building. Conversely, Figure 15 shows the sensitivity analysis
results of the impact of occupancy numbers on heat energy consumption. There was a
converse correlation with inconsistent rates of change in the occupancy numbers of energy
consumption, which aligned with the findings of the correlation analysis, as shown in
Figure 10. Changes in heat energy consumption were observed as occupancy percentages
varied; however, the percentages differed across different periods in the three patterns.
Such changes can be associated with operating the building and providing thermal comfort,
rather than the number of occupants in the building.

Comparing the results presented in Figures 9–12, the changes in electrical energy
consumption were aligned with the occupancy numbers and were similar across all three
patterns. In contrast, the changes in heat energy consumption can be associated with
maintaining the building’s temperature, thermal mass, and dynamics rather than the
number of occupants.

4. Conclusions
In this paper, the building electricity and heat energy consumption of the URS building

were analyzed at various temporal resolutions, including hourly, daily, weekly, and monthly.
In addition, a building energy simulation model was developed to estimate electricity and
heat energy consumption, thereby measuring the impact of occupancy numbers on building
energy consumption. The process began with determining the occupancy patterns in the
case study of the URS building. The results revealed three patterns associated with different
occupancy densities across various periods, including academic terms and vacation. This
was followed by processing and analyzing the actual one-year energy consumption data
at 30 min intervals. The patterns were subsequently used to match the building’s energy
consumption. The results revealed that the behavior of energy consumption varies across
different academic terms and vacations. In addition, correlation analysis was conducted to
measure the strength of the relationship between the variables, which included occupancy
numbers and energy consumption. The results of the correlation analysis revealed a strong
correlation between the occupancy numbers and electrical energy consumption. In contrast,
there was no correlation between occupancy numbers and heat energy consumption. The
results also aligned with those in the literature, showing a high energy consumption of 61%
for electrical and heat energy consumption out of working hours.
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The results from developing a building energy simulation model (DesignBuilder)
estimate energy consumption and measure the impact of occupancy numbers on the URS
building’s energy consumption. The use of actual inputs, including occupancy schedules
and rates, addressed a gap found in most previous studies. Analyzing the energy simula-
tion outcomes with correlation analysis determined the strength of the relationship between
energy consumption (electrical and heat) and occupancy numbers. The results aligned
with the actual energy consumption analysis: a strong correlation of 71.5% between occu-
pancy levels and electrical energy use, and no correlation with heat energy at 18%. Heat
energy consumption was affected by factors such as maintaining building temperature and
weather-related seasonal changes, regardless of occupancy. Regression analysis was used
to assess the cause-and-effect relationship between occupancy and energy consumption.

Finally, sensitivity analysis was performed to assess the impact of occupancy num-
bers on electrical and heat energy consumption during various periods (early, peak, and
late hours) of a day cycle. The results of the sensitivity analysis were aligned with the
correlation and regression analysis results. Electrical energy consumption correlated with
the increase and decrease of the occupancy numbers, while heat energy consumption did
not. Therefore, the availability of occupancy data during the operational phase can be
helpful in developing an energy simulation model for building operation and in testing the
impact of occupant numbers on the building system at different periods to ensure optimal
energy-saving practices.

Based on this study’s findings, several limitations and significant new research areas
have been identified. The following research directions are recommended; expanding the
scope of this study to explore them in the future is worthwhile. The occupancy data used
in this study covered the entire building. Future work could address this limitation by
enhancing the temporal and spatial resolution of data collection to better track the duration
of occupancy and the specific locations within the building. Additionally, examining
how an occupancy-based control system can help reduce energy consumption. Such
improvements can reveal various occupancy characteristics, such as where occupants
are and how they interact with building systems, which can help develop more accurate
and detailed occupancy prediction models. Additionally, the energy simulation model
developed was based on occupancy data inputs, including schedules and occupancy rates,
as well as attributes of building environmental systems, such as their operational schedules.
However, these schedules, used to operate building services in the model, were predefined
and aligned with information from the Estates and Facilities management department. The
uncertainties related to these predefined schedules could be evaluated in future studies by
monitoring the actual operation status of building services.
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