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Abstract: Biodiversity in human-dominated landscapes is declining, but evidence-based 

conservation targets to guide international policies for such landscapes are lacking. We present a 30 

framework for informing habitat conservation targets based on the enhancement of habitat 

quantity and quality and define thresholds of habitat quantity at which it becomes effective to 

also prioritize habitat quality. We applied this framework to pollinators, an important part of 

agroecosystem biodiversity, by synthesizing 59 studies from 19 countries. Given low habitat 

quality, hoverflies had the lowest threshold at 6% semi-natural habitat cover, followed by 35 

solitary bees (15%), bumble bees (18%), and butterflies (42%). These figures represent 

minimum habitat thresholds in agricultural landscapes, but when habitat quantity is restricted, 

marked increases in quality are required to reach similar outcomes. 
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Main Text: We are currently in a period of rapid biodiversity loss (1), a trend so drastic that 

scientists have raised the alarm of a possible global sixth mass extinction event (2). Species loss 

causes an associated decline in ecosystem functioning (3, 4), which jeopardizes the delivery of 

critical ecosystem services on which humans rely (5, 6). In an effort to slow and reverse this 

decline, conservation targets have been formulated for expanding protected areas, such as the 5 

Global Biodiversity Framework (GBF) target to conserve 30% of land, waters and sea by 2030 

(7). The GBF also recognizes the role of human-dominated landscapes in biodiversity 

conservation, and indicates that restoration should be introduced in 30% of degraded ecosystems 

(7). Conservation in so-called working landscapes (8), namely the agricultural areas that cover 

44% of global habitable land (9), is essential to ensure the provision of services such as food 10 

production, soil retention, and cultural values (6, 10), and thus the sustainability of the 

ecosystems in which we live (8). However, few conservation targets exist for biodiversity within 

working landscapes. Targets to date either remain general approximations (11, 12) or focus 

exclusively on ecosystem service provision (13, 14), which excludes the host of species that are 

not primary service providers (15). To enact biodiversity conservation in working landscapes, 15 

there is therefore an urgent need to determine evidence-based targets for international policy. 

 

Here we present a framework to inform minimum habitat targets based on the response of 

species to changes in habitat quantity and quality, which can directly support conservation 

policies. Currently enacted conservation policies in agricultural landscapes fund local-scale 20 

greening measures that typically either aim to increase habitat quantity, for example by planting 

native hedgerows, or aim to improve habitat quality, for example through the extensification of 

grassland management (16). There is evidence that both strategies can contribute to biodiversity 

conservation (16), but how they interplay to impact species populations at landscape levels is 

unknown. Complex landscapes with greater habitat coverage generally support higher 25 

biodiversity levels in agricultural areas (3), but the need for food production imposes an inherent 

limit on natural habitat area in agricultural landscapes (11). It is therefore also important to invest 

in improving habitat quality, but these two strategies should be applied in such a way that 

maximizes conservation impacts. Assuming greater species abundance with larger habitat area 

(Fig. 1A), the effect of enhancing habitat quality on species abundance will increase with 30 

increasing habitat area (Fig. 1B), leading to a habitat quantity threshold at which it is more 

effective to also enhance habitat quality (Fig. 1C). An effective minimum in terms of habitat area 

conservation can thus be defined as the point at which the marginal benefit for the population 

size of a focal species group from further increasing habitat area is less than that from improving 

habitat quality (Fig. 1C). Investing in habitat area up until this point, and also in habitat quality 35 

improvements after this point, represents an application of conservation policy in agricultural 

landscapes that is most beneficial in terms of outcomes for biodiversity. 

 

We utilize this framework to calculate minimum habitat thresholds for the conservation of 

pollinators, a species group linked to food production that faces multiple threats recognized at 40 

the highest levels of international policymaking (7, 17). Conservation efforts in agricultural areas 

generally positively impact local pollinator densities because of increased floral resource 

availability (18), an aspect of habitat quality that can directly indicate suitability for pollinators 

since they rely on floral resources to complete their life cycles (19). Pollinators have been 

proposed as useful bioindicators of ecosystem health (20) and are already monitored as such to 45 

estimate conservation progress (21), so they are an appropriate group with which to examine 

habitat conservation targets. However, to inform an evidence-based target for such policies that 
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are increasingly aimed at pollinators, we need to know the relative impact of increasing habitat 

quantity or quality for conserving pollinator populations. 

 

To determine a minimum habitat threshold across a wide range of agroecosystems, we 

synthesized 59 datasets representing 24487 sampling events of 178885 individual pollinators in 5 

1250 agricultural landscapes from 19 countries (predominantly US and in Europe, figs. S1-S2; 

tables S1-S2). Pollinators were sampled in various types of natural and semi-natural habitats 

(hereafter semi-natural habitats), but not crop fields, and included four main wild pollinator 

groups in temperate areas: bumble bees, solitary bees, hoverflies, and butterflies. Our systematic 

literature screen (see materials and methods) also identified a small number of datasets from the 10 

tropics (n=3), from which we could analyze bees as a pollinator group. First, we tested the 

effects of habitat quantity and quality on the local densities of pollinators in semi-natural habitats 

using mixed effects models. We focused on pollinator densities (abundance measurements) but 

not species richness because densities can be linearly extrapolated to landscape-level abundances 

in relation to habitat area (22). We used local flower abundance (percentage cover) and richness 15 

as habitat quality indicators, and the amount of semi-natural habitat in the surrounding landscape 

(500 m radius (23–26)) as a habitat quantity indicator. While nesting and oviposition resources 

are also key components of habitat quality for pollinators, we focused on floral resources 

because they are readily measured and are generally the most limiting resource for pollinators 

(27). We controlled for the possible influence of the presence of mass-flowering crops in study 20 

landscapes by including this variable as a covariate, because these crops can alter pollinator 

population dynamics in agroecosystems (28). To examine how these local relationships translate 

to landscape-level abundances (29), we extrapolated modelled pollinator densities to the 

landscape scale by multiplying densities by the area coverage of semi-natural habitat in a 

landscape. Following the method of Fijen et al. (30), we used 20 quantiles representing the range 25 

of habitat quantity and quality measured in our datasets to iteratively vary levels of these 

variables in our predictions. At each quantity-quality combination, we calculated the relative 

gain in landscape-level pollinator abundance from enhancing habitat quantity or quality by one 

quantile step. With these calculations we identified the landscape context in which the marginal 

benefit of increasing habitat quality equals that of increasing habitat quantity, that is, how much 30 

semi-natural habitat should be conserved to support pollinators before also investing in habitat 

quality enhancements. These baseline minimums can be used to guide conservation practice in 

working landscapes.  

 

Minimum habitat thresholds depend on species group 35 

 

We found habitat coverage minimums that ranged from 5.5-42.1% (Fig. 2) depending on species 

group. Hoverflies had the lowest minimum habitat quantity level, at 5.5% semi-natural habitat 

cover, and butterflies the highest, at 42.1% (Figs. 2C-2D). Bumble bees and solitary bees had 

similar minimums, at 17.9% and 15.1%, respectively (Figs. 2A-2B). In the tropics, however, 40 

bees seemed to benefit from greater habitat area, as the minimum habitat coverage for this group 

was 38.1% (Fig. 2E). Our framework suggests that above these thresholds it is more beneficial 

for conservation outcomes to also invest in habitat quality enhancements (Fig. 1C). These 

differences across species groups suggest that there is no one-size-fits-all approach to pollinator 

conservation in agricultural areas, but that reaching minimums of 15-18% semi-natural habitat 45 

cover has greater impact than quality enhancements for both bees and hoverflies in temperate 

regions, the two groups that provide the majority of pollination (and additionally in the case of 

aphidophagous hoverflies, pest control) services to agriculture (31). Butterfly communities might 
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only thrive in more complex landscapes (32–34), indicating the importance of conserving larger 

habitat areas in landscapes where it is feasible to do so, to ensure effective butterfly 

conservation. 

 

These differences in habitat minimums can largely be explained by differences in drivers of local 5 

pollinator densities across species groups. For example, hoverflies had high densities (and in turn 

large total abundances; Fig. 3C; fig. S3C; fig. S5), and comparatively strong relationships with 

floral resource variables (significantly predicted by flower richness, marginally by flower cover; 

Fig. 4B), so the relative gain in landscape-level abundance from enhancing habitat quality 

increased more rapidly than for other species groups (Fig. 2). These high densities in relatively 10 

simple landscapes may be due to a majority of hoverfly individuals, made up by common 

species, utilizing cropland as oviposition sites to meet larval feeding requirements (35). 

Butterflies, on the other hand, were the only group that was significantly positively related to 

semi-natural habitat cover (Fig. 4C), and had low densities (and relatively low total abundances; 

Fig. 3D; fig. S3D; fig. S6). Despite a marginal relationship with flower cover (Fig. 4C), habitat 15 

quantity thus had a strong influence on landscape-level butterfly abundance, resulting in the 

highest minimum habitat cover estimate. While some butterflies, such as Pieris rapae, also can 

oviposit on crops, butterfly larval habitat requirements are often specialized, so butterflies are 

generally very sensitive to landscape simplification (36). This general reliance on surrounding 

habitat could explain the low butterfly densities in simplified agricultural areas (33, 37), and 20 

could be driven by the importance of larger semi-natural habitat elements that act as butterfly 

population sources (37). 

 

Furthermore, bees and hoverflies had comparatively lower habitat thresholds because of weak to 

absent effects of semi-natural habitat cover on local densities (Figs. 4A-4B; marginal effect Fig. 25 

4D; opposing trends Fig. 5D), which challenges the generally held assumption that these groups 

are positively affected by surrounding landscape habitat quantity (38). While these groups have 

been found to respond to landscape resources at a number of scales, landscape effects on local 

densities are typically observed for pollinators within crop fields (3, 38), whereas here we 

examine landscape effects on local densities in semi-natural habitats. This finding suggests that 30 

bee and hoverfly densities in a given patch of semi-natural habitat, and in turn the carrying 

capacity of a habitat, are primarily determined by local habitat parameters (39), such as habitat 

quality. As with hoverflies, bumble bee and tropical bee densities were positively predicted by 

both flower cover and richness (Figs. 5A-5B; Fig. 4D), while solitary bees were only 

significantly related to flower richness (Fig. 4A). These results indicate that habitat quality 35 

enhancements can support bees and hoverflies regardless of surrounding landscape context. 

While our results refer to pollinator densities and not species richness, the strong effects of 

flower richness could be due to the support of a wider diversity of pollinator species (19). Thus, 

our findings also suggest that when enhancing habitat quality, a particular emphasis should be 

placed on increasing the diversity of floral resources available to pollinators (19), rather than 40 

large displays of only a few flower species (40).  

 

The minimum habitat threshold for tropical bees should be interpreted with caution because only 

three studies, representing two countries and five study years, were analyzed for this group. 

While conservation strategies should be context dependent, our results tentatively suggest that in 45 

general relatively large amounts of semi-natural habitat should be conserved to support bees in 

the tropics. This could be due to tropical bee communities being relatively dominated by social 

bees (e.g., Apini and Meliponini), which are typically more sensitive to habitat loss (41). 
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Furthermore, the low number of studies detected for inclusion in our synthesis indicates a great 

need for continued research on pollinators in the tropics, especially considering that these areas 

contain a high proportion of small farms that rely on biodiversity-mediated ecosystem service 

provision (42) and that are crucial to ensuring food security (43). 

 5 

Conservation below, within, and beyond minimum habitat thresholds 

 

Our framework for defining minimum habitat thresholds relies on the dual effects of habitat 

quantity and quality on upscaled landscape-level pollinator abundance. These thresholds assume 

that landscape habitat quality is low (Q1 in Fig. 2), which supports them as absolute minimums 10 

up to which habitat area conservation should be prioritized. With greater habitat quality, similar 

abundances are achieved with lower habitat cover than our minimums (fig. S3). However, our 

findings indicate that with greater habitat quality, the habitat quantity threshold actually 

increases (Fig. 2). This is because the gains from further improving the quality of a habitat that is 

already high in quality are smaller than those attained by increasing the area of high-quality 15 

habitat in the landscape. In other words, increases in habitat quality see diminishing returns in 

landscape-level abundances (Fig. 3). Hence, above our minimum habitat targets, the focus of 

conservation should be on a combination of quantity and quality enhancements. Furthermore, our 

data confirmed that in agricultural landscapes, both semi-natural habitat quality and quantity are 

typically low (44): across the temperate datasets, half of all surveys recorded flower cover and 20 

semi-natural habitat cover in the lowest quarter of the range (Fig. 3). This indicates that our 

framework, which is grounded in the restoration of intensive agricultural landscapes, is a realistic 

conceptualization that can inform conservation targets. The framework can likely be generalized 

to various intensive agricultural contexts for pollinator conservation but also for other species 

groups for which simple habitat indicators can be defined. This prevalence of simple landscapes 25 

also indicates, however, that landscapes with large areas of existing semi-natural habitat should 

be conserved as much as possible, since they are likely important, and rare, harbors of farmland 

biodiversity. 

 

Within our calculations of habitat minimums we assumed an equal feasibility of enhancing 30 

habitat quantity and quality, which does not consider the context-dependent costs or effort to 

increase quantity or quality that inherently influence the relative effectiveness of applying these 

conservation measures. For example, increasing habitat area may in some contexts be relatively 

more costly due to losses in agricultural production. To achieve the same increases in landscape 

pollinator abundances as increasing habitat quantity, habitat quality would have to be greatly 35 

enhanced. For example, if a landscape could only sustain maximum 5% semi-natural habitat 

coverage, the quality of that habitat would have to be improved by increasing flower cover to 

approximately 4.8% and adding approximately 3.8 flower species (assuming equivalent nesting 

resource availability) to reach an equivalent bumble bee community size as supported by 17.9% 

habitat cover (fig. S3). While these numbers may sound meager, this flower cover level is greater 40 

than 82% of all observations across studies, indicating that it is a rather rare occurrence in 

agricultural landscapes. This tradeoff shows that in simple landscapes where increasing 

pollinator habitat may not be an option, efforts to enhance the quality of existing habitat should 

aim to significantly increase flower abundance and diversity.  

 45 

Conservation tools outside of semi-natural habitats also have the potential to support pollinators. 

Our results showed that mass-flowering crop presence elevated bumble bee and solitary bee 

densities (Figs. 5C-5D; Fig. 4A), but not those of other groups (Figs. 4B-D). For bumble bees, 
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however, this effect only occurred in simple landscapes (Fig. 5C), possibly due to the presence of 

sufficient alternative floral resources in complex ones (45). Because we modelled average 

pollinator densities across all surveys in a given landscape regardless of crop flowering period, 

we likely captured an overall effect of mass-flowering crop presence, as opposed to detecting 

specific dilution, concentration, or spillover dynamics (46). However, these patterns are likely 5 

driven by abundant, common species that preferentially visit agricultural crops (15). This general 

effect suggests that mass-flowering crops, although non-permanent resources due to blooming 

periods and crop rotation, can complement the restoration and enhancement of semi-natural 

habitats in supporting part of the bee community in temperate agricultural areas. 

 10 

Finally, while habitat minimums provide useful guidelines, the types of habitats relevant to 

specific local contexts and their configuration should also be considered in conservation. For the 

purposes of estimating pollinator community sizes across landscapes, we assumed equal value of 

different types of semi-natural habitats, as well as equal distribution of pollinators among these 

habitat types. This might overestimate community sizes, leading to especially conservative 15 

estimates of minimum habitat quantity due to more rapid increases in marginal benefits from 

habitat quality. We furthermore modelled pollinator abundances and not richness due to the 

complexities of inferring landscape-scale species diversity from local-scale observations (22), 

which requires a spatiotemporal completeness of survey methodology that is not typical of 

pollinator ecology studies. In reality, we know that different pollinators prefer certain habitat 20 

types, for example due to their foraging, nesting or oviposition requirements (32, 47), and that 

they can move between habitat types depending on their resource needs in space and time (48). 

This means that within the minimum recommendations for semi-natural habitat coverage, 

different types of semi-natural habitat (e.g., woody and herbaceous) should be conserved as 

much as possible (49) to increase nesting resources and the temporal continuity of floral 25 

resources (40, 48). Conserving a variety of habitat types and ensuring connectivity of habitat 

patches has the potential to support a more diverse pollinator community (38, 49), which is 

important for ecosystem functioning and resilience (50). 

 

The minimum habitat thresholds identified in our synthesis can guide the design of conservation 30 

strategies by balancing quantity and quality enhancements for pollinators in working landscapes. 

The application of this framework to specific contexts or other species groups should be further 

informed by local knowledge and conservation priorities, such as species of conservation 

concern and the specific resources they need for viable populations, which is not captured by our 

study. Overall, our findings demonstrate that current policy targets, such as the EU Biodiversity 35 

Strategy for 2030 goal of 10% high-diversity landscape features in agricultural areas (12), and 

the GBF restoration indicator of 10% natural cover in agricultural lands (7), are well below the 

thresholds that would most benefit pollinators. Future conservation policy for working 

landscapes should more strongly emphasize the need to conserve and restore more semi-natural 

habitat areas to achieve biodiversity gains, and should compensate landowners with incentives 40 

for marked improvements in habitat quality in landscapes where increases in habitat area are not 

feasible.  
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Fig. 1. Minimum habitat quantity level for application of conservation measures as defined 

by the relative effectiveness of enhancing habitat quantity or quality. (A) Population size 

increases with increasing habitat quantity (Δa), which causes (B) the effect of habitat quality on 5 

population size (Δb) to increase with increasing habitat quantity (low to high), leading to (C) 

increasing quality:quantity population response ratios (Δb/Δa) with increasing habitat quantity. 

The quantity level at which the population response ratio = 1 can be seen as a minimum quantity 

level after which application of conservation practice should also enhance habitat quality. 

  10 
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Fig. 2. Relationships between the habitat quality to quantity population response ratio and 

the cover of landscape semi-natural habitat (SNH) for landscape-level pollinator 

abundances. (A) bumble bees, (B) solitary bees, (C) hoverflies, (D) butterflies, and (E) tropical 

bees. Ratios < 1 indicate that increasing habitat quantity is most beneficial, while those > 1 5 

indicate that habitat quality should also be prioritized. Minimum values of landscape SNH are 

marked where increasing habitat quality becomes more beneficial than increasing habitat 

quantity, assuming the lowest level of habitat quality (flower cover and richness quantile Q1; at 

Q20 the only option is to increase habitat quantity so it is not shown). 
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Fig. 3. The relative gain in landscape-level pollinator abundances from increasing habitat 

quantity or quality. (A) bumble bees, (B) solitary bees, (C) hoverflies, (D) butterflies, and (E) 

tropical bees. Quantity and quality are expressed across the 20 quantiles of the ranges observed 

in the datasets. Rightward or upward arrows indicate that increasing habitat quantity or quality is 

most beneficial, respectively. Arrow transparency indicates the number of samples that fall 5 

within a given quantity-quality combination (darkest arrows, highest number of samples; lightest 

arrows, no samples). Q1-Q20 indicate quantiles of flower availability (flower cover and 

richness). SNH, semi-natural habitat. 
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Fig. 4. Standardized beta coefficients and 95% confidence intervals for model main effects 

predicting local pollinator densities (log scale). (A) solitary bees, (B) hoverflies, (C) 

butterflies, and (D) tropical bees. See Fig. 5 for bumble bee model main and interaction effects. 5 

Dark confidence intervals do not overlap zero (p < 0.05). MFC, mass-flowering crop presence. 

SNH, semi-natural habitat. For effects visualizations, see figs. S4-S7, and for coefficient 

evaluations see tables S4-S7. 
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Fig. 5. Conditional effects of local and landscape habitat parameters on local bumble bee 

densities. (A) flower cover, (B) flower richness, (C) mass-flowering crop (MFC) presence, and 

D) landscape semi-natural habitat (SNH). Panels (C) and (D) illustrate the significant interaction 

between SNH and MFC presence. Abundances are expressed per 150 m2 and 15 min sampling. 5 

Points represent back-transformed partial residuals. SD, standard deviation. For model 

coefficients, see table S3. 
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Materials and Methods 

Criteria definition 

 

We predefined a list of criteria for the inclusion of datasets based on our research objective, 

which was to synthesize the effects of habitat quantity and quality variables on local pollinator 

densities and landscape pollinator abundances. We defined four main topic-based criteria (Box 1 

“Criteria”) to ensure studies measured wild pollinators and flowers in semi-natural habitats 

within agricultural areas. We focused on bees, hoverflies, and butterflies (including burnet 

moths) because they are best studied in agricultural landscapes due to their contributions to crop 

pollination (31) and their conservation concern (32). We considered all natural and semi-natural 

herbaceous and woody habitats, including extensive grasslands and perennial (older than one 

year) wildflower strips but excluding rotational or otherwise intensively managed areas, as semi-

natural habitats. While nesting and oviposition resources can also be considered habitat quality 

indicators because they are important for pollinator reproduction, we chose to focus on floral 

resources because these are more easily and commonly measured and because resources for 

reproduction are generally captured by the amount of non-productive habitat in a given 

landscape (27). We defined seven specific criteria related to sampling methods and sample size 

for standardization and data quality purposes. We required studies to have sampled pollinators in 

a defined surface area and for a defined time duration to be able to calculate a standardized 

density of pollinators per area and sampling time, which was necessary for upscaling pollinator 

densities to the landscape scale. Butterfly sampling was not required to have a defined sampling 

duration because the standard accepted method in the field for sampling this group (“Pollard 

walks”; (51)) is not timed. We furthermore required studies to have sampled both flower richness 

and flower cover, since we use these variables as habitat quality proxies. We required flower 

cover to be measured quantitatively, such as flower counts or area coverage, so that flower cover 

for all studies could be uniformly calculated in units of percentage cover. Studies had to have 

measured pollinators in different landscapes (i.e., sufficient spatial replication; minimum 500 m 

radius), with at least ten landscapes and 20 total data points (sampling events). This allowed us to 

evaluate the effect of landscape context (% semi-natural habitat cover) and have a base level of 

replication to do so. If datasets met these requirements, we asked data owners to confirm two 

additional criteria. We required site coordinates for calculating surrounding landscape 

characteristics and spatial autocorrelation. We also required that studies covered a minimum 

gradient of 10% in semi-natural habitat cover, that is, that the study sampled a variety of 

landscape contexts, since evaluating the effects of habitat quantity and quality across a range of 

landscape contexts was a primary research objective. 
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*We accepted studies that counted flowers or that measured flower area or percentage cover. We 

only accepted studies using qualitative scales if the scale could be readily and accurately 

translated into percentage cover (e.g., Domin scale; (52)). 

**The study might not have organized its sampling locations into landscapes, but we required 

enough spatial replication to do so. 

 

Literature search and screening 

 

We followed guidelines from the Preferred Reporting Items for Systematic Reviews and Meta-

Analyses (PRISMA) (53) in conducting our literature screening. We utilized two literature 

databases to evaluate published literature, and additionally solicited research networks for 

unpublished datasets. We first created a “naïve” search string based on our four main topic 

criteria. This search string of 19 terms (Box 2 “Search strings”) was expanded to a string of 87 

terms using litsearchr, an R package that performs quasi-automatic search string development for 

systematic reviews (54), according to the approach of Grames et al. (55). We retrieved articles in 

English from Web of Science and Scopus on 19/09/22. We first screened titles and abstracts 

based on our first four criteria. When relevant review or synthesis papers were encountered, we 

retained these (17 in total) for reference “snowballing”, i.e., adding the studies that those papers 

cited and/or synthesized to the overall group of studies for screening. Studies that met our criteria 

at the title and abstract stage were evaluated based on the full text for our seven additional 

criteria. All screening was performed by one author using the online tool CADIMA (56). When a 

study met all of our full-text criteria, we contacted the corresponding author to request the 

Box 1. Criteria 

 Title-abstract screening 

a. Species groups: wild bees, wild bumble bees, hoverflies, or butterflies 

(including burnet moths) 

b. Locations: agricultural landscapes 

c. Habitat types: semi-natural habitats (not crop fields) 

d. Environmental variables: flowers 

 

Full-text screening 

a. Sampling method: defined area (not e.g. pan traps) 

b. Sampling method: defined time per unit area (excl. butterflies) 

c. Environmental variables: floral richness and floral cover at the time of 

pollinator sampling 

d. Sampling method: quantitative* measure of floral cover  

e. Locations: different landscapes (buffer min. 500 m)**  

f. Sample size: at least 10 landscapes 

g. Sample size: at least 20 data points 

 

Additional screening 

a.    Data: coordinate availability 

b.    Locations: range in landscape semi-natural habitat cover > 10% 
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dataset and to evaluate our two additional criteria, which could not always be deduced from the 

text. We additionally gathered eight datasets external to our literature screen that met our criteria. 

The PRISMA flow diagram representing our study screening is presented in fig. S1. 

 

 

 

  

Box 2. Search strings 

“Naïve” search string 

("pollinator*" OR "bee*" OR "bumblebee*" OR "hoverfl*" OR "hover fl*" 

OR "butterfl*") AND ("floral resource*" OR "flower*" OR "forb*") AND 

("landscape*" OR "semi-natural habitat*" OR "natural habitat*") AND ("agricultur*" 

OR "agroeco*" OR "farm*")  

 

Final Scopus search string 

(“floral* visitor*” OR “flower-visit* insect*” OR “flower* visitor*” OR 

“hover* flies” OR “pollin* insect*” OR apida* OR apoidea* OR bee OR bombus* 

OR butterfl* OR hoverfl* OR lasioglossum* OR lepidoptera* OR osmia* OR pollin* 

OR syrphid* OR bumble bee*) AND (“forag* avail*” OR “forag* plant*” OR 

“forag* resourc*” OR “habitat* qualit*” OR “resourc* abund*” OR “resourc* 

avail*” OR “resourc* provis*” OR floral* OR flower* OR forb* OR nectar* OR 

pollen*) AND (“adjac* habitat*” OR “buffer* strip*” OR “field* border*” OR 

“field* boundar*” OR “field* margin*” OR “flower-rich* habitat*” OR “flower* 

field*” OR “flower* patch*” OR “flower* strip*” OR “forag* habitat*” OR “habitat* 

featur*” OR “habitat* patch*” OR “habitat* type*” OR “landscap* element*” OR 

“landscap* featur*” OR “natur* area*” OR “natur* habitat*” OR “non-crop* 

habitat*” OR “pollin* habitat*” OR “suitabl* habitat*” OR “wood* habitat*” OR 

“field* edge” OR “forest* edge” OR grassland* OR hedg* OR pastur* OR “road* 

verg*” OR semi-natur* OR “wildflow* plant*”) AND (“agricultur* area*” OR 

“agricultur* ecosystem*” OR “agricultur* environ*” OR “agricultur* field*” OR 

“agricultur* habitat*” OR “agricultur* manag*” OR “agricultur* practic*” OR 

“agricultur* product*” OR “agricultur* region*” OR “agricultur* site*” OR 

“agricultur* system*” OR “arabl* field*” OR “cultiv* field*” OR “cultiv* land*” OR 

“manag* agricultur*” OR “manag* field*” OR “manag* grassland*” OR “manag* 

landscap*” OR “rural* landscap*” OR agri-environ* OR “agricultur* land*” OR 

agricultur* OR agro-ecosystem* OR agroecosystem* OR “arabl* land*” OR crop* 

OR cultiv* OR farm* OR “adjac* field*”) 

(cont. below) 
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Data preparation 

 

Box 2 (cont.). Search strings 

 Final Web of Science search string (variation in formatting) 
(((TI=(“floral* visitor*” OR “flower-visit* insect*” OR “flower* visitor*” OR “hover* flies” OR 

“pollin* insect*” OR apida* OR apoidea* OR bee OR bombus* OR butterfl* OR hoverfl* OR lasioglossum* OR 

lepidoptera* OR osmia* OR pollin* OR syrphid* OR bumblebee*)) OR (AB= (“floral* visitor*” OR “flower-

visit* insect*” OR “flower* visitor*” OR “hover* flies” OR “pollin* insect*” OR apida* OR apoidea* OR bee 

OR bombus* OR butterfl* OR hoverfl* OR lasioglossum* OR lepidoptera* OR osmia* OR pollin* OR syrphid* 

OR bumblebee*)) OR (AK= (“floral* visitor*” OR “flower-visit* insect*” OR “flower* visitor*” OR “hover* 

flies” OR “pollin* insect*” OR apida* OR apoidea* OR bee OR bombus* OR butterfl* OR hoverfl* OR 

lasioglossum* OR lepidoptera* OR osmia* OR pollin* OR syrphid* OR bumble bee*))) AND ((TI= (“forag* 

avail*” OR “forag* plant*” OR “forag* resourc*” OR “habitat* qualit*” OR “resourc* abund*” OR “resourc* 

avail*” OR “resourc* provis*” OR floral* OR flower* OR forb* OR nectar* OR pollen*)) OR (AB= (“forag* 

avail*” OR “forag* plant*” OR “forag* resourc*” OR “habitat* qualit*” OR “resourc* abund*” OR “resourc* 

avail*” OR “resourc* provis*” OR floral* OR flower* OR forb* OR nectar* OR pollen*)) OR (AK= (“forag* 

avail*” OR “forag* plant*” OR “forag* resourc*” OR “habitat* qualit*” OR “resourc* abund*” OR “resourc* 

avail*” OR “resourc* provis*” OR floral* OR flower* OR forb* OR nectar* OR pollen*))) AND ((TI= (“adjac* 

habitat*” OR “buffer* strip*” OR “field* border*” OR “field* boundar*” OR “field* margin*” OR “flower-rich* 

habitat*” OR “flower* field*” OR “flower* patch*” OR “flower* strip*” OR “forag* habitat*” OR “habitat* 

featur*” OR “habitat* patch*” OR “habitat* type*” OR “landscap* element*” OR “landscap* featur*” OR “natur* 

area*” OR “natur* habitat*” OR “non-crop* habitat*” OR “pollin* habitat*” OR “suitabl* habitat*” OR “wood* 

habitat*” OR “field* edge” OR “forest* edge” OR grassland* OR hedg* OR pastur* OR “road* verg*” OR semi-

natur* OR “wildflow* plant*”)) OR (AB= (“adjac* habitat*” OR “buffer* strip*” OR “field* border*” OR “field* 

boundar*” OR “field* margin*” OR “flower-rich* habitat*” OR “flower* field*” OR “flower* patch*” OR 

“flower* strip*” OR “forag* habitat*” OR “habitat* featur*” OR “habitat* patch*” OR “habitat* type*” OR 

“landscap* element*” OR “landscap* featur*” OR “natur* area*” OR “natur* habitat*” OR “non-crop* habitat*” 

OR “pollin* habitat*” OR “suitabl* habitat*” OR “wood* habitat*” OR “field* edge” OR “forest* edge” OR 

grassland* OR hedg* OR pastur* OR “road* verg*” OR semi-natur* OR “wildflow* plant*”)) OR (AK= (“adjac* 

habitat*” OR “buffer* strip*” OR “field* border*” OR “field* boundar*” OR “field* margin*” OR “flower-rich* 

habitat*” OR “flower* field*” OR “flower* patch*” OR “flower* strip*” OR “forag* habitat*” OR “habitat* 

featur*” OR “habitat* patch*” OR “habitat* type*” OR “landscap* element*” OR “landscap* featur*” OR “natur* 

area*” OR “natur* habitat*” OR “non-crop* habitat*” OR “pollin* habitat*” OR “suitabl* habitat*” OR “wood* 

habitat*” OR “field* edge” OR “forest* edge” OR grassland* OR hedg* OR pastur* OR “road* verg*” OR semi-

natur* OR “wildflow* plant*”))) AND ((TI= (“agricultur* area*” OR “agricultur* ecosystem*” OR “agricultur* 

environ*” OR “agricultur* field*” OR “agricultur* habitat*” OR “agricultur* manag*” OR “agricultur* practic*” 

OR “agricultur* product*” OR “agricultur* region*” OR “agricultur* site*” OR “agricultur* system*” OR “arabl* 

field*” OR “cultiv* field*” OR “cultiv* land*” OR “manag* agricultur*” OR “manag* field*” OR “manag* 

grassland*” OR “manag* landscap*” OR “rural* landscap*” OR agri-environ* OR “agricultur* land*” OR 

agricultur* OR agro-ecosystem* OR agroecosystem* OR “arabl* land*” OR crop* OR cultiv* OR farm* OR 

“adjac* field*”)) OR (AB= (“agricultur* area*” OR “agricultur* ecosystem*” OR “agricultur* environ*” OR 

“agricultur* field*” OR “agricultur* habitat*” OR “agricultur* manag*” OR “agricultur* practic*” OR 

“agricultur* product*” OR “agricultur* region*” OR “agricultur* site*” OR “agricultur* system*” OR “arabl* 

field*” OR “cultiv* field*” OR “cultiv* land*” OR “manag* agricultur*” OR “manag* field*” OR “manag* 

grassland*” OR “manag* landscap*” OR “rural* landscap*” OR agri-environ* OR “agricultur* land*” OR 

agricultur* OR agro-ecosystem* OR agroecosystem* OR “arabl* land*” OR crop* OR cultiv* OR farm* OR 

“adjac* field*”)) OR (AK= (“agricultur* area*” OR “agricultur* ecosystem*” OR “agricultur* environ*” OR 

“agricultur* field*” OR “agricultur* habitat*” OR “agricultur* manag*” OR “agricultur* practic*” OR 

“agricultur* product*” OR “agricultur* region*” OR “agricultur* site*” OR “agricultur* system*” OR “arabl* 

field*” OR “cultiv* field*” OR “cultiv* land*” OR “manag* agricultur*” OR “manag* field*” OR “manag* 

grassland*” OR “manag* landscap*” OR “rural* landscap*” OR agri-environ* OR “agricultur* land*” OR 

agricultur* OR agro-ecosystem* OR agroecosystem* OR “arabl* land*” OR crop* OR cultiv* OR farm* OR 

“adjac* field*”))) 
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We extracted data on three local-scale and two landscape-scale variables from each dataset. The 

three local-scale variables were pollinator (bumble bee, solitary bee, hoverfly, butterfly) 

densities, flower cover, and flower richness. We separated bumble bees and solitary bees due to 

their differences in life history and different geographic distributions (57). While Halictidae do 

exhibit social behaviors (58), here we separate truly eusocial bees (Bombus) from other bees and 

for simplicity refer to all non-Bombus bees in temperate regions as solitary. We separately 

analyzed datasets from the tropics, and we had enough data to include bees from tropical regions 

as a pollinator group, but not enough data for other species groups. In the tropics social bees 

(e.g., wild Apis spp.) can make up a majority of the bee community (57), so these were combined 

with other wild bees. Apis mellifera counts were excluded from all datasets because they were 

always managed, and our study focused on the conservation of wild pollinators. The landscape-

scale variables were the percentage cover of semi-natural habitat and the presence of a blooming 

mass-flowering crop in the surrounding landscape (500 m radius) during the sampling period. 

 

Local variables 

 

Pollinator densities and floral resources (flower cover and richness of plants in bloom) were first 

calculated on the lowest sampling unit per study (e.g., quadrat or transect). If flower data were 

provided as counts, the flower area was calculated according to the methods of Scheper et al. (59) 

by multiplying the number of flowers per species (in some cases approximate, if flowers were 

recorded in umbels, heads, or stems) by an average flower area based on direct measurements 

and key botanical resources (60–69) and summing the area across species to yield total flower 

area. This area was divided by the sampling area to result in percentage flower cover. When 

flowers were sub-sampled (e.g., in sub-quadrats) within the sampling area, flower cover was first 

calculated per sub-sample and then averaged across sub-samples, while flower richness was 

calculated as the total number of unique species across sub-samples. To combine studies into one 

model, data were aggregated to the lowest nesting level across studies, which was landscapes 

within studies. This allowed us to model general relationships between habitat variables and 

pollinator densities regardless of differences across studies in sampling periods or number of 

surveys. We furthermore aggregated data across sampled habitat types to generalize these 

aforementioned relationships, which themselves capture inherent quality differences among 

habitats. Floral resource variables were averaged across samples within landscapes. Bee and 

hoverfly densities were standardized per landscape according to the following equation: 

 

𝐷 =
∑ 𝑃𝑖
𝑛
𝑖=1

√
∑ 𝐴𝑖
𝑛
𝑖=1 × ∑ 𝑇𝑖

𝑛
𝑖=1

150 × 15

 

 

with D being the average pollinator density per 150 m2 and 15 min sampling effort, Pi being the 

abundance of pollinators recorded in a sample within a landscape, and Ai and Ti being the area 

and time surveyed per sample within a landscape, in m2 and min, respectively. We chose to 

standardize to densities per 150 m2 and 15 min because these were the median survey efforts 

used for bees and hoverflies. For butterflies, the equation was slightly different, because surveys 

were not necessarily timed. In addition, the median survey area was larger (300 m2), so we 

divided the sum of butterflies by the sum of area surveyed over 300, per landscape. If a study had 
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≥ 50% of landscapes with zero pollinators recorded for a given species group, we excluded that 

species group from the study for data quality purposes. 

 

Landscape composition 

 

While landscape composition can be represented by several variables, we chose total pollinator 

habitat quantity as a landscape habitat indicator so that we could model pollinator density 

responses to landscape habitat availability and to extrapolate local densities to landscape 

abundances (see subsection Analysis). We calculated the % semi-natural habitat in a 500 m 

radius surrounding the center of each study landscape. We chose this radius because it captured a 

landscape habitat resources scale relevant to all pollinator groups included in our study (23–26), 

in particular because it represents the upper end of average foraging distances for the central-

place foraging pollinators in our study (23). For studies that did not have sampling locations 

already grouped into landscapes, individual sampling sites were manually assigned to groups to 

create landscapes of minimum 500 m radius (i.e., minimum 1 km apart). The center of a 

landscape was defined as the geodesic centroid between grouped sampling locations, when 

applicable. Using these points, the semi-natural habitat cover was calculated in a 500 m buffer 

based on available land use/land cover GIS data relevant to the study area and period (70–87) 

using the sf (88) and raster (89) R packages. Semi-natural habitat was defined as forests 

(plantations were not distinguishable), shrublands, heath, (semi-)natural grasslands, wetlands, 

and (semi-)natural vegetation elements within the agricultural matrix. The only exception to this 

was Study G (table S1), for which we only included the habitat type in which sampling occurred 

(grasslands), because otherwise nearly the entire study area was estimated to be semi-natural 

habitat by the available data source (87) due to the high classification of tree cover. If no GIS 

data were available, or if zeroes were produced due to the coarseness of GIS data layers, we 

either a) used the semi-natural habitat cover in a 500 m radius provided by the dataset, b) 

estimated road verge semi-natural habitat cover, often the only remnant pollinator habitat in 

nearly cleared agricultural landscapes (90), by applying a 1 m buffer around roads in the study 

landscapes (70, 91–94), or c) estimated semi-natural habitat cover manually by tracing habitat 

patches using satellite images in GoogleEarth. We furthermore estimated the presence or absence 

of a blooming mass-flowering crop (Yes/No) in study landscapes (at any point in the study 

period, since samples were averaged within landscapes) based on available cropland GIS layers 

(95–101) and information provided by the data owners.  

 

Analysis 

 

All statistical analyses were conducted in R version 4.1.2 (102). We constructed linear mixed 

models using glmmTMB (103) for the four separate pollinator groups (bumble bees, solitary 

bees, hoverflies, and butterflies) from temperate regions, and an additional model for bees from 

tropical regions. These models tested the effects of local and landscape variables on the local 

densities of pollinators in semi-natural habitats. The log10(+1)-transformed densities of 

pollinators were used as response variables, and flower richness, flower cover, % semi-natural 

habitat, and blooming mass-flowering crop presence were predictor variables. We included an 

interaction between blooming mass-flowering crop presence and % semi-natural habitat to test if 

the effect of crop floral resources on pollinator densities depended on the amount of alternative 

habitat available in the landscape (and therefore alternative floral resources). We did not include 
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an interaction between flower variables and % semi-natural habitat (habitat quality and habitat 

quantity interaction) since here these variables represent effects on the local scale only. While a 

plausible interaction, it did not represent our research objective, which was to explore the 

combined effects of habitat quantity and quality on pollinator abundance at the landscape scale 

instead (see below). We did however check that we were not missing this interaction (see 

below). We furthermore included the average survey area and average survey minutes per 

landscape as covariates to control for the effect of actual survey effort on our calculated 

densities. Because they were right-skewed, average survey area, average survey minutes, flower 

cover, and flower richness were all log-transformed to improve the linearity of the modelled 

relationship. All continuous predictor variables were standardized (i.e., z-scores) across all 

studies to aid model convergence and to compare effect sizes. We additionally added weights to 

each datapoint using the number of observations per landscape (on which the standardized 

pollinator densities were based) to control for variation in sample sizes, and therefore robustness 

of the relationships, both within and across studies. 

 

Following the methods of Dainese et al. (3), we used study-year combinations as the highest 

hierarchical unit because the majority of studies (n=40) only had one year of data collection and 

studies with multiple years often varied site locations across years. Furthermore, interannual 

variability in pollinator abundances (104) can allow different years of data collection within the 

same study to be regarded separately. Study-year was thus fit as a random intercept to capture 

differences between studies, and random slopes were fit for each study-year for both of the floral 

resource variables. This allowed us to control for differences among studies in flower abundance 

sampling methods and in the total area of the flower survey, which would influence floral 

richness. We did not include a random slope for semi-natural habitat cover because it was 

calculated uniformly for all datasets, and because we aimed to model the effect of this variable 

across its entire range instead of only within the ranges in each individual study. Because random 

slopes caused model convergence issues in the tropical bees model (due to the small number of 

studies), we instead centered floral resource variables within studies before standardizing across 

studies, which approximates within-study relationships between floral resources and pollinator 

density (105). However, this prevents floral resource variables from being expressed on an 

absolute scale in landscape-scale extrapolations (see below). Due to the presence of spatial 

autocorrelation in the four temperate region models, which was evaluated with the DHARMa 

package (106) and by comparing semivariograms to expected semivariances (107), we included a 

Matern correlation structure using the spatial coordinates of each study landscape. We inspected 

residual plots to evaluate model assumptions, and we confirmed that all variance inflation factors 

were below 4 (108) using the performance package (109). Partial residual plots were inspected 

using the effects package (110) to ensure the linearity of relationships and the absence of 

unmodelled interactions (111). We used log-likelihood ratio tests to evaluate model fixed effects 

and dropped the interaction term from the model if it was not significant.  

 

Since mass-flowering crop presence was not necessarily a within-study factor for every study 

(i.e., some studies had all landscapes with mass-flowering crops, or all landscapes without), we 

checked the robustness of our results for this fixed effect by repeating our models with only the 

subset of studies that had mass-flowering crop presence as a within-study factor. This check 

revealed that effects for this factor were consistent (Table S8). 
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As a secondary analysis step, we extrapolated pollinator densities to the landscape scale to 

evaluate the relative impact of improving habitat quantity or quality in different landscape 

contexts. Following the method of Fijen et al. (30), we separated both habitat quantity (% 

landscape semi-natural habitat) and habitat quality (both floral resource variables) into 20 

quantiles (i.e., steps representing 5% of the range) along the entire range observed in the 

included studies. For the tropics model, this was a relative range for the floral resource variables, 

since we centered these variables within studies and thus the values were not comparable across 

studies. We then created a matrix made up of predicted pollinator densities based on our models 

at each of the combinations between the 20 quantity and quality quantiles, while holding crop 

flowering and sampling effort constant (mass-flowering crop = no; area surveyed = 150 m2 [or, 

for butterflies, 300 m2]; time surveyed = 15 min). For the bumble bee model, which had a 

significant interaction between mass-flowering crop flowering and landscape semi-natural 

habitat (figure 4D; table S3), we predicted at an “average” level of mass-flowering crop 

flowering to more accurately model the effect of habitat quantity (112). Next we extrapolated 

these pollinator densities to the landscape scale by multiplying the (back-transformed) density 

per m2 (predicted density / 150 or 300) by the coverage in m2 of semi-natural habitat in the 

landscape (% semi-natural habitat of the given quantile / 100 * π * 5002) (29, 45), assuming a 

linear abundance-area relationship (22). Using these results we calculated the quality:quantity 

population response ratio by dividing the population increase with one quantile increase in 

habitat quality by the population increase with one quantile increase in habitat quantity for each 

quality-quantity combination in the matrix. This ratio assumes equal feasibility of enhancing 

either quality or quantity by one quantile. We defined the habitat quantity level at which the ratio 

= 1 for the lowest quality quantile as the minimum recommended landscape habitat coverage for 

application of habitat conservation measures for pollinator community size. All plots were 

constructed using the ggplot2 (113), viridis (114), ggeffects (112), and gridExtra (115) packages. 
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Fig. S1. 

PRISMA flow diagram of study selection. T/A = Title / abstract. The total tally of included 

studies does not align with the total tally of reports (published articles) because some datasets are 

reported in multiple publications, and some publications report on multiple datasets. 
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Fig. S2. 

Countries from which datasets were collected. 
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Fig. S3. 

The relative gain in landscape-level pollinator abundances from increasing habitat quantity and 

quality. (A) bumble bees, (B) solitary bees, (C) hoverflies, (D) butterflies, and (E) tropical bees. 

Quantity and quality are expressed across the 20 quantiles of the ranges observed in the datasets. 

Matrix values represent back-transformed predicted abundances, rounded to the nearest integer. 

Q1-Q20 indicate quantiles of flower availability (flower cover and richness). SNH, semi-natural 

habitat.  
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Fig. S4. 

Conditional effects of local and landscape habitat parameters on local solitary bee densities. (A) 

flower cover, (B) flower richness, (C) mass-flowering crop (MFC) presence, and (D) landscape 

semi-natural habitat (SNH). Abundances are expressed per 150 m2 and 15 min sampling. Points 

represent back-transformed partial residuals. SD, standard deviation. For model coefficients, see 

table S4. 
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Fig. S5. 

Conditional effects of local and landscape habitat parameters on local hoverfly densities. (A) 

flower cover, (B) flower richness, (C) mass-flowering crop (MFC) presence, and (D) landscape 

semi-natural habitat (SNH). Abundances are expressed per 150 m2 and 15 min sampling. Points 

represent back-transformed partial residuals. SD, standard deviation. For model coefficients, see 

table S5.  
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Fig. S6. 

Conditional effects of local and landscape habitat parameters on local butterfly densities. (A) 

flower cover, (B) flower richness, (C) mass-flowering crop (MFC) presence, and (D) landscape 

semi-natural habitat (SNH). Abundances are expressed per 300 m2. Points represent back-

transformed partial residuals. SD, standard deviation. For model coefficients, see table S6.  
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Fig. S7. 

Conditional effects of local and landscape habitat parameters on local tropical bee densities. (A) 

flower cover, (B) flower richness, (C) mass-flowering crop (MFC) presence, and (D) landscape 

semi-natural habitat (SNH). Abundances are expressed per 150 m2 and 15 min sampling. Points 

represent back-transformed partial residuals. SD, standard deviation. For model coefficients, see 

table S7.  



 

 

23 

 

Table S1. 

Studies included in the synthesis. Landscapes are counted within year, and samples within 

landscapes. 

 
Study Country Bumble

bees 

Solitary 

bees 

Hoverflies Butterflies Tropical 

bees 

Sampling effort Habitat 

type 

N 

Years 

N 

Landscapes 

N 

Samples 

Publication 

m2 min 

A UK    X  Various NA Various 1 95 4173 Unpublished 

B Spain X X X   200 30 Forest 1 16 112 (116)** 

C India     X 9 90 Various 1 20 60 (117) 

D Germany X X X   400 10 Field 

margins 

1 30 630 (118) 

E Germany X X X   250 5 Various 1 30 540 (119) 

F Sweden X     50 20 Various 1 17 152 (120) 

G Costa Rica     X 400 15 Grasslands 3 49 95 (121, 122) 

H USA X X    200 60 Various 1 12 71 (123) 

I UK    X  400 NA Riparian 

margins 

2 19 366 (124) 

J UK    X  400 NA Various 2 31 343 (125) 

K USA X X X X  10000 60 Grasslands 3 30 98 (126, 127) 

L France X X X   150 15 Various 1 25 206 (128)** 

M Sweden X  X X  150 15 Various 1 12 72 (129) 

N Netherlands X X X X  150 15 Various 1 16 131 Unpublished 

O Italy X X X   150 15 Various 1 26 587 (130, 131) 

P Netherlands X X X X  450† 45 Various 1 41 165 (19)** 

Q Germany X X X   2 15 Grasslands 1 17 459 (132) 

R Poland X     31416 60 Various 1 32 32 (133) 

S UK X     31416 60 Various 1 41 46 (134) 

T Germany X X X   200 240 Wildflower 

strips 

1 14 28 (135) 

U Portugal  X    150 15 Various 1 29 79 Unpublished 

V Germany X X    100 15 Grasslands 1 32 32 (136) 

W Germany X X    Various 15 Field 

margins 

1 27 198 (137) 

X Germany X X    100 45 Grasslands 1 23 115 (138) 

Y Germany X X X   Various Grasslands 1 27 192 (35, 139) 

Z Norway X     200 5 Various 2 52 3676 (140) 

AA Netherlands X X X   20 10 Various 2 40 606 (29) 

AB Romania X X X X  300 20 Various 1 28 217 (141) 

AC Germany X X X   
Various 

Wildflower 

strips 

1 19 37 (142) 

AD Germany X X X X  1800 360 Grasslands 1 28 143 (143) 

AE Israel  X    800 60 Various 2 30 30 (144)** 

AF India     X 100 10 Various 1 12 117 (145) 

AG Argentina  X X X  Various 240 Road 

verges 

2 40 40 (146) 

AH USA  X X   1 4 Various 1 16 455 (147) 

AI Spain  X X   10 5 Field 

margins 

1 17 340 (148) 

AJ Sweden X     100 10 Various 1 12 363 (149) 

AK UK X  X X  100 10 Road 

verges 

1 19 285 (90) 

AL Germany X     100 10 Various 1 11 20 (150) 

AM Ireland    X  200 NA Hedges 1 20 120 (151) 

AN USA X X    40 5 Various 1 12 964 (152)*** 

AO Sweden X X X X  100 10 Various 1 20 235 (153) 

AP Netherlands X X X X  250 25 Various 1 10 40 (154) 

AQ USA  X    40 5 Grasslands 2 35 48 (155) 

AR Ireland    X  Various NA Grasslands 1 25 150 (156, 157) 

AS Spain  X X   150 15 Various 2 30 226 (28, 158) 

AT UK X X X   150 15 Various 3 47 550 (28, 59, 

159) 

AU Sweden X X X   150 15 Various 2 32 635 (28, 59, 

159) 

AV Serbia X X X   150 15 Various 2 31 218 (28) 

AW Netherlands X X X   150 15 Various 3 50 799 (28, 59) 

AX Germany X X X   150 15 Various 2 32 666 (28, 59, 

159) 

AY Switzerland X X X X  150 20 Various 2 34 552 (47) 

AZ Netherlands    X  1000 NA Grasslands 1 11 64 (160) 

BA UK X  X   200 30 Grasslands 1 18 71 (161) 

BB UK   X   200 10 Forest 1 10 22 (162) 

BC Germany X X X X  1 5 Various 3 43 2340 (163, 164) 
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BD Germany X X X X  1800 360 Grasslands 1 70 160 (165) 

BE USA  X    10000 60 Wildflower 

strips 

1 11 33 (166) 

BF UK    X  Various NA Grasslands 2 31 654 (167) 

BG USA X X    Various Various 3 56 320 (168) 

**Unpublished at the time of literature screen.  

***Not gathered from literature screen. 

†For bees and hoverflies only. Butterfly surveys varied in area and were untimed. 
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Table S2. 

Sample sizes per species group. Landscapes are counted within study-year, and samples are 

sampling events within landscapes. 
 

Species group Studies Study-years Landscapes Samples 

Bumble bees 37 55 1107 16675 

Solitary bees 37 58 1124 13294 

Hoverflies 31 47 885 11156 

Butterflies 19 29 613 9994 

Tropical bees 3 5 81 272 
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Table S3. 

Bumble bee model terms evaluated by log-likelihood ratio tests. SNH = semi-natural habitat; 

MFC = mass-flowering crop. The “no” level of MFC Bloom is captured in the intercept, 

meaning that the coefficients for landscape SNH and MFC Bloom here are representative of the 

“yes” level, as well as the slope of the interaction between landscape SNH and MFC Bloom. The 

single terms of landscape SNH and MFC Bloom are not evaluated with log-likelihood ratio tests 

because the interaction term is retained in the model. Coefficients are represented on the log 

scale. 

 

Variable Coefficient SE Chisq P 

Flower cover 0.062 0.028 4.683 0.030 

Flower richness 0.060 0.027 4.726 0.030 

Landscape SNH 0.075 0.012 - - 

MFC Bloom 0.235 0.018 - - 

SNH:MFC 

Bloom 

-0.122 0.016 58.839 <0.001 
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Table S4. 

Solitary bee model terms evaluated by log-likelihood ratio tests. SNH = semi-natural habitat; 

MFC = mass-flowering crop. The “no” level of MFC Bloom is captured in the intercept, 

meaning that the coefficient for MFC Bloom here is representative of the “yes” level. The 

interaction term is not included in the final model. Coefficients are represented on the log scale. 

 

Variable Coefficient SE Chisq P 

Flower cover 0.047 0.033 2.014 0.156 

Flower richness 0.100 0.023 16.186 <0.001 

Landscape SNH -0.002 0.009 0.046 0.830 

MFC Bloom 0.196 0.016 158.043 <0.001 

SNH:MFC 

Bloom 

- - 0.869 0.351 

 

  



 

 

28 

 

Table S5. 

Hoverfly model terms evaluated by log-likelihood ratio tests. SNH = semi-natural habitat; MFC 

= mass-flowering crop. The “no” level of MFC Bloom is captured in the intercept, meaning that 

the coefficient for MFC Bloom here is representative of the “yes” level. The interaction term is 

not included in the final model. Coefficients are represented on the log scale. 

 

Variable Coefficient SE Chisq P 

Flower cover 0.082 0.045 3.257 0.071 

Flower richness 0.175 0.033 22.235 <0.001 

Landscape SNH -0.004 0.011 0.132 0.716 

MFC Bloom -0.013 0.019 0.470 0.493 

SNH:MFC 

Bloom 

- - 0.374 0.541 
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Table S6. 

Butterfly model terms evaluated by log-likelihood ratio tests. SNH = semi-natural habitat; MFC 

= mass-flowering crop. The “no” level of MFC Bloom is captured in the intercept, meaning that 

the coefficient for MFC Bloom here is representative of the “yes” level. The interaction term is 

not included in the final model. Coefficients are represented on the log scale. 

 

Variable Coefficient SE Chisq P 

Flower cover 0.092 0.047 3.570 0.059 

Flower richness 0.030 0.068 0.195 0.659 

Landscape SNH 0.030 0.013 5.230 0.022 

MFC Bloom -0.022 0.037 0.338 0.561 

SNH:MFC 

Bloom 

- - 0.062 0.803 

 

  



 

 

30 

 

Table S7. 

Tropical bee model terms evaluated by log-likelihood ratio tests. SNH = semi-natural habitat; 

MFC = mass-flowering crop. The “no” level of MFC Bloom is captured in the intercept, 

meaning that the coefficient for MFC Bloom here is representative of the “yes” level. The 

interaction term is not included in the final model. Coefficients are represented on the log scale. 

 

Variable Coefficient SE Chisq P 

Flower cover 0.039 0.015 7.029 0.008 

Flower richness 0.143 0.017 59.749 <0.001 

Landscape SNH 0.037 0.022 2.888 0.089 

MFC Bloom 0.011 0.030 0.131 0.718 

SNH:MFC 

Bloom 

- - 0.109 0.741 
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Table S8. 

The effect of mass-flowering crop (MFC) presence evaluated by log-likelihood ratio tests on 

models with a subset of the datasets that had this variable as a within-study factor. SNH = semi-

natural habitat. 

 

Model SNH:MFC Bloom MFC Bloom 

Chisq P Chisq P 

Bumble bees 109.694 <0.001 - - 

Solitary bees 0.293 0.588 379.260 <0.001 

Hoverflies 2.431 0.119 0.270 0.604 

Butterflies 0.306 0.580 0.360 0.549 

Tropical bees 0.288 0.592 0.448 0.503 

 

 


