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Abstract: Biodiversity in human-dominated landscapes is declining, but evidence-based
conservation targets to guide international policies for such landscapes are lacking. We present a
framework for informing habitat conservation targets based on the enhancement of habitat
quantity and quality and define thresholds of habitat quantity at which it becomes effective to
also prioritize habitat quality. We applied this framework to pollinators, an important part of
agroecosystem biodiversity, by synthesizing 59 studies from 19 countries. Given low habitat
quality, hoverflies had the lowest threshold at 6% semi-natural habitat cover, followed by
solitary bees (15%), bumble bees (18%), and butterflies (42%). These figures represent
minimum habitat thresholds in agricultural landscapes, but when habitat quantity is restricted,
marked increases in quality are required to reach similar outcomes.
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Main Text: We are currently in a period of rapid biodiversity loss (1), a trend so drastic that
scientists have raised the alarm of a possible global sixth mass extinction event (2). Species loss
causes an associated decline in ecosystem functioning (3, 4), which jeopardizes the delivery of
critical ecosystem services on which humans rely (5, 6). In an effort to slow and reverse this
decline, conservation targets have been formulated for expanding protected areas, such as the
Global Biodiversity Framework (GBF) target to conserve 30% of land, waters and sea by 2030
(7). The GBF also recognizes the role of human-dominated landscapes in biodiversity
conservation, and indicates that restoration should be introduced in 30% of degraded ecosystems
(7). Conservation in so-called working landscapes (8), namely the agricultural areas that cover
44% of global habitable land (9), is essential to ensure the provision of services such as food
production, soil retention, and cultural values (6, 10), and thus the sustainability of the
ecosystems in which we live (8). However, few conservation targets exist for biodiversity within
working landscapes. Targets to date either remain general approximations (11, 12) or focus
exclusively on ecosystem service provision (13, 14), which excludes the host of species that are
not primary service providers (15). To enact biodiversity conservation in working landscapes,
there is therefore an urgent need to determine evidence-based targets for international policy.

Here we present a framework to inform minimum habitat targets based on the response of
species to changes in habitat quantity and quality, which can directly support conservation
policies. Currently enacted conservation policies in agricultural landscapes fund local-scale
greening measures that typically either aim to increase habitat quantity, for example by planting
native hedgerows, or aim to improve habitat quality, for example through the extensification of
grassland management (16). There is evidence that both strategies can contribute to biodiversity
conservation (16), but how they interplay to impact species populations at landscape levels is
unknown. Complex landscapes with greater habitat coverage generally support higher
biodiversity levels in agricultural areas (3), but the need for food production imposes an inherent
limit on natural habitat area in agricultural landscapes (11). It is therefore also important to invest
in improving habitat quality, but these two strategies should be applied in such a way that
maximizes conservation impacts. Assuming greater species abundance with larger habitat area
(Fig. 1A), the effect of enhancing habitat quality on species abundance will increase with
increasing habitat area (Fig. 1B), leading to a habitat quantity threshold at which it is more
effective to also enhance habitat quality (Fig. 1C). An effective minimum in terms of habitat area
conservation can thus be defined as the point at which the marginal benefit for the population
size of a focal species group from further increasing habitat area is less than that from improving
habitat quality (Fig. 1C). Investing in habitat area up until this point, and also in habitat quality
improvements after this point, represents an application of conservation policy in agricultural
landscapes that is most beneficial in terms of outcomes for biodiversity.

We utilize this framework to calculate minimum habitat thresholds for the conservation of
pollinators, a species group linked to food production that faces multiple threats recognized at
the highest levels of international policymaking (7, 17). Conservation efforts in agricultural areas
generally positively impact local pollinator densities because of increased floral resource
availability (18), an aspect of habitat quality that can directly indicate suitability for pollinators
since they rely on floral resources to complete their life cycles (19). Pollinators have been
proposed as useful bioindicators of ecosystem health (20) and are already monitored as such to
estimate conservation progress (21), so they are an appropriate group with which to examine
habitat conservation targets. However, to inform an evidence-based target for such policies that
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are increasingly aimed at pollinators, we need to know the relative impact of increasing habitat
quantity or quality for conserving pollinator populations.

To determine a minimum habitat threshold across a wide range of agroecosystems, we
synthesized 59 datasets representing 24487 sampling events of 178885 individual pollinators in
1250 agricultural landscapes from 19 countries (predominantly US and in Europe, figs. S1-S2;
tables S1-S2). Pollinators were sampled in various types of natural and semi-natural habitats
(hereafter semi-natural habitats), but not crop fields, and included four main wild pollinator
groups in temperate areas: bumble bees, solitary bees, hoverflies, and butterflies. Our systematic
literature screen (see materials and methods) also identified a small number of datasets from the
tropics (n=3), from which we could analyze bees as a pollinator group. First, we tested the
effects of habitat quantity and quality on the local densities of pollinators in semi-natural habitats
using mixed effects models. We focused on pollinator densities (abundance measurements) but
not species richness because densities can be linearly extrapolated to landscape-level abundances
in relation to habitat area (22). We used local flower abundance (percentage cover) and richness
as habitat quality indicators, and the amount of semi-natural habitat in the surrounding landscape
(500 m radius (23-26)) as a habitat quantity indicator. While nesting and oviposition resources
are also key components of habitat quality for pollinators, we focused on floral resources
because they are readily measured and are generally the most limiting resource for pollinators
(27). We controlled for the possible influence of the presence of mass-flowering crops in study
landscapes by including this variable as a covariate, because these crops can alter pollinator
population dynamics in agroecosystems (28). To examine how these local relationships translate
to landscape-level abundances (29), we extrapolated modelled pollinator densities to the
landscape scale by multiplying densities by the area coverage of semi-natural habitat in a
landscape. Following the method of Fijen et al. (30), we used 20 quantiles representing the range
of habitat quantity and quality measured in our datasets to iteratively vary levels of these
variables in our predictions. At each quantity-quality combination, we calculated the relative
gain in landscape-level pollinator abundance from enhancing habitat quantity or quality by one
quantile step. With these calculations we identified the landscape context in which the marginal
benefit of increasing habitat quality equals that of increasing habitat quantity, that is, how much
semi-natural habitat should be conserved to support pollinators before also investing in habitat
quality enhancements. These baseline minimums can be used to guide conservation practice in
working landscapes.

Minimum habitat thresholds depend on species group

We found habitat coverage minimums that ranged from 5.5-42.1% (Fig. 2) depending on species
group. Hoverflies had the lowest minimum habitat quantity level, at 5.5% semi-natural habitat
cover, and butterflies the highest, at 42.1% (Figs. 2C-2D). Bumble bees and solitary bees had
similar minimums, at 17.9% and 15.1%, respectively (Figs. 2A-2B). In the tropics, however,
bees seemed to benefit from greater habitat area, as the minimum habitat coverage for this group
was 38.1% (Fig. 2E). Our framework suggests that above these thresholds it is more beneficial
for conservation outcomes to also invest in habitat quality enhancements (Fig. 1C). These
differences across species groups suggest that there is no one-size-fits-all approach to pollinator
conservation in agricultural areas, but that reaching minimums of 15-18% semi-natural habitat
cover has greater impact than quality enhancements for both bees and hoverflies in temperate
regions, the two groups that provide the majority of pollination (and additionally in the case of
aphidophagous hoverflies, pest control) services to agriculture (31). Butterfly communities might
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only thrive in more complex landscapes (32—34), indicating the importance of conserving larger
habitat areas in landscapes where it is feasible to do so, to ensure effective butterfly
conservation.

These differences in habitat minimums can largely be explained by differences in drivers of local
pollinator densities across species groups. For example, hoverflies had high densities (and in turn
large total abundances; Fig. 3C; fig. S3C; fig. S5), and comparatively strong relationships with
floral resource variables (significantly predicted by flower richness, marginally by flower cover;
Fig. 4B), so the relative gain in landscape-level abundance from enhancing habitat quality
increased more rapidly than for other species groups (Fig. 2). These high densities in relatively
simple landscapes may be due to a majority of hoverfly individuals, made up by common
species, utilizing cropland as oviposition sites to meet larval feeding requirements (35).
Butterflies, on the other hand, were the only group that was significantly positively related to
semi-natural habitat cover (Fig. 4C), and had low densities (and relatively low total abundances;
Fig. 3D; fig. S3D; fig. S6). Despite a marginal relationship with flower cover (Fig. 4C), habitat
quantity thus had a strong influence on landscape-level butterfly abundance, resulting in the
highest minimum habitat cover estimate. While some butterflies, such as Pieris rapae, also can
oviposit on crops, butterfly larval habitat requirements are often specialized, so butterflies are
generally very sensitive to landscape simplification (36). This general reliance on surrounding
habitat could explain the low butterfly densities in simplified agricultural areas (33, 37), and
could be driven by the importance of larger semi-natural habitat elements that act as butterfly
population sources (37).

Furthermore, bees and hoverflies had comparatively lower habitat thresholds because of weak to
absent effects of semi-natural habitat cover on local densities (Figs. 4A-4B; marginal effect Fig.
4D; opposing trends Fig. 5D), which challenges the generally held assumption that these groups
are positively affected by surrounding landscape habitat quantity (38). While these groups have
been found to respond to landscape resources at a number of scales, landscape effects on local
densities are typically observed for pollinators within crop fields (3, 38), whereas here we
examine landscape effects on local densities in semi-natural habitats. This finding suggests that
bee and hoverfly densities in a given patch of semi-natural habitat, and in turn the carrying
capacity of a habitat, are primarily determined by local habitat parameters (39), such as habitat
quality. As with hoverflies, bumble bee and tropical bee densities were positively predicted by
both flower cover and richness (Figs. 5A-5B; Fig. 4D), while solitary bees were only
significantly related to flower richness (Fig. 4A). These results indicate that habitat quality
enhancements can support bees and hoverflies regardless of surrounding landscape context.
While our results refer to pollinator densities and not species richness, the strong effects of
flower richness could be due to the support of a wider diversity of pollinator species (19). Thus,
our findings also suggest that when enhancing habitat quality, a particular emphasis should be
placed on increasing the diversity of floral resources available to pollinators (19), rather than
large displays of only a few flower species (40).

The minimum habitat threshold for tropical bees should be interpreted with caution because only
three studies, representing two countries and five study years, were analyzed for this group.
While conservation strategies should be context dependent, our results tentatively suggest that in
general relatively large amounts of semi-natural habitat should be conserved to support bees in
the tropics. This could be due to tropical bee communities being relatively dominated by social
bees (e.g., Apini and Meliponini), which are typically more sensitive to habitat loss (41).
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Furthermore, the low number of studies detected for inclusion in our synthesis indicates a great
need for continued research on pollinators in the tropics, especially considering that these areas
contain a high proportion of small farms that rely on biodiversity-mediated ecosystem service
provision (42) and that are crucial to ensuring food security (43).

Conservation below, within, and beyond minimum habitat thresholds

Our framework for defining minimum habitat thresholds relies on the dual effects of habitat
quantity and quality on upscaled landscape-level pollinator abundance. These thresholds assume
that landscape habitat quality is low (Q1 in Fig. 2), which supports them as absolute minimums
up to which habitat area conservation should be prioritized. With greater habitat quality, similar
abundances are achieved with lower habitat cover than our minimums (fig. S3). However, our
findings indicate that with greater habitat quality, the habitat quantity threshold actually
increases (Fig. 2). This is because the gains from further improving the quality of a habitat that is
already high in quality are smaller than those attained by increasing the area of high-quality
habitat in the landscape. In other words, increases in habitat quality see diminishing returns in
landscape-level abundances (Fig. 3). Hence, above our minimum habitat targets, the focus of
conservation should be on a combination of quantity and quality enhancements. Furthermore, our
data confirmed that in agricultural landscapes, both semi-natural habitat quality and quantity are
typically low (44): across the temperate datasets, half of all surveys recorded flower cover and
semi-natural habitat cover in the lowest quarter of the range (Fig. 3). This indicates that our
framework, which is grounded in the restoration of intensive agricultural landscapes, is a realistic
conceptualization that can inform conservation targets. The framework can likely be generalized
to various intensive agricultural contexts for pollinator conservation but also for other species
groups for which simple habitat indicators can be defined. This prevalence of simple landscapes
also indicates, however, that landscapes with large areas of existing semi-natural habitat should
be conserved as much as possible, since they are likely important, and rare, harbors of farmland
biodiversity.

Within our calculations of habitat minimums we assumed an equal feasibility of enhancing
habitat quantity and quality, which does not consider the context-dependent costs or effort to
increase quantity or quality that inherently influence the relative effectiveness of applying these
conservation measures. For example, increasing habitat area may in some contexts be relatively
more costly due to losses in agricultural production. To achieve the same increases in landscape
pollinator abundances as increasing habitat quantity, habitat quality would have to be greatly
enhanced. For example, if a landscape could only sustain maximum 5% semi-natural habitat
coverage, the quality of that habitat would have to be improved by increasing flower cover to
approximately 4.8% and adding approximately 3.8 flower species (assuming equivalent nesting
resource availability) to reach an equivalent bumble bee community size as supported by 17.9%
habitat cover (fig. S3). While these numbers may sound meager, this flower cover level is greater
than 82% of all observations across studies, indicating that it is a rather rare occurrence in
agricultural landscapes. This tradeoff shows that in simple landscapes where increasing
pollinator habitat may not be an option, efforts to enhance the quality of existing habitat should
aim to significantly increase flower abundance and diversity.

Conservation tools outside of semi-natural habitats also have the potential to support pollinators.
Our results showed that mass-flowering crop presence elevated bumble bee and solitary bee
densities (Figs. 5C-5D; Fig. 4A), but not those of other groups (Figs. 4B-D). For bumble bees,
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however, this effect only occurred in simple landscapes (Fig. 5C), possibly due to the presence of
sufficient alternative floral resources in complex ones (45). Because we modelled average
pollinator densities across all surveys in a given landscape regardless of crop flowering period,
we likely captured an overall effect of mass-flowering crop presence, as opposed to detecting
specific dilution, concentration, or spillover dynamics (46). However, these patterns are likely
driven by abundant, common species that preferentially visit agricultural crops (15). This general
effect suggests that mass-flowering crops, although non-permanent resources due to blooming
periods and crop rotation, can complement the restoration and enhancement of semi-natural
habitats in supporting part of the bee community in temperate agricultural areas.

Finally, while habitat minimums provide useful guidelines, the types of habitats relevant to
specific local contexts and their configuration should also be considered in conservation. For the
purposes of estimating pollinator community sizes across landscapes, we assumed equal value of
different types of semi-natural habitats, as well as equal distribution of pollinators among these
habitat types. This might overestimate community sizes, leading to especially conservative
estimates of minimum habitat quantity due to more rapid increases in marginal benefits from
habitat quality. We furthermore modelled pollinator abundances and not richness due to the
complexities of inferring landscape-scale species diversity from local-scale observations (22),
which requires a spatiotemporal completeness of survey methodology that is not typical of
pollinator ecology studies. In reality, we know that different pollinators prefer certain habitat
types, for example due to their foraging, nesting or oviposition requirements (32, 47), and that
they can move between habitat types depending on their resource needs in space and time (48).
This means that within the minimum recommendations for semi-natural habitat coverage,
different types of semi-natural habitat (e.g., woody and herbaceous) should be conserved as
much as possible (49) to increase nesting resources and the temporal continuity of floral
resources (40, 48). Conserving a variety of habitat types and ensuring connectivity of habitat
patches has the potential to support a more diverse pollinator community (38, 49), which is
important for ecosystem functioning and resilience (50).

The minimum habitat thresholds identified in our synthesis can guide the design of conservation
strategies by balancing quantity and quality enhancements for pollinators in working landscapes.
The application of this framework to specific contexts or other species groups should be further
informed by local knowledge and conservation priorities, such as species of conservation
concern and the specific resources they need for viable populations, which is not captured by our
study. Overall, our findings demonstrate that current policy targets, such as the EU Biodiversity
Strategy for 2030 goal of 10% high-diversity landscape features in agricultural areas (12), and
the GBF restoration indicator of 10% natural cover in agricultural lands (7), are well below the
thresholds that would most benefit pollinators. Future conservation policy for working
landscapes should more strongly emphasize the need to conserve and restore more semi-natural
habitat areas to achieve biodiversity gains, and should compensate landowners with incentives
for marked improvements in habitat quality in landscapes where increases in habitat area are not
feasible.
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Fig. 1. Minimum habitat quantity level for application of conservation measures as defined
by the relative effectiveness of enhancing habitat quantity or quality. (A) Population size
increases with increasing habitat quantity (Aa), which causes (B) the effect of habitat quality on
population size (Ab) to increase with increasing habitat quantity (low to high), leading to (C)
increasing quality:quantity population response ratios (Ab/Aa) with increasing habitat quantity.
The quantity level at which the population response ratio = 1 can be seen as a minimum quantity
level after which application of conservation practice should also enhance habitat quality.
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Fig. 2. Relationships between the habitat quality to quantity population response ratio and
the cover of landscape semi-natural habitat (SNH) for landscape-level pollinator
abundances. (A) bumble bees, (B) solitary bees, (C) hoverflies, (D) butterflies, and (E) tropical
bees. Ratios < 1 indicate that increasing habitat quantity is most beneficial, while those > 1
indicate that habitat quality should also be prioritized. Minimum values of landscape SNH are
marked where increasing habitat quality becomes more beneficial than increasing habitat
quantity, assuming the lowest level of habitat quality (flower cover and richness quantile Q1; at
Q20 the only option is to increase habitat quantity so it is not shown).
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Fig. 3. The relative gain in landscape-level pollinator abundances from increasing habitat
guantity or quality. (A) bumble bees, (B) solitary bees, (C) hoverflies, (D) butterflies, and (E)
tropical bees. Quantity and quality are expressed across the 20 quantiles of the ranges observed
in the datasets. Rightward or upward arrows indicate that increasing habitat quantity or quality is
most beneficial, respectively. Arrow transparency indicates the number of samples that fall
within a given quantity-quality combination (darkest arrows, highest number of samples; lightest
arrows, no samples). Q1-Q20 indicate quantiles of flower availability (flower cover and
richness). SNH, semi-natural habitat.
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Fig. 4. Standardized beta coefficients and 95% confidence intervals for model main effects
predicting local pollinator densities (log scale). (A) solitary bees, (B) hoverflies, (C)
butterflies, and (D) tropical bees. See Fig. 5 for bumble bee model main and interaction effects.
Dark confidence intervals do not overlap zero (p < 0.05). MFC, mass-flowering crop presence.
SNH, semi-natural habitat. For effects visualizations, see figs. S4-S7, and for coefficient
evaluations see tables S4-S7.
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Fig. 5. Conditional effects of local and landscape habitat parameters on local bumble bee
densities. (A) flower cover, (B) flower richness, (C) mass-flowering crop (MFC) presence, and
D) landscape semi-natural habitat (SNH). Panels (C) and (D) illustrate the significant interaction
between SNH and MFC presence. Abundances are expressed per 150 m? and 15 min sampling.
Points represent back-transformed partial residuals. SD, standard deviation. For model
coefficients, see table S3.
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Materials and Methods
Criteria definition

We predefined a list of criteria for the inclusion of datasets based on our research objective,
which was to synthesize the effects of habitat quantity and quality variables on local pollinator
densities and landscape pollinator abundances. We defined four main topic-based criteria (Box 1
“Criteria”) to ensure studies measured wild pollinators and flowers in semi-natural habitats
within agricultural areas. We focused on bees, hoverflies, and butterflies (including burnet
moths) because they are best studied in agricultural landscapes due to their contributions to crop
pollination (31) and their conservation concern (32). We considered all natural and semi-natural
herbaceous and woody habitats, including extensive grasslands and perennial (older than one
year) wildflower strips but excluding rotational or otherwise intensively managed areas, as semi-
natural habitats. While nesting and oviposition resources can also be considered habitat quality
indicators because they are important for pollinator reproduction, we chose to focus on floral
resources because these are more easily and commonly measured and because resources for
reproduction are generally captured by the amount of hon-productive habitat in a given
landscape (27). We defined seven specific criteria related to sampling methods and sample size
for standardization and data quality purposes. We required studies to have sampled pollinators in
a defined surface area and for a defined time duration to be able to calculate a standardized
density of pollinators per area and sampling time, which was necessary for upscaling pollinator
densities to the landscape scale. Butterfly sampling was not required to have a defined sampling
duration because the standard accepted method in the field for sampling this group (“Pollard
walks”; (51)) is not timed. We furthermore required studies to have sampled both flower richness
and flower cover, since we use these variables as habitat quality proxies. We required flower
cover to be measured quantitatively, such as flower counts or area coverage, so that flower cover
for all studies could be uniformly calculated in units of percentage cover. Studies had to have
measured pollinators in different landscapes (i.e., sufficient spatial replication; minimum 500 m
radius), with at least ten landscapes and 20 total data points (sampling events). This allowed us to
evaluate the effect of landscape context (% semi-natural habitat cover) and have a base level of
replication to do so. If datasets met these requirements, we asked data owners to confirm two
additional criteria. We required site coordinates for calculating surrounding landscape
characteristics and spatial autocorrelation. We also required that studies covered a minimum
gradient of 10% in semi-natural habitat cover, that is, that the study sampled a variety of
landscape contexts, since evaluating the effects of habitat quantity and quality across a range of
landscape contexts was a primary research objective.



Box 1. Criteria
Title-abstract screening
a. Species groups: wild bees, wild bumble bees, hoverflies, or butterflies
(including burnet moths)
b. Locations: agricultural landscapes
c. Habitat types: semi-natural habitats (not crop fields)
d. Environmental variables: flowers

Full-text screening
a. Sampling method: defined area (not e.g. pan traps)
b. Sampling method: defined time per unit area (excl. butterflies)
c. Environmental variables: floral richness and floral cover at the time of
pollinator sampling
Sampling method: quantitative* measure of floral cover
Locations: different landscapes (buffer min. 500 m)**
Sample size: at least 10 landscapes
Sample size: at least 20 data points

«Q o o

Additional screening
a. Data: coordinate availability
b. Locations: range in landscape semi-natural habitat cover > 10%

*We accepted studies that counted flowers or that measured flower area or percentage cover. We
only accepted studies using qualitative scales if the scale could be readily and accurately
translated into percentage cover (e.g., Domin scale; (52)).

**The study might not have organized its sampling locations into landscapes, but we required
enough spatial replication to do so.

Literature search and screening

We followed guidelines from the Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) (53) in conducting our literature screening. We utilized two literature
databases to evaluate published literature, and additionally solicited research networks for
unpublished datasets. We first created a “naive” search string based on our four main topic
criteria. This search string of 19 terms (Box 2 “Search strings”) was expanded to a string of 87
terms using litsearchr, an R package that performs quasi-automatic search string development for
systematic reviews (54), according to the approach of Grames et al. (55). We retrieved articles in
English from Web of Science and Scopus on 19/09/22. We first screened titles and abstracts
based on our first four criteria. When relevant review or synthesis papers were encountered, we
retained these (17 in total) for reference “snowballing”, i.e., adding the studies that those papers
cited and/or synthesized to the overall group of studies for screening. Studies that met our criteria
at the title and abstract stage were evaluated based on the full text for our seven additional
criteria. All screening was performed by one author using the online tool CADIMA (56). When a
study met all of our full-text criteria, we contacted the corresponding author to request the



dataset and to evaluate our two additional criteria, which could not always be deduced from the
text. We additionally gathered eight datasets external to our literature screen that met our criteria.
The PRISMA flow diagram representing our study screening is presented in fig. S1.

Box 2. Search strings
“Naive” search string
("pollinator*" OR "bee*" OR "bumblebee*" OR "hoverfl*" OR "hover fI*"
OR "butterfl*") AND (“"floral resource*" OR "flower*" OR "forb*") AND
("landscape*" OR "semi-natural habitat*" OR "natural habitat*") AND ("agricultur*"
OR "agroeco*" OR "farm*")

Final Scopus search string
(“floral* visitor®” OR “flower-visit* insect*” OR “flower™* visitor*” OR

“hover* flies” OR “pollin* insect*”” OR apida* OR apoidea* OR bee OR bombus*
OR butterfl* OR hoverfl* OR lasioglossum* OR lepidoptera* OR osmia* OR pollin*
OR syrphid* OR bumble bee*) AND (“forag* avail*” OR “forag* plant*” OR
“forag™ resourc*” OR “habitat* qualit*” OR “resourc* abund*” OR “resourc*
avail*” OR “resourc* provis*” OR floral* OR flower* OR forb* OR nectar* OR
pollen*) AND (“adjac* habitat*” OR “buffer* strip*” OR “field* border*” OR
“field* boundar*” OR “field* margin*” OR “flower-rich* habitat*” OR “flower*
field*” OR “flower* patch*” OR “flower* strip*”” OR “forag® habitat*” OR “habitat*
featur*” OR “habitat* patch*” OR “habitat* type*” OR “landscap* element*” OR
“landscap* featur®*” OR “natur® area*” OR “natur® habitat*” OR “non-crop*
habitat*” OR “pollin* habitat*” OR “suitabl* habitat*”” OR “wood* habitat*”” OR
“field* edge” OR “forest™* edge” OR grassland* OR hedg* OR pastur®* OR “road*
verg®” OR semi-natur®* OR “wildflow* plant*”) AND (“agricultur® area*” OR
“agricultur® ecosystem™®” OR “agricultur* environ*” OR “agricultur* field*” OR
“agricultur® habitat®” OR “agricultur® manag*” OR “agricultur® practic*” OR
“agricultur® product®” OR “agricultur* region*” OR “agricultur* site*” OR
“agricultur® system®” OR “arabl* field*” OR “cultiv* field*” OR “cultiv* land*” OR
“manag™ agricultur®” OR “manag* field*” OR “manag* grassland*”” OR “manag*
landscap*” OR “rural* landscap*” OR agri-environ* OR “agricultur* land*” OR
agricultur* OR agro-ecosystem* OR agroecosystem* OR “arabl* land*”” OR crop*
OR cultiv* OR farm* OR “adjac* field*”)

(cont. below)




Box 2 (cont.). Search strings

Final Web of Science search string (variation in formatting)

(((TT=(“floral* visitor*” OR “flower-visit* insect*” OR “flower* visitor*” OR “hover* flies” OR
“pollin* insect*”” OR apida* OR apoidea* OR bee OR bombus* OR butterfl* OR hoverfl* OR lasioglossum* OR
lepidoptera* OR osmia* OR pollin* OR syrphid* OR bumblebee*)) OR (AB= (“floral* visitor*” OR “flower-
visit* insect*” OR “flower* visitor*”” OR “hover* flies” OR “pollin* insect*” OR apida* OR apoidea* OR bee
OR bombus* OR butterfl* OR hoverfl* OR lasioglossum* OR lepidoptera* OR osmia* OR pollin* OR syrphid*
OR bumblebee*)) OR (AK= (“floral* visitor*” OR “flower-visit* insect*”” OR “flower* visitor*”” OR “hover*
flies” OR “pollin* insect*” OR apida* OR apoidea* OR bee OR bombus* OR butterfl* OR hoverfl* OR
lasioglossum* OR lepidoptera* OR osmia* OR pollin* OR syrphid* OR bumble bee*))) AND ((TI= (“forag*
avail*” OR “forag* plant*” OR “forag* resourc*” OR “habitat* qualit*” OR “resourc* abund*” OR “resourc*
avail*” OR “resourc* provis*” OR floral* OR flower* OR forb* OR nectar* OR pollen*)) OR (AB= (“forag*
avail*” OR “forag* plant*” OR “forag™* resourc*” OR “habitat* qualit*” OR “resourc* abund*” OR “resourc*
avail*” OR “resourc* provis*” OR floral* OR flower* OR forb* OR nectar* OR pollen*)) OR (AK= (“forag*
avail*” OR “forag* plant*” OR “forag™* resourc*” OR “habitat* qualit*”’ OR “resourc* abund*” OR “resourc*
avail*” OR “resourc* provis*” OR floral* OR flower* OR forb* OR nectar* OR pollen*))) AND ((TI= (“adjac*
habitat*” OR “buffer* strip*” OR “field* border*”” OR “field* boundar*” OR “field* margin*” OR “flower-rich*
habitat*”” OR “flower* field*” OR “flower* patch*” OR “flower* strip*”” OR “forag* habitat*”” OR “habitat*
featur®” OR “habitat* patch*” OR “habitat* type*”” OR “landscap* element*” OR “landscap* featur*”” OR “natur*
area*” OR “natur* habitat*” OR “non-crop* habitat*” OR “pollin* habitat*” OR “suitabl* habitat*” OR “wood*
habitat*”” OR “field* edge” OR “forest* edge” OR grassland* OR hedg* OR pastur* OR “road* verg*” OR semi-
natur®* OR “wildflow* plant*”’)) OR (AB= (“adjac* habitat*” OR “buffer* strip*” OR “field* border*” OR “field*
boundar*” OR “field* margin*” OR “flower-rich* habitat*”” OR “flower* field*” OR “flower* patch*” OR
“flower* strip*” OR “forag* habitat*” OR “habitat* featur*” OR “habitat* patch*”” OR “habitat* type*” OR
“landscap* element™*” OR “landscap* featur*” OR “natur® area*” OR “natur® habitat*” OR “non-crop* habitat*”
OR “pollin* habitat*”” OR “suitabl* habitat*”” OR “wood* habitat*”” OR “field* edge” OR “forest* edge” OR
grassland* OR hedg* OR pastur®* OR “road* verg*” OR semi-natur* OR “wildflow* plant*”’)) OR (AK= (“adjac*
habitat*” OR “buffer* strip*” OR “field* border*”” OR “field* boundar*” OR “field* margin*” OR “flower-rich*
habitat*” OR “flower* field*” OR “flower* patch*” OR “flower* strip*” OR “forag* habitat*” OR “habitat*
featur*” OR “habitat* patch*”” OR “habitat* type*” OR “landscap* element*”” OR “landscap* featur*” OR “natur*
area*” OR “natur* habitat*”” OR “non-crop* habitat*”” OR “pollin* habitat*” OR “suitabl* habitat*” OR “wood*
habitat*”” OR “field* edge” OR “forest* edge” OR grassland* OR hedg* OR pastur* OR “road* verg*” OR semi-
natur® OR “wildflow* plant*”))) AND ((TI= (“agricultur® area*” OR “agricultur* ecosystem™” OR “agricultur*
environ®™” OR “agricultur* field*” OR “agricultur* habitat*” OR “agricultur* manag*” OR “agricultur* practic*”
OR “agricultur* product®*”’ OR “agricultur* region™” OR “agricultur* site*”” OR “agricultur* system®” OR “arabl*
field*” OR “cultiv* field*” OR “cultiv* land*” OR “manag* agricultur®*” OR “manag* field*”” OR “manag*
grassland*” OR “manag™* landscap*” OR “rural* landscap*” OR agri-environ* OR “agricultur* land*”” OR
agricultur* OR agro-ecosystem* OR agroecosystem* OR ““arabl* land*” OR crop* OR cultiv* OR farm* OR
“adjac* field*”)) OR (AB= (“agricultur* area*” OR “agricultur* ecosystem*” OR “agricultur* environ*” OR
“agricultur* field*” OR “agricultur* habitat*” OR “agricultur* manag*” OR “agricultur* practic*” OR
“agricultur* product*” OR “agricultur* region*” OR “agricultur* site*” OR “agricultur* system*” OR “arabl*
field*” OR “cultiv* field*” OR “cultiv* land*” OR “manag* agricultur*” OR “manag* field*” OR “manag*
grassland*” OR “manag™* landscap*” OR “rural* landscap*” OR agri-environ* OR “agricultur* land*”” OR
agricultur* OR agro-ecosystem* OR agroecosystem* OR “arabl* land*” OR crop* OR cultiv* OR farm* OR
“adjac* field*”)) OR (AK= (“agricultur* area*” OR “agricultur® ecosystem*” OR “agricultur* environ*” OR
“agricultur* field*” OR “agricultur* habitat*” OR “agricultur* manag*” OR “agricultur* practic*” OR
“agricultur* product*” OR “agricultur* region*” OR “agricultur* site*”” OR “agricultur* system*” OR “arabl*
field*” OR “cultiv* field*” OR “cultiv* land*” OR “manag* agricultur*” OR “manag* field*” OR “manag*
grassland*” OR “manag* landscap*” OR “rural* landscap*” OR agri-environ* OR “agricultur* land*” OR
agricultur* OR agro-ecosystem* OR agroecosystem* OR “arabl* land*” OR crop* OR cultiv* OR farm* OR
“adjac* field*”)))

Data preparation




We extracted data on three local-scale and two landscape-scale variables from each dataset. The
three local-scale variables were pollinator (bumble bee, solitary bee, hoverfly, butterfly)
densities, flower cover, and flower richness. We separated bumble bees and solitary bees due to
their differences in life history and different geographic distributions (57). While Halictidae do
exhibit social behaviors (58), here we separate truly eusocial bees (Bombus) from other bees and
for simplicity refer to all non-Bombus bees in temperate regions as solitary. We separately
analyzed datasets from the tropics, and we had enough data to include bees from tropical regions
as a pollinator group, but not enough data for other species groups. In the tropics social bees
(e.g., wild Apis spp.) can make up a majority of the bee community (57), so these were combined
with other wild bees. Apis mellifera counts were excluded from all datasets because they were
always managed, and our study focused on the conservation of wild pollinators. The landscape-
scale variables were the percentage cover of semi-natural habitat and the presence of a blooming
mass-flowering crop in the surrounding landscape (500 m radius) during the sampling period.

Local variables

Pollinator densities and floral resources (flower cover and richness of plants in bloom) were first
calculated on the lowest sampling unit per study (e.g., quadrat or transect). If flower data were
provided as counts, the flower area was calculated according to the methods of Scheper et al. (59)
by multiplying the number of flowers per species (in some cases approximate, if flowers were
recorded in umbels, heads, or stems) by an average flower area based on direct measurements
and key botanical resources (60-69) and summing the area across species to yield total flower
area. This area was divided by the sampling area to result in percentage flower cover. When
flowers were sub-sampled (e.g., in sub-quadrats) within the sampling area, flower cover was first
calculated per sub-sample and then averaged across sub-samples, while flower richness was
calculated as the total number of unique species across sub-samples. To combine studies into one
model, data were aggregated to the lowest nesting level across studies, which was landscapes
within studies. This allowed us to model general relationships between habitat variables and
pollinator densities regardless of differences across studies in sampling periods or number of
surveys. We furthermore aggregated data across sampled habitat types to generalize these
aforementioned relationships, which themselves capture inherent quality differences among
habitats. Floral resource variables were averaged across samples within landscapes. Bee and
hoverfly densities were standardized per landscape according to the following equation:
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with D being the average pollinator density per 150 m? and 15 min sampling effort, P; being the
abundance of pollinators recorded in a sample within a landscape, and Ai and Ti being the area
and time surveyed per sample within a landscape, in m? and min, respectively. We chose to
standardize to densities per 150 m? and 15 min because these were the median survey efforts
used for bees and hoverflies. For butterflies, the equation was slightly different, because surveys
were not necessarily timed. In addition, the median survey area was larger (300 m?), so we
divided the sum of butterflies by the sum of area surveyed over 300, per landscape. If a study had



> 50% of landscapes with zero pollinators recorded for a given species group, we excluded that
species group from the study for data quality purposes.

Landscape composition

While landscape composition can be represented by several variables, we chose total pollinator
habitat quantity as a landscape habitat indicator so that we could model pollinator density
responses to landscape habitat availability and to extrapolate local densities to landscape
abundances (see subsection Analysis). We calculated the % semi-natural habitat in a 500 m
radius surrounding the center of each study landscape. We chose this radius because it captured a
landscape habitat resources scale relevant to all pollinator groups included in our study (23-26),
in particular because it represents the upper end of average foraging distances for the central-
place foraging pollinators in our study (23). For studies that did not have sampling locations
already grouped into landscapes, individual sampling sites were manually assigned to groups to
create landscapes of minimum 500 m radius (i.e., minimum 1 km apart). The center of a
landscape was defined as the geodesic centroid between grouped sampling locations, when
applicable. Using these points, the semi-natural habitat cover was calculated in a 500 m buffer
based on available land use/land cover GIS data relevant to the study area and period (70-87)
using the sf (88) and raster (89) R packages. Semi-natural habitat was defined as forests
(plantations were not distinguishable), shrublands, heath, (semi-)natural grasslands, wetlands,
and (semi-)natural vegetation elements within the agricultural matrix. The only exception to this
was Study G (table S1), for which we only included the habitat type in which sampling occurred
(grasslands), because otherwise nearly the entire study area was estimated to be semi-natural
habitat by the available data source (87) due to the high classification of tree cover. If no GIS
data were available, or if zeroes were produced due to the coarseness of GIS data layers, we
either a) used the semi-natural habitat cover in a 500 m radius provided by the dataset, b)
estimated road verge semi-natural habitat cover, often the only remnant pollinator habitat in
nearly cleared agricultural landscapes (90), by applying a 1 m buffer around roads in the study
landscapes (70, 91-94), or ¢) estimated semi-natural habitat cover manually by tracing habitat
patches using satellite images in GoogleEarth. We furthermore estimated the presence or absence
of a blooming mass-flowering crop (Yes/No) in study landscapes (at any point in the study
period, since samples were averaged within landscapes) based on available cropland GIS layers
(95-101) and information provided by the data owners.

Analysis

All statistical analyses were conducted in R version 4.1.2 (102). We constructed linear mixed
models using gImmTMB (103) for the four separate pollinator groups (bumble bees, solitary
bees, hoverflies, and butterflies) from temperate regions, and an additional model for bees from
tropical regions. These models tested the effects of local and landscape variables on the local
densities of pollinators in semi-natural habitats. The logio(+1)-transformed densities of
pollinators were used as response variables, and flower richness, flower cover, % semi-natural
habitat, and blooming mass-flowering crop presence were predictor variables. We included an
interaction between blooming mass-flowering crop presence and % semi-natural habitat to test if
the effect of crop floral resources on pollinator densities depended on the amount of alternative
habitat available in the landscape (and therefore alternative floral resources). We did not include



an interaction between flower variables and % semi-natural habitat (habitat quality and habitat
quantity interaction) since here these variables represent effects on the local scale only. While a
plausible interaction, it did not represent our research objective, which was to explore the
combined effects of habitat quantity and quality on pollinator abundance at the landscape scale
instead (see below). We did however check that we were not missing this interaction (see
below). We furthermore included the average survey area and average survey minutes per
landscape as covariates to control for the effect of actual survey effort on our calculated
densities. Because they were right-skewed, average survey area, average survey minutes, flower
cover, and flower richness were all log-transformed to improve the linearity of the modelled
relationship. All continuous predictor variables were standardized (i.e., z-scores) across all
studies to aid model convergence and to compare effect sizes. We additionally added weights to
each datapoint using the number of observations per landscape (on which the standardized
pollinator densities were based) to control for variation in sample sizes, and therefore robustness
of the relationships, both within and across studies.

Following the methods of Dainese et al. (3), we used study-year combinations as the highest
hierarchical unit because the majority of studies (n=40) only had one year of data collection and
studies with multiple years often varied site locations across years. Furthermore, interannual
variability in pollinator abundances (104) can allow different years of data collection within the
same study to be regarded separately. Study-year was thus fit as a random intercept to capture
differences between studies, and random slopes were fit for each study-year for both of the floral
resource variables. This allowed us to control for differences among studies in flower abundance
sampling methods and in the total area of the flower survey, which would influence floral
richness. We did not include a random slope for semi-natural habitat cover because it was
calculated uniformly for all datasets, and because we aimed to model the effect of this variable
across its entire range instead of only within the ranges in each individual study. Because random
slopes caused model convergence issues in the tropical bees model (due to the small number of
studies), we instead centered floral resource variables within studies before standardizing across
studies, which approximates within-study relationships between floral resources and pollinator
density (105). However, this prevents floral resource variables from being expressed on an
absolute scale in landscape-scale extrapolations (see below). Due to the presence of spatial
autocorrelation in the four temperate region models, which was evaluated with the DHARMa
package (106) and by comparing semivariograms to expected semivariances (107), we included a
Matern correlation structure using the spatial coordinates of each study landscape. We inspected
residual plots to evaluate model assumptions, and we confirmed that all variance inflation factors
were below 4 (108) using the performance package (109). Partial residual plots were inspected
using the effects package (110) to ensure the linearity of relationships and the absence of
unmodelled interactions (111). We used log-likelihood ratio tests to evaluate model fixed effects
and dropped the interaction term from the model if it was not significant.

Since mass-flowering crop presence was not necessarily a within-study factor for every study
(i.e., some studies had all landscapes with mass-flowering crops, or all landscapes without), we
checked the robustness of our results for this fixed effect by repeating our models with only the
subset of studies that had mass-flowering crop presence as a within-study factor. This check
revealed that effects for this factor were consistent (Table S8).



As a secondary analysis step, we extrapolated pollinator densities to the landscape scale to
evaluate the relative impact of improving habitat quantity or quality in different landscape
contexts. Following the method of Fijen et al. (30), we separated both habitat quantity (%
landscape semi-natural habitat) and habitat quality (both floral resource variables) into 20
quantiles (i.e., steps representing 5% of the range) along the entire range observed in the
included studies. For the tropics model, this was a relative range for the floral resource variables,
since we centered these variables within studies and thus the values were not comparable across
studies. We then created a matrix made up of predicted pollinator densities based on our models
at each of the combinations between the 20 quantity and quality quantiles, while holding crop
flowering and sampling effort constant (mass-flowering crop = no; area surveyed = 150 m? [or,
for butterflies, 300 m?]; time surveyed = 15 min). For the bumble bee model, which had a
significant interaction between mass-flowering crop flowering and landscape semi-natural
habitat (figure 4D; table S3), we predicted at an “average” level of mass-flowering crop
flowering to more accurately model the effect of habitat quantity (112). Next we extrapolated
these pollinator densities to the landscape scale by multiplying the (back-transformed) density
per m? (predicted density / 150 or 300) by the coverage in m? of semi-natural habitat in the
landscape (% semi-natural habitat of the given quantile / 100 *  * 5002) (29, 45), assuming a
linear abundance-area relationship (22). Using these results we calculated the quality:quantity
population response ratio by dividing the population increase with one quantile increase in
habitat quality by the population increase with one quantile increase in habitat quantity for each
quality-quantity combination in the matrix. This ratio assumes equal feasibility of enhancing
either quality or quantity by one quantile. We defined the habitat quantity level at which the ratio
= 1 for the lowest quality quantile as the minimum recommended landscape habitat coverage for
application of habitat conservation measures for pollinator community size. All plots were
constructed using the ggplot2 (113), viridis (114), ggeffects (112), and gridExtra (115) packages.
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PRISMA flow diagram of study selection. T/A = Title / abstract. The total tally of included

studies does not align with the total tally of reports (published articles) because some datasets are

reported in multiple publications, and some publications report on multiple datasets.
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Habitat quality (flower availability) Habitat quality (flower availability)

Habitat quality (flower availability)

Habitat quality (flower availability)

Habitat quality (flower availability)

Q200 1994 3879 5659 7339 8921 10410 11808 13120 1.
Q1990 1819 3538 5160 6689 8129 9482 10751 11941 13053
Q18- 0 1658 3223 4700 6090 7397 8625 9775 10852 11857 12794 13664
Q1740 1509 2933 4274 5536 6722 7834 8875 9848 10754 11598 12380 13104 13771
Q160 1372 2665 3882 5026 6099 7104 8044 8920 9736 10494 11195 11841 12436 12980
Q1590 1245 2417 3520 4554 5524 6430 7277 8065 8797 9475 10101 10676 11204 11686 12122 12516 12869 13182 13457
Q1490 1128 2189 3185 4119 4993 5809 6569 7275 7929 8534 9091 9601 10067 10490 10873 11215 11519 11787 12020
Q13- 0 1020 1978 2877 3717 4503 5235 5915 6546 7129 7666 8159 8609 9018 9387 9719 10014 10274 10500 10694
Q1240 920 1784 2592 3347 4051 4705 5312 5873 6390 6865 7299 7693 8049 8369 8654 8906 9125 9312 9470
Qll- 0 820 1604 2329 3005 3633 4216 4755 5252 5708 6125 6505 6848 7156 7430 7672 7883 8064 8216 8340
Q100 744 1438 2086 2689 3248 3765 4242 4679 5079 5443 5772 6067 6331 6563 6765 6939 7084 7204 7298
Q90 665 1286 1862 2398 2893 3349 3768 4150 4498 4813 5096 5347 5569 5762 5928 6067 6181 6270 6335
Q80 593 1144 1656 2129 2564 2964 3330 3662 3962 4232 4472 4683 4866 5024 5156 5263 5347 5408 5447
Q70 526 1014 1465 1881 2262 2610 2926 3212 3468 3695 3895 4069 4218 4342 4443 4521 4577 4612 4628
Q60 465 894 1289 1651 1982 2282 2553 2796 3011 3200 3364 3503 3619 3713 3784 3835 3866 3878 3871
Q50 408 783 1127 1440 1724 1980 2209 2412 2590 2743 2873 2981 3067 3132 3177 3203 3211 3200 3173
Q40 355 680 977 1245 1486 1701 1892 2058 2201 2321 2420 2498 2557 2596 2617 2620 2605 2575 2529
Q30 307 58 838 1065 1266 1444 1508 1731 1842 1932 2002 2053 2086 2101 2099 2081 2047 1998 1934
Q2-0 262 499 710 898 1063 1206 1328 1429 1510 1572 1616 1642 1652 1645 1622 1584 1531 1465 1385
Ql-o 221 418 593 745 876 987 1078 1150 1204 1241 1260 1263 1251 1223 1181 1125 1055 973 878
T T T T T T T T T T T T T T T T T T T T
<0.01 5 10 15 20 26 31 36 41 47 52 57 62 68 73 78 83 89 94 99
Habitat quantity (% SNH)
Q20 0 2251 4496 6736 8970 11199 13423 15641 17855 20063 22265 2446
Q1990 2017 4029 6036 8039 10036 12029 14017 16000 17978 19951 21920 23884
Q18- 0 1805 3606 5402 7193 8981 10764 12542 14316 16086 17852 19613 21370 23122 2
Q1790 1613 3221 4826 6426 8023 9616 11204 12789 14370 15947 17519 19088 20653 22215 23772
Q16 0 1433 2873 4303 5730 7154 8574 9990 11403 12812 14218 15620 17018 18413 19804 21192 23957
Q159 0 1280 2556 3829 5099 6365 7628 8888 10145 11399 12649 13896 15139 16380 17617 18851 20082 21310 22534 23755
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Fig. S3.

The relative gain in landscape-level pollinator abundances from increasing habitat quantity and
quality. (A) bumble bees, (B) solitary bees, (C) hoverflies, (D) butterflies, and (E) tropical bees.
Quantity and quality are expressed across the 20 quantiles of the ranges observed in the datasets.
Matrix values represent back-transformed predicted abundances, rounded to the nearest integer.
Q1-Q20 indicate quantiles of flower availability (flower cover and richness). SNH, semi-natural
habitat.
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semi-natural habitat (SNH). Abundances are expressed per 150 m? and 15 min sampling. Points
represent back-transformed partial residuals. SD, standard deviation. For model coefficients, see
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Table S1.
Studies included in the synthesis. Landscapes are counted within year, and samples within

landscapes.
Study | Country Bumble | Solitary | Hoverflies | Butterflies | Tropical | Sampling effort | Habitat N N N Publication
bees bees bees type Years | Landscapes | Samples
m? min
A UK X Various | NA | Various 1 95 4173 Unpublished
B Spain X X X 200 30 Forest 1 16 112 (116)**
C India X 9 90 Various 1 20 60 (117)
D Germany X X X 400 10 Field 1 30 630 (118)
margins
E Germany X X X 250 5 Various 1 30 540 (119)
F Sweden X 50 20 Various 1 17 152 (120)
G Costa Rica X 400 15 Grasslands | 3 49 95 (121, 122)
H USA X X 200 60 Various 1 12 71 (123)
| UK X 400 NA | Riparian 2 19 366 (124)
margins
J UK X 400 NA | Various 2 31 343 (125)
K USA X X X X 10000 60 Grasslands | 3 30 98 (126, 127)
L France X X X 150 15 Various 1 25 206 (128)**
M Sweden X X X 150 15 Various 1 12 72 (129)
N Netherlands | X X X X 150 15 Various 1 16 131 Unpublished
0] Italy X X X 150 15 Various 1 26 587 (130, 131)
P Netherlands | X X X X 450" 45 Various 1 41 165 (19)**
Q Germany X X X 2 15 Grasslands | 1 17 459 (132)
R Poland X 31416 60 Various 1 32 32 (133)
S UK X 31416 60 Various 1 41 46 (134)
T Germany X X X 200 240 | Wildflower | 1 14 28 (135)
strips
U Portugal X 150 15 Various 1 29 79 Unpublished
\ Germany X X 100 15 Grasslands 1 32 32 (136)
W Germany X X Various | 15 Field 1 27 198 (137)
margins
X Germany X X 100 45 Grasslands 1 23 115 (138)
Y Germany X X X Various Grasslands 1 27 192 (35, 139)
Y4 Norway X 200 5 Various 2 52 3676 (140)
AA Netherlands | X X X 20 10 Various 2 40 606 (29)
AB Romania X X X X 300 20 Various 1 28 217 (141)
AC Germany X X X . Wildflower | 1 19 37 (142)
Various strips
AD Germany X X X X 1800 360 | Grasslands 1 28 143 (143)
AE Israel X 800 60 Various 2 30 30 (144)**
AF India X 100 10 Various 1 12 117 (145)
AG Argentina X X X Various | 240 | Road 2 40 40 (146)
verges
AH USA X X 1 4 Various 1 16 455 (147)
Al Spain X X 10 5 Field 1 17 340 (148)
margins
AJ Sweden X 100 10 Various 1 12 363 (149)
AK UK X X X 100 10 Road 1 19 285 (90)
verges
AL Germany X 100 10 Various 1 11 20 (150)
AM Ireland X 200 NA | Hedges 1 20 120 (151)
AN USA X X 40 5 Various 1 12 964 (152)***
AO Sweden X X X X 100 10 Various 1 20 235 (153)
AP Netherlands | X X X X 250 25 Various 1 10 40 (154)
AQ USA X 40 5 Grasslands | 2 35 48 (155)
AR Ireland X Various | NA | Grasslands | 1 25 150 (156, 157)
AS Spain X X 150 15 Various 2 30 226 (28, 158)
AT UK X X X 150 15 Various 3 47 550 (28, 59,
159)
AU Sweden X X X 150 15 Various 2 32 635 (28, 59,
159)
AV Serbia X X X 150 15 Various 2 31 218 (28)
AW Netherlands | X X X 150 15 Various 3 50 799 (28, 59)
AX Germany X X X 150 15 Various 2 32 666 (28, 59,
159)
AY Switzerland | X X X X 150 20 Various 2 34 552 47
AZ Netherlands X 1000 NA | Grasslands 1 11 64 (160)
BA UK X X 200 30 Grasslands | 1 18 71 (161)
BB UK X 200 10 Forest 1 10 22 (162)
BC Germany X X X X 1 5 Various 3 43 2340 (163, 164)

23




BD Germany X X X 1800 360 | Grasslands 70 160 (165)

BE USA X 10000 60 Wildflower 11 33 (166)
strips

BF UK X Various | NA | Grasslands 31 654 (167)

BG USA X X Various Various 56 320 (168)

**Unpublished at the time of literature screen.
***Not gathered from literature screen.
tFor bees and hoverflies only. Butterfly surveys varied in area and were untimed.
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Table S2.

Sample sizes per species group. Landscapes are counted within study-year, and samples are

sampling events within landscapes.

Species group Studies Study-years Landscapes Samples
Bumble bees 37 55 1107 16675
Solitary bees 37 58 1124 13294
Hoverflies 31 47 885 11156
Butterflies 19 29 613 9994
Tropical bees 3 5 81 272
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Table S3.

Bumble bee model terms evaluated by log-likelihood ratio tests. SNH = semi-natural habitat;
MFC = mass-flowering crop. The “no” level of MFC Bloom is captured in the intercept,
meaning that the coefficients for landscape SNH and MFC Bloom here are representative of the
“yes” level, as well as the slope of the interaction between landscape SNH and MFC Bloom. The
single terms of landscape SNH and MFC Bloom are not evaluated with log-likelihood ratio tests
because the interaction term is retained in the model. Coefficients are represented on the log

scale.
Variable Coefficient SE Chisq P
Flower cover 0.062 0.028 4.683 0.030
Flower richness  0.060 0.027 4.726 0.030
Landscape SNH  0.075 0.012 - -
MFC Bloom 0.235 0.018 - -
SNH:MFC -0.122 0.016 58.839 <0.001
Bloom
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Table S4.

Solitary bee model terms evaluated by log-likelihood ratio tests. SNH = semi-natural habitat;
MFC = mass-flowering crop. The “no” level of MFC Bloom is captured in the intercept,
meaning that the coefficient for MFC Bloom here is representative of the “yes” level. The

interaction term is not included in the final model. Coefficients are represented on the log scale.

Variable Coefficient SE Chisg P
Flower cover 0.047 0.033 2.014 0.156
Flower richness  0.100 0.023 16.186 <0.001
Landscape SNH  -0.002 0.009 0.046 0.830
MFC Bloom 0.196 0.016 158.043 <0.001
SNH:MFC - - 0.869 0.351
Bloom
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Table S5.

Hoverfly model terms evaluated by log-likelihood ratio tests. SNH = semi-natural habitat; MFC
= mass-flowering crop. The “no” level of MFC Bloom is captured in the intercept, meaning that
the coefficient for MFC Bloom here is representative of the “yes” level. The interaction term is

not included in the final model. Coefficients are represented on the log scale.

Variable Coefficient SE Chisg P
Flower cover 0.082 0.045 3.257 0.071
Flower richness  0.175 0.033 22.235 <0.001
Landscape SNH  -0.004 0.011 0.132 0.716
MFC Bloom -0.013 0.019 0.470 0.493
SNH:MFC - - 0.374 0.541
Bloom
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Table S6.

Butterfly model terms evaluated by log-likelihood ratio tests. SNH = semi-natural habitat; MFC
= mass-flowering crop. The “no” level of MFC Bloom is captured in the intercept, meaning that
the coefficient for MFC Bloom here is representative of the “yes” level. The interaction term is

not included in the final model. Coefficients are represented on the log scale.

Variable Coefficient SE Chisq P
Flower cover 0.092 0.047 3.570 0.059
Flower richness  0.030 0.068 0.195 0.659
Landscape SNH  0.030 0.013 5.230 0.022
MFC Bloom -0.022 0.037 0.338 0.561
SNH:MFC - - 0.062 0.803
Bloom
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Table S7.

Tropical bee model terms evaluated by log-likelihood ratio tests. SNH = semi-natural habitat;
MFC = mass-flowering crop. The “no” level of MFC Bloom is captured in the intercept,
meaning that the coefficient for MFC Bloom here is representative of the “yes” level. The
interaction term is not included in the final model. Coefficients are represented on the log scale.

Variable Coefficient SE Chisg P
Flower cover 0.039 0.015 7.029 0.008
Flower richness  0.143 0.017 59.749 <0.001
Landscape SNH  0.037 0.022 2.888 0.089
MFC Bloom 0.011 0.030 0.131 0.718
SNH:MFC - - 0.109 0.741
Bloom
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Table S8.

The effect of mass-flowering crop (MFC) presence evaluated by log-likelihood ratio tests on
models with a subset of the datasets that had this variable as a within-study factor. SNH = semi-

natural habitat.

Model SNH:MFC Bloom MFC Bloom

Chisq P Chisq P
Bumble bees 109.694 <0.001 - -
Solitary bees 0.293 0.588 379.260 <0.001
Hoverflies 2.431 0.119 0.270 0.604
Butterflies 0.306 0.580 0.360 0.549
Tropical bees 0.288 0.592 0.448 0.503
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