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Physical aging in polymers is a fundamental yet poorly understood phenomenon, as diverse macromolec-
ular systems exhibit remarkably similar slow dynamics. Through molecular dynamics simulations of physi-
cally crosslinked networks composed of semiflexible polymers, we identify a previously unexplored class of
self-similar aging. The network undergoes ultra-slow coarsening characterized by a logarithmically growing
mesh size, L(t) ∼ ln t, which governs the spatial organization, cohesive and bending energies, and the aging
dynamics of the system. This single time-dependent length scale defines an internal clock, giving rise to spatio-
temporal self-similarity of both structure and dynamics – offering a perspective on aging in soft and disordered
materials.

Aging in polymeric systems is a compelling but ill-10

understood phenomenon that plays a crucial role for mate-11

rial properties and practical applications [1–3]. Increasing re-12

laxation times due to aging lead to increasing creep compli-13

ance in amorphous polymers [1] and increasing storage mod-14

uli for cellulose suspensions [4], protein-based biopolymeric15

gels [5], or cytoskeletal networks [6]. Here, we explore phys-16

ical aging in reversibly crosslinked semiflexible polymer net-17

works that results from spontaneous relaxation processes af-18

ter system preparation in a non-equilibrium initial state, e.g.19

quenching from a high to a low-temperature phase. Aging20

systems fail to reach equilibrium on experimental time scales21

and are therefore non-ergodic, but different polymeric systems22

show universal characteristics with rather similar mechanical23

properties during aging [1]. Corresponding observations have24

been made in glassy and amorphous systems [7, 8], for which25

common mechanisms in terms of power-law waiting times26

have been proposed [9, 10]. In particular, the weak-ergodicity27

breaking hypothesis allows a simplified description of aging28

dynamics in terms of a scaling function. While this hypothesis29

and the scaling assumption have been tested for several glassy30

systems [7, 11–14], only few studies have reported such an31

analysis for aging polymers [15].32

For a large class of systems, aging can be related to a grow-33

ing length scale due to coarsening. As predicted theoretically,34

spinodal decomposition leads to power-law coarsening [16].35

In this context, self-similar coarsening of two-phase mixtures36

[17] and network-forming systems [18] have recently been37

studied. For non-disordered systems like ferromagnetic do-38

mains, power-law growth can be related to so-called simple39

aging [7, 19]. For disordered systems on the other hand,40

thermally activated dynamics suggests a slow, logarithmically41

growing length scale L(t) ∼ (ln t)1/ψ with positive exponent42
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ψ [20]. While previous studies found indications for power-43

law growth, it has been argued that initial transients may mask44

a crossover to slower growth at later times [13]. Logarith-45

mically slow coarsening has so far been reported only for a46

few systems, such as a frustrated Ising model [21], crumpled47

sheets [22], and physically crosslinked networks formed by48

semiflexible polymers [23].49

Here, we consider the latter polymeric system: a generic50

bead-spring model of 1000 interacting chains, each consist-51

ing of 30 beads, including cohesive energy Ecoh = 1.4 and52

bending stiffness κ ∈ {20, 50} (ensuring the formation of a53

percolated network), and carefully study its aging properties54

at fixed temperature T = 1 and number density ρ = 0.05 (in55

reduced units) via molecular dynamics simulation. At startup,56

all semiflexible chains are placed randomly without overlap.57

Ensemble averages are performed over 20 independent real-58

izations of the system. Details of the model and simulations59

are available in the End Matter section. Self-similar coars-60

ening in these networks we established already in our previ-61

ous work [23], showing that network structures at different62

times are statistically identical when scaled with the coarsen-63

ing length L(t). Here, we study the resulting aging effects and64

elucidate the role of L(t) for dynamic properties.65

One-time quantities: logarithmic coarsening— Thermody-66

namic quantities like the bending energy (ea) and cohesive67

energy (epair) per particle are one-time quantities that can be68

defined using a single particle configuration only. While such69

quantities are time-independent in stationary states, we ob-70

serve decreasing values of ea and epair with increasing waiting71

time tw since system preparation, indicating ongoing relax-72

ation processes (see Fig. S1 in Supplemental Material [24]).73

Most importantly, these processes are found to become slower74

and slower as the system ages, such that no stationary state is75

reached even for very long simulation times (as discussed be-76

low).77

For our model system, the relaxation processes reflected in78

decreasing values of ea and epair correspond to chains becom-79

ing straighter and locally more dense. These processes are80

related to structural changes within the network which can be81
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FIG. 1. Mean filament length Lf vs. waiting time tw ≥ tp for
κ = 50. The black-yellow line shows Eq. (1) with a = 0.74 and
t0 = 0.0012. Inset: Mean number of clusters vs. tw (particles that
are bonded via permanent or temporary bonds belong to the same
cluster, as in [23]). Snapshots show two-dimensional projections at
the respective waiting times tw. Each chain has its own color.

monitored e.g. by the mean filament length Lf which we cal-82

culate from the skeleton network [23] as the mean contour83

length of edges connecting the skeleton nodes. Figure 1 shows84

the extremely slow increase of Lf with increasing waiting85

time tw once a single percolated cluster has been established86

at tp ≈ 103 (inset). Its time evolution can be described for87

both κ to a very good approximation by a logarithmic growth88

law,89

Lf (tw) ≈ a ln(tw/t0), tw ≳ tp, (1)

where t0 denotes a microscopic reference time. Snapshots of90

one sample for selected waiting times tw are also shown in91

Fig. 1. They illustrate the coarsening network.92

Besides the filament length Lf , several other lengths can be93

used to characterize the network, such as the mean filament94

diameter df , the mean pore size rp, the persistence length95

ℓp, and the mean weighted and un-weighted chord lengths ℓ196

and l1, respectively, that measure the distance between two97

consecutive network-pore interfaces. Details on the defini-98

tion of these quantities and their numerical calculation can99

be found in Ref. [23]. Same as the filament length Lf , the100

quantities df , rp, ℓp and ℓ1, l1 also show logarithmically slow101

growth. What is more, the evolution of the network character-102

istic lengths and pair and bending energies epair, ea all follow103

that of the filament length. Figure 6 shows an approximate104

power-law relation between all these characteristic network105

lengths. Therefore, the characteristic sizes of the network dur-106

ing the self-similar coarsening are all controlled by the loga-107

rithmically growing filament length.108

Two-time correlation functions and aging – In experiments109

as well as in simulations, length-scale dependent relaxation110

is typically studied via the incoherent scattering function.111

To account for the waiting-time dependence of the aging112

system, we monitor a generalized definition of its self-part,113

Cq(t, tw) = N−1
b

∑Nb

j=1⟨exp (iq · [rj(tw + t)− rj(tw)])⟩,114

where Nb denotes the total number of beads, rj their un-115

wrapped positions and angular brackets represent ensemble116
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FIG. 2. (a) Self-part of the incoherent scattering function, Cq(t, tw),
vs. time t on a logarithmic scale for q = 1 and κ = 50. Different
values of the waiting time tw ≥ tp are color coded (see colorbar). (b)
Same quantity as shown in (a) with the same color code but plotted
vs Lf (t+ tw)/Lf (tw). The wave vector q increases from top to bot-
tom as q = 0.05, 0.1, 0.2, 0.3, 0.5, 1.0. (c) The MSD ∆(t, tw) vs.
time t on a double-logarithmic scale (linear plot in Fig. S5 [24]) for
different waiting times (see colorbar). (d) Same quantity as shown
in (c) with the same color code but plotted vs. the ratio of the corre-
sponding filament lengths Lf (t+ tw)/Lf (tw).

averages for fixed tw [11, 12]. For isotropic systems, Cq de-117

pends only on the magnitude q of the scattering vector q.118

While time-translational invariance of equilibrium dynamics119

ensures that Cq depends only on the time difference t, this is120

no longer the case for aging systems. In fact, the waiting time121

tw has been identified as the most relevant material parameter122

in the aging regime of amorphous polymers [1].123

Figure 2-a shows Cq as a function of t for different waiting124

times tw (color coded). Relaxations on length scales corre-125

sponding to q = 1 are mainly completed within the time win-126

dow of our simulations. We note, however, that this is not the127

case for larger length scales corresponding e.g. to q = 0.2 (see128

Fig. S3 [24]). In addition, Fig. 2-a shows significantly slower129

relaxation with increasing waiting time tw. This so-called dy-130

namic slowing down with increasing system age is a typical131

fingerprint of aging systems. Figures 2-a and S3 [24] suggest132

a two-step relaxation, where the late-stage relaxation sets in133

later the larger tw and the initial relaxation gets suppressed at134

large length scales. Such two-step relaxation is observed in135

polymer gels [25] and various amorphous systems [8, 26].136

In the weak-ergodicity breaking scenario for glassy sys-137

tems, memory of initial conditions is gradually lost such that138

two-time correlation functions obey a dynamic scaling rela-139

tion [7, 11, 12],140

Cq(t, tw) = Cshort
q (t) + Cage

q (h(t+ tw)/h(tw)). (2)

The ansatz (2) with the short-time behavior Cshort
q (t) inde-141

pendent of tw is in agreement with observations that fast ini-142

tial relaxation in polymers is unaffected by system age [1],143

broadly consistent with Fig. 2-a. The second term, Cage
q , de-144
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scribes the long-time aging dynamics in terms of a mono-145

tonically increasing scaling function h(t) that reparameterizes146

time. Different categories of aging systems have been found147

to share the same scaling function. This universality in ag-148

ing is not well understood at present [19]. Ferromagnetic do-149

main growth and certain spin glasses show power-law aging,150

whereas logarithmic aging is predicted by the droplet model of151

amorphous systems, with some indications seen e.g. in molec-152

ular dynamics simulations of a simple glass former [12].153

For aging in spin glasses and liquid-vapor phase separation,154

the scaling function h was chosen as a dynamical correlation155

length and mean domain size, respectively [13, 27]. Since156

we have already established that coarsening in this system is157

governed by a single length scale, we here use the mean fil-158

ament length as scaling variable, h(t) = Lf (t). Figure 2-b159

shows the same data as Fig. 2-a together with data for addi-160

tional q vectors, but plotted vs. the ratio of the scaling vari-161

able Lf (tw + t)/Lf (tw) according to Eq. (2). We observe a162

very good data collapse for both values of the bending stiff-163

ness (κ = 20 shown in Fig. S4 [24]) and all wave vectors164

q ≲ 0.5 investigated. Therefore, the filament length indeed165

serves as a scaling variable for aging, such that the self-part166

of the intermediate scattering function can be expressed as167

Cage
q (t, tw) ≈ exp {aq[1− Lf (tw + t)/Lf (tw)]}, where aq168

increases near-quadratically with q. The quality of data col-169

lapse worsens for q ≳ 1, which corresponds roughly to dis-170

tances smaller than the filament diameter [23].171

Aging and diffusion— While diffusion and the mean-square172

displacement (MSD) are routinely reported for equilibrium173

and nonequilibrium systems to investigate their dynamical be-174

havior, aging effects on the diffusive behavior are often ig-175

nored. Some notable exceptions are experiments on aging176

colloidal glasses [28–31] and tracer particles embedded in ag-177

ing polymer networks [32]. To capture the waiting-time de-178

pendence, we employ a generalized definition of the MSD,179

∆(t, tw) = N−1
b

∑Nb

j=1⟨[rj(t + tw) − rj(tw)]
2⟩ [28, 33]. We180

extracted ∆ as a function of t for different (color coded) wait-181

ing times tw (Fig. 2-c). All curves are found to coincide in the182

ballistic regime for short times, t ≲ 10−1. Consistent with the183

dynamic slowing down (Fig. 2-a), we find that ∆ decreases184

with increasing tw for fixed t ≳ 100. In addition, we observe185

the build-up of an intermediate plateau with increasing wait-186

ing times (Fig. 2-c). The intermediate plateau in the MSD187

is typical for many complex and amorphous systems [26, 34]188

and reflects a two-step relaxation mechanism (wriggling/rup-189

ture transition) already seen from Cq .190

Although the dynamic scaling relation (2) was originally191

suggested for other quantities, Lf can still be used as scal-192

ing variable for ∆, as demonstrated by the good data col-193

lapse in Fig. 2-d for a considerable range of tw values. In194

particular, we find an approximate linear relation, ∆(t, tw) ∝195

[Lf (tw + t)/Lf (tw)− 1], which can be rationalized from the196

low-q expansion of Cq , i.e., Cq = 1− q2∆(t, tw)/6+O(q4).197

Aging and growing relaxation time— To better quantify the198

dynamic slowing down seen in Fig. 2, we extract character-199

istic relaxation times from fits of the intermediate scattering200
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FIG. 3. (a) The relaxation times τq and τ ′
q , respectively, determined

from Eq. (3) versus tw for κ = 50 and different q ≥ 0.2 (see color-
bar). (b) The same data are shown versus q and different tw ≤ 2×105

(see colorbar). As before, data for tw < tp are shown in dark gray.

function (Fig. 2-a) to the so-called power-ML function201

Cq(t, tw) = E
α/β
β (−[t/τ ′q(tw)]

β). (3)

The Mittag-Leffler (ML) function with parameter β is defined202

byEβ(z) =
∑∞
n=0 z

n/Γ(1+βn) with Γ(x) the Gamma func-203

tion. The quantities α = α(tw), β = β(tw) with 0 ≤ β ≤ 1204

are treated as fitting parameters in the power-ML function205

(3), together with the waiting-time dependent characteristic206

relaxation time τ ′q(tw). We found the quality of these fits to207

be very good over the whole parameter range studied, with208

some deviations only for intermediate q values [23]. Equa-209

tion (3) reduces to exp [−(t/τq(tw))
β ] for times t≪ τ ′q . Such210

stretched-exponential is often used to describe relaxation in211

complex and amorphous systems, including physical polymer212

gels [25, 35, 36]. The stretched-exponential time τq is related213

to τ ′q by τ ′q = [α/β2Γ(β)]1/βτq .214

Figure 3 shows the effect of tw and q on the characteristic215

relaxation times τq and τ ′q . They both increase with increas-216

ing tw, as expected for aging systems. This increase occurs217

after the network has formed, tw ≳ tp, and is particularly218

pronounced for small q ≲ 2. While the relaxation time τq219

associated with the stretched-exponential shows a power-law220

τq ∼ q−ν for small q values, a signature frequently reported221

for several amorphous and network-forming systems [35–37],222

the relaxation time τ ′q of the power-ML function approaches223

a plateau for decreasing values of q. We find that the plateau224

is reached for q values corresponding to length scales larger225

than the filament diameter, q < 0.05 (Fig. 3). The zero-q226

plateau values of relaxation times τ ′0 increase strongly with227

tw. We note that these result depend only weakly on the bend-228

ing stiffness κ.229

The qualitatively different behavior of τq and τ ′q for small230

q deserves further comments. First, τ ′q is the characteristic231

relaxation time entering the power-ML function (3) and there-232

fore the primary time scale, at least within this family of fit233
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FIG. 4. The large-scale relaxation time τ ′
0 (full symbols) obtained

from Cq(t, tw) and the separating time τs for coarsening (open sym-
bols) obtained from Lf (tw) as function of tw on a double-logarithmic
scale.

functions. More importantly, τq is determined from Cq for234

times t ≪ τ ′q , where the network remains effectively frozen.235

Therefore, values τq > τ ′q appearing for low q should be in-236

terpreted very carefully due to large-scale network relaxation,237

which is captured by τ ′q . In coarsening systems, it has been238

argued that relaxations on scales larger than the domain size239

are irrelevant or inactive [7, 17]. This argument goes together240

nicely with the leveling off of τ ′q for low q seen in Fig. 3.241

To further investigate the links between aging and coarsen-242

ing dynamics we consider the separating time scale for coars-243

ening, τs = Lf/L̇f , where L̇f denotes the time derivative244

of Lf [7]. General arguments suggest that domains are basi-245

cally frozen-in for times tw ≪ τs(tw) and substantial coars-246

ening proceeds only for times larger than τs. According to247

Eq. (1), the separating time scale increases with system age248

as τs ≈ tw ln(tw/t0). We find (Fig. 4) that τs and the large-249

scale structural relaxation time τ ′0 show a very similar increase250

with waiting time tw, emphasizing the strong link between ag-251

ing and coarsening. This observation holds for both values of252

bending stiffness investigated, see Fig. S6-d [24].253

Theoretical underpinnings— The droplet theory of glasses254

[20, 38], though developed for disordered systems, may pro-255

vide a useful framework for understanding some of our main256

findings and in particular superuniversality of aging in semi-257

flexible networks without quenched disorder. If coarsening258

proceeds mainly via filament breakage, typical activation en-259

ergies scale as Ebreak ∼ d
ψ/ν
f ∼ Lψf , where the second260

proportionality follows from self-similarity, see Fig. 6. Cru-261

cially, the droplet theory assumes thermally activated relax-262

ation, leading to filament breaking time scaling as τbreak ∼263

exp(ΥLψf /T ) with a constant Υ. As breakage governs struc-264

tural relaxation, τbreak ≈ tw, the characteristic length grows265

as Lf ∼ (ln tw)
1/ψ . We independently verify a near-linear266

growth of relaxation times with age from a network analysis267

and the change in the number of filaments, which also pre-268

dicts τbreak to be proportional to τs (Fig. S6 [24]). Figure269

1 suggests ψ ≈ 1. Bouchaud further proposed to define a270

‘glass length’ Lg in analogy to the glass transition tempera-271

ture through the relation ΥLψg = AT [39]. For our system272

we obtain Lg ≈ 26 in Sec. S4 [24], meaning networks with273

filament lengths larger than Lg cannot be equilibrated within274

a reasonable time frame. This length is within a factor of two275

of our final configurations (still much smaller than our system276

size).277

Concluding remarks— Despite lacking quenched disor-278

der, we here demonstrate that semiflexible polymer networks279

largely obey the predictions of the droplet model of glasses,280

including logarithmic domain growth and superuniversality281

of aging [20, 38]. While determining domains in amorphous282

systems is often difficult, the networks under study here are283

defined by a single length scale L, which we choose as the284

filament length Lf [23]. Since filaments become longer and285

thicker with increasing waiting time tw, breakage events be-286

come more and more rare as the system ages, slowing down287

coarsening. The resulting logarithmic, self-similar coarsening288

goes together with self-similar aging dynamics. Consistent289

with the notion of superuniversality predicted by the droplet290

model of glasses, we find the growing Lf to serve as a scaling291

function for the aging dynamics not only for the MSD, but also292

for the intermediate scattering function for any q-value below293

the filament thickness. Within the network-forming regime,294

these findings do not depend on the specific value of the bend-295

ing stiffness. Note that the filament length is also the cru-296

cial ingredient in theories of semiflexible polymer networks297

[40, 41]. It remains to be seen whether mechanical properties298

are governed by Lf as well.299

Contrary to the essentially athermal, stress-induced relax-300

ation advocated for other polymer gels that show anomalous301

aging [35, 37], our results better align with arguments of lin-302

ear growth of free energy barriers with the size of clusters303

that have been identified as a key requirement for logarith-304

mic coarsening [21, 22]. One can argue that the logarithmic305

growth law is rather robust since the dynamics is hierarchical306

[7, 17], i.e. driven by relaxation on length scales up to Lf ,307

whereas length scales larger than Lf are mostly inactive. This308

argument is supported by the characteristic relaxation times309

τ ′q approaching a plateau value for low q (Fig. 3) and showing310

a similar waiting-time dependence as the coarsening time τs.311

Borrowing the notion of ‘time is length’ from a study of312

aging in the Edwards-Anderson spin glass model [42], we313

find that the internal time and effective age of the network314

systems under study can be interpreted in terms of the fila-315

ment length. That Lf encodes the effective age of the sys-316

tem provides a convenient way of studying aging dynamics in317

semiflexible polymer networks and glassy systems, but could318

also open a range of practical applications, e.g. with regards319

to memory and storage. Our study could be relevant for self-320

assembling biological systems forming fibrous networks such321

as those involved in the cytoskeleton [40], which can show322

significant aging effects [6, 43]. Our model might also con-323

tribute to ongoing research on pathological protein aggrega-324

tion into fibrous networks, linked to some neurodegenerative325

diseases and cancer [44].326
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END MATTER467

A. Model details and cohesive energy468

The model and its implementation using LAMMPS [45] had469

been described in detail in Ref. [23]. All multibead, semi-470

flexible chains are initially placed without overlap in a cubic471

box with periodic boundary conditions at bead number den-472

sity ρ = 0.05. Lennard-Jones (LJ) units are used through-473

out. Permanent connectivity along a chain is ensured through474

the finitely extensible nonlinear elastic (FENE) potential [46],475

UFENE(b) = −k
2R

2
0 ln[1− (b/R0)

2], with parameters k = 30476

and R0 = 1.5, where b denotes the bond length. In ad-477

dition, all beads interact through a truncated LJ potential,478

ULJ(r) = 4ϵb(r
−12 − r−6 − r−12

c + r−6
c ) for r ≤ rc. For479

permanently bonded neighbors, the parameters are chosen as480

ϵb = 1 and rc = 21/6. For nonbonded pairs, we here em-481

ploy ϵb = 3 and rc = 1.359. Whenever two nonbonded beads482

approach within rc, they can be regarded as forming a tempo-483

rary, reversible bond. The corresponding cohesion energy is484

defined by Ecoh = (2 − r6c )
2ϵb/r

12
c = 1.4 [23]. Chain stiff-485

ness is controlled through a bending potential acting on con-486

secutive triplets of bonded beads [47], Ubend(θ) = κ cos θ,487

where κ is the bending modulus and θ the bond angle. A488

schematic representation of the model is provided in Fig. 5-a,489

illustrating the FENE bonds, LJ interactions, and the defini-490

tion of cohesive energy. Both permanent (FENE) and tempo-491

rary (LJ-based) bonds are indicated. Figure 5-b further high-492

lights geometric measures used for characterizing the emerg-493

ing filamentous networks, such as Lf , df , junctions, and pore494

sizes, which we extract from the network’s skeleton and sur-495

face [23]. The solvent is treated implicitly. Its quality is effec-496

tively encoded in the cohesive energy Ecoh, while dynamics497

are modeled in the free-draining approximation by including498

frictional forces on each bead. A Langevin thermostat main-499

tains a constant temperature T = 1.500

B. Network characteristic lengths501

Our systems show spatio-temporal self-similarity in the502

sense that not only structural quantities at different times are503

related by the coarsening length L(t) as in self-similar coars-504

ening [17, 18, 23]. Also dynamic quantities like Cq(t, tw)505

uniquely depend on the ratio of lengths L(t + tw)/L(tw),506

permanent FENE
bond
temporary bond
Lennard-Jones 
interaction

length

junction

junction

skeletonthickness

chords

surface

bending 
sti�ness

pore
sphere

(a) (b)

FIG. 5. (a) Illustration of the potentials governing the bead–spring
chains. Cohesion energy Ecoh is directly related to the cutoff dis-
tance rc, which determines temporary reversible bonds in addition to
the permanent FENE bonds. Inset: FENE (dashed black), LJ (blue),
and combined potentials (black). (b) Geometric network descriptors
based on the polymer skeleton (thinning algorithm), including strand
length, thickness, junctions, chord lengths, and pore sizes. Reprinted
with permission from [23].

irrespective of the age of the system, tw. See Figs. 2-b,d507

where we choose the filament length as the coarsening length,508

L = Lf . These dynamical quantities thus depend uniquely509

also on ln[L(t+ tw)/L(tw)]. Besides the filament length Lf ,510

the percolated networks can be characterized by several other511

characteristic lengths L ∈ {ℓ1, df , ℓp, l1}. In Fig. 6, we show512

that these length scales behave as L(tw) ∝ Lνf (tw) with a513

near-constant, L-dependent exponent ν, which is (apart from514

ℓp) sensitive to the definition of the material’s surface. Since515

ln[L(t+ tw)/L(tw)] = ν ln[Lf (t+ tw)/Lf (tw)], these quan-516

tities can alternatively be expressed as functions of the ratio of517

L instead of Lf . Therefore, any of these lengths can in princi-518

ple be used to characterize the aging dynamics of the network.519

We choose Lf due to its robust definition, good statistics, and520

its common use in studies of network properties.521
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FIG. 6. Characteristic lengths L ∈ {ℓp, ℓ1, l1, df} vs. Lf (in the
course of tw) in double-logarithmic representation for (a) κ = 20
and (b) κ = 50. The exponents ν in L ∝ Lν

f have been added to the
power-law fits shown as straight lines.

522

523

C. Power-ML fits524

Shown in Fig. 7 are fits of the intermediate scattering func-525

tion Cq(t, tw) to the power-ML function (3). The marked dif-526

ference between short (open circles) and long (full circles)527

waiting times illustrate strong aging effects with dynamic528
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slowing down. Results for different q values can be distin-529

guished by the color code. We observe that fits overall rep-530

resent the simulation data very well over the whole time win-531

dow spanning six orders of magnitude, with the exception of532

intermediate q values for long waiting times where fits over-533

estimate Cq at intermediate t.534
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FIG. 7. Incoherent scattering. The time decay of the self part of
the intermediate scattering function, Cq(t, tw) for selected q-values
as indicated by color, from q = 10−2 (blue) to q = 1 (red) for (a)
κ = 20 and (b) κ = 50. Open and closed circles correspond to data
for tw = 0 and tw = 105, respectively. All lines are fits to the power-
ML function (3). Panel (b) adapted with permission from [23].
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S-I. COARSENING

The mean pair and bending energies per particle, epair and
ea, respectively, as a function of the waiting time tw since
system preparation are shown in Fig. S1. The slow decrease
of these quantities indicates ongoing relaxation processes dur-
ing the whole simulation time window, with no indications of
reaching a stationary state.

In the main paper, we found evidence for a logarithmic
growth of the mean filament length Lf with waiting time tw
(Fig. 1). Here, we show further characteristic lengths of the
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FIG. S1. (a) Pair energy per bead epair and (b) bending energy per
bead ea, both as a function of waiting time tw on a semi-logarithmic
scale for κ = 50 (red) and κ = 20 (blue).
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FIG. S2. Characteristic quantities of the network are shown para-
metrically versus Lf for different waiting times tw and (a) κ = 50
and (b) κ = 20. Displayed are the pore size rp, local persistence
length ℓp, mean weighted and unweighted chord length ℓ1 and l1,
respectively, mean filament diameter df , negative pair energy −epair

per particle.
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network together with the mean pair energy per particle (Fig.
S2). These quantities depend on the waiting time only via
Lf (tw), reflecting the temporal self-similarity of the network.
In particular, all the characteristic network lengths shown in
Fig. S2 grow with Lf as a power law (see Fig. 6).

S-II. RELAXATION DYNAMICS

The waiting-time dependent self-part of the intermediate
scattering function,

Cq(t, tw) =
1

Nb

Nb∑
j=1

⟨exp (iq · [rj(t+ tw)− rj(tw)])⟩

iso
=

1

Nb

Nb∑
j=1

〈
sin(q|rj(t+ tw)− rj(tw)|)
q|rj(t+ tw)− rj(tw)|

〉
(s-1)

as a function of t for κ = 20, 50, q = 0.2, 2 and various values
of tw is shown in Fig. S3. We observe a very similar behavior
for bending rigidity κ = 20 compared to κ = 50. While Cq
decays to zero over the simulation time window for q = 2
(and q = 1, see Fig. 2-a), a much slower decay is found for
q = 0.2. Figure S3 also shows the severe slowing down of
relaxation with increasing waiting time tw, irrespective of the
value of κ and q.

S-III. AGING

Figure S4-a,c shows the waiting-time dependence of Cq for
q = 0.1 and of the mean-square displacement ∆, respectively,
for bending stiffness κ = 20. The corresponding scaling plots
versus the relative filament length are given by Fig. S4-b,d.
The behavior of Cq and ∆ is found to be very similar to the
case κ = 50 shown in Fig. 2 in the main text.

Figure S5 shows the waiting-time dependence of the mean-
square displacement already displayed in Figs. 2-c and S4-c,
but this time on a linear scale. This representation gives more
weight to the data mainly contributing to the master curves in
Figs. 2-d and S4-d.
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FIG. S3. The self-part of the incoherent scattering function
Cq(t, tw), as a function of time t on a logarithmic scale for (a,b)
κ = 50 and (c,d) κ = 20. (a,c) Left and (b,d) right panels corre-
spond to wave vectors with magnitude q = 2 and q = 0.2, respec-
tively. In each panel, different values of the waiting time tw are color
coded (see colorbar). Gray curves correspond to early times tw < tp

when a percolating network has not yet formed.
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FIG. S4. Same as Fig. 2, but for κ = 20.

S-IV. RELAXATION TIMES

We evaluated the cumulative number of filament rupture
events nr since a percolating network is formed at time tp
(Fig. S6-a) via nr(t, tp) = Nf (tp) − Nf (t + tp), where the
number of filaments Nf at a given time is determined from
our skeleton analysis (for details see [23]). The number of
filaments Nf scales with L−c

f with c ≈ 3.6 as shown in Fig.
S6-b. If filaments were perfectly cylindrical, Lf strictly pro-
portional to df , and the number density inside filaments a con-
stant, one would expect to find Nf ∝ L−3

f . For the more
flexible chains (κ = 20), small deviations from the L−c

f scal-
ing are visible for Lf ≥ 16, corresponding to tw > 5 × 105

(within the same tw regime, also Eq. (1) does not reproduce

0 0.5 1 1.5 2

10
6

0

50

100

150

200

(a)

3

3.5

4

4.5

5

5.5

log
10

(t
w

)

0 0.5 1 1.5 2

10
6

0

50

100

150

200

(b)

3

3.5

4

4.5

5

5.5

log
10

(t
w

)

FIG. S5. Same as Fig. 2-c and Fig. S4-c, but in different, linear
representation for (a) κ = 50 and (b) κ = 20.

the κ = 20 data perfectly). With the number of filaments
at hand, we define a mean breakage time of filaments as
τbreak ≃ −Nf/Ṅf ≈ Lf/cL̇f = τs/c. Figure S6-c,d shows
τbreak together with the large-scale relaxation time τ ′0 and the
separating time for coarsening τs = Lf/L̇f for κ = 50 and
κ = 20, respectively. We observe that all three relaxation
times grow with tw in a very similar manner. In addition,
τbreak ≈ tw, confirming phenomenological arguments given
within the droplet theory in the main text.

Combining the relation τbreak ≈ tw with the logarithmic
growth of the filament length, Eq. (1), we find τbreak ≈
t0 exp(Lf/a). The ‘glass length’ Lg proposed by Bouchaud
[39] can be defined by τbreak = t0e

A with t0 a microscopic
relaxation time. Identifying t0 here with the microscopic ref-
erence time occurring in Eq. (1), we find the glass length to
be given by Lg = aA. Using the value A = 35 proposed in
[39] and a = 0.74 from the fit in Fig. 1 we find for our system
Lg ≈ 26.
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FIG. S6. (a) Cumulative number of filament rupture events
nr(t, tp) = Nf (tp) − Nf (t + tp) measured from the skeleton be-
tween tp = 1000 and tp+t for both κ. (b) Mean number of filaments
Nf vs. mean filament length Lf accompanied by fitted straight
lines: Nf ≈ (Lf/64.6)

−3.63 (κ = 20) and Nf ≈ (Lf/66.2)
−3.63

(κ = 50). (c) Manuscript Fig. for κ = 50 with τbreak (diamonds) in
addition. (d) Same as panel (c) but for κ = 20.
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