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Physical aging in polymers is a fundamental yet poorly understood phenomenon, as diverse macromolec-
ular systems exhibit remarkably similar slow dynamics. Through molecular dynamics simulations of physi-
cally crosslinked networks composed of semiflexible polymers, we identify a previously unexplored class of
self-similar aging. The network undergoes ultra-slow coarsening characterized by a logarithmically growing
mesh size, L(t) ~ Int, which governs the spatial organization, cohesive and bending energies, and the aging
dynamics of the system. This single time-dependent length scale defines an internal clock, giving rise to spatio-
temporal self-similarity of both structure and dynamics — offering a perspective on aging in soft and disordered

materials.

Aging in polymeric systems is a compelling but ill-
understood phenomenon that plays a crucial role for mate-
rial properties and practical applications [1-3]. Increasing re-
laxation times due to aging lead to increasing creep compli-
ance in amorphous polymers [1] and increasing storage mod-
uli for cellulose suspensions [4], protein-based biopolymeric
gels [5], or cytoskeletal networks [6]. Here, we explore phys-
ical aging in reversibly crosslinked semiflexible polymer net-
works that results from spontaneous relaxation processes af-
ter system preparation in a non-equilibrium initial state, e.g.
quenching from a high to a low-temperature phase. Aging
systems fail to reach equilibrium on experimental time scales
and are therefore non-ergodic, but different polymeric systems
show universal characteristics with rather similar mechanical
properties during aging [1]. Corresponding observations have
been made in glassy and amorphous systems [7, 8], for which
common mechanisms in terms of power-law waiting times
have been proposed [9, 10]. In particular, the weak-ergodicity
breaking hypothesis allows a simplified description of aging
dynamics in terms of a scaling function. While this hypothesis
and the scaling assumption have been tested for several glassy
systems [7, 11-14], only few studies have reported such an
analysis for aging polymers [15].

For a large class of systems, aging can be related to a grow-
ing length scale due to coarsening. As predicted theoretically,
spinodal decomposition leads to power-law coarsening [16].
In this context, self-similar coarsening of two-phase mixtures
[17] and network-forming systems [18] have recently been
studied. For non-disordered systems like ferromagnetic do-
mains, power-law growth can be related to so-called simple
aging [7, 19]. For disordered systems on the other hand,
thermally activated dynamics suggests a slow, logarithmically
growing length scale L(t) ~ (Int)!/¥ with positive exponent
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1 [20]. While previous studies found indications for power-
law growth, it has been argued that initial transients may mask
a crossover to slower growth at later times [13]. Logarith-
mically slow coarsening has so far been reported only for a
few systems, such as a frustrated Ising model [21], crumpled
sheets [22], and physically crosslinked networks formed by
semiflexible polymers [23].

Here, we consider the latter polymeric system: a generic
bead-spring model of 1000 interacting chains, each consist-
ing of 30 beads, including cohesive energy F.,n, = 1.4 and
bending stiffness k € {20,50} (ensuring the formation of a
percolated network), and carefully study its aging properties
at fixed temperature 7' = 1 and number density p = 0.05 (in
reduced units) via molecular dynamics simulation. At startup,
all semiflexible chains are placed randomly without overlap.
Ensemble averages are performed over 20 independent real-
izations of the system. Details of the model and simulations
are available in the End Matter section. Self-similar coars-
ening in these networks we established already in our previ-
ous work [23], showing that network structures at different
times are statistically identical when scaled with the coarsen-
ing length L(¢). Here, we study the resulting aging effects and
elucidate the role of L(t) for dynamic properties.

One-time quantities: logarithmic coarsening— Thermody-
namic quantities like the bending energy (e,) and cohesive
energy (epair) per particle are one-time quantities that can be
defined using a single particle configuration only. While such
quantities are time-independent in stationary states, we ob-
serve decreasing values of e, and ey, With increasing waiting
time t,, since system preparation, indicating ongoing relax-
ation processes (see Fig. in Supplemental Material [24]).
Most importantly, these processes are found to become slower
and slower as the system ages, such that no stationary state is
reached even for very long simulation times (as discussed be-
low).

For our model system, the relaxation processes reflected in
decreasing values of e, and ep,;; correspond to chains becom-
ing straighter and locally more dense. These processes are
related to structural changes within the network which can be
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FIG. 1. Mean filament length Ly vs. waiting time ¢, > t, for
x = 50. The black-yellow line shows Eq. (1) with a = 0.74 and
to = 0.0012. Inset: Mean number of clusters vs. ¢, (particles that
are bonded via permanent or temporary bonds belong to the same
cluster, as in [23]). Snapshots show two-dimensional projections at
the respective waiting times t,. Each chain has its own color.

monitored e.g. by the mean filament length L which we cal-
culate from the skeleton network [23] as the mean contour
length of edges connecting the skeleton nodes. Figure | shows
the extremely slow increase of L; with increasing waiting
time t,, once a single percolated cluster has been established
at t, ~ 103 (inset). Its time evolution can be described for
both « to a very good approximation by a logarithmic growth
law,

Ly(tw) = aln(ty/to), (1)

where £y denotes a microscopic reference time. Snapshots of
one sample for selected waiting times ¢y, are also shown in
Fig. 1. They illustrate the coarsening network.

Besides the filament length L ¢, several other lengths can be
used to characterize the network, such as the mean filament
diameter dy, the mean pore size r,, the persistence length
¢y, and the mean weighted and un-weighted chord lengths ¢4
and [q, respectively, that measure the distance between two
consecutive network-pore interfaces. Details on the defini-
tion of these quantities and their numerical calculation can
be found in Ref. [23]. Same as the filament length L, the
quantities dy, 7y, £, and 1,11 also show logarithmically slow
growth. What is more, the evolution of the network character-
istic lengths and pair and bending energies epqir, €, all follow
that of the filament length. Figure 6 shows an approximate
power-law relation between all these characteristic network
lengths. Therefore, the characteristic sizes of the network dur-
ing the self-similar coarsening are all controlled by the loga-
rithmically growing filament length.

Two-time correlation functions and aging — In experiments
as well as in simulations, length-scale dependent relaxation
is typically studied via the incoherent scattering function.
To account for the waiting-time dependence of the aging
system, we monitor a generalized definition of its self-part,
Coltt) = Ny S50 {exp (i - [y (b + £) — 15 (1)),
where IV, denotes the total number of beads, r; their un-
wrapped positions and angular brackets represent ensemble

ty 2 tps
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FIG. 2. (a) Self-part of the incoherent scattering function, Cy (¢, tw),
vs. time ¢ on a logarithmic scale for ¢ = 1 and k = 50. Different
values of the waiting time ¢\, > t,, are color coded (see colorbar). (b)
Same quantity as shown in (a) with the same color code but plotted
vs Ly(t+tw)/Ls(tw). The wave vector g increases from top to bot-
tom as ¢ = 0.05,0.1,0.2,0.3,0.5,1.0. (c) The MSD A(t, tw) vs.
time ¢ on a double-logarithmic scale (linear plot in Fig. [24]) for
different waiting times (see colorbar). (d) Same quantity as shown
in (c) with the same color code but plotted vs. the ratio of the corre-
sponding filament lengths Ly (t + ¢w)/Ly(tw).

averages for fixed ty, [11, 12]. For isotropic systems, C; de-
pends only on the magnitude g of the scattering vector q.
While time-translational invariance of equilibrium dynamics
ensures that C; depends only on the time difference ¢, this is
no longer the case for aging systems. In fact, the waiting time
tw has been identified as the most relevant material parameter
in the aging regime of amorphous polymers [1].

Figure 2-a shows Cj as a function of ¢ for different waiting
times t,, (color coded). Relaxations on length scales corre-
sponding to ¢ = 1 are mainly completed within the time win-
dow of our simulations. We note, however, that this is not the
case for larger length scales corresponding e.g. to ¢ = 0.2 (see
Fig. S3 [24]). In addition, Fig. 2-a shows significantly slower
relaxation with increasing waiting time t,,. This so-called dy-
namic slowing down with increasing system age is a typical
fingerprint of aging systems. Figures 2-a and S3 [24] suggest
a two-step relaxation, where the late-stage relaxation sets in
later the larger t,, and the initial relaxation gets suppressed at
large length scales. Such two-step relaxation is observed in
polymer gels [25] and various amorphous systems [8, 26].

In the weak-ergodicity breaking scenario for glassy sys-
tems, memory of initial conditions is gradually lost such that
two-time correlation functions obey a dynamic scaling rela-
tion [7, 11, 12],

Cylt,ty) = C(t) + C2(h(t + tw) /h(tw)).  (2)
The ansatz (2) with the short-time behavior C;h"”(t) inde-
pendent of ¢, is in agreement with observations that fast ini-
tial relaxation in polymers is unaffected by system age [1],

14 broadly consistent with Fig. 2-a. The second term, C¢*¢, de-
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scribes the long-time aging dynamics in terms of a mono-
tonically increasing scaling function h(t) that reparameterizes
time. Different categories of aging systems have been found
to share the same scaling function. This universality in ag-
ing is not well understood at present [19]. Ferromagnetic do-
main growth and certain spin glasses show power-law aging,
whereas logarithmic aging is predicted by the droplet model of
amorphous systems, with some indications seen e.g. in molec-
ular dynamics simulations of a simple glass former [12].

For aging in spin glasses and liquid-vapor phase separation,
the scaling function i was chosen as a dynamical correlation
length and mean domain size, respectively [13, 27]. Since
we have already established that coarsening in this system is
governed by a single length scale, we here use the mean fil-
ament length as scaling variable, h(t) = Ly(t). Figure 2-b
shows the same data as Fig. 2-a together with data for addi-
tional ¢ vectors, but plotted vs. the ratio of the scaling vari-
able Ly (tw + t)/Ls(ty) according to Eq. (2). We observe a
very good data collapse for both values of the bending stiff-
ness (k = 20 shown in Fig. [24]) and all wave vectors
q < 0.5 investigated. Therefore, the filament length indeed
serves as a scaling variable for aging, such that the self-part
of the intermediate scattering function can be expressed as
C¥(t,tw) ~ exp{ag[l — Ly(tw +1t)/Lys(ty)]}, where a,
increases near-quadratically with ¢q. The quality of data col-
lapse worsens for ¢ 2 1, which corresponds roughly to dis-
tances smaller than the filament diameter [23].

~
~

Aging and diffusion— While diffusion and the mean-square
displacement (MSD) are routinely reported for equilibrium
and nonequilibrium systems to investigate their dynamical be-
havior, aging effects on the diffusive behavior are often ig-
nored. Some notable exceptions are experiments on aging
colloidal glasses [28—31] and tracer particles embedded in ag-
ing polymer networks [32]. To capture the waiting-time de-
pendence, we employ a generalized definition of the MSD,
At tw) = Nyt 3000 ([t + ) — 15(t)]2) [28, 33]. We
extracted A as a function of ¢ for different (color coded) wait-
ing times t,, (Fig. 2-c). All curves are found to coincide in the
ballistic regime for short times, ¢ < 10~!. Consistent with the
dynamic slowing down (Fig. 2-a), we find that A decreases
with increasing t,, for fixed ¢ > 10°. In addition, we observe
the build-up of an intermediate plateau with increasing wait-
ing times (Fig. 2-c). The intermediate plateau in the MSD
is typical for many complex and amorphous systems [26, 34]
and reflects a two-step relaxation mechanism (wriggling/rup-
ture transition) already seen from C,.

Although the dynamic scaling relation (2) was originally
suggested for other quantities, Ly can still be used as scal-
ing variable for A, as demonstrated by the good data col-
lapse in Fig. 2-d for a considerable range of ty, values. In
particular, we find an approximate linear relation, A(¢,ty)
[Ly(tw +t)/L¢(tw) — 1], which can be rationalized from the
low-g expansion of Cy, i.e., Cy = 1 — ¢*A(t, ty,) /6 + O(q*).

Aging and growing relaxation time— To better quantify the
dynamic slowing down seen in Fig. 2, we extract character-
istic relaxation times from fits of the intermediate scattering

N
2

FIG. 3. (a) The relaxation times 7, and 7;, respectively, determined
from Eq. (3) versus ty for & = 50 and different ¢ > 0.2 (see color-
bar). (b) The same data are shown versus ¢ and different ¢, < 2Xx 10°
(see colorbar). As before, data for ¢ty < ¢, are shown in dark gray.

function (Fig. 2-a) to the so-called power-ML function

Cylt,tw) = B7 (= [t/7(ta))). 3
The Mittag-Leffler (ML) function with parameter 3 is defined
by Es(z) = >_oo 2" /T(1+Bn) with I'(z) the Gamma func-
tion. The quantities @ = a(ty), 5 = B(tw) with0 < g < 1
are treated as fitting parameters in the power-ML function
(3), together with the waiting-time dependent characteristic
relaxation time 7, (ty). We found the quality of these fits to
be very good over the whole parameter range studied, with
some deviations only for intermediate ¢ values [23]. Equa-
tion (3) reduces to exp [—(t/74(tw))”] for times ¢ < 7,. Such
stretched-exponential is often used to describe relaxation in
complex and amorphous systems, including physical polymer
gels [25, 35, 36]. The stretched-exponential time 7, is related
to 74 by 7/ = [/ B2L(B)]M P .

Figure 3 shows the effect of ¢,, and ¢ on the characteristic
relaxation times 7, and 7;. They both increase with increas-
ing ty, as expected for aging systems. This increase occurs
after the network has formed, ¢, 2 ¢,, and is particularly
pronounced for small ¢ < 2. While the relaxation time 7,
associated with the stretched-exponential shows a power-law
Tq ~ g7 for small ¢ values, a signature frequently reported
for several amorphous and network-forming systems [35-37],
the relaxation time 7, of the power-ML function approaches
a plateau for decreasing values of g. We find that the plateau
is reached for ¢ values corresponding to length scales larger
than the filament diameter, ¢ < 0.05 (Fig. 3). The zero-q
plateau values of relaxation times 7 increase strongly with
tw. We note that these result depend only weakly on the bend-
ing stiffness .

The qualitatively different behavior of 7, and Tq’ for small
q deserves further comments. First, T(; is the characteristic
relaxation time entering the power-ML function (3) and there-
fore the primary time scale, at least within this family of fit
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FIG. 4. The large-scale relaxation time 7¢, (full symbols) obtained
from Cy(t, tw) and the separating time 75 for coarsening (open sym-
bols) obtained from L s (¢ ) as function of ¢,, on a double-logarithmic
scale.

functions. More importantly, 7, is determined from C, for
times t < T(;, where the network remains effectively frozen.
Therefore, values 7, > T; appearing for low ¢ should be in-
terpreted very carefully due to large-scale network relaxation,
which is captured by 7;. In coarsening systems, it has been
argued that relaxations on scales larger than the domain size
are irrelevant or inactive [7, 17]. This argument goes together
nicely with the leveling off of Tq’ for low ¢ seen in Fig.

To further investigate the links between aging and coarsen-
ing dynamics we consider the separating time scale for coars-
ening, 7, = Ly /L t» where Ly denotes the time derivative
of Ly [7]. General arguments suggest that domains are basi-
cally frozen-in for times ¢, < 75(ty) and substantial coars-
ening proceeds only for times larger than 7,. According to
Eq. (1), the separating time scale increases with system age
as s A ty In(ty/to). We find (Fig. 4) that 7 and the large-
scale structural relaxation time 7 show a very similar increase
with waiting time ¢,,, emphasizing the strong link between ag-
ing and coarsening. This observation holds for both values of
bending stiffness investigated, see Fig. S6-d [24].

Theoretical underpinnings— The droplet theory of glasses
[20, 38], though developed for disordered systems, may pro-
vide a useful framework for understanding some of our main
findings and in particular superuniversality of aging in semi-
flexible networks without quenched disorder. If coarsening
proceeds mainly via filament breakage, typical activation en-
ergies scale as Fpreax ~ d?/ Yo~ Ljﬁ, where the second
proportionality follows from self-similarity, see Fig. 6. Cru-
cially, the droplet theory assumes thermally activated relax-
ation, leading to filament breaking time scaling as Tpreax ~
exp(TL? /T') with a constant Y. As breakage governs struc-
tural relaxation, Tyreax ~ tw, the characteristic length grows
as Ly ~ (Inty)"/¥. We independently verify a near-linear
growth of relaxation times with age from a network analysis
and the change in the number of filaments, which also pre-
dicts Tpreax to be proportional to 7y (Fig. [24]). Figure

suggests ¢ ~ 1. Bouchaud further proposed to define a
‘glass length’ L, in analogy to the glass transition tempera-
ture through the relation TL;P = AT [39]. For our system
we obtain L, =~ 26 in Sec. [24], meaning networks with
filament lengths larger than L, cannot be equilibrated within
a reasonable time frame. This length is within a factor of two
of our final configurations (still much smaller than our system

NN
©® @
= o

N
®
1S}

size).

Concluding remarks— Despite lacking quenched disor-
der, we here demonstrate that semiflexible polymer networks
largely obey the predictions of the droplet model of glasses,
including logarithmic domain growth and superuniversality
of aging [20, 38]. While determining domains in amorphous
systems is often difficult, the networks under study here are
defined by a single length scale L, which we choose as the
filament length L [23]. Since filaments become longer and
thicker with increasing waiting time ¢, breakage events be-
come more and more rare as the system ages, slowing down
coarsening. The resulting logarithmic, self-similar coarsening
goes together with self-similar aging dynamics. Consistent
with the notion of superuniversality predicted by the droplet
model of glasses, we find the growing L s to serve as a scaling
function for the aging dynamics not only for the MSD, but also
for the intermediate scattering function for any g-value below
the filament thickness. Within the network-forming regime,
these findings do not depend on the specific value of the bend-
ing stiffness. Note that the filament length is also the cru-
cial ingredient in theories of semiflexible polymer networks
[40, 41]. It remains to be seen whether mechanical properties
are governed by L as well.

Contrary to the essentially athermal, stress-induced relax-
ation advocated for other polymer gels that show anomalous
aging [35, 37], our results better align with arguments of lin-
ear growth of free energy barriers with the size of clusters
that have been identified as a key requirement for logarith-
mic coarsening [21, 22]. One can argue that the logarithmic
growth law is rather robust since the dynamics is hierarchical
[7, 17], i.e. driven by relaxation on length scales up to Ly,
whereas length scales larger than Ly are mostly inactive. This
argument is supported by the characteristic relaxation times
7'; approaching a plateau value for low ¢ (Fig. 3) and showing
a similar waiting-time dependence as the coarsening time 7.

Borrowing the notion of ‘time is length’ from a study of
aging in the Edwards-Anderson spin glass model [42], we
find that the internal time and effective age of the network
systems under study can be interpreted in terms of the fila-
ment length. That L encodes the effective age of the sys-
tem provides a convenient way of studying aging dynamics in
semiflexible polymer networks and glassy systems, but could
also open a range of practical applications, e.g. with regards
to memory and storage. Our study could be relevant for self-
assembling biological systems forming fibrous networks such
as those involved in the cytoskeleton [40], which can show
significant aging effects [6, 43]. Our model might also con-
tribute to ongoing research on pathological protein aggrega-
tion into fibrous networks, linked to some neurodegenerative
diseases and cancer [44].
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END MATTER
A. Model details and cohesive energy

The model and its implementation using LAMMPS [45] had
been described in detail in Ref. [23]. All multibead, semi-
flexible chains are initially placed without overlap in a cubic
box with periodic boundary conditions at bead number den-
sity p = 0.05. Lennard-Jones (LJ) units are used through-
out. Permanent connectivity along a chain is ensured through
the finitely extensible nonlinear elastic (FENE) potential [46],
Ureng(b) = —£R3In[1 — (b/Ro)?], with parameters k = 30
and Ry = 1.5, where b denotes the bond length. In ad-
dition, all beads interact through a truncated LJ potential,
ULy(r) = dep(r=12 —r=% —r712 4 76 for r < r.. For
permanently bonded neighbors, the parameters are chosen as
e, = 1 and r. = 2/6. For nonbonded pairs, we here em-
ploy €, = 3 and . = 1.359. Whenever two nonbonded beads
approach within r., they can be regarded as forming a tempo-
rary, reversible bond. The corresponding cohesion energy is
defined by E.on, = (2 — 7%)2¢,/r!2 = 1.4 [23]. Chain stiff-
ness is controlled through a bending potential acting on con-
secutive triplets of bonded beads [47], Upena(6) Kcos 0,
where « is the bending modulus and 6 the bond angle. A
schematic representation of the model is provided in Fig. 5-a,
illustrating the FENE bonds, LJ interactions, and the defini-
tion of cohesive energy. Both permanent (FENE) and tempo-
rary (LJ-based) bonds are indicated. Figure 5-b further high-
lights geometric measures used for characterizing the emerg-
ing filamentous networks, such as L¢, dy, junctions, and pore
sizes, which we extract from the network’s skeleton and sur-
face [23]. The solvent is treated implicitly. Its quality is effec-
tively encoded in the cohesive energy Fco, while dynamics
are modeled in the free-draining approximation by including
frictional forces on each bead. A Langevin thermostat main-
tains a constant temperature 7' = 1.

B. Network characteristic lengths

Our systems show spatio-temporal self-similarity in the
sense that not only structural quantities at different times are
related by the coarsening length L(t) as in self-similar coars-
ening [17, 18, 23]. Also dynamic quantities like Cy (¢, tw)
uniquely depend on the ratio of lengths L(t + ty)/L(tw),
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FIG. 5. (a) Illustration of the potentials governing the bead—spring
chains. Cohesion energy Fcon is directly related to the cutoff dis-
tance r., which determines temporary reversible bonds in addition to
the permanent FENE bonds. Inset: FENE (dashed black), LJ (blue),
and combined potentials (black). (b) Geometric network descriptors
based on the polymer skeleton (thinning algorithm), including strand
length, thickness, junctions, chord lengths, and pore sizes. Reprinted
with permission from [23].

irrespective of the age of the system, ty. See Figs. 2-b,d
where we choose the filament length as the coarsening length,
L = Ly. These dynamical quantities thus depend uniquely
also on In[L(t + ty)/L(ty)]. Besides the filament length L,
the percolated networks can be characterized by several other
characteristic lengths L € {¢1,dy, £, 11 }. In Fig. 6, we show
that these length scales behave as L(ty) oc L%(ty) with a
near-constant, L-dependent exponent v, which is (apart from
£,,) sensitive to the definition of the material’s surface. Since
In[L(t + tw)/L(tw)] = vIn[Ls(t + tw)/Ls(tw)], these quan-
tities can alternatively be expressed as functions of the ratio of
L instead of L. Therefore, any of these lengths can in princi-
ple be used to characterize the aging dynamics of the network.
We choose L due to its robust definition, good statistics, and
its common use in studies of network properties.
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FIG. 6. Characteristic lengths L € {¢;,,¢1,l1,ds} vs. Ly (in the
course of ty) in double-logarithmic representation for (a) kK = 20
and (b) x = 50. The exponents v in L oc L’ have been added to the

,, power-law fits shown as straight lines.

C. Power-ML fits

Shown in Fig. 7 are fits of the intermediate scattering func-
tion Cy (¢, ty) to the power-ML function (3). The marked dif-
ference between short (open circles) and long (full circles)
waiting times illustrate strong aging effects with dynamic
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s20 slowing down. Results for different ¢ values can be distin-
s30 guished by the color code. We observe that fits overall rep-
ss1 resent the simulation data very well over the whole time win-
s32 dow spanning six orders of magnitude, with the exception of
ses intermediate ¢ values for long waiting times where fits over-
s4 estimate C at intermediate .

FIG. 7. Incoherent scattering. The time decay of the self part of
the intermediate scattering function, C (¢, tw) for selected g-values
as indicated by color, from ¢ = 1072 (blue) to ¢ = 1 (red) for (a)
# = 20 and (b) k = 50. Open and closed circles correspond to data
for ty = 0 and t,, = 10°, respectively. All lines are fits to the power-
ML function (3). Panel (b) adapted with permission from [23].
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S-I.  COARSENING

The mean pair and bending energies per particle, ep,; and
eq, respectively, as a function of the waiting time ¢y, since
system preparation are shown in Fig. S1. The slow decrease
of these quantities indicates ongoing relaxation processes dur-
ing the whole simulation time window, with no indications of
reaching a stationary state.

In the main paper, we found evidence for a logarithmic
growth of the mean filament length L, with waiting time %,
(Fig. 1). Here, we show further characteristic lengths of the

€pair

10° 10 10° 108 108 10 10° 10°

FIG. S1. (a) Pair energy per bead e and (b) bending energy per
bead e, both as a function of waiting time ¢\ on a semi-logarithmic
scale for k = 50 (red) and k = 20 (blue).

35 35
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FIG. S2. Characteristic quantities of the network are shown para-
metrically versus Ly for different waiting times ¢y and (a) k = 50
and (b) kK = 20. Displayed are the pore size 7, local persistence
length £,, mean weighted and unweighted chord length ¢; and [;,
respectively, mean filament diameter dy, negative pair energy —epair
per particle.
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network together with the mean pair energy per particle (Fig.

). These quantities depend on the waiting time only via
L (tw), reflecting the temporal self-similarity of the network.
In particular, all the characteristic network lengths shown in
Fig. 52 grow with Ly as a power law (see Fig. 0).

S-II. RELAXATION DYNAMICS

The waiting-time dependent self-part of the intermediate
scattering function,

Cultta) = 3 D (ep i [yt -+ ) — 5]}

j=1

iso 1 Ne /sin(qlr; (t + ty) — rj(tw)|)>
R Nb ]; < q|rj(t + tw) — rj(tw)| (S—l)

as a function of ¢ for k = 20, 50, ¢ = 0.2, 2 and various values
of t, is shown in Fig. S3. We observe a very similar behavior
for bending rigidity £ = 20 compared to x = 50. While Cj,
decays to zero over the simulation time window for ¢ = 2
(and ¢ = 1, see Fig. 2-a), a much slower decay is found for
q = 0.2. Figure S3 also shows the severe slowing down of
relaxation with increasing waiting time t,, irrespective of the
value of x and q.

S-III. AGING

Figure S4-a,c shows the waiting-time dependence of C, for
g = 0.1 and of the mean-square displacement A, respectively,
for bending stiffness x = 20. The corresponding scaling plots
versus the relative filament length are given by Fig. S4-b,d.
The behavior of C;; and A is found to be very similar to the
case k£ = 50 shown in Fig. 2 in the main text.

Figure S5 shows the waiting-time dependence of the mean-
square displacement already displayed in Figs. 2-c and S4-c,
but this time on a linear scale. This representation gives more
weight to the data mainly contributing to the master curves in
Figs. 2-d and S4-d.
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FIG. S3. The self-part of the incoherent scattering function
Cq(t, tw), as a function of time ¢ on a logarithmic scale for (a,b)
x = 50 and (c,d) k = 20. (a,c) Left and (b,d) right panels corre-
spond to wave vectors with magnitude ¢ = 2 and ¢ = 0.2, respec-
tively. In each panel, different values of the waiting time ¢, are color
coded (see colorbar). Gray curves correspond to early times t < t,
when a percolating network has not yet formed.
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FIG. S4. Same as Fig. 2, but for k = 20.

S-IV. RELAXATION TIMES

We evaluated the cumulative number of filament rupture
events 7, since a percolating network is formed at time ¢,
(Fig. S6-a) via n,(t,t,) = Nf(t,) — Ng(t + tp), where the
number of filaments N at a given time is determined from
our skeleton analysis (for details see [23]). The number of
filaments Ny scales with L “ with ¢ ~ 3.6 as shown in Fig.

-b. If filaments were perfectly cylindrical, L strictly pro-
portional to d ¢, and the number density inside filaments a con-
stant, one would expect to find Ny o LJ?B. For the more

flexible chains (v = 20), small deviations from the LJTC scal-
ing are visible for Ly > 16, corresponding to ¢, > 5 x 10°

(within the same t,, regime, also Eq. (1) does not reproduce

log,(t,) log,(t,)
200 . 200 .

(a) 55
150 150

Alt, ty)
A(:t“)

35 35
0 3 0 3
0 0.5 1 1.5 2 0 0.5 1 15 2
t x10° t x10°
FIG. S5. Same as Fig. 2-c and Fig. S4-c, but in different, linear

representation for (a) x = 50 and (b) k = 20.

the x = 20 data perfectly). With the number of filaments
at hand, we define a mean breakage time of filaments as
Toreak =~ —Ny /Ny = Ly/cLy = 7y/c. Figure S6-c,d shows
Threak together with the large-scale relaxation time 7, and the
separating time for coarsening 7, = Ly /L ¢ for K = 50 and
Kk = 20, respectively. We observe that all three relaxation
times grow with ¢y, in a very similar manner. In addition,
Threak = tw, confirming phenomenological arguments given
within the droplet theory in the main text.

Combining the relation Ty =~ ty with the logarithmic
growth of the filament length, Eq. (1), we find Tpreax ~
toexp(Lys/a). The ‘glass length’ L, proposed by Bouchaud
[39] can be defined by Tyreak = toe™ with to a microscopic
relaxation time. Identifying ¢y here with the microscopic ref-
erence time occurring in Eq. (1), we find the glass length to
be given by L, = a.A. Using the value A = 35 proposed in
[39] and a = 0.74 from the fit in Fig. | we find for our system
Ly =~ 26.
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FIG. S6. (a) Cumulative number of filament rupture events

nr(t,tp) = Ny(tp) — Nf(t + tp) measured from the skeleton be-
tween ¢, = 1000 and ¢, +¢ for both . (b) Mean number of filaments
Ny vs. mean filament length Ly accompanied by fitted straight
lines: Ny ~ (L;/64.6)73%% (x = 20) and Ny = (L;/66.2)~3%3
(k = 50). (c) Manuscript Fig. for K = 50 with Tyreax (diamonds) in
addition. (d) Same as panel (c) but for Kk = 20.



	Time is length in self-similar logarithmic aging of physically crosslinked semiflexible polymer networks 
	Abstract
	References
	End Matter
	Model details and cohesive energy
	Network characteristic lengths
	Power-ML fits


	MidnightBlueSupplemental Information to Time is length in self-similar logarithmic aging of physically crosslinked semiflexible polymer networks 
	Coarsening
	Relaxation dynamics
	Aging
	Relaxation times


