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The Baranyi growth model combined with the Ratkowsky secondary model (Baranyi-Ratkowsky hereafter) has
demonstrated their reliability for describing microbial growth as a function of temperature. However, these
models are based on empirical parameters that must be estimated from data, so robustness depends on the
experimental design and the model fitting approach. This study applies a rigorous statistical analysis based on
Information Theory and numerical simulations to provide clear guidelines on the best model fitting approaches
and experimental designs for the Baranyi-Ratkowsky model.

First, the study concludes that one-step fitting approaches result in lower parameter dispersion than two-steps
approaches (for the simulated conditions: 44 %, 85 % and 96 % lower for b, logCy and Tpin, respectively, no
reduction for 10gN., and logNp). Numerical simulations demonstrate that, unlike for two-steps methods, the
error of regression from the one-step approach is a realistic estimate of parameter uncertainty/variability,
strengthening the case for this method. This motivates restricting the calculation of Optimal Experiment Designs
(OEDs) for this approach only. The study clearly demonstrates that the experimental design has a clear impact on
parameter dispersion. However, OEDs tend to be impractical, as they focus on conditions that require long
experimental runs. Accordingly, a penalty term is introduced in OED definition, resulting in two strategies: to
lower the number of experiments at lower temperatures, and to terminate the experiments at lower temperatures
before reaching stationary phase. Based on this result, we propose a staggered experimental design that is
updated recursively (storage temperature and position of time points) until convergence. Considering that
isothermal experiments are still the gold standard in the field, future studies could greatly benefit from these
suggestions by minimizing the experimental effort needed to obtain robust estimates for the Baranyi-Ratkowsky
model.

1. Introduction

Mathematical models for the growth of bacterial populations are a
keystone of modern food science, being an important part of shelf life
estimation, precision fermentation or risk assessment (Balsa-Canto et al.,
2020; Lucero-Mejia et al., 2025; Possas et al., 2021; Rodriguez-Caturla
et al., 2023; Sanchez-Martin et al., 2025). The methodologies for the
development of growth models are defined by predictive microbiology,
which most often follows a two-steps approach (Perez-Rodriguez &
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Valero, 2012). First, primary models describe how microbial concen-
tration varies through time. Primary models have parameters that
depend on the environmental conditions (e.g., the specific growth rate
depends on temperature), a relationship that is described by secondary
models (Whiting & Buchanan, 1993).

The Baranyi growth model is probably the most popular primary
model for microbial growth. This model is based on dynamic hypotheses
that extend the classic first order kinetics to account for the lag and
stationary phases often observed in microbial populations (Baranyi &
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Roberts, 1994). The Baranyi growth model is often combined with the
Ratkowsky secondary growth model (Ratkowsky et al., 1982) to
describe the effect of the storage temperature on the maximum specific
growth rate (y,,,) for suboptimal temperatures. The combination of
both models is called the Baranyi-Ratkowsky model hereafter.

Like any empirical model, the Baranyi-Ratkowsky model has un-
known model parameters that must be estimated from experimental
data, usually consisting of a compilation of individual experiments
performed at constant temperature conditions. Although the use of dy-
namic experiments (where each experiment explores more than one
temperature) has been suggested (Huang, 2017a, 2020), this method-
ology is rather niche, probably due to experimental limitations and
higher mathematical complexity. Instead, the Baranyi-Ratkowsky
models is most often fitted to data obtained under isothermal condi-
tions, as acknowledged in ISO 23691.

Therefore, the goal of this study is to identify parameter estimation
strategies for the Baranyi-Ratkowsky model from isothermal data. This
is understood as those that provide the lowest parameter uncertainty
with the least experimental effort. Therefore, the study is based on the
assumption that model fitting approaches can be a source of parameter
uncertainty. A variety of approaches currently co-exist in the field, with
the most common one probably being two-steps estimation. Frist, pri-
mary models are fitted independently to the data obtained at each
temperature. Then, on a second step, secondary models are fitted to the
estimates of the primary model (the lag phase duration, A, and the
specific growth rate, y). Alternatively, primary and secondary models
can be estimated directly from the microbial concentrations observed
using nonlinear regression (Dolan et al., 2007; Huang, 2017b). Although
this increases the mathematical complexity of parameter estimation, it is
generally acknowledged to be more statistically robust (Cattani et al.,
2016; Fernandez et al., 1999).

This study uses a broader definition of “fitting approach” that con-
siders not just the fitting algorithm but also the experimental design.
This is motivated by previous studies showing that parameter uncer-
tainty can be reduced through more efficient designs. Those studies
often used model-based Optimal Experiment Designs (OED) (Balsa-
Canto et al., 2008) to identify the most informative experimental con-
ditions for a given model. This methodology is based on general as-
sumptions, so it applies to most dynamic models (Villaverde et al.,
2021), including growth models from predictive microbiology
(Akkermans et al., 2018; Bernaerts et al., 2000; Grijspeerdt & Vanrol-
leghem, 1999; Guillén et al., 2024; Rio et al., 2024).

Despite its broad application, no previous study has calculated OEDs
for the Baranyi-Ratkowsky model. This could be due to the optimization
of this model adding additional complexity, as the design space is two-
dimensional (combination of time and temperature), whereas the opti-
mization of primary models (sampling time), secondary models (storage
temperature) or dynamic experiments (temperature levels) is one-
dimensional.

Hence, this study calculates OEDs for the Baranyi-Ratkowsky model.
Please note that the calculation of OEDs for the one-step and two-steps
methods require a largely different mathematical approach. Therefore,
the study first compares the one-step and two-step approaches, to justify
the restriction of the calculation of OEDs to a single fitting method.
Then, the robustness of the different experimental designs (optimal or
not) is based on a simulated datasets (Garre et al., 2019). This has the
advantage of generating thousands of growth experiments that cannot
be distinguished from actual experimental data, providing a generally
more robust analysis of the statistical properties of the models than one
based on (perhaps cherry-picked) limited experimental data.
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2. Materials and methods
2.1. Model fitting approaches

2.1.1. Conventional (two-step) model fitting approach

The present study compares three different model fitting approaches.
In the “conventional” approach, the Baranyi primary model (Baranyi &
Roberts, 1994) is first fitted to the data obtained at each isothermal
temperature. The algebraic solution of this model for constant temper-
ature is shown in Eq. (1), showing that this model predicts a sigmoidal
growth curve parameterized by four parameters: Ny (the initial micro-
bial concentration), Nimg, (the maximum microbial concentration), y,,,,
(the maximum specific growth rate during the exponential phase) and 4
(the lag phase duration).

efmaxAt) _ 1
InN = InN, +,umxA(t)—ln(1 +7> (@)

elnNmﬂx—lnNg

Alty=t—A+ Lln(l — et g Hnact=0) )
max

Once primary models have been fitted (one per temperature), sec-
ondary models describe the impact of temperature changes in either y,,,,
or 1. The relationship between y,,,. and temperature (T) was described
using the sub-optimal Ratkowsky model (Ratkowsky et al., 1982), which
assumes a linear relationship between T and . /ji,,,, with slope b (Eq. 2).
This model also introduces a theoretical minimum temperature for
growth (Tpn)-

VHmax = b(T - Tmin); T > Tiin (2)

VHmae = 0; otherwise

Based on previous knowledge on the multiplication A-u remaining
constant between replications of the same experiment (Amézquita et al.,
2005; Augustin et al., 2000; Jaloustre et al., 2011), a recent study
concluded that the only valid secondary model for 4 would be an
inverse-square root relation (Garre et al., 2025). This translates into the
secondary model shown in Eq. (3), where a; and b, are the intercept and
the slope of the regression line.

1
—=aq+bT 3
Va
Therefore, the conventional approach includes 6 parameters: Ny,
Ninax,b, Tmin,@; and b;,. To improve identifiability, parameters Ny and Ny,
have been log-transformed for model fitting.

2.1.2. Two-step fitting considering coupling between secondary models
The study by Garre et al. (2025), besides identifying the inverse-
square root relation for A also identified a link between both second-
ary models. Namely, the secondary model for 1 can be written as shown
in Eq. (4). Note that parameter T, appears in both secondary models
(Egs. 2 and 4). Furthermore, coefficient B is defined as per Eq. (5), which
also includes parameter b from the Ratkowsky model (Eq. 2). Therefore,
the secondary model for A only introduces a single parameter (Co;
related to the hypotheses for the lag phase in the Baranyi model).

1 1

ﬁ = 7E (Tf Tmin) (4)
ln<1 + Cio)
B=—73" ()

Hence, this approach (“two-steps” hereafter) is equivalent on its first
step to the conventional one, as it starts by fitting primary models to the
data obtained at each temperature. Then, instead of fitting independent
secondary models for A and y,,,,. it fits both secondary models (Egs. 2
and 5) at the same time by nonlinear regression. This results in a
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reduction of one parameter with respect to the conventional approach,
being defined by Ny, Npax, b, Tmin and Cy. For identifiability reasons,
parameter C, has been log-transformed for fitting, as well as
Ny and Nypgy.

2.1.3. One-step fitting approach

It is generally regarded that one-step fitting methods, where sec-
ondary models are estimated directly from the microbial concentrations
(i.e., without fitting the primary models in a separate step) are more
robust (Fernandez et al., 1999). Therefore, egs. (1), (2), (4) and (5) were
combined into Eq. (6). This allows the five model parameters (No,Nyqx,b,
Tmin and Cp) to be estimated directly from the values of N observed for
different combinations of t and T using non-linear regression (Garre
et al., 2023). For consistency with the other methods, parameters Cy,
Ny and Ny, were log-transformed for identifiability.

efmaxAlD) _ 1 )

InN = IDN() Jr/lmaxA(t) — 11'1(1 +m

(6)

1
At) =t—A+——In(1 — e #no’ 4 e Fmaxt-1))
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VHmax = b(T - Tmin)

1 1

== = T_Tmin

7 ¢ﬂ )
ln(l +Ci0)

B= b2

2.2. Optimal experiment design (OED)

2.2.1. Calculation of local sensitivity functions

Local sensitivity functions with respect to some parameter p; (sy;) are
defined as the partial derivative of the response (y; the log-microbial
concentration in this case) with respect to each model parameter (Eq.
7). For the Baranyi-Ratkowsky model, they are a function of the storage
time (t) and temperature (7).

Spi = % (t,T) 7)

The values of s, were estimated by finite differences using an
approach analogous to the one implemented in the FME package
(Soetaert & Petzoldt, 2010). For any value of t and T, the ideal response
is calculated using the Baranyi-Ratkowsky model (y(tj, Tx;p)). Then, a
small perturbation is introduced in the parameter p; (Ap; = p;-107%) and
microbial concentration is again calculated according to the Baranyi-
Ratkowsky model (y(t;, Tx;p + Ap;)). Then, the value of the local sensi-
tivity function for parameter p at (t;, Tx) can be approximated by the
difference in the microbial concentration divided by the magnitude of
the perturbation (Eq. 8).

¥(t, Ti;p + Api) — y (4, Tes )
AP

5 (8, Te) ~ ®

2.2.2. Determination of D-optimal experiment designs

OEDs were calculated based on the Fisher Information Matrix (FIM).
Under simplifying hypotheses (Balsa-Canto et al., 2008), the FIM for a
given experimental design can be calculated from the local sensitivity
functions evaluated at the sampling points (Eq. 9). In this equation,
(t;, Tx) represent each of the n sampling conditions. The term s(t;, Tx) is
the vector of local sensitivities (sy; (tj7 Tk)) calculated for each of the
unknown model parameters. Finally, Q is a weight matrix, which
Backspace|"] was defined as the identify matrix in this study.
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n
FIM =3 (50(6.T) )@ (56, T4) ) ©
i=1
Different criteria are available to maximize the FIM. Here we focus
on the D-criterion, which implies finding the combination of (4, Ty),
that maximizes the determinant of the FIM (Eq. 10). This is equivalent to
minimizing the volume of the confidence ellipsoid of the model pa-
rameters (de Aguiar et al., 1995).
max det(FIM) 10)

(47c),

Using the standard definition of the OED, each sampling condition
(t;, T) would be independent. This could result in optimal configura-
tions that test a large number of temperature values, something
impractical because it would require inoculations of different matrixes
that would be stored at different temperatures. Instead, reducing the
number of temperatures tested is often desirable.

Therefore, the elements of (&, Tx) were rewritten as shown in Eq. 11.
This formulation defines N individual growth experiments and n time
points per experiment. Accordingly, every time point i within an
experiment j (tj;) share the same temperature T;.

(Ti,tin, 12, tin), (Tos 21, ta2, ooy ton) s ooy (Tos tna BNz oo tvn) (A1)

An additional issue for the definition of the optimization problem is
the bounds for the experimental conditions. The temperature range was
defined between 6 and 37 °C (reasonable for vegetative bacteria).
However, this introduces complexity in the definition of bounds for the
maximum experimental duration, as a complete growth curve often
requires 24 h at 37 °C but several weeks at 6 °C. On preliminary cal-
culations, we defined an overall upper bound of 24,000 h and that
strategy failed to converge, most likely due to experiments at high
temperatures being on stationary phase (where local sensitivity func-
tions are flat) through most of the design space. Therefore, the optimi-
zation problem was reformulated, writing it in terms of the expected
microbial concentration without stationary phase (Ypounq;) defined in Eq.
12.

Yboundi = 1nIVO + (t - A(TI) )lumax(Tl) (12)

Hence, bounds were defined directly on Ypouna;, resulting on adaptive
upper bounds for t; depending on the temperature of the experiment.
Namely, an upper bound of 12 log CFU/g was defined, resulting in a
maximum duration equivalent to the one required to reach a concen-
tration 4 logs above logN,,, if there was no stationary phase. A lower
bound of —2 log CFU/g was used (as a lower bound of 0 log CFU/g
would introduce a lower limit at t; = 1). Then, for the calculation of the
FIM, conditions with t; < 0 were set as zero. This results in the optimi-
zation problem shown in Eq. (13).

maxdet(FIM) 13)

()’i‘Ti)
6 C<T <37CVi

— 2logCFU / € < Yoounai < 12l0gCFU / g Vi

2.2.3. Determination of D-optimal experiment designs with penalty
D-optimal experiments, although optimal from the point of view of
information theory, might be impractical. Particularly for microbial
growth, they tend to favor experiments with an excessively long dura-
tion. Hence, we followed an approach similar to Guillén et al. (2024),
introducing a penalty term in the optimization problem (Eq. 14), scaled
by a weight coefficient (¢).
maxdet(FIM) + ¢-P(t, T) 14

(6,T;)



A. Garre et al.

The penalty term is defined as the sum of the durations of each of the
N experiments in the design (Eq. 15). Note that this introduces a small
deviation with respect to Guillén et al. (2024), as that study focused on
secondary growth models, so each experiment was independent. Here,
we looked at both primary and secondary models. Therefore, each
experiment at the same temperature included several time points.
Accordingly, the duration of each experiment is defined by the highest
time point within the design (Eq. 15).

N
P(t,T) =) max(t, T;) (1s)
i

2.3. In-silico simulation of growth experiments

To evaluate the statistical properties of the different fitting strategies
(fitting approaches or experimental designs), an artificial dataset of
growth experiments was generated by numerical simulation, following a
methodology adapted from a previous study (Garre et al., 2019). The
numerical method assumes that the Baranyi-Ratkowsky model describes
the “true” response of the microbial population, and that the experi-
mental error (accounting for variability and uncertainty) introduces an
uncorrelated random error of mean zero and known variance on the
observed log-microbial concentration. The approach can be summarized
in the following steps:

For iin 1 tO Nexperiments:

1. For each temperature included in the design:

a. Calculate the value of y,, and 1 according to the secondary
models (Egs. 2 to 5).

b. Calculate the microbial concentration at each time point in the
design (10gNigeq;) based on the Baranyi primary model (Eq. 1).

c. Duplicate the ideal values according to the number of replicates.

d. Calculate the experimental error at each time point (¢;) by taking
random samples from a normal distribution with mean zero and
variance ‘leogN-

e. Calculate the “observation” as 10gNyps; = 10gNigear; + €i

As a demonstration, the following model parameters were used:
logNy = 2l0gCFU/g; 10gNmax = 8logCFU/g; b = 0.04h71; logCo = —4;
Tmin = 5 C. These values are based on the parameters estimated by
Garre et al. (2025), although Cy was reduced to have a more noticeable
lag phase. The study was repeated for different parameter values,
reaching the same conclusions from a qualitative point of view.

Supp. Fig. 1 illustrates the type of data generated for each iteration.
Independent researchers (experienced in growth modelling and from
other institutions) were unable to distinguish between simulated and
actual experimental data, therefore it was considered that those simu-
lations were representative of true scenarios. The main advantage of this
approach is that they allow the generation of a homogeneous dataset of
thousands of experiments, something that is rarely feasible by other
approaches, such as (systematic) literature review.

2.4. Computer implementation

Calculations were implemented in R version 4.2.3 (R Core Team,
2022) and are available from the GitHub page of one of the co-authors
(https://github.com/albgarre/robust-baranyi-ratkowsky). For both the
conventional and two-steps approach, primary models were fitted by
nonlinear regression (Bates & Watts, 2007) using the functions included
in biogrowth (Garre et al., 2023). For the conventional approach, the
secondary models were fitted by nonlinear regression using the func-
tions included in R. The algorithm for model fitting considering coupling
(both one-step and two-steps) were implemented in version 1.1 of bio-
growth (Garre et al., 2023) in the function fit coupled growth. This func-
tion uses nonlinear regression by the Levenberg-Marquardt algorithm
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supported by the functions included in FME (Soetaert & Petzoldt, 2010).

The optimization problems defining the OED and OED+penalty were
solved by the Enhanced Scatter Search algorithm (Egea et al., 2009),
using the implementation included in the MEIGO package (Egea et al.,
2014). The number of function evaluations was determined by checking
that the objective function had converged. Then, a local refinement by
the DHC algorithm was applied.

The weight coefficient, ¢, for the penalty function was defined iter-
atively. First, it was checked that a value of ¢ = 0 resulted in D-optimal
designs. Then, this parameter was increased until the aggregated time of
the optimal solution was close to the one of the uniform design. This
resulted in values of 5-10°, 1-107, 5-107 and 2-108 for designs with 6, 8,
10 and 12 experiments, respectively.

3. Results and discussion
3.1. Comparison between model fitting strategies

This study compares three different strategies for estimating the
parameters of the Baranyi-Ratkowsky model from a set of isothermal
experiments performed at different temperatures. The first approach
might be the gold standard in the field, where primary models are
independently fitted to the data obtained under each temperature. This
provides a table of primary model parameters (10gNy; logNpqy; 4 and 1)
for each temperature. On a second step, secondary models are fitted to
describe how temperature changes affect y and 4, providing estimates
for Tpin; b; a;; b,. The second approach follows the recommendations by
Garre et al. (2025), considering the link between the secondary models
for p and A. Accordingly, the secondary models would be described by
three parameters (Tpin; b; Co) instead of four like in the conventional
approach. In addition, a third approach considered in this study fits both
the primary and secondary models in a single step using nonlinear
regression, also considering the coupling of the secondary models.

Based on numerical simulations, we can conclude that the model
fitting strategy affects the robustness of the parameter estimates, in line
with previous studies (Cattani et al., 2016; Dolan et al., 2007; Fernandez
et al., 1999; Huang, 2020, Huang, 2017a). Fig. 1 illustrates the disper-
sion of the parameter estimates as a function of the number of experi-
ments (i.e., number of temperature levels included in the design) for the
three strategies, with Supp. Table 1 including summary indexes. Please
note that the number of model parameters differs between methods (e.
g., the conventional method does not fit Cy), and therefore the number
of boxes differs between facets.

As expected, increasing the number of experiments reduces the
dispersion of parameter estimates, with the conventional and two-step
methods being comparable in terms of dispersion. Although the
method that includes the coupling between secondary models results in
lower dispersion for b and Ty, this could be a numerical artefact, as the
numerical simulations include such link. The results show how the one-
step method would be more robust than two-step approaches. Particu-
larly, this method has the same precision as two-steps methods for pa-
rameters l0gNmq, and logNy, whereas parameters b, logCy and Tpin have
lower dispersion (44 %, 85 % and 96 % lower, respectively). This is
reasonable, as parameters 10gNnqx and logNy are linked to primary
models, whereas the other three are part of the secondary model
definition.

The lower dispersion of the parameters obtained using the one-step
approach is of great relevance for building growth models. The differ-
ences in parameter estimates obtained between independent experi-
ments can be attributed to two different sources: variability and
uncertainty. Predictive models must reflect the former, as it is an
inherent part of the microbial response, whereas uncertainty should be
minimized (Nauta, 2000). Currently, this is done by gathering additional
data and/or improving the experimental protocols to reduce experi-
mental error. However, the results presented in Fig. 1 clearly illustrate
that parameter uncertainty can be reduced by just using more robust
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Fig. 1. Illustration of the dispersion in parameter estimates (1000 simulated experiments per condition) as a function of the number of experiments (i.e., number of
different temperatures tested) and the model fitting approach.
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model fitting approaches (please note that the different methods are
fitted to the same simulated datasets). Therefore, this results in a
quantitative support to the general knowledge in the field about one-
step methods being more robust. Nonetheless, it must be underlined
that this conclusion is based on artificial data that was simulated
considering that the hypotheses of the Baranyi-Ratkowsky model are
true (including the coupling between both secondary models). Although
there is scientific evidence to support that assumption (e.g., the product
A-u or “work to be done” being constant between experiments), inde-
pendent empirical validation is still needed.

As mentioned above, variability and uncertainty are of high rele-
vance for predictive microbiology (den Besten et al., 2017). Therefore,
the ability to quantify them is an important aspect when assessing the
robustness of a parameter estimation method (Garre, Pielaat, et al.,
2022). Here we compare two possible approaches for uncertainty/
variability estimation. The first one is to repeat the experiment several
times, obtaining several values of the parameter estimates. Then, vari-
ability/uncertainty can be estimated from the standard deviation of the
model parameters. The second possibility consist in using the standard
error of regression to estimate the variance-covariance of the model
parameters, using this matrix to represent variability/uncertainty (e.g.,
see (Bates & Watts, 2007) for a detailed description of the calculations).

Fig. 2 summarizes the uncertainty estimates obtained for each
parameter as a function of the number of experiments. In every case,
parameter standard deviation decreases as the number of experiments
increases. This is reasonable, as additional data is expected to reduce
parameter uncertainty. The error of regression of the one-step method
(Fig. 2C) is very close to the standard deviation of most parameters, with
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the only exception being Tp,. Nevertheless, the standard deviation of
this parameter shows erratic behavior which is most likely due to poor
convergence. This implies that the standard error of regression for the
one-step method should be considered as a reliable method for esti-
mating parameter variability/uncertainty. In fact, it should be accoun-
ted to be more reliable than the standard deviation of parameter
estimates, as it appears to be more statistically robust (Fig. 2C implies
that a lower number of simulated experiments is required for
convergence).

On the other hand, the standard error of regression for both the
conventional and two-step fitting methods is far from the actual
parameter variability/uncertainty (Fig. 2A and B). This is most likely
due to two-step methods using only the parameter estimates of primary
models. Hence, parameter uncertainty in the primary model is not
accounted when fitting the secondary models, resulting in unreliable
estimates of parameter uncertainty/variability. In fact, the standard
error of regression for two-step methods is an entirely unrealistic esti-
mator of parameter variability and uncertainty. Instead of decreasing for
an increased number of experiments, this parameter remains mostly
constant. This is most likely due to the low statistical power of this es-
timate (e.g., the standard error from three temperatures is calculated on
a single degree of freedom). Hence, the standard error of regression
should generally be avoided as an estimate of variability/uncertainty in
two-step methods.

Parameter correlation is another common issue of empirical methods
that can depend on the fitting approach. Supp. Figs. 2-4 include the
parameter correlation estimated from the 1000 simulated experiments
according to each fitting method. Please note that logNy and 10gNypax
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have been excluded from the figures, as they have low correlations with
the other parameters. The conventional two-steps approach results in
high parameter correlation (supp. Fig. 2), as is well known for the
Baranyi-Ratkowsky model (Guillén et al., 2024; Rosso et al., 1993).
Introducing the coupling between both secondary models does not
resolve these identifiability issues (supp. Fig. 3). In fact, parameters
logCy and Tpn have almost-perfect correlation.

The one-step fitting approach does result in a reduction in parameter
correlation for parameter Ty, which has practically zero correlation
with b and logCy. This would increase the robustness of the estimates for
this parameter, especially in terms of uncertainty estimation. Moreover,
this would indicate that the correlation between those parameters is a
statistical artefact rather than a biological constraint, as it is dependent
on the fitting approach. On the other hand, the simulations still show
high parameter correlation between b and logCy, although values are
comparable to those obtained from the conventional two-steps
approach. Hence, the one-step model fitting approach should also be
favored to the conventional and two-steps methods based on arguments
related to parameter autocorrelation.

3.2. Comparison between experimental designs

3.2.1. Calculation of optimal experiment designs

The numerical results from the previous section demonstrate that
one-step methods are statistically more robust than the two-step ones for
fitting the Baranyi-Ratkowsky model. Therefore, considering that one-
step and two-steps methods require independent OED definitions, this
section focuses on the impact of different experimental designs when
fitting the models using the one-step method.

Local sensitivity functions are a useful way to qualitatively assess the
amount of information provided by an experimental design. In principle,
samples located at highest absolute values of the local sensitivity func-
tions contribute more towards parameter estimation than those located
in lower absolute local sensitivities (Soetaert & Petzoldt, 2010). As is
common in nonlinear models, the local sensitivity functions vary largely
between model parameters of the Baranyi-Ratkowsky model (supp.
Fig. 5). This implies that some areas of the design space are more
informative than others when estimating each parameter. As a pre-
liminary assessment, the most informative areas for logNy and 10gNyqx
take place during the lag and stationary phases, in line with previous
findings (Grijspeerdt & Vanrolleghem, 1999). On the other hand, the
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most informative areas for Ty;;; and b coincide at the transition between
exponential and stationary phase, whereas the maximum for logCy is
located at the middle of the exponential growth phase.

One of the most innovative aspects of this research with respect to
previous studies on OED for the Baranyi-Ratkowsky model (Grijspeerdt
& Vanrolleghem, 1999; Guillén et al., 2024; del Rio et al., 2024) is the
consideration of a two-dimensional design space that accounts for both
the storage time (primary model) and the storage temperature (sec-
ondary models). Accordingly, the OED must calculate local sensitivity
functions in two dimensions. The trend observed for isothermal condi-
tions remains when temperature changes, with the maximum of the
local sensitivity functions occurring at the same relative places within
the growth curve (supp. Fig. 6). It is of high importance that, under the
assumptions made, the value of the maximum local sensitivity does not
depend on temperature for parameters b,1ogCy,logNy andlogNqy. This
implies that temperature does not have a high influence on the esti-
mation of these parameters. The only exception is parameter Ty, whose
maximum local sensitivity increases for lower temperatures. Hence,
lower temperatures are favored when it comes to estimating this
parameter.

OEDs were first calculated by direct optimization of the determinant
of the FIM (D-optimal design). As illustrated in Fig. 3, the OED is focused
on the minimum (6 °C) and maximum (37 °C) temperatures of the design
space, with the same number of experiments at each temperature. This is
in line with previous studies following a similar methodology, where D-
optimal designs for linear (or quasi-linear) secondary models focused on
the extremes (Guillén et al., 2024; Penalver-Soto et al., 2019; del Rio
et al., 2024) because these points have the highest leverage. Within each
temperature, the sampling times concentrate in four areas: the begin-
ning of the lag phase, the beginning of the exponential phase, the end of
the exponential phase, and the stationary phase. This is also a common
result for OEDs, which tend to focus every sample in the most infor-
mative areas (Garre et al., 2018; Grijspeerdt & Vanrolleghem, 1999; Rio
et al., 2024). The position of the sampling points is similar to those
identified previously for the Baranyi primary model (Grijspeerdt &
Vanrolleghem, 1999), being close to the optima of the local sensitivity
functions (supp. Fig. 5-6). The calculations were repeated for a different
number of experiments (i.e., number of temperatures), obtaining similar
configurations (not shown).

Although the results of the OED are optimal from the point of view of
information theory, the focus on low temperatures might be impractical.
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As shown in Fig. 3, experiments at 6 °C would require a duration of
20,000 h (833.3 days), whereas experiments at 37 °C would be
completed in 20 h. Such long experiments involve additional challenges
that are unaccounted for by the OED, as already discussed at length
elsewhere (Guillén et al., 2024). For this reason, the OED was recalcu-
lated including a penalty function to reduce the duration of the
experiments.

The resulting design is illustrated in Fig. 3B (similar configurations
were calculated for a different number of experiments; not shown). By
comparing the design against the original one, we can identify that the
introduction of the penalty term in the optimization problem results in
two strategies to reduce the aggregated duration of the experiment.
First, the experimental design now favors the higher treatment tem-
perature (37 °C), including a single experiment at 6 °C (D-optimal so-
lutions had the same number of experiments at each extreme
temperature). This strategy could be anticipated, as these temperatures
are selected due to their high leverage on the secondary models for both
u and 4, therefore it is reasonable to favor one leverage point when a
penalty function is implemented.

The second strategy identified by the OED + penalty optimization is
more “creative”. Besides reducing the number of experiments at 6 °C,
the experimental design does not build a whole growth curve at that
temperature. Instead, the experiment is terminated before the transition
from exponential to stationary phase. This is due to sampling points in
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the stationary phase providing mostly information of 10gNyqx. As the
experiments at 37 °C already includes enough information to estimate
this parameter reliably (and it was assumed that logNy., was
temperature-independent), the optimization algorithm omits sampling
points in the stationary phase for the experiment at 6 °C, cutting the
duration of that experiment almost in half. As the experiment at 6 °C
requires by far the longest time, this results in a dramatic reduction in
the aggregated duration of the experimental design (supp. Fig. 7).

3.2.2. Precision of the (optimal) experimental designs

Fig. 4 compares the precision of each experimental design, expressed
as the expected relative error of each model parameter based on the
standard error of regression (as demonstrated in section 3.1, this index is
representative of parameter variability/uncertainty), with numerical
values included in supp. Table 2. The results for the uniform design are
as expected, with the number of growth experiments steadily increasing
the precision of the parameter estimates. Nonetheless, it is worth noting
that the rate of increase is parameter-dependent. Particularly, increasing
the number of experiments has a relatively low impact on Tp,. This can
be related to the local sensitivity functions (supp. Fig. 5-6), that have a
maximum for Tp, at the lowest temperature. As including additional
experiments in a uniform design only “fills up” intermediate points, their
contribution to the estimation of T,,;, is only minor, compared to the
other parameters whose maximum local sensitivity is not largely
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affected by temperature.

These numerical results are in line with expert knowledge in the
field, which underlines the need to perform experiments close to the
growth limit for a reliable estimation of Ty (Pinon et al.,, 2004).
Nonetheless, the numerical simulations presented here provide a theo-
retical basis for that recommendation, including quantitative estimates.
More interestingly, the approach presented here provides clear sugges-
tions on how to make growth experiments more efficient. The optimal
solution calculated by OED results in an increase in the precision of most
parameters (26 % reduction in standard error for b; 21 % for logCo; 23 %
for Tin). However, the OED actually reduces the precision of the logNy
estimate (24 % increase in standard error). This result is typical for D-
optimal designs where the optimality criterion minimizes the volume of
the confidence ellipsoids (Balsa-Canto et al., 2008). This can lead to
situations where the overall parameter uncertainty is reduced while
increasing the uncertainty of one particular parameter estimate (Guillén
et al., 2024). Nonetheless, logNy, might be the less critical parameter
when estimating growth curves (it is often closely controlled by the
experimenter), making a reduction in its precision practically irrelevant.

Despite its reduction in parameter uncertainty, the OED requires an
aggregated experiment duration much larger than the uniform one
(supp. Fig. 7), making it impractical. On the other hand, the aggregated
duration of the OED + penalty is comparable to the uniform design
(even being shorter for the case of six experiments) due to the focus on
the highest temperature (37 °C). As illustrated in Fig. 4, this has little
impact on the robustness of most parameter estimates with respect to the
OED. The only parameter with a noticeable lower precision is T;,n. Note
that, in this case, the precision has a sharp “jump” between six and eight
experiments. This is due to the OED + penalty configuration having one
experiment at 6 °C for six experiments and two between eight and
twelve experiments (Fig. 3).

Despite the OED + penalty having higher parameter uncertainty for
Tmin than the OED, the OED + penalty design provides substantially
more robust parameter estimates compared to the uniform design (be-
sides the lower precision in logN, already discussed). Therefore,
considering that the aggregated time of the uniform and OED + penalty
designs are comparable (supp. Fig. 7), it can be concluded that the OED
+ penalty approach provides an efficient method for the definition of
experimental designs for the Baranyi-Ratkowsky growth model.

3.3. Practical recommendations based on the numerical results

Scientists often see standard errors as a nuance parameter that must
be minimized. However, that view is not entirely applicable to predic-
tive microbiology, where the standard error of the microbial concen-
tration observed experimentally is partly a reflection of the inherent
variability of the microbial response. This includes biological sources of
variability, such as within-strain and between-strain variability (Aryani
et al., 2015; Aspridou & Koutsoumanis, 2020; Koyama et al., 2025), as
well as other sources such as the impact of the variability in the
composition of food batches (Verheyen et al., 2019). The final goal of
predictive microbiology is predicting the actual microbial response
within the food supply chain (Ross et al., 2014). Therefore, as variability
is an integral part of the response, models should not be judged just by
their ability to predict the expected response, but also by their ability to
describe variability.

A main challenge is posed by the fact that standard errors are not just
the result of variability. Experimental error (understood not just as
mistakes, but every type of technical limitation/simplification) is un-
avoidable in empirical studies (Box et al., 2005). Accordingly, the
variation observed in microbial growth experiments is a combination of
inherent variability and experimental errors (often called “uncertainty”
in the field to clearly separate it from variability). The challenge of
predictive microbiology is thus to reduce the contribution of uncer-
tainty, so the standard error of regression mostly represents variability
(Garre, Zwietering, & van Boekel, 2022). This is most often done by
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increasing the amount and/of quality of experimental data. This study
demonstrates that there is an alternative approach for reducing uncer-
tainty: combining more informative experimental designs with robust
model fitting strategies.

This study clearly demonstrates that one-step fitting methods are
superior to two-step ones from a statistical standpoint because this
approach reduces dispersion in parameter estimates. This result is
aligned with the conclusions of previous studies (Cattani et al., 2016;
Dolan et al., 2007; Huang, 2020), advancing the state of the art by
demonstrating that the standard error of regression for one-step models
accurately represents the variability/uncertainty of parameter estimates
(unlike two-steps approaches). This result had not been reported pre-
viously and presents an important step forward towards improving
variability and uncertainty estimation for the microbial response.

Nonetheless, one-step methods also have limitations with respect to
two-step ones. One-step methods do not explicitly check for the validity
of secondary models (i.e., egs. 2 and 4) because secondary models are
fitted directly from log N. This increases the risk of inadvertently fitting
a secondary model that is not suitable for the microbial response,
something that is less likely in two-step approaches where secondary
models must be defined independently (Georgalis et al., 2023). We
consider that this check is important, as one cannot ensure the validity of
the Baranyi or Ratkowsky models due to their empirical nature (Le Marc
et al., 2002). Hence, our recommendation is to first explore the data
using a two-step approach. Once the validity of the primary and sec-
ondary models has been ensured, the models should be fitted again using
the one-step method considering the link between the secondary models
for y and 1, resulting in five parameter estimates (Garre et al., 2025).
These values should be reported as “the true model”, including their
standard error of regression as estimates of variability/uncertainty.

In terms of experimental design, OEDs make two clear recommen-
dations: (1) to select extreme temperatures (one close to T, and one
close to Ty,) and (2) to use sampling times near the transition between
growth phases (lag/exponential; exponential/stationary), as well as at
t=0 and in the stationary phase. However, two main challenges
remain. The first one is that experiments at the lowest temperatures
require extremely long times. The OED + penalty showed that the total
experimental time can be dramatically reduced by two strategies: (1)
lowering the number of experiments at the lowest temperature and (2)
taking only samples during the lag and exponential phase for the ex-
periments at lower temperatures. The second challenge is related to the
position of the transition between phases, as this is not known before-
hand (if we did know, experiments would not be required). Therefore,
an iterative approach, where the experimental design is refined as more
data is available, is still required (Vilas et al., 2018).

Considering these challenges, as well as the OED recommendations,
we propose a staggered experimental design that is recursively updated
over three weeks for fitting the Baranyi-Ratkowsky model. As illustrated
in Fig. 5 for a simulated dataset, on Week #0 samples would be incu-
bated at four different temperatures: optimal growth conditions (e.g.,
37 °C), one medium-high condition (e.g., 21 °C), one medium-low
condition (e.g., 15 °C) and one close to the growth limit (e.g., 7 °C).
After one week, the experiments at 37 and 21 °C would have produced a
complete growth curve. Although the experiment at 15 °C might not
have reached the stationary growth phase, the OED + penalty showed
that this data can already be highly informative. Therefore, after one
week, there would be enough information to fit a preliminary Baranyi-
Ratkowsky model, with the experiment at 21 °C being used to verify
the secondary models for 4 and A.

The OED identified that sampling times near the transition between
growth phases are more informative. This was not considered in the
experiments at Week #0, which used a uniformly distributed sampling
scheme for convenience. Nonetheless, the preliminary models obtained
from this data can be used to further refine the sampling scheme.
Accordingly, a second repetition of the experiments at 15 and 37 °C
would be performed on Week #2, focusing on the transition areas. In
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Fig. 5. Illustration of the proposed staggered experimental design, where the sampling scheme is iteratively improved over three weeks based on OED

recommendations.

this second experimental batch, no experiment would be performed at
21 °C, as this data point is mostly used for verification of the secondary
model. By the end of Week #2, the experiments at 15 °C would be
completed (as the stationary phase is not required), together with the
one at 37 °C. The results of the latter would be used to further refine the
position of the time points for the last two replicates of this experiment
on Week #3. Hence, after three weeks, the biological replicates of the
experiments at 15 °C (2 replicates), 21 °C (1 replicate) and 37 °C (4
replicates) would be completed. Even if the experiment at 7 °C still re-
mains in the lag phase (i.e., it does not provide information), the partial
dataset obtained already provides preliminary information on the model
parameters.

Fig. 6 illustrates the evolution of the parameter estimates and their

uncertainties as a function of the number of weeks for this experimental
setting using a simulated data set. After 2 weeks, the model has already
converged for parameters logNy, 10gN,qc and b. This is reasonable, as
the two microbial concentrations are parameters for the primary model
and b is the slope of the Ratkowsky model (and there are experiments at
several temperatures). However, the estimate of Tp;; and logC, are
highly uncertain, due to these parameters being related to the effect at
low temperatures. As the weeks progress, the estimates of these pa-
rameters are improved, as data points from the experiment at 7 °C
become available. This iterative approach provides a useful way to
define the total duration of the experiment, as the one where the esti-
mates of Tmi, and logCy (as well as their standard errors) have
converged. This provides a more robust indication than traditional
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Fig. 6. Illustration using simulated data of the changes in parameter estimates (dots) and standard errors (bars) for the Baranyi-Ratkowsky model using the staggered
experimental design in Fig. 5. The x-axis illustrates the improvement of the models as more data is available through the weeks.
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approaches, where the experimental duration would be defined be-
forehand and there is no information on convergence.

3.4. Limitations and future work

As mentioned in the introduction, this study focused on model fitting
from isothermal growth experiments, as this remains the most common
experimental approach in the field. However, primary and secondary
models can also be estimated by dynamic fitting from data obtained
under varying temperature conditions (Garre et al., 2023; Huang,
2017a). This approach is motivated by the assumption that dynamic
conditions would present a more efficient exploration of the design
space, as each experiment combines several temperatures rather than
one. However, it also requires more complex experimental and statisti-
cal methods, so its application is mostly restricted to research, as evi-
denced by ISO 23691 including only recommendations for model fitting
from isothermal experiments. Therefore, this study was limited to the
reference methodology because its main goal was to provide guidelines
to a broad audience.

Besides the limitations mentioned above about the practicality of
OEDs, this study also has limitations related to model assumptions. The
first assumption that differs from the conventional approach is the
introduction of an inverse square root secondary model for A that is
linked to the secondary model for u (Eq. 4). Nevertheless, this is a direct
implication of the hypotheses of the Baranyi and Ratkowsky models
(Garre et al., 2025). Therefore, it cannot be questioned without chal-
lenging the basic assumptions of those models.

On the other hand, the hypotheses regarding Npmq, can indeed be
questioned. The modelling approach introduced here assumes that this
parameter is independent from temperature. This must be seen as a
required simplification, as there is evidence for microbial concentration
at the stationary phase being affected by the environmental conditions
(Rees et al., 1995). However, one-step fitting requires the definition of
secondary models for every model parameter (or the assumption that
they are constant). As there are no broadly accepted secondary models
for the relationship between N, and temperature, considering this
parameter to be constant was a required simplification. At this point, it
must be noted that this simplification is very common in the field. For
instance, dynamic fitting methods mentioned above do not account for
any history effect when modelling N, (i.e., they fit the Baranyi model
in differential form without any modification). Accordingly, we believe
this simplification to be reasonable considering the state of the art. Even
in the worst case where Npq, had a strong temperature-dependence,
estimates of this parameter have very little influence on the estimates
for b, Tyn or Co, due to their low parameter correlation. As these pa-
rameters are often more relevant for QMRA or shelf life estimation, the
practical impact of deviations from this assumption would be mostly
minor.

A possible criticism to the guidelines provided in section 3.3 is their
rigidity. However, they should be seen as guides, not as rules. They
intend to translate the results of the OED into practical recommenda-
tions to obtain experimental designs that are as informative as possible
with the lowest experimental load. For that reason, it suggests an iter-
ative approach to allow the flexibility to update the experimental design
as data becomes available and models are updated. In this sense, repli-
cates at various conditions should be tested for outliers, repeating ex-
periments when required (rather than waiting until the experiment at
the lowest temperature is completed). Also, temperature values (7, 15,
21 and 37 °C) were suggested based on the typical biokinetic range of
most bacteria and their industrial relevance. Nevertheless, it should be
adapted when studying species that deviate from this range (e.g.,
Campylobacter spp.) or when other temperature values are of particular
relevance. It could also be interesting to include additional intermediate
temperatures, especially in cases where there are doubts regarding the
validity of the Ratkowsky model.

Another possible challenge for the application of this approach is the
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requirement of more complex statistical methods. However, the avail-
ability of Open Access packages (Garre et al., 2023) and web applica-
tions (https://foodlab-upct.shinyapps.io/biogrowth4/) that already
implement these approaches practically makes the calculations trivial
(Possas et al., 2022). Another limitation is the requirement of initial
guesses for the model parameters to design the OED. Nonetheless, this
limitation also applies to the selection of time points and dilutions for
conventional methods. In any case, the scientific literature/historical
data often provides reasonable guesses, which can be updated iteratively
(Vilas et al., 2018) leveraging the staggered experimental design.
Finally, this study puts the focus on experimental designs for
parameter estimation. It is generally acknowledged in the field that
those parameters should be taken with care, so an external validation
under conditions as close to industry as possible should always be per-
formed (Mejlholm et al., 2010; Oscar, 2005; Tarlak & Pérez-Rodriguez,
2021). This involves additional challenges, especially considering that
dynamic conditions might result in microbial responses that cannot be
observed under isothermal conditions (Antolinos et al., 2012; Georgalis
et al., 2022). Therefore, following the guidelines proposed here for
model fitting does not exempt models for independent validation.

4. Conclusions

It is broadly accepted that uncertainty can be reduced by gathering
more and/or better data. This study provides clear recommendations on
how to get “better data”, underlining that using more informative
experimental designs can improve parameter estimation (without
requiring additional data points). Namely, for the Baranyi-Ratwkowsky
model, extreme temperatures should be favored (for practicality, espe-
cially those close to optimal growth conditions) and time points close to
the transition between growth phases. This strategy should be combined
with one-step fitting approaches, using the standard errors of regression
as estimates of variability/uncertainty.

Being able to reduce uncertainty by using better designs and algo-
rithms is of great importance for the field, as it does not require any
modification to experimental (“wet”) approaches. The only requirement
is the use of more complex numerical (“dry””) methods. Considering that
Open Access software applications already implement these methods,
this limitation is very minor compared to its potential to improve the
overall robustness of predictive microbiology models.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.foodres.2025.117288.
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