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A B S T R A C T

The Baranyi growth model combined with the Ratkowsky secondary model (Baranyi-Ratkowsky hereafter) has 
demonstrated their reliability for describing microbial growth as a function of temperature. However, these 
models are based on empirical parameters that must be estimated from data, so robustness depends on the 
experimental design and the model fitting approach. This study applies a rigorous statistical analysis based on 
Information Theory and numerical simulations to provide clear guidelines on the best model fitting approaches 
and experimental designs for the Baranyi-Ratkowsky model.

First, the study concludes that one-step fitting approaches result in lower parameter dispersion than two-steps 
approaches (for the simulated conditions: 44 %, 85 % and 96 % lower for b, logC0 and Tmin, respectively, no 
reduction for logNmax and logN0). Numerical simulations demonstrate that, unlike for two-steps methods, the 
error of regression from the one-step approach is a realistic estimate of parameter uncertainty/variability, 
strengthening the case for this method. This motivates restricting the calculation of Optimal Experiment Designs 
(OEDs) for this approach only. The study clearly demonstrates that the experimental design has a clear impact on 
parameter dispersion. However, OEDs tend to be impractical, as they focus on conditions that require long 
experimental runs. Accordingly, a penalty term is introduced in OED definition, resulting in two strategies: to 
lower the number of experiments at lower temperatures, and to terminate the experiments at lower temperatures 
before reaching stationary phase. Based on this result, we propose a staggered experimental design that is 
updated recursively (storage temperature and position of time points) until convergence. Considering that 
isothermal experiments are still the gold standard in the field, future studies could greatly benefit from these 
suggestions by minimizing the experimental effort needed to obtain robust estimates for the Baranyi-Ratkowsky 
model.

1. Introduction

Mathematical models for the growth of bacterial populations are a 
keystone of modern food science, being an important part of shelf life 
estimation, precision fermentation or risk assessment (Balsa-Canto et al., 
2020; Lucero-Mejía et al., 2025; Possas et al., 2021; Rodriguez-Caturla 
et al., 2023; Sánchez-Martín et al., 2025). The methodologies for the 
development of growth models are defined by predictive microbiology, 
which most often follows a two-steps approach (Perez-Rodriguez & 

Valero, 2012). First, primary models describe how microbial concen
tration varies through time. Primary models have parameters that 
depend on the environmental conditions (e.g., the specific growth rate 
depends on temperature), a relationship that is described by secondary 
models (Whiting & Buchanan, 1993).

The Baranyi growth model is probably the most popular primary 
model for microbial growth. This model is based on dynamic hypotheses 
that extend the classic first order kinetics to account for the lag and 
stationary phases often observed in microbial populations (Baranyi & 

* Corresponding author.
E-mail address: alberto.garre@upct.es (A. Garre). 

Contents lists available at ScienceDirect

Food Research International

journal homepage: www.elsevier.com/locate/foodres

https://doi.org/10.1016/j.foodres.2025.117288
Received 13 June 2025; Received in revised form 5 August 2025; Accepted 6 August 2025  

Food Research International 221 (2025) 117288 

Available online 8 August 2025 
0963-9969/© 2025 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by- 
nc-nd/4.0/ ). 

mailto:alberto.garre@upct.es
www.sciencedirect.com/science/journal/09639969
https://www.elsevier.com/locate/foodres
https://doi.org/10.1016/j.foodres.2025.117288
https://doi.org/10.1016/j.foodres.2025.117288
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Roberts, 1994). The Baranyi growth model is often combined with the 
Ratkowsky secondary growth model (Ratkowsky et al., 1982) to 
describe the effect of the storage temperature on the maximum specific 
growth rate (μmax) for suboptimal temperatures. The combination of 
both models is called the Baranyi-Ratkowsky model hereafter.

Like any empirical model, the Baranyi-Ratkowsky model has un
known model parameters that must be estimated from experimental 
data, usually consisting of a compilation of individual experiments 
performed at constant temperature conditions. Although the use of dy
namic experiments (where each experiment explores more than one 
temperature) has been suggested (Huang, 2017a, 2020), this method
ology is rather niche, probably due to experimental limitations and 
higher mathematical complexity. Instead, the Baranyi-Ratkowsky 
models is most often fitted to data obtained under isothermal condi
tions, as acknowledged in ISO 23691.

Therefore, the goal of this study is to identify parameter estimation 
strategies for the Baranyi-Ratkowsky model from isothermal data. This 
is understood as those that provide the lowest parameter uncertainty 
with the least experimental effort. Therefore, the study is based on the 
assumption that model fitting approaches can be a source of parameter 
uncertainty. A variety of approaches currently co-exist in the field, with 
the most common one probably being two-steps estimation. Frist, pri
mary models are fitted independently to the data obtained at each 
temperature. Then, on a second step, secondary models are fitted to the 
estimates of the primary model (the lag phase duration, λ, and the 
specific growth rate, μ). Alternatively, primary and secondary models 
can be estimated directly from the microbial concentrations observed 
using nonlinear regression (Dolan et al., 2007; Huang, 2017b). Although 
this increases the mathematical complexity of parameter estimation, it is 
generally acknowledged to be more statistically robust (Cattani et al., 
2016; Fernández et al., 1999).

This study uses a broader definition of “fitting approach” that con
siders not just the fitting algorithm but also the experimental design. 
This is motivated by previous studies showing that parameter uncer
tainty can be reduced through more efficient designs. Those studies 
often used model-based Optimal Experiment Designs (OED) (Balsa- 
Canto et al., 2008) to identify the most informative experimental con
ditions for a given model. This methodology is based on general as
sumptions, so it applies to most dynamic models (Villaverde et al., 
2021), including growth models from predictive microbiology 
(Akkermans et al., 2018; Bernaerts et al., 2000; Grijspeerdt & Vanrol
leghem, 1999; Guillén et al., 2024; Río et al., 2024).

Despite its broad application, no previous study has calculated OEDs 
for the Baranyi-Ratkowsky model. This could be due to the optimization 
of this model adding additional complexity, as the design space is two- 
dimensional (combination of time and temperature), whereas the opti
mization of primary models (sampling time), secondary models (storage 
temperature) or dynamic experiments (temperature levels) is one- 
dimensional.

Hence, this study calculates OEDs for the Baranyi-Ratkowsky model. 
Please note that the calculation of OEDs for the one-step and two-steps 
methods require a largely different mathematical approach. Therefore, 
the study first compares the one-step and two-step approaches, to justify 
the restriction of the calculation of OEDs to a single fitting method. 
Then, the robustness of the different experimental designs (optimal or 
not) is based on a simulated datasets (Garre et al., 2019). This has the 
advantage of generating thousands of growth experiments that cannot 
be distinguished from actual experimental data, providing a generally 
more robust analysis of the statistical properties of the models than one 
based on (perhaps cherry-picked) limited experimental data.

2. Materials and methods

2.1. Model fitting approaches

2.1.1. Conventional (two-step) model fitting approach
The present study compares three different model fitting approaches. 

In the “conventional” approach, the Baranyi primary model (Baranyi & 
Roberts, 1994) is first fitted to the data obtained at each isothermal 
temperature. The algebraic solution of this model for constant temper
ature is shown in Eq. (1), showing that this model predicts a sigmoidal 
growth curve parameterized by four parameters: N0 (the initial micro
bial concentration), Nmax (the maximum microbial concentration), μmax 
(the maximum specific growth rate during the exponential phase) and λ 
(the lag phase duration). 

lnN = lnN0 + μmaxA(t) − ln
(

1+
eμmaxA(t) − 1
elnNmax − lnN0

)

(1) 

A(t) = t − λ+
1

μmax
ln
(
1 − e− μmaxt + e− μmax(t− λ) )

Once primary models have been fitted (one per temperature), sec
ondary models describe the impact of temperature changes in either μmax 
or λ. The relationship between μmax and temperature (T) was described 
using the sub-optimal Ratkowsky model (Ratkowsky et al., 1982), which 
assumes a linear relationship between T and ̅̅̅̅̅̅̅̅̅μmax

√ with slope b (Eq. 2). 
This model also introduces a theoretical minimum temperature for 
growth (Tmin). 
̅̅̅̅̅̅̅̅̅μmax

√
= b(T − Tmin);T > Tmin (2) 

̅̅̅̅̅̅̅̅̅μmax
√

= 0; otherwise 

Based on previous knowledge on the multiplication λ⋅μ remaining 
constant between replications of the same experiment (Amézquita et al., 
2005; Augustin et al., 2000; Jaloustre et al., 2011), a recent study 
concluded that the only valid secondary model for λ would be an 
inverse-square root relation (Garre et al., 2025). This translates into the 
secondary model shown in Eq. (3), where aλ and bλ are the intercept and 
the slope of the regression line. 

1̅
̅̅
λ

√ = aλ + bλT (3) 

Therefore, the conventional approach includes 6 parameters: N0,

Nmax,b,Tmin,aλ and bλ. To improve identifiability, parameters N0 and Nmax 

have been log-transformed for model fitting.

2.1.2. Two-step fitting considering coupling between secondary models
The study by Garre et al. (2025), besides identifying the inverse- 

square root relation for λ also identified a link between both second
ary models. Namely, the secondary model for λ can be written as shown 
in Eq. (4). Note that parameter Tmin appears in both secondary models 
(Eqs. 2 and 4). Furthermore, coefficient B is defined as per Eq. (5), which 
also includes parameter b from the Ratkowsky model (Eq. 2). Therefore, 
the secondary model for λ only introduces a single parameter (C0; 
related to the hypotheses for the lag phase in the Baranyi model). 

1̅
̅̅
λ

√ =
1̅
̅̅
B

√ (T − Tmin) (4) 

B =

ln
(

1 + 1
C0

)

b2 (5) 

Hence, this approach (“two-steps” hereafter) is equivalent on its first 
step to the conventional one, as it starts by fitting primary models to the 
data obtained at each temperature. Then, instead of fitting independent 
secondary models for λ and μmax, it fits both secondary models (Eqs. 2 
and 5) at the same time by nonlinear regression. This results in a 

A. Garre et al.                                                                                                                                                                                                                                   Food Research International 221 (2025) 117288 

2 



reduction of one parameter with respect to the conventional approach, 
being defined by N0, Nmax, b, Tmin and C0. For identifiability reasons, 
parameter C0 has been log-transformed for fitting, as well as 
N0 and Nmax.

2.1.3. One-step fitting approach
It is generally regarded that one-step fitting methods, where sec

ondary models are estimated directly from the microbial concentrations 
(i.e., without fitting the primary models in a separate step) are more 
robust (Fernández et al., 1999). Therefore, eqs. (1), (2), (4) and (5) were 
combined into Eq. (6). This allows the five model parameters (N0,Nmax,b,
Tmin and C0) to be estimated directly from the values of N observed for 
different combinations of t and T using non-linear regression (Garre 
et al., 2023). For consistency with the other methods, parameters C0,

N0 and Nmax were log-transformed for identifiability. 

lnN = lnN0 + μmaxA(t) − ln
(

1+
eμmaxA(t) − 1
elnNmax − lnN0

)

(6) 

A(t) = t − λ+
1

μmax
ln
(
1 − e− μmaxt + e− μmax(t− λ) )

̅̅̅̅̅̅̅̅̅μmax
√

= b(T − Tmin)

1̅
̅̅
λ

√ =
1̅
̅̅
B

√ (T − Tmin)

B =

ln
(

1 + 1
C0

)

b2 

2.2. Optimal experiment design (OED)

2.2.1. Calculation of local sensitivity functions
Local sensitivity functions with respect to some parameter pi (spi) are 

defined as the partial derivative of the response (y; the log-microbial 
concentration in this case) with respect to each model parameter (Eq. 
7). For the Baranyi-Ratkowsky model, they are a function of the storage 
time (t) and temperature (T). 

spi =
∂y
∂pi

(t,T) (7) 

The values of sp were estimated by finite differences using an 
approach analogous to the one implemented in the FME package 
(Soetaert & Petzoldt, 2010). For any value of t and T, the ideal response 
is calculated using the Baranyi-Ratkowsky model (y

(
tj,Tk; p

)
). Then, a 

small perturbation is introduced in the parameter pi (Δpi = pi⋅10− 8) and 
microbial concentration is again calculated according to the Baranyi- 
Ratkowsky model (y

(
tj,Tk; p + Δpi

)
). Then, the value of the local sensi

tivity function for parameter p at 
(
tj,Tk

)
can be approximated by the 

difference in the microbial concentration divided by the magnitude of 
the perturbation (Eq. 8). 

sp
(
tj,Tk

)
≈

y
(
tj,Tk; p + Δpi

)
− y

(
tj,Tk; p

)

Δp
(8) 

2.2.2. Determination of D-optimal experiment designs
OEDs were calculated based on the Fisher Information Matrix (FIM). 

Under simplifying hypotheses (Balsa-Canto et al., 2008), the FIM for a 
given experimental design can be calculated from the local sensitivity 
functions evaluated at the sampling points (Eq. 9). In this equation, 
(
tj,Tk

)
represent each of the n sampling conditions. The term sθ

(
tj,Tk

)
is 

the vector of local sensitivities (spi
(
tj,Tk

)
) calculated for each of the 

unknown model parameters. Finally, Q is a weight matrix, which 
Backspace|"] was defined as the identify matrix in this study. 

FIM =
∑n

i=1

(
sθ
(
tj,Tk

) )T⋅Q⋅
(
sθ
(
tj,Tk

) )
(9) 

Different criteria are available to maximize the FIM. Here we focus 
on the D-criterion, which implies finding the combination of 

(
tj,Tk

)

n 
that maximizes the determinant of the FIM (Eq. 10). This is equivalent to 
minimizing the volume of the confidence ellipsoid of the model pa
rameters (de Aguiar et al., 1995). 

max
(tj ,Tk)n

det(FIM) (10) 

Using the standard definition of the OED, each sampling condition 
(
tj,Tk

)
would be independent. This could result in optimal configura

tions that test a large number of temperature values, something 
impractical because it would require inoculations of different matrixes 
that would be stored at different temperatures. Instead, reducing the 
number of temperatures tested is often desirable.

Therefore, the elements of 
(
tj,Tk

)
were rewritten as shown in Eq. 11. 

This formulation defines N individual growth experiments and n time 
points per experiment. Accordingly, every time point i within an 
experiment j (tj,i) share the same temperature Tj. 
(
T1, t1,1, t1,2,…, t1,n

)
,
(
T2, t2,1, t2,2,…, t2,n

)
,…,

(
TN, tN,1, tN,2,…, tN,n

)
(11) 

An additional issue for the definition of the optimization problem is 
the bounds for the experimental conditions. The temperature range was 
defined between 6 and 37 ◦C (reasonable for vegetative bacteria). 
However, this introduces complexity in the definition of bounds for the 
maximum experimental duration, as a complete growth curve often 
requires 24 h at 37 ◦C but several weeks at 6 ◦C. On preliminary cal
culations, we defined an overall upper bound of 24,000 h and that 
strategy failed to converge, most likely due to experiments at high 
temperatures being on stationary phase (where local sensitivity func
tions are flat) through most of the design space. Therefore, the optimi
zation problem was reformulated, writing it in terms of the expected 
microbial concentration without stationary phase (ybound,i) defined in Eq. 
12. 

ybound,i = lnN0 +(t − λ(Ti) )⋅μmax(Ti) (12) 

Hence, bounds were defined directly on ybound,i, resulting on adaptive 
upper bounds for ti depending on the temperature of the experiment. 
Namely, an upper bound of 12 log CFU/g was defined, resulting in a 
maximum duration equivalent to the one required to reach a concen
tration 4 logs above logNmax if there was no stationary phase. A lower 
bound of − 2 log CFU/g was used (as a lower bound of 0 log CFU/g 
would introduce a lower limit at ti = λ). Then, for the calculation of the 
FIM, conditions with ti < 0 were set as zero. This results in the optimi
zation problem shown in Eq. (13). 

max
(yi ,Ti)

det(FIM) (13) 

6◦C ≤ Ti ≤ 37◦C; ∀i 

− 2logCFU
/

g ≤ ybound,i ≤ 12logCFU
/

g;∀i 

2.2.3. Determination of D-optimal experiment designs with penalty
D-optimal experiments, although optimal from the point of view of 

information theory, might be impractical. Particularly for microbial 
growth, they tend to favor experiments with an excessively long dura
tion. Hence, we followed an approach similar to Guillén et al. (2024), 
introducing a penalty term in the optimization problem (Eq. 14), scaled 
by a weight coefficient (ϕ). 

max
(ti ,Ti)

det(FIM)+ϕ⋅P(t,T) (14) 
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The penalty term is defined as the sum of the durations of each of the 
N experiments in the design (Eq. 15). Note that this introduces a small 
deviation with respect to Guillén et al. (2024), as that study focused on 
secondary growth models, so each experiment was independent. Here, 
we looked at both primary and secondary models. Therefore, each 
experiment at the same temperature included several time points. 
Accordingly, the duration of each experiment is defined by the highest 
time point within the design (Eq. 15). 

P(t,T) =
∑N

i=j
max

(
tj,Tj

)
(15) 

2.3. In-silico simulation of growth experiments

To evaluate the statistical properties of the different fitting strategies 
(fitting approaches or experimental designs), an artificial dataset of 
growth experiments was generated by numerical simulation, following a 
methodology adapted from a previous study (Garre et al., 2019). The 
numerical method assumes that the Baranyi-Ratkowsky model describes 
the “true” response of the microbial population, and that the experi
mental error (accounting for variability and uncertainty) introduces an 
uncorrelated random error of mean zero and known variance on the 
observed log-microbial concentration. The approach can be summarized 
in the following steps:

For i in 1 to nexperiments: 

1. For each temperature included in the design: 
a. Calculate the value of μmax and λ according to the secondary 

models (Eqs. 2 to 5).
b. Calculate the microbial concentration at each time point in the 

design (logNideal,i) based on the Baranyi primary model (Eq. 1).
c. Duplicate the ideal values according to the number of replicates.
d. Calculate the experimental error at each time point (εi) by taking 

random samples from a normal distribution with mean zero and 
variance σ2

logN.
e. Calculate the “observation” as logNobs,i = logNideal,i + εi

As a demonstration, the following model parameters were used: 
logN0 = 2logCFU/g; logNmax = 8logCFU/g; b = 0.04h− 1; logC0 = − 4;
Tmin = 5◦C. These values are based on the parameters estimated by 
Garre et al. (2025), although C0 was reduced to have a more noticeable 
lag phase. The study was repeated for different parameter values, 
reaching the same conclusions from a qualitative point of view.

Supp. Fig. 1 illustrates the type of data generated for each iteration. 
Independent researchers (experienced in growth modelling and from 
other institutions) were unable to distinguish between simulated and 
actual experimental data, therefore it was considered that those simu
lations were representative of true scenarios. The main advantage of this 
approach is that they allow the generation of a homogeneous dataset of 
thousands of experiments, something that is rarely feasible by other 
approaches, such as (systematic) literature review.

2.4. Computer implementation

Calculations were implemented in R version 4.2.3 (R Core Team, 
2022) and are available from the GitHub page of one of the co-authors 
(https://github.com/albgarre/robust-baranyi-ratkowsky). For both the 
conventional and two-steps approach, primary models were fitted by 
nonlinear regression (Bates & Watts, 2007) using the functions included 
in biogrowth (Garre et al., 2023). For the conventional approach, the 
secondary models were fitted by nonlinear regression using the func
tions included in R. The algorithm for model fitting considering coupling 
(both one-step and two-steps) were implemented in version 1.1 of bio
growth (Garre et al., 2023) in the function fit_coupled_growth. This func
tion uses nonlinear regression by the Levenberg-Marquardt algorithm 

supported by the functions included in FME (Soetaert & Petzoldt, 2010).
The optimization problems defining the OED and OED+penalty were 

solved by the Enhanced Scatter Search algorithm (Egea et al., 2009), 
using the implementation included in the MEIGO package (Egea et al., 
2014). The number of function evaluations was determined by checking 
that the objective function had converged. Then, a local refinement by 
the DHC algorithm was applied.

The weight coefficient, ϕ, for the penalty function was defined iter
atively. First, it was checked that a value of ϕ = 0 resulted in D-optimal 
designs. Then, this parameter was increased until the aggregated time of 
the optimal solution was close to the one of the uniform design. This 
resulted in values of 5⋅106, 1⋅107, 5⋅107 and 2⋅108 for designs with 6, 8, 
10 and 12 experiments, respectively.

3. Results and discussion

3.1. Comparison between model fitting strategies

This study compares three different strategies for estimating the 
parameters of the Baranyi-Ratkowsky model from a set of isothermal 
experiments performed at different temperatures. The first approach 
might be the gold standard in the field, where primary models are 
independently fitted to the data obtained under each temperature. This 
provides a table of primary model parameters (logN0; logNmax; μ and λ) 
for each temperature. On a second step, secondary models are fitted to 
describe how temperature changes affect μ and λ, providing estimates 
for Tmin; b; aλ; bλ. The second approach follows the recommendations by 
Garre et al. (2025), considering the link between the secondary models 
for μ and λ. Accordingly, the secondary models would be described by 
three parameters (Tmin; b;C0) instead of four like in the conventional 
approach. In addition, a third approach considered in this study fits both 
the primary and secondary models in a single step using nonlinear 
regression, also considering the coupling of the secondary models.

Based on numerical simulations, we can conclude that the model 
fitting strategy affects the robustness of the parameter estimates, in line 
with previous studies (Cattani et al., 2016; Dolan et al., 2007; Fernández 
et al., 1999; Huang, 2020, Huang, 2017a). Fig. 1 illustrates the disper
sion of the parameter estimates as a function of the number of experi
ments (i.e., number of temperature levels included in the design) for the 
three strategies, with Supp. Table 1 including summary indexes. Please 
note that the number of model parameters differs between methods (e. 
g., the conventional method does not fit C0), and therefore the number 
of boxes differs between facets.

As expected, increasing the number of experiments reduces the 
dispersion of parameter estimates, with the conventional and two-step 
methods being comparable in terms of dispersion. Although the 
method that includes the coupling between secondary models results in 
lower dispersion for b and Tmin, this could be a numerical artefact, as the 
numerical simulations include such link. The results show how the one- 
step method would be more robust than two-step approaches. Particu
larly, this method has the same precision as two-steps methods for pa
rameters logNmax and logN0, whereas parameters b, logC0 and Tmin have 
lower dispersion (44 %, 85 % and 96 % lower, respectively). This is 
reasonable, as parameters logNmax and logN0 are linked to primary 
models, whereas the other three are part of the secondary model 
definition.

The lower dispersion of the parameters obtained using the one-step 
approach is of great relevance for building growth models. The differ
ences in parameter estimates obtained between independent experi
ments can be attributed to two different sources: variability and 
uncertainty. Predictive models must reflect the former, as it is an 
inherent part of the microbial response, whereas uncertainty should be 
minimized (Nauta, 2000). Currently, this is done by gathering additional 
data and/or improving the experimental protocols to reduce experi
mental error. However, the results presented in Fig. 1 clearly illustrate 
that parameter uncertainty can be reduced by just using more robust 
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Fig. 1. Illustration of the dispersion in parameter estimates (1000 simulated experiments per condition) as a function of the number of experiments (i.e., number of 
different temperatures tested) and the model fitting approach.

A. Garre et al.                                                                                                                                                                                                                                   Food Research International 221 (2025) 117288 

5 



model fitting approaches (please note that the different methods are 
fitted to the same simulated datasets). Therefore, this results in a 
quantitative support to the general knowledge in the field about one- 
step methods being more robust. Nonetheless, it must be underlined 
that this conclusion is based on artificial data that was simulated 
considering that the hypotheses of the Baranyi-Ratkowsky model are 
true (including the coupling between both secondary models). Although 
there is scientific evidence to support that assumption (e.g., the product 
λ⋅μ or “work to be done” being constant between experiments), inde
pendent empirical validation is still needed.

As mentioned above, variability and uncertainty are of high rele
vance for predictive microbiology (den Besten et al., 2017). Therefore, 
the ability to quantify them is an important aspect when assessing the 
robustness of a parameter estimation method (Garre, Pielaat, et al., 
2022). Here we compare two possible approaches for uncertainty/ 
variability estimation. The first one is to repeat the experiment several 
times, obtaining several values of the parameter estimates. Then, vari
ability/uncertainty can be estimated from the standard deviation of the 
model parameters. The second possibility consist in using the standard 
error of regression to estimate the variance-covariance of the model 
parameters, using this matrix to represent variability/uncertainty (e.g., 
see (Bates & Watts, 2007) for a detailed description of the calculations).

Fig. 2 summarizes the uncertainty estimates obtained for each 
parameter as a function of the number of experiments. In every case, 
parameter standard deviation decreases as the number of experiments 
increases. This is reasonable, as additional data is expected to reduce 
parameter uncertainty. The error of regression of the one-step method 
(Fig. 2C) is very close to the standard deviation of most parameters, with 

the only exception being Tmin. Nevertheless, the standard deviation of 
this parameter shows erratic behavior which is most likely due to poor 
convergence. This implies that the standard error of regression for the 
one-step method should be considered as a reliable method for esti
mating parameter variability/uncertainty. In fact, it should be accoun
ted to be more reliable than the standard deviation of parameter 
estimates, as it appears to be more statistically robust (Fig. 2C implies 
that a lower number of simulated experiments is required for 
convergence).

On the other hand, the standard error of regression for both the 
conventional and two-step fitting methods is far from the actual 
parameter variability/uncertainty (Fig. 2A and B). This is most likely 
due to two-step methods using only the parameter estimates of primary 
models. Hence, parameter uncertainty in the primary model is not 
accounted when fitting the secondary models, resulting in unreliable 
estimates of parameter uncertainty/variability. In fact, the standard 
error of regression for two-step methods is an entirely unrealistic esti
mator of parameter variability and uncertainty. Instead of decreasing for 
an increased number of experiments, this parameter remains mostly 
constant. This is most likely due to the low statistical power of this es
timate (e.g., the standard error from three temperatures is calculated on 
a single degree of freedom). Hence, the standard error of regression 
should generally be avoided as an estimate of variability/uncertainty in 
two-step methods.

Parameter correlation is another common issue of empirical methods 
that can depend on the fitting approach. Supp. Figs. 2–4 include the 
parameter correlation estimated from the 1000 simulated experiments 
according to each fitting method. Please note that logN0 and logNmax 

Fig. 2. Estimates of parameter uncertainty for models fitted using the conventional approach (A), using a two-steps approach accounting for coupling (B) and using a 
one-step approach (C). Uncertainty is calculated as the standard deviation of the parameter value estimated from 1000 simulated experiments or the median of the 
regression error.
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have been excluded from the figures, as they have low correlations with 
the other parameters. The conventional two-steps approach results in 
high parameter correlation (supp. Fig. 2), as is well known for the 
Baranyi-Ratkowsky model (Guillén et al., 2024; Rosso et al., 1993). 
Introducing the coupling between both secondary models does not 
resolve these identifiability issues (supp. Fig. 3). In fact, parameters 
logC0 and Tmin have almost-perfect correlation.

The one-step fitting approach does result in a reduction in parameter 
correlation for parameter Tmin, which has practically zero correlation 
with b and logC0. This would increase the robustness of the estimates for 
this parameter, especially in terms of uncertainty estimation. Moreover, 
this would indicate that the correlation between those parameters is a 
statistical artefact rather than a biological constraint, as it is dependent 
on the fitting approach. On the other hand, the simulations still show 
high parameter correlation between b and logC0, although values are 
comparable to those obtained from the conventional two-steps 
approach. Hence, the one-step model fitting approach should also be 
favored to the conventional and two-steps methods based on arguments 
related to parameter autocorrelation.

3.2. Comparison between experimental designs

3.2.1. Calculation of optimal experiment designs
The numerical results from the previous section demonstrate that 

one-step methods are statistically more robust than the two-step ones for 
fitting the Baranyi-Ratkowsky model. Therefore, considering that one- 
step and two-steps methods require independent OED definitions, this 
section focuses on the impact of different experimental designs when 
fitting the models using the one-step method.

Local sensitivity functions are a useful way to qualitatively assess the 
amount of information provided by an experimental design. In principle, 
samples located at highest absolute values of the local sensitivity func
tions contribute more towards parameter estimation than those located 
in lower absolute local sensitivities (Soetaert & Petzoldt, 2010). As is 
common in nonlinear models, the local sensitivity functions vary largely 
between model parameters of the Baranyi-Ratkowsky model (supp. 
Fig. 5). This implies that some areas of the design space are more 
informative than others when estimating each parameter. As a pre
liminary assessment, the most informative areas for logN0 and logNmax 
take place during the lag and stationary phases, in line with previous 
findings (Grijspeerdt & Vanrolleghem, 1999). On the other hand, the 

most informative areas for Tmin and b coincide at the transition between 
exponential and stationary phase, whereas the maximum for logC0 is 
located at the middle of the exponential growth phase.

One of the most innovative aspects of this research with respect to 
previous studies on OED for the Baranyi-Ratkowsky model (Grijspeerdt 
& Vanrolleghem, 1999; Guillén et al., 2024; del Río et al., 2024) is the 
consideration of a two-dimensional design space that accounts for both 
the storage time (primary model) and the storage temperature (sec
ondary models). Accordingly, the OED must calculate local sensitivity 
functions in two dimensions. The trend observed for isothermal condi
tions remains when temperature changes, with the maximum of the 
local sensitivity functions occurring at the same relative places within 
the growth curve (supp. Fig. 6). It is of high importance that, under the 
assumptions made, the value of the maximum local sensitivity does not 
depend on temperature for parameters b, logC0, logN0 andlogNmax. This 
implies that temperature does not have a high influence on the esti
mation of these parameters. The only exception is parameter Tmin, whose 
maximum local sensitivity increases for lower temperatures. Hence, 
lower temperatures are favored when it comes to estimating this 
parameter.

OEDs were first calculated by direct optimization of the determinant 
of the FIM (D-optimal design). As illustrated in Fig. 3, the OED is focused 
on the minimum (6 ◦C) and maximum (37 ◦C) temperatures of the design 
space, with the same number of experiments at each temperature. This is 
in line with previous studies following a similar methodology, where D- 
optimal designs for linear (or quasi-linear) secondary models focused on 
the extremes (Guillén et al., 2024; Peñalver-Soto et al., 2019; del Río 
et al., 2024) because these points have the highest leverage. Within each 
temperature, the sampling times concentrate in four areas: the begin
ning of the lag phase, the beginning of the exponential phase, the end of 
the exponential phase, and the stationary phase. This is also a common 
result for OEDs, which tend to focus every sample in the most infor
mative areas (Garre et al., 2018; Grijspeerdt & Vanrolleghem, 1999; Río 
et al., 2024). The position of the sampling points is similar to those 
identified previously for the Baranyi primary model (Grijspeerdt & 
Vanrolleghem, 1999), being close to the optima of the local sensitivity 
functions (supp. Fig. 5–6). The calculations were repeated for a different 
number of experiments (i.e., number of temperatures), obtaining similar 
configurations (not shown).

Although the results of the OED are optimal from the point of view of 
information theory, the focus on low temperatures might be impractical. 

Fig. 3. Configuration for the OED (A) and OED + penalty (B) for a design with six different experiments. The color represents the temperature of the experiment, 
with the squares indicating the position of the optimal sampling times. The number within the square represents the number of samples to take at that time.
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As shown in Fig. 3, experiments at 6 ◦C would require a duration of 
20,000 h (833.3 days), whereas experiments at 37 ◦C would be 
completed in 20 h. Such long experiments involve additional challenges 
that are unaccounted for by the OED, as already discussed at length 
elsewhere (Guillén et al., 2024). For this reason, the OED was recalcu
lated including a penalty function to reduce the duration of the 
experiments.

The resulting design is illustrated in Fig. 3B (similar configurations 
were calculated for a different number of experiments; not shown). By 
comparing the design against the original one, we can identify that the 
introduction of the penalty term in the optimization problem results in 
two strategies to reduce the aggregated duration of the experiment. 
First, the experimental design now favors the higher treatment tem
perature (37 ◦C), including a single experiment at 6 ◦C (D-optimal so
lutions had the same number of experiments at each extreme 
temperature). This strategy could be anticipated, as these temperatures 
are selected due to their high leverage on the secondary models for both 
μ and λ, therefore it is reasonable to favor one leverage point when a 
penalty function is implemented.

The second strategy identified by the OED + penalty optimization is 
more “creative”. Besides reducing the number of experiments at 6 ◦C, 
the experimental design does not build a whole growth curve at that 
temperature. Instead, the experiment is terminated before the transition 
from exponential to stationary phase. This is due to sampling points in 

the stationary phase providing mostly information of logNmax. As the 
experiments at 37 ◦C already includes enough information to estimate 
this parameter reliably (and it was assumed that logNmax was 
temperature-independent), the optimization algorithm omits sampling 
points in the stationary phase for the experiment at 6 ◦C, cutting the 
duration of that experiment almost in half. As the experiment at 6 ◦C 
requires by far the longest time, this results in a dramatic reduction in 
the aggregated duration of the experimental design (supp. Fig. 7).

3.2.2. Precision of the (optimal) experimental designs
Fig. 4 compares the precision of each experimental design, expressed 

as the expected relative error of each model parameter based on the 
standard error of regression (as demonstrated in section 3.1, this index is 
representative of parameter variability/uncertainty), with numerical 
values included in supp. Table 2. The results for the uniform design are 
as expected, with the number of growth experiments steadily increasing 
the precision of the parameter estimates. Nonetheless, it is worth noting 
that the rate of increase is parameter-dependent. Particularly, increasing 
the number of experiments has a relatively low impact on Tmin. This can 
be related to the local sensitivity functions (supp. Fig. 5–6), that have a 
maximum for Tmin at the lowest temperature. As including additional 
experiments in a uniform design only “fills up” intermediate points, their 
contribution to the estimation of Tmin is only minor, compared to the 
other parameters whose maximum local sensitivity is not largely 

Fig. 4. Precision of each experimental design (measured as the expected relative error of 500 MC simulations for each model parameter) as a function of the number 
of growth experiments (i.e., potentially different temperatures) in the design.
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affected by temperature.
These numerical results are in line with expert knowledge in the 

field, which underlines the need to perform experiments close to the 
growth limit for a reliable estimation of Tmin (Pinon et al., 2004). 
Nonetheless, the numerical simulations presented here provide a theo
retical basis for that recommendation, including quantitative estimates. 
More interestingly, the approach presented here provides clear sugges
tions on how to make growth experiments more efficient. The optimal 
solution calculated by OED results in an increase in the precision of most 
parameters (26 % reduction in standard error for b; 21 % for logC0; 23 % 
for Tmin). However, the OED actually reduces the precision of the logN0 
estimate (24 % increase in standard error). This result is typical for D- 
optimal designs where the optimality criterion minimizes the volume of 
the confidence ellipsoids (Balsa-Canto et al., 2008). This can lead to 
situations where the overall parameter uncertainty is reduced while 
increasing the uncertainty of one particular parameter estimate (Guillén 
et al., 2024). Nonetheless, logN0 might be the less critical parameter 
when estimating growth curves (it is often closely controlled by the 
experimenter), making a reduction in its precision practically irrelevant.

Despite its reduction in parameter uncertainty, the OED requires an 
aggregated experiment duration much larger than the uniform one 
(supp. Fig. 7), making it impractical. On the other hand, the aggregated 
duration of the OED + penalty is comparable to the uniform design 
(even being shorter for the case of six experiments) due to the focus on 
the highest temperature (37 ◦C). As illustrated in Fig. 4, this has little 
impact on the robustness of most parameter estimates with respect to the 
OED. The only parameter with a noticeable lower precision is Tmin. Note 
that, in this case, the precision has a sharp “jump” between six and eight 
experiments. This is due to the OED + penalty configuration having one 
experiment at 6 ◦C for six experiments and two between eight and 
twelve experiments (Fig. 3).

Despite the OED + penalty having higher parameter uncertainty for 
Tmin than the OED, the OED + penalty design provides substantially 
more robust parameter estimates compared to the uniform design (be
sides the lower precision in logN0 already discussed). Therefore, 
considering that the aggregated time of the uniform and OED + penalty 
designs are comparable (supp. Fig. 7), it can be concluded that the OED 
+ penalty approach provides an efficient method for the definition of 
experimental designs for the Baranyi-Ratkowsky growth model.

3.3. Practical recommendations based on the numerical results

Scientists often see standard errors as a nuance parameter that must 
be minimized. However, that view is not entirely applicable to predic
tive microbiology, where the standard error of the microbial concen
tration observed experimentally is partly a reflection of the inherent 
variability of the microbial response. This includes biological sources of 
variability, such as within-strain and between-strain variability (Aryani 
et al., 2015; Aspridou & Koutsoumanis, 2020; Koyama et al., 2025), as 
well as other sources such as the impact of the variability in the 
composition of food batches (Verheyen et al., 2019). The final goal of 
predictive microbiology is predicting the actual microbial response 
within the food supply chain (Ross et al., 2014). Therefore, as variability 
is an integral part of the response, models should not be judged just by 
their ability to predict the expected response, but also by their ability to 
describe variability.

A main challenge is posed by the fact that standard errors are not just 
the result of variability. Experimental error (understood not just as 
mistakes, but every type of technical limitation/simplification) is un
avoidable in empirical studies (Box et al., 2005). Accordingly, the 
variation observed in microbial growth experiments is a combination of 
inherent variability and experimental errors (often called “uncertainty” 
in the field to clearly separate it from variability). The challenge of 
predictive microbiology is thus to reduce the contribution of uncer
tainty, so the standard error of regression mostly represents variability 
(Garre, Zwietering, & van Boekel, 2022). This is most often done by 

increasing the amount and/of quality of experimental data. This study 
demonstrates that there is an alternative approach for reducing uncer
tainty: combining more informative experimental designs with robust 
model fitting strategies.

This study clearly demonstrates that one-step fitting methods are 
superior to two-step ones from a statistical standpoint because this 
approach reduces dispersion in parameter estimates. This result is 
aligned with the conclusions of previous studies (Cattani et al., 2016; 
Dolan et al., 2007; Huang, 2020), advancing the state of the art by 
demonstrating that the standard error of regression for one-step models 
accurately represents the variability/uncertainty of parameter estimates 
(unlike two-steps approaches). This result had not been reported pre
viously and presents an important step forward towards improving 
variability and uncertainty estimation for the microbial response.

Nonetheless, one-step methods also have limitations with respect to 
two-step ones. One-step methods do not explicitly check for the validity 
of secondary models (i.e., eqs. 2 and 4) because secondary models are 
fitted directly from log N. This increases the risk of inadvertently fitting 
a secondary model that is not suitable for the microbial response, 
something that is less likely in two-step approaches where secondary 
models must be defined independently (Georgalis et al., 2023). We 
consider that this check is important, as one cannot ensure the validity of 
the Baranyi or Ratkowsky models due to their empirical nature (Le Marc 
et al., 2002). Hence, our recommendation is to first explore the data 
using a two-step approach. Once the validity of the primary and sec
ondary models has been ensured, the models should be fitted again using 
the one-step method considering the link between the secondary models 
for μ and λ, resulting in five parameter estimates (Garre et al., 2025). 
These values should be reported as “the true model”, including their 
standard error of regression as estimates of variability/uncertainty.

In terms of experimental design, OEDs make two clear recommen
dations: (1) to select extreme temperatures (one close to Tmin and one 
close to Topt) and (2) to use sampling times near the transition between 
growth phases (lag/exponential; exponential/stationary), as well as at 
t = 0 and in the stationary phase. However, two main challenges 
remain. The first one is that experiments at the lowest temperatures 
require extremely long times. The OED + penalty showed that the total 
experimental time can be dramatically reduced by two strategies: (1) 
lowering the number of experiments at the lowest temperature and (2) 
taking only samples during the lag and exponential phase for the ex
periments at lower temperatures. The second challenge is related to the 
position of the transition between phases, as this is not known before
hand (if we did know, experiments would not be required). Therefore, 
an iterative approach, where the experimental design is refined as more 
data is available, is still required (Vilas et al., 2018).

Considering these challenges, as well as the OED recommendations, 
we propose a staggered experimental design that is recursively updated 
over three weeks for fitting the Baranyi-Ratkowsky model. As illustrated 
in Fig. 5 for a simulated dataset, on Week #0 samples would be incu
bated at four different temperatures: optimal growth conditions (e.g., 
37 ◦C), one medium-high condition (e.g., 21 ◦C), one medium-low 
condition (e.g., 15 ◦C) and one close to the growth limit (e.g., 7 ◦C). 
After one week, the experiments at 37 and 21 ◦C would have produced a 
complete growth curve. Although the experiment at 15 ◦C might not 
have reached the stationary growth phase, the OED + penalty showed 
that this data can already be highly informative. Therefore, after one 
week, there would be enough information to fit a preliminary Baranyi- 
Ratkowsky model, with the experiment at 21 ◦C being used to verify 
the secondary models for μ and λ.

The OED identified that sampling times near the transition between 
growth phases are more informative. This was not considered in the 
experiments at Week #0, which used a uniformly distributed sampling 
scheme for convenience. Nonetheless, the preliminary models obtained 
from this data can be used to further refine the sampling scheme. 
Accordingly, a second repetition of the experiments at 15 and 37 ◦C 
would be performed on Week #2, focusing on the transition areas. In 
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this second experimental batch, no experiment would be performed at 
21 ◦C, as this data point is mostly used for verification of the secondary 
model. By the end of Week #2, the experiments at 15 ◦C would be 
completed (as the stationary phase is not required), together with the 
one at 37 ◦C. The results of the latter would be used to further refine the 
position of the time points for the last two replicates of this experiment 
on Week #3. Hence, after three weeks, the biological replicates of the 
experiments at 15 ◦C (2 replicates), 21 ◦C (1 replicate) and 37 ◦C (4 
replicates) would be completed. Even if the experiment at 7 ◦C still re
mains in the lag phase (i.e., it does not provide information), the partial 
dataset obtained already provides preliminary information on the model 
parameters.

Fig. 6 illustrates the evolution of the parameter estimates and their 

uncertainties as a function of the number of weeks for this experimental 
setting using a simulated data set. After 2 weeks, the model has already 
converged for parameters logN0, logNmax and b. This is reasonable, as 
the two microbial concentrations are parameters for the primary model 
and b is the slope of the Ratkowsky model (and there are experiments at 
several temperatures). However, the estimate of Tmin and logC0 are 
highly uncertain, due to these parameters being related to the effect at 
low temperatures. As the weeks progress, the estimates of these pa
rameters are improved, as data points from the experiment at 7 ◦C 
become available. This iterative approach provides a useful way to 
define the total duration of the experiment, as the one where the esti
mates of Tmin and logC0 (as well as their standard errors) have 
converged. This provides a more robust indication than traditional 

Fig. 5. Illustration of the proposed staggered experimental design, where the sampling scheme is iteratively improved over three weeks based on OED 
recommendations.

Fig. 6. Illustration using simulated data of the changes in parameter estimates (dots) and standard errors (bars) for the Baranyi-Ratkowsky model using the staggered 
experimental design in Fig. 5. The x-axis illustrates the improvement of the models as more data is available through the weeks.
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approaches, where the experimental duration would be defined be
forehand and there is no information on convergence.

3.4. Limitations and future work

As mentioned in the introduction, this study focused on model fitting 
from isothermal growth experiments, as this remains the most common 
experimental approach in the field. However, primary and secondary 
models can also be estimated by dynamic fitting from data obtained 
under varying temperature conditions (Garre et al., 2023; Huang, 
2017a). This approach is motivated by the assumption that dynamic 
conditions would present a more efficient exploration of the design 
space, as each experiment combines several temperatures rather than 
one. However, it also requires more complex experimental and statisti
cal methods, so its application is mostly restricted to research, as evi
denced by ISO 23691 including only recommendations for model fitting 
from isothermal experiments. Therefore, this study was limited to the 
reference methodology because its main goal was to provide guidelines 
to a broad audience.

Besides the limitations mentioned above about the practicality of 
OEDs, this study also has limitations related to model assumptions. The 
first assumption that differs from the conventional approach is the 
introduction of an inverse square root secondary model for λ that is 
linked to the secondary model for μ (Eq. 4). Nevertheless, this is a direct 
implication of the hypotheses of the Baranyi and Ratkowsky models 
(Garre et al., 2025). Therefore, it cannot be questioned without chal
lenging the basic assumptions of those models.

On the other hand, the hypotheses regarding Nmax can indeed be 
questioned. The modelling approach introduced here assumes that this 
parameter is independent from temperature. This must be seen as a 
required simplification, as there is evidence for microbial concentration 
at the stationary phase being affected by the environmental conditions 
(Rees et al., 1995). However, one-step fitting requires the definition of 
secondary models for every model parameter (or the assumption that 
they are constant). As there are no broadly accepted secondary models 
for the relationship between Nmax and temperature, considering this 
parameter to be constant was a required simplification. At this point, it 
must be noted that this simplification is very common in the field. For 
instance, dynamic fitting methods mentioned above do not account for 
any history effect when modelling Nmax (i.e., they fit the Baranyi model 
in differential form without any modification). Accordingly, we believe 
this simplification to be reasonable considering the state of the art. Even 
in the worst case where Nmax had a strong temperature-dependence, 
estimates of this parameter have very little influence on the estimates 
for b, Tmin or C0, due to their low parameter correlation. As these pa
rameters are often more relevant for QMRA or shelf life estimation, the 
practical impact of deviations from this assumption would be mostly 
minor.

A possible criticism to the guidelines provided in section 3.3 is their 
rigidity. However, they should be seen as guides, not as rules. They 
intend to translate the results of the OED into practical recommenda
tions to obtain experimental designs that are as informative as possible 
with the lowest experimental load. For that reason, it suggests an iter
ative approach to allow the flexibility to update the experimental design 
as data becomes available and models are updated. In this sense, repli
cates at various conditions should be tested for outliers, repeating ex
periments when required (rather than waiting until the experiment at 
the lowest temperature is completed). Also, temperature values (7, 15, 
21 and 37 ◦C) were suggested based on the typical biokinetic range of 
most bacteria and their industrial relevance. Nevertheless, it should be 
adapted when studying species that deviate from this range (e.g., 
Campylobacter spp.) or when other temperature values are of particular 
relevance. It could also be interesting to include additional intermediate 
temperatures, especially in cases where there are doubts regarding the 
validity of the Ratkowsky model.

Another possible challenge for the application of this approach is the 

requirement of more complex statistical methods. However, the avail
ability of Open Access packages (Garre et al., 2023) and web applica
tions (https://foodlab-upct.shinyapps.io/biogrowth4/) that already 
implement these approaches practically makes the calculations trivial 
(Possas et al., 2022). Another limitation is the requirement of initial 
guesses for the model parameters to design the OED. Nonetheless, this 
limitation also applies to the selection of time points and dilutions for 
conventional methods. In any case, the scientific literature/historical 
data often provides reasonable guesses, which can be updated iteratively 
(Vilas et al., 2018) leveraging the staggered experimental design.

Finally, this study puts the focus on experimental designs for 
parameter estimation. It is generally acknowledged in the field that 
those parameters should be taken with care, so an external validation 
under conditions as close to industry as possible should always be per
formed (Mejlholm et al., 2010; Oscar, 2005; Tarlak & Pérez-Rodríguez, 
2021). This involves additional challenges, especially considering that 
dynamic conditions might result in microbial responses that cannot be 
observed under isothermal conditions (Antolinos et al., 2012; Georgalis 
et al., 2022). Therefore, following the guidelines proposed here for 
model fitting does not exempt models for independent validation.

4. Conclusions

It is broadly accepted that uncertainty can be reduced by gathering 
more and/or better data. This study provides clear recommendations on 
how to get “better data”, underlining that using more informative 
experimental designs can improve parameter estimation (without 
requiring additional data points). Namely, for the Baranyi-Ratwkowsky 
model, extreme temperatures should be favored (for practicality, espe
cially those close to optimal growth conditions) and time points close to 
the transition between growth phases. This strategy should be combined 
with one-step fitting approaches, using the standard errors of regression 
as estimates of variability/uncertainty.

Being able to reduce uncertainty by using better designs and algo
rithms is of great importance for the field, as it does not require any 
modification to experimental (“wet”) approaches. The only requirement 
is the use of more complex numerical (“dry”) methods. Considering that 
Open Access software applications already implement these methods, 
this limitation is very minor compared to its potential to improve the 
overall robustness of predictive microbiology models.

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.foodres.2025.117288.
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Possas, A., Valero, A., & Pérez-Rodríguez, F. (2022). New software solutions for 
microbiological food safety assessment and management. Current Opinion in Food 
Science. , Article 100814. https://doi.org/10.1016/j.cofs.2022.100814

R Core Team. (2022). R: A language and environment for statistical computing. Vienna, 
Austria: R Foundation for Statistical Computing. 

Ratkowsky, D. A., Olley, J., McMeekin, T. A., & Ball, A. (1982). Relationship between 
temperature and growth rate of bacterial cultures. Journal of Bacteriology, 149, 1–5.

Rees, C. E. D., Dodd, C. E. R., Gibson, P. T., Booth, I. R., & Stewart, G. S. A. B. (1995). The 
significance of bacteria in stationary phase to food microbiology. International 
Journal of Food Microbiology, 28(2), 263–275. https://doi.org/10.1016/0168-1605 
(95)00062-3

del Río, A. M., Casero-Alonso, V., & Amo-Salas, M. (2024). A new methodology to 
robustify an experimental design: Application to the Baranyi model. Chemometrics 
and Intelligent Laboratory Systems. , Article 105104. https://doi.org/10.1016/j. 
chemolab.2024.105104

Rodriguez-Caturla, M. Y., Garre, A., Castillo, C. J. C., Zwietering, M. H., den 
Besten, H. M. W., & Sant′Ana, A. S. (2023). Shelf life estimation of refrigerated 
vacuum packed beef accounting for uncertainty. International Journal of Food 
Microbiology, 405, Article 110345. https://doi.org/10.1016/j. 
ijfoodmicro.2023.110345

Ross, T., McMeekin, T. A., & Baranyi, J. (2014). Predictive microbiology and food safety. 
In C. A. Batt, & M. L. Tortorello (Eds.), Encyclopedia of food microbiology (2nd ed., pp. 
59–68). Oxford: Academic Press. https://doi.org/10.1016/B978-0-12-384730- 
0.00256-1. 

Rosso, L., Lobry, J. R., & Flandrois, J. P. (1993). An unexpected correlation between 
cardinal temperatures of microbial growth highlighted by a new model. Journal of 
Theoretical Biology, 162, 447–463. https://doi.org/10.1006/jtbi.1993.1099

Sánchez-Martín, J., Serrano-Heredia, S. M., Possas, A., Valero, A., & Carrasco, E. (2025). 
Evaluation of the antimicrobial effect of bioprotective lactic acid Bacteria cultures 
against Listeria monocytogenes in vacuum-packaged cold-smoked rainbow trout 
(Oncorhynchus mykiss) at different temperatures. Foods, 14, 1951. https://doi.org/ 
10.3390/foods14111951

Soetaert, K., & Petzoldt, T. (2010). Inverse modelling, sensitivity and Monte Carlo 
analysis in R using package FME. Journal of Statistical Software, 33. https://doi.org/ 
10.18637/jss.v033.i03
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