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Abstract

Rationale Evaluative processing of action outcome is considered crucial for learning and adaptive adjustments of behaviour.
Feedback-related negativity (FRN) is an event-related potential elicited by feedback presentation, with implicated neural
sources in the anterior cingulate cortex. Bidirectional communications within the brain-gut-microbiota axis modulate cogni-
tion and behaviour, and microbial composition has been associated with medial prefrontal cortex function and clinical risk
for depression.

Objectives The present study aimed to investigate associations between specific gut microbiota and the FRN.

Methods Twenty-nine healthy participants completed self-report measures of depression and a Faces and Feedback task
during electroencephalography recording. Select implicated microbiota genera were enumerated from stool samples (Clos-
tridium, Lactobacillus), along with plasma C-reactive protein (CRP) as an index of systemic inflammation.

Results FRN amplitude for positive feedback was positively correlated with microbiota abundance. The relationship between
Clostridium and FRN was confirmed by multilevel modelling analysis, controlling for depression and CRP. The latter was
positively associated with FRN amplitude.

Conclusions Findings suggest that the brain-gut-microbiota-axis may modulate or be modulated by self-monitoring pro-
cesses. The current work provides insights into neurophysiological mechanisms underlying reward processing and indicates
novel directions for therapeutic interventions, such as those that modulate the gut microbiome.

Keywords Feedback-related negativity - Gut microbiota - ERPs - EEG

Introduction

The brain-gut-microbiota axis (BGMA; Kelly et al. 2016)
refers to the multi-directional interactions between the gut
and the brain (Grenham et al. 2011; Carabotti et al. 2015).
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These communication pathways comprise the central ner-
vous system (CNS), autonomic nervous system (ANS),
enteric nervous system, neuroendocrine and neuroimmune
systems, and the intestinal microbiota (i.e., the community
of micro-organisms which reside in the gut; Carabotti et al.
2015; Cryan and Dinan 2012; Mayer 2011). Brain-to-gut
pathways are involved in homoeostatic regulation through
hierarchical networks from physiological responses (e.g.,
intestine, gastric, and enteric reflexes) to top-down loops
involving limbic structures (hypothalamus, amygdala,
insula, anterior cingulate cortex; Mayer 2011). On the one
hand, top-down control is recruited in response to environ-
mental factors, such as stressors, and serves as integration of
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interoceptive and exteroceptive signals to modulate intesti-
nal homeostatic regulation (Mayer 2011; Cryan et al. 2019).
On the other hand, gut microbiota contributes to regula-
tion of CNS and behaviour, in a bottom-up fashion through
direct (i.e. and via vagus nerve; Bonaz et al. 2018; Bravo et
al. 2011) and indirect (immune and endocrine; Sudo et al.
2004) systems, leading to altered neuroimmune signalling
(Erny et al. 2015; Cryan and Dinan 2015), stress responsive-
ness, and neurotransmission (e.g., O’Mahony et al. 2015).
Functional Magnetic Resonance Imaging (fMRI) studies
have shown that the association between alterations in the
gut microbiota population and reduced default mode net-
work connectivity in end-stage renal disease patients was
mediated by systemic inflammation (Wang et al. 2019).
Callaghan et al. (2020) reported that bacterial levels were
correlated with medial and lateral PFC, posterior cingu-
late cortex, and precuneus task-related activity in children
exposed to adversity. Moreover, in healthy participants,
microbial diversity was associated with executive control
network connectivity, interconnectivity between executive
control, default mode and sensorimotor networks (Cai et al.
2021) and insular connectivity (Curtis et al. 2019). Taken
together, these studies suggest an association between gut
microbiota composition and activation of neural networks
recruited in performance monitoring processes.
Self-monitoring is essential to perform successful goal-
directed behaviours, evaluate the action outcomes and adjust
behaviours, by learning how to avoid mistakes (Ullsperger
et al. 2014). Electroencephalography (EEG) research identi-
fied event-related potential (ERP) markers of performance
monitoring, the medial frontal negativities (MFN). One type
of MFN, the Feedback-Related Negativity (FRN; Miltner et
al. 1997) is thought to reflect performance feedback evalua-
tion and reward processing (Hajcak et al. 2006, 2007). The
FRN is a negative deflection peaking at around 250-300 ms
following feedback presentation and has higher amplitude at
mid frontal electrode sites in response to negative compared
to positive feedback (Krigolson 2018). The primary neural
source of FRN has been localized in the anterior cingulate
cortex (ACC; Bellebaum and Daum 2008; Gehring and Wil-
loughby 2002; Nieuwenhuis et al. 2005; Zhou et al. 2010),
posterior cingulate (Badgaiyan and Posner 1998; Luu et al.
2003; Hayden et al. 2008) and basal ganglia (Martin et al.
2009; Carlson et al. 2011; Foti et al. 2011). According to the
reinforcement learning theory (RL-T; Holroyd and Coles
2002; Holroyd and Yeung 2012), the FRN reflects a learning
prediction error, that is computed by the basal ganglia, as a
mismatch between outcome and expectations, and signalled
through dopaminergic phasic activity to the ACC to pro-
mote performance adjustments (for a discussion of different
theoretical accounts see Walsh and Anderson 2012). Previ-
ous studies showed that changes in ANS reactivity, mostly

@ Springer

indexed by heart rate and skin conductance responses, were
associated with error commission and negative feedback,
suggesting that ANS activity can trigger adaptive prepara-
tion mechanisms for behavioural adjustments (Ullsperger
et al. 2014). However, limited ERP research has explored
the contribution of peripheral signals in relation to feedback
and reward processing. Specifically, Kimura (2019) inves-
tigated the effect of cardiac cycle on feedback-related ERPs
and reported that systolic activity modulated the FRN for
positive (gain), but not negative (loss) feedback, suggesting
that afferent peripheral signals contribute to reward process-
ing. Furthermore, authors investigating MFNs in relation to
psychopathology and neurodegeneration (Walsh and Ander-
son 2012; Tobias and Ito 2021; Bellato et al. 2021; Len-
zoni et al. 2022) have proposed that blunted MFN may be a
biomarker of depression (Proudfit 2015; Brush et al. 2018;
Clayson et al. 2020).

A growing body of evidence indicates that gut microbiota
plays a role in modulating dopaminergic signalling, which
subserve reward processing pathways. Animal research has
shown that alteration of microbial composition triggers
changes in dopaminergic neurotransmission and underly-
ing mesocorticolimbic circuits (Hamamah et al. 2022). It
has been suggested that intestinal microbial composition
may affect dopaminergic receptor expression. However, the
direct and indirect effects of microbial changes on neuro-
transmission is still poorly understood (Gonzalez-Arancibia
et al. 2019). As recently reviewed by (Garcia-Cabrerizo et
al. 2021), gut microbiota may be involved in modulating the
reward system and regulate food, social, sexual and drug
reward processes. Microbial numbers in the human gastro-
intestinal tract range approximately between 10'3 and 10'*
cells/g, with highest abundance in the colon. The two most
prominent phyla are Firmicutes (including genera such as
Lactobacillus and Clostridium) and Bacteroidetes, together
accounting for around % of the microbiota numbers (Eck-
burg et al. 2005; Rinninella et al. 2019). The relationship
between gut microbes and brain health and function is an
emerging area of research with considerable interest being
focused on Lactobacillus and Clostridium genera. Supple-
mentation with probiotic (i.e., introducing the microbiota
through diet) Lactobacillus for example, has been shown
to improve depression- and anxiety-like behaviour and neu-
rocognitive factors in animal models (Li et al. 2018; Liang
et al. 2015; Sun et al. 2018, 2020, 2021a, 2021b; Zhang et
al. 2019). In humans, gut colonization of Clostridium has
been proposed to be involved in autism spectrum disorder
pathogenesis and symptomatology (Alshammari et al. 2020;
Kandeel et al. 2020). Furthermore, in an exploration of the
relationship between Clostridium and stress, a rise in C.
perfringens was observed in students throughout the final
examination period (Mulli¢ et al. 2002); however, the study
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did not include any direct measure of mood. Further stud-
ies showed that probiotic supplementation could ameliorate
major depression disorder symptoms (L. acidophlus, L.
casei and Bifidobacterium bifidum (Akkasheh et al. 2016),
post-natal anxiety depression (L. rhamnosus; Slykerman
et al. 2017) and anxiety symptoms (but not depression) in
chronic fatigue syndrome (L. casei; Rao et al. 2009). How-
ever, other studies reported null effects of prebiotics (i.e.,
non-digestible nutrients degraded by microbiota to lead to
health benefits) with Lactobacillus on depressive symptoms
(L. helveticus; Romijn et al. 2017; Romijn and Rucklidge
2015) or stress-related measures (Kelly et al. 2017). Con-
sidering the range of probiotic strains, differences in sample
characteristics (such as clinical group, age, sample size etc.),
and the heterogeneous choice of self-report mood measures,
a more complex interaction between microbiota and (neuro)
psychological outcomes can be hypothesized. Interestingly,
Heym et al. (2019) reported that faecal abundance of Lac-
tobacillus spp. was indirectly related to cognitive depres-
sion, but directly related to self-judgment, suggesting that
microbiota composition may be related to self-referential
mechanisms. This is in line with Steenbergen et al. (2015)
who found a strong effect of multispecies probiotic supple-
mentation for rumination-type symptoms.

Critically, limited EEG research has focused on the asso-
ciation between the gut microbiome and neurocognitive
functioning. Following 4-week supplementation with Bifi-
dobacterium longum 1714 (1 x 10° colony-forming units per
day) in healthy adults, resting state Fz mobility was higher
following active treatment compared to baseline and pla-
cebo conditions, and Cz theta power was lower following
active treatment as compared to placebo, with no effect on
oddball P300 (Allen et al. 2016). Kelly et al. (2017) reported
that after 4-weeks L. rhamnosus supplementation (1% 10°
colony-forming units per day) in healthy males, the only
difference between placebo and probiotic conditions was
in F3 zero-crossing, but no effect for other EEG measures.
Moreover, Canipe et al. (2021) showed that, in older adults,
higher microbial diversity was associated with larger fron-
tal N1 amplitude for targets in a detection task and, with
shorter frontal N2 latency and larger temporal P3 amplitude
for a familiar condition during an oddball task. Follow-up
analyses showed that these measures had specific associa-
tions with different phyla. N1 was positively associated with
Proteobacteria, Tenericutes and Cyanobacteria, shorter N2
latency was associated with Cyanobacteria, and P3 was
negatively associated with Proteobacteria. Taken together,
the evidence suggests the existence of specific relation-
ships between neurophysiological measures and the gut
microbiota.

The aim of the current study is to explore the rela-
tionship between lower gut microbiota composition and

neurophysiological correlates of reward processing. Spe-
cifically, this study will focus on Lactobacillus - Entero-
coccus and Clostridium histolyticum group abundance and
association with FRN. To the best of our knowledge, this is
the first study exploring the association between gut micro-
biome and performance monitoring ERPs. We hypothesize
that, after accounting for direct effects of inflammation and
depression, higher microbial abundance would be associ-
ated with larger FRN amplitude, thus reflecting a positive
association between gut signals and enhanced performance
monitoring processes. Confirmation of such as relationship
would offer a novel neurocognitive target for interventions
affecting BGMA.

Methods
Participants

Twenty-nine healthy adults were recruited at Nottingham
Trent University. Participants were included in the study
if they were aged over 18 and fluent in English. Exclusion
criteria were history of neurological, psychiatric, renal, car-
diovascular, or hepatic diseases; alcohol misuse; antibiotic
use (within the previous 3 months); regular intake of anti-
inflammatory and prebiotic/probiotic/synbiotic (within the
previous month); pregnancy. Two participants were breast-
feeding, 9 participants reported use of dietary supplements.

An online survey was used to collect demographic data
and assess depression. Participants who were eligible were
invited to the university campus, where they provided blood
and stool samples, and performed a computerized task dur-
ing EEG recordings. For each participant, written consent
was obtained before testing. The research was subject to
ethical consideration by Nottingham Trent University’s
Schools of Business, Law and Social Sciences Research
Ethics Committee and has met with a favourable ethics
opinion. It has been designed with reference to the British
Psychological Society’s code of ethics.

Depression

The Beck Depression Inventory II (BDI-II; Beck et al.
1996) consists of 21 items, assessing key elements of
depression. Participants were instructed to rate each item
on a scale from 0 to 3 according to symptom severity in the
past two weeks. The total score was calculated as the sum of
the items and can range from 0 (absence of depression) to 63
(severe depression). The BDI-II total has been validated in
clinical and non-clinical populations (Wang and Gorenstein
2013) and found to have good internal consistency (Cron-
bach’s 0=0.90) and concurrent validity (Storch et al. 2004).
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Measurement of C-reactive protein (CRP)

Blood samples (10 mL) were obtained by antecubital veni-
puncture using BD Vacutainer® Safety Lok™ blood collec-
tion sets containing ethylenediaminetetraacetic acid (EDTA)
as an anticoagulant, and immediately placed on ice. Blood
samples were centrifuged for 15 min (1000xg at 4 °C)
within 30 min of collection. The plasma fraction was then
aliquoted into cryotubes and stored at —80 °C until analysis.
ELISA was used to determine concentration of CRP (R&D
Systems Quantikine® ELISA) in 100-fold diluted plasma
samples. These were assayed with a 96-well solid-phase
quantitative sandwich enzyme immunoassay. Intra- and
inter-assay precision was less than 10% and mean minimum
detectable level of the assay was 0.010 ng/mL. A calibra-
tor diluent was used to make a two-fold dilution series and
prepare a set of standards. After adding to each well 50 pl
of sample or standard, both were assayed in duplicate, and,
for each one, duplicate readings were then averaged, and
the averaged zero standard optical density was subtracted.
A standard curve was generated by reducing the data using
computer software (www.elisaanalysis.com) to generate a
four-parameter logistic (4-PL) curve fit. Concentrations
read from the standard curve were multiplied by the dilution
factor and optical density was determined within 30 min
using a microplate reader set to 450 nm with wavelength
correction of 570 nm.

Faecal sample Preparation and microbial analysis

Fecotainer® (www.fecotainer.eu/) kits were used to col-
lect faecal samples that were aliquoted (1 g per participant)
and frozen at —20 °C within 2 h of voiding. Stool samples
were thawed and re-suspended in phosphate-buffered saline
(PBS; 0.01 M phosphate buffer, 0.0027 M potassium chlo-
ride and 0.137 M sodium chloride) and homogenised in a
stomacher for 2 min at 460 paddle beats per minute. The
resulting faecal slurry was vortexed with 3-mm glass beads
(VWR) for 30 s before being centrifuged at 400xg for 2 min
at room temperature. The supernatant (375 puL) was fixed
in 4% (w: v) (1125 pL) paraformaldehyde for 4 h at 4 °C.
To remove paraformaldehyde, samples were centrifuged at
13,000%g in 1 mL PBS for 5 min at room temperature; this
washing step was repeated two more times, then samples
were re-suspended in 150 uL PBS and stored in ethanol (1:1
by v:v) at —20 °C for enumeration by fluorescence in situ
hybridisation (FISH).

Flow-FISH, using fluorescently labelled 16 S rRNA—
targeted oligonucleotide probes (Sigma-Aldrich, Stein-
heim, Germany) labelled at the 5’ end with fluorochrome
Alexa®647, was used for bacterial enumeration of the fae-
cal samples. 3 commonly used 16 S rRNA oligonucleotide
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probes targeting specific groups of bacteria were used.
These determined numbers of Clostridium perfringens-
histolyticum group (Chis150;Franks et al. 1998) and Lacto-
bacillus-Enterococcus (Lab158; Harmsen et al. 1999). The
Eub338 mix probe (Daims et al. 1999; linked to the fluo-
rochrome Alexa®488) was used to measure total bacteria
within the samples via a fluorescence detector. The probe
NonEub was used to control for non-specific Eub338 bind-
ing (Wallner et al. 1993). Bacterial groups of interest were
assessed using probes (linked to fluorochrome Alexa®647)
to fluoresce at a different excitation wavelength to be detect-
able in a fluorescence detector (FL4-H). Fixed samples were
treated with lysozyme TE-FISH buffer (0.1 M Tris, 0.05 M
EDTA, 1 mg/mL lysozyme) for 10 min at room temperature.
The sample was washed twice in PBS and re-suspended in
hybridization buffer (0.9 M NaCl, 0.02 M Tris/HCI, 30%
formamide, 0.01% SDS), together with the oligonucleotide
probe of interest. 50 puL of the hybridising mixtures with 4
uL of the corresponding probes were incubated overnight
at 35 °C before 150 uL of hybridisation buffer was added
to each tube, mixed, and centrifuged 3 min at 13,000xg. All
Supernatant was removed and discarded using a pipette.
200 pL of washing buffer containing EDTA were added,
and samples were incubated for 20 min at 37 C to remove
nonspecific bonds between the DNA and the probes. The
sample was again centrifuged for 3 min 13,000xg and the
supernatant removed. The pellet was re-suspended in PBS
solution and the sample was read using the Accuri C6 (BD
Biosciences, Oxford, UK) flow cytometer.

Experimental task

Participants performed a Faces and Feedback Task, in which
they were instructed to observe emotional faces, presented
one at a time. Participants were instructed to try to discover
a secret rule contingent on the face stimuli presented. In
doing so, they were asked to select one number from 1 to 5
after each face presentation. A feedback stimulus was then
displayed, either a green tick (positive feedback) or a red
cross (negative feedback). Participants were told to use the
feedback to discover the secret rule. In actual fact, the secret
rule was that the feedback was presented randomly. In total,
each participant was presented with 50% positive and 50%
negative feedback. Emotional faces (n=200) were selected
from an online database (http://www.macbrain.org/resource
s.htm). Stimuli consisted of 100 female and 100 male faces,
presenting a total of 40 (20 male, 20 female) faces for each
of five possible emotional expressions (anger, sadness, fear,
happiness or neutral). For each trial, a fixation cross was pre-
sented in the centre of the screen for 500 ms. Subsequently,
one emotional face was randomly presented in the centre of
the screen for 700 ms, followed by an interstimulus interval


http://www.macbrain.org/resources.htm
http://www.macbrain.org/resources.htm
http://www.elisaanalysis.com
http://www.fecotainer.eu/

Psychopharmacology

(IST 300 ms +/- 100 ms) and presentation of a question mark
in the centre of the screen (“?””). Whilst the question mark
was on screen, participants had to select one number from 1
to 5. Following button press, there was a further ISI (400 ms
+/- 100 ms) prior to feedback stimulus which was presented
for 500ms. Intertrial interval duration was 400 ms +/- 100
ms. The current study focuses on the response to feedback
stimuli.

EEG recording, preprocessing and erps extraction

Continuous EEG was recorded using a BioSemi Active 11
system (Biosemi, Amsterdam, The Netherlands). Record-
ings were taken from 64 active scalp electrodes based on
the 10/20 system, at 2048 Hz and digitized at 24 bits. Data
were referenced online with a CMS/DRL feedback loop.
EEGLAB (Delorme and Makeig 2004) and MATLAB
(Mathworks, Natick, Massachusetts, USA) were used for
off-line analyses. Data were downsampled to 256 Hz and
processed through a 1 Hz high pass filter and a 35 Hz low-
pass filter. Bad channels were removed and interpolated.
Data were then re-referenced to the linked mastoids. Epochs
of 1200 ms (200 ms baseline before feedback presentation
and 1000 ms after) were extracted. Independent component
analysis (ICA) was used to remove ocular artifacts. Epochs
containing remaining artifacts were rejected through visual
inspection. Following baseline correction with respect to
200 ms before feedback presentation, stimulus-locked ERPs
were averaged separately for each type of stimulus (posi-
tive and negative feedback). The FRN was quantified at Fz,
Fcz, Cz, and Cpz, and Pz, by calculating the peak-to-peak
amplitude, as difference between the negative peak in the
250-350 ms interval and the preceding positivity (Hajcak et
al. 2006; Bellebaum et al. 2010).

Table 1 Descriptive statistics, mean (SD) or N (%)

Age (years) 36.4 (11.8)
Sex (m: ) 14:15
(48:52%)
Depression (BDI-II) 5.8(4.4)
CRP (ng/ml) 11.7 (16.7)
Lactobacillus-Enterococcus 7.5 (0.3)
Clostridium histolyticum 7.0 (0.4)
group
ERPs Fz FCz Cz CPz Pz
FRNn (pv) -9.06 —8.72 —7.27 —-594 -545
(6.17) (5.97) (5.20) (4.56) (4.04)
FRNp(pv) -6.30 —5.78 —4.62 -3.16 —2.57

(3.78) (3.74) (3.58) (2.87) (2.37)
CRP, C-reactive protein, ERPs, event-related potentials, FRNn,
feedback-related negativity for negative feedback; FRNp, feedback-
related negativity for positive feedback. Lactobacillus - Enterococ-
cus and Clostridium histolyticum are expressed as mean log,, cells/g
fresh faeces

Statistical analyses

All analyses were performed using R (R Core Team 2020).
A 2 (feedback type: positive, negative) x 5 (channel: Fz,
FCz, Cz, CPz, Pz) repeated measures ANOVA was used to
examine differences in FRN between positive and negative
feedback across midline electrodes. Pearson’s correlations
were used to explore whether FRN was associated with Lac-
tobacillus - Enterococcus, Clostridium histolyticum group,
depression, and CRP. Benjamini- Hochberg procedure
(Benjamini and Hochberg 1995) with a false discovery rate
criterion of 15% was used for multiple comparisons correc-
tion. Data were analysed using two level cross-classified
multilevel models (MLM), because for each participant the
FRN was quantified for positive and negative feedback. The
dependent variable was FRN amplitude. Models included
a random slope by feedback type, and two fully crossed
random factors (subject and channel), estimated using an
unstructured variance-covariance matrix. Feedback type
was effect coded (negative = —0.5, positive=0.5). In order
to test the effect of microbiota on the FRN, Lactobacillus
- Enterococcus and Clostridium histolyticum group were
entered as predictors in separate models. Additionally,
plasma CRP concentration, and depression were entered as
predictors in both models. Cross-level interactions between
microbiota and feedback type were included to assess
whether microbiota moderated the effect of feedback type
on FRN. Lactobacillus - Enterococcus, Clostridium histo-
Iyticum, CRP, and depression were grand-mean centered
(Enders and Tofighi 2007). Satterthwaite corrections were
used to estimate degrees of freedom and p-values. To fit the
models, Ime4 (Bates et al. 2014) and ImerTest (Kuznetsova
et al. 2017) packages were used.

Results

Descriptive statistics are displayed in Table 1. Grand aver-
aged waveforms are shown in Fig. 1. A two-way repeated
measures ANOVA was conducted to examine the effect of
feedback type and channel on FRN amplitude. There was
a main effect of feedback type, Fj ,4= 15.16, p<.001, and
a main effect of channel, F ;,= 32.39, p<.001, with FRN
amplitude being larger for negative feedback at anterior sites
(Fig. 1). The interaction between feedback type and channel
was not statistically significant, F;,,= 0.112, p=.978.
Correlational analyses revealed that FRN for posi-
tive feedback was associated with Lactobacillus - Entero-
coccus at FCz, r(27)=-0.39, p=.038, Cz, r(27)=—0.44,
p=.018, CPz, r(27)=-0.48, p=.008, and Pz, n(27)=-0.45,
p=.015, and with Clostridium histolyticum group at Cz,
r(27)=-0.37, p=.049, CPz, r(27)=-0.41, p=.027, and Pz,
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Fig. 1 Feedback-locked grand-average waveforms for positive and negative feedback at channels Fz, FCz, Cz, CPz, and Pz and topographical

plots of FRN at 300 ms

r(27)=-0.47, p=.011. Given that FRN is measured as a
negative deflection, results indicate that larger FRN ampli-
tude for positive feedback is associated with greater num-
bers of microbiota. No statistically significant correlations
between FRN, CRP, and depression were found.

MLM analyses are summarized in Table 2. For the
intercept-only model, the mean intercept, 5=—5.88, 95%
CI[-7.78,-3.99], t(11.75)=6.08, p<.001, was significant.
Between-individual variability in the FRN accounted for
51% of the total variance and variance between channels
accounted for 10% of the total variance.

There was a main effect of feedback type on FRN ampli-
tude, »=2.80, 95% CI [1.36, 4.24], 1(27)=3.82, p<.001,
for both models, showing that FRN amplitude for positive
feedback was lower (more positive) as compared to nega-
tive feedback.

Furthermore, in model 1, there was a significant main
effect of Clostridium histolyticum group, b=—3.44, 95% CI
[-6.67,—0.20], #(27.15)=-2.09, p<.05, indicating that higher
levels of clostridia group I and II were associated with larger
FRN amplitude. There was a main effect of CRP, 5=—0.07,
95% [—0.13, —0.01], #25)=—2.08, p=<0.05, showing that
higher inflammation was associated with larger FRN ampli-
tude. The main effect of depression and the interaction of
Feedback type and clostridia were not significant.

In model 2, the main effects of lactobacilli, CRP, or lac-
tobacilli, and the interaction between lactobacilli and feed-
back type were not significant.
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Discussion

Using a novel faces and feedback ERP task, the current
study is the first to investigate the association between gut
microbiota and FRN. In doing so, it contributes important
empirical information regarding mechanisms linking the
gut and brain. Correlation analysis suggested that higher
FRN amplitudes in response to positive feedback were
associated with greater numbers of Lactobacillus - Entero-
coccus and Clostridium histolyticum group. In the MLM,
however, FRN amplitude was found to be associated with
Clostridium histolyticum, but not Lactobacillus - Entero-
coccus, abundance after controlling for inflammation and
depression. These findings suggest that specific microbial
groups are associated with neurophysiological mechanisms
underlying cognitive functioning, in line with previous evi-
dence suggesting a relation between gut microbiota and
frontal functional network connectivity (Wang et al. 2019;
Cai et al. 2021) and task-related brain activity (Callaghan
et al. 2020). Our findings are in line with a relationship
between ANS activity and FRN (Kimura 2019), implicating
the contribution of gut-brain communication to the emer-
gence of feedback processing ERPs. Alternatively, however,
because of the cross-sectional design in the current study,
findings might equally reflect an effect of self-monitoring
mechanisms underlying FRN generation on gut microbi-
ome, for example by predisposing to certain temperaments
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Table 2 Multilevel models testing the effect of microbiota, CRP, and
depression on FRN amplitude. AIC, Akaike information criterion;
ICC, intraclass correlation coefficient; CRP, C-reactive protein

Intercept-only B CI df t p
(Intercept) —-5.88 —7.78,-3.99 11.75 —6.08 <.001
Random effects Variance SD ICC

subject 12.11 3.48 Sl

channel 2.44 1.56 .10

Residual 9.03 3.01

Model 1? B CI df t p
(Intercept) -5.89 =7.75,-4.02 10.93 -6.22 <.001
Feedback type 2.80 1.36,4.24 27 3.82 <001
Clostridium histo- —3.44 —6.67,—-0.20 27.15 —2.09 <.05
Iyticum group

CRP -0.07 -0.13,-0.01 25 -2.08 <.05
Depression —0.08 -0.31,0.16 25 —0.65 .525
Feedback type x -0.23 —3.83,3.36 27 -0.13 .899

Clostridium histo-
Iyticum group
Model 2° B Cl df  t P

(Intercept) -5.89 =7.77,-4.00 11.35 —-6.15 <.001
Feedback type 2.80 1.37,4.23 27 3.86 <.001
Lactobacillus— -2.85 —-6.94,0.61 25.88 —1.65 .111
Enterococcus

CRP -0.04 -0.11,0.02 25 -1.39 .176
Depression —-0.08 -0.31,0.16 25 -0.6 .524
Feedback type x -1.56 -5.28,2.70 27 -0.72 477
Lactobacillus—

Enterococcus

2 AIC of the main effect model was 1347.01; inclusion of the interac-
tion resulted in AIC of 1348.47

b AIC of the main effect model was 1349.41; inclusion of the interac-
tion resulted in AIC of 1347.51

and psychological states (e.g., stress responsivity; Sumich
et al., 2022).

Within the Clostridium histolyticum group, there is also
the possibility to detect Clostridium butyricum. Neuropro-
tective properties of C. butyricum treatments have been
widely reported. Although it remains unclear about the
molecular mechanisms underlying their CNS actions, it has
been suggested that changes occurring in the brain follow-
ing gut microbiota modulation may be related to increased
diversity of gut microbiota. For example, C. butyricum
treatments could induce significant rise of butyrate content
in both the gut and the brain (Liu et al. 2015). Butyrate is
a short-chain fatty acid, which not only acts as an energy
source for intestinal epithelial cells, but also has effects on
anti-inflammatory properties via its inhibition of histone
deacetylase (HDAC; Vinolo et al. 2011) and on dopamine
regulation (Hamamah et al. 2022). FRN has been related to
risk-taking and reinforcement learning proficiency and con-
sidered to reflect underlying individual differences in mid-
brain dopamine functioning. Indeed, several studies showed
that dopamine function moderates FRN amplitude (Walsh
and Anderson 2012; Webber et al. 2021). Therefore, future

studies should further investigate the dynamic interaction
between microbiota and dopamine level in reward-related
learning and performance and explore whether phasic/tonic
dopaminergic release may be associated with abundance
Clostridium spp in healthy individuals.

It has been previously proposed that “gut feelings” play
an important role in decision-making (Mayer 2011) and
executive function (Roman et al. 2018; Cai et al. 2021). Gut
signals modulated by microbiota composition may contrib-
ute to ANS signals integrated by anterior insula and medial
prefrontal cortex (Mayer 2011), for example via vagus nerve
communication (Bravo et al. 2011), to trigger behavioural
adjustments in order to improve performance (Ullsperger et
al. 2014) following feedback processing. Interestingly, pre-
vious research explored the role of peripheral preparatory
inputs related to error awareness, that in ERP research is
typically studied in relation to response-locked ERPs, i.e.,
error-related negativity and error positivity (Hajcak et al.
2003; O’Connell et al. 2007; Wessel et al. 2011; Maier et al.
2019), when no feedback is presented, and post-error behav-
ioural adjustments mainly rely on the internal evaluation of
action outcomes. According to the Accumulation account
(Ullsperger et al. 2010; Wessel et al. 2011), performance
monitoring processes following conscious perception of
error rely on the integration of peripheral signals mediated
by posterior mesial frontal cortex and insular activity (Klein
et al. 2013; Ullsperger et al. 2014). It could be argued that
similar processes may be activated by feedback presentation
when external evaluation of performance leads to awareness
of response correctness. The association between FRN and
microbiota was found to be stronger following positive feed-
back when compared to negative feedback. For many years
the FRN has been considered as a “negativity”, presenting
larger amplitude following negative feedback as compared
to positive feedback (Krigolson 2018). However, previous
research referred to the FRN as reward positivity (RwP;
Proudfit 2015), based on evidence suggesting that feedback
processing may modulate the positive, but not the negative
conditional waveform (Holroyd et al. 2008; Krigolson et al.
2014). Moreover, it has been suggested that positive feed-
back may be more relevant for the implementation of neu-
robehavioral adjustments and learning (Zioga et al. 2019).

In the current study, FRN amplitude was not associated
with self-reported depressive symptoms. These findings,
therefore, do not support the hypothesis of reduced FRN as
a biomarker of depression (Proudfit 2015), which is indeed
still debated (Clayson et al. 2020). The association between
performance monitoring ERPs and depression has been
found to be stronger in clinical populations and inconsistent
findings may be explained by other factors, such as experi-
mental manipulations (Weinberg et al. 2015; Clayson et al.
2020). Crucially, our analysis revealed that in model 1 there
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was a main effect of inflammation, which has been proposed
to play a pivotal role in the development of depression
(Miller and Raison 2016; Beurel et al. 2020). Therefore, it
could be hypothesized that bidirectional BGMA commu-
nication, including inflammatory mechanisms may medi-
ate the relationship between depressed mood and reward
processing (Dooley et al. 2018). Moreover, the current
study used BDI total scores, which combine cognitive and
non-cognitive aspects of depressive symptoms. Some evi-
dence suggests that the relation between feedback-related
ERPs and depression may be specific to certain depressive
symptoms (e.g., Mueller et al. 2015). Future studies should
incorporate psychometric assessments that precisely target
different facets of depression.

MLM revealed that FRN was associated with Clostrid-
ium histolyticum group, but not with Lactobacillus - Entero-
coccus, suggesting the existence of relationships between
specific genera of microbiota and neurophysiological cor-
relates of performance monitoring. Similarly, previous ERP
research showed that N1, N2, and P300 were associated
with specific phyla and with microbial diversity (Canipe
et al. 2021). This is also supported by further fMRI evi-
dence (Callaghan et al. 2020), showing that task-related
brain activation clusters presented associations with certain
genera (Bacteroides and Lachnospiraceae). However, it is
important to note that the present study focused on a limited
number of genera. Future studies should explore the asso-
ciation between performance monitoring ERPs and micro-
biota at different taxonomic levels, and include measures of
microbial diversity, such as alpha (within-subject) and beta
(between-subject) diversity.

Considering the moderate associations between FRN and
microbiota revealed by the current study, further research is
needed to extend our knowledge about the role of BGMA
in self-monitoring processes, and specifically the interac-
tion between inflammation, depression, and reward-related
ERPs. Importantly, the current task included zero-value ran-
dom feedback presentation (ticks or crosses). Future inves-
tigations should employ learning-based tasks to understand
the relationship between gut-brain interactions and neurobe-
havioral adjustments; and single-trail analysis to explore
intra-individual FRN trial-level changes (Volpert-Esmond
et al. 2018). Varying values of feedback (e.g., monetary
wins/losses) could be used to elucidate the mediating effect
of feedback magnitude.

The current study has important implications for under-
standing the role of the gut microbiota in neurocognitive
function in healthy individuals and for the therapeutic use
of prebiotics and probiotics in clinical settings. Over the
last two decades, an exponential increase in research in gut
microbiota has led to greater understanding of their role in
the pathophysiology of clinical conditions. For example,

@ Springer

atypical diversity and microbial dysbiosis (or dysbacterio-
sis) have been implicated in psychiatric and neurological
disorders (e.g., Pistollato et al. 2016; Simpson et al. 2021;
Sun and Shen 2018; Vogt et al. 2017; Yuan et al. 2019). This
has paralleled development of theories around the involve-
ment of the immune system and inflammation in these psy-
chological noncommunicable diseases (Grochowska et al.
2019; Suganya and Koo 2020). Emerging evidence indi-
cates benefits from prebiotic and probiotic supplementation
on cognition (Morkl et al. 2020; Paiva et al. 2020; Lv et
al. 2021; Kang and Zivkovic 2021), which present addi-
tional intervention advantages, such as easy implementa-
tion through dietary changes (Paiva et al. 2020) and lack of
addictive properties contained in pharmacological medica-
tions that may cause adverse side-effects (Liu 2017). How-
ever, neural changes associated with therapeutic effects,
remain relatively uninvestigated (Paiva et al. 2020). Perfor-
mance monitoring ERPs may offer a target for gut micro-
biota-based interventions to assess neurocognitive benefits.

In conclusion, the present study is the first to investi-
gate the relationship between neurophysiological processes
underlying self-monitoring and BGMA function. As such,
these findings offer new perspectives on self-monitoring
ERPs as a possible target to evaluate novel BGMA inter-
ventions on cognition and behaviour in healthy individual
and clinical populations.
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