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A B S T R A C T

Light absorption by microscopic phytoplankton in marine ecosystems is a crucial process un
derpinning biological production and global biogeochemical cycles. Accurate estimation of 
phytoplankton absorption coefficients, an inherent optical property of ocean water, can improve 
remote sensing applications including spectral photosynthesis models and assessments of ocean 
health, biodiversity, and climate change impacts. However, considerable uncertainty exists in 
current satellite retrievals of phytoplankton absorption coefficients, particularly for ɑph(676) - the 
phytoplankton absorption peak at red wavelengths near 676 nm - which is an input to several 
novel and advanced satellite algorithms. This uncertainty hinders operational use of algorithms 
for assessing phytoplankton physiology, size structure and oceanic carbon pools from space. We 
aimed to improve satellite-based estimation of ɑph (676) using advanced machine learning (ML) 
techniques. We compiled a comprehensive in situ dataset (n = 1576) of ɑph(676) from published 
databases and matched with remote-sensing reflectance Rrs at six wavelengths (412, 443, 490, 
510, 560, and 665 nm) from the Ocean Colour Climate Change Initiative. We extensively eval
uated multiple base ML algorithms: Random Forest (RF), Gradient Boosting Machines, and Linear 
Regression; and implemented ensemble ML models: RF with Grid Search Cross-Validation, 
eXtreme Gradient Boosting Ensembled Model, Ensemble Forecast, Stacked Voting, Optimised 
Ensemble and Meta Stacking, integrating the base models through cross-validated hyper
parameter tuning. Meta Stacking outperformed individual ML models in predictive accuracy 
across temporal resolutions, showing best results with daily composites. Our study addresses key 
limitations of previous models, including small training datasets, inconsistent performances, and 
lack of ensemble comparisons. We present a robust, extensively trained and validated ensemble 
ML model that significantly improves ɑph(676) estimation and opens the possibility of routinely 
using in ocean colour remote sensing.

1. Introduction

Phytoplankton are microscopic, photosynthetic organisms essential to the marine food web, producing over 50 % of Earth’s oxygen 
and regulating atmospheric CO2 levels through absorption, making them vital indicators of ocean health, ecosystem changes, and 
climate dynamics (IOCCG, 2000; Machado et al., 2023; Cetinić et al., 2024). Phytoplankton cells contain pigments, especially 
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chlorophyll (Chlor-a) that absorb light at specific wavelengths (Ciotti et al., 2002; Cleveland, 1995), enabling Ocean Colour satellites 
to detect their concentrations in the ocean (Huan et al., 2021; Mouw et al., 2017; Wang et al., 2021). The absorption coefficient 
represents the amount of light harvested by per milligram of phytoplankton Chlor-a and is an important quantify for remote sensing 
applications such as retrieval of cell size, pigment composition and photosynthesis models (Bricaud and Stramski, 1990; Bricaud et al., 
1995). Phytoplankton absorption coefficient is an important quantity for understanding oceanic health and the impacts of climate 
change on oceanic ecosystems, as they are directly linked to the primary productivity of the ocean (Marra et al., 2007; Hirawake et al., 
2011; Barnes et al., 2014; Silsbe et al., 2016). Nutrient stress and co-limitation of mineral availability can affect phytoplankton growth 
and alter pigment composition, thereby influencing phytoplankton absorption properties and in turn primary productivity (Robinson 
et al., 2017). The seasonal and spatial variability of phytoplankton absorption is vital for monitoring of ocean health indicators such as 
chlorophyll concentration and occurrence of certain harmful algal blooms (Shen et al., 2012; Wei et al., 2023; Xu et al., 2025). As 
climate change continues to be a driver in altering phytoplankton composition and nutrient regimes, integrating absorption co
efficients into biogeochemical models enhances the predictive ability of the models to monitor and manage changes in marine eco
systems, sustaining conservation and initiate climate mitigation strategies (Patara et al., 2012; Paulsen et al., 2018).

Phytoplankton absorption coefficients ɑph (λ) can be estimated from laboratory measurements, field observations, as well as remote 
sensing, and numerical modelling (Pahlevan et al., 2021). Satellite remote sensing is now widely used for cost-effective global coverage 
and retrieval of phytoplankton physical properties (Churilova et al., 2019; Ciotti et al., 2002; Roelke et al., 1999), phytoplankton 
functional types (PFT) (Anderson, 2005; De Moraes Rudorff and Kampel, 2012; Roy et al., 2013) and phytoplankton size structure 
(PSC) (Kostadinov et al., 2023; Pérez et al., 2021; Roy et al., 2017). The retrieval algorithms use remote sensing wavelengths in the 
blue and red spectrum, leveraging the absorption properties of Chlor-a. The visible spectral range from 300 nm to 800 nm is essential 
for acquisition of solar energy and its conversion into chemical energy through primary production in the ocean. A large portion of this 
photosynthetically active radiation is utilised by marine phytoplankton through light-absorbing pigments, primarily chlorophyll-a, 
which shows strong absorption with a primary peak in the blue region near 440 nm and a secondary peak in the red region near 
676 nm (Kirk, 1994). Most ocean colour sensors, such as NASA’s MODIS and ESA’s Sentinel-3 OLCI, also operate in this spectral 
window with multispectral channels designed to capture water leaving radiances (IOCCG, 2012). The reflectance values captured by 
these channels are then used to derive inherent optical properties in the ocean such as absorption coefficients (IOCCG, 2006). The peak 
in the absorption spectra of Chlor-a, the primary pigment in phytoplankton, at the 443 nm wavelength has been widely used (Cao et al., 
2005; Carder et al., 1999; Hirata et al., 2008; Shang et al., 2011; Wang et al., 2008; Zheng and Stramski, 2013a, 2013b; Zheng et al., 
2015) to estimate phytoplankton biomass and distribution from remote sensing. On the other hand, the secondary peak of Chlor-a near 
675–676 nm wavelength, within the red spectrum, has proven crucial for detecting phytoplankton physiological properties (Allali 
et al., 1997; Cullen et al., 1997; Li et al., 2021; Meler et al., 2017; Seppälä et al., 2005; Shang et al., 2021; Sun et al., 2010; Zhang et al., 
2010), and in particular, for obtaining advanced information on phytoplankton cell size, size spectrum and carbon content (Roy et al., 
2011, 2013, 2017).

Various methodologies, categorised in analytic, semi-analytic, empirical, semi-empirical, quasi-empirical, LUT have been devel
oped and applied for the estimation of ɑph (λ) from remote sensing data for ocean colour applications (Blondeau-Patissier et al., 2014; 
Huan et al., 2021; Pahlevan et al., 2021). More recently, Machine Learning-based approaches have been implemented due to their 
potential for enhancing the accuracy of ɑph(λ) prediction (Ahmed et al., 2017; Alam et al., 2024; Deng et al., 2019; Pahlevan et al., 
2021). For example, Huan et al. (2021) evaluated pigment absorption at 670 nm for Case I and Case II waters demonstrating a higher 
predictive accuracy for Case I waters. Pahlevan et al., (2021) used a small data set (40 paired of Rrs and ɑph measurements) with HICO 
overpasses and mixture density networks (MDNs) reporting inconsistent error percentages and biases, and weak relationships across 
wavelengths. Further, Alam et al. (2024) used optimised ensemble ML models to estimate ɑph(λ) values from Rrs with 674 samples for 
ɑph at the 670 nm. None of the previous studies, however, explicitly retrieved phytoplankton absorption peak in the red wavelengths (i. 
e., at ~676 nm), which is a specific input to the advanced ocean-colour algorithms of our concern, particularly those for phytoplankton 
size spectrum and allometry-based carbon and nutritional values (Roy, 2018; Roy et al., 2013, 2017).

In this study, we utilise the Ocean Colour Climate Change Initiate dataset, which provides high-quality, consistent time series data 
spanning over two decades, to explicitly retrieve phytoplankton absorption at the red peak. In doing so, we address notable gaps in ML 
techniques applied by previous studies, by considerably increasing the sample size for ML training, extensively evaluating the per
formance of multiple ML methods, and ensuring optimal performance of ML algorithms under randomised and bootstrapped condi
tions. Our study, compiling a comprehensive dataset comprising 1576 samples, and exploring multiple base ML algorithms and 
subsequently creating an amalgamated hybrid ensemble model presents a robust model for phytoplankton absorption peak at the red 
bands, which would be readily applicable to ocean colour algorithms.

2. Data

2.1. In-situ database on phytoplankton absorption spectra

To compile a global database of in situ measurements of phytoplankton absorption spectra, a systematic search was made on 
PANGAEA data archive with keywords “phytoplankton”, “ɑph”, “Rrs 676”, “ɑph (676)”, spanning all published ɑph (676) datasets 
covering the available cruise missions. The datasets considered were the SeaWiFS Bio-optical Archive and Storage System (SEABASS) 
through NASA bio-Optical Marine Algorithm Dataset (NOMAD) database (https://seabass.gsfc.nasa.gov/wiki/NOMAD, Werdell and 
Bailey, 2005), Marine Optical Buoy (MOBY) (Brown et al., 2007; Brown et al., 2007), BOUSSOLE (Carr et al., 2006; Carr et al., 2006), 
and the Ocean Colour Climate Change Initiative (OC-CCI) validation dataset, which combined the first three datasets into a single 
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extended version spanning 1997 to 2021 (Valente et al., 2022). We sorted the datasets according to the availability of ɑph peak 
identifiable at 676 nm, along with associated Inherent Optical Properties and Diffuse Attenuation Coefficients across various wave
lengths. This collated dataset before filtering consisted of 7425 points, with ɑph values ranging from 290 to 849, at intervals of 0.2 nm 
(Fig. 1). After filtering, we retained a subset comprised n = 1576 valid entries of ɑph (676) and associated variables.

2.2. Satellite ocean colour data

The methodology, described in detail in the following section, is applicable to ocean colour data from any satellite sensor. We have, 
however, chosen to use the ESA Ocean Colour Climate Change Initiative (OC-CCI) data because of its wide use, which was derived by 
merging ocean colour data from multiple sensors that were active in different or overlapping time scale, e.g. SeaWiFS, MERIS, MODIS- 
A, and VIIRS. The merging methodology included band-shifting, bias correction for remote sensing reflectance (Rrs) and imple
mentation of various chlorophyll algorithms (Sathyendranath et al., 2019). We used these merged products as a good compromise 
between data accuracy and length of the time series covering the in-situ dataset. We acquired the Daily, 5Day, 8Day, & Monthly 
products of Rrs_412, Rrs_443, Rrs_490, Rrs_510, Rrs_560, and Rrs_665, from OC-CCI Version 6.0, 4-km (available at https://www. 
oceancolour.org/portal/) through the Composite Browser, OPeNDAP, Web GIS Portal, and FTP. Different spatial and temporal res
olutions are critical for resolving oceanographic processes across scales. High temporal-resolution data (e.g. daily, 5-day) capture 
short-lived, localised events such as phytoplankton blooms. Low-resolution observations (e.g. monthly) are suited for analysing 
long-term, regional or basin-scale climate impacts. Integrating multi-resolution data (from daily to monthly) enables a deeper un
derstanding of marine biophysical variability and the predictive model’s relative performance across oceanic events.

Utilising Python scripts, data extraction from the server was automated, catering to various frequencies ranging from daily to 
monthly intervals. Sequential extraction across different time intervals produced Rrs products at Daily (448 data points), 5-days (591 
data points), 8-days (62 data points) and Monthly (452 data points). In total, the extracted Rrs data corresponded to1576 ɑph (676) 
measurements, which on filtering for Chlor-a, & kd_490 availability resulted in 1553 matchups. The data descriptive summary of data 
is presented in Table 1.

3. Methodology

The major steps of the methodology (outlined in Fig. 2 and further discussed) involve (a) extraction of remotely sensed variables 
such as remote sensing reflectance (Rrs) from OC-CCI data archive at specific wavelengths (412–665 nm), matching up the collated 
phytoplankton absorption at 676 nm i.e. ɑph (676); (b) training possible forms of ML algorithms including hybrid ensemble techniques 
to model ɑph (676) and (c) evaluating and optimising the performance of the trained ML models to take it forward for application. 
Multiple statistical metrices, commonly used in the literature, are implemented to assess the ML model performance and to identify the 
overall best-performing model. The chosen model is then applied to satellite-derived reflectance to produce the predicted ɑph (676) 
maps.

3.1. Evaluating base ML algorithms

The base ML models used in our study have been extensively exploited in previous studies concluding, non-linear models, 
significantly outperform linear models in predicting wave runup due to their ability to model complex coastal dynamics (Durap, 2023); 

Fig. 1. Spectral plot of ɑph (λ) data from global dataset.
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the Deep Learning models outperforms statistical models in predicting SST (Ali et al., 2021); the improved resolution and data 
inversion for enhanced carbon cycle analysis, nitrogen levels, and harmful algal blooms predictions based on classification techniques 
(Zhang et al., 2025); and also real-time applications like wave modelling and species distribution benefit from ML (Ahmad, 2019; 
Sadaiappan et al., 2023). Table 2 below summarises the advantages and limitations of ML techniques used as base models for advanced 
ensemble modelling. We first trained and validated a range of standard ML algorithms, described in the following, aimed at predicting 
ɑph values from Rrs values. Our methodology included adjustment of train-test ratios to discern the most effective model performance 
across different scenarios. The standard algorithms tested included (i) Linear Regression, (ii) Tree-based regression, (iii) Deep Learning 
method, (iv) Kernel Methods and (v) Probabilistic Methods.

In the Linear Regression group, Linear Regression stands as a foundational method for predicting continuous target variables, offering 
a straightforward approach to prediction. Stepwise Linear Regression, a variant, iteratively adjusts features based on their significance, 
refining the model for capturing relevant information. Additionally, Linear Regression Hyperparameter Tuning involves fine-tuning 
model parameters to optimise performance and enhance predictive accuracy. Tree-based Methods group includes Decision Tree em
ploys a non-linear approach, partitioning data into subsets for predictions through binary decisions. Random Forest utilises ensemble 
techniques, constructing multiple decision trees and aggregating predictions to mitigate overfitting and enhance accuracy. Ensemble 
methods, AdaBoost and Gradient Boosting, combine weak learners, typically decision trees, to create robust predictive models, with 
Gradient Boosting sequentially improving upon errors. Deep Neural Networks utilise complex architectures with hidden layers, capable 

Table 1 
Descriptive summary of in situ and satellite match-up data.

ɑph (676) Rrs_412 Rrs_443 Rrs_490 Rrs_510 Rrs_560 Rrs_665 Chlor-a kd_490

count 1553 1553 1553 1553 1553 1553 1553 1553 1553
mean 0.0196 0.0072 0.0071 0.0077 0.0075 0.0062 0.0090 0.9100 0.1039
std 0.0209 0.0057 0.0060 0.0074 0.0075 0.0079 0.0382 1.5460 0.1763
min 0.0002 0.0005 0.0002 0.0008 0.0011 0.0000 0.0000 0.0005 − 0.0668
25 % 0.0060 0.0032 0.0031 0.0031 0.0030 0.0016 0.0002 0.0770 0.0050
50 % 0.0127 0.0048 0.0044 0.0042 0.0035 0.0023 0.0004 0.4629 0.0675
75 % 0.0260 0.0096 0.0100 0.0106 0.0112 0.0092 0.0020 0.9421 0.1184
max 0.2283 0.0589 0.0785 0.0852 0.0737 0.0463 0.6742 16.8658 2.2537

Fig. 2. Schematic diagram showing the major steps of our methodology involving data extraction, ML model development and evaluation of the 
model performance.
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of learning intricate data patterns with high adaptability. Support Vector Machine is an established method for effectively classifying or 
regressing data by finding optimal hyperplanes. Gaussian Process Regression is a probabilistic method which employs Bayesian prin
ciples, modelling target variables as Gaussian processes and providing valuable uncertainty estimation in predictions (Ashphaq et al., 
2024).

To ensure the ML model is robust and performs consistently under different sets of training and validation data, we used three train- 
test splits (50:50, 67:33, 80:20) to evaluate model performance. The model’s performance and stability were assessed across the data 
splits, and the possibility of any overfitting or underfitting issues was investigated. We implemented a combination of 13 performance 
metrics, described below in Table 3, to test the algorithms’ efficacy and performance. Sample sensitivity was analysed to verify the 
influence of changes in data splits on performance and generalisability. A log transformation was applied to normalise extreme values 
and reduce outlier impact on the dataset.

Table 2 
Advantages and limitations of ML techniques tested as base models.

Algorithm Advantages Limitations Python Sample Use Case

Linear Regression Fast, baseline performance, may underfit 
complex data, Simple, interpretable, efficient 
for small linear datasets

Assumes linearity, sensitive to 
multicollinearity and outliers

scikit-learn, 
statsmodels

Baseline for temperature/ 
salinity modelling

Stepwise Linear 
Regression

Slightly better than basic linear regression, 
automatically selects significant variables

May overfit, computationally 
expensive for large data

statsmodels, 
custom code

Analysis of variable 
influence in ocean models

Linear Regression 
Hypertuning

Optimised parameters; accuracy via 
parameter tuning like regularisation

Still limited by linear assumptions scikit-learn 
(Ridge, Lasso)

Improved linear models for 
salinity/temp trends

Decision Tree Moderate, Easy to visualise, handles 
nonlinear data, no feature scaling

Overfits easily, unstable with 
small changes in data

scikit-learn Marine habitat classification

Random Forest High accuracy, robust, handles missing data, 
and nonlinearity, Reduces overfitting,

Less interpretable, slower training 
time

scikit-learn, Species distribution 
modelling, SST prediction

AdaBoost Boosts weak models, often outperforms single 
models

Sensitive to noisy data and 
outliers

scikit-learn Marine species classification

Gradient Boosting Very high accuracy, Captures complex 
patterns, tunable, supports regularisation

Computationally intensive, prone 
to overfitting if not tuned properly

xgboost, 
lightgbm, 
catboost,

Climate impact assessment, 
marine heatwave forecast

DNN (Deep Neural 
Network)

Handles high-dimensional and unstructured 
data well, high with enough data and tuning,

Requires large data, tuning, long 
training times

TensorFlow, 
Keras, PyTorch

Satellite image analysis, SST 
anomaly detection

SVM (Support 
Vector 
Machine)

Good with high-dimensional and smaller 
datasets with clear margins of separation

Not scalable to large datasets, 
hard to interpret

scikit-learn classification, plankton data 
analysis

GPR (Gaussian 
Process 
Regression)

High for small datasets, very accurate, 
Provides uncertainty estimates

Very slow and memory-intensive 
for large datasets

scikit-learn, 
GPyTorch

Biogeochemical parameter 
modelling,

Table 3 
Performance metrics used in this study.

Metric Description Desired 
Value

Units

Mean Absolute Error (MAE) The average absolute difference between predicted and actual values. Lower Same as the target
Mean Squared Error (MSE) The average of the squares of the errors between predicted and actual values. Lower Same as the target
Root Mean Squared Error 

(RMSE)
The square root of the MSE, representing the standard deviation of the residuals. Lower Same as the target

Root-Mean-Squared Log Error 
(RMSLE)

Similar to RMSE but calculated on the logarithm of the predicted and actual 
values. Useful for target variables with a large range.

Lower Dimensionless 
(logarithmic scale)

R2 Score Measures proportion of the variance in the DV predictable from the IV Higher (up 
to 1)

Dimensionless

Pearson Correlation 
Coefficient (r)

Measures the linear correlation between two variables, ranging from − 1 to 1. Close to 1 or 
-1

Dimensionless

Spearman’s Correlation 
Coeff. (ρ)

Non-parametric measure of rank correlation, ranging from − 1 to 1. Close to 1 or 
-1

Dimensionless

P-value The probability of observed results if the null hypothesis is true. Lower 
(<0.05)

Dimensionless

Samples (n) The number of samples used for testing. Count Dimensionless
Bias The difference between the mean of predicted & mean of actual values. Close to 0 Same as the target
% Bias Bias expressed as a percentage of the mean of actual values. Close to 0 % Percentage
Median Ratio The ratio of the median of predicted to the median of actual values. Close to 1 Dimensionless
Median RPD (Relative Percent 

Difference)
The relative difference between predicted and actual values, as a % of the median 
of actual values.

Lower Percentage

SIQ-PD (Scaled IQ 
Performance Descriptor)

Indicates model performance on a scaled IQ-like metric. Higher values suggest 
better performance.

Higher Dimensionless (scaled 
score)
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3.2. Hybrid ensemble modelling

The growing role of advanced machine learning approaches in environmental analysis, land-use changes, and thermal impacts have 
been demonstrated using the techniques like artificial neural networks (Zhang et al., 2021, 2024). These studies effectively model 
changes and forecast of land surface temperature, land use changes, and thermal impacts in urban settings by integrating spatial and 
temporal data to forecast urban heat patterns and carbon emissions (Zhang et al., 2023). Such predictive approaches are essential for 
understanding environmental dynamics to understand ocean health and climate change analogous to land-based systems. We then 
applied ensemble methods, which integrate multiple standard ML algorithms for enhancing the overall model performance. Ensemble 
methods synthesise predictions from multiple base models, such as decision trees, linear models, and others, to produce a final pre
diction that is typically more accurate and robust than that of any individual model. Analysis from previous steps highlighted the 
significant potential of machine learning models like Random Forest (RF), Gradient Boosting (GB), and Support Vector Regression 
(SVR) in constructing a robust meta-learning framework based on ensemble techniques for the estimation of ɑph (676). In the 
following, we discuss various ensemble strategies adopted in our study: Meta Stacking, Ensemble Forecast, Stacked Voting, Optimised 
Ensemble, XGB Ensembled and hyper-tuned RF_Grid CV. These methods differ considerably in their composition, optimisation 
techniques, and applications.

3.2.1. Meta Stacking
Meta Stacking introduces complexity by leveraging a stacking ensemble approach. The base models RF and GBM are fine-tuned 

using Grid Search CV, and their predictions are combined by a meta-learner, a linear regression model. This method also includes 
bootstrapping with multiple iterations to ensure robust performance. The base models are individually optimised using GridSearchCV 
on resampled bootstrap samples of the training data. The optimised models generate predictions, which are aggregated into meta- 
features across multiple bootstrap iterations. After tuning, the base models are retrained on the entire training dataset with the 
best hyperparameters. For new data, predictions are made through a predict_stacked_model function, which first generates meta- 
features from the retrained base models and then applies the meta-model to produce the final prediction. The performance of this 
stacking ensemble is evaluated on a test set, providing a measure of accuracy as shown in flowchart Fig. 3. The stacking approach is 
ideal for complex tasks requiring high flexibility and advanced modelling techniques, albeit at the cost of higher training time and 
complexity.

Fig. 3. Flowchart of meta stacking ensemble model.

M. Ashphaq and S. Roy                                                                                                                                                                                              Remote Sensing Applications: Society and Environment 39 (2025) 101702 

6 



3.2.2. Forecast ensemble
The Forecast Ensemble method integrates XGBoost, Gradient Boosting, Bagging, and Stacking, ensuring robustness and accuracy in 

predictions by averaging results across multiple iterations, making it ideal for demanding forecasting tasks despite high computational 
costs. The script demonstrates an advanced approach to create four forecasting function using Python: xgboost_forecast, gra
dient_boosting_forecast, bagging_forecast, and stacking_forecast. The first two functions leverage XGBoost and Gradient Boosting 
models, applying bootstrapping to produce reliable predictions. The bagging_forecast function combines outputs from both models 
through a bagging technique, averaging predictions to enhance accuracy. The stacking_forecast function further refines this by training 
a Linear Regression meta-model on the combined predictions of XGBoost and Gradient Boosting, potentially increasing forecasting 
accuracy. Hyperparameters such as n_estimators, control the number of boosting stages in both XGBoost and Gradient Boosting. The 
script emphasises model stability through bootstrapping and optimises accuracy using methods like grid search and cross-validation as 
shown in flowchart Fig. 4.

3.2.3. Stacked Voting Ensemble
The Stacked Voting Ensemble pipeline is an advanced system designed for optimised regression modeling, leveraging ensemble 

learning techniques like stacking and voting. It begins with selecting diverse base models—RF, GB, SVR, and XGB—each chosen for its 

Fig. 4. Flowchart of forecast ensemble model.
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ability to handle different aspects of the data. To maximise each model’s performance, GridSearchCV is utilised for hyperparameter 
tuning, systematically exploring parameter combinations such as estimators, depth, learning rates, and regularisation. After identi
fying the best configurations, the models are combined in a Stacking Regressor framework, where their predictions are aggregated 
using a Voting Regressor as the meta-learner. This method enhances predictive accuracy by leveraging the strengths of the different 
models. Bootstrapping is applied to further improve robustness, reducing variance by averaging predictions from multiple resampled 
training sets. The final model’s performance is assessed, ensuring it is both accurate and stable across various data subsets as shown in 
flowchart Fig. 5. This sophisticated pipeline, although computationally intensive, is designed to achieve high accuracy and reliability 
in regression tasks by combining model diversity and optimal tuning.

3.2.4. XGB ensemble
This ensemble technique utilises ‘EnsembleWrapper’ class which is a utility for managing collections of XGB models, facilitating 

their saving, loading, and prediction processes. Upon initialisation, it can be provided with lists of models and filenames or create 
empty lists if none are supplied. It saves models to files and metadata to a JSON file for future reference. For loading, it reads the 
metadata to reconstruct models and prepare them for predictions. During prediction, unseen data is converted to XGB’s DMatrix 
format, predictions from each model are averaged, and the final output is evaluated using Root Mean Squared Error (RMSE). 

Fig. 5. Flowchart of stacked voting ensemble model.
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Optimisation functions are critical for tuning XGB models’ hyperparameters. The AHA Optimisation function adjusts the learning rate 
(eta) and L2 regularisation (lambda) iteratively, selecting the parameter set with the lowest RMSE. BWO Optimisation uses evolu
tionary strategies, starting with random parameter sets, and refines them through procreation and mutation, retaining the best- 
performing sets. AOA Optimisation employs arithmetic adjustments to fine-tune parameters based on a mathematical model, 
selecting the configuration with the best RMSE. FHO Optimisation simulates natural selection, refining parameters based on perfor
mance to select the optimal set. Initial hyperparameters for training include setting the objective to ‘reg’ for regression, ‘eval_metric’ to 
‘rmse’, with an initial learning rate (eta) of 0.1, maximum tree depth of 6, subsample and colsample_bytree both at 0.8, and an L2 
regularisation term (lambda) of 1.0. Optimisation functions adjust these parameters, and the refined parameters are used to train 

Fig. 6. Flowchart of xgb ensemble model.
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models with the xgb.train() function. Models are then saved, and an EnsembleWrapper instance is created for managing these models. 
Predictions are made by the ensemble, averaged, and assessed for accuracy. This systematic workflow shown in flowchart Fig. 6
ensures effective model optimisation, management, and evaluation.

3.2.5. Optimised Ensemble
This ensemble begins with configuring and training individual models—Random Forest, Gradient Boosting, Extra Trees, AdaBoost, 

and Bagging, using predefined hyperparameters such as the number of estimators and a fixed random seed to ensure reproducibility. 
Hyperparameter tuning, though performed randomly in this case, involves adjusting parameters like the number of trees or boosting 
stages. This random tuning introduces variability into the performance metrics, enabling a diverse exploration of potential configu
rations and affecting the MSE scores. This process helps to evaluate how well each model generalises to unseen data, revealing their 
respective strengths and weaknesses. In addition to individual models, the code utilises a VotingRegressor to combine the predictions 
from the trained models. By averaging predictions from Random Forest, Gradient Boosting, Extra Trees, AdaBoost, and Bagging, the 
Voting Regressor aims to improve overall predictive accuracy and stability. The effectiveness of this ensemble method is evaluated 
through its MSE, demonstrating the advantages of aggregating multiple regression techniques. Finally, the code introduces an Opti
mised Ensemble, which integrates six base models—Random Forest (RF), Gradient Boosting Machine (GBM), Extra Trees Regressor 
(ETR), AdaBoost (ADA), Bagging, and Voting. This ensemble leverages stacking and voting mechanisms, along with hyperparameter 
optimisation using Grid Search CV, to enhance modelling flexibility and scalability (Alam et al., 2024). Despite its complexity and 
higher resource demands, this approach is designed for advanced tasks that benefit from the combined strengths of multiple 
algorithms.

3.2.6. RF_GridCV
This code is only focused on optimising a RandomForestRegressor model using GridSearchCV for hyperparameter tuning. Key 

hyperparameters include n_estimators (number of trees), max_features (features per split), max_depth (tree depth), min_samples_split 
(samples required to split a node), min_samples_leaf (samples per leaf), and bootstrap (sampling method, default enabled). Grid
SearchCV performs a comprehensive search across these hyperparameters using n-fold cross-validation to find the optimal configu
ration. After identifying the best parameters, the model is trained, and its performance is evaluated using Mean Squared Error (MSE) on 
a testing dataset. It’s effective for moderate datasets due to its straightforward nature, balancing relatively high training time with 
quick prediction speed and good scalability.

3.3. Comparison to conventional models for estimating phytoplankton absorption at 676

We compared our ML model output with the following algorithms that have been previously used to retrieve phytoplankton ab
sorption at 676 nm.

3.3.1. Carder et al., 1999
Developed by Carder et al. (1999), this semi analytical algorithm estimates water optical parameters using remote sensing 

reflectance (Rrs) values at 412 nm, 443 nm, 490 nm, and 560 nm. It calculates particulate and total backscattering coefficients, and 
absorption coefficients for phytoplankton and dissolved organic matter. Initial estimates for the parameters a675val (absorption at 
675 nm) and adg400 (backscattering at 400 nm) are refined by solving nonlinear equations that relate observed Rrs ratios to model 
predictions. The function ultimately returns the estimated phytoplankton absorption coefficient at 675 nm, reflecting phytoplankton’s 
contribution to water absorption.

3.3.2. Empirical method
An empirical method used by Roy et al. (2017) to estimate phytoplankton absorption at 676 from remote sensing data uses a simple 

formulation utilising phytoplankton absorption at 443 and 510. ɑph (676) is estimated as a product of ɑph (443) is raised to the power of 
0.8478, and ɑph (510) is raised to the power of 0.2674.

3.4. Evaluation criteria for ensemble models

Evaluating machine learning (ML) approaches involves a comprehensive assessment of several essential and additional criteria to 
ensure effectiveness and applicability. Essential criteria include usability, which addresses the ease of implementation and user 
interface; applicability, ensuring the ML method aligns with the specific problem and data characteristics; and ease of application, 
reflecting the practical simplicity of deploying the model. Replicability is crucial for consistent performance, while time of execution 
evaluates the efficiency of training and prediction processes. Model diversity and ensemble integration are important for capturing 
various data aspects and improving performance through combined models. Additional factors encompass scalability, which examines 
the model’s capacity to handle growing datasets without performance degradation; hyperparameter complexity, focusing on the ease 
of tuning; and interpretability, which is vital for understanding model predictions and making data-driven decisions. Data re
quirements and robustness assess the model’s efficiency with different data volumes and its resilience to noise. Computational resource 
requirements consider the necessary hardware and software, and flexibility evaluates the model’s adaptability to changing data and 
tasks. These criteria collectively provide a nuanced understanding of an ML approach’s strengths, limitations, and suitability for 
specific applications.
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3.5. Application of saved model (.pkl file) to raster data (.nc) file

The Python code is a developed to apply a saved ML model to generate predictions and visualise the results on a geographical map. 
The process involves importing critical libraries such as xarray for managing and processing multi-dimensional data arrays, numpy for 
numerical operations, joblib for loading pre-trained machine learning models, and matplotlib.pyplot for creating visualisations. The 
NetCDF file is accessed using xarray’s open_dataset function, enabling convenient handling of the dataset. Six specific reflectance 
bands (Rrs_412, Rrs_443, Rrs_490, Rrs_510, Rrs_560, and Rrs_665) are identified and extracted from the dataset, representing 
reflectance at different wavelengths. These bands are combined into a single 3D NumPy array, where the third dimension corresponds 
to the different wavelengths. The data is then reshaped from the 3D array into a 2D format where each row represents a pixel, and each 
column represents a wavelength band. A mask is created to filter out invalid data points, removing rows with Nan, zero, or negative 
values, ensuring that only valid data is used for further analysis. The script loads a pre-trained stacking model from a .joblib file, which 
is applied to valid data points to predict the ɑph (676) parameter. These predictions are mapped back onto the original geographical 
grid, and a new array is initialised to store the predicted values, initially filled with NaN to indicate missing data. The predicted data is 
then visualised using matplotlib.pyplot, where the predictions are plotted on a geographical map with a color-coded scale representing 
ɑph (676) values.

4. Results and discussion

4.1. Performance of the base ML algorithms

The base ML models tested are listed in Table 4, which include Linear Regression, Stepwise Linear Regression, Linear Regression 
Hyper tuning, Decision Tree, Random Forest, AdaBoost, Gradient Boost, Deep Neural Network (DNN), Support Vector Machine (SVM), 
Gaussian Process Regression (GPR). Each ML model is evaluated using independent sets training and testing data, drawn randomly 
from the in-situ datasets with three different training: testing split ratios: 50:50, 67:33, and 80:20, and their corresponding perfor
mances are analysed using the validation metrics (Table 4).

Intercomparison of the algorithms’ performance (Table 4) shows that the Linear Regression model, although produces a generally 
consistent performance across different training: testing splits, resulting in relatively low MAE (0.23), MSE (0.09), and RMSE (0.29), its 
predictive power is R2 Score ranging from 0.52 to 0.55. The Stepwise Linear Regression model demonstrates performance like that of 
the Linear Regression. The decision Tree, AdaBoost, Gradient Boost, DNN, SVM, and GPR models exhibit moderate performance with 
metrics comparable to each other. The Random Forest (RF) model, however, outperforms all other models with the lowest MAE (0.21), 
MSE (0.076), and RMSE (0.09), and the higher R2 score (Table 4).

4.2. Performance of hybrid ensemble models

We have attempted to retrieve all match ups corresponding to the daily data. But, to maximize the number of match ups, when there 
were gaps in the daily data, we used the overlapping 5-day, 8-day and monthly satellite images. It should be noted that the accuracy of 
the daily matchups should be higher than any of the three temporal resolutions. As a compromise between the sample size and res
olution we have merged all the matchups into the final validation dataset. We have further tested each of the ML model’s performance 
across all the subsets (i.e., daily, 5-day, 8-day, monthly and merged) of the validation dataset, which are described below.

For daily predictions, Meta Stacking demonstrates the highest R2 value (0.702), the best slope of regression (0.78), high correlation 
coefficients (Pearson r 0.84503, and Spearman’s ρ 0.81101), and relatively low RMSE (0.2414), indicating high predictive accuracy 
and strong validation performance (Table 4). Forecast model and Optimised Ensemble show comparable R2 values but slightly lower 
slopes of regression (0.71 and 0.70, respectively), suggesting their slightly inferior performance, compared to Meta Stacking. Carder 
method shows the highest RMSE (1.957) and lowest slope (0.01) among all the models, indicating its significantly inferior performance 
compared with the ensemble ML models (see Fig. 7).

The performances are generally consistent across all other temporal scales. For example, in 5-day predictions, Meta Stacking again 
stands out with the highest R2 (0.47), lowest RMSE (0.3391) and comparable slope of regression, suggesting its better performance 
across other metrics compared to its peers. However, in this case Optimised Ensemble and XGB Ensembled models’ performance is also 
strong with relatively high R2 values and good fit metrics, placing them in the just below Meta Stacking. Carder model sustains it poor 
performance, but the empirical model shows better slope with high RMSE, suggesting less prediction accuracy (Table 5).

For the 8-day, the performance of XGB Ensembled is closely comparable with Meta stacking indicated by R2 (0.725 and 0.7247), 
RMSE (0.248 and 0.2266) and slope (0.70 and 0.71), with a minor edge for Meta stacking due to RMSE and slope (Table 5). However, 
in the monthly predictions, XGB shows better performance over the other models with lower RMSE (0.329) and higher R2 (0.591), 
although the slope is slightly lower than Meta stacking (0.67 vs 0.71).

When combining all four temporal datasets, Meta Stacking shows superior performance with the highest R2 (0.5849), highest slope 
(0.57) and the lowest RMSE (0.3003), suggesting it better overall performance across the metrics, and outperforming all other models. 
Across all temporal scales, Meta Stacking performs significantly better than the Empirical algorithm and Carder et al. (1999) algorithm 
(Fig. 6).

Overall, across all temporal scales, Meta Stacking stands out with superior variance explanation, linear and rank correlation, ac
curacy (Table 5). RF_Grid CV and Optimised Ensemble are notably strong with robust predictive accuracy. Forecast Ensemble also 
performs generally well balancing accuracy and correlation. In contrast, Stacked Voting Ensemble and XGB Ensembled show higher 
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Table-4 
The summary of results for all executed algorithm for Daily matchup with log-transformed data (n-448).

METHOD TRAIN: 
TEST

MAE MSE RMSE RMSLE R2 Pearson r Spearman 
(ρ)

P (n) Bias % Bias Median 
Ratio

Median 
RPD

SIQ-PD Reg 
Equation

LINEAR 
REGRESSION

50:50 0.2367 0.0899 0.2998 0.1052 0.5266 0.7257 0.76397 0 224 0.0809 4.3186 1.05421 10.76449 18.2657 y = 0.93x 
+ 0.06

67:33 0.2327 0.0921 0.3035 0.10725 0.5456 0.73866 0.79797 0 148 0.9261 4.9262 1.06205 9.88157 19.3098 y = 0.98x 
+ − 0.06

80:20 0.2301 0.0865 0.2942 0.10348 0.5549 0.74494 0.76898 0 90 0.0639 3.35238 1.05444 9.63197 16.9819 y = 0.96x 
+ 0.02

STEP-WISE LINEAR 
REGRESSION

50:50 0.2409 0.0916 0.3026 0.10706 0.5177 0.71953 0.75032 0 224 0.0769 4.10101 1.06248 10.88031 18.5965 y = 0.94x 
+ 0.04

67:33 0.2652 0.1522 0.3902 0.12309 0.2488 0.49887 0.77403 0 148 0.1147 6.10419 1.05895 11.26833 22.4904 y = 0.66x 
+ 0.56

80:20 0.2257 0.0865 0.2941 0.10404 0.5553 0.74521 0.76562 0 90 0.0556 2.91392 1.04338 9.19655 17.0964 y = 0.98x 
− 0.03

LINEAR 
REGRESSION 
HYPERTUNING

50:50 0.2367 0.0899 0.2998 0.10523 0.5266 0.7257 0.76397 0 224 0.0809 4.3186 1.05421 10.76449 18.2657 y = 0.93x 
+ 0.06

67:33 0.2327 0.0921 0.3035 0.10725 0.5456 0.73866 0.79797 0 148 0.0926 4.9262 1.06205 9.88157 19.3098 y = 0.98x 
− 0.06

80:20 0.2301 0.0865 0.2942 0.10348 0.5549 0.74494 0.76898 0 90 0.0639 3.35238 1.05444 9.63197 16.9819 y = 0.96x 
+ 0.02

DECISION TREE 50:50 0.2776 0.1381 0.3716 0.12719 0.2728 0.52236 0.64951 0 224 0.0294 1.56779 1.01623 11.32348 21.2703 y = 0.64x 
+ 0.66

67:33 0.3054 0.1635 0.4044 0.13937 0.1933 0.43971 0.58871 0 148 0.0822 4.37382 1.04772 12.63165 24.9663 y = 0.62x 
+ 0.67

80:20 0.2660 0.1396 0.3736 0.1221 0.2825 0.53151 0.67446 0 90 0.0384 2.01432 1.02686 10.45904 19.9361 y = 0.63x 
+ 0.67

RANDOM FOREST 50:50 0.2298 0.0881 0.2969 0.10402 0.5359 0.73205 0.76741 0 224 0.0641 3.42126 1.04641 9.64474 18.7048 y = 0.92x 
+ 0.10

67:33 0.2127 0.0768 0.2771 0.09868 0.6210 0.78807 0.79771 0 148 0.070 3.75121 1.05101 8.98946 18.06746 y = 1.02x 
− 0.10

80:20 0.2285 0.0920 0.3034 0.10311 0.5268 0.72582 0.75284 0 90 0.0643 3.37249 1.05554 10.77715 16.8982 y = 0.85x 
+ 0.23

ADABOOST 50:50 0.2719 0.1121 0.3348 0.11855 0.4097 0.64014 0.73011 0 224 0.1102 5.87852 1.07859 12.84391 21.9427 y = 1.01x 
− 0.13

67:33 0.2722 0.1096 0.3310 0.11919 0.4593 0.67777 0.75971 0 148 0.1121 5.96417 1.0912 12.15978 22.5196 y = 1.17x 
− 0.45

80:20 0.2817 0.1164 0.3412 0.11978 0.4014 0.63358 0.71186 0 90 0.1108 5.80976 1.09613 12.68709 21.1081 y = 1.01x 
− 0.13

GRADIENT BOOST 50:50 0.2401 0.0922 0.3037 0.10595 0.5141 0.71703 0.7447 0 224 0.0651 3.47467 1.04641 10.937 18.57462 y = 0.88x 
+ 0.17

(continued on next page)
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Table-4 (continued )

METHOD TRAIN: 
TEST 

MAE MSE RMSE RMSLE R2 Pearson r Spearman 
(ρ) 

P (n) Bias % Bias Median 
Ratio 

Median 
RPD 

SIQ-PD Reg 
Equation

67:33 0.2266 0.0836 0.2892 0.10254 0.5873 0.76641 0.772 0 148 0.0475 2.5312 1.04617 10.751 17.86402 y = 1.00x - 
0.05

80:20 0.2211 0.0829 0.2879 0.09866 0.5737 0.75747 0.76246 0 90 0.0474 2.48585 1.05451 10.079 15.91661 y = 0.90x 
+ 0.14

DNN 50:50 0.2465 0.1270 0.3564 0.13475 0.3311 0.57541 0.72533 0 224 0.0401 2.13901 1.04349 10.266 19.88814 y = 0.73x 
+ 0.49

67:33 0.2538 0.1477 0.3844 0.14803 0.2711 0.52073 0.71722 0 148 0.0296 1.57767 1.03895 10.342 21.65022 y = 0.69x 
+ 0.56

80:20 0.2409 0.0940 0.3067 0.10637 0.5164 0.71863 0.73047 0 90 0.0367 1.92633 1.04987 10.507 17.1662 y = 0.92x 
+ 0.12

SVM 50:50 0.2239 0.0862 0.2937 0.10269 0.5456 0.7387 0.76291 0 224 0.0401 2.1427 1.0408 9.9131 17.41604 y = 0.95x 
+ 0.05

67:33 0.2190 0.0858 0.2930 0.10326 0.5764 0.75924 0.78418 0 148 0.0378 2.01325 1.0489 9.3935 18.16648 y = 1.07x 
− 0.16

80:20 0.2382 0.0976 0.3124 0.10685 0.4981 0.70583 0.70997 0 90 0.0145 0.76028 1.04134 10.515 16.76476 y = 0.91x 
+ 0.16

GPR 50:50 1.6346 3.2007 1.7890 0.97929 0.0026 0.05178 0.0474 0.48 224 − 1.611 − 85.952 0 100 92.6825 y = 0.03x 
+ 1.87

67:33 1.6316 3.2395 1.7998 0.97927 0.0013 − 0.0364 − 0.0587 0.47 148 − 1.596 − 84.930 0 100 92.0269 y =
− 0.02x+
1.89

80:20 1.0750 4.9394 2.2224 nan 0.0091 0.0957 0.3329 0.0 90 − 0.181 − 9.4970 1.01588 20.561 124.633 y = 0.02x 
+ 1.88
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Fig. 7. Scatterplots and regression results for ensemble models validation with the merged Rrs data. Results are shown for RF-Grid, Meta stacking, 
forecast ensemble, Stacked-voting ensemble, XGB ensemble and Optimised ensemble, along with empirical model and Carder models.
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Table-5 
The summary of results for all Ensemble Model for all match-up.

ML/Ensemble 
Method

Rank MAE MSE RMSE RMSLE R2 Pearson 
r

Spearman’s 
(ρ)

p n Bias % Bias Median 
Ratio

Median 
RPD

SIQ-PD Regression 
Equation

Daily_Rrs (OC-CCI)
RF_Grid CV ​ 0.179 0.059 0.2433 0.084 0.69 0.831 0.799 0 90 − 0.008 − 0.412 1.009 7.063 12.962 y = 0.71x 

+ 0.54
Meta_Stacking 1 0.1818 0.0583 0.2414 0.0829 0.702 0.8379 0.8099 0 90 0.0056 0.2904 0.9947 6.8749 13.154 y = 0.78x 

+ 0.43
Forecast 

Ensemble
2 0.184 0.05531 0.235 0.0817 0.701 0.842 0.824 0 90 − 0.0003 − 0.016 1.022 7.701 12.75 y = 0.71x 

+ 0.56
Stacked- 

Voting 
Ensemble

​ 0.197 0.0631 0.251 0.0871 0.672 0.82 0.787 0 90 − 0.0053 − 0.277 1.019 8.589 13.578 y = 0.73x 
+ 0.53

XGB 
Ensembled

​ 0.194 0.0635 0.252 0.0861 0.676 0.822 0.797 0 90 − 0.0056 − 0.288 1.011 7.958 13.219 y = 0.76x 
+ 0.46

Optimised 
Ensemble

3 0.18 0.0557 0.236 0.0818 0.70 0.841 0.821 0 90 0.002 0.104 1.017 7.029 13.08 y = 0.70x 
+ 0.59

Empirical 
Model (SR)

​ 0.411 0.258 0.508 0.193 0.391 0.626 0.561 0 88 − 0.316 − 16.468 0.824 20.092 25.946 y = 0.69x 
+ 0.29

Carder et al., 
1999
Model

​ 1.909 3.8306 1.957 1.0518 0.425 0.652 0.616 0 90 − 1.9088 − 98.788 0.012 98.775 98.766 y = 0.01x 
+ 0.01

5Days_Rrs (OC-CCI)
RF_Grid CV ​ 0.24 0.12 0.3465 0.12 0.447 0.668 0.636 0 119 − 0.0322 − 1.617 1.006 7.172 23.319 y = 0.47x 

+ 1.02
Meta_Stacking 1 0.2374 0.115 0.3391 0.1179 0.47 0.6856 0.6567 0 119 − 0.0338 − 1.7013 1.0072 7.8798 23.1747 y = 0.46x 

+ 1.04
Forecast 

Ensemble
​ 0.245 0.12766 0.357 0.1226 0.409 0.639 0.648 0 119 − 0.021 − 1.054 1.009 8.061 25.188 y = 0.43x 

+ 1.11
Stacked- 

Voting 
Ensemble

​ 0.249 0.1285 0.358 0.124 0.413 0.642 0.63 0 119 − 0.0284 − 1.429 0.996 8.583 24.595 y = 0.47x 
+ 1.03

XGB 
Ensembled

​ 0.233 0.1222 0.35 0.1212 0.445 0.667 0.664 0 119 − 0.0337 − 1.692 1 7.483 24.544 y = 0.51x 
+ 0.94

Optimised 
Ensemble

2 0.238 0.121 0.348 0.1206 0.441 0.664 0.657 0 119 − 0.0162 − 0.815 1.015 6.869 24.404 y = 0.48x 
+ 1.02

Empirical 
Model (SR)

​ 0.66735 1.12177 1.05914 0.28843 0.08626 0.2937 0.46111 0 114 0.1394 7.13442 0.93994 18.542 55.82783 y = 0.74x 
+ 0.64

Carder et al., 
1999
Model

​ 1.963 4.0652 2.016 1.0682 0.088 0.296 0.377 0 119 − 1.9629 − 98.676 0.013 98.666 98.624 y = 0.01x 
+ 0.01

8Days_Rrs (OC-CCI)
RF_Grid CV ​ 0.22 0.076 0.2751 0.094 0.636 0.797 0.751 0.0031 13 − 0.1116 − 5.595 0.99 8.588 13.766 y = 0.61x 

+ 0.67
Meta_Stacking 1 0.1775 0.0514 0.2266 0.0791 0.7247 0.8513 0.8232 0.0005 13 − 0.0606 − 3.0379 0.9738 6.728 12.167 y = 0.71x 

+ 0.51
Forecast 

Ensemble
​ 0.223 0.06806 0.261 0.0895 0.666 0.816 0.79 0.0013 13 − 0.0919 − 4.609 0.946 10.824 13.505 y = 0.58x 

+ 0.74
Stacked- 

Voting 
Ensemble

​ 0.218 0.0759 0.275 0.0913 0.632 0.795 0.794 0.0012 13 − 0.104 − 5.214 0.97 10.716 12.995 y = 0.56x 
+ 0.77

(continued on next page)
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Table-5 (continued )

ML/Ensemble 
Method 

Rank MAE MSE RMSE RMSLE R2 Pearson 
r 

Spearman’s 
(ρ) 

p n Bias % Bias Median 
Ratio 

Median 
RPD 

SIQ-PD Regression 
Equation

XGB 
Ensembled

2 0.192 0.0613 0.248 0.0841 0.725 0.852 0.713 0.0063 13 − 0.117 − 5.869 0.978 8.581 11.811 y = 0.70x 
+ 0.47

Optimised 
Ensemble

​ 0.204 0.068 0.261 0.0879 0.689 0.83 0.691 0.009 13 − 0.1172 − 5.878 0.989 8.472 12.388 y = 0.65x 
+ 0.58

Empirical 
Model (SR)

​ 0.257 0.1592 0.399 0.1789 0.526 0.725 0.771 0.0055 11 − 0.1939 − 10.24 0.943 7.539 22.697 y = 0.99x 
+ − 0.18

Carder et al., 
1999
Model

​ 1.969 4.0445 2.011 1.0703 0.668 0.817 0.845 0.0003 13 − 1.9687 − 98.722 0.013 98.672 98.72 y = 0.01x 
+ − 0.00

Monthly_Rrs (OC-CCI)
RF_Grid CV ​ 0.268 0.114 0.3374 0.118 0.559 0.748 0.731 0 91 0.0087 0.442 1.011 11.823 20.172 y = 0.65x 

+ 0.70
Meta_Stacking ​ 0.2726 0.1204 0.3469 0.12 0.5598 0.7482 0.7096 0 91 0.0046 0.2319 0.9991 10.7459 20.0012 y = 0.71x 

+ 0.57
Forecast 

Ensemble
​ 0.266 0.11243 0.335 0.1181 0.555 0.745 0.709 0 91 0.0009 0.046 1.009 11.623 20.374 y = 0.61x 

+ 0.76
Stacked- 

Voting 
Ensemble

​ 0.267 0.1137 0.337 0.1185 0.548 0.74 0.721 0 91 − 0.0067 − 0.339 0.988 12.383 20.602 y = 0.60x 
+ 0.79

XGB 
Ensembled

1 0.255 0.1081 0.329 0.116 0.581 0.762 0.723 0 91 0.0206 1.046 1.011 10.419 19.745 y = 0.67x 
+ 0.67

Optimised 
Ensemble

2 0.264 0.1081 0.329 0.1159 0.57 0.755 0.729 0 91 0.0049 0.248 1.005 11.573 20.124 y = 0.62x 
+ 0.76

Empirical 
Model (SR)

​ 0.462 0.2954 0.544 0.1831 0.071 0.266 0.266 0.0308 66 − 0.3014 − 14.213 0.818 19.94 26.65 y = 0.14x 
+ 1.53

Carder et al., 
1999
Model

​ 1.951 4.0542 2.013 1.067 0.363 0.603 0.597 0 91 − 1.9511 − 98.876 0.011 98.93 98.822 y = 0.00x 
+ 0.01

Merged_Rrs (OC-CCI)
RF_Grid CV ​ 0.227 0.094 0.3065 0.108 0.567 0.753 0.73 0 313 − 0.0148 − 0.751 1.004 8.979 19.809 y = 0.56x 

+ 0.84
Meta_Stacking 1 0.2196 0.0902 0.3003 0.1057 0.5849 0.7648 0.7367 0 313 − 0.0141 − 0.7169 0.9984 8.3846 19.5087 y = 0.57x 

+ 0.83
Forecast 

Ensemble
3 0.22512 0.09199 0.30329 0.10644 0.578 0.75979 0.7401 0 313 − 0.01825 − 0.92737 1.00802 8.43004 19.73532 y = 0.56x 

+ 0.84
Stacked- 

Voting 
Ensemble

​ 0.231 0.0969 0.311 0.1098 0.554 0.744 0.716 0 313 − 0.0147 − 0.745 0.999 9.443 20.197 y = 0.55x 
+ 0.87

XGB 
Ensembled

2 0.223 0.0929 0.305 0.1067 0.577 0.76 0.737 0 313 − 0.0178 − 0.906 1.004 8.387 19.26 y = 0.63x 
+ 0.71

Optimised 
Ensemble

​ 0.222 0.0915 0.303 0.1066 0.578 0.76 0.735 0 313 − 0.0017 − 0.087 1.01 8.067 19.98 y = 0.56x 
+ 0.87

Empirical 
Model (SR)

​ 0.52186 0.61606 0.78489 0.23442 0.10028 0.31668 0.48563 0 279 − 0.12187 − 6.15136 0.86921 19.46401 40.9166 y = 0.57x 
+ 0.74

Carder et al., 
1999
Model

​ 1.944 3.9937 1.998 1.0632 0.176 0.42 0.513 0 313 − 1.9442 − 98.768 0.012 98.77 98.726 y = 0.01x 
+ 0.01
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error metrics, suggesting generally less accurate predictions. All ensemble ML models reliability in predictions is generally higher than 
the Empirical algorithm and Carder et al. (1999) algorithms (Table 5).

4.3. Synthesis of the models’ structure and performance

In evaluation of ensemble models, Meta Stacking and Optimised Ensemble stand out for their sophisticated ensemble methodology. 
While Meta Stacking employs a pure stacking approach, Optimised Ensemble combines stacking with voting to improve performance 
(Table 6). Meta_Stacking demonstrates the most consistent and superior performance across temporal data of Rrs, achieving the lowest 
MAE (0.1775–0.2374) and highest R2 (up to 0.725), particularly in 8-day and 5-day datasets. It’s architecture (Table 6) building on 
stacking Random Forest, Gradient Boosting Machine, and Logistic Regression with Grid CV optimisation and bootstrapping, yields 
strong predictive power despite higher complexity and moderate prediction time.

Both RF_Grid CV and Meta Stacking utilise Grid search cross validation (Grid CV) for robust optimisation, whereas Optimised 
Ensemble and XGB Ensembled incorporate advanced techniques like metaheuristic optimisation (AHA, BWO, AOA, and FHO). All 
models use hyperparameter tuning, however, Meta Stacking, Stacked Voting, and Optimised Ensemble explicitly leverage this process, 
which is crucial for improving performance. Additionally, Meta Stacking, Ensemble Forecast, Stacked Voting, and Optimised Ensemble 
models incorporate bootstrapping to enhance model robustness. XGB Ensembled, performs better in monthly Rrs with MAE = 0.255, 
RMSE = 0.329, and R2 = 0.581, and also shows strong performance in 8-day (MAE = 0.192, R2 = 0.725), highlighting the value of 
precision-tuned XGB frameworks. The Optimised Ensemble, with its broader model diversity and Grid CV, maintains top three MAE 
across all resolutions, peaking in daily (MAE = 0.18, R2 = 0.70) and merged Rrs (MAE = 0.222, R2 = 0.578), demonstrating robust 
generalisability. Among ensemble methods, Meta Stacking and Stacked Voting are particularly effective, though Meta Stacking’s pure 
stacking approach may offer a slight edge. RF_Grid CV, a non-ensemble baseline, has moderate complexity, making it easier to manage 
compared to the higher complexity of other models. However, RF_Grid CV shows moderate metrics, with daily R2 = 0.69, 5-day MAE 
= 0.24, and monthly MAE = 0.268.

In terms of scalability, all ensemble models perform moderately, with Meta Stacking and Optimised Ensemble having a slight edge. 
For our application, Meta Stacking and Optimised Ensemble would be preferable, while RF_Grid CV remains a further possibility for 
this application. Overall, Meta Stacking combined with the base models and effective optimisation methodology emerges as the top 
performer due to its relatively better validation metrics (e.g. R2, Pearson r, and Spearman’s ρ).

4.4. Applications: spatial maps of ɑph (676) and uncertainty

We have applied the Meta Stacking algorithm to raster data from the OC-CCI archive to generate spatial maps of ɑph (676). These 
maps represent two seasons (Fig. 8), January and August in 2023, showing the seasonal variation in spatial distribution of ɑph (676). In 
the Northern Hemisphere, above 40◦, ɑph (676) values are noticeably higher in August compared to January, reflecting increased 
concentration of chlorophyll during the summer months. Conversely, in the Southern Ocean, ɑph (676) values are higher in January, 
corresponding with the austral summer, and indicating elevated concentrations of phytoplankton. These observed patterns are 
consistent with the seasonal phytoplankton bloom dynamics, such as diatom blooms, in southern hemisphere and northern hemi
sphere, suggesting the algorithm’s ability to capture seasonal trends of phytoplankton absorption from remote sensing.

The uncertainty levels in algorithm prediction vary spatially, depending on the input Rrs values. A geographical residual plot of the 
training and test data (Fig. 9) suggests that, except at very latitudes in both the Northern and Southern Hemisphere, residuals generally 
remain below 35 %, indicating a reasonable level of prediction uncertainty. It is noteworthy that, due to unavailability of in situ data, 

Table 6 
Comparison of evaluation criteria for ensemble models.

Criteria RF_Grid 
CV

Meta Stacking Ensemble Forecast Stacked Voting Optimised Ensemble XGB Ensembled

Model Type RF Stacking 
Ensemble

XGB, GB, Bagging, 
Stacking

Stacking + Voting Stacking + Voting XGB Ensemble

Base Models RF RF, GBM, LR XGB, GB, Bagging, 
Stacking

RF, GBM, XGB, SVR, 
Voting

RF, GBM, ETR, ADA, 
Bagging, Voting

XGB Models

Optimisation Grid CV Grid CV Bootstrapping Grid CV Grid CV AHA, BWO, AOA, 
FHO

Hyperparameter 
Tuning

Yes Yes Implicit Yes Yes Yes

Bootstrapping Yes Yes Yes Yes Yes No
Ensemble Method NO Yes (Stacking) XGB, GB, Bagging, 

Stacking
Yes (Stacking +
Voting)

Yes (Stacking + Voting) Yes

Training Time High High Moderate High High High
Prediction Time Fast Moderate Moderate Moderate Moderate Moderate
Complexity Moderate High High High High High
Scalability Good Moderate to 

Good
Moderate to Good Moderate to Good Moderate to Good Moderate to Good

Application Versatile Complex Tasks Robust Performance Advanced Modelling Advanced Modelling High Accuracy 
Tasks
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the residuals could not be estimated across all oceanic regimes.

5. Conclusions

The primary objective this study was to enhance the predictive accuracy of remote sensing estimates of phytoplankton absorption 
peak at the red band, i.e., ɑph(676), which is a critical input for several remote sensing algorithms used to retrieve phytoplankton size 
classes, as well as carbon and nutritional content (Roy et al., 2013, 2017; Roy, 2018). We presented a new machine learning (ML) 
algorithm using ocean colour satellite data from OC-CCI, developed through extensive training and validation of various ML model 
formulations. To obtain a robust ML model, we adopted a rigorous approach by compiling a comprehensive in situ training dataset of 
ɑph(676) and matched it with remote-sensing reflectance at six wavelengths in the visible range. We then extensively evaluated a range 
of base ML algorithms, e.g., Random Forest (RF), Gradient Boosting Machines, and Linear Regression; and further implemented 
advanced ensemble ML models such as RF with Grid Search Cross-Validation, eXtreme Gradient Boosting Ensembled Model, Ensemble 
Forecast, Stacked Voting, Optimised Ensemble, and Meta Stacking, by integrating the base models. The best-performing model was 
identified by evaluating its performance against the large in situ ɑph(676) database compiled in this study.

Our evaluation demonstrated that Meta Stacking ensemble learning was the most effective algorithm in terms of predictive 

Fig. 8. Application of the model to raster data from OC-CCI, resulting in ɑph (676) prediction maps.
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accuracy and ability to perform well with various temporal data resolutions of ocean colour data. Our analysis suggests that the choice 
of ML model and temporal resolution of satellite data are crucial for accurately estimating phytoplankton absorption from satellite 
remote sensing. Meta Stacking as an algorithm may be particularly effective for ɑph(676) prediction due to its robust combination of 
diverse base models and optimisation techniques, especially when paired with daily data from satellites for higher accuracy.

Our study addresses key limitations identified in the literature on estimating ɑph(676) from Rrs by developing an ensemble machine 
learning model. We addressed the challenges such as small sample sizes of the training ɑph(676) data, inconsistent error percentages in 
the previously developed ML models for phytoplankton absorption, weak relationships across wavelengths, lack of baseline perfor
mance comparisons, and absence of evaluations comparing ensemble methods (e.g., Alam et al., 2024; Pahlevan et al., 2021). By 
compiling an extensive in situ ɑph(676) dataset, the largest till date, and implementing more advanced ML techniques such as hyper 
parameter tuning, our study ensures the robustness and generalisability of the developed ML model. Furthermore, we conducted 
comparative evaluation of different ML algorithms evaluations through baseline performance metrics to identify the most effective 
approach for estimating ɑph(676) values. Our study thus confronts prevailing limitations in estimating ɑph(676) values by systemat
ically optimising ensemble machine learning models.

The ML model performance across satellite matchups obtained on various temporal resolutions (daily, 5-day, 8-day, monthly, and 
merged Rrs datasets) indicates that finer temporal granularity improves the predictive accuracy of the model. Consistent with our 
understanding, ML models trained on higher-resolution inputs (daily, 8-day) yielded lower errors and higher R2 values, reflecting 
better apprehension of short-term variability and seasonal patterns in ocean-colour biogeochemical properties. In contrast, coarser 
resolutions (e.g. monthly) increased uncertainty, leading to underfitting and reduced model responsiveness. By tackling the challenge 
of obtaining longitudinal ocean colour satellite data, our research advances remote sensing application of phytoplankton absorption 
for wider ecological research. Future studies may focus on exploring multi-resolution training, temporal embeddings, and dynamic 
ensemble weighting to enhance robustness and generalisation of our ML model across datasets.

The ML model that we have developed for retrieving phytoplankton absorption can potentially support policy-relevant studies by 
enhancing the accuracy of satellite-derived advanced biogeochemical products. By improving the estimates of a key inherent optical 
variable i.e., ɑph(676), our model can help advance the accuracy and reliability of satellite retrieval algorithms for large-scale envi
ronmental assessments critical for ecosystem management and policy. More specifically, improved satellite-based estimation of 
ɑph(676) using our approach can refine advanced algorithms for deriving phytoplankton size classes and phytoplankton carbon, for 
which ɑph(676) is the key input (e.g., Roy et al., 2013, 2017; Roy, 2018). Accurate estimation of phytoplankton carbon from space is 
particularly important because it serves as a key component of oceanic and aquatic carbon budgets (Falkowski et al., 1998; Field et al., 
1998). These estimates are increasingly sought after by the global scientific and policy community for better quantifying carbon fluxes 
and stocks in marine ecosystems (CEOS, 2014). So, our ML model outputs can contribute to global carbon and climate models and can 
inform climate change assessments and mitigation strategies, such as those presented in IPCC reports (Calvin et al., 2023).

Despite our efforts, the available in situ dataset of ɑph(676) that we have compiled and used for training the ML model, is mainly 
restricted to the Atlantic Ocean and parts of the Pacific Ocean, leaving several major oceanic regimes underrepresented, for example, 
the Indian Ocean, Southern Ocean, and much of the Pacific. Any future sampling efforts, expanding in situ observations to encompass 
these diverse and ecologically distinct regions will be crucial for further improving the robustness and spatial coverage of the training 
data. A more globally distributed training dataset would enhance the generalisability of the ML model and may reduce regional biases. 
If an expanded dataset becomes available in the future, re-training our proposed ML model will be necessary to incorporate the new 
data and improve the overall accuracy of the model prediction. Furthermore, for specific applications at regional scales such as 
monitoring harmful algal blooms or assessing phytoplankton community structure in coastal zones, it may be useful to develop 
regionally trained ML models. These localised ML models could better capture unique bio-optical characteristics and ecological 

Fig. 9. A geographical map of predicted residuals for ɑph (676), shown at the locations of available in situ data.
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dynamics and potentially improve the reliability and relevance of satellite-based predictions of phytoplankton absorption in man
agement or conservation efforts.
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Appendix-1. Abbreviations Used in This Study

Abbreviation Meaning

AHA Adaptive Hyperparameter Algorithm (used for optimising hyperparameters)
BWO Black Widow Optimisation (a metaheuristic optimisation algorithm)
AOA Artificial Owl Algorithm (an optimisation algorithm based on owl behaviour)
FHO Firefly Optimisation (an optimisation algorithm inspired by firefly behaviour)
RMSE Root Mean Squared Error (a metric for evaluating model performance)
XGBoost Extreme Gradient Boosting (a machine learning algorithm for regression and classification)
SVR Support Vector Regression (a regression algorithm based on Support Vector Machines)
RF Random Forest (a type of ensemble learning method using multiple decision trees)
GB Gradient Boosting (a boosting algorithm that builds models sequentially)
XGB XGBoost (an optimised version of Gradient Boosting)
DMatrix A data structure used by XGBoost for optimised training and prediction
CV Cross-Validation (a technique for assessing model performance by splitting data into training and validation sets)
GridSearchCV A method for hyperparameter tuning that performs an exhaustive search over specified parameter values
SVR Support Vector Regression (a regression technique using support vector machines)
n_jobs Number of CPU cores to use during computation (in contexts like GridSearchCV)
Bootstrap A statistical method for resampling with replacement to estimate the distribution of a statistic
Model A trained machine learning algorithm used for making predictions based on input data
Ensemble A method combining multiple models to improve performance (e.g., VotingRegressor, StackingRegressor)

Appendix 2. Scatterplot for Daily_Rrs
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Appendix 3. Scatterplot for 5Day_Rrs
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Appendix 4. Scatterplot for 8Day_Rrs
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Appendix 5. Scatterplot for Monthly_Rrs
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Data availability
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