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ARTICLE INFO ABSTRACT
Keywords: Light absorption by microscopic phytoplankton in marine ecosystems is a crucial process un-
Machine learning derpinning biological production and global biogeochemical cycles. Accurate estimation of
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phytoplankton absorption coefficients, an inherent optical property of ocean water, can improve
remote sensing applications including spectral photosynthesis models and assessments of ocean
health, biodiversity, and climate change impacts. However, considerable uncertainty exists in
current satellite retrievals of phytoplankton absorption coefficients, particularly for a,,(676) - the
phytoplankton absorption peak at red wavelengths near 676 nm - which is an input to several
novel and advanced satellite algorithms. This uncertainty hinders operational use of algorithms
for assessing phytoplankton physiology, size structure and oceanic carbon pools from space. We
aimed to improve satellite-based estimation of gy, (676) using advanced machine learning (ML)
techniques. We compiled a comprehensive in situ dataset (n = 1576) of a,,(676) from published
databases and matched with remote-sensing reflectance Rrs at six wavelengths (412, 443, 490,
510, 560, and 665 nm) from the Ocean Colour Climate Change Initiative. We extensively eval-
uated multiple base ML algorithms: Random Forest (RF), Gradient Boosting Machines, and Linear
Regression; and implemented ensemble ML models: RF with Grid Search Cross-Validation,
eXtreme Gradient Boosting Ensembled Model, Ensemble Forecast, Stacked Voting, Optimised
Ensemble and Meta Stacking, integrating the base models through cross-validated hyper-
parameter tuning. Meta Stacking outperformed individual ML models in predictive accuracy
across temporal resolutions, showing best results with daily composites. Our study addresses key
limitations of previous models, including small training datasets, inconsistent performances, and
lack of ensemble comparisons. We present a robust, extensively trained and validated ensemble
ML model that significantly improves @,,(676) estimation and opens the possibility of routinely
using in ocean colour remote sensing.

1. Introduction

Phytoplankton are microscopic, photosynthetic organisms essential to the marine food web, producing over 50 % of Earth’s oxygen
and regulating atmospheric CO5 levels through absorption, making them vital indicators of ocean health, ecosystem changes, and
climate dynamics (I0CCG, 2000; Machado et al., 2023; Cetinic et al., 2024). Phytoplankton cells contain pigments, especially
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chlorophyll (Chlor-a) that absorb light at specific wavelengths (Ciotti et al., 2002; Cleveland, 1995), enabling Ocean Colour satellites
to detect their concentrations in the ocean (Huan et al., 2021; Mouw et al., 2017; Wang et al., 2021). The absorption coefficient
represents the amount of light harvested by per milligram of phytoplankton Chlor-a and is an important quantify for remote sensing
applications such as retrieval of cell size, pigment composition and photosynthesis models (Bricaud and Stramski, 1990; Bricaud et al.,
1995). Phytoplankton absorption coefficient is an important quantity for understanding oceanic health and the impacts of climate
change on oceanic ecosystems, as they are directly linked to the primary productivity of the ocean (Marra et al., 2007; Hirawake et al.,
2011; Barnes et al., 2014; Silsbe et al., 2016). Nutrient stress and co-limitation of mineral availability can affect phytoplankton growth
and alter pigment composition, thereby influencing phytoplankton absorption properties and in turn primary productivity (Robinson
etal., 2017). The seasonal and spatial variability of phytoplankton absorption is vital for monitoring of ocean health indicators such as
chlorophyll concentration and occurrence of certain harmful algal blooms (Shen et al., 2012; Wei et al., 2023; Xu et al., 2025). As
climate change continues to be a driver in altering phytoplankton composition and nutrient regimes, integrating absorption co-
efficients into biogeochemical models enhances the predictive ability of the models to monitor and manage changes in marine eco-
systems, sustaining conservation and initiate climate mitigation strategies (Patara et al., 2012; Paulsen et al., 2018).

Phytoplankton absorption coefficients gy, (1) can be estimated from laboratory measurements, field observations, as well as remote
sensing, and numerical modelling (Pahlevan et al., 2021). Satellite remote sensing is now widely used for cost-effective global coverage
and retrieval of phytoplankton physical properties (Churilova et al., 2019; Ciotti et al., 2002; Roelke et al., 1999), phytoplankton
functional types (PFT) (Anderson, 2005; De Moraes Rudorff and Kampel, 2012; Roy et al., 2013) and phytoplankton size structure
(PSC) (Kostadinov et al., 2023; Pérez et al., 2021; Roy et al., 2017). The retrieval algorithms use remote sensing wavelengths in the
blue and red spectrum, leveraging the absorption properties of Chlor-a. The visible spectral range from 300 nm to 800 nm is essential
for acquisition of solar energy and its conversion into chemical energy through primary production in the ocean. A large portion of this
photosynthetically active radiation is utilised by marine phytoplankton through light-absorbing pigments, primarily chlorophyll-a,
which shows strong absorption with a primary peak in the blue region near 440 nm and a secondary peak in the red region near
676 nm (Kirk, 1994). Most ocean colour sensors, such as NASA’s MODIS and ESA’s Sentinel-3 OLCI, also operate in this spectral
window with multispectral channels designed to capture water leaving radiances (IOCCG, 2012). The reflectance values captured by
these channels are then used to derive inherent optical properties in the ocean such as absorption coefficients (IOCCG, 2006). The peak
in the absorption spectra of Chlor-a, the primary pigment in phytoplankton, at the 443 nm wavelength has been widely used (Cao et al.,
2005; Carder et al., 1999; Hirata et al., 2008; Shang et al., 2011; Wang et al., 2008; Zheng and Stramski, 2013a, 2013b; Zheng et al.,
2015) to estimate phytoplankton biomass and distribution from remote sensing. On the other hand, the secondary peak of Chlor-a near
675-676 nm wavelength, within the red spectrum, has proven crucial for detecting phytoplankton physiological properties (Allali
etal., 1997; Cullen et al., 1997; Li et al., 2021; Meler et al., 2017; Seppala et al., 2005; Shang et al., 2021; Sun et al., 2010; Zhang et al.,
2010), and in particular, for obtaining advanced information on phytoplankton cell size, size spectrum and carbon content (Roy et al.,
2011, 2013, 2017).

Various methodologies, categorised in analytic, semi-analytic, empirical, semi-empirical, quasi-empirical, LUT have been devel-
oped and applied for the estimation of gy, (A) from remote sensing data for ocean colour applications (Blondeau-Patissier et al., 2014;
Huan et al., 2021; Pahlevan et al., 2021). More recently, Machine Learning-based approaches have been implemented due to their
potential for enhancing the accuracy of ayx(\) prediction (Ahmed et al., 2017; Alam et al., 2024; Deng et al., 2019; Pahlevan et al.,
2021). For example, Huan et al. (2021) evaluated pigment absorption at 670 nm for Case I and Case II waters demonstrating a higher
predictive accuracy for Case I waters. Pahlevan et al., (2021) used a small data set (40 paired of Rrs and ay;, measurements) with HICO
overpasses and mixture density networks (MDNs) reporting inconsistent error percentages and biases, and weak relationships across
wavelengths. Further, Alam et al. (2024) used optimised ensemble ML models to estimate ap(A) values from Rrs with 674 samples for
apr at the 670 nm. None of the previous studies, however, explicitly retrieved phytoplankton absorption peak in the red wavelengths (i.
e., at ~676 nm), which is a specific input to the advanced ocean-colour algorithms of our concern, particularly those for phytoplankton
size spectrum and allometry-based carbon and nutritional values (Roy, 2018; Roy et al., 2013, 2017).

In this study, we utilise the Ocean Colour Climate Change Initiate dataset, which provides high-quality, consistent time series data
spanning over two decades, to explicitly retrieve phytoplankton absorption at the red peak. In doing so, we address notable gaps in ML
techniques applied by previous studies, by considerably increasing the sample size for ML training, extensively evaluating the per-
formance of multiple ML methods, and ensuring optimal performance of ML algorithms under randomised and bootstrapped condi-
tions. Our study, compiling a comprehensive dataset comprising 1576 samples, and exploring multiple base ML algorithms and
subsequently creating an amalgamated hybrid ensemble model presents a robust model for phytoplankton absorption peak at the red
bands, which would be readily applicable to ocean colour algorithms.

2. Data
2.1. In-situ database on phytoplankton absorption spectra

To compile a global database of in situ measurements of phytoplankton absorption spectra, a systematic search was made on
PANGAEA data archive with keywords “phytoplankton”, “a,y+, “Rrs 676", “apy (676)”, spanning all published a,, (676) datasets
covering the available cruise missions. The datasets considered were the SeaWiFS Bio-optical Archive and Storage System (SEABASS)
through NASA bio-Optical Marine Algorithm Dataset (NOMAD) database (https://seabass.gsfc.nasa.gov/wiki/NOMAD, Werdell and
Bailey, 2005), Marine Optical Buoy (MOBY) (Brown et al., 2007; Brown et al., 2007), BOUSSOLE (Carr et al., 2006; Carr et al., 2006),
and the Ocean Colour Climate Change Initiative (OC-CCI) validation dataset, which combined the first three datasets into a single
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extended version spanning 1997 to 2021 (Valente et al., 2022). We sorted the datasets according to the availability of a,, peak
identifiable at 676 nm, along with associated Inherent Optical Properties and Diffuse Attenuation Coefficients across various wave-
lengths. This collated dataset before filtering consisted of 7425 points, with g, values ranging from 290 to 849, at intervals of 0.2 nm
(Fig. 1). After filtering, we retained a subset comprised n = 1576 valid entries of a,, (676) and associated variables.

2.2. Satellite ocean colour data

The methodology, described in detail in the following section, is applicable to ocean colour data from any satellite sensor. We have,
however, chosen to use the ESA Ocean Colour Climate Change Initiative (OC-CCI) data because of its wide use, which was derived by
merging ocean colour data from multiple sensors that were active in different or overlapping time scale, e.g. SeaWiFS, MERIS, MODIS-
A, and VIIRS. The merging methodology included band-shifting, bias correction for remote sensing reflectance (Rrs) and imple-
mentation of various chlorophyll algorithms (Sathyendranath et al., 2019). We used these merged products as a good compromise
between data accuracy and length of the time series covering the in-situ dataset. We acquired the Daily, 5Day, 8Day, & Monthly
products of Rrs_412, Rrs_443, Rrs_490, Rrs_510, Rrs_560, and Rrs_665, from OC-CCI Version 6.0, 4-km (available at https://www.
oceancolour.org/portal/) through the Composite Browser, OPeNDAP, Web GIS Portal, and FTP. Different spatial and temporal res-
olutions are critical for resolving oceanographic processes across scales. High temporal-resolution data (e.g. daily, 5-day) capture
short-lived, localised events such as phytoplankton blooms. Low-resolution observations (e.g. monthly) are suited for analysing
long-term, regional or basin-scale climate impacts. Integrating multi-resolution data (from daily to monthly) enables a deeper un-
derstanding of marine biophysical variability and the predictive model’s relative performance across oceanic events.

Utilising Python scripts, data extraction from the server was automated, catering to various frequencies ranging from daily to
monthly intervals. Sequential extraction across different time intervals produced Rrs products at Daily (448 data points), 5-days (591
data points), 8-days (62 data points) and Monthly (452 data points). In total, the extracted Rrs data corresponded t01576 a, (676)
measurements, which on filtering for Chlor-a, & kd_490 availability resulted in 1553 matchups. The data descriptive summary of data
is presented in Table 1.

3. Methodology

The major steps of the methodology (outlined in Fig. 2 and further discussed) involve (a) extraction of remotely sensed variables
such as remote sensing reflectance (Rrs) from OC-CCI data archive at specific wavelengths (412-665 nm), matching up the collated
phytoplankton absorption at 676 nm i.e. gy, (676); (b) training possible forms of ML algorithms including hybrid ensemble techniques
to model @y, (676) and (c) evaluating and optimising the performance of the trained ML models to take it forward for application.
Multiple statistical metrices, commonly used in the literature, are implemented to assess the ML model performance and to identify the
overall best-performing model. The chosen model is then applied to satellite-derived reflectance to produce the predicted ay, (676)
maps.

3.1. Evaluating base ML algorithms

The base ML models used in our study have been extensively exploited in previous studies concluding, non-linear models,
significantly outperform linear models in predicting wave runup due to their ability to model complex coastal dynamics (Durap, 2023);

Spectral Plot of wavelength-dependent Phytoplankton Absorption Coefficient
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Fig. 1. Spectral plot of @, (1) data from global dataset.
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Table 1
Descriptive summary of in situ and satellite match-up data.
app (676) Rrs_ 412 Rrs 443 Rrs_490 Rrs 510 Rrs_560 Rrs_665 Chlor-a kd_490
count 1553 1553 1553 1553 1553 1553 1553 1553 1553
mean 0.0196 0.0072 0.0071 0.0077 0.0075 0.0062 0.0090 0.9100 0.1039
std 0.0209 0.0057 0.0060 0.0074 0.0075 0.0079 0.0382 1.5460 0.1763
min 0.0002 0.0005 0.0002 0.0008 0.0011 0.0000 0.0000 0.0005 —0.0668
25 % 0.0060 0.0032 0.0031 0.0031 0.0030 0.0016 0.0002 0.0770 0.0050
50 % 0.0127 0.0048 0.0044 0.0042 0.0035 0.0023 0.0004 0.4629 0.0675
75 % 0.0260 0.0096 0.0100 0.0106 0.0112 0.0092 0.0020 0.9421 0.1184
max 0.2283 0.0589 0.0785 0.0852 0.0737 0.0463 0.6742 16.8658 2.2537
Data Extraction ML & Ensemble Modelling Performance Evaluation

ML Algorithms Explored .
Model Evaluation
Linear Regression Group:
- Linear Regression Metrics:
- Step-wise Linear Regression - MAE, MSE, RMSE, RMSLE
- Hyperparameter Tuning -R2 S'core § -
Global Bio-Optical Data Tree-based Methods: |y |- Pearson (r), Spearman (p)
(OC_CCl) Database - Decision Tree - P-value, Bias, % Bias
= - Random Forest - Median Ratio, Median RPD
0ph(676), n=1576 - AdaBoost - SIQ-PD
- Gradient Boosting >
: Regression Equation:
Deep Learning Methods:
i - Deep Neural Networks - Slope, Intercept
Kernel Methods: l
[ Target Variable apn676) ]7 - SVM N
Probabilistic Methods:
- Gaussian Process Regression Save best model to
apply on unseen data
ﬂ Feedback PRy )
Predictor Variables Rrs at 412,

443,490,510, 560,665 nm

HYBRID ENSEMBLE ML

RF Grid CV Application of saved

model to .nc file with Rrs
Meta Stacking

Satellite Ocean Color Rrs
Data (OC-CCl),n=1553

Ensemble Forecast

Stacked Voting Predicted axn676)
maps

Daily-448, 5Day-591,
8Day-62, Monthly-452

Optimized Ensemble

Fig. 2. Schematic diagram showing the major steps of our methodology involving data extraction, ML model development and evaluation of the
model performance.

the Deep Learning models outperforms statistical models in predicting SST (Ali et al., 2021); the improved resolution and data
inversion for enhanced carbon cycle analysis, nitrogen levels, and harmful algal blooms predictions based on classification techniques
(Zhang et al., 2025); and also real-time applications like wave modelling and species distribution benefit from ML (Ahmad, 2019;
Sadaiappan et al., 2023). Table 2 below summarises the advantages and limitations of ML techniques used as base models for advanced
ensemble modelling. We first trained and validated a range of standard ML algorithms, described in the following, aimed at predicting
apn, values from Rrs values. Our methodology included adjustment of train-test ratios to discern the most effective model performance
across different scenarios. The standard algorithms tested included (i) Linear Regression, (ii) Tree-based regression, (iii) Deep Learning
method, (iv) Kernel Methods and (v) Probabilistic Methods.

In the Linear Regression group, Linear Regression stands as a foundational method for predicting continuous target variables, offering
a straightforward approach to prediction. Stepwise Linear Regression, a variant, iteratively adjusts features based on their significance,
refining the model for capturing relevant information. Additionally, Linear Regression Hyperparameter Tuning involves fine-tuning
model parameters to optimise performance and enhance predictive accuracy. Tree-based Methods group includes Decision Tree em-
ploys a non-linear approach, partitioning data into subsets for predictions through binary decisions. Random Forest utilises ensemble
techniques, constructing multiple decision trees and aggregating predictions to mitigate overfitting and enhance accuracy. Ensemble
methods, AdaBoost and Gradient Boosting, combine weak learners, typically decision trees, to create robust predictive models, with
Gradient Boosting sequentially improving upon errors. Deep Neural Networks utilise complex architectures with hidden layers, capable
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Table 2
Advantages and limitations of ML techniques tested as base models.

Algorithm Advantages Limitations Python Sample Use Case

Linear Regression Fast, baseline performance, may underfit Assumes linearity, sensitive to scikit-learn, Baseline for temperature/

complex data, Simple, interpretable, efficient — multicollinearity and outliers statsmodels salinity modelling
for small linear datasets
Stepwise Linear Slightly better than basic linear regression, May overfit, computationally statsmodels, Analysis of variable

Regression automatically selects significant variables expensive for large data custom code influence in ocean models
Linear Regression Optimised parameters; accuracy via Still limited by linear assumptions  scikit-learn Improved linear models for
Hypertuning parameter tuning like regularisation (Ridge, Lasso) salinity/temp trends

Decision Tree Moderate, Easy to visualise, handles scikit-learn Marine habitat classification

nonlinear data, no feature scaling
High accuracy, robust, handles missing data,

Overfits easily, unstable with
small changes in data

Random Forest Less interpretable, slower training  scikit-learn, Species distribution

and nonlinearity, Reduces overfitting, time modelling, SST prediction
AdaBoost Boosts weak models, often outperforms single  Sensitive to noisy data and scikit-learn Marine species classification
models outliers

Gradient Boosting Very high accuracy, Captures complex Computationally intensive, prone  xgboost, Climate impact assessment,
patterns, tunable, supports regularisation to overfitting if not tuned properly  lightgbm, marine heatwave forecast
catboost,
DNN (Deep Neural Handles high-dimensional and unstructured Requires large data, tuning, long TensorFlow, Satellite image analysis, SST

Network) data well, high with enough data and tuning,  training times Keras, PyTorch anomaly detection

SVM (Support Good with high-dimensional and smaller Not scalable to large datasets, scikit-learn classification, plankton data
Vector datasets with clear margins of separation hard to interpret analysis
Machine)

GPR (Gaussian High for small datasets, very accurate, Very slow and memory-intensive scikit-learn, Biogeochemical parameter
Process Provides uncertainty estimates for large datasets GPyTorch modelling,
Regression)

of learning intricate data patterns with high adaptability. Support Vector Machine is an established method for effectively classifying or
regressing data by finding optimal hyperplanes. Gaussian Process Regression is a probabilistic method which employs Bayesian prin-
ciples, modelling target variables as Gaussian processes and providing valuable uncertainty estimation in predictions (Ashphagq et al.,
2024).

To ensure the ML model is robust and performs consistently under different sets of training and validation data, we used three train-
test splits (50:50, 67:33, 80:20) to evaluate model performance. The model’s performance and stability were assessed across the data
splits, and the possibility of any overfitting or underfitting issues was investigated. We implemented a combination of 13 performance
metrics, described below in Table 3, to test the algorithms’ efficacy and performance. Sample sensitivity was analysed to verify the
influence of changes in data splits on performance and generalisability. A log transformation was applied to normalise extreme values
and reduce outlier impact on the dataset.

Table 3
Performance metrics used in this study.
Metric Description Desired Units
Value
Mean Absolute Error (MAE) The average absolute difference between predicted and actual values. Lower Same as the target
Mean Squared Error (MSE) The average of the squares of the errors between predicted and actual values. Lower Same as the target
Root Mean Squared Error The square root of the MSE, representing the standard deviation of the residuals. =~ Lower Same as the target
(RMSE)
Root-Mean-Squared Log Error Similar to RMSE but calculated on the logarithm of the predicted and actual Lower Dimensionless
(RMSLE) values. Useful for target variables with a large range. (logarithmic scale)
R2 Score Measures proportion of the variance in the DV predictable from the IV Higher (up Dimensionless
to 1)
Pearson Correlation Measures the linear correlation between two variables, ranging from —1 to 1. Closeto 1 or  Dimensionless
Coefficient (r) -1
Spearman’s Correlation Non-parametric measure of rank correlation, ranging from —1 to 1. Closeto1 or  Dimensionless
Coeff. (p) -1
P-value The probability of observed results if the null hypothesis is true. Lower Dimensionless
(<0.05)
Samples (n) The number of samples used for testing. Count Dimensionless
Bias The difference between the mean of predicted & mean of actual values. Close to 0 Same as the target
% Bias Bias expressed as a percentage of the mean of actual values. Closeto 0 %  Percentage
Median Ratio The ratio of the median of predicted to the median of actual values. Close to 1 Dimensionless
Median RPD (Relative Percent ~ The relative difference between predicted and actual values, as a % of the median Lower Percentage
Difference) of actual values.
SIQ-PD (Scaled IQ Indicates model performance on a scaled 1Q-like metric. Higher values suggest Higher Dimensionless (scaled

Performance Descriptor)

better performance.

score)
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3.2. Hybrid ensemble modelling

The growing role of advanced machine learning approaches in environmental analysis, land-use changes, and thermal impacts have
been demonstrated using the techniques like artificial neural networks (Zhang et al., 2021, 2024). These studies effectively model
changes and forecast of land surface temperature, land use changes, and thermal impacts in urban settings by integrating spatial and
temporal data to forecast urban heat patterns and carbon emissions (Zhang et al., 2023). Such predictive approaches are essential for
understanding environmental dynamics to understand ocean health and climate change analogous to land-based systems. We then
applied ensemble methods, which integrate multiple standard ML algorithms for enhancing the overall model performance. Ensemble
methods synthesise predictions from multiple base models, such as decision trees, linear models, and others, to produce a final pre-
diction that is typically more accurate and robust than that of any individual model. Analysis from previous steps highlighted the
significant potential of machine learning models like Random Forest (RF), Gradient Boosting (GB), and Support Vector Regression
(SVR) in constructing a robust meta-learning framework based on ensemble techniques for the estimation of ap, (676). In the
following, we discuss various ensemble strategies adopted in our study: Meta Stacking, Ensemble Forecast, Stacked Voting, Optimised
Ensemble, XGB Ensembled and hyper-tuned RF_Grid CV. These methods differ considerably in their composition, optimisation
techniques, and applications.

3.2.1. Meta Stacking

Meta Stacking introduces complexity by leveraging a stacking ensemble approach. The base models RF and GBM are fine-tuned
using Grid Search CV, and their predictions are combined by a meta-learner, a linear regression model. This method also includes
bootstrapping with multiple iterations to ensure robust performance. The base models are individually optimised using GridSearchCV
on resampled bootstrap samples of the training data. The optimised models generate predictions, which are aggregated into meta-
features across multiple bootstrap iterations. After tuning, the base models are retrained on the entire training dataset with the
best hyperparameters. For new data, predictions are made through a predict_stacked_model function, which first generates meta-
features from the retrained base models and then applies the meta-model to produce the final prediction. The performance of this
stacking ensemble is evaluated on a test set, providing a measure of accuracy as shown in flowchart Fig. 3. The stacking approach is
ideal for complex tasks requiring high flexibility and advanced modelling techniques, albeit at the cost of higher training time and
complexity.

import Libraries

| Bootstrapping Loop: For each Bootstrap Sample |<— ————————— 1

|

| Hyperparameter Tuning for RF | | Hyperparameter Tuning for GB |
1
1
Train Base Models: Train Base Models: Train Base Models: :
Random Forest Gradient Boosting Linear Regression | |

I

Generate Meta-Features !
Predictions of Base Models .

}

Aggregate Meta-Features
Average predictions

“ N

Train Final Base Models on Train Final Meta-Model on
Full Training Data Aggregated Meta-Features

S /

Save the Final Model
meta_model, final_base_models

Fig. 3. Flowchart of meta stacking ensemble model.
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3.2.2. Forecast ensemble

The Forecast Ensemble method integrates XGBoost, Gradient Boosting, Bagging, and Stacking, ensuring robustness and accuracy in
predictions by averaging results across multiple iterations, making it ideal for demanding forecasting tasks despite high computational
costs. The script demonstrates an advanced approach to create four forecasting function using Python: xgboost forecast, gra-
dient_boosting_forecast, bagging forecast, and stacking forecast. The first two functions leverage XGBoost and Gradient Boosting
models, applying bootstrapping to produce reliable predictions. The bagging forecast function combines outputs from both models
through a bagging technique, averaging predictions to enhance accuracy. The stacking_forecast function further refines this by training
a Linear Regression meta-model on the combined predictions of XGBoost and Gradient Boosting, potentially increasing forecasting
accuracy. Hyperparameters such as n_estimators, control the number of boosting stages in both XGBoost and Gradient Boosting. The
script emphasises model stability through bootstrapping and optimises accuracy using methods like grid search and cross-validation as
shown in flowchart Fig. 4.

3.2.3. Stacked Voting Ensemble
The Stacked Voting Ensemble pipeline is an advanced system designed for optimised regression modeling, leveraging ensemble
learning techniques like stacking and voting. It begins with selecting diverse base models—RF, GB, SVR, and XGB—each chosen for its

Import Libraries

| Define xgb, GB, Stacking_forecast Function |

\ 4
| Initialize Stacked Predictions Array

Define XGB, GB, Bagging_forecast Function

A \ 4

Initialize Forecasts Array I For Each Iteration, n_iterations

‘ M

For Each Model, n_models and Each Iteration, n_iterations l Resample Training Data

'\

Resample Training Data | Train XGBRegressor and GradientBoostingRegressor |

A 4
Train XGBRegressor and GradientBoostingRegressor Create Meta-Dataset and Train LinearRegression Meta-Model

| S~

Average Predictions from Both Models Predict with Meta-Model

N ,

Average Stacked Predictions

I Store and Average Forecasts

A
Bagging Predictions Stacking Predictions

Aggregate Stacking Predictions

h 4
Evaluate Models Using Mean Squared Error ‘

Y
Save Final Ensemble Model with StackingRegressor

Fig. 4. Flowchart of forecast ensemble model.
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ability to handle different aspects of the data. To maximise each model’s performance, GridSearchCV is utilised for hyperparameter
tuning, systematically exploring parameter combinations such as estimators, depth, learning rates, and regularisation. After identi-
fying the best configurations, the models are combined in a Stacking Regressor framework, where their predictions are aggregated
using a Voting Regressor as the meta-learner. This method enhances predictive accuracy by leveraging the strengths of the different
models. Bootstrapping is applied to further improve robustness, reducing variance by averaging predictions from multiple resampled
training sets. The final model’s performance is assessed, ensuring it is both accurate and stable across various data subsets as shown in
flowchart Fig. 5. This sophisticated pipeline, although computationally intensive, is designed to achieve high accuracy and reliability
in regression tasks by combining model diversity and optimal tuning.

3.2.4. XGB ensemble

This ensemble technique utilises ‘EnsembleWrapper’ class which is a utility for managing collections of XGB models, facilitating
their saving, loading, and prediction processes. Upon initialisation, it can be provided with lists of models and filenames or create
empty lists if none are supplied. It saves models to files and metadata to a JSON file for future reference. For loading, it reads the
metadata to reconstruct models and prepare them for predictions. During prediction, unseen data is converted to XGB’s DMatrix
format, predictions from each model are averaged, and the final output is evaluated using Root Mean Squared Error (RMSE).
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Fig. 5. Flowchart of stacked voting ensemble model.
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Optimisation functions are critical for tuning XGB models’ hyperparameters. The AHA Optimisation function adjusts the learning rate
(eta) and L2 regularisation (lambda) iteratively, selecting the parameter set with the lowest RMSE. BWO Optimisation uses evolu-
tionary strategies, starting with random parameter sets, and refines them through procreation and mutation, retaining the best-
performing sets. AOA Optimisation employs arithmetic adjustments to fine-tune parameters based on a mathematical model,
selecting the configuration with the best RMSE. FHO Optimisation simulates natural selection, refining parameters based on perfor-
mance to select the optimal set. Initial hyperparameters for training include setting the objective to ‘reg’ for regression, ‘eval_metric’ to
‘rmse’, with an initial learning rate (eta) of 0.1, maximum tree depth of 6, subsample and colsample_bytree both at 0.8, and an L2
regularisation term (lambda) of 1.0. Optimisation functions adjust these parameters, and the refined parameters are used to train
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Optinggation

Start Optimization

BVzO AOA FHO
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l ! !

Evaluate Parameters Evaluate Parameters Evaluate Parameters
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Fig. 6. Flowchart of xgb ensemble model.
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models with the xgb.train() function. Models are then saved, and an EnsembleWrapper instance is created for managing these models.
Predictions are made by the ensemble, averaged, and assessed for accuracy. This systematic workflow shown in flowchart Fig. 6
ensures effective model optimisation, management, and evaluation.

3.2.5. Optimised Ensemble

This ensemble begins with configuring and training individual models—Random Forest, Gradient Boosting, Extra Trees, AdaBoost,
and Bagging, using predefined hyperparameters such as the number of estimators and a fixed random seed to ensure reproducibility.
Hyperparameter tuning, though performed randomly in this case, involves adjusting parameters like the number of trees or boosting
stages. This random tuning introduces variability into the performance metrics, enabling a diverse exploration of potential configu-
rations and affecting the MSE scores. This process helps to evaluate how well each model generalises to unseen data, revealing their
respective strengths and weaknesses. In addition to individual models, the code utilises a VotingRegressor to combine the predictions
from the trained models. By averaging predictions from Random Forest, Gradient Boosting, Extra Trees, AdaBoost, and Bagging, the
Voting Regressor aims to improve overall predictive accuracy and stability. The effectiveness of this ensemble method is evaluated
through its MSE, demonstrating the advantages of aggregating multiple regression techniques. Finally, the code introduces an Opti-
mised Ensemble, which integrates six base models—Random Forest (RF), Gradient Boosting Machine (GBM), Extra Trees Regressor
(ETR), AdaBoost (ADA), Bagging, and Voting. This ensemble leverages stacking and voting mechanisms, along with hyperparameter
optimisation using Grid Search CV, to enhance modelling flexibility and scalability (Alam et al., 2024). Despite its complexity and
higher resource demands, this approach is designed for advanced tasks that benefit from the combined strengths of multiple
algorithms.

3.2.6. RF GridCV

This code is only focused on optimising a RandomForestRegressor model using GridSearchCV for hyperparameter tuning. Key
hyperparameters include n_estimators (number of trees), max_features (features per split), max_depth (tree depth), min_samples_split
(samples required to split a node), min_samples_leaf (samples per leaf), and bootstrap (sampling method, default enabled). Grid-
SearchCV performs a comprehensive search across these hyperparameters using n-fold cross-validation to find the optimal configu-
ration. After identifying the best parameters, the model is trained, and its performance is evaluated using Mean Squared Error (MSE) on
a testing dataset. It’s effective for moderate datasets due to its straightforward nature, balancing relatively high training time with
quick prediction speed and good scalability.

3.3. Comparison to conventional models for estimating phytoplankton absorption at 676

We compared our ML model output with the following algorithms that have been previously used to retrieve phytoplankton ab-
sorption at 676 nm.

3.3.1. Carder et al., 1999

Developed by Carder et al. (1999), this semi analytical algorithm estimates water optical parameters using remote sensing
reflectance (Rrs) values at 412 nm, 443 nm, 490 nm, and 560 nm. It calculates particulate and total backscattering coefficients, and
absorption coefficients for phytoplankton and dissolved organic matter. Initial estimates for the parameters a675val (absorption at
675 nm) and adg400 (backscattering at 400 nm) are refined by solving nonlinear equations that relate observed Rrs ratios to model
predictions. The function ultimately returns the estimated phytoplankton absorption coefficient at 675 nm, reflecting phytoplankton’s
contribution to water absorption.

3.3.2. Empirical method

An empirical method used by Roy et al. (2017) to estimate phytoplankton absorption at 676 from remote sensing data uses a simple
formulation utilising phytoplankton absorption at 443 and 510. a,, (676) is estimated as a product of @y, (443) is raised to the power of
0.8478, and ayy, (510) is raised to the power of 0.2674.

3.4. Evaluation criteria for ensemble models

Evaluating machine learning (ML) approaches involves a comprehensive assessment of several essential and additional criteria to
ensure effectiveness and applicability. Essential criteria include usability, which addresses the ease of implementation and user
interface; applicability, ensuring the ML method aligns with the specific problem and data characteristics; and ease of application,
reflecting the practical simplicity of deploying the model. Replicability is crucial for consistent performance, while time of execution
evaluates the efficiency of training and prediction processes. Model diversity and ensemble integration are important for capturing
various data aspects and improving performance through combined models. Additional factors encompass scalability, which examines
the model’s capacity to handle growing datasets without performance degradation; hyperparameter complexity, focusing on the ease
of tuning; and interpretability, which is vital for understanding model predictions and making data-driven decisions. Data re-
quirements and robustness assess the model’s efficiency with different data volumes and its resilience to noise. Computational resource
requirements consider the necessary hardware and software, and flexibility evaluates the model’s adaptability to changing data and
tasks. These criteria collectively provide a nuanced understanding of an ML approach’s strengths, limitations, and suitability for
specific applications.

10
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3.5. Application of saved model (.pkl file) to raster data (.nc) file

The Python code is a developed to apply a saved ML model to generate predictions and visualise the results on a geographical map.
The process involves importing critical libraries such as xarray for managing and processing multi-dimensional data arrays, numpy for
numerical operations, joblib for loading pre-trained machine learning models, and matplotlib.pyplot for creating visualisations. The
NetCDF file is accessed using xarray’s open_dataset function, enabling convenient handling of the dataset. Six specific reflectance
bands (Rrs_412, Rrs_443, Rrs_490, Rrs_ 510, Rrs_560, and Rrs_665) are identified and extracted from the dataset, representing
reflectance at different wavelengths. These bands are combined into a single 3D NumPy array, where the third dimension corresponds
to the different wavelengths. The data is then reshaped from the 3D array into a 2D format where each row represents a pixel, and each
column represents a wavelength band. A mask is created to filter out invalid data points, removing rows with Nan, zero, or negative
values, ensuring that only valid data is used for further analysis. The script loads a pre-trained stacking model from a .joblib file, which
is applied to valid data points to predict the gy, (676) parameter. These predictions are mapped back onto the original geographical
grid, and a new array is initialised to store the predicted values, initially filled with NaN to indicate missing data. The predicted data is
then visualised using matplotlib.pyplot, where the predictions are plotted on a geographical map with a color-coded scale representing
apn (676) values.

4. Results and discussion
4.1. Performance of the base ML algorithms

The base ML models tested are listed in Table 4, which include Linear Regression, Stepwise Linear Regression, Linear Regression
Hyper tuning, Decision Tree, Random Forest, AdaBoost, Gradient Boost, Deep Neural Network (DNN), Support Vector Machine (SVM),
Gaussian Process Regression (GPR). Each ML model is evaluated using independent sets training and testing data, drawn randomly
from the in-situ datasets with three different training: testing split ratios: 50:50, 67:33, and 80:20, and their corresponding perfor-
mances are analysed using the validation metrics (Table 4).

Intercomparison of the algorithms’ performance (Table 4) shows that the Linear Regression model, although produces a generally
consistent performance across different training: testing splits, resulting in relatively low MAE (0.23), MSE (0.09), and RMSE (0.29), its
predictive power is R2 Score ranging from 0.52 to 0.55. The Stepwise Linear Regression model demonstrates performance like that of
the Linear Regression. The decision Tree, AdaBoost, Gradient Boost, DNN, SVM, and GPR models exhibit moderate performance with
metrics comparable to each other. The Random Forest (RF) model, however, outperforms all other models with the lowest MAE (0.21),
MSE (0.076), and RMSE (0.09), and the higher R? score (Table 4).

4.2. Performance of hybrid ensemble models

We have attempted to retrieve all match ups corresponding to the daily data. But, to maximize the number of match ups, when there
were gaps in the daily data, we used the overlapping 5-day, 8-day and monthly satellite images. It should be noted that the accuracy of
the daily matchups should be higher than any of the three temporal resolutions. As a compromise between the sample size and res-
olution we have merged all the matchups into the final validation dataset. We have further tested each of the ML model’s performance
across all the subsets (i.e., daily, 5-day, 8-day, monthly and merged) of the validation dataset, which are described below.

For daily predictions, Meta Stacking demonstrates the highest R? value (0.702), the best slope of regression (0.78), high correlation
coefficients (Pearson r 0.84503, and Spearman’s p 0.81101), and relatively low RMSE (0.2414), indicating high predictive accuracy
and strong validation performance (Table 4). Forecast model and Optimised Ensemble show comparable R? values but slightly lower
slopes of regression (0.71 and 0.70, respectively), suggesting their slightly inferior performance, compared to Meta Stacking. Carder
method shows the highest RMSE (1.957) and lowest slope (0.01) among all the models, indicating its significantly inferior performance
compared with the ensemble ML models (see Fig. 7).

The performances are generally consistent across all other temporal scales. For example, in 5-day predictions, Meta Stacking again
stands out with the highest R? (0.47), lowest RMSE (0.3391) and comparable slope of regression, suggesting its better performance
across other metrics compared to its peers. However, in this case Optimised Ensemble and XGB Ensembled models’ performance is also
strong with relatively high R? values and good fit metrics, placing them in the just below Meta Stacking. Carder model sustains it poor
performance, but the empirical model shows better slope with high RMSE, suggesting less prediction accuracy (Table 5).

For the 8-day, the performance of XGB Ensembled is closely comparable with Meta stacking indicated by R? (0.725 and 0.7247),
RMSE (0.248 and 0.2266) and slope (0.70 and 0.71), with a minor edge for Meta stacking due to RMSE and slope (Table 5). However,
in the monthly predictions, XGB shows better performance over the other models with lower RMSE (0.329) and higher R? (0.591),
although the slope is slightly lower than Meta stacking (0.67 vs 0.71).

When combining all four temporal datasets, Meta Stacking shows superior performance with the highest R? (0.5849), highest slope
(0.57) and the lowest RMSE (0.3003), suggesting it better overall performance across the metrics, and outperforming all other models.
Across all temporal scales, Meta Stacking performs significantly better than the Empirical algorithm and Carder et al. (1999) algorithm
(Fig. 6).

Overall, across all temporal scales, Meta Stacking stands out with superior variance explanation, linear and rank correlation, ac-
curacy (Table 5). RF_Grid CV and Optimised Ensemble are notably strong with robust predictive accuracy. Forecast Ensemble also
performs generally well balancing accuracy and correlation. In contrast, Stacked Voting Ensemble and XGB Ensembled show higher
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Table-4

The summary of results for all executed algorithm for Daily matchup with log-transformed data (n-448).

METHOD TRAIN: MAE MSE RMSE RMSLE R? Pearson r Spearman (n) Bias % Bias Median Median SIQ-PD Reg
TEST (V] Ratio RPD Equation
LINEAR 50:50 0.2367  0.0899  0.2998  0.1052 0.5266 0.7257 0.76397 224 0.0809 4.3186 1.05421 10.76449 18.2657 y =0.93x
REGRESSION + 0.06
67:33 0.2327  0.0921  0.3035 0.10725  0.5456 0.73866 0.79797 148 0.9261 4.9262 1.06205 9.88157 19.3098 y = 0.98x
+ —0.06
80:20 0.2301  0.0865 0.2942  0.10348  0.5549 0.74494 0.76898 90 0.0639 3.35238  1.05444 9.63197 16.9819 y = 0.96x
+ 0.02
STEP-WISE LINEAR 50:50 0.2409  0.0916  0.3026  0.10706  0.5177 0.71953 0.75032 224 0.0769 410101  1.06248 10.88031 18.5965 y = 0.94x
REGRESSION + 0.04
67:33 0.2652  0.1522  0.3902  0.12309  0.2488 0.49887 0.77403 148 0.1147 6.10419  1.05895 11.26833 22.4904 y = 0.66x
+ 0.56
80:20 0.2257  0.0865 0.2941  0.10404  0.5553 0.74521 0.76562 90 0.0556 291392  1.04338 9.19655 17.0964 y = 0.98x
—0.03
LINEAR 50:50 0.2367  0.0899  0.2998  0.10523  0.5266 0.7257 0.76397 224 0.0809 4.3186 1.05421 10.76449 18.2657 y =0.93x
REGRESSION + 0.06
HYPERTUNING  67:33 0.2327  0.0921  0.3035 0.10725  0.5456 0.73866 0.79797 148 0.0926 4.9262 1.06205 9.88157 19.3098 y = 0.98x
—0.06
80:20 0.2301  0.0865  0.2942  0.10348  0.5549 0.74494 0.76898 90 0.0639 3.35238  1.05444 9.63197 16.9819 y = 0.96x
+0.02
DECISION TREE 50:50 0.2776 ~ 0.1381  0.3716  0.12719  0.2728 0.52236 0.64951 224 0.0294 1.56779  1.01623 11.32348 21.2703 y = 0.64x
+ 0.66
67:33 0.3054 0.1635 0.4044  0.13937  0.1933 0.43971 0.58871 148 0.0822 4.37382  1.04772 12.63165 24.9663 y = 0.62x
+ 0.67
80:20 0.2660 0.1396  0.3736  0.1221 0.2825 0.53151 0.67446 90 0.0384 2.01432  1.02686 10.45904 19.9361 y =0.63x
+ 0.67
RANDOM FOREST 50:50 0.2298  0.0881  0.2969  0.10402  0.5359 0.73205 0.76741 224 0.0641 3.42126  1.04641 9.64474 18.7048 y =0.92x
+0.10
67:33 0.2127  0.0768  0.2771  0.09868  0.6210 0.78807 0.79771 148 0.070 3.75121  1.05101 8.98946 18.06746 y =1.02x
—-0.10
80:20 0.2285  0.0920 0.3034  0.10311 0.5268 0.72582 0.75284 90 0.0643 3.37249  1.05554 10.77715 16.8982 y = 0.85x
+0.23
ADABOOST 50:50 0.2719  0.1121  0.3348  0.11855  0.4097 0.64014 0.73011 224 0.1102 5.87852  1.07859 12.84391 21.9427 y =1.01x
-0.13
67:33 0.2722  0.1096 0.3310  0.11919  0.4593 0.67777 0.75971 148 0.1121 5.96417  1.0912 12.15978 22.5196 y=117x
—-0.45
80:20 0.2817  0.1164  0.3412  0.11978  0.4014 0.63358 0.71186 90 0.1108 5.80976  1.09613 12.68709 21.1081 y = 1.01x
-0.13
GRADIENT BOOST 50:50 0.2401  0.0922 0.3037 0.10595  0.5141 0.71703 0.7447 224 0.0651 3.47467  1.04641 10.937 18.57462 y = 0.88x
+0.17

(continued on next page)
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Table-4 (continued)

METHOD TRAIN: MAE MSE RMSE RMSLE R? Pearson r Spearman P (n) Bias % Bias Median Median SIQ-PD Reg
TEST (] Ratio RPD Equation
67:33 0.2266  0.0836  0.2892  0.10254  0.5873 0.76641 0.772 0 148 0.0475 2.5312 1.04617 10.751 17.86402 y=1.00x-
0.05
80:20 0.2211 0.0829  0.2879  0.09866  0.5737 0.75747 0.76246 0 90 0.0474 2.48585  1.05451 10.079 15.91661 y = 0.90x
+ 0.14
DNN 50:50 0.2465 0.1270 0.3564  0.13475  0.3311 0.57541 0.72533 0 224 0.0401 2.13901 1.04349 10.266 19.88814 y =0.73x
+0.49
67:33 0.2538  0.1477 0.3844  0.14803 0.2711 0.52073 0.71722 0 148 0.0296 1.57767  1.03895 10.342 21.65022 y = 0.69x
+ 0.56
80:20 0.2409  0.0940 0.3067 0.10637  0.5164 0.71863 0.73047 0 90 0.0367 1.92633  1.04987 10.507 17.1662 y = 0.92x
+0.12
SVM 50:50 0.2239  0.0862 0.2937  0.10269  0.5456 0.7387 0.76291 0 224 0.0401 2.1427 1.0408 9.9131 17.41604 y = 0.95x
+ 0.05
67:33 0.2190 0.0858 0.2930  0.10326  0.5764 0.75924 0.78418 0 148 0.0378 2.01325  1.0489 9.3935 18.16648 y =1.07x
—0.16
80:20 0.2382  0.0976  0.3124 0.10685  0.4981 0.70583 0.70997 0 90 0.0145 0.76028  1.04134 10.515 16.76476  y = 0.91x
+ 0.16
GPR 50:50 1.6346  3.2007 1.7890  0.97929  0.0026 0.05178 0.0474 0.48 224 -1.611 —85.952 0 100 92.6825 y = 0.03x
+1.87
67:33 1.6316  3.2395 1.7998  0.97927  0.0013 —0.0364 —0.0587 0.47 148 —1.596 —84.930 0 100 92.0269 y=
—0.02x+
1.89
80:20 1.0750 4.9394  2.2224 nan 0.0091 0.0957 0.3329 0.0 90 -0.181 —9.4970 1.01588 20.561 124.633 y = 0.02x
+1.88
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Fig. 7. Scatterplots and regression results for ensemble models validation with the merged Rrs data. Results are shown for RF-Grid, Meta stacking,

forecast ensemble, Stacked-voting ensemble, XGB ensemble and Optimised ensemble, along with empirical model and Carder models.
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Table-5

The summary of results for all Ensemble Model for all match-up.

ML/Ensemble Rank  MAE MSE RMSE RMSLE R2 Pearson Spearman’s p n Bias % Bias Median Median SIQ-PD Regression
Method r p) Ratio RPD Equation
Daily_Rrs (OC-CCI)
RF_Grid CV 0.179 0.059 0.2433 0.084 0.69 0.831 0.799 0 90 —0.008 —-0.412 1.009 7.063 12.962 y =0.71x
+ 0.54
Meta_Stacking 1 0.1818 0.0583 0.2414 0.0829 0.702 0.8379 0.8099 0 90 0.0056 0.2904 0.9947 6.8749 13.154 y = 0.78x
+0.43
Forecast 2 0.184 0.05531  0.235 0.0817 0.701 0.842 0.824 0 90  —0.0003 —0.016 1.022 7.701 12.75 y =0.71x
Ensemble + 0.56
Stacked- 0.197 0.0631 0.251 0.0871 0.672 0.82 0.787 0 90  —0.0053 -0.277 1.019 8.589 13.578 y =0.73x
Voting + 0.53
Ensemble
XGB 0.194 0.0635 0.252 0.0861 0.676 0.822 0.797 0 90  —0.0056 —0.288 1.011 7.958 13.219 y = 0.76x
Ensembled + 0.46
Optimised 3 0.18 0.0557 0.236 0.0818 0.70 0.841 0.821 0 920 0.002 0.104 1.017 7.029 13.08 y = 0.70x
Ensemble + 0.59
Empirical 0.411 0.258 0.508 0.193 0.391 0.626 0.561 0 88  -0.316 —16.468 0.824 20.092 25.946 y = 0.69x
Model (SR) +0.29
Carder et al., 1.909 3.8306 1.957 1.0518 0.425 0.652 0.616 0 90  —1.9088 —98.788 0.012 98.775 98.766 y = 0.01x
1999 + 0.01
Model
5Days_Rrs (OC-CCI)
RF_Grid CV 0.24 0.12 0.3465 0.12 0.447 0.668 0.636 0 119  -0.0322 -1.617 1.006 7.172 23.319 y = 0.47x
+1.02
Meta_Stacking 1 0.2374 0.115 0.3391 0.1179 0.47 0.6856 0.6567 0 119  -0.0338 -1.7013 1.0072 7.8798 23.1747 y = 0.46x
+1.04
Forecast 0.245 0.12766  0.357 0.1226 0.409 0.639 0.648 0 119  -0.021 —1.054 1.009 8.061 25.188 y = 0.43x
Ensemble +1.11
Stacked- 0.249 0.1285 0.358 0.124 0.413 0.642 0.63 0 119  -0.0284 —1.429 0.996 8.583 24.595 y = 0.47x
Voting +1.03
Ensemble
XGB 0.233 0.1222 0.35 0.1212 0.445 0.667 0.664 0 119  -0.0337 —1.692 1 7.483 24.544 y = 0.51x
Ensembled + 0.94
Optimised 2 0.238 0.121 0.348 0.1206 0.441 0.664 0.657 0 119 —0.0162 —0.815 1.015 6.869 24.404 y = 0.48x
Ensemble +1.02
Empirical 0.66735 1.12177  1.05914  0.28843  0.08626  0.2937 0.46111 0 114 0.1394 7.13442  0.93994 18.542 55.82783 y =0.74x
Model (SR) + 0.64
Carder et al., 1.963 4.0652 2.016 1.0682 0.088 0.296 0.377 0 119  -1.9629 —98.676 0.013 98.666 98.624 y = 0.01x
1999 +0.01
Model
8Days_Rrs (OC-CCI)
RF_Grid CV 0.22 0.076 0.2751 0.094 0.636 0.797 0.751 0.0031 13 -0.1116 —5.595 0.99 8.588 13.766 y = 0.61x
+ 0.67
Meta_Stacking 1 0.1775 0.0514 0.2266 0.0791 0.7247 0.8513 0.8232 0.0005 13 —0.0606 —-3.0379 0.9738 6.728 12.167 y =0.71x
+0.51
Forecast 0.223 0.06806  0.261 0.0895 0.666 0.816 0.79 0.0013 13 -0.0919 —4.609 0.946 10.824 13.505 y = 0.58x
Ensemble + 0.74
Stacked- 0.218 0.0759 0.275 0.0913 0.632 0.795 0.794 0.0012 13 —0.104 -5.214 0.97 10.716 12.995 y = 0.56x
Voting +0.77
Ensemble

(continued on next page)
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Table-5 (continued)

ML/Ensemble Rank  MAE MSE RMSE RMSLE R2 Pearson Spearman’s p n Bias % Bias Median Median SIQ-PD Regression
Method r ) Ratio RPD Equation
XGB 2 0.192 0.0613 0.248 0.0841 0.725 0.852 0.713 0.0063 13 -0.117 —5.869 0.978 8.581 11.811 y = 0.70x
Ensembled + 0.47
Optimised 0.204 0.068 0.261 0.0879 0.689 0.83 0.691 0.009 13 -0.1172 —5.878 0.989 8.472 12.388 y = 0.65x
Ensemble + 0.58
Empirical 0.257 0.1592 0.399 0.1789 0.526 0.725 0.771 0.0055 11 -0.1939 —10.24 0.943 7.539 22.697 y = 0.99x
Model (SR) + —0.18
Carder et al., 1.969 4.0445 2.011 1.0703 0.668 0.817 0.845 0.0003 13 —1.9687 —98.722 0.013 98.672 98.72 y = 0.01x
1999 + —0.00
Model
Monthly_Rrs (OC-CCI)
RF_Grid CV 0.268 0.114 0.3374 0.118 0.559 0.748 0.731 0 91 0.0087 0.442 1.011 11.823 20.172 y = 0.65x
+ 0.70
Meta_Stacking 0.2726 0.1204 0.3469 0.12 0.5598 0.7482 0.7096 0 91 0.0046 0.2319 0.9991 10.7459 20.0012 y =0.71x
+ 0.57
Forecast 0.266 0.11243  0.335 0.1181 0.555 0.745 0.709 0 91 0.0009 0.046 1.009 11.623 20.374 y = 0.61x
Ensemble + 0.76
Stacked- 0.267 0.1137 0.337 0.1185 0.548 0.74 0.721 0 91 —0.0067 —-0.339 0.988 12.383 20.602 y = 0.60x
Voting +0.79
Ensemble
XGB 1 0.255 0.1081 0.329 0.116 0.581 0.762 0.723 0 91 0.0206 1.046 1.011 10.419 19.745 y = 0.67x
Ensembled + 0.67
Optimised 2 0.264 0.1081 0.329 0.1159 0.57 0.755 0.729 0 91 0.0049 0.248 1.005 11.573 20.124 y = 0.62x
Ensemble + 0.76
Empirical 0.462 0.2954 0.544 0.1831 0.071 0.266 0.266 0.0308 66  —0.3014 —14.213 0.818 19.94 26.65 y = 0.14x
Model (SR) +1.53
Carder et al., 1.951 4.0542 2.013 1.067 0.363 0.603 0.597 0 91  -1.9511 —98.876 0.011 98.93 98.822 y = 0.00x
1999 +0.01
Model
Merged_Rrs (OC-CCI)
RF_Grid CV 0.227 0.094 0.3065 0.108 0.567 0.753 0.73 0 313 —0.0148 —0.751 1.004 8.979 19.809 y = 0.56x
+0.84
Meta_Stacking 1 0.2196 0.0902 0.3003 0.1057 0.5849 0.7648 0.7367 0 313 -0.0141 —0.7169 0.9984 8.3846 19.5087 y = 0.57x
+0.83
Forecast 3 0.22512 0.09199 0.30329 0.10644 0.578 0.75979 0.7401 0 313 —0.01825 —0.92737 1.00802 8.43004 19.73532 y = 0.56x
Ensemble + 0.84
Stacked- 0.231 0.0969 0.311 0.1098 0.554 0.744 0.716 0 313 -0.0147 —0.745 0.999 9.443 20.197 y = 0.55x
Voting +0.87
Ensemble
XGB 2 0.223 0.0929 0.305 0.1067 0.577 0.76 0.737 0 313 -0.0178 —0.906 1.004 8.387 19.26 y = 0.63x
Ensembled +0.71
Optimised 0.222 0.0915 0.303 0.1066 0.578 0.76 0.735 0 313 —0.0017 —0.087 1.01 8.067 19.98 y = 0.56x
Ensemble + 0.87
Empirical 0.52186  0.61606  0.78489  0.23442  0.10028  0.31668  0.48563 0 279  -0.12187 —6.15136  0.86921 19.46401  40.9166 y = 0.57x
Model (SR) + 0.74
Carder et al., 1.944 3.9937 1.998 1.0632 0.176 0.42 0.513 0 313 —1.9442 —98.768 0.012 98.77 98.726 y = 0.01x
1999 +0.01
Model
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error metrics, suggesting generally less accurate predictions. All ensemble ML models reliability in predictions is generally higher than
the Empirical algorithm and Carder et al. (1999) algorithms (Table 5).

4.3. Synthesis of the models’ structure and performance

In evaluation of ensemble models, Meta Stacking and Optimised Ensemble stand out for their sophisticated ensemble methodology.
While Meta Stacking employs a pure stacking approach, Optimised Ensemble combines stacking with voting to improve performance
(Table 6). Meta_Stacking demonstrates the most consistent and superior performance across temporal data of Rrs, achieving the lowest
MAE (0.1775-0.2374) and highest R? (up to 0.725), particularly in 8-day and 5-day datasets. It’s architecture (Table 6) building on
stacking Random Forest, Gradient Boosting Machine, and Logistic Regression with Grid CV optimisation and bootstrapping, yields
strong predictive power despite higher complexity and moderate prediction time.

Both RF_Grid CV and Meta Stacking utilise Grid search cross validation (Grid CV) for robust optimisation, whereas Optimised
Ensemble and XGB Ensembled incorporate advanced techniques like metaheuristic optimisation (AHA, BWO, AOA, and FHO). All
models use hyperparameter tuning, however, Meta Stacking, Stacked Voting, and Optimised Ensemble explicitly leverage this process,
which is crucial for improving performance. Additionally, Meta Stacking, Ensemble Forecast, Stacked Voting, and Optimised Ensemble
models incorporate bootstrapping to enhance model robustness. XGB Ensembled, performs better in monthly Rrs with MAE = 0.255,
RMSE = 0.329, and R? = 0.581, and also shows strong performance in 8-day (MAE = 0.192, R? = 0.725), highlighting the value of
precision-tuned XGB frameworks. The Optimised Ensemble, with its broader model diversity and Grid CV, maintains top three MAE
across all resolutions, peaking in daily (MAE = 0.18, R? = 0.70) and merged Rrs (MAE = 0.222, R% = 0.578), demonstrating robust
generalisability. Among ensemble methods, Meta Stacking and Stacked Voting are particularly effective, though Meta Stacking’s pure
stacking approach may offer a slight edge. RF_Grid CV, a non-ensemble baseline, has moderate complexity, making it easier to manage
compared to the higher complexity of other models. However, RF_Grid CV shows moderate metrics, with daily R? = 0.69, 5-day MAE
= 0.24, and monthly MAE = 0.268.

In terms of scalability, all ensemble models perform moderately, with Meta Stacking and Optimised Ensemble having a slight edge.
For our application, Meta Stacking and Optimised Ensemble would be preferable, while RF_Grid CV remains a further possibility for
this application. Overall, Meta Stacking combined with the base models and effective optimisation methodology emerges as the top
performer due to its relatively better validation metrics (e.g. R%, Pearson r, and Spearman’s p).

4.4. Applications: spatial maps of apy (676) and uncertainty

We have applied the Meta Stacking algorithm to raster data from the OC-CCI archive to generate spatial maps of ay, (676). These
maps represent two seasons (Fig. 8), January and August in 2023, showing the seasonal variation in spatial distribution of gy, (676). In
the Northern Hemisphere, above 40°, gy, (676) values are noticeably higher in August compared to January, reflecting increased
concentration of chlorophyll during the summer months. Conversely, in the Southern Ocean, gy, (676) values are higher in January,
corresponding with the austral summer, and indicating elevated concentrations of phytoplankton. These observed patterns are
consistent with the seasonal phytoplankton bloom dynamics, such as diatom blooms, in southern hemisphere and northern hemi-
sphere, suggesting the algorithm’s ability to capture seasonal trends of phytoplankton absorption from remote sensing.

The uncertainty levels in algorithm prediction vary spatially, depending on the input Rrs values. A geographical residual plot of the
training and test data (Fig. 9) suggests that, except at very latitudes in both the Northern and Southern Hemisphere, residuals generally
remain below 35 %, indicating a reasonable level of prediction uncertainty. It is noteworthy that, due to unavailability of in situ data,

Table 6
Comparison of evaluation criteria for ensemble models.

Criteria RF_Grid Meta Stacking Ensemble Forecast Stacked Voting Optimised Ensemble XGB Ensembled
Ccv
Model Type RF Stacking XGB, GB, Bagging, Stacking + Voting Stacking + Voting XGB Ensemble
Ensemble Stacking
Base Models RF RF, GBM, LR XGB, GB, Bagging, RF, GBM, XGB, SVR, RF, GBM, ETR, ADA, XGB Models
Stacking Voting Bagging, Voting
Optimisation Grid CV Grid CV Bootstrapping Grid CV Grid CV AHA, BWO, AOA,
FHO
Hyperparameter Yes Yes Implicit Yes Yes Yes
Tuning
Bootstrapping Yes Yes Yes Yes Yes No
Ensemble Method NO Yes (Stacking) XGB, GB, Bagging, Yes (Stacking + Yes (Stacking + Voting) Yes
Stacking Voting)
Training Time High High Moderate High High High
Prediction Time Fast Moderate Moderate Moderate Moderate Moderate
Complexity Moderate High High High High High
Scalability Good Moderate to Moderate to Good Moderate to Good Moderate to Good Moderate to Good
Good
Application Versatile Complex Tasks Robust Performance Advanced Modelling ~ Advanced Modelling High Accuracy

Tasks
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the residuals could not be estimated across all oceanic regimes.

5. Conclusions

The primary objective this study was to enhance the predictive accuracy of remote sensing estimates of phytoplankton absorption
peak at the red band, i.e., ay4(676), which is a critical input for several remote sensing algorithms used to retrieve phytoplankton size
classes, as well as carbon and nutritional content (Roy et al., 2013, 2017; Roy, 2018). We presented a new machine learning (ML)
algorithm using ocean colour satellite data from OC-CCI, developed through extensive training and validation of various ML model
formulations. To obtain a robust ML model, we adopted a rigorous approach by compiling a comprehensive in situ training dataset of
apr(676) and matched it with remote-sensing reflectance at six wavelengths in the visible range. We then extensively evaluated a range
of base ML algorithms, e.g., Random Forest (RF), Gradient Boosting Machines, and Linear Regression; and further implemented
advanced ensemble ML models such as RF with Grid Search Cross-Validation, eXtreme Gradient Boosting Ensembled Model, Ensemble
Forecast, Stacked Voting, Optimised Ensemble, and Meta Stacking, by integrating the base models. The best-performing model was
identified by evaluating its performance against the large in situ a,,(676) database compiled in this study.

Our evaluation demonstrated that Meta Stacking ensemble learning was the most effective algorithm in terms of predictive

Predicted a,, (676) for Jan 2023
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Fig. 8. Application of the model to raster data from OC-CCI, resulting in a,, (676) prediction maps.
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accuracy and ability to perform well with various temporal data resolutions of ocean colour data. Our analysis suggests that the choice
of ML model and temporal resolution of satellite data are crucial for accurately estimating phytoplankton absorption from satellite
remote sensing. Meta Stacking as an algorithm may be particularly effective for a,,(676) prediction due to its robust combination of
diverse base models and optimisation techniques, especially when paired with daily data from satellites for higher accuracy.

Our study addresses key limitations identified in the literature on estimating a,,(676) from Rrs by developing an ensemble machine
learning model. We addressed the challenges such as small sample sizes of the training a,,(676) data, inconsistent error percentages in
the previously developed ML models for phytoplankton absorption, weak relationships across wavelengths, lack of baseline perfor-
mance comparisons, and absence of evaluations comparing ensemble methods (e.g., Alam et al., 2024; Pahlevan et al., 2021). By
compiling an extensive in situ a,,(676) dataset, the largest till date, and implementing more advanced ML techniques such as hyper
parameter tuning, our study ensures the robustness and generalisability of the developed ML model. Furthermore, we conducted
comparative evaluation of different ML algorithms evaluations through baseline performance metrics to identify the most effective
approach for estimating ap,(676) values. Our study thus confronts prevailing limitations in estimating a,,(676) values by systemat-
ically optimising ensemble machine learning models.

The ML model performance across satellite matchups obtained on various temporal resolutions (daily, 5-day, 8-day, monthly, and
merged Rrs datasets) indicates that finer temporal granularity improves the predictive accuracy of the model. Consistent with our
understanding, ML models trained on higher-resolution inputs (daily, 8-day) yielded lower errors and higher R? values, reflecting
better apprehension of short-term variability and seasonal patterns in ocean-colour biogeochemical properties. In contrast, coarser
resolutions (e.g. monthly) increased uncertainty, leading to underfitting and reduced model responsiveness. By tackling the challenge
of obtaining longitudinal ocean colour satellite data, our research advances remote sensing application of phytoplankton absorption
for wider ecological research. Future studies may focus on exploring multi-resolution training, temporal embeddings, and dynamic
ensemble weighting to enhance robustness and generalisation of our ML model across datasets.

The ML model that we have developed for retrieving phytoplankton absorption can potentially support policy-relevant studies by
enhancing the accuracy of satellite-derived advanced biogeochemical products. By improving the estimates of a key inherent optical
variable i.e., @yp(676), our model can help advance the accuracy and reliability of satellite retrieval algorithms for large-scale envi-
ronmental assessments critical for ecosystem management and policy. More specifically, improved satellite-based estimation of
apr(676) using our approach can refine advanced algorithms for deriving phytoplankton size classes and phytoplankton carbon, for
which @,n(676) is the key input (e.g., Roy et al., 2013, 2017; Roy, 2018). Accurate estimation of phytoplankton carbon from space is
particularly important because it serves as a key component of oceanic and aquatic carbon budgets (Falkowski et al., 1998; Field et al.,
1998). These estimates are increasingly sought after by the global scientific and policy community for better quantifying carbon fluxes
and stocks in marine ecosystems (CEOS, 2014). So, our ML model outputs can contribute to global carbon and climate models and can
inform climate change assessments and mitigation strategies, such as those presented in IPCC reports (Calvin et al., 2023).

Despite our efforts, the available in situ dataset of @,,(676) that we have compiled and used for training the ML model, is mainly
restricted to the Atlantic Ocean and parts of the Pacific Ocean, leaving several major oceanic regimes underrepresented, for example,
the Indian Ocean, Southern Ocean, and much of the Pacific. Any future sampling efforts, expanding in situ observations to encompass
these diverse and ecologically distinct regions will be crucial for further improving the robustness and spatial coverage of the training
data. A more globally distributed training dataset would enhance the generalisability of the ML model and may reduce regional biases.
If an expanded dataset becomes available in the future, re-training our proposed ML model will be necessary to incorporate the new
data and improve the overall accuracy of the model prediction. Furthermore, for specific applications at regional scales such as
monitoring harmful algal blooms or assessing phytoplankton community structure in coastal zones, it may be useful to develop
regionally trained ML models. These localised ML models could better capture unique bio-optical characteristics and ecological

Residual Class
Train Below 35%
e Train Above 35%
Test Below 35%
Test Above 35%

Fig. 9. A geographical map of predicted residuals for a,, (676), shown at the locations of available in situ data.
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dynamics and potentially improve the reliability and relevance of satellite-based predictions of phytoplankton absorption in man-
agement or conservation efforts.
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Appendix-1. Abbreviations Used in This Study

Abbreviation Meaning

AHA Adaptive Hyperparameter Algorithm (used for optimising hyperparameters)

BWO Black Widow Optimisation (a metaheuristic optimisation algorithm)

AOA Artificial Owl Algorithm (an optimisation algorithm based on owl behaviour)

FHO Firefly Optimisation (an optimisation algorithm inspired by firefly behaviour)

RMSE Root Mean Squared Error (a metric for evaluating model performance)

XGBoost Extreme Gradient Boosting (a machine learning algorithm for regression and classification)

SVR Support Vector Regression (a regression algorithm based on Support Vector Machines)

RF Random Forest (a type of ensemble learning method using multiple decision trees)

GB Gradient Boosting (a boosting algorithm that builds models sequentially)

XGB XGBoost (an optimised version of Gradient Boosting)

DMatrix A data structure used by XGBoost for optimised training and prediction

(4% Cross-Validation (a technique for assessing model performance by splitting data into training and validation sets)
GridSearchCV A method for hyperparameter tuning that performs an exhaustive search over specified parameter values
SVR Support Vector Regression (a regression technique using support vector machines)

n_jobs Number of CPU cores to use during computation (in contexts like GridSearchCV)

Bootstrap A statistical method for resampling with replacement to estimate the distribution of a statistic

Model A trained machine learning algorithm used for making predictions based on input data

Ensemble A method combining multiple models to improve performance (e.g., VotingRegressor, StackingRegressor)

Appendix 2. Scatterplot for Daily Rrs
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Appendix 3. Scatterplot for 5Day_Rrs
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Appendix 4. Scatterplot for 8Day_Rrs

RF GRID-Log-8Day In-situ APh_676 vs Predicted Aph_676

Remote Sensing Applications: Society and Environment 39 (2025) 101702

Meta Stacking-Log-8Day In-situ APh_676 vs Predicted Aph_676

z °
g 3
S 264 Regression Line Equation: g 26 Regression Line Equation:
E . y = 0.61x + 0.67 E B y = 0.68x + 0.57
Where: Where:
2.4 m (slope) = 0.61 2.4 m (slope) = 0.68
c (y-intercept) = 0.67 c (y-intercept) = 0.57
R-squared = 0.64 R-squared = 0.74
2.2 2.2
2.0 2.0
1.8 18
16 16
4 — Reference Line e — Reference Line
14 16 18 2.0 22 24 2.6 14 16 18 2.0 2.2 24 2.6
In-situ In-situ
Forecast Ensemble_Log_8Day In-situ APh_676 vs Predicted Aph_676 Stacked Voting Ensemble_Log_8Day In-situ APh_676 vs Predicted Aph_676
] s
2 3
S 26 Regression Line Equation: g 26 Regression Line Equatlon
E S y =0.57x + 0.75 E - y = 0.56x + 0.7
Where: Where:
2.4 m (slope) = 0.57 24 m (slope) = 0.56
: ¢ (y-intercept) = 0.75 - c (y-intercept) = 0.77
R-squared = 0.66 R-squared = 3
2.2 2.2
20 20
181 18
16 175
14 —— Reference Line - —— Reference Line
14 16 18 2.0 22 24 2.6 14 16 18 2.0 2.2 24 2.6
In-situ In-situ
EMPIRICAL MODEL-LOG_8day for Insitu and Predicted APH_676 CARDER MODEL-LOG_8Day for Insitu and Predicted APH_676
2 - 2 .
©,0.200 Regression Line Equation: ©, Regression Line Equatlon
z y = 0.95x + 0.02 z y = 0.01x + -0.0:
3 ioo3s L
3 017 R-squared = 0.04 3 R-squared = 0.67 A
& 0150 &
0.030 —
0.125
0.100 0.025
0.075
0.020
0.050
0.025
0.015
0.000 .
0.005 0.010 0.015 0.020 0.025 0.030 0.035 14 16 18 2.0 2.2 2.4 i
Insitu_APH_676 Insitu_APH_676
XGB Ensembled-Log-8Day In-situ APh_676 vs Predicted Aph_676 Optimized Ensembled-Log-8Day In-situ APh_676 vs Predicted Aph_676
3 3
S ,61 Regression Line Equation: £ ,¢| Regression Line Equation:
z ) y = 0.75x + 0.38 E . y = 0.65x + 0.58
Where: Where:
241 m(slope) = 24- mislope) = 0.6
c (y- mtercept) 0 38 c(y mterccpt) O 58
R-squared = 0.77 R-squared = 0.69
°
2.2 224
2.04 2.04
1.8
18-
161
161
14+
144
— Reference Line — Reference Line
14 16 18 2.0 2.2 24 26 14 16 Le 2.0 2.2 24 26
In-situ n-situ

23



M. Ashphaq and S. Roy

Appendix 5. Scatterplot for Monthly Rrs

RF GRID-Log-Monthly In-situ APh_676 vs Predicted Aph_676

Remote Sensing Applications: Society and Environment 39 (2025) 101702

Meta Stacking-Log-Monthly In-situ APh_676 vs Predicted Aph_676

s =
£ 3.0 . g " ° £ 30 - " - °
S Regression Line Equation: . ° S Regression Line Equation: ° .
3 y = 0.65x + 0.70 ° o T y = 0.67x + 0.66
2 £ e o
Where: Where:
m (slope) = - m (slope) = °
251 c(y- |ntercept) 0 70 25 c(y- |ntercept) = 0 66
R-squared = 0.56 ® R-squared = 0.57
°
2.09 2.0
15 15
°
°
104 10
—— Reference Line —— Reference Line
10 15 2.0 2.5 3.0 10 15 2.0 2.5 3.0
In-situ In-situ
Forecast Ensemble_Log_Monthly In-situ APh_676 vs Predicted Aph_676 Stacked Voting Ensemble_Log_Monthly In-situ APh_676 vs Predicted Aph_676
B30 B30
K Regression Line Equation: ° g Regression Line Equation:
K] y = 0.62x + 0.76 3 y = 0.60x + 0.79 . ® o0
£ ° ° o £ K
Where: Where:
m (slope) = 0.62 m (slope) = 0.60
2571 ¢ (y-intercept) = 0.76 L 25 c (y-intercept) = 0.79 °
R-squared = 0.55 R-squared = 0.55
2.0 2.0
154 15
104 10
—— Reference Line —— Reference Line
10 15 2.0 25 3.0 10 15 2.0 = 3.0
In-situ In-situ
EMPIRICAL MODEL-LOG_Monthly for Insitu and Predicted APH_676 CARDER MODEL-LOG_MOnthly for Insitu and Predicted APH_676
2 2 °
& Re§ression Line Equation: o Regresslun Line Equation:
= = e
% 010 ¥ =0.04x +0.01 § ooz 0.00x +0.01 P
T R-squared =/0.00 ® R-squared = 0.36
g g 5,
3 £ 0.026 e
= 008 £
‘ 0.024 S
°
0.06 0.022
°
°
0.020
0.04
p 0.018 o T °
° °
S ° °
0.02
- 0016 oo @ © °
9 4 ° [}
‘ 00141 ° % e
0.00 : =
0.00 0.02 0.04 0.06 0.08 0.10 10 15 2.0 2.5 3.0
Insitu_APH_676 Insitu_APH_676
XGB Ensembled-Log-Monthly In-situ APh_676 vs Predicted Aph_676 Optimized Ensembled-Log-Monthly In-situ APh_676 vs Predicted Aph_676
I ° T30 °
£ 30 Regression Line Equation: i Regression Line Equation:
E y = 0.66x + 0.68 ° E y =0.62x + 0.76 e e
e o ° °
Where: ° ° Where:
m (slope) = m (slope) = 0.62
254  cly- mten:ept) 0 68 e 257 ¢ (y-intercept) = 0.76 °
R-squared = 0.57 R-squared = 0.57
20 20
154 15
104 10
= Reference Line — Reference Line

10 15 20 25 30
In-situ

24

10 15 20 25 3.0
In-situ



M. Ashphaq and S. Roy Remote Sensing Applications: Society and Environment 39 (2025) 101702
Data availability

Data will be made available on request.

References

Ahmad, H., 2019. Machine learning applications in oceanography. Aqu. Res. 161-169. https://doi.org/10.3153/AR19014.

Ahmed, S., El-Habashi, A., Lovko, V., 2017. In: (Will) Hou, W., Arnone, R.A. (Eds.), Neural Network Retrievals of Phytoplankton Absorption and Karenia brevis
Harmful Algal Blooms in the West Florida Shelf, p. 101860L. https://doi.org/10.1117/12.2261848.

Alam, MdS., Tiwari, S.P., Rahman, S.M., 2024. Optimized ensemble machine learning models for predicting phytoplankton absorption coefficients. IEEE Access 12,
5760-5769. https://doi.org/10.1109/ACCESS.2024.3350328.

Ali, A, et al., 2021. Marine data prediction: an evaluation of machine learning, deep learning, and statistical predictive models. Comput. Intell. Neurosci. 2021 (1).
https://doi.org/10.1155/2021/8551167.

Allali, K., Bricaud, A., Claustre, H., 1997. Spatial variations in the chlorophyll-specific absorption coefficients of phytoplankton and photosynthetically active
pigments in the equatorial Pacific. J. Geophys. Res.: Oceans 102 (C6), 12413-12423. https://doi.org/10.1029/97JC00380.

Anderson, T.R., 2005. Plankton functional type modelling: running before we can walk? J. Plankton Res. 27, 1073-1081.

Ashphaq, M., Srivastava, P.K., Mitra, D., 2024. Satellite-derived bathymetry in dynamic coastal geomorphological environments through machine learning
algorithms. Earth Space Sci. 11 (7). https://doi.org/10.1029/2024EA003554.

Barnes, M., et al., 2014. Absorption-based algorithm of primary production for total and size-fractionated phytoplankton in coastal waters. Mar. Ecol. Prog. Ser. 504,
73-89. https://doi.org/10.3354/meps10751.

Blondeau-Patissier, D., et al., 2014. A review of ocean color remote sensing methods and statistical techniques for the detection, mapping and analysis of
phytoplankton blooms in coastal and open oceans. Prog. Oceanogr. 123, 123-144. https://doi.org/10.1016/j.pocean.2013.12.008.

Bricaud, A., et al., 1995. Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: analysis and parameterization. J. Geophys. Res.:
Oceans 100 (C7), 13321-13332. https://doi.org/10.1029/95JC00463.

Bricaud, A., Stramski, D., 1990. Spectral absorption coefficients of living phytoplankton and nonalgal biogenous matter: a comparison between the Peru upwelling
areaand the Sargasso Sea. Limnol. Oceanogr. 35 (3), 562-582. https://doi.org/10.4319/10.1990.35.3.0562.

Brown, S.W., et al., 2007. In: Meynart, R., et al. (Eds.), The Marine Optical Buoy (MOBY) Radiometric Calibration and Uncertainty Budget for Ocean Color Satellite
Sensor Vicarious Calibration. https://doi.org/10.1117/12.737400, 67441M.

Calvin, K., et al., 2023. IPCC, 2023: climate change 2023: synthesis report. In: Lee, H., Romero, J. (Eds.), Contribution of Working Groups I, II and III to the Sixth
Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team. IPCC, Geneva, Switzerland. https://doi.org/10.59327/IPCC/AR6-
9789291691647.

Cao, W., et al., 2005. Spectral absorption coefficient of phytoplankton and its relation to chlorophyll a and remote sensing reflectance in coastal waters of southern
China. Prog. Nat. Sci. 15 (4), 342-350. https://doi.org/10.1080/10020070512331342210.

Carder, K.L., et al., 1999. Semianalytic moderate-resolution imaging spectrometer algorithms for chlorophyll a and absorption with bio-optical domains based on
nitrate-depletion temperatures. J. Geophys. Res.-Oceans 104 (C3), 5403-5421.

Carr, M.-E,, et al., 2006. A comparison of global estimates of marine primary production from ocean color. Deep Sea Res. Part II Top. Stud. Oceanogr. 53 (5-7),
741-770. https://doi.org/10.1016/j.dsr2.2006.01.028.

CEOS, 2014. CEOS Strategy for Carbon Observations from Space.

Cetini¢, L, et al., 2024. Phytoplankton composition from sPACE: requirements, opportunities, and challenges. Rem. Sens. Environ. 302, 113964. https://doi.org/
10.1016/j.rse.2023.113964.

Churilova, T., et al., 2019. Phytoplankton light absorption in the deep chlorophyll maximum layer of the black sea. Europ. J. Rem. Sens. 52 (Suppl. 1), 123-136.
https://doi.org/10.1080/22797254.2018.1533389.

Ciotti, A.M., Lewis, M.R., Cullen, J.J., 2002. Assessment of the relationships between dominant cell size in natural phytoplankton communities and the spectral shape
of the absorption coefficient. Limnol. Oceanogr. 47 (2), 404-417. https://doi.org/10.4319/10.2002.47.2.0404.

Cleveland, J.S., 1995. Regional models for phytoplankton absorption as a function of chlorophyll a concentration. J. Geophys. Res.: Oceans 100 (C7), 13333-13344.
https://doi.org/10.1029/95JC00532.

Cullen, J.J., et al., 1997. Optical detection and assessment of algal blooms. Limnol. Oceanogr. 42 (5), 1223-1239. http://www.jstor.org/stable/2839014.

Deng, L., et al., 2019. Retrieving phytoplankton size class from the absorption coefficient and chlorophyll A concentration based on support vector machine. Remote
Sens. 11 (9), 1054. https://doi.org/10.3390/1s11091054.

Durap, A., 2023. A comparative analysis of machine learning algorithms for predicting wave runup. Anthro. Coasts 6 (1), 17. https://doi.org/10.1007/s44218-023-
00033-7.

Falkowski, P.G., Barber, R.T., Smetacek, V., 1998. Biogeochemical controls and feedbacks on ocean primary production. Science 281 (5374), 200-206. https://doi.
org/10.1126/science.281.5374.200.

Field, Michael J., Randerson, James T., Falkowski Paul, G., C, B.B., 1998. Primary production of the biosphere: integrating terrestrial and Oceanic components. Amer.
Assoc. Adv. Sci. (AAAS) 281 (5374), 237-240. https://doi.org/10.1126/science.281.5374.237.

Hirata, T., et al., 2008. An absorption model to determine phytoplankton size classes from satellite ocean colour. Rem. Sens. Environ. 112 (6), 3153-3159. https://doi.
org/10.1016/j.rse.2008.03.011.

Hirawake, T., et al., 2011. A phytoplankton absorption-based primary productivity model for remote sensing in the Southern Ocean. Polar Biol. 34 (2), 291-302.
https://doi.org/10.1007/s00300-010-0949-y.

Huan, Y., et al., 2021. Phytoplankton “Missing™ absorption in marine waters: a novel pigment compensation model for the packaging effect. J. Geophys. Res.: Oceans
126 (1). https://doi.org/10.1029/2020JC016458.

IOCCG, 2000. Remote sensing of ocean colour in coastal, and other optically-complex, waters. In: Dartmouth, S. Sathyendranath, NS (Eds.), Reports of the
International Ocean-Colour Coordination Group.

IOCCG, 2006. Remote sensing of inherent optical properties: fundamentals, tests of algorithms, and applications. In: Lee, Z.P. (Ed.), Reports of the International
Ocean-Colour Coordination Group. Dartmouth, Canada.

IOCCG, 2012. Mission Requirements for Future Ocean-Colour Sensors. Canada, Dartmouth.

Kirk, J.T.O., 1994. Light and Photosynthesis in Aquatic Ecosystems. Cambridge University Press, Cambridge. https://doi.org/10.1017/CB09780511623370.

Kostadinov, T.S., et al., 2023. Ocean color algorithm for the retrieval of the particle size distribution and carbon-based phytoplankton size classes using a two-
component coated-sphere backscattering model. Ocean Sci. 19 (3), 703-727. https://doi.org/10.5194/0s-19-703-2023.

Li, Y., et al., 2021. Research trends in the remote sensing of phytoplankton blooms: results from bibliometrics. Remote Sens. 13 (21), 4414. https://doi.org/10.3390/
rs13214414.

Machado, K.B,, et al., 2023. Systematic mapping of phytoplankton literature about global climate change: revealing temporal trends in research. Hydrobiologia 850
(1), 167-182. https://doi.org/10.1007/s10750-022-05052-y.

Marra, J., Trees, C.C., O’Reilly, J.E., 2007. Phytoplankton pigment absorption: a strong predictor of primary productivity in the surface ocean. Deep Sea Res.
Oceanogr. Res. Pap. 54 (2), 155-163. https://doi.org/10.1016/j.dsr.2006.12.001.

Meler, J., et al., 2017. Light absorption by phytoplankton in the southern Baltic and Pomeranian lakes: mathematical expressions for remote sensing applications.
Oceanologia 59 (3), 195-212. https://doi.org/10.1016/j.0cean0.2017.03.010.

25


https://doi.org/10.3153/AR19014
https://doi.org/10.1117/12.2261848
https://doi.org/10.1109/ACCESS.2024.3350328
https://doi.org/10.1155/2021/8551167
https://doi.org/10.1029/97JC00380
http://refhub.elsevier.com/S2352-9385(25)00255-1/sref6
https://doi.org/10.1029/2024EA003554
https://doi.org/10.3354/meps10751
https://doi.org/10.1016/j.pocean.2013.12.008
https://doi.org/10.1029/95JC00463
https://doi.org/10.4319/lo.1990.35.3.0562
https://doi.org/10.1117/12.737400
https://doi.org/10.59327/IPCC/AR6-9789291691647
https://doi.org/10.59327/IPCC/AR6-9789291691647
https://doi.org/10.1080/10020070512331342210
http://refhub.elsevier.com/S2352-9385(25)00255-1/sref15
http://refhub.elsevier.com/S2352-9385(25)00255-1/sref15
https://doi.org/10.1016/j.dsr2.2006.01.028
http://refhub.elsevier.com/S2352-9385(25)00255-1/sref17
https://doi.org/10.1016/j.rse.2023.113964
https://doi.org/10.1016/j.rse.2023.113964
https://doi.org/10.1080/22797254.2018.1533389
https://doi.org/10.4319/lo.2002.47.2.0404
https://doi.org/10.1029/95JC00532
http://www.jstor.org/stable/2839014
https://doi.org/10.3390/rs11091054
https://doi.org/10.1007/s44218-023-00033-7
https://doi.org/10.1007/s44218-023-00033-7
https://doi.org/10.1126/science.281.5374.200
https://doi.org/10.1126/science.281.5374.200
https://doi.org/10.1126/science.281.5374.237
https://doi.org/10.1016/j.rse.2008.03.011
https://doi.org/10.1016/j.rse.2008.03.011
https://doi.org/10.1007/s00300-010-0949-y
https://doi.org/10.1029/2020JC016458
http://refhub.elsevier.com/S2352-9385(25)00255-1/sref30
http://refhub.elsevier.com/S2352-9385(25)00255-1/sref30
http://refhub.elsevier.com/S2352-9385(25)00255-1/sref31
http://refhub.elsevier.com/S2352-9385(25)00255-1/sref31
http://refhub.elsevier.com/S2352-9385(25)00255-1/sref32
https://doi.org/10.1017/CBO9780511623370
https://doi.org/10.5194/os-19-703-2023
https://doi.org/10.3390/rs13214414
https://doi.org/10.3390/rs13214414
https://doi.org/10.1007/s10750-022-05052-y
https://doi.org/10.1016/j.dsr.2006.12.001
https://doi.org/10.1016/j.oceano.2017.03.010

M. Ashphaq and S. Roy Remote Sensing Applications: Society and Environment 39 (2025) 101702

De Moraes Rudorff, N., Kampel, M., 2012. Orbital remote sensing of phytoplankton functional types: a new review. Int. J. Rem. Sens. 33 (6), 1967-1990. https://doi.
org/10.1080/01431161.2011.601343.

Mouw, C.B,, et al., 2017. A consumer’s guide to satellite remote sensing of multiple phytoplankton groups in the global Ocean. Front. Mar. Sci. 4 (41). https://doi.org/
10.3389/fmars.2017.00041.

Pahlevan, N., et al., 2021. Hyperspectral retrievals of phytoplankton absorption and chlorophyll-a in inland and nearshore coastal waters. Rem. Sens. Environ. 253,
112200. https://doi.org/10.1016/j.rse.2020.112200.

Patara, L., et al., 2012. Global response to solar radiation absorbed by phytoplankton in a coupled climate model. Clim. Dyn. 39 (7-8), 1951-1968. https://doi.org/
10.1007/500382-012-1300-9.

Paulsen, H., et al., 2018. Light absorption by marine Cyanobacteria affects tropical climate mean state and variability. Earth Syst. Dyn. 9 (4), 1283-1300. https://doi.
org/10.5194/esd-9-1283-2018.

Pérez, G.L., et al., 2021. Variability of phytoplankton light absorption in stratified waters of the NW Mediterranean Sea: the interplay between pigment composition
and the packaging effect. Deep Sea Res. Oceanogr. Res. Pap. 169, 103460. https://doi.org/10.1016/j.dsr.2020.103460.

Robinson, C.M.,, et al., 2017. Phytoplankton absorption predicts patterns in primary productivity in Australian coastal shelf waters. Estuar. Coast Shelf Sci. 192, 1-16.
https://doi.org/10.1016/j.ecss.2017.04.012.

Roelke, D.L., Kennedy, C.D., Weidemann, A.D., 1999. Use of discriminant and fourth-derivative analyses with high-resolution absorption spectra for phytoplankton
research: limitations at varied signal-to-noise ratio and spectral resolution. Gulf Mex. Sci. 17 (2). https://doi.org/10.18785/goms.1702.02.

Roy, S., et al., 2013. The global distribution of phytoplankton size spectrum and size classes from their light-absorption spectra derived from satellite data. Rem. Sens.
Environ. 139, 185-197. https://doi.org/10.1016/j.rse.2013.08.004.

Roy, S., 2018. Distributions of phytoplankton carbohydrate, protein and lipid in the world oceans from satellite ocean colour. ISME J. 12 (6), 1457-1472. https://doi.
org/10.1038/s41396-018-0054-8.

Roy, S., Sathyendranath, S., Platt, T., 2011. Retrieval of phytoplankton size from bio-optical measurements: theory and applications. J. R. Soc. Interface 8 (58),
650-660.

Roy, S., Sathyendranath, S., Platt, T., 2017. Size-partitioned phytoplankton carbon and carbon-to-chlorophyll ratio from ocean-colour by an absorption-based bio-
optical algorithm. Rem. Sens. Environ. 194, 177-189. https://doi.org/10.1016/j.rse.2017.02.015.

Sadaiappan, B., et al., 2023. Applications of machine learning in chemical and biological oceanography. ACS Omega 8 (18), 15831-15853. https://doi.org/10.1021/
acsomega.2c06441.

Sathyendranath, S., et al., 2019. An ocean-colour time series for use in climate studies: the experience of the ocean-colour climate change initiative (OC-CCI). Sensors
19 (19), 4285. https://doi.org/10.3390/519194285.

Seppdld, J., Ylostalo, P., Kuosa, H., 2005. Spectral absorption and fluorescence characteristics of phytoplankton in different size fractions across a salinity gradient in
the Baltic sea. Int. J. Rem. Sens. 26 (2), 387-414. https://doi.org/10.1080/01431160410001723682.

Shang, S., et al., 2011. MODIS observed phytoplankton dynamics in the Taiwan strait: an absorption-based analysis. Biogeosciences 8 (4), 841-850. https://doi.org/
10.5194/bg-8-841-2011.

Shang, Y., et al., 2021. Variations in the light absorption coefficients of phytoplankton, non-algal particles and dissolved organic matter in reservoirs across China.
Environ. Res. 201, 111579. https://doi.org/10.1016/j.envres.2021.111579.

Shen, L., Xu, H., Guo, X., 2012. Satellite remote sensing of harmful algal blooms (HABs) and a potential synthesized framework. Sensors 12 (6), 7778-7803. https://
doi.org/10.3390/5s120607778.

Silsbe, G.M., et al., 2016. The CAFE model: a net production model for global ocean phytoplankton. Glob. Biogeochem. Cycles 30 (12), 1756-1777. https://doi.org/
10.1002/2016GB005521.

Sun, D, et al., 2010. Partitioning particulate scattering and absorption into contributions of phytoplankton and non-algal particles in winter in Lake Taihu (China).
Hydrobiologia 644 (1), 337-349. https://doi.org/10.1007/s10750-010-0198-7.

Valente, A, et al., 2022. A compilation of global bio-optical in situ data for ocean colour satellite applications — version three. Earth Syst. Sci. Data 14 (12),
5737-5770. https://doi.org/10.5194/essd-14-5737-2022.

Wang, G., et al., 2008. Partitioning particulate absorption coefficient into contributions of phytoplankton and nonalgal particles: a case study in the northern South
China Sea. Estuar. Coast Shelf Sci. 78 (3), 513-520. https://doi.org/10.1016/j.ecss.2008.01.013.

Wang, Guifen, et al., 2021. Estimation of phytoplankton pigment concentration in the South China Sea from hyperspectral absorption data. Acta Opt. Sin. 41 (6),
0601002. https://doi.org/10.3788/A05202141.0601002.

Wei, J., et al., 2023. Chlorophyll-specific absorption coefficient of phytoplankton in world oceans: seasonal and regional variability. Remote Sens. 15 (9), 2423.
https://doi.org/10.3390/rs15092423.

Werdell, P.J., Bailey, S.W., 2005. An improved bio-optical data set for ocean color algorithm development and satellite data product validation. Remote Sens. Environ.
98 (1), 122-140. https://doi.org/10.1016/j.rse.2005.07.001.

Xu, X., et al., 2025. A new algorithm based on the phytoplankton absorption coefficient for red tide monitoring in the East China Sea via a geostationary ocean color
imager (GOCI). Remote Sens. 17 (5), 750. https://doi.org/10.3390/rs17050750.

Zhang, M., et al., 2021. Simulating the relationship between land use/cover change and urban thermal environment using machine learning algorithms in wuhan city,
China. Land 11 (1), 14. https://doi.org/10.3390/1and11010014.

Zhang, M., et al., 2023. Impact of urban expansion on land surface temperature and carbon emissions using machine learning algorithms in wuhan, China. Urban
Clim. 47, 101347. https://doi.org/10.1016/j.uclim.2022.101347.

Zhang, M., et al., 2024. Predicting the impacts of urban development on urban thermal environment using machine learning algorithms in Nanjing, China. J. Environ.
Manag. 356, 120560. https://doi.org/10.1016/j.jenvman.2024.120560.

Zhang, Y., et al., 2010. Seasonal-spatial variation and remote sensing of phytoplankton absorption in Lake Taihu, a large eutrophic and shallow lake in China.
J. Plankton Res. 32 (7), 1023-1037. https://doi.org/10.1093/plankt/fbq039.

Zhang, Z., et al., 2025. A review of machine learning applications in ocean color remote sensing. Remote Sens. 17 (10), 1776. https://doi.org/10.3390/rs17101776.

Zheng, G., Stramski, D., 2013a. A model based on stacked-constraints approach for partitioning the light absorption coefficient of seawater into phytoplankton and
non-phytoplankton components. J. Geophys. Res.: Oceans 118 (4), 2155-2174. https://doi.org/10.1002/jgrc.20115.

Zheng, G., Stramski, D., 2013b. A model for partitioning the light absorption coefficient of suspended marine particles into phytoplankton and nonalgal components.
J. Geophys. Res.: Oceans 118 (6), 2977-2991. https://doi.org/10.1002/jgrc.20206.

Zheng, G., Stramski, D., DiGiacomo, P.M., 2015. A model for partitioning the light absorption coefficient of natural waters into phytoplankton, nonalgal particulate,
and colored dissolved organic components: a case study for the <scp>C</scp> hesapeake <scp>B</scp> ay. J. Geophys. Res.: Oceans 120 (4), 2601-2621.
https://doi.org/10.1002/2014JC010604.

26


https://doi.org/10.1080/01431161.2011.601343
https://doi.org/10.1080/01431161.2011.601343
https://doi.org/10.3389/fmars.2017.00041
https://doi.org/10.3389/fmars.2017.00041
https://doi.org/10.1016/j.rse.2020.112200
https://doi.org/10.1007/s00382-012-1300-9
https://doi.org/10.1007/s00382-012-1300-9
https://doi.org/10.5194/esd-9-1283-2018
https://doi.org/10.5194/esd-9-1283-2018
https://doi.org/10.1016/j.dsr.2020.103460
https://doi.org/10.1016/j.ecss.2017.04.012
https://doi.org/10.18785/goms.1702.02
https://doi.org/10.1016/j.rse.2013.08.004
https://doi.org/10.1038/s41396-018-0054-8
https://doi.org/10.1038/s41396-018-0054-8
http://refhub.elsevier.com/S2352-9385(25)00255-1/sref49
http://refhub.elsevier.com/S2352-9385(25)00255-1/sref49
https://doi.org/10.1016/j.rse.2017.02.015
https://doi.org/10.1021/acsomega.2c06441
https://doi.org/10.1021/acsomega.2c06441
https://doi.org/10.3390/s19194285
https://doi.org/10.1080/01431160410001723682
https://doi.org/10.5194/bg-8-841-2011
https://doi.org/10.5194/bg-8-841-2011
https://doi.org/10.1016/j.envres.2021.111579
https://doi.org/10.3390/s120607778
https://doi.org/10.3390/s120607778
https://doi.org/10.1002/2016GB005521
https://doi.org/10.1002/2016GB005521
https://doi.org/10.1007/s10750-010-0198-7
https://doi.org/10.5194/essd-14-5737-2022
https://doi.org/10.1016/j.ecss.2008.01.013
https://doi.org/10.3788/AOS202141.0601002
https://doi.org/10.3390/rs15092423
https://doi.org/10.1016/j.rse.2005.07.001
https://doi.org/10.3390/rs17050750
https://doi.org/10.3390/land11010014
https://doi.org/10.1016/j.uclim.2022.101347
https://doi.org/10.1016/j.jenvman.2024.120560
https://doi.org/10.1093/plankt/fbq039
https://doi.org/10.3390/rs17101776
https://doi.org/10.1002/jgrc.20115
https://doi.org/10.1002/jgrc.20206
https://doi.org/10.1002/2014JC010604

	A machine learning algorithm to retrieve the red peak of phytoplankton absorption spectra from ocean-colour remote sensing
	1 Introduction
	2 Data
	2.1 In-situ database on phytoplankton absorption spectra
	2.2 Satellite ocean colour data

	3 Methodology
	3.1 Evaluating base ML algorithms
	3.2 Hybrid ensemble modelling
	3.2.1 Meta Stacking
	3.2.2 Forecast ensemble
	3.2.3 Stacked Voting Ensemble
	3.2.4 XGB ensemble
	3.2.5 Optimised Ensemble
	3.2.6 RF_GridCV

	3.3 Comparison to conventional models for estimating phytoplankton absorption at 676
	3.3.1 Carder et al., 1999
	3.3.2 Empirical method

	3.4 Evaluation criteria for ensemble models
	3.5 Application of saved model (.pkl file) to raster data (.nc) file

	4 Results and discussion
	4.1 Performance of the base ML algorithms
	4.2 Performance of hybrid ensemble models
	4.3 Synthesis of the models’ structure and performance
	4.4 Applications: spatial maps of ɑph (676) and uncertainty

	5 Conclusions
	CRediT authorship contribution statement
	Ethical statement
	Declaration of generative AI and AI-assisted technologies in the writing process
	Declaration of competing interest
	Acknowledgement
	Appendix-1 Abbreviations Used in This Study
	Appendix 2 Scatterplot for Daily_Rrs
	Appendix 3 Scatterplot for 5Day_Rrs
	Appendix 4 Scatterplot for 8Day_Rrs
	Appendix 5 Scatterplot for Monthly_Rrs
	Data availability
	References


