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ABSTRACT
Model quality assessment (MQA) remains a critical component of structural bioinformatics for both structure predictors and 
experimentalists seeking to use predictions for downstream applications. In CASP16, the Evaluation of Model Accuracy (EMA) 
category featured both global and local quality estimation for multimeric assemblies (QMODE1 and QMODE2), as well as a 
novel QMODE3 challenge—requiring predictors to identify the best five models from thousands generated by MassiveFold. This 
paper presents detailed results from several leading CASP16 EMA methods, highlighting the strengths and limitations of the 
approaches.
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1   |   Introduction

In CASP16, the Evaluation of Model Accuracy (EMA) cate-
gory assessed predictors' capabilities to estimate the qual-
ity of models, or perform model quality assessment (MQA). 
Accurate model quality assessment is essential not only for 
predictors and ranking pipelines but also for downstream 
users seeking to interpret predicted structures or experi-
mentally validate hypotheses inspired by them. A particular 
challenge in this context is the ability to evaluate model confi-
dence for multimeric assemblies.

Building on CASP15, the CASP16 EMA experiment further 
expanded the evaluation. It included the established QMODE1 
and QMODE2 tasks, which focus on global and local accuracy 
of complex models, as well as a new QMODE3 task: selecting 
the five best models from a pool of thousands generated by the 
MassiveFold [1] tool. This addition enabled benchmarking under 
conditions of high model pool redundancy and highlighted the 
usefulness of refined scoring combinations.

This paper presents detailed results and insights from top-
performing EMA predictor groups in the EMA category of 
CASP16. Because the underlying software tools frequently 
have either “EMA” or “MQA” in their names, we use the two 
terms more or less interchangeably below. The highlights pre-
sented are framed within the context of the accompanying 
“Model Quality Assessment for CASP16” paper [2], with the 
aim to provide a more granular understanding of what went 
right, what went wrong, and what was learned in this year's 
EMA category.

As structure prediction methods have advanced, older quality 
metrics have been surpassed, and new evaluation criteria have 
been developed to probe more advanced challenges such as the 
prediction of assemblies rather than just monomers or domains. 
In CASP16, attention was focused on the existing QMODE1 and 

QMODE2 subcategories, as well as a new QMODE3 criterion. 
Because these names are somewhat obscure, these evaluation 
criteria are briefly summarized here.

QMODE1 focuses on global quality metrics for predicted struc-
tures of assemblies. This is divided into SCORE, which evaluates 
the overall structural topology from a global superposition; and 
QSCORE, which focuses on the accuracy of the predicted inter-
faces between components of the assembly.

QMODE2 focuses on local evaluation of interface prediction, 
looking at both the accuracy of the local environment of residues 
in the interface, as well as on the identification of which residues 
contribute to interfaces.

QMODE3 was developed in response to the success of the 
MassiveFold large-scale model generation tool in CASP15 [1], 
in which the challenge is to pick the best one of many models. 
QMODE3 was scored by evaluating how well the model assess-
ment groups did in choosing the best 5 models from up to 8040 
MassiveFold models.

2   |   Results

Five groups (described in Table 1) were invited to contribute to 
this highlights paper. The performance of these groups in the 
various assessment subcategories of the CASP16 EMA category 
is summarized in Table 2. Groups were chosen on the basis of 
their performance in individual or multiple subcategories, as 
well as to illustrate diverse approaches to the tasks. These ap-
proaches can be categorized in terms of single-model methods, 
where no comparisons are done with other models, quasi-single-
model methods, where the assessment algorithm generates its 
own models for comparison, and consensus methods, where 
individual models are judged by their consensus with the other 
models. Table 2 assigns the methods to these categories. As seen 

TABLE 1    |    Groups contributing to the discussion of highlights for CASP16 EMA.

Group Members Sub-groups (abbreviation)

MIEnsembles-Server Chunxiang Peng, Wei Zheng, Qiqige Wuyun, 
Quancheng Liu, Lydia Freddolino

MIEnsembles-Server

ModFOLDdock2 Liam J. McGuffin, Nicholas S. Edmunds, 
Behnosh Behzadi, Shaima N. Alhaddad, 

Ahmet G. Genc, Recep Adiyaman

ModFOLDdock2 (dock2)
ModFOLDdock2R (dock2R)
ModFOLDdock2S (dock2S)

MULTICOM Jian Liu, Pawan Neupane, Jianlin Cheng MULTICOM
MULTICOM_AI (AI)

MULTICOM_GATE (GATE)
MULTICOM_LLM (LLM)

MULTICOM_human (human)

GuijunLab Guijun Zhang, Dong Liu, Xuanfeng Zhao, Haodong 
Wang, Fang Liang, Meng Sun, Xinyue Cui

GuijunLab-Complex (Complex)
GuijunLab-Human (Human)

GuijunLab-PAthreader (PAthreader)
GuijunLab-QA (QA)

GuijunLab-Assembly (Assembly)

SHORTLE David R. Shortle SHORTLE
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3

in previous editions of CASP, consensus methods generally per-
form most strongly, followed by quasi-single-model methods 
and then single-model methods.

It has been noted that consensus methods are less relevant for 
real-life use cases than for CASP challenges, because there are 
rarely many independent models available that have been gen-
erated using a variety of algorithms  [3]. It is reassuring, then, 
that quasi-single-model methods can be reasonably competitive 
[4]. It might seem counterintuitive that generating your own 
reference models adds value to single-model methods, but the 

process of generating a model integrates all the information that 
might have been used for evaluation, and consistency among 
multiple models will give some indication of reliability.

2.1   |   MIEnsembles-Server Methods

During CASP16, the MIEnsembles-Server employed the StrMQA 
method to evaluate the global modeling quality (SCORE) 
and interface modeling quality (QSCORE) for protein com-
plexes in QMODE1. It also facilitated the selection of the most 

TABLE 2    |    Summary of evaluation criteria, prediction groups and rankings.

Criteria

Prediction groups

MIEnsembles-
Server ModFOLDdock2 MULTICOM GuijunLab SHORTLE

QMODE1:
SCORE

1: MIEnsembles-
Server (q)

3: dock2 (c)
8: dock2R (c)

14: dock2S (q)

2: LLM (c*)
4: GATE (c)

11: MULTICOM (c)
15: human (c)

22: AI (s)

5: QA (c)
6: Human (c)

9: Assembly (s)
10: PAthreader (s)

17: Complex (s)

—

QMODE1:
QSCORE

2: MIEnsembles-
Server (q)

1: dock2 (c)
5: dock2R (c)
9: dock2S (q)

6: LLM (c*)
7: GATE (c)

15: MULTICOM (c)
21: human (c)

25: AI (s)

3: QA (c)
5: Human (c)

8: Assembly (s)
12: Complex (s)

13: PAthreader (s)

—

QMODE2:
Interface accuracy

— 1: dock2 (c)
2: dock2R (c)
5: dock2S (q)

— 3: QA (c)
4: Human (c)

6: PAthreader (s)
7: Assembly (s)
8: Complex (s)

—

QMODE2:
Interface identity

— 2: dock2S (q)
4: dock2R (c)
5: dock2 (c)

— 3: QA (c)
6: Human (c)

8: PAthreader (s)
9: Complex (s)

10: Assembly (s)

—

QMODE3:
monomer

3: MIEnsembles-
Server (q)

— 6: MULTICOM (s*)
7: human (c)
9: GATE (c)
10: LLM (c*)

16: AI (s)

11: Assembly (s)
12: Complex (s)

14: QA (c)
17: PAthreader (s)
18: Human (c,q)

5: SHORTLE (s)

QMODE3:
homo-oligomer

13: 
MIEnsembles-

Server (q)

— 1: LLM (c*)
2: human (c)
6: GATE (c)

7: MULTICOM (s)
8: AI (s)

3: PAthreader (s)
10: Complex (s)

11: QA (c)
14: Assembly (s)
15: Human (c,q)

5: SHORTLE (s)

QMODE3:
hetero-oligomer

4: MIEnsembles-
Server (q)

— 13: GATE (c)
15: MULTICOM (s)

18: human (c)
21: LLM (c*)

22: AI (s)

2: Human (c,q)
3: Assembly (s)
5: Complex (s)

8: QA (c)
12: PAthreader (s)

7: SHORTLE (s)

Note: Entries in the table show the final rank (from the accompanying “Model Quality Assessment for CASP16” paper and the abbreviated name from Table 1 of the 
sub-group methods for each prediction group). The letter in parentheses after the method name specifies the class of assessment algorithm: s = single-model, q = quasi-
single-model, c = consensus. Methods marked with asterisks use hybrid approaches as noted belowa,b.
ac*: MULTICOM_LLM applied a single-model approach (EnQA) for targets T1201o, T1207, H1202, and H1204; a consensus approach (PSS) for the remaining targets 
in QMODE1 and QMODE3.
bs*: MULTICOM used a consensus approach for T1207 and a single-model approach (EnQA) for all other targets in QMODE3.
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4 Proteins: Structure, Function, and Bioinformatics, 2025

accurate protein monomer and complex models from MassiveFold 
in QMODE3. StrMQA is a machine learning-based approach that 
ranks candidate models by measuring their structural similar-
ity to a diverse set of high-quality reference models generated by 
DMFold [5, 6], augmented by template information and individual 
quality assessment (QA) scores from third-party tools as features.

In general, StrMQA incorporates four types of features: (1) struc-
tural similarity scores between candidate models and reference 
models predicted by DMFold [5, 6], including TM-score [7, 8], 
LDDT [9], and DockQ [10], with only the first two applied to pro-
tein monomers; (2) structural similarity scores derived from the 
best templates for biological assemblies in protein complexes or 
from the best monomer templates in the monomer PDB library; (3) 
predicted average pLDDT from DeepAccNet [11]; and (4) predicted 
CAD-scores from VoroIF-GNN [12]. For protein complex models, 
these four types of features are input into two separate random 
forest regression models to predict the global topology accuracy 
(predicted TM-score, pTM) and interface accuracy (pDockQ) of 
the input models. For protein monomer models, only the first three 
types of features are used in a single random forest regression 
model to predict the global topology accuracy (pTM). In StrMQA, 
we have found that the structural similarity scores with reference 
predicted structures are particularly critical.

2.1.1   |   Generation of Predicted Reference 
Structure-Based Features

DMFold is utilized to generate high-quality predicted reference 
models for StrMQA. The initial step in DMFold involves the 
creation of multiple sequence alignments (MSAs) for a protein 
monomer or the monomer component of a protein complex using 
DeepMSA2 [6], which comprises three sub-pipelines: dMSA [13], 
qMSA, and mMSA. These sub-pipelines are iteratively employed 
to gather homologous sequences from genomic and metagenomic 
databases, including Uniclust30 [14], UniRef90 [15], Metaclust 
[16], Mgnify [17], BFD [16], and the IMG/M [18] large-scale metag-
enomics database. The MSAs produced by these sub-pipelines are 
subsequently input into AlphaFold2 to predict a set of structural 
decoys. These decoys are ranked according to their associated 
pLDDT scores. To ensure both diversity and consensus, the top 
five ranked MSAs are either directly used in protein monomer 
modeling or paired as multimer MSAs for protein complex mod-
eling. The second step involves the generation of structural decoys 
using a modified AlphaFold2 modeling engine. For each MSA, 
100 decoys are generated and ranked based on the pLDDT score 
for monomer targets or confidence scores (0.8ipTM + 0.2pTM) for 
complex targets. Finally, five top-ranked DMFold decoys from 
different MSAs are selected as the final reference models. The 
structural similarity between each reference model from DMFold 
and the input models of the QA target is then calculated, yielding 
five TM-scores, five DockQ scores, and five LDDT scores for each 
model of the given QA target.

2.1.2   |   Generation of Template-Based Features

A hybrid template detection protocol is employed to collect 
structural templates. For protein monomer targets, Foldseek/
US-align [19–21] is used to identify the best templates from a 

non-redundant PDB library, using the input model of the QA tar-
get as the query structure. For protein complex targets, Foldseek 
[20] is initially applied to rapidly search for candidate monomer 
templates corresponding to the component monomer chains. 
Subsequently, biological assemblies, which include at least two 
templates from different chains, are gathered into an assembly 
template pool. Finally, US-align [19] is used to select the best 
biological assembly based on structural similarity to the query 
model. The TM-score of an input structure to the best assembly is 
then utilized as a template-based feature for the StrMQA method.

MIEnsembles-Server used the same method to select QMODE3 
as for QMODE1 and just selected the top 5 decoys using a 
global score.

DMFold, DeepMSA2, TM-score and US-align are freely avail-
able at https://​seq2f​un.​dcmb.​med.​umich.​edu/​DMFold/​. StrMQA 
is still in development.

2.1.3   |   MIEnsembles-Server Summary

What went right? The MIEnsembles-Server (StrMQA) achieved 
first place in overall folding accuracy scoring (QMODE1-
SCORE) and second place in overall interface accuracy scor-
ing (QMODE1-QSCORE). The strong performance of StrMQA 
can be largely attributed to the high-quality models generated 
by DMFold. Although StrMQA can be considered a consensus-
based approach to some extent, it diverges from traditional 
consensus-based methods by not performing mutual scoring 
or evaluation among the models within the model pool. This 
distinction arises because conventional consensus-based meth-
ods heavily rely on the number of high-quality models within 
the pool, which often vary in quality and are not directly con-
trolled by the assessment system itself. In contrast, the models 
predicted by DMFold are selected as reference models, with 
their structural similarity to the candidate models of QA target 
being evaluated. To mitigate excessive dependence on DMFold 
predicted structures, additional information and features are in-
corporated to complement the data provided by DMFold. The 
high accuracy of these reference models is a crucial factor con-
tributing to StrMQA's strong performance in the EMA category. 
Figure  1A presents an example of StrMQA's performance for 
target H1213. For this target, the five reference models gener-
ated by DMFold had TM-scores compared to the experimental 
target around 0.95, with four exceeding 0.97 and one reaching 
0.94. The availability of these high-quality reference models en-
abled StrMQA to achieve superior performance. Consequently, 
the top-ranked model selected by StrMQA attained a TM-score 
of 0.976, with a difference of only 0.011 from the best model. 
Overall, for this target, StrMQA demonstrated a TM-score loss 
of 0.01 and an oligo-GDTTS loss of 0.05. The Pearson correlation 
coefficient (PCC) between the true TM-score and the predicted 
overall folding accuracy was 0.99. StrMQA is most successful for 
monomer assessment because it relies on newly generated struc-
tural models for quality assessment. In other words, the quality 
of the reference model directly impacts the performance of our 
quality assessment (QA) method, and it is substantially easier for 
our pipeline to provide high-quality monomer structure predic-
tions. The case study described for H1213 (described above) also 
illustrates this point.
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What went wrong? Figure 1B illustrates an example of a poor 
model for T1249v1, which was incorrectly ranked at the top by 
StrMQA. This target exhibits two alternative conformations, 
and DMFold successfully predicted these two alternative struc-
tural conformations among all generated decoys. However, due 
to an inherent weakness in the default AlphaFold2 model rank-
ing, the correctly predicted structure for T1249v1 was assigned 
a lower confidence score. As a result, none of the top five ref-
erence models accurately represented the topology of T1249v1. 
The TM-scores of these five reference models, when compared 
to the experimental structure of T1249v1, were all below 0.40. 
Furthermore, additional information could not compensate for 
the detrimental impact of the incorrect reference models on this 
target. This is evidenced by a PCC of 0.52 between the TM-score 
and pLDDT from DeepAccNet, and a negative PCC of −0.31 
between the TM-score and CAD-score from VoroIF-GNN. 
Consequently, StrMQA's performance on this target was subop-
timal, as the PCC between the true TM-score and the predicted 
overall folding accuracy was negative. Despite the presence of 
several high-quality models among all submissions, StrMQA 
failed to identify them. The TM-score of the top-ranked model 
selected by StrMQA was 0.377, whereas the TM-score of the best 
model was 0.979.

Assessors raised the question of whether a reason why mean 
pLDDT would not work as well as a criterion for selecting mul-
timer MSAs could be difficulties of sequence linking when se-
quence annotations are limited (the issue is described in the 
original DMFold publication). This could indeed be one of the 
reasons. However, another contributing factor is that the con-
fidence score used by DMFold (0.8ipTM + 0.2pTM, the same 
as AlphaFold2 for protein complex modeling) is sometimes not 
sufficiently sensitive to accurately identify the correct models in 
complex modeling. If an incorrect DMFold model is selected as 
a reference model, it will lead to an inaccurate assessment of 

the decoys submitted by CASP groups. However, as we noted in 
the previous discussion, the monomer modeling ranking score 
(pLDDT) appears to be more robust for selecting high-quality 
reference models for monomer proteins than 0.8ipTM + 0.2pTM 
for protein complexes. An example of this is T1249v1. Although 
we had an excellent model in the MIEnsembles-Server modeling 
pool, its confidence score was low, resulting in its exclusion from 
the top five models. Consequently, the incorrect top five models 
were used as reference models for StrMQA, leading to erroneous 
quality assessment results.

2.2   |   ModFOLDdock2 Methods

We developed three distinct variants of ModFOLDdock2 for our 
automated QMODE2 submissions, each optimized for perfor-
mance on different metrics. Firstly, we developed the standard 
ModFOLDdock2 variant with global scores optimized for posi-
tive linear correlations with the observed scores. Secondly, we 
developed ModFOLDdock2R with global scores optimized for 
ranking, where the top-ranked models would have a higher over-
all observed accuracy. Finally, we developed ModFOLDdock2S, 
a quasi-single model approach to score models, which integrated 
our new version of MultiFOLD [22] to generate reference sets 
of multimer models. Our QMODE3 manual submissions were 
made using two methods: ModFOLD9Q, a quick version of 
ModFOLD9 [23] for monomer ranking, and ModFOLDdock2Q, 
a quick version of ModFOLDdock2R for multimer ranking.

The primary differences from the original version of 
ModFOLDdock [24] included the integration of several new 
component scores and optimization using new target func-
tions that were based on assessors' scores from CASP15. Each 
server variant integrated specific combinations of compo-
nent scoring methods. We developed nine different consensus 

FIGURE 1    |    MIEnsembles-Server: What went right and what went wrong? (A) Performance on target H1213, where StrMQA succeeded in choos-
ing a good model. (B) Performance on target T1249v1, where StrMQA chose reference models in the wrong conformation. See text for further details.
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methods, which carried out all-against-all comparisons of 
submitted models using different scores: QS-bestJury, DockQ-
waveJury, TM-scoreJury, Oligo-GDTJury, lDDTJury, CADJury, 
PatchQSJury, PatchDockQJury, and ModFOLDIA. We used 
OpenStructure  [25] version 2.7 to obtain the QS [26], DockQ 
[27], TM-score [8], GDT [8], lDDT [9] and CAD [28] scores for 
each pairwise comparison (using the “ost compare-structures” 
action). We also used three different single-model scoring 
methods: VoroIF [12], VoroMQA [29], and CDA [30, 31]. The 
VoroIF(VoroIF-GNN) and VoroMQA(voronota-js-voromqa) 
methods were used off-the-shelf, VoroIF with the “as-assembly 
true” and “local-column true” options, and VoroMQA with the 
“inter-chain” and “output-dark-scores” options. Our Contact 
Distance Agreement (CDA) score used the contact prediction 
profiles that resulted from generating multimer models with 
LocalColabFold [32].

Figure  2A–C shows flow charts for the three variants of the 
ModFOLDdock2 methods, which we used for our QMODE2 sub-
missions. The component scoring methods contributing to the 
final output scores for each ModFOLDdock2 variant are high-
lighted in green, and the arrows indicate how they contribute 
to each output score. The ModFOLDdock2 variant (Figure 2A) 
produced predicted scores optimized for positive linear correla-
tions with the observed scores, that is, the predicted quality 
scores correlated well with the observed quality scores, accord-
ing to the assessors' formulae for CASP15 multimer models 
[33]. The ModFOLDdock2R variant (Figure 2B) used different 
combinations of methods to contribute to the final global scores, 
which were optimized for global ranking or model selection. 
The ModFOLDdock2S variant (Figure  2C) also used different 
components for the global scores. Furthermore, the local scores 
were fed into a neural network trained to learn the mean of 
the observed local interface scores (Figure  2D). Importantly, 
the ModFOLDdock2S variant also used a quasi-single model 
approach, relying on the generation of reference sets of models 
using MultiFOLD2.

For the QMODE3 category, we developed quicker versions 
of our ModFOLD9 (ModFOLD9Q) and ModFOLDdock2 
(ModFOLDdock2Q) methods to manually score and rank the 
monomeric and multimeric MassiveFold models, respectively. 
In the ModFOLD9Q method, the top 40 ModFOLD9 ranked 
server models for Phase 1 targets were used as reference sets for 
comparison against the MassiveFold models using the mean of 
the GDTJury and lDDTJury scores. For multimers, we devel-
oped ModFOLDdock2Q, where up to 40 MassiveFold models 
were first selected using VoroIF and then used as reference sets 
for comparison against the MassiveFold models, which were 
scored in the same way as ModFOLDdock2R.

The ModFOLDdock2 server is available at: https://​www.​readi​
ng.​ac.​uk/​bioinf/​ModFO​LDdock/​. ModFOLDdock2 is also avail-
able to download via the MultiFOLD2 docker image: https://​
hub.​docker.​com/r/​mcguf​fin/​multi​fold2​.

2.2.1   |   ModFOLDdock2 Summary

What went right? The ModFOLDdock2 method ranked 
first place for both the global and local interface accuracy 

scoring (QMODE1-QSCORE and QMODE2). The other 
ModFOLDdock2 variants were placed among the top five meth-
ods according to many other metrics. The ModFOLDdock2 
variant performed well according to correlations and ROC 
scores, whereas the ModFOLDdock2R performed better ac-
cording to the loss than the other variants (https://​predi​ction​
center.​org/​casp16/​resul​ts.​cgi?​tr_​type=​accuracy), which was 
expected due to their specific score optimizations.

Figure  2E shows an example of excellent ModFOLDdock2 
performance according to the QS score. For this target, 
ModFOLDdock2 achieved near-perfect loss and ROC scores and 
very strong correlations. The McGuffin group also ranked in 
second place in the QMODE3 category on monomers. This indi-
cated that our ModFOLD9Q method reliably selected reference 
sets of models for accurately ranking the top monomer models 
(Figure 2F).

What went wrong? Despite these successes, specific tasks 
remained challenging. Figure  2G shows an example of a 
model for T1218o, which was incorrectly ranked at the top 
by ModFOLDdock2. The native conformation is shown in 
Figure 2H. For this target, models with incorrect conforma-
tions were selected and ranked at the top. This led to negative 
correlations, random ROC scores, and a large loss. We also 
had issues with our QMODE3 predictions for multimers. We 
relied on VoroIF for the rapid selection of reference models; 
however, for several targets, the top-selected models had se-
vere clashes, which greatly impacted our overall performance 
in that category. Indeed, these different approaches used for 
monomers and multimers help explain why our method per-
formed much better for monomer targets than for multimer 
targets in QMODE3. For ranking the MassiveFold monomers, 
we relied on our trusted ModFOLD9 method for selecting 
models. ModFOLD9 is very reliable for scoring monomer mod-
els (it currently outperforms all other methods in CAMEO), 
but it cannot be used for multimer models. For multimers, 
we needed a rapid scoring method to identify reference sets 
of models, so we chose VoroIF for this part because it per-
formed very well in CASP15 and was relatively quick to de-
ploy. We therefore learned that, unfortunately, VoroIF could 
not be relied upon to identify the errors for some MassiveFold 
models in cases where the subunits had significant clashes or 
overlaps. This caused errors with our subsequent model com-
parisons due to the low-quality sets of reference models. In 
future, we will use ModFOLDdock2R to select from the Phase 
1 models to be used as reference sets. In addition, our reliance 
on manual submission for QMODE3 led to human errors—we 
missed a few submission deadlines and could not inspect the 
models before submission due to lack of time. This could be 
resolved through automation.

A first point noted by assessors was the performance differ-
ence between ModFOLDdock2 and ModFOLDdock2R in the 
QMODE1 category. ModFOLDdock2 achieved stronger results 
because its predicted scores more accurately reflected the abso-
lute observed model quality scores, so the method performs bet-
ter according to the Pearson, Spearman, and ROC scores, which 
account for 3/4 of the scores making up the final method rank-
ing. ModFOLDdock2R does better according to the loss, which 
is not unexpected as it is optimized to rank the best models at the 
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FIGURE 2    |    The ModFOLDdock2 methods, what went right and what went wrong. (A) Flow of data and processes for ModFOLDdock2 with 
scores optimized for global correlations. The 3D models and the target sequences are inputs (left), which are then processed by the specific com-
ponent methods highlighted in green (middle) to produce each of the output scores required for QMODE2 submissions (right). (B) Flowchart for 
ModFOLDdock2R optimized for global ranking or model selection. (C) Flowchart for ModFOLDdock2S, a quasi-single model approach using 
MultiFOLD2. (D) The multi-layer perceptron (MLP) for the ModFOLDdock2S local scores with an example of the scoring. Left: Scoring an example 
residue (red sticks, TRP-100 on chain A = A100) includes the scores for the five closest contacting interface residues (≤ 8 Å) in order of their proxim-
ity to A100 (blue sticks). Right: NN architecture. 48 input neurons (8 scores × 6 residues), 6 hidden neurons, and 1 output (mean of the local lDDT, 
CAD, PatchQS, and PatchDockQ scores). (E) Example of excellent QMODE1/2 performance by ModFOLDdock2. The top selected model for T1292o 
is colored by predicted interface residue accuracy from blue (high confidence of interface residue) to red (non-interface residue or very low confi-
dence). QS Loss = 0.005 and QS AUC = 0.9987. (F) Example of excellent QMODE3 performance by ModFOLD9Q with zero penalty overall. The top 
selected model for T1212 (cyan) superposed with the native structure (green). Penalty_w = 0.000 (G) Example of poor QMODE1/2 performance by 
ModFOLDdock2. The top selected T1218o model, colored by chain identifiers. (H) The T1218o native structure, colored by chain identifiers.
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top. However, because the relationships between the observed 
and predicted scores are not linear, ModFOLDdock2R performs 
worse on the correlations and ROC scores.

A second point noted by the assessors was that, in CASP15, the 
QSCORE was significantly lower than the baseline assembly 
consensus (AC) measure; while those positions were reversed 
in CASP16. We can understand this by considering that, in 
CASP16, we optimized for more appropriate target functions 
and included more input scores that better reflect the QSCOREs. 
Furthermore, our handling of larger structures also improved; 
we were more efficient at chain mapping, and we had faster ma-
chines and faster methods for scoring.

2.3   |   MULTICOM EMA Methods

During CASP16, three predictors of the MULTICOM group 
participated in two modes of the EMA category: QMODE1 for 
global model quality estimation and QMODE3 for selecting the 
top five models and achieved competitive performance.

In QMODE1, MULTICOM_LLM used a single model EMA 
method (EnQA [34]) based on a 3D-equivariant neural network 
to predict global fold accuracy of the models for three early 
targets (i.e., T1201o, H1202, and H1204) and then switched to 
use the average pairwise similarity score (PSS) [35] between a 
model and other models, calculated by MMalign [36] (a multi-
model consensus method), to estimate model accuracy for the 
remaining targets. MULTICOM_GATE utilized a graph trans-
former (GATE [37]) integrating the quality features of individual 
models and the similarity between models to predict global fold 
accuracy (e.g., TM-score [7, 21]).

In QMODE3, to reduce the time complexity of selecting the top 
five models from many MassiveFold [1] generated AlphaFold2 
models (usually thousands), 200 models were first selected 
using AlphaFold-Multimer's confidence scores for two predic-
tors MULTICOM_LLM and MULTICOM_human to make the 
final selection, respectively. MULTICOM_LLM used here is the 
same as the one used in QMODE1. MULTICOM_human used 
the average of three complementary quality scores: the average 
CAD-score [28] between a model and other models, the qual-
ity score predicted by a geometry-complete neural network 
(GCPNet-EMA [38]), and the quality score predicted by a vari-
ant of the GATE model trained on our in-house CASP15 com-
plex models generated by MULTICOM3 [39, 40], to select five 
models. This GATE variant uses AlphaFold-Multimer model 
features, such as confidence score, ipTM, and pTM, inter-chain 
predicted aligned errors (< 5 Å), and mpDockQ score [41] as well 
as the features of the default GATE [37] to predict the quality of 
structural models. If a complex target was too large to obtain 
AlphaFold-Multimer features for its models, the default GATE 
[37] without the features was used to generate quality scores 
for them.

The source code of the methods used by the MULTICOM group 
for the EMA category is available at https://​github.​com/​Bioin​
foMac​hineL​earni​ng/​gate, with running instructions provided at 
https://​github.​com/​Bioin​foMac​hineL​earni​ng/​gate/​tree/​main/​
MULTI​COM_​EMA.

2.3.1   |   MULTICOM EMA Summary

The MULTICOM group delivered competitive performance 
in QMODE1, with MULTICOM_LLM ranking second and 
MULTICOM_GATE fourth in QMODE1 for the global fold ac-
curacy estimation. Figure  3A illustrates the per-target Pearson's 
correlation and ranking loss for MULTICOM_LLM across multi-
meric targets. On average, MULTICOM_LLM achieved a ranking 
loss of 0.123 and a Pearson's correlation of 0.686. Notably, 25 out of 
38 targets (65.79%) have a correlation higher than 0.686, while 28 
targets (73.68%) have a ranking loss lower than 0.123. Generally, 
the targets with a high correlation tend to have a low loss, except 
for the early targets (T1201o, H1202, and H1204) to which EnQA 
was applied EnQA, a single-model quality assessment method, 
performed well in ranking good models at the top for these tar-
gets but failed to approximate predicted quality scores relative to 
native scores, leading to low correlation. For instance, for H1204 
(a very hard nanobody target), EnQA successfully identified the 
best model as top 1 with a ranking loss of 0 but had almost zero 
Pearson's correlation of −0.01. In contrast, other multi-model qual-
ity assessment methods such as MULTICOM_GATE failed to rank 
a good model at the top for this target and had a high loss (0.284).

The PSS method used in MULTICOM_LLM performed well 
when the model pool contained a large cluster of good-quality 
structures. For instance, for T1269v1o (Figure 3B), where 58% 
of models had TM-scores > 0.7, PSS reliably identified the best 
model (TM-score = 0.978), resulting in a ranking loss of 0. 
However, its performance declined in cases where the similar 
low-quality models formed the largest cluster, such as T1218o 
(Figure 3C). In these cases, PSS prioritized the low-quality mod-
els in the largest cluster because they have higher PSS scores, 
underscoring a key limitation of the consensus-based scoring for 
model pools with few good models and many similar bad mod-
els. The ranking loss of PSS for T1218o is 0.635.

MULTICOM_GATE tackled this issue by constructing pairwise 
similarity graphs between models, sampling subgraphs evenly 
from model clusters, and utilizing graph transformers to predict 
model quality. This enabled it to outperform PSS in some cases, 
such as the nanobody target H1215, where it successfully iden-
tified a good model (loss: 0.003) from a smaller, higher-quality 
cluster that PSS in MULTICOM_LLM overlooked, leading to a 
high loss of 0.377. However, the average loss of MULTICOM_
GATE and MULTICOM_LLM is still comparable across all the 
targets (0.122 vs. 0.123).

It is worth noting MULTICOM_LLM and MULTICOM_GATE 
treated AlphaFold2- and AlphaFold3-generated models in model 
pools equally. MULTICOM_LLM ranked an AlphaFold3 model 
at top 1 for 13 out of 38 targets (34.2%); while MULTICOM_
GATE ranked an AlphaFold3 model at top 1 for 11 out of 38 
targets (28.9%). Here, we distinguish AlphaFold3 models from 
AlphaFold2 models according to the plDDT values at the atom 
level because the former has different plDDT values for different 
atoms in the same residue, while the latter has the same plDDT 
values for all the atoms of the same residue.

In QMODE3, MULTICOM_LLM, and MULTICOM_human 
ranked first and second for homo-multimers among CASP16 
EMA predictors, based on their weighted penalty scores across 
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global, local, and interface quality metrics. Here, the penalty 
score is calculated as the sum of the mean square error (MSE) 
between the true quality scores of the top 5 models selected by 
a method and those of the actual top 5 models (ranked by their 
true quality scores). Lower penalty scores indicate better model 
selection accuracy, while higher scores reflect greater mis-
matches. Both MULTICOM_LLM and MULTICOM_human 
also outperformed the default AlphaFold2-Multimer's confi-
dence score in selecting models for homo-multimers. However, 
they struggled with hetero-multimers, particularly having 
higher penalty scores in interface quality metrics.

The reason may be that MULTICOM_LLM (or MULTICOM_
human) used the average TM-score (or CAD-score) between 
a model and other models to select the top five models, which 
mainly considered global fold accuracy without directly taking 
the interface quality into account.

2.4   |   GuijunLab Methods

In CASP16, we significantly advanced our previously established 
EMA methods [42–47] by developing two distinct single-model 

approaches: GraphCPLMQA2L (Group: GuijunLab-PAthreader) 
for model local accuracy estimation and DeepUMQAS (Group: 
GuijunLab-Complex) for model global accuracy estimation. 
Building on these developments, we further incorporated a 
consensus-based strategy to establish DeepUMQA-X (Group: 
GuijunLab-QA & Human), a unified framework for scoring, 
ranking, and selecting complex protein models, as illustrated in 
Figure 4A.

2.4.1   |   Single-Model Method for Local 
Accuracy Estimation

GraphCPLMQA2L is an enhanced version of our previous 
single-model method, GraphCPLMQA [42]. This approach 
employs a graph-coupled network to integrate sequence, struc-
tural, evolutionary, and statistical features, facilitating the ac-
curate characterization of relationships between individual 
residues and their corresponding residue-level accuracy, as 
quantified by plDDT [9]. Specifically, the sequence features 
include one-hot encoding, relative position encoding, and the 
physicochemical properties of amino acids; the structural fea-
tures include triangular position, voxelization, residue-residue 

FIGURE 3    |    (A) Per-target ranking loss and Pearson's correlation of MULTICOM_LLM in QMODE1. Red dots denote correlations and blue bars 
ranking losses. (B) The true TM-score distribution of the models of T1269v1o. (C) The true TM-score distribution of the models of T1218o.
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distance and orientation maps, backbone torsion angles and 
bond lengths, along with secondary structure information; 
the evolutionary features include embeddings from the pro-
tein language model ESM  [48] and AlphaFold Evoformer 
[49]; the statistical features [11] include Rosetta energy terms 
and Blosum62 scores. Given a protein model, these features 
are first extracted and input into a deep graph network mod-
ule to predict a reference model, which serves as a geometric 
constraint approximating the native structure. Subsequently, 
the geometric constraint, along with the extracted features, 
is employed in a deep convolutional neural network lever-
aging transformer-based strategies to predict distance bias 

and contact maps. Finally, the local residue accuracy score 
(plDDT) is computed based on the predicted maps.

2.4.2   |   Single-Model Method for Global 
Accuracy Estimation

DeepUMQAS extends DeepUMQA [43] for global accuracy es-
timation (i.e., SCORE), as quantified by TM-score [8]. Similarly, 
DeepUMQAS also extracts sequence, structural, and statistical 
features from protein models. These features are divided into 
three hierarchical levels according to the relationship between 

FIGURE 4    |    The pipeline of DeepUMQA-X method: What went right and what went wrong. (A) DeepUMQA-X evaluates protein model accuracy 
based on two single-model methods, DeepUMQAS and GraphCPLMQA2L, with a consensus strategy. (B) True local interface accuracy (left panel) 
and predicted local interface accuracy of DeepUMQA-X (right panel) for the CASP16 model T1206TS014_1o in lDDT metric. Red represents low 
quality regions, and blue represents high quality regions. (C) Top-ranked MassiveFold models selected by DeepUMQA-X for CASP16 complex tar-
gets T1259o and H1222. The top-ranked model for T1259o (left panel) has QS-best [26] = 0.961 and TM-score = 0.987, and the top-ranked model for 
H1222 (right panel) has QS-best = 0.758 and TM-score = 0.961. The yellow regions represent the top-ranked model, and light blue regions represent 
native structure. (D) Pearson and Spearman performance comparison of official assembly consensus (AC) and DeepUMQA-X for global accuracy 
assessment using Oligo-GDTTS for all CASP16 models (left panel). Pearson performance comparison of DeepUMQA-X for local interface accuracy 
assessment based on lDDT, CAD, PatchDockQ and PathQS metrics, across all CASP16 models (right panel). (E) Top-ranked MassiveFold models 
selected by DeepUMQA-X for CASP16 monomer targets T1207 and T1226. The top-ranked model for T1207 (left panel) has lDDT = 0.515 and TM-
score = 0.684, and the top-ranked model for T1226 (right panel) has lDDT = 0.535 and TM-score = 0.753. The yellow regions represent the top-ranked 
models, and the light blue regions represent the native structures.
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the residues and their surrounding environment: residue-
microenvironment, residue-macroenvironment, and global 
residue representations. These representations are processed 
in parallel through hierarchical network architecture to predict 
the global quality score, pTM-score. The network architecture 
integrates a convolutional neural network, a transformer net-
work, and a graph attention network, leveraging their comple-
mentary strengths to enhance prediction accuracy. Notably, the 
key feature of this method is its exclusive reliance on the intrin-
sic information of the model structure itself, deliberately omit-
ting any incorporation of evolutionary information. This design 
ensures that the prediction results remain entirely independent 
of the MSAs or template-based information (i.e., evolutionary 
information) typically utilized in protein structure modeling, 
thereby offering a new and fully decoupled solution for protein 
model accuracy estimation.

2.4.3   |   DeepUMQA-X Framework

DeepUMQA-X integrates two independent single-model meth-
ods, GraphCPLMQA2L and DeepUMQAS, with a consensus 
strategy to establish a comprehensive framework for scoring, 
ranking, and selecting protein models (Figure 4A). Specifically, 
given a set of protein models, the single-model methods 
GraphCPLMQA2L and DeepUMQAS are first used to evalu-
ate residue-level local quality and topology-level global quality, 
respectively. The models are then ranked based on their local 
and global quality scores to jointly select high-quality candidate 
structures. The selection criteria for candidate models are as fol-
lows: (a) The average local interface residue quality score (ip-
lDDT) must rank within the top n% of models (GuijunLab-QA: 
n = 25; GuijunLab-Human: n = 50); (b) The global quality 
score (pTM-score) must rank within the top m% of models 
(GuijunLab-QA: m = 25; GuijunLab-Human: m = 50); (c) The 
stoichiometry must be correct; (d) The maximum residue gap 
is 10%; (e) Each single-chain structure must contain interface 
residues. The candidate structures are then used as reference 
models to align with all model structures through the protein 
structure alignment suite, OpenStructure  [25], calculating the 
similarity scores of each model in terms of overall, interface, 
and local metrics. Finally, based on these scores, the models are 
reselected and reassessed to refine the evaluation quality of dis-
tinct metrics. It is worth noting that we introduced a lightweight 
interface alignment strategy specifically tailored to improve the 
efficiency of structure alignment for large assemblies and mas-
sive models. This method calculates alignment scores by utiliz-
ing sequence consensus among interchain interface residues, 
thereby substantially reducing computational overhead.

2.4.4   |   DeepUMQA-X for MassiveFold Model Selection

DeepUMQA-X demonstrated superior performance in the selec-
tion of MassiveFold [1] models for hetero-oligomeric complexes, 
where the method integrates structural clustering and modeling 
techniques to select the top 5 models. The MassiveFold model 
selection pipeline was implemented through a comprehensive 
five-stage protocol: (1) Reference establishment: an initial model 
was randomly selected as a reference model, and all remaining 
models were structurally aligned against it using USalign [19] to 

compute structural similarity scores; (2) Structural clustering: 
models were grouped through hierarchical clustering based on 
their similarity scores, with a stringent cutoff threshold of TM-
score < 0.001 to maximize structural diversity; (3) Initial model 
pool construction: from each resulting cluster, a representative 
model was selected through random sampling to construct the 
primary model pool; (4) Model pool enhancement: to further 
diversify and improve model quality, we integrated additional 
high-quality prediction models from multiple sources, including 
AlphaFold-Multimer [50], AlphaFold3 [51], HDock [52], and our 
in-house modeling methods (detailed in CASP16 abstract); (5) 
Final model selection: all candidate models underwent rigorous 
quality assessment using DeepUMQA-X, from which the top 
five top-ranked models were selected based on their predicted 
accuracy score.

2.4.5   |   Atomic pLDDT Values in Predictions

Our group submitted structures with per-atom accuracy self-
assessment derived from AF3, which were selected considering 
structure modeling methods and our quality assessment meth-
ods. Specifically, we generate many models using AlphaFold-
Multimer, AlphaFold3, HDock, and our in-house modeling 
methods (see CASP16 abstract). For these models, top structures 
were selected using DeepUMQA-X. If the final top five model 
was from AF3, the submitted structure remained unmodified.

DeepUMQA-X is freely available at http://​zhang​lab-​bioinf.​com/​
DeepU​MQA-​X.

2.4.6   |   Guijun Group Summary

What went right? DeepUMQA-X demonstrated advanced per-
formance in scoring, ranking, selection, and self-assessment of 
complex models. Notably, it achieved the best performance in the 
lDDT metric of local interface accuracy assessment. Figure 4B 
shows an example of DeepUMQA-X assessing local interface 
accuracy for a model of target T1206. The predicted quality 
plDDT demonstrates remarkable agreement with the true lDDT 
distribution, where red indicates low-quality regions and blue 
indicates high-quality regions. Meanwhile, DeepUMQA-X also 
achieved the best performance in T1259o and H1222 targets 
for MassiveFold model selection, as shown in Figure  4C. For 
these two targets, DeepUMQA-X selected top-ranked struc-
tures highly similar to the native structure, with a penalty value 
of 0. According to the description of our EMA methods in the 
CASP16 abstract, we categorized different method types into 
consensus methods, quasi-single model methods, and single-
model methods. The results indicate that our single-model 
methods performed well in the estimation of global, interface, 
and local accuracy for complexes.

What went wrong? When evaluating global accuracy metrics 
for protein complexes, DeepUMQA-X showed limited correla-
tion performance, as evidenced by relatively low Pearson and 
Spearman correlation coefficients between its predicted quality 
scores and reference values. This correlation deficiency was par-
ticularly pronounced in the Oligo-GDTTS [33] metric assessment, 
as illustrated in Figure 4D (left panel). Comprehensive analysis 
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across all CASP16 targets revealed that the official consensus 
baseline method (AC) demonstrated the best performance, 
achieving Spearman (0.508) and Pearson (0.761) correlation 
coefficients. In comparison, DeepUMQA-X showed relatively 
lower correlation values (Spearman = 0.376; Pearson = 0.643). 
However, in local interface accuracy assessment, DeepUMQA-
X's plDDT predictions exhibited significantly better performance 
than PatchDock, PatchQS [33] and CAD [28], as evidenced by 
higher Pearson correlation coefficients (Figure 4D, right panel). 
This performance discrepancy may stem from our method's re-
liance on lDDT and TM-score metrics, potentially introducing 
assessment bias and limitations by neglecting other relevant 
quality evaluation metrics. Additionally, DeepUMQA-X per-
forms relatively poorly in the monomer MassiveFold model se-
lection, as shown in Figure 4E for its results on monomer targets 
T1207 and T1226. For these two targets, the top-ranked struc-
ture selected by DeepUMQA-X had relatively low quality, with 
penalty values of 0.532 (T1207) and 0.529 (T1226). Similarly, 
this performance limitation primarily stems from our method's 
original design focus on complex model accuracy assessment, 
lacking specific optimization parameters and features tailored 
for monomer structure evaluation.

Assessors raised the question of whether we had any in-
sight into why interface accuracy estimation would be bet-
ter for GuijunLab-QA than for GuijunLab-Human. The 
GuijunLab-QA and GuijunLab-Human methods are both based 
on DeepUMQA-X, integrating two single-model evaluations and 
a consensus evaluation strategy, while relying on different high-
quality candidate model pools. Briefly, the main difference be-
tween the GuijunLab-QA and GuijunLab-Human methods lies 
in the criteria of model pool selection, where they filter the top 
25% (GuijunLab-QA) or 50% (GuijunLab-Human) of high-quality 
models from all candidate models based on pTM-score and ip-
lDDT. In fact, compared to the GuijunLab-Human method that 
uses the top 50% parameter settings, the GuijunLab-QA method 
applies the top 25% criterion resulting in a higher-quality model 
pool, which enables it to improve the accuracy of the evaluation 
as reference models for structural consensus.

What did we learn? Through comprehensive analysis of complex 
structure prediction and estimation of model accuracy results 
from CASP16, we have gained critical insights into EMA track 
performance and identified multiple promising research direc-
tions for our group.

First, the blind assessment results demonstrated that consensus-
based methods still significantly outperform single-model 
methods, while quasi-single-model methods exhibit outstand-
ing performance. Since both consensus-based and quasi-single-
model methods rely on the accuracy of structure prediction 
methods, we hypothesize that advancements in model quality 
assessment may be lagging behind progress in structure predic-
tion. Therefore, incorporating relevant information from struc-
ture prediction or adopting self-assessment mechanisms similar 
to AlphaFold's evaluation framework could potentially enhance 
the performance of EMA methods.

Second, in the local accuracy estimation track, we observed 
that the Group MQA, which ranked first in local interface res-
idue identification, significantly outperformed lower-ranked 

methods, including those from GuijunLab. However, it exhib-
ited poor performance in local interface accuracy assessment. 
To further investigate this discrepancy, we analyzed the true 
local quality performance in local interface residue identifica-
tion, obtaining ROC AUC values of lDDT = 0.613, CAD = 0.584, 
PatchQS = 0.814, PatchDockQ = 0.817. These empirical findings 
strongly suggest that relying exclusively on local quality met-
rics may be inadequate for comprehensive evaluation across 
both local interface accuracy assessment and residue identifica-
tion tasks.

Finally, in light of the newly established assessment tracks in 
structure prediction and model accuracy estimation, we believe 
that several critical research directions are essential for advanc-
ing model quality assessment methodologies: (1) development 
of robust evaluation frameworks for structures with unknown 
stoichiometry and dynamic conformational states, (2) imple-
mentation of per-atom accuracy assessment protocols, and (3) 
establishment of efficient massive model selection strategies. 
These advancements are expected to significantly contribute to 
the progress of structural biology by providing more comprehen-
sive and accurate tools for protein structure analysis.

2.5   |   Shortle Group Methods

The native state of a protein is presumed to be the conformation 
of lowest free energy. Although this free energy cannot be calcu-
lated, it can be approximated by comparing structural details of 
a predicted model with the statistics of the same features in high-
resolution x-ray structures. To the extent that details of structure 
are the consequence of their low free energy, as assumed by the 
Boltzmann hypothesis, comparison of numerous diverse struc-
tural features with the statistics of their occurrence in real pro-
teins should provide a rough estimate of the overall free energy. 
Here we apply this idea to assessing the large sets of MassiveFold 
models available in CASP16, using several structural details 
that quantify atom-atom overlap, Ramachandran propensities, 
hydrogen bonds, and atom-atom interactions. Parameter values 
were calculated, ranked by placement into 20 equal value bins, 
and then added to give a final score of overall model quality. The 
results of this approach were significantly better than the aver-
age of the AI-based methods and suggest improved quality as-
sessment could be achieved by comparing more parameters, by 
using more appropriate high-resolution x-ray structure libraries, 
and by utilizing more rigorous methods of balancing the contri-
bution of individual parameters to the final score.

In the context of physical chemistry, low global energy is achieved 
by optimizing most or all of the different bonding interactions and 
structural arrangements of atoms to near their individual lowest 
free energies. Unfortunately, at present, a sufficiently quantitative 
understanding of the forces involved to allow these minima to be 
calculated is not available. The best one can do is approximate parts 
of a protein's free energy function by examining high-resolution 
x-ray structures and identifying those local atom arrangements 
that differ in quantifiable detail from those found in lower ac-
curacy structures. Presumably, such common arrangements of 
atoms represent structures that achieve low free energies. Stated 
in more physical chemical terms, if the Boltzmann approximation 
holds [53], then statistical parameters derived from an ensemble of 
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highly accurate structures will reflect the potential of mean force 
for components of the overall free energy.

The methods employed in this work use a conventional strategy 
[54, 55]: analyze the statistics of structure descriptors of atom 
groupings that consistently correlate with high experimental ac-
curacy; in other words, those features that are more common at 
higher resolution than in lower resolution, as defined by the ex-
perimentalist as the model's “x-ray resolution.” With the larger 
number of data points collected by x-ray crystallography re-
quired to achieve higher resolution, the crystallographer's three-
dimensional model is confined to a smaller and smaller set of 
conformational possibilities that fit the data. The same argument 
can be made for the correspondence of the two experimental R-
factors with model accuracy.

Identifying those structural details that most consistently cor-
relate with high experimental resolution requires considerable 
trial and error. In this work, the statistics of different measures 
of atom-atom overlap, backbone phi/psi and chi1 angles, hy-
drogen bonds, and atom-atom distance distributions have been 
calculated from a set of +2700 monomeric PDB x-ray structures 
with reported resolutions of 1.4A or less.

Obviously, the choice and combination of parameters reported 
here is based on the author's experience and intuition. In this 
work, various parameters developed by the author over the past 
12 rounds of CASP were used. No attempts were made to refine/
adjust the methods of their calculation to reduce or eliminate 
correlations among them, or to combine them in ways other 
than simple addition. Each parameter's performance was eval-
uated by comparing the correlation of calculated values versus 
x-ray resolution and also by success in the discrimination of the 
correct structure challenged by sets of 1000 decoy models.

Figure 5 shows a list of the eight parameters used in CASP16 
for quality assessment (QA3), plus the results of applying them 
to a set of 1800 proteins from the PDB with reported x-ray reso-
lutions from 0.7A to 2.5A. The parameter values were rank or-
dered from lowest to highest energy and then divided into 20 
bins with an equal number of values per bin.

Atom-atom overlap was not raised to a higher power, as is done 
for energy calculations. Rather, a linear measure of overlap ver-
sus structural error seems more reasonable. The first of the two 
parameters shown in Figure 5, the linear overlap between im-
mediately adjacent residues i to i + 1 (overlap1), correlates with 
x-ray resolution more strongly than overlap2, which is total 
overlap calculated between residues separated by 5 or more. 
Surprisingly, local overlap1 displayed the highest correlation 
with x-ray resolution of any of the other 7 parameters.

Next in the list on Figure  5 are three statistical propensities 
for backbone phi/psi and chi1 angles [56, 57]. To calculate the 
monomer potential, the Ramachandran plot of phi/psi angles 
for single residues was divided into 137 bins, with calculation 
of this parameter for each amino acid type and separately for 
alpha helices, beta strands, and turn/loop/irregular segments 
[56]. Notably, the monomer parameter shows the second highest 
correlation with x-ray resolution. For the dimer potential, phi/
psi angles for each of two adjacent residues were divided into 
26 bins. Only residue pairs for beta strands and for junctions be-
tween helix/strand and irregular segments were calculated, and 
these two values combined form the dimer potential. The rota-
mer potential was calculated for single amino acid residues in 
each of the 3 separate secondary structural types, with the phi/
psi angles assigned to 26 bins and the x1 angle to 3 bins.

Hydrogen bonds for side-chain to side-chain or backbone atoms 
consisted of a distance-dependent statistical potential of nine 
hydrogen bond donor atoms and five hydrogen bond acceptors. 
For backbone to backbone hydrogen bonds, the potential devel-
oped by the Baker lab was employed [58].

The atom-atom interaction parameter is based on 86 atom types 
and was scored over a surface-to-surface distance range of 0 
(contact) to 2.0 Å divided into 0.1 Å bins.

While the individual correlation coefficients shown in Figure 5 are 
not large and several may not be statistically significant, when the 
ranked values are simply added together for the final_score, the 
correlation coefficient is 0.467. If the correlation is made between 
final_score and the R-factor or the R-free factor instead of the x-
ray resolution, the results are essentially unchanged (not shown). 
The relationship between these three experimental values and the 
accuracy relative to the “true” structure cannot be clearly defined, 
but they do represent an approximate measure of the range of con-
formations that could fit the experimental data.

The original plan to score the 8000 models generated by the 
Massive protocol was to convert each value calculated for a mod-
el's parameter value into a ranking relative to the scores of the 
best PDB structures as mentioned above. However, for all of the 
targets, only a small number of parameters for a very small num-
ber of these models scored at or lower than the highest energy 
bin. Consequently, instead, the 8000 model scores for each pa-
rameter were rank ordered into 20 equal bins, and the bin num-
bers for the 8 parameters in Figure 5 were simply added together 
to give the final score, using this value as the measure of quality.

The performance rating of final_score in the QA3 challenge 
given by the assessor was as follows: For monomeric targets, 
the 5 structures deemed highest in quality for each target were 

FIGURE 5    |    Statistical correlations of the eight scoring parameters 
used in this work versus the x-ray crystallographers' measure of resolu-
tion; that is, these correlation coefficients serve as rough measures of a 
parameter's efficacy in assessing the accuracy of a structure.
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tied for 3rd place among the 22 different contributing groups. 
For the homo-oligomeric targets, the submitted structures were 
ranked 5 in accuracy compared to 24 groups, and for the hetero-
oligomeric targets, ranking was 11/24.

2.5.1   |   Shortle Group Summary

These initial results establish that, for the assessment of model 
accuracy, there is merit in the use of statistics derived from the 
frequencies of multiple different structural details as proxies for 
components of a model's free energy. Furthermore, these results 
suggest that this approach could be greatly improved by making 
the following modifications, which were not applied in CASP16:

1.	 The final scoring function should use Multiple Regression 
to generate a function that combines individual parame-
ter values to reduce correlations among parameters and to 
properly weight each parameter.

2.	 Separate probability tables for each parameter should be 
calculated from PDB structures for three distinct librar-
ies: monomeric proteins, homo-oligomers, and hetero-
oligomers. In this work, only one library of monomeric 
proteins was used for all probability tables.

3.	 For oligomeric proteins, better still would be separate ta-
bles for interfacial residues versus residues outside the 
interface.
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