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ABSTRACT

Model quality assessment (MQA) remains a critical component of structural bioinformatics for both structure predictors and
experimentalists seeking to use predictions for downstream applications. In CASP16, the Evaluation of Model Accuracy (EMA)
category featured both global and local quality estimation for multimeric assemblies (QMODE1 and QMODE?2), as well as a
novel QMODES3 challenge—requiring predictors to identify the best five models from thousands generated by MassiveFold. This
paper presents detailed results from several leading CASP16 EMA methods, highlighting the strengths and limitations of the
approaches.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,
provided the original work is properly cited.
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1 | Introduction

In CASP16, the Evaluation of Model Accuracy (EMA) cate-
gory assessed predictors' capabilities to estimate the qual-
ity of models, or perform model quality assessment (MQA).
Accurate model quality assessment is essential not only for
predictors and ranking pipelines but also for downstream
users seeking to interpret predicted structures or experi-
mentally validate hypotheses inspired by them. A particular
challenge in this context is the ability to evaluate model confi-
dence for multimeric assemblies.

Building on CASP15, the CASP16 EMA experiment further
expanded the evaluation. It included the established QMODE1
and QMODE2 tasks, which focus on global and local accuracy
of complex models, as well as a new QMODES3 task: selecting
the five best models from a pool of thousands generated by the
MassiveFold [1] tool. This addition enabled benchmarking under
conditions of high model pool redundancy and highlighted the
usefulness of refined scoring combinations.

This paper presents detailed results and insights from top-
performing EMA predictor groups in the EMA category of
CASP16. Because the underlying software tools frequently
have either “EMA” or “MQA” in their names, we use the two
terms more or less interchangeably below. The highlights pre-
sented are framed within the context of the accompanying
“Model Quality Assessment for CASP16” paper [2], with the
aim to provide a more granular understanding of what went
right, what went wrong, and what was learned in this year's
EMA category.

As structure prediction methods have advanced, older quality
metrics have been surpassed, and new evaluation criteria have
been developed to probe more advanced challenges such as the
prediction of assemblies rather than just monomers or domains.
In CASP16, attention was focused on the existing QMODEI] and

QMODE?2 subcategories, as well as a new QMODES3 criterion.
Because these names are somewhat obscure, these evaluation
criteria are briefly summarized here.

QMODE]1 focuses on global quality metrics for predicted struc-
tures of assemblies. This is divided into SCORE, which evaluates
the overall structural topology from a global superposition; and
QSCORE, which focuses on the accuracy of the predicted inter-
faces between components of the assembly.

QMODE?2 focuses on local evaluation of interface prediction,
looking at both the accuracy of the local environment of residues
in the interface, as well as on the identification of which residues
contribute to interfaces.

QMODE3 was developed in response to the success of the
MassiveFold large-scale model generation tool in CASP15 [1],
in which the challenge is to pick the best one of many models.
QMODES3 was scored by evaluating how well the model assess-
ment groups did in choosing the best 5 models from up to 8040
MassiveFold models.

2 | Results

Five groups (described in Table 1) were invited to contribute to
this highlights paper. The performance of these groups in the
various assessment subcategories of the CASP16 EMA category
is summarized in Table 2. Groups were chosen on the basis of
their performance in individual or multiple subcategories, as
well as to illustrate diverse approaches to the tasks. These ap-
proaches can be categorized in terms of single-model methods,
where no comparisons are done with other models, quasi-single-
model methods, where the assessment algorithm generates its
own models for comparison, and consensus methods, where
individual models are judged by their consensus with the other
models. Table 2 assigns the methods to these categories. As seen

TABLE1 | Groups contributing to the discussion of highlights for CASP16 EMA.

Group Members

Sub-groups (abbreviation)

MIEnsembles-Server

Chunxiang Peng, Wei Zheng, Qigige Wuyun,

MIEnsembles-Server

Quancheng Liu, Lydia Freddolino

ModFOLDdock2 Liam J. McGuffin, Nicholas S. Edmunds,
Behnosh Behzadi, Shaima N. Alhaddad,
Ahmet G. Genc, Recep Adiyaman
MULTICOM Jian Liu, Pawan Neupane, Jianlin Cheng
GuijunLab Guijun Zhang, Dong Liu, Xuanfeng Zhao, Haodong
Wang, Fang Liang, Meng Sun, Xinyue Cui
SHORTLE David R. Shortle

ModFOLDdock2 (dock2)
ModFOLDdock2R (dock2R)
ModFOLDdock2S (dock2S)

MULTICOM
MULTICOM_AI (AI)
MULTICOM_GATE (GATE)
MULTICOM_LLM (LLM)
MULTICOM_human (human)

GuijunLab-Complex (Complex)
GuijunLab-Human (Human)
GuijunLab-PAthreader (PAthreader)
GuijunLab-QA (QA)
GuijunLab-Assembly (Assembly)

SHORTLE
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TABLE 2 | Summary of evaluation criteria, prediction groups and rankings.

Prediction groups

MIEnsembles-
Criteria Server ModFOLDdock2 MULTICOM GuijunLab SHORTLE
QMODET1: 1: MIEnsembles- 3: dock2 (c) 2: LLM (c*) 5:QA (¢) —
SCORE Server (q) 8: dock2R (c) 4: GATE (¢) 6: Human (c)
14: dock2S (q) 11: MULTICOM (c) 9: Assembly (s)
15: human (c) 10: PAthreader (s)
22: AI(s) 17: Complex (s)
QMODET1: 2: MIEnsembles- 1: dock2 (¢) 6: LLM (c*) 3: QA (¢) —
QSCORE Server (q) 5: dock2R (¢) 7: GATE (¢) 5: Human (c)
9: dock2S (q) 15: MULTICOM (c) 8: Assembly (s)
21: human (¢) 12: Complex (s)
25: Al (s) 13: PAthreader (s)
QMODE2: — 1: dock2 (¢) — 3: QA (¢) —

2: dock2R (c)
5:dock2S (q)

Interface accuracy

QMODE2: —
Interface identity

2: dock2S (q)
4: dock2R (¢)
5: dock2 (c)

QMODE3: 3: MIEnsembles- —
monomer Server (q)
QMODES3: 13: —
homo-oligomer MIEnsembles-

Server (q)

4: MIEnsembles- —
Server (q)

QMODE3:
hetero-oligomer

4: Human (c)
6: PAthreader (s)
7: Assembly (s)
8: Complex (s)
— 3:QA (o) —
6: Human (c)
8: PAthreader (s)
9: Complex (s)
10: Assembly (s)

6: MULTICOM (s*)
7: human (c)

11: Assembly (s)
12: Complex (s)

5: SHORTLE (s)

9: GATE (¢) 14: QA (¢)
10: LLM (c¥) 17: PAthreader (s)
16: AI(s) 18: Human (c,q)
1: LLM (c*) 3: PAthreader (s) 5: SHORTLE (s)
2: human (c) 10: Complex (s)
6: GATE (¢) 11: QA (¢)
7: MULTICOM (s) 14: Assembly (s)
8: AI(S) 15: Human (c,q)
13: GATE (¢) 2: Human (c,q) 7: SHORTLE (s)

15: MULTICOM (s)
18: human (c)
21: LLM (c*)
22: A1 (s)

3: Assembly (s)
5: Complex (s)
8: QA (0
12: PAthreader (s)

Note: Entries in the table show the final rank (from the accompanying “Model Quality Assessment for CASP16” paper and the abbreviated name from Table 1 of the
sub-group methods for each prediction group). The letter in parentheses after the method name specifies the class of assessment algorithm: s=single-model, q =quasi-
single-model, c = consensus. Methods marked with asterisks use hybrid approaches as noted below®P.

ac*: MULTICOM_LLM applied a single-model approach (EnQA) for targets T12010, T1207, H1202, and H1204; a consensus approach (PSS) for the remaining targets

in QMODE! and QMODES3.

bs*: MULTICOM used a consensus approach for T1207 and a single-model approach (EnQA) for all other targets in QMODES3.

in previous editions of CASP, consensus methods generally per-
form most strongly, followed by quasi-single-model methods
and then single-model methods.

It has been noted that consensus methods are less relevant for
real-life use cases than for CASP challenges, because there are
rarely many independent models available that have been gen-
erated using a variety of algorithms [3]. It is reassuring, then,
that quasi-single-model methods can be reasonably competitive
[4]. It might seem counterintuitive that generating your own
reference models adds value to single-model methods, but the

process of generating a model integrates all the information that
might have been used for evaluation, and consistency among
multiple models will give some indication of reliability.

2.1 | MIEnsembles-Server Methods

During CASP16, the MIEnsembles-Server employed the StrMQA
method to evaluate the global modeling quality (SCORE)
and interface modeling quality (QSCORE) for protein com-
plexes in QMODE]. It also facilitated the selection of the most
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accurate protein monomer and complex models from MassiveFold
in QMODES3. StrMQA is a machine learning-based approach that
ranks candidate models by measuring their structural similar-
ity to a diverse set of high-quality reference models generated by
DMFold [5, 6], augmented by template information and individual
quality assessment (QA) scores from third-party tools as features.

In general, StrMQA incorporates four types of features: (1) struc-
tural similarity scores between candidate models and reference
models predicted by DMFold [5, 6], including TM-score [7, 8],
LDDT [9], and DockQ [10], with only the first two applied to pro-
tein monomers; (2) structural similarity scores derived from the
best templates for biological assemblies in protein complexes or
from the best monomer templates in the monomer PDB library; (3)
predicted average pLDDT from DeepAccNet [11]; and (4) predicted
CAD-scores from VoroIF-GNN [12]. For protein complex models,
these four types of features are input into two separate random
forest regression models to predict the global topology accuracy
(predicted TM-score, pTM) and interface accuracy (pDockQ) of
the input models. For protein monomer models, only the first three
types of features are used in a single random forest regression
model to predict the global topology accuracy (pTM). In StrMQA,
we have found that the structural similarity scores with reference
predicted structures are particularly critical.

2.1.1 | Generation of Predicted Reference
Structure-Based Features

DMFold is utilized to generate high-quality predicted reference
models for StrMQA. The initial step in DMFold involves the
creation of multiple sequence alignments (MSAs) for a protein
monomer or the monomer component of a protein complex using
DeepMSA?2 [6], which comprises three sub-pipelines: dMSA [13],
qMSA, and mMSA. These sub-pipelines are iteratively employed
to gather homologous sequences from genomic and metagenomic
databases, including Uniclust30 [14], UniRef90 [15], Metaclust
[16], Mgnify [17], BFD [16], and the IMG/M [18] large-scale metag-
enomics database. The MSAs produced by these sub-pipelines are
subsequently input into AlphaFold2 to predict a set of structural
decoys. These decoys are ranked according to their associated
pLDDT scores. To ensure both diversity and consensus, the top
five ranked MSAs are either directly used in protein monomer
modeling or paired as multimer MSAs for protein complex mod-
eling. The second step involves the generation of structural decoys
using a modified AlphaFold2 modeling engine. For each MSA,
100 decoys are generated and ranked based on the pLDDT score
for monomer targets or confidence scores (0.8ipTM +0.2pTM) for
complex targets. Finally, five top-ranked DMFold decoys from
different MSAs are selected as the final reference models. The
structural similarity between each reference model from DMFold
and the input models of the QA target is then calculated, yielding
five TM-scores, five DockQ scores, and five LDDT scores for each
model of the given QA target.

2.1.2 | Generation of Template-Based Features
A hybrid template detection protocol is employed to collect

structural templates. For protein monomer targets, Foldseek/
US-align [19-21] is used to identify the best templates from a

non-redundant PDB library, using the input model of the QA tar-
get as the query structure. For protein complex targets, Foldseek
[20] is initially applied to rapidly search for candidate monomer
templates corresponding to the component monomer chains.
Subsequently, biological assemblies, which include at least two
templates from different chains, are gathered into an assembly
template pool. Finally, US-align [19] is used to select the best
biological assembly based on structural similarity to the query
model. The TM-score of an input structure to the best assembly is
then utilized as a template-based feature for the StrMQA method.

MIEnsembles-Server used the same method to select QMODE3
as for QMODEL1 and just selected the top 5 decoys using a
global score.

DMFold, DeepMSA2, TM-score and US-align are freely avail-
able at https://seq2fun.dcmb.med.umich.edu/DMFold/. StrMQA
is still in development.

2.1.3 | MIEnsembles-Server Summary

What went right? The MIEnsembles-Server (StrMQA) achieved
first place in overall folding accuracy scoring (QMODEI-
SCORE) and second place in overall interface accuracy scor-
ing (QMODEI1-QSCORE). The strong performance of StrMQA
can be largely attributed to the high-quality models generated
by DMFold. Although StrMQA can be considered a consensus-
based approach to some extent, it diverges from traditional
consensus-based methods by not performing mutual scoring
or evaluation among the models within the model pool. This
distinction arises because conventional consensus-based meth-
ods heavily rely on the number of high-quality models within
the pool, which often vary in quality and are not directly con-
trolled by the assessment system itself. In contrast, the models
predicted by DMFold are selected as reference models, with
their structural similarity to the candidate models of QA target
being evaluated. To mitigate excessive dependence on DMFold
predicted structures, additional information and features are in-
corporated to complement the data provided by DMFold. The
high accuracy of these reference models is a crucial factor con-
tributing to StrMQA's strong performance in the EMA category.
Figure 1A presents an example of StrMQA's performance for
target H1213. For this target, the five reference models gener-
ated by DMFold had TM-scores compared to the experimental
target around 0.95, with four exceeding 0.97 and one reaching
0.94. The availability of these high-quality reference models en-
abled StrMQA to achieve superior performance. Consequently,
the top-ranked model selected by StrMQA attained a TM-score
of 0.976, with a difference of only 0.011 from the best model.
Overall, for this target, StrMQA demonstrated a TM-score loss
0f 0.01 and an oligo-GDTTS loss of 0.05. The Pearson correlation
coefficient (PCC) between the true TM-score and the predicted
overall folding accuracy was 0.99. StrMQA is most successful for
monomer assessment because it relies on newly generated struc-
tural models for quality assessment. In other words, the quality
of the reference model directly impacts the performance of our
quality assessment (QA) method, and it is substantially easier for
our pipeline to provide high-quality monomer structure predic-
tions. The case study described for H1213 (described above) also
illustrates this point.

4
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https://seq2fun.dcmb.med.umich.edu/DMFold/

(A) True TM-score distribution: H1213

0.50 060 0.70 0.80 0.90
TM-score

020 030 04

Best model
TM-score = 0.987

Selected top 1"'model
TM-score = 0.976

(B) True TM-score distribution: T1249v1

Count

, No 2 '
Seletted top 1 model Best model
TM-score = 0.377 TM-score = 0.979

FIGURE1 | MIEnsembles-Server: What went right and what went wrong? (A) Performance on target H1213, where StrMQA succeeded in choos-
ing a good model. (B) Performance on target T1249v1, where StrMQA chose reference models in the wrong conformation. See text for further details.

What went wrong? Figure 1B illustrates an example of a poor
model for T1249v1, which was incorrectly ranked at the top by
StrMQA. This target exhibits two alternative conformations,
and DMFold successfully predicted these two alternative struc-
tural conformations among all generated decoys. However, due
to an inherent weakness in the default AlphaFold2 model rank-
ing, the correctly predicted structure for T1249v1 was assigned
a lower confidence score. As a result, none of the top five ref-
erence models accurately represented the topology of T1249v1.
The TM-scores of these five reference models, when compared
to the experimental structure of T1249v1, were all below 0.40.
Furthermore, additional information could not compensate for
the detrimental impact of the incorrect reference models on this
target. This is evidenced by a PCC of 0.52 between the TM-score
and pLDDT from DeepAccNet, and a negative PCC of —0.31
between the TM-score and CAD-score from VoroIF-GNN.
Consequently, StrMQA's performance on this target was subop-
timal, as the PCC between the true TM-score and the predicted
overall folding accuracy was negative. Despite the presence of
several high-quality models among all submissions, StrMQA
failed to identify them. The TM-score of the top-ranked model
selected by StrMQA was 0.377, whereas the TM-score of the best
model was 0.979.

Assessors raised the question of whether a reason why mean
pLDDT would not work as well as a criterion for selecting mul-
timer MSAs could be difficulties of sequence linking when se-
quence annotations are limited (the issue is described in the
original DMFold publication). This could indeed be one of the
reasons. However, another contributing factor is that the con-
fidence score used by DMFold (0.8ipTM +0.2pTM, the same
as AlphaFold2 for protein complex modeling) is sometimes not
sufficiently sensitive to accurately identify the correct models in
complex modeling. If an incorrect DMFold model is selected as
a reference model, it will lead to an inaccurate assessment of

the decoys submitted by CASP groups. However, as we noted in
the previous discussion, the monomer modeling ranking score
(pLDDT) appears to be more robust for selecting high-quality
reference models for monomer proteins than 0.8ipTM + 0.2pTM
for protein complexes. An example of this is T1249v1. Although
we had an excellent model in the MIEnsembles-Server modeling
pool, its confidence score was low, resulting in its exclusion from
the top five models. Consequently, the incorrect top five models
were used as reference models for StrMQA, leading to erroneous
quality assessment results.

2.2 | ModFOLDdock2 Methods

We developed three distinct variants of ModFOLDdock?2 for our
automated QMODE2 submissions, each optimized for perfor-
mance on different metrics. Firstly, we developed the standard
ModFOLDdock?2 variant with global scores optimized for posi-
tive linear correlations with the observed scores. Secondly, we
developed ModFOLDdock2R with global scores optimized for
ranking, where the top-ranked models would have a higher over-
all observed accuracy. Finally, we developed ModFOLDdock2S,
a quasi-single model approach to score models, which integrated
our new version of MultiFOLD [22] to generate reference sets
of multimer models. Our QMODE3 manual submissions were
made using two methods: ModFOLD9Q, a quick version of
ModFOLD9 [23] for monomer ranking, and ModFOLDdock2Q,
a quick version of ModFOLDdock2R for multimer ranking.

The primary differences from the original version of
ModFOLDdock [24] included the integration of several new
component scores and optimization using new target func-
tions that were based on assessors' scores from CASP15. Each
server variant integrated specific combinations of compo-
nent scoring methods. We developed nine different consensus
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methods, which carried out all-against-all comparisons of
submitted models using different scores: QS-bestJury, DockQ-
waveJury, TM-scoreJury, Oligo-GDTJury, IDDTJury, CADJury,
PatchQSJury, PatchDockQJury, and ModFOLDIA. We used
OpenStructure [25] version 2.7 to obtain the QS [26], DockQ
[27], TM-score [8], GDT [8], IDDT [9] and CAD [28] scores for
each pairwise comparison (using the “ost compare-structures”
action). We also used three different single-model scoring
methods: VorolF [12], VoroMQA [29], and CDA [30, 31]. The
VoroIF(VoroIF-GNN) and VoroMQA(voronota-js-voromqa)
methods were used off-the-shelf, VoroIF with the “as-assembly
true” and “local-column true” options, and VoroMQA with the
“inter-chain” and “output-dark-scores” options. Our Contact
Distance Agreement (CDA) score used the contact prediction
profiles that resulted from generating multimer models with
LocalColabFold [32].

Figure 2A-C shows flow charts for the three variants of the
ModFOLDdock2 methods, which we used for our QMODE?2 sub-
missions. The component scoring methods contributing to the
final output scores for each ModFOLDdock?2 variant are high-
lighted in green, and the arrows indicate how they contribute
to each output score. The ModFOLDdock2 variant (Figure 2A)
produced predicted scores optimized for positive linear correla-
tions with the observed scores, that is, the predicted quality
scores correlated well with the observed quality scores, accord-
ing to the assessors’ formulae for CASP15 multimer models
[33]. The ModFOLDdock2R variant (Figure 2B) used different
combinations of methods to contribute to the final global scores,
which were optimized for global ranking or model selection.
The ModFOLDdock2S variant (Figure 2C) also used different
components for the global scores. Furthermore, the local scores
were fed into a neural network trained to learn the mean of
the observed local interface scores (Figure 2D). Importantly,
the ModFOLDdock2S variant also used a quasi-single model
approach, relying on the generation of reference sets of models
using MultiFOLD2.

For the QMODE3 category, we developed quicker versions
of our ModFOLD9 (ModFOLD9Q) and ModFOLDdock2
(ModFOLDdock2Q) methods to manually score and rank the
monomeric and multimeric MassiveFold models, respectively.
In the ModFOLD9Q method, the top 40 ModFOLD9 ranked
server models for Phase 1 targets were used as reference sets for
comparison against the MassiveFold models using the mean of
the GDTJury and 1IDDTJury scores. For multimers, we devel-
oped ModFOLDdock2Q, where up to 40 MassiveFold models
were first selected using VoroIF and then used as reference sets
for comparison against the MassiveFold models, which were
scored in the same way as ModFOLDdock2R.

The ModFOLDdock?2 server is available at: https://www.readi
ng.ac.uk/bioinf/ModFOLDdock/. ModFOLDdock?2 is also avail-
able to download via the MultiFOLD2 docker image: https://
hub.docker.com/r/mcguffin/multifold2.

2.21 | ModFOLDdock2 Summary

What went right? The ModFOLDdock2 method ranked
first place for both the global and local interface accuracy

scoring (QMODE1-QSCORE and QMODE2). The other
ModFOLDdock2 variants were placed among the top five meth-
ods according to many other metrics. The ModFOLDdock2
variant performed well according to correlations and ROC
scores, whereas the ModFOLDdock2R performed better ac-
cording to the loss than the other variants (https://prediction
center.org/caspl6/results.cgi?tr_type=accuracy), which was
expected due to their specific score optimizations.

Figure 2E shows an example of excellent ModFOLDdock2
performance according to the QS score. For this target,
ModFOLDdock?2 achieved near-perfect loss and ROC scores and
very strong correlations. The McGuffin group also ranked in
second place in the QMODE3 category on monomers. This indi-
cated that our ModFOLD9Q method reliably selected reference
sets of models for accurately ranking the top monomer models
(Figure 2F).

What went wrong? Despite these successes, specific tasks
remained challenging. Figure 2G shows an example of a
model for T12180, which was incorrectly ranked at the top
by ModFOLDdock2. The native conformation is shown in
Figure 2H. For this target, models with incorrect conforma-
tions were selected and ranked at the top. This led to negative
correlations, random ROC scores, and a large loss. We also
had issues with our QMODES3 predictions for multimers. We
relied on VoroIF for the rapid selection of reference models;
however, for several targets, the top-selected models had se-
vere clashes, which greatly impacted our overall performance
in that category. Indeed, these different approaches used for
monomers and multimers help explain why our method per-
formed much better for monomer targets than for multimer
targets in QMODE3. For ranking the MassiveFold monomers,
we relied on our trusted ModFOLD9 method for selecting
models. ModFOLD?9 is very reliable for scoring monomer mod-
els (it currently outperforms all other methods in CAMEO),
but it cannot be used for multimer models. For multimers,
we needed a rapid scoring method to identify reference sets
of models, so we chose VoroIF for this part because it per-
formed very well in CASP15 and was relatively quick to de-
ploy. We therefore learned that, unfortunately, VoroIF could
not be relied upon to identify the errors for some MassiveFold
models in cases where the subunits had significant clashes or
overlaps. This caused errors with our subsequent model com-
parisons due to the low-quality sets of reference models. In
future, we will use ModFOLDdock2R to select from the Phase
1 models to be used as reference sets. In addition, our reliance
on manual submission for QMODE3 led to human errors—we
missed a few submission deadlines and could not inspect the
models before submission due to lack of time. This could be
resolved through automation.

A first point noted by assessors was the performance differ-
ence between ModFOLDdock2 and ModFOLDdock2R in the
QMODE] category. ModFOLDdock?2 achieved stronger results
because its predicted scores more accurately reflected the abso-
lute observed model quality scores, so the method performs bet-
ter according to the Pearson, Spearman, and ROC scores, which
account for 3/4 of the scores making up the final method rank-
ing. ModFOLDdock2R does better according to the loss, which
is not unexpected as it is optimized to rank the best models at the
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FIGURE 2 | The ModFOLDdock2 methods, what went right and what went wrong. (A) Flow of data and processes for ModFOLDdock2 with
scores optimized for global correlations. The 3D models and the target sequences are inputs (left), which are then processed by the specific com-
ponent methods highlighted in green (middle) to produce each of the output scores required for QMODE?2 submissions (right). (B) Flowchart for
ModFOLDdock2R optimized for global ranking or model selection. (C) Flowchart for ModFOLDdock2S, a quasi-single model approach using
MultiFOLD2. (D) The multi-layer perceptron (MLP) for the ModFOLDdock2S local scores with an example of the scoring. Left: Scoring an example
residue (red sticks, TRP-100 on chain A = A100) includes the scores for the five closest contacting interface residues (< 8 A) in order of their proxim-
ity to A100 (blue sticks). Right: NN architecture. 48 input neurons (8 scores x 6 residues), 6 hidden neurons, and 1 output (mean of the local IDDT,
CAD, PatchQS, and PatchDockQ scores). (E) Example of excellent QMODE1/2 performance by ModFOLDdock2. The top selected model for T12920
is colored by predicted interface residue accuracy from blue (high confidence of interface residue) to red (non-interface residue or very low confi-
dence). QS Loss=0.005 and QS AUC=0.9987. (F) Example of excellent QMODE3 performance by ModFOLD9Q with zero penalty overall. The top
selected model for T1212 (cyan) superposed with the native structure (green). Penalty w=0.000 (G) Example of poor QMODE1/2 performance by
ModFOLDdock2. The top selected T12180 model, colored by chain identifiers. (H) The T12180 native structure, colored by chain identifiers.
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top. However, because the relationships between the observed
and predicted scores are not linear, ModFOLDdock2R performs
worse on the correlations and ROC scores.

A second point noted by the assessors was that, in CASP15, the
QSCORE was significantly lower than the baseline assembly
consensus (AC) measure; while those positions were reversed
in CASP16. We can understand this by considering that, in
CASP16, we optimized for more appropriate target functions
and included more input scores that better reflect the QSCOREs.
Furthermore, our handling of larger structures also improved;
we were more efficient at chain mapping, and we had faster ma-
chines and faster methods for scoring.

2.3 | MULTICOM EMA Methods

During CASP16, three predictors of the MULTICOM group
participated in two modes of the EMA category: QMODEI1 for
global model quality estimation and QMODE3 for selecting the
top five models and achieved competitive performance.

In QMODE1, MULTICOM_LLM used a single model EMA
method (EnQA [34]) based on a 3D-equivariant neural network
to predict global fold accuracy of the models for three early
targets (i.e., T1201o, H1202, and H1204) and then switched to
use the average pairwise similarity score (PSS) [35] between a
model and other models, calculated by MMalign [36] (a multi-
model consensus method), to estimate model accuracy for the
remaining targets. MULTICOM_GATE utilized a graph trans-
former (GATE [37]) integrating the quality features of individual
models and the similarity between models to predict global fold
accuracy (e.g., TM-score [7, 21]).

In QMODES3, to reduce the time complexity of selecting the top
five models from many MassiveFold [1] generated AlphaFold2
models (usually thousands), 200 models were first selected
using AlphaFold-Multimer's confidence scores for two predic-
tors MULTICOM_LLM and MULTICOM_human to make the
final selection, respectively. MULTICOM_LLM used here is the
same as the one used in QMODE1. MULTICOM_human used
the average of three complementary quality scores: the average
CAD-score [28] between a model and other models, the qual-
ity score predicted by a geometry-complete neural network
(GCPNet-EMA [38]), and the quality score predicted by a vari-
ant of the GATE model trained on our in-house CASP15 com-
plex models generated by MULTICOMS3 [39, 40], to select five
models. This GATE variant uses AlphaFold-Multimer model
features, such as confidence score, ipTM, and pTM, inter-chain
predicted aligned errors (< 5A), and mpDockQ score [41] as well
as the features of the default GATE [37] to predict the quality of
structural models. If a complex target was too large to obtain
AlphaFold-Multimer features for its models, the default GATE
[37] without the features was used to generate quality scores
for them.

The source code of the methods used by the MULTICOM group
for the EMA category is available at https://github.com/Bioin
foMachineLearning/gate, with running instructions provided at
https://github.com/BioinfoMachineLearning/gate/tree/main/
MULTICOM_EMA.

2.3.1 | MULTICOM EMA Summary

The MULTICOM group delivered competitive performance
in QMODE1, with MULTICOM_LLM ranking second and
MULTICOM_GATE fourth in QMODE]1 for the global fold ac-
curacy estimation. Figure 3A illustrates the per-target Pearson's
correlation and ranking loss for MULTICOM_LLM across multi-
meric targets. On average, MULTICOM_LLM achieved a ranking
loss of 0.123 and a Pearson's correlation of 0.686. Notably, 25 out of
38 targets (65.79%) have a correlation higher than 0.686, while 28
targets (73.68%) have a ranking loss lower than 0.123. Generally,
the targets with a high correlation tend to have a low loss, except
for the early targets (T1201o0, H1202, and H1204) to which EnQA
was applied EnQA, a single-model quality assessment method,
performed well in ranking good models at the top for these tar-
gets but failed to approximate predicted quality scores relative to
native scores, leading to low correlation. For instance, for H1204
(a very hard nanobody target), EnQA successfully identified the
best model as top 1 with a ranking loss of 0 but had almost zero
Pearson’s correlation of —0.01. In contrast, other multi-model qual-
ity assessment methods such as MULTICOM _GATE failed to rank
a good model at the top for this target and had a high loss (0.284).

The PSS method used in MULTICOM_LLM performed well
when the model pool contained a large cluster of good-quality
structures. For instance, for T1269vlo (Figure 3B), where 58%
of models had TM-scores> 0.7, PSS reliably identified the best
model (TM-score=0.978), resulting in a ranking loss of 0.
However, its performance declined in cases where the similar
low-quality models formed the largest cluster, such as T12180
(Figure 3C). In these cases, PSS prioritized the low-quality mod-
els in the largest cluster because they have higher PSS scores,
underscoring a key limitation of the consensus-based scoring for
model pools with few good models and many similar bad mod-
els. The ranking loss of PSS for T12180 is 0.635.

MULTICOM_GATE tackled this issue by constructing pairwise
similarity graphs between models, sampling subgraphs evenly
from model clusters, and utilizing graph transformers to predict
model quality. This enabled it to outperform PSS in some cases,
such as the nanobody target H1215, where it successfully iden-
tified a good model (loss: 0.003) from a smaller, higher-quality
cluster that PSS in MULTICOM_LLM overlooked, leading to a
high loss of 0.377. However, the average loss of MULTICOM _
GATE and MULTICOM_LLM is still comparable across all the
targets (0.122 vs. 0.123).

It is worth noting MULTICOM_LLM and MULTICOM_GATE
treated AlphaFold2- and AlphaFold3-generated models in model
pools equally. MULTICOM_LLM ranked an AlphaFold3 model
at top 1 for 13 out of 38 targets (34.2%); while MULTICOM _
GATE ranked an AlphaFold3 model at top 1 for 11 out of 38
targets (28.9%). Here, we distinguish AlphaFold3 models from
AlphaFold2 models according to the pIDDT values at the atom
level because the former has different pIDDT values for different
atoms in the same residue, while the latter has the same plDDT
values for all the atoms of the same residue.

In QMODE3, MULTICOM_LLM, and MULTICOM_human
ranked first and second for homo-multimers among CASP16
EMA predictors, based on their weighted penalty scores across
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FIGURE 3 | (A) Per-target ranking loss and Pearson’s correlation of MULTICOM_LLM in QMODE]. Red dots denote correlations and blue bars
ranking losses. (B) The true TM-score distribution of the models of T1269v1o. (C) The true TM-score distribution of the models of T12180.

global, local, and interface quality metrics. Here, the penalty
score is calculated as the sum of the mean square error (MSE)
between the true quality scores of the top 5 models selected by
a method and those of the actual top 5 models (ranked by their
true quality scores). Lower penalty scores indicate better model
selection accuracy, while higher scores reflect greater mis-
matches. Both MULTICOM_LLM and MULTICOM_human
also outperformed the default AlphaFold2-Multimer's confi-
dence score in selecting models for homo-multimers. However,
they struggled with hetero-multimers, particularly having
higher penalty scores in interface quality metrics.

The reason may be that MULTICOM_LLM (or MULTICOM_
human) used the average TM-score (or CAD-score) between
a model and other models to select the top five models, which
mainly considered global fold accuracy without directly taking
the interface quality into account.

2.4 | GuijunLab Methods

In CASP16, we significantly advanced our previously established
EMA methods [42-47] by developing two distinct single-model

approaches: GraphCPLMQAZ2L (Group: GuijunLab-PAthreader)
for model local accuracy estimation and DeepUMQAS (Group:
GuijunLab-Complex) for model global accuracy estimation.
Building on these developments, we further incorporated a
consensus-based strategy to establish DeepUMQA-X (Group:
GuijunLab-QA & Human), a unified framework for scoring,
ranking, and selecting complex protein models, as illustrated in
Figure 4A.

2.4.1 | Single-Model Method for Local
Accuracy Estimation

GraphCPLMQAZ2L is an enhanced version of our previous
single-model method, GraphCPLMQA [42]. This approach
employs a graph-coupled network to integrate sequence, struc-
tural, evolutionary, and statistical features, facilitating the ac-
curate characterization of relationships between individual
residues and their corresponding residue-level accuracy, as
quantified by pIDDT [9]. Specifically, the sequence features
include one-hot encoding, relative position encoding, and the
physicochemical properties of amino acids; the structural fea-
tures include triangular position, voxelization, residue-residue
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models, and the light blue regions represent the native structures.

distance and orientation maps, backbone torsion angles and
bond lengths, along with secondary structure information;
the evolutionary features include embeddings from the pro-
tein language model ESM [48] and AlphaFold Evoformer

and contact maps. Finally, the local residue accuracy score
(pIDDT) is computed based on the predicted maps.

[49]; the statistical features [11] include Rosetta energy terms
and Blosum62 scores. Given a protein model, these features
are first extracted and input into a deep graph network mod-
ule to predict a reference model, which serves as a geometric
constraint approximating the native structure. Subsequently,
the geometric constraint, along with the extracted features,
is employed in a deep convolutional neural network lever-
aging transformer-based strategies to predict distance bias

2.4.2 | Single-Model Method for Global
Accuracy Estimation

DeepUMQAS extends DeepUMQA [43] for global accuracy es-
timation (i.e., SCORE), as quantified by TM-score [8]. Similarly,
DeepUMQAS also extracts sequence, structural, and statistical
features from protein models. These features are divided into
three hierarchical levels according to the relationship between
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the residues and their surrounding environment: residue-
microenvironment, residue-macroenvironment, and global
residue representations. These representations are processed
in parallel through hierarchical network architecture to predict
the global quality score, pTM-score. The network architecture
integrates a convolutional neural network, a transformer net-
work, and a graph attention network, leveraging their comple-
mentary strengths to enhance prediction accuracy. Notably, the
key feature of this method is its exclusive reliance on the intrin-
sic information of the model structure itself, deliberately omit-
ting any incorporation of evolutionary information. This design
ensures that the prediction results remain entirely independent
of the MSAs or template-based information (i.e., evolutionary
information) typically utilized in protein structure modeling,
thereby offering a new and fully decoupled solution for protein
model accuracy estimation.

2.4.3 | DeepUMQA-X Framework

DeepUMQA-X integrates two independent single-model meth-
ods, GraphCPLMQA2L and DeepUMQAS, with a consensus
strategy to establish a comprehensive framework for scoring,
ranking, and selecting protein models (Figure 4A). Specifically,
given a set of protein models, the single-model methods
GraphCPLMQA2L and DeepUMQAS are first used to evalu-
ate residue-level local quality and topology-level global quality,
respectively. The models are then ranked based on their local
and global quality scores to jointly select high-quality candidate
structures. The selection criteria for candidate models are as fol-
lows: (a) The average local interface residue quality score (ip-
IDDT) must rank within the top n% of models (GuijunLab-QA:
n=25; GuijunLab-Human: n=50); (b) The global quality
score (pTM-score) must rank within the top m% of models
(GuijunLab-QA: m=25; GuijunLab-Human: m=50); (c) The
stoichiometry must be correct; (d) The maximum residue gap
is 10%; (e) Each single-chain structure must contain interface
residues. The candidate structures are then used as reference
models to align with all model structures through the protein
structure alignment suite, OpenStructure [25], calculating the
similarity scores of each model in terms of overall, interface,
and local metrics. Finally, based on these scores, the models are
reselected and reassessed to refine the evaluation quality of dis-
tinct metrics. It is worth noting that we introduced a lightweight
interface alignment strategy specifically tailored to improve the
efficiency of structure alignment for large assemblies and mas-
sive models. This method calculates alignment scores by utiliz-
ing sequence consensus among interchain interface residues,
thereby substantially reducing computational overhead.

2.4.4 | DeepUMQA-X for MassiveFold Model Selection

DeepUMQA-X demonstrated superior performance in the selec-
tion of MassiveFold [1] models for hetero-oligomeric complexes,
where the method integrates structural clustering and modeling
techniques to select the top 5 models. The MassiveFold model
selection pipeline was implemented through a comprehensive
five-stage protocol: (1) Reference establishment: an initial model
was randomly selected as a reference model, and all remaining
models were structurally aligned against it using USalign [19] to

compute structural similarity scores; (2) Structural clustering:
models were grouped through hierarchical clustering based on
their similarity scores, with a stringent cutoff threshold of TM-
score <0.001 to maximize structural diversity; (3) Initial model
pool construction: from each resulting cluster, a representative
model was selected through random sampling to construct the
primary model pool; (4) Model pool enhancement: to further
diversify and improve model quality, we integrated additional
high-quality prediction models from multiple sources, including
AlphaFold-Multimer [50], AlphaFold3 [51], HDock [52], and our
in-house modeling methods (detailed in CASP16 abstract); (5)
Final model selection: all candidate models underwent rigorous
quality assessment using DeepUMQA-X, from which the top
five top-ranked models were selected based on their predicted
accuracy score.

2.4.5 | Atomic pLDDT Values in Predictions

Our group submitted structures with per-atom accuracy self-
assessment derived from AF3, which were selected considering
structure modeling methods and our quality assessment meth-
ods. Specifically, we generate many models using AlphaFold-
Multimer, AlphaFold3, HDock, and our in-house modeling
methods (see CASP16 abstract). For these models, top structures
were selected using DeepUMQA-X. If the final top five model
was from AF3, the submitted structure remained unmodified.

DeepUMQA-X is freely available at http://zhanglab-bioinf.com/
DeepUMQA-X.

2.4.6 | Guijun Group Summary

What went right? DeepUMQA-X demonstrated advanced per-
formance in scoring, ranking, selection, and self-assessment of
complex models. Notably, it achieved the best performance in the
IDDT metric of local interface accuracy assessment. Figure 4B
shows an example of DeepUMQA-X assessing local interface
accuracy for a model of target T1206. The predicted quality
pIDDT demonstrates remarkable agreement with the true IDDT
distribution, where red indicates low-quality regions and blue
indicates high-quality regions. Meanwhile, DeepUMQA-X also
achieved the best performance in T12590 and H1222 targets
for MassiveFold model selection, as shown in Figure 4C. For
these two targets, DeepUMQA-X selected top-ranked struc-
tures highly similar to the native structure, with a penalty value
of 0. According to the description of our EMA methods in the
CASP16 abstract, we categorized different method types into
consensus methods, quasi-single model methods, and single-
model methods. The results indicate that our single-model
methods performed well in the estimation of global, interface,
and local accuracy for complexes.

What went wrong? When evaluating global accuracy metrics
for protein complexes, DeepUMQA-X showed limited correla-
tion performance, as evidenced by relatively low Pearson and
Spearman correlation coefficients between its predicted quality
scores and reference values. This correlation deficiency was par-
ticularly pronounced in the Oligo-GDTTS [33] metric assessment,
as illustrated in Figure 4D (left panel). Comprehensive analysis
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across all CASP16 targets revealed that the official consensus
baseline method (AC) demonstrated the best performance,
achieving Spearman (0.508) and Pearson (0.761) correlation
coefficients. In comparison, DeepUMQA-X showed relatively
lower correlation values (Spearman=0.376; Pearson=0.643).
However, in local interface accuracy assessment, DeepUMQA-
X's pIDDT predictions exhibited significantly better performance
than PatchDock, PatchQS [33] and CAD [28], as evidenced by
higher Pearson correlation coefficients (Figure 4D, right panel).
This performance discrepancy may stem from our method's re-
liance on IDDT and TM-score metrics, potentially introducing
assessment bias and limitations by neglecting other relevant
quality evaluation metrics. Additionally, DeepUMQA-X per-
forms relatively poorly in the monomer MassiveFold model se-
lection, as shown in Figure 4E for its results on monomer targets
T1207 and T1226. For these two targets, the top-ranked struc-
ture selected by DeepUMQA-X had relatively low quality, with
penalty values of 0.532 (T1207) and 0.529 (T1226). Similarly,
this performance limitation primarily stems from our method'’s
original design focus on complex model accuracy assessment,
lacking specific optimization parameters and features tailored
for monomer structure evaluation.

Assessors raised the question of whether we had any in-
sight into why interface accuracy estimation would be bet-
ter for GuijunLab-QA than for GuijunLab-Human. The
GuijunLab-QA and GuijunLab-Human methods are both based
on DeepUMQA-X, integrating two single-model evaluations and
a consensus evaluation strategy, while relying on different high-
quality candidate model pools. Briefly, the main difference be-
tween the GuijunLab-QA and GuijunLab-Human methods lies
in the criteria of model pool selection, where they filter the top
25% (GuijunLab-QA) or 50% (GuijunLab-Human) of high-quality
models from all candidate models based on pTM-score and ip-
IDDT. In fact, compared to the GuijunLab-Human method that
uses the top 50% parameter settings, the GuijunLab-QA method
applies the top 25% criterion resulting in a higher-quality model
pool, which enables it to improve the accuracy of the evaluation
as reference models for structural consensus.

What did we learn? Through comprehensive analysis of complex
structure prediction and estimation of model accuracy results
from CASP16, we have gained critical insights into EMA track
performance and identified multiple promising research direc-
tions for our group.

First, the blind assessment results demonstrated that consensus-
based methods still significantly outperform single-model
methods, while quasi-single-model methods exhibit outstand-
ing performance. Since both consensus-based and quasi-single-
model methods rely on the accuracy of structure prediction
methods, we hypothesize that advancements in model quality
assessment may be lagging behind progress in structure predic-
tion. Therefore, incorporating relevant information from struc-
ture prediction or adopting self-assessment mechanisms similar
to AlphaFold's evaluation framework could potentially enhance
the performance of EMA methods.

Second, in the local accuracy estimation track, we observed
that the Group MQA, which ranked first in local interface res-
idue identification, significantly outperformed lower-ranked

methods, including those from GuijunLab. However, it exhib-
ited poor performance in local interface accuracy assessment.
To further investigate this discrepancy, we analyzed the true
local quality performance in local interface residue identifica-
tion, obtaining ROC AUC values of IDDT=0.613, CAD =0.584,
PatchQS=0.814, PatchDockQ =0.817. These empirical findings
strongly suggest that relying exclusively on local quality met-
rics may be inadequate for comprehensive evaluation across
both local interface accuracy assessment and residue identifica-
tion tasks.

Finally, in light of the newly established assessment tracks in
structure prediction and model accuracy estimation, we believe
that several critical research directions are essential for advanc-
ing model quality assessment methodologies: (1) development
of robust evaluation frameworks for structures with unknown
stoichiometry and dynamic conformational states, (2) imple-
mentation of per-atom accuracy assessment protocols, and (3)
establishment of efficient massive model selection strategies.
These advancements are expected to significantly contribute to
the progress of structural biology by providing more comprehen-
sive and accurate tools for protein structure analysis.

2.5 | Shortle Group Methods

The native state of a protein is presumed to be the conformation
of lowest free energy. Although this free energy cannot be calcu-
lated, it can be approximated by comparing structural details of
apredicted model with the statistics of the same features in high-
resolution x-ray structures. To the extent that details of structure
are the consequence of their low free energy, as assumed by the
Boltzmann hypothesis, comparison of numerous diverse struc-
tural features with the statistics of their occurrence in real pro-
teins should provide a rough estimate of the overall free energy.
Here we apply this idea to assessing the large sets of MassiveFold
models available in CASP16, using several structural details
that quantify atom-atom overlap, Ramachandran propensities,
hydrogen bonds, and atom-atom interactions. Parameter values
were calculated, ranked by placement into 20 equal value bins,
and then added to give a final score of overall model quality. The
results of this approach were significantly better than the aver-
age of the Al-based methods and suggest improved quality as-
sessment could be achieved by comparing more parameters, by
using more appropriate high-resolution x-ray structure libraries,
and by utilizing more rigorous methods of balancing the contri-
bution of individual parameters to the final score.

In the context of physical chemistry, low global energy is achieved
by optimizing most or all of the different bonding interactions and
structural arrangements of atoms to near their individual lowest
free energies. Unfortunately, at present, a sufficiently quantitative
understanding of the forces involved to allow these minima to be
calculated is not available. The best one can do is approximate parts
of a protein's free energy function by examining high-resolution
x-ray structures and identifying those local atom arrangements
that differ in quantifiable detail from those found in lower ac-
curacy structures. Presumably, such common arrangements of
atoms represent structures that achieve low free energies. Stated
in more physical chemical terms, if the Boltzmann approximation
holds [53], then statistical parameters derived from an ensemble of
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highly accurate structures will reflect the potential of mean force
for components of the overall free energy.

The methods employed in this work use a conventional strategy
[54, 55]: analyze the statistics of structure descriptors of atom
groupings that consistently correlate with high experimental ac-
curacy; in other words, those features that are more common at
higher resolution than in lower resolution, as defined by the ex-
perimentalist as the model's “x-ray resolution.” With the larger
number of data points collected by x-ray crystallography re-
quired to achieve higher resolution, the crystallographer’s three-
dimensional model is confined to a smaller and smaller set of
conformational possibilities that fit the data. The same argument
can be made for the correspondence of the two experimental R-
factors with model accuracy.

Identifying those structural details that most consistently cor-
relate with high experimental resolution requires considerable
trial and error. In this work, the statistics of different measures
of atom-atom overlap, backbone phi/psi and chil angles, hy-
drogen bonds, and atom-atom distance distributions have been
calculated from a set of +2700 monomeric PDB x-ray structures
with reported resolutions of 1.4A or less.

Obviously, the choice and combination of parameters reported
here is based on the author's experience and intuition. In this
work, various parameters developed by the author over the past
12 rounds of CASP were used. No attempts were made to refine/
adjust the methods of their calculation to reduce or eliminate
correlations among them, or to combine them in ways other
than simple addition. Each parameter's performance was eval-
uated by comparing the correlation of calculated values versus
x-ray resolution and also by success in the discrimination of the
correct structure challenged by sets of 1000 decoy models.

Figure 5 shows a list of the eight parameters used in CASP16
for quality assessment (QA3), plus the results of applying them
to a set of 1800 proteins from the PDB with reported x-ray reso-
lutions from 0.7A to 2.5A. The parameter values were rank or-
dered from lowest to highest energy and then divided into 20
bins with an equal number of values per bin.

Pearson Correlation Coefficients: Parameters vs X-ray Resolution

linear atom overlap

overlapl 0.346
Overlap? "E—— 0.076
hi/psi or chi angl
. phi/psi or chi angles 0.309
dimer 0.215
rotamer 0.145
. . hydrogen bonds
side-chains 0.239
backbone 0.214
pair-wise potential
atom-atom e— 0.152
final score 0.467

sumof 8
0.0 0.05 0.1 0.15 0.2 0.25 03 035 0.4 0.45 0.5
Correlation with X-ray Resolution
FIGURE 5 | Statistical correlations of the eight scoring parameters
used in this work versus the x-ray crystallographers’ measure of resolu-
tion; that is, these correlation coefficients serve as rough measures of a
parameter's efficacy in assessing the accuracy of a structure.

Atom-atom overlap was not raised to a higher power, as is done
for energy calculations. Rather, a linear measure of overlap ver-
sus structural error seems more reasonable. The first of the two
parameters shown in Figure 5, the linear overlap between im-
mediately adjacent residues i to i+1 (overlapl), correlates with
x-ray resolution more strongly than overlap2, which is total
overlap calculated between residues separated by 5 or more.
Surprisingly, local overlapl displayed the highest correlation
with x-ray resolution of any of the other 7 parameters.

Next in the list on Figure 5 are three statistical propensities
for backbone phi/psi and chil angles [56, 57]. To calculate the
monomer potential, the Ramachandran plot of phi/psi angles
for single residues was divided into 137 bins, with calculation
of this parameter for each amino acid type and separately for
alpha helices, beta strands, and turn/loop/irregular segments
[56]. Notably, the monomer parameter shows the second highest
correlation with x-ray resolution. For the dimer potential, phi/
psi angles for each of two adjacent residues were divided into
26 bins. Only residue pairs for beta strands and for junctions be-
tween helix/strand and irregular segments were calculated, and
these two values combined form the dimer potential. The rota-
mer potential was calculated for single amino acid residues in
each of the 3 separate secondary structural types, with the phi/
psi angles assigned to 26 bins and the x1 angle to 3 bins.

Hydrogen bonds for side-chain to side-chain or backbone atoms
consisted of a distance-dependent statistical potential of nine
hydrogen bond donor atoms and five hydrogen bond acceptors.
For backbone to backbone hydrogen bonds, the potential devel-
oped by the Baker lab was employed [58].

The atom-atom interaction parameter is based on 86 atom types
and was scored over a surface-to-surface distance range of 0
(contact) to 2.0 A divided into 0.1 A bins.

While the individual correlation coefficients shown in Figure 5 are
not large and several may not be statistically significant, when the
ranked values are simply added together for the final_score, the
correlation coefficient is 0.467. If the correlation is made between
final_score and the R-factor or the R-free factor instead of the x-
ray resolution, the results are essentially unchanged (not shown).
The relationship between these three experimental values and the
accuracy relative to the “true” structure cannot be clearly defined,
but they do represent an approximate measure of the range of con-
formations that could fit the experimental data.

The original plan to score the 8000 models generated by the
Massive protocol was to convert each value calculated for a mod-
el's parameter value into a ranking relative to the scores of the
best PDB structures as mentioned above. However, for all of the
targets, only a small number of parameters for a very small num-
ber of these models scored at or lower than the highest energy
bin. Consequently, instead, the 8000 model scores for each pa-
rameter were rank ordered into 20 equal bins, and the bin num-
bers for the 8 parameters in Figure 5 were simply added together
to give the final score, using this value as the measure of quality.

The performance rating of final_score in the QA3 challenge
given by the assessor was as follows: For monomeric targets,
the 5 structures deemed highest in quality for each target were
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tied for 3rd place among the 22 different contributing groups.
For the homo-oligomeric targets, the submitted structures were
ranked 5 in accuracy compared to 24 groups, and for the hetero-
oligomeric targets, ranking was 11/24.

2.5.1 | Shortle Group Summary

These initial results establish that, for the assessment of model
accuracy, there is merit in the use of statistics derived from the
frequencies of multiple different structural details as proxies for
components of a model's free energy. Furthermore, these results
suggest that this approach could be greatly improved by making
the following modifications, which were not applied in CASP16:

1. The final scoring function should use Multiple Regression
to generate a function that combines individual parame-
ter values to reduce correlations among parameters and to
properly weight each parameter.

2. Separate probability tables for each parameter should be
calculated from PDB structures for three distinct librar-
ies: monomeric proteins, homo-oligomers, and hetero-
oligomers. In this work, only one library of monomeric
proteins was used for all probability tables.

3. For oligomeric proteins, better still would be separate ta-
bles for interfacial residues versus residues outside the
interface.
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