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A B S T R A C T

Reliable soil property maps are essential for environmental modeling, yet conventional mapping methods remain 
costly and time-consuming. We developed a machine learning framework that integrates the Soil-Landscape 
Estimation and Evaluation Program (SLEEP) with gradient boosting to predict soil properties at regional 
scales and multiple depths. Our approach addresses multicollinearity through a recursive feature selection al
gorithm. We applied this framework to a tropical region characterized by a ~700-km longitudinal gradient of 
contrasting topography, climate, and vegetation (~98,000 km²; NE Brazil), where scarce soil physicochemical 
data limit environmental modeling. We used six topographical, ten climate, and two vegetation covariates, along 
with data from 223 soil profiles (~1 profile per 440 km²). Training and testing of our framework demonstrated 
strong spatial performance (r² = 0.79–0.98 and percent bias = − 1.39–1.14 %). Topographic and climatic factors 
held greater weight than other variables in predicting soil layers, texture, and sum of bases. Moreover, we used 
our soil parameters combined with multiple pedotransfer functions (PTFs) to derive soil hydraulic properties. 
Our PTFs-derived estimates of hydraulic conductivity were considerably lower than high-resolution global 
predictions available for our study areadue to differences in clay fraction and mineralogy. Therefore, we 
recommend the use of region-specific PTFs for hydraulic properties based on multi-covariate soil property maps. 
This cost-effective framework accurately integrates diverse environmental covariates, adapts to varying soil data 
availability, and scales across spatial resolutions, making it highly transferable to other data-scarce regions.
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1. Introduction

Soils are a key component in many landscape models that focus on 
providing solutions to global environmental issues such as food and 
water scarcity, unsustainable energy production, and biodiversity losses 
(Bouma and McBratney, 2013). For a more comprehensive under
standing of the role of soils in addressing these global challenges, as well 
as their interactions with other environmental factors, it is necessary to 
map the spatial distribution of soil properties robustly. Soil mapping is 
complex and highly resource-intensive (Li and Heap, 2014; Mendon
ça-Santos and dos Santos, 2006), and the majority of the existing maps 
were produced using conventional soil survey protocols (Hartemink 
et al., 2012), which remains the primary approach to capture soil spatial 
variability. However, this surveying approach has been criticized for 
being heuristically dependent on the practical knowledge of pedologists, 
and for deriving interpretations using sometimes insufficient or incom
plete datasets (Scull et al., 2003).

Digital Soil Mapping (DSM) is a quantitative approach to mapping 
soil properties using statistical relationships between soil observations 
and environmental variables. It was formalized with the SCORPAN 
model, which considers factors such as soil properties, climate, vegeta
tion, topography, and spatial position to guide the selection of covariates 
in DSM (McBratney et al., 2003) to produce models capable of inter
polating and extrapolating data with high resolution (Scull et al., 2003). 
DSM reduces survey costs and improves access to soil data by leveraging 
advances in remote sensing, geospatial analysis, and machine learning 
(ML) (Kempen et al., 2012; Lagacherie and McBratney, 2006). It has 
been widely applied to map soil attributes such as texture, organic 
carbon, and pH at regional to continental scales (e.g., Ballabio et al., 
2016; Guevara et al., 2018).

DSM has been widely used across the world to reduce soil mapping 
costs over large areas (e.g., Tóth et al., 2017; Guevara et al., 2018; 
Padarian et al., 2017; Teng et al., 2018). The methodological core of 
DSM includes mathematical models capable of performing both in
terpolations and extrapolations of soil properties across multiple scales 
(Barros et al., 2013; Laurent et al., 2017; Saxton and Rawls, 2006; 
Tomasella et al., 2000; Wang et al., 2018; Zeraatpisheh et al., 2019). 
These models can predict the distribution of a given soil property hor
izontally, e.g., over the topsoil of a landscape, or vertically, i.e., along 
soil profiles. In soil science, spatial extrapolations are usually made by 
(i) applying a conceptual model to the survey area to simulate the dis
tribution of soil patches (Scull et al., 2003), (ii) using geostatistical in
terpolations (Li and Heap, 2014), (iii) delimiting geographical 
subdivisions where environmental processes follow a relatively homo
geneous pattern, such as the facets, described by Ziadat et al. (2015), or 
(iv) by applying pedotransfer functions (PTFs) to basic properties 
available for each soil location. PTFs are predictive statistical models, 
typically regression equations, that use basic soil information to esti
mate soil properties that are costly to measure, such as water retention 
characteristics and bulk density (Barros and de Jong van Lier, 2014).

There is an ever-growing need for soil data, e.g., for research and 
applications related to environmental solutions, especially in the tropics 
where soil data are scarce and soils exhibit the highest global diversity 
(Minasny and Hartemink, 2011; Scharlemann et al., 2014; Orgiazzi 
et al., 2016). The hydro-thermal behavior of tropical soils is quite 
different compared to temperate soils, often due to their distinct min
eralogies and soil-forming processes (Ito and Wagai, 2017; Nóbrega 
et al., 2020). In Brazil, various polynomial PTFs have been calibrated at 
both national (Tomasella et al., 2000) and sub-national scales (Barros 
et al., 2013; Oliveira et al., 2002) for estimating soil properties such as 
hydraulic conductivity, water retention characteristics and bulk density. 
However, high uncertainties are expected when conducting both hori
zontal and vertical soil properties extrapolations, especially for vertical 
extrapolations because data on soil profiles across extensive terrain ex
tents are rarely available (Yost and Hartemink, 2020).

ML techniques have been increasingly applied as an approach to 

circumvent issues typical of conventional soil mapping methods and 
those issues that are due to the complexity caused by modeling the soil 
with ever-increasing amounts of information stored in databases on soil 
parameters and covariates (Wadoux et al., 2020). If trained properly, ML 
techniques allow for more accurate predictions of soil parameters, 
whereas other approaches with underlying assumptions on statistical 
distributions may not be applicable or even fail to produce sensible 
values (Taghizadeh-Mehrjardi et al., 2016). However, many ML studies 
used for soil mapping do not predict soil properties at different depths (e. 
g., van der Westhuizen et al., 2023; Bao et al., 2024; Hateffard et al., 
2024; Qu et al., 2024; Sun et al., 2024). When depth predictions are 
made, it is common to follow standardized output specifications, such as 
those defined by GlobalSoilMap (Ballabio et al., 2016; Rahmati et al., 
2018), which uses six fixed depth intervals within the 0–200 cm soil 
depth. However, this approach is inconsistent with established soil 
classification systems, consequently limiting the pedological interpre
tation of the results (Wadoux et al., 2020).

ML approaches in digital soil mapping (DSM) offer improved esti
mates of soil parameters, with the accuracy strongly influenced by the 
choice of soil maps and pedotransfer functions (PTFs) (Montzka et al., 
2017). For instance, Gupta et al. (2021) demonstrated that a ML 
approach involving various soil and environmental covariates improved 
predictions of saturated hydraulic conductivity compared to traditional 
PTF-based methods. They generated a final dataset with a spatial reso
lution of 1 km by using a random forest algorithm and data from 821 
sites distributed around the world; however, with only ~12 % of these 
data from the tropics. Indeed, soil maps for the tropics often exhibit a 
coarse exaggeration of soil properties. This occurs because the common 
statistical techniques applied to perform extrapolations are heavily 
dependent on how dense the collection of soil profiles is, and this is 
generally sparse due to financial and time limitations.

The possibility of using high-resolution environmental covariates 
offers new opportunities for adding local information into soil property 
modeling. In hydrology, for example, the Soil and Water Assessment 
Tool (SWAT; Arnold et al., 1998) employs the Soil–Landscape Estima
tion and Evaluation Program (SLEEP; Ziadat et al., 2015), which goes 
beyond a simple point-by-point approach by aggregating pixels into 
more homogeneous areas according to topographic features. This sub
division reduces noise from abrupt terrain changes and captures the 
influence of landscape context on soil formation more effectively. 
However, relying on these covariates alone, i.e., without ML, often in
volves simple regressions that struggle to account for both gradual and 
abrupt soil variability (Wadoux et al., 2020). The use of ML techniques, 
such as random forest (RF) or gradient boosting models (GBMs), has 
improved the prediction accuracy of soil organic matter and total N 
when compared to geostatistical methods, and further gains have been 
achieved when these approaches are combined (Auzzas et al., 2024; 
Nozari et al., 2024; Tziachris et al., 2019). While geostatistics uses 
spatial autocorrelation to refine local estimates, ML captures complex 
interactions among environmental variables, thereby improving overall 
model robustness and predictive performance.

In this study, we address the growing need for improved soil models 
that capture the spatial variability of physical and chemical properties in 
the tropics by developing a bespoke machine learning framework. 
Applied across a ~700-km longitudinal gradient in Brazil with con
trasting topography, climate, and vegetation, our approach targets a 
long-standing gap in tropical soil observations within global soil data
bases. We hypothesize that our framework can accurately capture both 
vertical and horizontal variability in soil properties in a large tropical 
region with highly contrasting environmental conditions and land use. It 
combines SLEEP with calibrated GBMs to produce high-resolution 
(30 m) predictions across multiple depths. The framework was devel
oped to enable the generation of soil maps that support: (1) assimilation 
of legacy soil data in their native format; (2) fine-scale prediction of key 
soil properties; (3) identification of environmental drivers for each 
pedological feature, and; (4) generation of soil datasets for 
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environmental modeling.

2. Materials and methods

2.1. Methodology workflow

We developed and applied our modeling framework by integrating 
SLEEP and a calibrated GBM, which we tested for a 700-km longitudinal 
gradient in Northeast Brazil (see Section 2.2). The stage-wise additive 
trees of GBMs can capture higher-order interactions between soil 
properties and climate, vegetation, and topographic predictors without 
the need for additional feature engineering (e.g., transformations). 
GBMs also adapt to depth-dependent heteroscedasticity while main
taining linear scalability for 30 m resolution predictions across large 
datasets, such as the 100 million pixels used in this study. Our meth
odology comprises a three-step process that starts with the collection 
and pre-processing of six topographical, ten climate, and two vegetation 
parameters acquired from different data sources ranging from remotely 
sensed datasets to meteorological stations (see Section 2.3). These in
dependent variables are correlated with soil physical and chemical 
properties, referred to as basic soil properties, as described in Table 1
and Section 2.4, to allow for their subsequent horizontal and vertical 
predictions.

We used SLEEP to create a non-distributed grid formed by facets, 
which, in this study, are treated as the smallest spatial units representing 
homogeneous conditions where soil formation factors may produce 
similar soil types. To define these facets, SLEEP first creates preliminary 
versions of these facets by delineating watersheds. Each watershed is 
divided into multiple catchments, and then the facets are defined by the 
division of the catchments into two parts, i.e., each side of their main 
drainage stream (Ziadat et al., 2015). The size of the catchments is 
determined by a user-defined threshold assigned during stream defini
tion. The smaller this threshold, the denser the stream network, resulting 
in a greater number of delineated catchments and facets. Once the facets 
are created, SLEEP aggregates them based on their slope similarity in a 
process called facet classification, which ultimately creates contiguous 
patches, which are clusters of facets that share similar slope character
istics and are treated as unified mapping units. The patches allow SLEEP 
to reduce the number of facets by grouping them into a single mapping 
unit. This approach reduces the processing time when working with 
large areas and avoids the ‘salt-and-pepper’ noise in the mapping pro
cess. Next, we estimated the ten basic soil properties (indicated in 
Table 1) in each patch at multiple depths by calibrating one model for 
each basic soil property using ML instead of traditional SLEEP multiple 
regressions because they can capture a wider range of data distributions 
(see Section 2.5). The calibration mechanism is composed of a recursive 
feature selector and a randomized searcher, which were configured to 
perform a 2-fold cross-validation (see Section 2.6). At the end of this 
step, all patches are turned into virtual soil profiles, i.e., simulated soil 
patches with their own depth-dependent simulated physical and 
chemical properties, and the uncertainty was calculated for each esti
mated soil property (see Section 2.7). Finally, in the third step, we used 
the dataset composed of virtual profiles to generate PTF-estimated soil 
parameters (see Section 2.8).

2.2. Study area

The study area is in Northeast Brazil; it covers an area of approx. 
98,000 km2, and closely follows the domain of the state of Pernambuco 
(Fig. 1). This region exhibits a longitudinal gradient of contrasting 
topography, climate and vegetation. The elevation ranges from approx. 
0 to over 1150 m a.s.l. in a variable gradient from East to West. This 
region is influenced by three meteorological phenomena, namely 
Frontal Systems (FS), Upper Tropospheric Cyclonic Vortices (UTCV), 
and the Intertropical Convergence Zone (ITC) (Salgueiro et al., 2016). 
There are three predominant climate types (Köppen’s classification) in 

the study area: hot semi-arid (steppe) climate (BSh; 61.4 % of the area), 
tropical with dry summer (As; 32.7 %) and tropical monsoon (Am; 
4.9 %); the remaining 1 % is composed of areas with a tropical climate 
with dry winter (Aw; 0.1 %), and humid subtropical with dry winter and 
hot summer (Cwa; 0.3 %), temperate summer (Cwb; 0.3 %), or dry and 
hot summer (Csa; 0.3 %) (Alvares et al., 2013). Precipitation has a high 
spatial variability (Souza et al., 2021) with the annual mean precipita
tion rates reaching approx. 2000 mm in the East and decreasing west
wards to less than 400 mm. As for the vegetation, near the coast, the 
predominant land-uses are Atlantic rain forest and rainfed croplands (a 
mosaic of sugarcane plantations and fruticulture) (Souza Jr et al., 2020). 
Approaching the middle transition, around longitude 36◦ 47́, high alti
tudes contribute to microclimatic conditions that favor rainfed corn and 

Table 1 
Summary of variables and parameters with their corresponding descriptions and 
units.

Variable Type Description Unit

AAT T Prefix used to denote accumulated variables -
ASPECT T Downslope direction at each cell ◦

CTI T Compound Topographic Index -
CURV T Surface curvature at each cell -
DEM T Digital elevation model m
PCTSLP T Surface slope at each cell %
LST V Land surface temperature K
NDVI V Normalized difference vegetation index -
RHAV C Mean air relative humidity fraction 

(0–1)
PCPMM C Mean total monthly precipitation mm
PCPSKW C Skew coefficient for daily precipitation in 

month
mm

PCPSTD C Standard deviation for daily precipitation in 
month

mm

SOLARAV C Mean daily solar radiation for month MJ m− 2 

day− 1

TMPMN C Mean daily minimum air temperature ◦C
TMPMX C Mean daily maximum air temperature ◦C
TMPSTDMN C Standard deviation for daily minimum air 

temperature

◦C

TMPSTDMX C Standard deviation for daily maximum air 
temperature

◦C

WNDAV C Mean daily wind speed in month m s− 1

CS B Coarse sand content %
FS B Fine sand content %
L_MAX B Number of soil layers -
SB B Sum of bases (Ca2+, Mg2+, K+ and Na+) cmolc kg− 1

SOL_CBN B Organic carbon content %
SOL_CLAY B Clay content %
SOL_ROCK B Rock fragments content %
SOL_SAND B Sand content %
SOL_SILT B Silt content %
SOL_Z B Depth from soil surface to bottom of the soil 

layer
mm

Rv P Volume fraction of gravel cm3 cm− 3

Rw P Weight fraction of gravel g g− 1

θ1500 P Water content at − 1500 kPa m3 m− 3

θ33 P Water content at − 33 kPa m3 m− 3

θS P Saturated water content m3 m− 3

θr P Residual water content m3 m− 3

ρN P Normal density g cm− 3

ρR P Gravel density g cm− 3

OM P Organic matter %
SN1 P Non-sand content fraction
SOL_AWC P Available water capacity of the soil layer mm mm− 1

SOL_BD P Moist bulk soil density g cm− 3

SOL_K P Saturated hydraulic conductivity mm hr− 1

USLE_K P USLE equation soil erodibility (K) factor -
Ψ P Matric potential kPa
α P Parameter of van Genuchten (1980) usually 

expressing inverse length (pressure head)
m− 1

n and m P Shape-fitting parameters of van Genuchten 
(1980)

-

In column 2: T = topography, V = vegetation, C = climate, B = basic property, 
and P = pedotransfer function parameter.
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bean cultivation, and mixed natural vegetation formations. With rainfall 
decreasing, the vegetation changes to a seasonally dry tropical forest, i. 
e., the Brazilian Caatinga. Pastures become a common land-use activity, 
and the soil gets shallower and rocky (Souza Jr et al., 2020). According 
to the Brazilian and FAO system of soil classification, the dominant soils 
are, respectively, Argissolos, i.e., Acrisols and Lixisols (25 % of the area), 
Neossolos, i.e., Leptosols, Arenosols, Regosols, or Fluvisols (32 %) and 
Planossolos, i.e., Planosols and Solonetz (16 %), Latossolos, i.e., Ferral
sols (9 %) and Luvisolos, i.e., Luvisols (9 %) (Araújo Filho et al., 2014). 
The geology maps for the state of Pernambuco show predominantly 
(90 %) pre-Cambrian rocks belonging to the São Francisco Craton and 
the Borborema Province, and the remaining area is mainly composed of 
Paleomesozoic sedimentary basins and Mesocenezoic coastal basins 
(Torres and Pfaltzgraff, 2014).

2.3. Input data collection

We selected the input parameters based on their widely known role 
on soil formation. Elevation data: we collected data from the 

TOPODATA database (http://www.dsr.inpe.br/topodata), which is a 
bias-corrected version of the data produced by the NASA SRTM (Shuttle 
Radar Topography Mission) for the Brazilian territory made by the 
National Institute for Spatial Research (INPE) at 1 arc-second (approx. 
30 m) (de de Morisson Valeriano and de Fátima Rossetti, 2012).

Soil data: we digitized georeferenced data regarding morphological 
(number and depth of soil horizons), physical (particle size distribution), 
and chemical (Ca2+, Mg2+, K+, Na+ and C) soil properties, acquired from 
the ZAPE (Agroecological Zoning of the state of Pernambuco) project of 
the Brazilian Agricultural Research Corporation (EMBRAPA) (Silva 
et al., 2001). This legacy soil database comprises 223 soil profiles 
distributed over the study area (Fig. 1).

Meteorological data: we obtained data for air temperature (◦C), air 
relative humidity (%), solar radiation (MJ m− 2 day− 1), wind speed (m 
s− 1), and precipitation (mm) from the 1961–2016 period through two 
open-access databases: daily precipitation data from the Water and 
Climate Agency of Pernambuco (APAC; http://www.apac.pe.gov. 
br/meteorologia/monitoramento-pluvio.php), and the other meteoro
logical parameters from the National Water Agency of Brazil (ANA; https 

Fig. 1. Spatial distribution of the surveyed soil profiles across a longitudinal gradient of environmental conditions over the study area.
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://www.snirh.gov.br/hidroweb/). The preprocessing of these data is 
detailed in the Supplementary Material (Section 1 of the Supplementary 
Material).

Remotely sensed data: we obtained data regarding NDVI 
(Normalized Difference Vegetation Index) from MOD13A3 (monthly 
composition and 1 km spatial resolution) (Didan, 2015), and LST (Land 
Surface Temperature) from MOD11A2 (8-day composition and 1 km 
spatial resolution) (Wan et al., 2015) from https://earthdata.nasa.gov/
(Greenbelt, 2019).

2.4. Soil survey data description

Our soil dataset includes the total number of soil horizons (L_MAX), 
but for modeling purposes in this study we will refer to it as the number 
of soil layers since we did not validate the model’s efficacy in dis
tinguishing horizons through further field experiments. Thus, a soil layer 
here refers to a vertical depth interval used to represent distinct soil 
properties within the soil profile. The database also contains each soil 
layer’s depth from the land surface (SOL_Z; mm), soil clay content (≤
0.002 mm; SOL_CLAY; %), silt (> 0.002 and ≤ 0.05 mm; SOL_SILT; %), 

sand (> 0.05 and ≤ 2 mm; SOL_SAND; %), rock fragments (> 2 mm; 
SOL_ROCK; %), organic carbon (SOL_CBN; %), and sum of bases (sum of 
Ca2+, Mg2+, K+ and Na+; SB; cmolc kg− 1). In this study, we define the 
rock parameter as the proportion of rock fragments greater than 2 mm 
(ABNT, 1995; FAO, 2006). The sand fraction was divided into fine (>
0.05 and ≤ 0.2 mm; FS) and coarse sand (> 0.2 and ≤ 2 mm; CS) 
(Table 1). All particle classification followed the Brazilian technical 
standards described in ABNT (1995), and physical and chemical ana
lyses were performed as described in Embrapa (1997).

Soil profiles exhibit an average depth of 1228 ± 613 mm, ranging 
from 120 to 2550 mm. The number of soil layers varies from one to 
seven. Rock fragments (> 2 mm) exhibit 4.4 ± 11 % of total content. If 
we only consider particles ≤ 2 mm, the average soil texture has the 
following composition: sand (55 ± 19 %), clay (27 ± 14 %), and silt 
(18 ± 9 %) (Fig. S1 in the Supplementary Material).

2.5. Inputs for the preprocessing workflow

The core of our modeling framework combines SLEEP and a cali
brated GBM. Soil data were modeled in SLEEP by creating facets (see 

Fig. 2. Processing scheme of the integration of the SLEEP algorithm and the Gradient Boosting Models. The description of the parameters can be found in Table 1.
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Section 2.1), for which basic soil properties, i.e., L_MAX, SOL_Z, SOL_
CLAY, SOL_SILT, SOL_SAND, CS, FS, SOL_ROCK, SOL_CBN, and SB, were 
calculated.

SLEEP requires three inputs: (i) a digital elevation model (DEM), (ii) 
a shapefile containing the data observed for each soil profile, and (iii) 
the auxiliary data including meteorological and vegetation data in raster 
format (Fig. 2). In this algorithm, we extracted the drainage network 
following Tarboton et al. (1991) by setting the size of the catchments to 
0.001 % of the total study area, i.e., on average 1803 pixels per catch
ment, which was obtained based on a visual evaluation of different 
thresholds with a focus on providing a balance between satisfactory 
spatial resolution and processing efficiency. We aggregated the facets 
based on their slope similarity using the clustering technique IsoCluster 
(Richards, 2013) to create patches.

Finally, we modified the way the basic properties were modeled, 
replacing the original SLEEP algorithm’s simple multiple linear regres
sion with GBMs. GBM is an ensemble learner that consists of a set of 
decision trees composed of weak predictive models (WPM) often prone 
to overfitting, but, when combined, produce highly accurate outputs 
(Friedman, 2001). Each of these trees is a rule-based system, whose 
terminal nodes can either be a WPM, i.e., leaf node, or an if-then-else 
rule, i.e., regular node, applied to an input variable. The trees are 
created through an iterative sequence of improvements of WPMs using 
boosting, while simultaneously optimizing, via minimization of a loss 
function using gradient-based optimization (Natekin and Knoll, 2013).

For GBM processing, two datasets were produced: (i) one composed 
of only the information from the patches that overlie the observed data 
for each profile to be used as the dataset for fitting, and (ii) consisting of 
all available input information for every patch in the study area to be 
used as the dataset for prediction. The dataset for fitting was split using 

the Holdout method at 20 %, e.g., Whitney (1971), creating two 
sub-datasets, where 80 % of the records were used for model calibration 
(training dataset), and the remaining 20 % for model verification 
(verification dataset) (Fig. S2 in the Supplementary Material).

The sampling technique used in this process is a variation of the k- 
fold cross-validation (Wong, 2015), which ensures stratified folds with a 
balanced distribution of each target class. For continuous dependent 
variables without predefined classes, a quantile-based discretization 
function (qcut function in Python; The pandas development team, 2024) 
was applied to discretize these variables into equal-sized groups based 
on sample quantiles, allowing the entire data distribution to be sampled.

The GBMs had four basic parameters derived from the DEM (Table 1) 
as input features, namely the downslope direction (ASPECT), the Com
pound Topographic Index (CTI), the surface curvature (CURV) and slope 
(PCTSLP), as well as 12 auxiliary data series from remote sensing (NDVI, 
LST) and meteorological stations (see Table 1). As targets, they had eight 
basic soil properties (labeled as Type B in Table 1, see ’ML outputs’ in 
the upper half of Fig. 3). GBM was used as a multiclass classifier to 
simulate the number of soil layers, i.e., L_MAX, and a regressor for the 
other targets. In the GMB model, SOL_ROCK was not directly estimated 
but was computed as a residual component of sand, silt and clay, which 
were not rescaled to sum to 100 % as inputs. Coarse sand (CS) and fine 
sand (FS) were normalized to sum up to 100 %.

2.6. Model calibration and validation

To calibrate the hyperparameters, we submitted all our GBMs to a 
Recursive Feature Selector (RFS; Guyon et al., 2002) followed by ran
domized 2-fold cross-validation to optimize hyperparameter selection. 
The RFS here is an input feature selection algorithm that fits a model and 

Fig. 3. Processing workflow of all model outputs. The top half of this figure explains the machine learning processing of the basic soil characteristics, whereas the 
bottom half summarizes the PTF-derived products. The description of the parameters can be found in Table 1.
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eliminates the weakest ranked inputs recursively, considering each 
iteration a smaller set of features until the best combination is found. We 
determined the optimal cross-validation splitting strategy for our 
model’s calibration by performing a small-scale test using all data and 
one variable, i.e., L_MAX, with different fractions of data splits for 
validation (10, 15, 20, 25, and 30 %) combined in a factorial design with 
different levels of data slicing for cross-validation (2, 3, 4, 5, and 10 
folds). All tested data splits, and cross-validation configurations for both 
RFS and hyperparameters calibration resulted in accuracy between 0.96 
and 0.97, with 20 % data split and 2-fold cross-validation yielding an 
accuracy of 0.97 (Eq. 1). Therefore, we used the 2-fold calibration to 
reduce computing demand. This means that 50 % of the calibration data 
were used to test each hyperparameter combination’s impact. With this 
configuration, the full simulation ran for 232 h (~10 days) on a super
computer with 120 cores distributed across 10 Intel i7 processors 
(3.2–3.33 GHz), 80 GB DDR3 RAM (1333 MHz), 10 TB HDD storage, 
and 20 Gigabit network cards. The modeling algorithm is freely avail
able at GitHub and is compatible with Python 2.7.15 and 3.6.9. For 
details, see Miranda et al. (2022).

The performance indices used in all calibrations were the accuracy 
(Eq. 1) for the classifier, i.e., for L_MAX, and the coefficient of deter
mination (r2) (Eq. 2) for the regressors. For model verification, the most 
efficient models were evaluated using the testing dataset, and the same 
performance indices plus the Root Mean Square Error (RMSE) (Eq. 3) 
and Percent Bias (PBIAS) (Eq. 4) were applied. This final verification 
allowed us to evaluate the potential of the best models to perform 
extrapolations. 

Accuracy =
(TP+ TN)

(TP+ FP+ FN+ TN)
(1) 

r2 =

∑
(obs − obs) × (sim − sim)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

(obs − obs)2
√

×

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

(sim − sim)
2

√ (2) 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

(obs − sim)
2

n

√

(3) 

PBIAS =

∑
(obs − sim)
∑

(obs)
× 100 (4) 

TP, FP, FN, and TN in Eq. 2 represent True Positives, False Positives, 
False Negatives, and True Negatives, respectively, in a contingency 
table. The variable obs in Eqs. 2–4 refers to the observed parameter value 
for a given soil layer, while sim represents the simulated value, with 
the overbar indicating their average values.

In this study, the classification problem involves distinguishing be
tween soil properties based on observed and simulated values. However, 
due to an imbalance in class representation, where certain soil condi
tions, e.g., a specific texture class or rock presence are underrepresented, 
the model may become biased toward the dominant class, leading to 
poor detection of minority cases. To mitigate this issue, we applied the 
Synthetic Minority Oversampling Technique (SMOTE) to balance the 
class distribution. SMOTE generates synthetic samples for the under
represented soil properties, ensuring they contribute more effectively to 
the model training process. This technique promotes balanced learning 
and improves the detection of minority soil conditions. Details of this 
technique can be found in Chawla et al. (2002). To calibrate the 
hyperparameters, we created a set of possible values for each parameter. 
Details for this procedure can be found in Section 3 of the Supplemen
tary Material. The calibrated models were applied to predict basic 
properties for each patch, creating 64,415 virtual soil profiles. The entire 
predicted dataset was converted to a raster format, and each raster is a 
different soil attribute. All outputs are available from Miranda et al. 
(2025).

2.7. Sensitivity and uncertainty analysis

The model sensitivity to input data was calculated as the importance, 
i.e., a weighted factor of each selected property for the most accurate 
GBMs. The importance (w) ranges from 0 to 1, where 1 reflects the 
highest weight a given input can receive in a model, and 0 the lowest. 
The sum of all weights is 1 for each model. More specifically, w values 
reflect indirectly how much the performance metric changes every time 
a given input is used to split a node in the whole model (Natekin and 
Knoll, 2013).

For the uncertainty analysis of the modeled variables, the selected 
inputs for each model and patch used in the predictions were classified 
into two categories (e), i.e., whether they extrapolated the calibration 
range of values (1) or not (0), as summarized in the following equation: 

uf =
∑

i=0
(ei × wi), (5) 

where uf is the uncertainty of each model; patch, ei, is the binary cate
gory that reflects the extrapolation and wi is its importance in the model 
(weight) of a given selected input i. As uf gets close to 1, extrapolation is 
greater indicating higher associated uncertainty. The opposite occurs 
when it approaches 0, which means that all inputs used for a given 
prediction were in the range of values used for calibration.

2.8. Application and comparison of pedotransfer functions

All data from the virtual soil profiles were submitted to a series of 
pre-established PTFs (see bottom-half of Fig. 5) to generate four soil 
properties: SOL_K (saturated hydraulic conductivity; mm hr− 1), SOL_BD 
(moist bulk density; g cm− 3), SOL_AWC (available water capacity; mm 
mm− 1), and USLE_K (factor K from the USLE equation; unitless). SOL_K 
was modeled using the equations described in Saxton and Rawls (2006)
and Belk et al. (2007), and USLE_K using Sharpley et al. (1993) (equa
tion groups S1–S3 described in Table S2 in the Supplementary Material). 
SOL_AWC was calculated with the equations from Saxton and Rawls 
(2006), Tomasella et al. (2000), Oliveira et al. (2002) and Barros et al. 
(2013) as described in equation groups S4–S9 in Table S3 in the Sup
plementary Material. Saxton and Rawls (2006) produced PTFs using a 
soil dataset from extensive soil sampling across the entire United States. 
Tomasella et al. (2000) used a similar database for Brazil, while Barros 
et al. (2013) used data for the Northeast region of Brazil only. Finally, 
Oliveira et al. (2002) created PTFs with data that originated strictly from 
the state of Pernambuco.

All SOL_AWC models require SOL_BD as an input. Thus, SOL_BD 
derived from Saxton and Rawls (2006) was coupled with their corre
sponding SOL_AWC model, while SOL_BD from Benites et al. (2007) was 
used in the models of Tomasella et al. (2000), Oliveira et al. (2002) and 
Barros et al. (2013). To distinguish between PTF sources, subscripts 
were assigned to variables as follows: BK for Belk et al. (2007), BR for 
Barros et al. (2013), OL for Oliveira et al. (2002), SR for Saxton and 
Rawls (2006), and TM for Tomasella et al. (2000). Additionally, 
SOL_KSR/BR and SOL_KSR/TM refer to SOL_K estimated using Saxton and 
Rawls (2006)’s PTF, where θS, θ33, and θ1500 were derived from Barros 
et al. (2013) and Tomasella et al. (2000), respectively.

We compared our SOL_K results derived from Saxton and Rawls 
(2006) to the dataset generated by Gupta et al. (2021), who generated 
high-resolution, i.e., 1 km, global SOL_K values using a ML framework. 
We chose Saxton and Rawls (2006) because it is a widely used PTF. That 
way we avoided bias caused by comparing Gupta et al. (2021)’s results 
to SOL_K estimates derived from PTFs that were specific to our area of 
study, such as from Barros et al. (2013) and Oliveira et al. (2002). 
Nevertheless, we made available all results of all PTFs and their com
binations, e.g., using the SOL_K model from Saxton and Rawls (2006)
using the field capacity model from Barros et al. (2013), at https 
://zenodo.org/deposit/5918544 (Miranda et al., 2025). To enable the 
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SOL_K comparison, we cropped the dataset from Gupta et al. (2021) to 
our spatial extent and resampled our dataset to Gupta et al. (2021)’s 
spatial resolution. We also compared the clay fraction obtained in this 
study with the one used by Gupta et al. (2021), provided by Hengl 
(2018), because this is an important component of many SOL_K models, 
including the one by Saxton and Rawls (2006) (Table S2 in the Sup
plementary Material). We calculated mean SOL_K and clay fraction as a 
weighted mean for each grid cell for Gupta et al. (2021)’s SOL_K and 
respective soil depth since our SOL_K values are representative for the 
entire soil layer. For the SOL_K dataset from Gupta et al. (2021) and clay 
fraction from Hengl (2018), we calculated the vertical value mean using 
the trapezoidal rule suggested by Hengl et al. (2017). This approach was 
chosen because the SOL_K values were predicted at discrete soil depths 
rather than being representative of the midpoint of the predefined depth 
intervals.

3. Results and discussion

3.1. Model performance

The spatial modeling produced 64,415 patches with an average area 
of 1.35 ± 4.54 km2, and an average density of 0.75 patches per km2. 
Each one of these was considered as a virtual soil profile for which GBM 
outputs were calculated. In this study, the models demonstrated a 
consistent ability to perform such extrapolations, as the performance of 
the models during the verification was similar to that found by the 
calibration algorithm (Table 2). The r2 and PBIAS values varied from 
0.79 to 0.98, and from − 1.39 to 1.14, respectively. Among all models for 
the prediction of percentages of each soil parameter, the lowest r2 value 
was found for the modeled SOL_SILT at 0.79 (Table 2). We believe that 
the large number of predictors, each with similar importance, for the 
SOL_SILT model (Table 3) may have caused prediction redundancies and 
probably degraded the model strength by increasing its variance, even 
though we applied a RFS algorithm for feature selection.

When comparing the simulated and observed reference datasets 
(Table S4 in the Supplementary Material), some differences are expected 
because the soil survey data used as observed dataset (Section 2.4) was 
not systematically sampled. Therefore, there will be locations with 
simulated interpolated soil properties exhibiting values that exceed 
those in the observed dataset. The largest relative differences between 
simulated and observed values were for SOL_ROCK (44.4 %), SB 
(53.1 %), CS (103.3 %), and FS (31.9 %). Despite the lack of systematic 
sampling, these differences would be expected to be modest, as the 
observed dataset covers the entire study area and diverse environments 
(Fig. 1). We attribute these large differences in SOL_ROCK to the fact 
that this parameter was calculated as the residual of all soil separates 
(see Fig. S4 in the Supplementary Material). That is, it was the only 
parameter that was not directly modeled from independent covariates. 
As for CS and FS, they were directly modeled but had to be resampled to 
sum to 100 %. Rather than applying the same approach to texture pa
rameters, we opted to sacrifice SOL_ROCK’s prediction accuracy. Its 

spatial variance produced a high number of zeros (38.5 % of total 
values) compared to other parameters (<0.01 %), resulting in insuffi
cient variance for accurate modeling. Although 21.98 % of SB pre
dictions ranged between 0.1 and 3.84 cmolc kg− 1 and no zeros, they 
exhibited a higher concentration near zero, similar to SOL_ROCK. 
Finally, 51.49 % of the 135,934 virtual profiles exhibited some degree of 
uncertainty. Most uncertainty values were below 15 %, while the 
highest values (50–60 %) were observed for L_MAX, SOL_SAND, and SB 
(Fig. 4). We would like to highlight that our approach to estimate un
certainty relies on identifying extrapolations beyond the calibration 
range and does not fully account for model structural uncertainty or the 
propagation of cumulative errors.

The models developed in this study used a dataset of in situ obser
vations from a range of different climate types, vegetation covers and 
topographical characteristics. The diversity in this dataset ensured suf
ficient variance for the GBM, as evidenced by the model metrics 
(Table 2), and was a key factor in the successful application of the 
framework. These results show that our framework is highly transferable 
to other tropical regions with similar environmental modulators. 
Furthermore, it can be adapted for regions with different characteristics, 
provided that multiple variations of a single parameter are used without 
violating the assumption of multicollinearity.

3.2. Environmental modulators

Results showed that simulated soil properties the most influential 
environmental modulators were climate, topography, and vegetation 
(Fig. 5). This consistently reflects broader soil-forming processes, 
including climate-driven weathering, erosion, and vegetation–soil 
feedback. A better understanding of how these environmental factors 
affect physical and chemical soil properties can help manage their 
changes in response to future climate conditions or land use modifica
tions, such as deforestation (Badía et al., 2016). In our study area, the 
properties related to topographic and climatic conditions were domi
nant predictors for all soil properties, whereas the weights for covariates 
related to vegetation were slightly greater for soil property estimates 
related to sand, i.e., SOL_SAND, CS, and FS. Topography is consistently 
included as an input variable in our models (Fig. 5) because it is a key 
factor in soil formation in Northeast Brazil (Oliveira et al., 2018). The 
topographic conditions (see Table 1) comprise slope, which may affect 
the quantity of soil deposition or erosion; aspect, which drives the di
rection of surface and subsurface runoff, and relative exposure of soils to 
sunlight; and finally curvature, which changes water flow velocity, 
controlling erosion and deposition processes (Barbieri et al., 2009; 
Patton et al., 2018).

The model weights for the L_MAX model were largest for NDVI 
(18 %) and terrain elevation (DEM, 13 %) as its main inputs. Elevation is 
well related to climate conditions (Badía et al., 2016), which impact the 
speed at which parent materials weather and erode, and hence the rate 
of soil development, e.g., via accumulation of organic matter on top of 
the soil. As for NDVI, it most likely indirectly reflects the vertical 

Table 2 
Calibrated values for the hyperparameters n_estimators (NE), max_depth (MD), min_samples_split (MSS) and min_samples_leaf (MSL) of the Gradient Boosting Models 
(GBM), for each estimated soil property and their corresponding calibration performance. The description of the variables can be found in Table 1.

Output variable Calibrated hyperparameters Calibration Verification

NE MD MSS MSL Accuracy(a) or r2(b) Accuracy(a) or r2(b) RMSE PBIAS

L_MAX 1325 23 41 70 0.91(a) 0.96(a) - -
SOL_Z (mm) 4445 3 36 7 0.92(b) 0.98(b) 73.19 0.02
SOL_SAND (%) 2521 87 73 6 0.77(b) 0.91(b) 6.27 1.14
SOL_CLAY (%) 1518 38 85 12 0.78(b) 0.93(b) 4.48 0.29
SOL_SILT (%) 1624 85 15 3 0.76(b) 0.79(b) 4.77 − 1.36
SOL_CBN (%) 1265 27 17 43 0.78(b) 0.91(b) 0.14 − 3.39
SB (cmolc kg− 1) 1026 46 23 2 0.82(b) 0.95(b) 1.79 2.97
CS (%) 2893 38 40 63 0.92(b) 0.98(b) 2.46 1.04
FS (%) 2282 3 7 13 0.89(b) 0.97(b) 2.03 − 0.03
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Fig. 4. Uncertainty analysis of the Gradient Boosting Models (GBM) for basic 
soil parameters. IQR stands for interquartile range, and variable descriptions 
can be found in Table 1.

Fig. 5. Proportional weights (w, as in Eq. 5) of the different input variables for 
modeling each basic soil parameter. The weights for ‘basic parameters’ repre
sent the influence of other basic soil parameters on the predicted parameter. 
The description of the variables can be found in Table 1.
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variability of soil properties, as soils formed under forests tend to be 
weathered to greater depth. This occurs because forests grow in higher 
rainfall areas (Bonan, 2008) and have deeper rooting systems that often 
create biopores, facilitating internal drainage.

Our model for SB was mainly influenced by relative humidity (19 %) 
and wind speed (14 %). These variables are known for controlling the 
intensity of biochemical reactions, and wind erosion (Ravi et al., 2004), 
respectively. Wind erosion can remove and redistribute topsoil nutrients 
(Zobeck et al., 1989), affecting local soil nutrient levels, especially in 
arid and semi-arid regions, as seen in the western region of our study 
area, where soils are dry and covered by sparse vegetation (Miranda 
et al., 2020; Ravi et al., 2004). Regarding precipitation, although it may 
be an important climate factor for soil formation in other regions (e.g., 
Dixon et al., 2016), its characteristics, i.e., PCPSTD and PCPMM, 
together weighted only 12 % of the variance in SB in our model.

Regarding the overall importance of the model inputs, key parame
ters are CTI, L_MAX, SOL_Z, and SOL_SAND (Table 3). The key role of 
CTI can be explained by its ability to encapsulate the terrain structure 
(Gessler et al., 1995; Moore et al., 1993). The influence of SOL_Z on 
SOL_SAND and SOL_SILT was relatively strong, suggesting that soil 
depth plays a critical role in determining sand and silt distribution. The 
prevalence of sand in surface layers is well-documented, particularly in 
soils prone to erosion due to their lower structural stability (Valentin 
and Bresson, 1992). Furthermore, vegetation cover, represented by 
NDVI, emerged as a key predictor of SOL_SAND. High vegetation density 
often indicates advanced soil weathering or lower sand content, as soils 
beneath dense forests in high-rainfall regions tend to be more leached 
and clay-rich (Souza et al., 2016), a pattern observed in the eastern part 
of our study area.

3.3. Hydraulic parameters predictions via PTFs

The bulk density estimates SOL_BDSR (Saxton and Rawls, 2006) and 
SOL_BDOL (Benites et al., 2007) were similar, with a mean difference of 
only 0.09 g cm− 3 (Table 4). While both models produced an acceptable 
range of values, SOL_BDSR yielded a small percentage of very high es
timates, with 0.85 % of SOL_BDSR values exceeding 1.8 g cm− 3 when 
considered as a weighted average across all soil layers. Although Benites 
et al. (2007) reported SOL_BD values as high as 2.25 g cm− ³ in Brazil, we 

recommend caution when interpreting values above ~2 g cm-³ . With 
regards to SOL_AWC, the equation by Oliveira et al. (2002), SOL_AWCOL, 
which was calibrated strictly using data from our study area, was the 
only equation that did not ‘saturate’ when PTFs were applied. Since we 
evaluate and map soils in a region similar to that of Oliveira et al. 
(2002), our results highlight the common tendency of PTFs to exhibit 
overfitting, becoming over-adjusted to the specific datasets that are used 
for their calibration (De Vos et al., 2005).

Two of the four SOL_K estimates were derived from variations of 
Saxton and Rawls (2006) (Tables S1 and S2 in the Supplementary Ma
terial). The difference between them depends on the calculation of the 
inputs θS, θ33 and θ1500, which differ from the approaches originally 
proposed by Saxton and Rawls (2006), SOL_KSR, i.e. those by Barros 
et al. (2013), SOL_KSR/BR, and the one by Tomasella et al. (2000), 
SOL_KSR/TM. Maximum values ranged from 219.47 (SOL_KSR/TM) to 
1900.21 mm h− 1 (SOL_KSR/BR). The approach that generates SOL_KBK is 
the simplest; it only uses SOL_Z as input, and therefore it does not exhibit 
differences for soils with different textures and the same depths. A small 
number of invalid values was found only for SOL_AWCBR, SOL_AWCTM, 
and SOL_KSR/TM due to inaccurate extrapolations, i.e., out of the a priori 
parameter range expected or acceptable for these parameters or PTFs, of 
θr and n. For USLE_K the applied model expects values varying from 0.1 
to 0.5 (Sharpley et al., 1993). However, we found values below this 
range because our simulated dataset included soils with high 
coarse-sand content.

The SOL_K dataset from Gupta et al. (2021) predominantly exhibited 
higher values than our SOL_K estimates using the PTF from Saxton and 
Rawls (2006) (Fig. 6A). Differences in SOL_K exceeded 100 mm h⁻¹ (as 
indicated by red dashed rectangles in Fig. 6A), and the highest con
centration of differences is approximately fivefold (Fig. 6B). For the 
region with the most humid climate (Am climate in Fig. 1, dashed 
rectangle 4 in Fig. 6A), we also found a higher clay content (up to 50 %) 
in our dataset (Fig. 6C) when compared to the data from Hengl (2018)
used as an input by Gupta et al. (2021), which we identify as one of the 
reasons for the SOL_K differences between the datasets for this specific 
area, despite a lack of overall apparent correlation between clay fraction 
differences and differences in SOL_K for the entire study region (Fig. 6D). 
The semi-arid areas with some of the highest differences in SOL_K 
(Fig. 6A, rectangles 1–3) also exhibit some of the shallowest soils 
(Fig. 6E). Although we cannot draw a direct relationship between the 
SOL_K differences and soil depth, it is important to note that deeper soils 
in this region hold greater clay fractions (Fig. 6F). The dataset by Gupta 
et al. (2021) follows a standardized soil layer protocol with a total depth 
of 200 cm for all grid cells, whereas our results were produced following 
a methodology designed to provide pedological meaning with a more 
realistic number of soil layers and respective soil profile depths. The 
impact of these differences goes beyond the disparities in saturated 
hydraulic values, which themselves carry high uncertainties (Zhang and 
Schaap, 2019). Estimates of hydraulic properties, even when in a real
istic range, can be highly misleading if the soil layers and depth are 
being assumed spatially homogeneous (Dai, Shangguan, et al., 2019). A 
better representation of soil profile characteristics in models, such as soil 
profile depth (Brunke et al., 2016), will lead to more realistic soil maps, 
as we have shown here, and consequently improve the performance of 
land surface models (Dy and Fung, 2016; Kearney and Maino, 2018), for 
example.

We note that only 12 % of the measurements used to train the ML 
algorithm that generated Gupta et al. (2021)’s dataset were located in 
the tropics and none in our study area, and that the soil datasets used in 
their methodology are likely to be substantially different from the one 
we generated in our study, particularly regarding clay fraction. Also, our 
comparison of SOL_K values was based on the prediction of SOL_K using 
the PTF from Saxton and Rawls (2006), which predicted the lowest 
SOL_K values among the PTFs used in this study (Table 4). This set of 
PTFs was developed using data from North America, which can lead to 
high errors and uncertainty when used in other regions (Vereecken 

Table 4 
Descriptive statistics of all calculated pedotransfer functions (PTF) data using 
basic soil properties derived from Gradient Boosting Models. Table 1 contains 
the description of acronyms that represent the soil hydraulic properties in col
umn 1.

PTF outputs Mean (SD) Minimum Maximum Invalid 
values (%)

SOL_BDSR (g 
cm− 3)

1.54 (0.09) 1.01 2.60 0

SOL_BDOL (g 
cm− 3)

1.45 (0.07) 1.12 1.76 0

SOL_AWCSR (mm 
mm− 1)

0.11 (0.01) 0.01 0.18 0

SOL_AWCBR (mm 
mm− 1)

0.05 (0.03) 0.001 0.17 0.75

SOL_AWCTM (mm 
mm− 1)

0.03 (0.01) 0.001 0.13 5.01

SOL_AWCOL (mm 
mm− 1)

0.07 (0.01) 0.01 0.16 0

SOL_KSR (mm 
hr− 1)

11.17 (14.24) 0.003 932.54 0

SOL_KSR/BR (mm 
hr− 1)

1101.28 (350.5) 10.41 1900.21 0

SOL_KSR/TM (mm 
hr− 1)

26.72 (26.58) 0.001 219.47 12.07

SOL_KBK (mm 
hr− 1)

63.85 (333.9) 8.85 12112 0

USLE_K (unitless) 0.22 (0.03) 0.01 0.41 0
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et al., 2016). Nevertheless, our ML framework was able to generate a soil 
map with high accuracy (mean r2 > 0.9, Table 2) and low mean un
certainty (< 10 %, Fig. 4), thus capturing the variability of basic soil 
properties that drive most common PTFs. Note that Lehmann et al. 
(2021) showed that tropical soils can have a higher SOL_K than soils 
from temperate climates due to the predominance of kaolinite clays over 
illite clays, for example, in many tropical regions. From a soil hydraulic 
point of view, kaolinite clays behave more like sandy soils than clay 
soils. However, based on the dominant clay type data provided by Ito 
and Wagai (2017); see also Lehmann et al., (2021) in Pernambuco the 

prevalence of low activity clays, such kaolinite, is relatively low. This 
sets this area apart from other South American tropical regions such as 
the Amazon rainforest. Lehmann et al. (2021) point out that clay 
mineral-informed pedotransfer functions and machine learning algo
rithms trained with datasets including different clay types and soil 
structure formation processes may improve soil hydraulic properties 
prediction. In that case it is important to consider that not all tropical 
clay types are necessarily kaolinite.

Fig. 6. Differences in saturated hydraulic conductivity (SOL_K) and clay fraction between the data generated and used by Gupta et al. (2021) and results in this study, 
and total soil depth from our study. The maps (panels A, C, and E) highlight some areas (within dashed rectangles) where the SOL_K differences were the greatest, and 
the top and right margins exhibit the distribution of the latitudinal and longitudinal means, respectively. The density estimates in panels B, D, and F were calculated 
using the kde2d function available in the MASS package (Venables and Ripley, 2003) in the R language (R Core Team, 2017).
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4. Conclusions

In this study, we produced robust soil property maps using a data- 
driven ML framework based on integration of a covariance model 
(SLEEP) with decision trees (GBM), for a tropical region with highly 
variable topography, climate, and vegetation characteristics that is not 
well represented in global soil property datasets. Good model perfor
mance is reflected in our models’ statistics that present r2 and PBIAS 
values varying from 0.79 to 0.98, and from − 1.39 to 1.14, respectively. 
Decision tree methods are highly advantageous because they are free of 
strict assumptions and can simultaneously handle diverse variables, 
scales, distributions, and relationships. We explored this characteristic 
in detail in this study, by employing multiple freely available datasets 
with an extensive array of data types (e.g., number of soil layers and 
chemical composition) to improve the soil information in our study area. 
GBM models can be considered semi-black-box models due to the 
complexity introduced by combining multiple individual trees, which 
often limits their direct interpretability. We addressed this challenge by 
incorporating a feature selector during calibration, which enabled us to 
perform uncertainty analyses and identify the primary environmental 
modulators of various soil properties.

Our results are especially important for soil management in response 
to climate change, land-use changes, and environmental degradation, 
such as deforestation and desertification, at multiple spatial scales. Our 
machine learning framework offers enhanced flexibility, enables regular 
short-term map updates, and supports the integration of future eco
nomic and environmental modelling (e.g., https://super.hawqs.tamu. 
edu/), while drastically reducing capital investments compared to in 
situ surveys and mapping. We believe that these promising findings will 
enhance all modelling efforts that require detailed soil information and 
encourage the development of new frameworks and datasets for soil 
sciences. Our new dataset can be further used to create a new portfolio of 
applications, such as agricultural zoning and environmental manage
ment strategies.
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