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Abstract

Reactive air pollutants both produce and consume hydroxyl radical (OH) in the troposphere,
playing a pivotal role in regulating the chemical sink of methane (CHs4)!. However, a
comprehensive quantification of this interaction over decadal timescales remains incomplete?.
Here we developed an integrated observation- and model-driven approach to quantify how
variations in key air pollutants influence the CH4 chemical sink and alter the CH4 budget. Our
results indicate that from 2005 to 2021, enhanced ozone (O3), increased water vapor, and
decreased carbon monoxide (CO) collectively contributed to a growth of the global CH4 sink
by 1.3-2.0 Tg yr 2, thereby buffering atmospheric CH4 growth rates. This increase was
primarily concentrated in tropical regions and exhibited a north-south asymmetry. Periods of
abnormal CH4 growth were typically linked to abrupt OH level changes driven by fluctuations
in the air pollutants, especially during extreme events like mega wildfires and the COVID-19
pandemic. Our study uncovers a tradeoff between O3 pollution control and CH4 removal
mediated by OH and highlights the risk of increasing CO emissions from widespread wildfires.



Main

Air pollution affects climate through various complex interactions. It perturbs the Earth’s
radiative energy balance and alters the atmospheric oxidation capacity, which determines the
lifetimes of short-lived climate forcers'. A pivotal mechanism in this dynamic is the impact on
hydroxyl radical (OH), the most important oxidant in the troposphere, which accounts for
approximately 90% of the methane (CH4) chemical sink®. As the second largest greenhouse
gas, the global CH4 levels have risen sharply since 2007°. Besides the anthropogenic* and
wetland emissions®®, the reaction with OH is also a key factor that modulates the trend and
variations of global CH4 burden’. Tropospheric OH has a short lifetime on the order of seconds
and is extremely reactive with reactive trace gas air pollutants like carbon monoxide (CO),
ozone (0O3), nitrogen oxides (NOx=NO+NO,), and non-methane volatile organic compounds
(NMVOCs)®. Efforts to mitigate air pollutants have intensified worldwide since 1990 for
protecting both public health and ecosystems’. This raises questions about how air pollution
changes have influenced the global CH4 removal by OH in recent decades®. Addressing this
question requires a comprehensive, detailed quantification of the impacts of various air
pollutants on the global burden of OH and the chemical sink of CHa.

Tropospheric OH is primarily produced through the reaction of water vapor (H2O()) with
excited oxygen atoms (O'(D)) and by the reaction of nitrogen oxide (NO) with hydroperoxyl
radical (HO,) and organic peroxy radicals (RO). The O!(D) is generated from the photolysis
of O3 (A <340 nm) and influenced by the overhead O3. The primary sinks for tropospheric OH
include its reactions with CO, CH4, and NMVOCs, and radical-radical reactions, with CO
dominating OH removal'®. Alterations in these chemical reactions control the abundance of
tropospheric OH, which can be diagnosed by atmospheric chemistry models!!"'>. However,
these models often exhibit discrepancies between simulated and observed pollutant
concentrations, indicating underlying shortcomings in the model transport and chemistry
mechanisms or uncertainties in the emission databases used'>!*1¢, Satellite observation data of
air pollutants are being exploited to investigate OH variations'’, based on OH proxies!2!,
machine learning methods??**, and simplified steady-state approach?®. While these methods
are effective for predicting spatiotemporal variations in OH, they have limitations in attributing
these variations to specific OH precursors. Comprehensive quantification of the impact of
various OH precursors on the global CHs budget is still in its infancy?.

Building on the methods of previous studies®, we developed an integrated observation- and
model-driven approach to reconstruct global tropospheric OH variations caused by the main
OH precursors, including CO, O3, CHs, NOx (referring to boundary NOx if not mentioned
specifically), total column O3 (TCO3), and H2O(g) from 2005 to 2021 (Methods). By integrating
state-of-the-art atmospheric composition fields and model tools, we diagnosed the impact of
the main OH precursor variations on the global OH levels, providing new insights into their
spatiotemporal variations, drivers, and impacts on the CH4 budget.

Trends and variations of global OH

The derived global tropospheric column-averaged, air-mass-weighted OH concentration
([OH]rop-m) driven by the aforementioned precursors increased significantly by 0.2-0.4% yr !
from 2005 to 2021 (Mann-Kendall test, P<0.05) (Fig. 1a). This trend is robust accounting for
uncertainties arising from OH precursor concentrations and chemical mechanisms, estimated
using the Monte Carlo method. Based on the two different chemical mechanisms, MOZART
and GEOS-Chem (Methods), the global mean [OH]uop-m Was estimated to have increased by
0.5£0.09x10° (meanzstandard deviation) molec cm™> and 0.3£0.06x10° molec cm>,
respectively, between the two five-year periods, 2005-2009 and 2015-2019. This rise in OH



levels corresponds to increases of 22.8+5.1 Tg yr ' and 14.7+3.6 Tg yr! in the CH4 sink.
[OH]uwop-m exhibited increases during 2007-2009 (0.4x10° molec cm™>) and 2015-2016
(0.3x10° molec cm?), and decreases during 2013-2015 (—0.2x10° molec cm ) and 20192021
(—0.2x10° molec cm*). These fluctuations reflect the large impacts of abrupt changes in
atmospheric compositions on OH due to extreme events like El Nifio!"?” and the Coronavirus
Disease 2019 (COVID-19) lockdowns?®, which will be discussed further below. During other
years, [OH Jirop-m showed variations of less than 0.1x10° molec cm .

The net variations in OH driven by these precursors closely mirror the interannual changes in
global CH4 atmospheric growth rates (Fig. 1b). Years with negative anomalies in global
[OH]wop-Mm, such as 2007, 2014, 2015, 2020, and 2021, coincide with sudden surges in the
growth rates of CH4 mixing ratios compared to adjacent years. In contrast, periods with positive
anomalies in global [OH]Jwop-m are associated with reduced CH4 growth rates, as observed
during 2007-2009 and 2015-2016. Although the atmospheric CH4 burden is controlled by both
sources and sinks, the inverse relationship between the annual growth rates of CH4 and net OH
variations suggests that the OH precursors considered in this study, such as O3, CO, and NOx,
and H>O(g), play a critical role in governing the CHs budget, particularly during years with
abrupt changes.

Our estimates of [OH]wop-m show interannual variations of £2—5% between 2005 and 2021,
which broadly align with previous studies that used methyl-chloroform (MCF) inversions in
atmospheric models (£3—6%)?°** and hydrofluorocarbon species (HFCs) inversions based on
box models (£2%)*' (Extended Data Fig. 1). Despite discrepancies across different inversion
results, our precursor-based estimates effectively capture key features of OH interannual
variations identified by the MCF inversions, such as the negative anomalies around 2007 and
2015 and the subsequent rebounds*’. The positive trend in [OH]op-m from our precursor-based
estimates is not detected by the atmospheric inversions but is consistent with the satellite-based
estimate of a positive trend during 2005-2019 (0.21% yr'! over tropical oceans) using a
machine learning method??. The positive trends of OH since 2005 follow the positive OH trend
during 1980-2010 derived from the model ensemble of the Chemistry—Climate Model
Initiative!!. The consistency indicates that the precursors included in our analysis represent the
major drivers of tropospheric OH variations, even though limited to specific precursor species
with available and reliable observation datasets. Therefore, our precursor-based estimates
provide valuable insights into the factors driving changes in the global CH4 chemical sink.

Impacts on the global CH4 budget

During 2005-2021, variations in the concentrations of CO, H2O(g), NOx, and O3 contribute to
a global rise in OH levels (Figs. 2a—d). Among these precursors, on the global scale, CO
concentration levels have declined, while H2O(), NOx, and O3 have increased. The steady
decline in global CO concentrations since 2005 is primarily attributed to improved fossil fuel
combustion efficiency, which has substantially reduced anthropogenic CO emissions®?. This
decline has offset the rising CO chemical production from CHs and NMVOC oxidations as
well as the stabilizing CO emissions from wildfires*. The increase in tropospheric NOx and
Os is likely due to the growth in anthropogenic emissions (e.g., NOx, VOCs) over the past two
decades, particularly in emerging countries®*. The rise in H2O() levels is caused by global
warming®. Not all human-caused changes in atmospheric composition led to rising OH. The
increasing TCO3, which reduces the O'(D) photolysis rates, and rising CHs burdens both drove
down OH, although these factors were not sufficient to counterbalance the increasing tendency
of OH driven by the other precursors (Figs. 2e and f). Overall, human-induced air pollution,
encompassing both improvements (e.g., CO reduction) and deteriorations (e.g., increased NOx
and O3), along with accelerated global warming, have increased global OH levels since 2005.



The atmospheric lifetimes of NOx, CO, H20O(g), and O3 range from hours to months in the
troposphere, leading to spatial-temporal variations in their concentrations that affect the
interannual anomalies of OH. For instance, the OH changes induced by CO exhibit large
variability because of the variable CO emissions from wildfires (Fig. 2a), which are highly
sensitive to extreme fire weather. The vast wildfire CO emissions in 2015, caused by El Nifio,
led to pronounced negative anomalies in OH. Similarly, a notable decline in [OH Jirop-m 0f 0.1—
0.2x10° molec cm > yr ! was observed in 2020 and 2021 (Fig. 1a), primarily due to reduced O3
levels related to the reduction of NOy emissions during the COVID-19 pandemic (Fig. 2d).

We further evaluated the impacts of OH precursors on the decadal changes in the global CH4
budget from 2005-2009 to 2015-2019 (Fig. 2g). Our estimates indicate an increase in CH4 sink
of 22.8+5.1 Tg yr ' and 14.7+£3.6 Tg yr !, derived respectively from the OH fields from the
MOZART and GEOS-Chem mechanisms (Fig. 1a). Rising tropospheric O3 accounted for
approximately 40% of the increase in the global CH4 sink over these periods, with estimates of
13.1 (min—max range of 9.7-16.5) Tg yr ! for MOZART and 8.6 (6.9-10.3) Tg yr ! for GEOS-
Chem. Increasing H2O(g) was the second most important driver, contributing about 30% to the
CHs sink increase, with estimates of 9.7 (9.5-9.8) Tg yr ! for MOZART and 7.7 (7.4-7.9) Tg
yr ! for GEOS-Chem. Decreasing CO resulted in a modest increase in the CHs chemical sink,
estimated at 4.3 (2.2-6.4) Tg yr ! for MOZART and 3.0 (1.5-4.5) Tg yr ! for GEOS-Chem.
Despite the differing magnitude estimates based on the two chemical mechanisms, they ranked
the impacts of the different precursors on the changes in the CHs chemical sink in the same
order of importance. The increases in the global CHs sink due to O3, H2O(), and CO are
comparable to, and in some cases exceed, the growth in CHs emissions from major
anthropogenic (e.g., agriculture and waste) and natural (e.g., fire and wetland) sources during
the same period. Our results confirm that the variations in the air pollutants play a crucial role
in shaping the global CH4 budget, alongside shifts in CH4 emission sources.

NOx affects tropospheric OH burden and CH4 budget not only through tropospheric O3
formation but also directly participates in OH production and loss pathways. Compared to the
indirect effects via O3, the direct impacts of NOx concentrations in the boundary layer are
weaker and less detectable due to uncertainties. The increase in boundary layer NOx
concentrations led to an approximate 2.5 Tg yr ! increase in the CHs sink from 2005-2009 to
2015-2019. Free tropospheric NOx is estimated to have caused comparable decadal changes in
global OH and CH4 sink between 2005-2009 and 2015-2019 as boundary layer NOx, though
both have broad uncertainty ranges (Extended Data Fig. 2). The overall impact of tropospheric
NOx is slightly larger than that of tropospheric CO but smaller than H2O(g). However, the results
for NOx should be interpreted with caution, as the division between boundary layer and free
tropospheric NOx variations is subject to large uncertainties (Methods). The estimates for
boundary layer NOx impacts over polluted regions tend to be more robust, such as the rising
NOx burden over India (Extended Data Fig. 3) and the sharp decline globally during COVID-
19 lockdowns (Extended Data Fig. 4). We thus focus on boundary layer NOx in the main text.

The increase in TCOj resulted in an approximate 1.5 Tg yr ' decrease in the CHs sink, though
showing large uncertainty ranges that cross zero (Fig. 2g), Additionally, the increase in CH4
itself caused a 5.6 Tg yr ' decadal decrease in the CH4 sink by consuming more OH. This
decrease is equivalent to about 25% of the increase in the CHs sink due to elevated atmospheric
CH4 mixing ratios (estimated with OH levels fixed at the 2005 level) during the same period.

Spatial variations of OH and CHj sink

The decadal changes in [OH]iop-m from the 2005-2009 mean to the 2015-2019 mean driven
by key precursors are mapped at the grid scale to illustrate the spatial drivers across the globe
and latitudinal bands, highlighting the resulting impacts on the chemical sink of CH4 (Fig. 3).
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The map shows the ensemble mean derived from various observational datasets and chemical
mechanisms, representing the central estimate that reflects our best understanding.

The net increase of [OH]wop-m 18 concentrated in the tropical regions (30°S—30°N), reaching
2.0x10° molec cm* across widespread areas (Fig. 3a). This increase is primarily driven by the
rise in tropospheric Oz and H2O) (Figs. 3c and d). The results indicate a north-south
asymmetry in OH increases, which is mainly attributed to the changes in CO concentration
levels (Figs. 3b and g) and H2O(g) (Figs. 3d and 1). Reduced CO burdens have led to larger OH
increases in the northern mid-latitude region, where North America, Europe, and China rapidly
reduced their anthropogenic CO emissions through improved combustion efficiency of
industrial boilers, residential stoves, and cars®>. Due to the short lifetime of CO, emission
reductions in the Northern Hemisphere can lead to uneven variations in OH levels between the
two hemispheres. Meanwhile, NOx emissions and pollution have grown in South Asia, the
Middle East, and North Africa, driving up OH levels in these regions (Fig. 3e). In contrast,
NOx burden in North America, Western Europe, and East China declined over the
corresponding period due to pollution control measures, curbing down OH levels. Due to the
compensating influences from different regions across the Northern Hemisphere, NOx
concentration changes within the boundary layer made only a small direct contribution to the
north-south asymmetry in OH increases (Fig. 3j), as well as the indirect influences through O3
formation.

The increase in the chemical sink of CHg also exhibits a north-south asymmetry, corresponding
to the spatio-temporal variation patterns in OH (Fig. 3k). The CHy sink due to OH is estimated
to have increased by 9.0 (3.6-15.6) Tg yr ! and 4.7 (—0.4-10.2) Tg yr ! in the northern and
southern tropics, respectively, from the 2005-2009 mean to the 2015-2019 mean. In the
northern mid-latitude band (30°N—60°N), the CHs4 sink increased by 3.3 (1.7-5.5) Tg yr !,
while the increase was moderate (1.4 Tg yr!) in the southern mid-latitude (60°S—30°S). The
substantial increase in the CHy sink over the tropics was driven by the increase in tropospheric
03 and H2O(g), accounting for approximately 9 Tg yr! and 6 Tg yr !, respectively (Figs. 3m
and n), of which 4 Tg yr'! was offset by the OH decrease due to the rising CHs. The reduction
in CO across the Northern Hemisphere increased CHy sink by about 3.5 Tg yr ! (Fig. 31). The
increase in chemical sink of CH4 was also led by the increase in H2O(g) over the Northern
Hemisphere (5.3 Tg yr 1), about 2.0 Tg yr'! greater than the Southern Hemisphere. Overall, the
spatial patterns of the decadal increases in OH and the associated CH4 sink reflect the influence
of the global spatial-temporal redistribution of air pollutants across latitudinal bands,
particularly regarding reduced CO and enhanced Os pollution, as well as the distribution of
H>O(g) increases due to climate change.

Air pollutant concentrations are influenced by precursor emissions from both natural sources
(e.g., wildfires, soil, wetlands, lightning) and anthropogenic sources (e.g., energy, industry,
transportation). These emissions exhibit interannual variations superimposed on long-term
trends. Extreme events, such as megadroughts and economic recessions, can cause substantial
disturbances in atmospheric compositions, offering a unique opportunity to understand the
impacts of air pollutants on tropospheric OH and CHj sinks. Next, we focus on four anomalous
years characterized by sudden changes in wildfire or human emissions to gain insights into
short-term OH variations, drivers, and their impacts on the global CH4 budget.

Fire impacts during El Niiio years

The impacts of fire emissions on CHj4 sinks were separately analyzed for the periods 2008—
2009 and 20152016, which represent contrasting phases of global fire activity. During 2008—
2009, fire CO emissions were anomalously low following the multiyear La Nifia event of
2007/2008°. This reduction in fire CO emissions led to a concurrent drop in global CO levels,



subsequently increasing the global CHa sink by 11.4 (8.9-14.2) Tg yr ! (Fig. 4a). This increase
in CH4 chemical sink due to decreased CO was evident across all latitude bands (Extended
Data Fig. 5). Additionally, but smaller, an increase in O3 over the tropics slightly contributed
to the global CHy sink by 2.2 (1.1-3.5) Tg yr ! during this period. The global rise in OH levels
and the associated CH4 chemical sink during 2008-2009 was accompanied by a temporary
slowdown in the atmospheric growth rate of CH4 within those years (Fig. 1). This highlights
the critical role of OH in shaping the interannual variation of the global CH4 budget.

During 2015-2016, global fire emissions were extremely high due to intensified wildfires in
the tropics, particularly from peatland burning in Southeast Asia driven by the El Nifio event.
This led to a large increase in CO concentrations over the tropics, resulting in a substantial
weakening of the global CHy sink by 16.9 (12.9-21.3) Tg yr ! compared to the corresponding
period before El Nifio (Figs. 4b and and Extended Data Fig. 5). More than half of these negative
anomalies were offset by an increase in the CH4 sink driven by elevated H,O(g) levels, around
10.0 Tgyr !, over the tropics. Meanwhile, wildfires directly released CH4 emissions amounting
to 4.4 (1.4-7.5) Tg yr ! positive anomalies?, which is smaller than the reduction in CHs sink
due to increased wildfire CO emissions contemporally. Both of these effects increase the global
CHa4 burden, but the feedback loop involving fire CO emissions, OH levels, and CH4 sink plays
a more dominant role in regulating the global CH4 budget than direct fire CH4 emissions.

Human impacts of the pandemic period

The impacts of anthropogenic emissions on CHy sinks were also investigated for the years 2020
and 2021. During these years, the world was affected by COVID-19, and the lockdown
measures implemented led to a sharp reduction in human activities and emissions*®. The
surface network observed an increase in the atmospheric growth rate of global CHs in 2020
and 2021, which are 5.8 ppb yr ! and 8.3 ppb yr ! higher than 2019, respectively®’ (Fig. 1b).
Our estimations indicate a steady decline in global OH concentrations of 0.1-0.2x10° molec
cm > yr ! (1-2% yr'!) from 2019 to 2021 (Fig. 1a). Compared to 2019 levels, the global
chemical sink of CHs was estimated to have decreased by 11.0+3.5 Tg yr ! (based on
MOZART) or 7.0£2.5 Tg yr ! (based on GEOS-Chem) in 2020 (Fig. 4c). In 2021, this decrease
reached 15.6+4.3 Tg yr ! (MOZART) or 10.6+3.6 Tg yr ! (GEOS-Chem) compared to 2019
(Fig. 4d). These findings align with the previous atmospheric chemistry transport model
simulations and top-down inversion of the HFC species and CHa, which estimated an
approximately 1.5% yr ! decrease in OH from 2019 to 2020%%3%%_  This reduction is reported
to account for 53+10% of the increase in CHs4 growth rate observed by the surface network in
2020 compared to 2019%3, and 14-34% based on the inversions of satellite observations>®>°.

The drop in OH and CHjy sink in 2020 and 2021 was primarily attributed to the decline in
tropospheric O3z levels (Figs. 4c and d). This decline in O3 was caused by reduced
anthropogenic NOx emissions during the COVID-19 lockdown in 2020 and the incomplete
recovery of emissions, such as those from air transport, in 2021%°. These factors substantially
restricted socioeconomic activities and associated emissions. Overall, the decrease in O3
accounted for nearly 70% of the reduction in the global CH4 chemical sink during these two
years, with other precursors contributing to the remaining 30% decline. In 2020, elevated CO
concentrations in the Southern Hemisphere due to intensive wildfires reduced the CHy sink,
nearly matching the impacts of reduced O3 concentrations in that region (Extended Data Fig.
5). The higher TCOs levels over the northern tropics also contributed to a decrease in the CH4
sink (up to 3 Tg yr ') but were offset by lower TCOs levels over latitudes north of 30°N. In
2021, tropospheric O3 levels remained comparable to those in 2020*'. The enhanced CO
concentrations north of 30°N due to extreme boreal forest fires** contributed to a small decrease



in CHy sink but was offset by the decline of CO south of 30°N. The additional decrease in
H>O(g) and increase in TCO; together led to a further decline in the CHg sink in 2021 (Fig. 4d).

During the COVID-19 period, anthropogenic NOy emissions declined for both surface sources
and high-altitude aircraft sources, with the associated decline in tropospheric O3 dominating
the reduction in the global CH4 sink. For OH production and loss directly resulting from
changes in NOy concentrations, reduced NOx levels within the boundary layer led to a decrease
in OH in North America and Europe, while causing a slight increase in high-NOy regions such
as Eastern Asia (Extended Data Fig. 4). The free tropospheric NOx concentrations, influenced
by emissions from aircraft, lightning, and the transport of NOy reservoirs such as peroxyacetyl
nitrate (PAN)*, are not well constrained in this study due to a lack of direct observations
(Extended Data Fig. 6), while the influences on O3 concentrations are evaluated separately.

Balance air quality and climate concerns

Reducing CH4 emissions is the most crucial strategy for mitigating its climate impacts and
addresses the indirect radiative forcing effects caused by CHs degradation products, which
contribute to the production of greenhouse gases like Os, stratospheric water vapor, and CO,".
Mitigating CH4 emissions is also recognized as an effective strategy for reducing peak warming
from climate change due to CH4's much shorter atmospheric lifetime compared to COx*.
However, it is essential to recognize that CH4 concentration levels and their climate effects are
controlled by both their sources and sinks?, which are highly dependent on chemistry-climate
feedback. For example, potential increases in natural CH4 emissions, such as from permafrost
thawing, have been recognized as major climate risks*. On the other hand, large uncertainties
still exist in the chemical sink of CH42.

We quantified in this paper how trends and variations in air pollution at both global and regional
scales critically influence OH over decadal timescales, the primary atmospheric oxidant of
CHa, as shown by the conceptual diagram (Extended Data Fig. 7). Our study infers rising O3
but decreasing CO due to changes in air pollution, have contributed to increase in OH levels
and consumed more CHg in the atmosphere. This has buffered the rapid rise in anthropogenic
CH4 emissions observed over the past two decades, highlighting the critical influence of both
natural and anthropogenic pollutant emission sources on the global CH4 budget.

Learning from the past, one can expect that air quality regulations will critically affect the
capability of OH to buffer CH4 emissions. Particularly, O3, which adversely impacts human
health and ecosystems, is a regulated air pollutant worldwide*®*’. Despite recent increases in
atmospheric O3 concentrations, efforts by many countries suggest that O3 pollution could be
mitigated in the future’**®. Reduced tropospheric O3 implies less OH production and a reduced
CHg4 chemical sink, similar to what occurred during the COVID-19 period in 2020 and 2021.
This reduction in OH could drive up CH4 concentrations without changes in CH4 emissions.

In addition to O3, CO emissions from intense wildfires also warrant attention. While CO
emissions have declined since 2005 due to anthropogenic pollution control measures, global
wildfire emissions remain high®***°. In some regions, such as boreal forests, wildfires have
become more frequent and severe recently*?, increasingly influencing global CO trends and
variations. Furthermore, global warming is likely to trigger more droughts, water deficits, and
fire weather conditions, exacerbating wildfire activity*>. The CO emissions from these probable
wildfires will counteract the beneficial effects of air pollution cuts and pose a further threat to
global OH levels and the CH4 sink. Climate feedback with potentially positive effects on OH,
on the other hand, may result from increased water vapor in the atmosphere® or an increase in
stratosphere-troposphere transport of ozone>’.



The examples of O3 and CO discussed above illustrate how air pollution regulations can alter
the OH and CH4 budgets. It is crucial to develop tools for monitoring and modeling OH levels
both globally and regionally while continuing to implement effective air quality regulations to
protect human health and the environment. The integrated observation- and model-driven
system developed in this study represents an important effort to monitor OH levels. By
regularly updating all driving factors, this system enables us to track spatial and temporal
variations in OH levels, supporting the dynamic investigation of its influence on the global CH4
budget. Addressing both air pollution and climate crisis requires a state-of-the-art, transparent,
reliable understanding of the OH burden, which can underpin targeted and effective policies.
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Methods
General methodology

In this study, we developed an approach (Fig. S1) to estimate tropospheric OH concentrations
([OH]) and changes in the CH4 sink from 2005 to 2021, focusing on the main OH precursors:
tropospheric CO, H2O(g), O3, CH4, NOx, and total column O3 (TCO3). Building on the methods
of previous studies?® and our prior research’!, this approach integrated (I) 3D model simulations
of atmospheric composition and meteorological conditions for 2005; (II) chemical box model
experiments to estimate [OH] responses to changes in each precursor; and (IIT) quantifications
of the main OH precursor changes during 2005-2021 based on observation-based datasets

(Tables S1-3). We performed chemical box model experiments for each 3D model grid cell,
driven by the atmospheric composition and meteorological conditions from 3D model
simulations and observation-based datasets for the year 2005. These experiments allowed us to
calculate the sensitivity of OH to varying extents of precursor concentration changes (OH
sensitivity). We then determined the year-to-year variations in [OH] induced by the main
precursors from 2005 to 2021 by combining the box model-calculated OH sensitivity with the
observation-based OH precursor datasets.

To address uncertainties in OH chemistry, we employed two different chemical mechanisms
(MOZART-4 and GEOS-Chem) for calculating OH sensitivity separately. For each precursor,
we also utilized 2—4 observation datasets to quantify their interannual changes and represent
potential uncertainties, which were derived from satellite retrievals (Table S1) and chemical
reanalysis (Table S2). The data sources for the OH precursors used in this study are summarized
in Table S3. The satellite-retrieved vertical column densities (VCDs) of tropospheric O3 and
NO; were converted into 3D distributions using vertical profiles simulated by 3D models. The
influence of tropospheric Oz and NOx on OH was estimated across altitudes by vertical layers.
In regions dominated by anthropogenic surface sources, boundary layer NO; variations can be
inferred with greater confidence from total tropospheric column data®2. While free tropospheric
NOx contributes to the total tropospheric NOx burden and OH variations>*>*, accurately
assessing its impact on OH requires reliable vertical profiles and their temporal evolution—
data that are currently unavailable. The annual scale impacts of free tropospheric NOy are less
well constrained in this study and tend to be more uncertain than those of the other species
analyzed. Therefore, for the influence of NOx on [OH] and CH4 loss, we focus on the results
for boundary layer NOx in the main text and show the magnitudes of free tropospheric NOx
impacts in the Extend Data Figs. 2 and 6.

The overall interannual variations of [OH] and CH4 loss were determined by summing the [OH]
changes induced by individual precursors. We applied the Monte Carlo method to randomly
sample the changes in tropospheric [OH] and CH4 chemical loss driven by each OH precursor,
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estimated from different observations. This approach allowed us to derive the mean values and
the uncertainty range of the overall interannual variations. To examine the additivity of the [OH]
changes due to different precursors, we used a chemical box model to simulate [OH] under
three conditions in our previous study’': (I) using 3D model outputs ([0H]moger); (I1)
simultaneously replacing the major OH precursors with observation-based data ([OH],ps); and
(IIT) individually replacing each OH precursor Xk to observation-based data ([OH]yps xx)- We
found that the [OH] changes caused by perturbing all major precursors together, as the
difference between [OH] simulated by (I) and (I) ([OH] giff 1 = [OH]moder — [OH]ops), are
consistent with those calculated by summing the differences between (I) and each (III)
([OH]girf 2 = X([OH]modger — [OH]obs xk)) (Fig.S2). Therefore, summing the [OH] changes
from individual precursors is a valid approach for diagnosing overall [OH] changes on both
global and 30° latitude band scales.

The 3D model simulated OH precursors

The 3D distributions of atmospheric trace gases and meteorological conditions to drive
chemical box model simulations were from the IGAC/SPARC Chemistry-Climate Model
Initiative Phase-1 (CCMI-1)>. We used the outputs from REF-C1 experiments, which were
simulated by the Community Earth System Model (CESM) using the Community Atmosphere
Model version 4 as an atmosphere component (CESM1 CAM4-chem)®® and the GEOS-5
Chemistry Climate Model (GEOSCCM)*7°,

The REF-C1 experiments were driven by observation-based sea surface temperature and state-
of-the-art historical forcing from 1960 to 2010. The anthropogenic emissions of REF-C1
experiments were derived from the MACCity inventory® . The model simulations also included
natural emissions from biomass burning, lightning, and biogenic sources>. The tropospheric
gas-phase chemistry of CESM1 CAM4-chem is mostly based on the MOZART-4 mechanisms.
The tropospheric chemistry of GEOSCCM is from the chemistry Global Modeling Initiative
(GMI) combined tropospheric-stratospheric chemical mechanism®%2. For a detailed
description of CCMI model and experiments information regarding the tropospheric OH
concentrations and OH precursors simulated by CESM1 CAM4-chem and GEOSCCM can be
found in previous studies 13,

The chemical box model DSMACC experiments

We calculated the responses in tropospheric [OH] to the aforementioned precursor changes
using the Dynamically Simple Model of Atmospheric Chemical Complexity (DSMACC)%.
This chemical box model generates code for a selected chemical mechanism via the Kinetic
PreProcessor (KPP) and estimates the clear-sky photolysis rates using the tropospheric
ultraviolet and visible (TUV) radiation model. Unlike the 3D atmospheric chemistry models
that are usually driven by emission inventories, the DSMACC model is driven by the
concentrations of chemical species, which are more easily constrained by observation-based
datasets. Within the DSMACC framework, NO and NO; are treated as the NOx family and can
be constrained by NO» concentrations.

In this study, we conducted the DSMACC model simulations with MOZART-4 and GEOS-
Chem chemical mechanisms, respectively. The DSMACC simulations with MOZART-4
chemical mechanisms were driven by the chemical species concentrations and meteorological
conditions from the outputs of CESM1 CAM4-chem of CCMI REF-C1 experiments, and the
simulations with GEOS-Chem chemical mechanisms are driven by outputs of GEOSCCM. As
demonstrated by our prior research®!, the DSMACC model was able to reproduce the spatial
distributions of [OH]uop-m simulated by the corresponding 3D model, validating its ability to
capture the response of [OH] to meteorological conditions and precursor concentrations.
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For each chemical mechanism, we conducted the following DSMACC experiments:

(1) Ref model experiment: Simulated [OH] ([OH]psMacC Ref modet) With all DSMACC inputs
taken directly from 3D atmospheric chemistry model simulations for each month in 2005.

(2) Obs_Xk_Ln experiments: Similar to the Ref model experiment but the concentration of
one individual OH precursor Xk (X;=CO, X>2=H>0), X3=03, X4=CH4, X5= NO:, Xs=TCO3)
was adjusted to Ln% of the mean value observation-based datasets in 2005. Considering the
nonlinear responses of [OH] to precursor concentrations, most precursors were increased in 20%
increments from 20% to 200% (L;=20, L2=40, ..., L1p=200). For TCO3, Ln% was increased
by 10% step from 80% to 110% (L;=80, L»=90, L3=100, L4=110). For CHs4, Ln% was
increased by 5% step from 95% to 105% (L;=95, L>=100, L3=105).

To better represent the heterogeneous spatial-temporal distribution of OH, the DSMACC
model experiments (Ref model and Obs Xk Ln) were conducted for each pixel of the 3D
model grid in the troposphere (e.g., 144 (longitudes)x96 (latitudes)x13 (pressure levels) for
CESM1 CAM4-chem grid) for each month using MOZART and GEOS-Chem chemical
mechanisms.

[OH] changes relative to 2005 induced by each precursor

We calculated the [OH] changes between year y and 2005 due to each precursor Xk by
multiplying the 3D model simulated baseline [OH] concentrations for 2005 ([OH]model) With
the relative [OH] changes generated from the DSMACC model experiments:

[OH] (1)
Where [OH]psmacc ref model 1S the [OH] simulated by Ref model experiments of the DSMACC
model; [OH]psmacc xk 2005 and [OH]psmacc xx y are the [OH] simulated by the DSMACC
model with concentrations of precursor Xk perturbed to the observation-based values for 2005
and year y, respectively. We did not directly use the absolute values of the DSMACC model
simulated [OH] because the [OH] simulated by Ref model experiments tended to overestimate
[OH] by ~10-30% compared with corresponding 3D model simulations>'.

5[OH] _ [OH] X{[OH]DSMACCXky - [OH]DSMAcciXk72005 J
Xk_y model

DSMACC _Ref _model

For each year (y = 2005, 2006 ,..., 2021) and each observation-based dataset, calculating
[OH]psmacc xk y requires numerous DSMACC simulations. To balance the computing cost and
the nonlinearities in OH chemistry, we ran the Obs Xk Ln, which adjusted the concentrations
of Xk to Ln% of the multi-observation mean values of 2005 (Cxk rn). For each of the individual
OH precursors Xk and each year y, we searched for the Cxx Ln (n=N) that was closest to the
observation-based concentrations (Cxk y). We assume a linear response of [OH] to a small
perturbation of Xk from Cxk ra (n=N) to Cxx y, and calculate the [OH]psmacc xk y by equation

2):
[OH] ~[OH

+
DSMACC Xk vy ]DSMACCiRcfimodcl

C _C mode!
([OH]DSMACckaan - [OH]DSMACcheffmodel )X[ = e ](n = N) (2)

CkaLn - Ckamodel

Where Cxk model 1S Xk concentrations simulated by the 3D model for 2005, [OH]psmacc Xk Ln
is the [OH] simulated by Obs Xk Ln (n=N).

The [OH]top-Mm and chemical loss of CH4

The changes in global and regional mean tropospheric column-averaged air-mass-weighted
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OH concentration ([OH]wop-m) caused by precursor Xk in year y, relative to 2005 (6[OH]xk y)
were calculated as:

_ 215 [OH]iny xm

5[OH]tr0p*M - Zm G)

Where i is the index of the model grid cell in the troposphere and m is the corresponding air
mass.

The changes in chemical loss of CH4 through reaction with OH were calculated as:
Ly con = 2, 2, K(T,)xmgy, 5[0H]Xk_y ot (4)

Where 6t is the monthly integration time step. The 3D CH4 mass (mcn4) distributions in 2005
are from the CAMS reanalysis. The K(Ta) is the reaction rate of CHs with OH and was
calculated as a function of air temperature (T,)®:

1775

K(T,)=2.45x10"%¢ ™ (5)

Where the distribution of Ta was taken from the MERRA-2 reanalysis data.

For each OH precursor, we estimated §[OH]uop-m and 8 Lcna+on using two different chemical
mechanisms and multiple observation-based datasets.

Box model for diagnosing the influence of CH4 emissions on OH

In the years such as 2007, 2014, 2015, 2020, and 2021, we observed negative anomalies in
global [OH]Jwop-m coinciding with increased CH4 growth rates compared to adjacent years. To
investigate whether surges in CH4 emissions could drive increases in CH4 mixing ratios and
subsequent decreases in global [OH], we developed a global box model, which operates on an
hourly timestep and incorporates the following processes.

(1) CHs emissions. CHs emissions are converted into an incremental increase in the
tropospheric CH4 mixing ratio.

(2) CHa4 losses. CH4 loss through the reaction with OH is calculated based on the tropospheric
CH4 mixing ratio and [OH]. Losses due to stratospheric processes (51 Tg yr!") and reactions
with CI (25 Tg yr''") are prescribed in the box model simulations, following an ensemble
estimate of the global CH4 budget?.

(3) OH response to CHs changes. A 1 ppbv increase in tropospheric CH4 leads to a decrease
of 0.0018x10° molec cm™ in global mean [OH], derived from our chemical box model
experiments (Fig. 2). This is consistent with ensemble 3D atmospheric chemistry model
simulations, which show that a 960 ppbv increase in CH4 corresponds to a 17.3+2.3% (~1.73
x 10° molec cm™) decrease in [OH]'2.

Initial conditions were set with a tropospheric CH4 mixing ratio of 1800 ppbv and [OH] at 10°
molec cm™. CH4 chemical loss through OH was estimated at 474 Tg yr''. To balance CH4 loss
(including OH, Cl, and stratospheric losses), we set initial CH4 source emissions to 550 Tg yr-
!, establishing a steady state for both CHs and OH. In the fifth year of the simulation, we
introduced a 10% increase in CH4 annual emissions (55 Tg yr'')—a magnitude much larger
than the decadal increase in global anthropogenic emissions from 2005-2009 to 2015-2019
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(Fig. 2) and greater than typical interannual variations in wetland emissions (within 10 Tg yr~
Y66

As shown in Fig. S3, this unrealistic surge in CH4 emissions caused an increase in the global
CH4 annual growth rate of 23 ppbv yr''—larger than historical CH4 annual growth rates in any
year since 1985 (mostly below 10 ppbv yr'!). However, the corresponding decrease in [OH]
was only 0.4% yr! (0.04 x 10° molec cm™ yr'!). This is less than half of the observed decreases
in [OH] (0.1-0.2x10° molec cm™ yr'!) during years with significant negative anomalies, such
as 2007, 2014, 2015, 2020, and 2021 (Fig. 1). These results suggest that CH4 emissions are
unlikely to be a primary driver of [OH] variations through perturbations in CH4 abundance.
Instead, interannual [OH] variations are predominantly influenced by reactive species such as
CO, 03, NOy, and H20(y).

Impacts of formaldehyde and isoprene on OH variations

Formaldehyde (CH20) has a long-term satellite dataset (e.g., OMI) and has been used as a
proxy for assessing OH variations, particularly in remote regions where CH2O is primarily
produced from OH oxidation of CH4?!. However, CH>O is not a primary driver of OH changes,
and its direct impact on global OH burden is limited. It accounts for only about 6% of the global
OH sink!!, serving more as an indicator of the oxidation of NMVOCs by OH rather than
directly influencing OH chemistry.

To evaluate CH>O’s impact on global OH, we conducted an additional model experiment using
global 3D CH>O distributions (2005-2017) derived from a variational atmospheric inversion
system assimilating OMI v3 CH>O total column data**. Our results suggest that CH,O
contributes to a minor decrease in global tropospheric [OH] of less than 0.05x10° molec cm™
(~0.5%) over the studied period (Fig. S4). Given these marginal effects and the lack of multiple
reliable observation datasets, we chose not to include CH20 in our analysis, as its omission
does not significantly affect the analysis of overall trends and drivers of global OH variations.

The impact of isoprene on [OH] variations is primarily observed in regions with high
isoprene emissions, such as tropical forests, where atmospheric HCHO is primarily produced
through the oxidation of isoprene®’-8, Recent isoprene observations from the Cross-track
Infrared Sounder (CrIS) satellite, spanning from February 2012 to December 2020, provide
valuable data over forest regions of East Amazonia, New Guinea, and the Southeastern
United States'®. We used these CrIS data to assess the influence of isoprene on tropospheric
[OH] variations in these regions. Our results indicate that isoprene contributes to 1%-3% of
the interannual variations in regional [OH ]uop-M, With impacts comparable to those of CO and
Os (Fig. S5). In our previous study, we estimated that isoprene accounts for 6% of the global
OH sink !'. However, fully quantifying the global impact of isoprene, along with other
NMVOCs, requires long-term, global-scale observations of individual NMVOC species. Due
to the absence of such data at the global scale, we focused on regional analysis in this study
and did not incorporate isoprene into our global framework.

Data availability

The atmospheric composition concentrations simulated by GEOSCCM and CESM-
CAMA4Chem were downloaded from https://data.ceda.ac.uk/badc. The atmospheric methane
growth rate data was obtained from https://gml.noaa.gov/ccgg/trends _ch4/. The CAMS
EAC4 chemical reanalysis and EGG4 were downloaded from
https://www.ecmwf.int/en/research/climate-reanalysis/cams-reanalysis. The TCR-2 chemical
reanalysis data was downloaded from https://tes.jpl.nasa.gov/tes/chemical-reanalysis/. The
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MERRA?2 reanalysis data was downloaded from
https://gmao.gsfc.nasa.gov/reanalysissMERRA-2. The ERAS reanalysis data was downloaded
from https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5. The satellite
tropospheric O3 column was downloaded from https://acd-
ext.gsfc.nasa.gov/Data_services/cloud slice/new_data.html. The total O3 column was
downloaded from https://acd-ext.gsfc.nasa.gov/Data_services/merged/instruments.html. The
QA4ECV tropospheric NO; product was downloaded from
https://www.temis.nl/airpollution/no2.php. The NASA tropospheric NO> products were
downloaded from https://disc.gsfc.nasa.gov/datasets/ OMNO2d 003/summary. The global
gridded distribution of the OH changes relative to 2005 due to individual OH precursors and
the source data for the figures are available at Figshare
(https://figshare.com/s/6ab4b1e5¢20657b93279).

Code availability

Code and documentation for the Chemical box model DSMACC are available at
https://github.com/barronh/ DSMACC.
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Figure 1. Year-to-year variations in tropospheric OH concentrations and CH4 growth
rates. (a) Net changes in global mean tropospheric OH concentrations ([OH]wop-m) relative to
2005, driven by variations in tropospheric CO, O3z, H2O(), CH4, boundary layer NOy, and total
column O3 (TCO3), as estimated using the MOZART (pink line) and GEOS-Chem (purple line)
chemical mechanisms. The solid line represents the mean change in [OH]uop-m, With the shaded
areas indicating the uncertainty range based on different observation-based datasets. The inset
displays the Theil-Sen slope of the mean [OHJwop-m changes, along with the P-value determined
using the Mann-Kendall test. The whisker chart illustrates decadal changes (2005-2009 vs.
2015-2019) in the CHg4 sink driven by OH variations, showing the mean, standard deviation,
and range. (b) CHs4 growth rates from the NOAA/GML observational network®’.
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Figure 2. Global tropospheric [OH] and CH4 sink changes driven by individual OH
precursors. (a—f) Changes in global mean tropospheric OH concentrations ([OH]op-m) relative
to 2005, driven by individual observation-based precursors.
(g) Decadal changes (between 2005-2009 and 2015-2019) in the global CH4 sink attributed to
individual OH precursors, anthropogenic CH4 emissions from agriculture, waste, and other
sources as provided by the EDGARv7.0% and CEDSv2021_04 217° inventories, and bottom-
up estimates of fire and wetland from the last Global Methane budget (between 2005-2009 and
2013-2017)°. The error bars represent the range of CHs source/sink estimates across different
datasets. BL NOx refer to the NOx in boundary layer.
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Figure 3. Spatial distribution of decadal changes in tropospheric [OH] and CHy4 sink.
(a—e) Spatial patterns of decadal changes in mean tropospheric OH concentrations ([OH]op-m)
driven by individual and total contributions from six OH precursors, as estimated by different
observation-based datasets and two chemical mechanisms (MZ: MOZART, GC: GEOS-
Chem). (f—j) Corresponding latitudinal changes in [OH]wop-m. (k—0) Latitudinal changes in the
chemical sink of CHa. Error bars represent the range of [OH]wop-m and CH4 sink estimates
derived from various datasets.
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Figure 4. Contributions of individual OH precursors to global CH4 sink changes during
unusual years. (a) The rapid increase in the global CHs sink following 2007 (mean values of
2008-2009 minus 2006-2007). (b) Anomaly in the global CH4 sink during the El Nifio event
starting in 2015 (mean values 0f 2015.5-2016.4 minus 2014.5-2015.4). (¢—d) Anomalies in the
global CHj sink during the COVID-19 lockdown in 2020 (2020 minus 2019) and 2021 (2021
minus 2019). Error bars represent the range of CHy sink estimates from various datasets. The
whisker chart in the inset shows net anomalies estimated by the MOZART (MZ) and GEOS-
Chem (GC) mechanisms.

Extended data figures

Extended Data Figure 1. Comparison of the global tropospheric mean [OH] with MCF-
based and HFC-based inversions. Tropospheric [OH] variations calculated using MOZART
(pink) and GEOS-Chem (purple) chemical mechanisms are compared with MCF-based
inversions from the 3D model as described by Patra et al.’** and by Naus et al.*” as well as
with HFC-based inversions from the box model as described by Thompson et al.>.

Extended Data Figure 2. Contributions of NOx from the free troposphere to interannual
variation of global [OH]uep-Mm and decadal changes in and chemical loss of CHa. (a)
Interannual variations of [OH]iop-m. (b)Decadal changes in chemical loss of CHa.

Extended Data Figure 3. Contributions of individual OH precursors to decadal changes
in tropospheric [OH] in South Asia. (a—c) Spatial patterns of decadal changes in mean
tropospheric OH concentrations ([OH]wop-m) driven by tropospheric O3, H2O(g), and boundary
layer NOx. (d) Regional mean [OH]wop-m changes over South Asia.

Extended Data Figure 4. Contributions of boundary layer NOx to anomaly in [OH]trop-m
during the Covid-lockdown period in 2020. The lockdown period is 2020.3-2020.5 for
Eastern United States and Western Europe, and 2020.2-2020.3 for Eastern China.

Extended Data Figure S. Regional contributions of individual OH precursors (various
colors) to global CHs sink changes during unusual years. (a) The rapid increase in the
global CHj4 sink following 2007 (mean values of 2008—-2009 minus 2006—-2007). (b) Anomaly
in the global CHj4 sink during the El Nifio event starting in 2015 (mean values of 2015.5-
2016.4 minus 2014.5-2015.4). (c—d) Anomalies in the global CH4 sink during the COVID-19
lockdown in 2020 (2020 minus 2019) and 2021 (2021 minus 2019). Error bars represent the
range of CH4 sink estimates from various datasets.
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Extended Data Figure 6. Contributions of NOx from the boundary layer, free
troposphere, and whole troposphere to global [OH]wep-m and CHg4 sink changes during
unusual years. The unusual years include the El Nifio event starting in 2015 (mean values of
2015.5-2016.4 minus 2014.5-2015.4) and the COVID-19 lockdown in 2020 (2020 minus
2019). (a) The [OH]op-m. (b) Chemical loss of CHa.

Extended Data Figure 7. Conceptual diagram illustrating how air pollution modulates
global OH radicals and the CH4 chemical sink. Red arrows indicate positive contributions,
while blue arrows show negative contributions. Grey arrows represent the interactions
between climate and air quality measures, global warming, and air pollution.
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