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Abstract  

Reactive air pollutants both produce and consume hydroxyl radical (OH) in the troposphere, 

playing a pivotal role in regulating the chemical sink of methane (CH4)
1. However, a 

comprehensive quantification of this interaction over decadal timescales remains incomplete2. 

Here we developed an integrated observation- and model-driven approach to quantify how 

variations in key air pollutants influence the CH4 chemical sink and alter the CH4 budget. Our 

results indicate that from 2005 to 2021, enhanced ozone (O3), increased water vapor, and 

decreased carbon monoxide (CO) collectively contributed to a growth of the global CH4 sink 

by 1.3–2.0 Tg yr−2, thereby buffering atmospheric CH4 growth rates. This increase was 

primarily concentrated in tropical regions and exhibited a north-south asymmetry. Periods of 

abnormal CH4 growth were typically linked to abrupt OH level changes driven by fluctuations 

in the air pollutants, especially during extreme events like mega wildfires and the COVID-19 

pandemic. Our study uncovers a tradeoff between O3 pollution control and CH4 removal 

mediated by OH and highlights the risk of increasing CO emissions from widespread wildfires. 
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Main  

Air pollution affects climate through various complex interactions. It perturbs the Earth’s 

radiative energy balance and alters the atmospheric oxidation capacity, which determines the 

lifetimes of short-lived climate forcers1. A pivotal mechanism in this dynamic is the impact on 

hydroxyl radical (OH), the most important oxidant in the troposphere, which accounts for 

approximately 90% of the methane (CH4) chemical sink2. As the second largest greenhouse 

gas, the global CH4 levels have risen sharply since 20073. Besides the anthropogenic4 and 

wetland emissions5,6, the reaction with OH is also a key factor that modulates the trend and 

variations of global CH4 burden7. Tropospheric OH has a short lifetime on the order of seconds 

and is extremely reactive with reactive trace gas air pollutants like carbon monoxide (CO), 

ozone (O3), nitrogen oxides (NOx=NO+NO2), and non-methane volatile organic compounds 

(NMVOCs)8. Efforts to mitigate air pollutants have intensified worldwide since 1990 for 

protecting both public health and ecosystems9. This raises questions about how air pollution 

changes have influenced the global CH4 removal by OH in recent decades2. Addressing this 

question requires a comprehensive, detailed quantification of the impacts of various air 

pollutants on the global burden of OH and the chemical sink of CH4. 

Tropospheric OH is primarily produced through the reaction of water vapor (H2O(g)) with 

excited oxygen atoms (O1(D)) and by the reaction of nitrogen oxide (NO) with hydroperoxyl 

radical (HO2) and organic peroxy radicals (RO2). The O1(D) is generated from the photolysis 

of O3 (λ <340 nm)  and influenced by the overhead O3. The primary sinks for tropospheric OH 

include its reactions with CO, CH4, and NMVOCs, and radical-radical reactions, with CO 

dominating OH removal10. Alterations in these chemical reactions control the abundance of 

tropospheric OH, which can be diagnosed by atmospheric chemistry models11-15. However, 

these models often exhibit discrepancies between simulated and observed pollutant 

concentrations, indicating underlying shortcomings in the model transport and chemistry 

mechanisms or uncertainties in the emission databases used12,13,16. Satellite observation data of 

air pollutants are being exploited to investigate OH variations17, based on OH proxies18-21, 

machine learning methods22-24, and simplified steady-state approach25. While these methods 

are effective for predicting spatiotemporal variations in OH, they have limitations in attributing 

these variations to specific OH precursors. Comprehensive quantification of the impact of 

various OH precursors on the global CH4 budget is still in its infancy2. 

Building on the methods of previous studies26, we developed an integrated observation- and 

model-driven approach to reconstruct global tropospheric OH variations caused by the main 

OH precursors, including CO, O3, CH4, NOx (referring to boundary NOx if not mentioned 

specifically), total column O3 (TCO3), and H2O(g) from 2005 to 2021 (Methods). By integrating 

state-of-the-art atmospheric composition fields and model tools, we diagnosed the impact of 

the main OH precursor variations on the global OH levels, providing new insights into their 

spatiotemporal variations, drivers, and impacts on the CH4 budget. 

Trends and variations of global OH 

The derived global tropospheric column-averaged, air-mass-weighted OH concentration 

([OH]trop-M) driven by the aforementioned precursors increased significantly by 0.2–0.4% yr−1 

from 2005 to 2021 (Mann-Kendall test, P<0.05) (Fig. 1a). This trend is robust accounting for 

uncertainties arising from OH precursor concentrations and chemical mechanisms, estimated 

using the Monte Carlo method. Based on the two different chemical mechanisms, MOZART 

and GEOS-Chem (Methods), the global mean [OH]trop-M was estimated to have increased by 

0.5±0.09×105 (mean±standard deviation) molec cm−3 and 0.3±0.06×105 molec cm−3, 

respectively, between the two five-year periods, 2005–2009 and 2015–2019. This rise in OH 
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levels corresponds to increases of 22.8±5.1 Tg yr−1 and 14.7±3.6 Tg yr−1 in the CH4 sink. 

[OH]trop-M exhibited increases during 2007–2009 (0.4×105 molec cm−3) and 2015–2016 

(0.3×105 molec cm−3), and decreases during 2013–2015 (−0.2×105 molec cm−3) and 2019–2021 

(−0.2×105 molec cm−3). These fluctuations reflect the large impacts of abrupt changes in 

atmospheric compositions on OH due to extreme events like El Niño11,27 and the Coronavirus 

Disease 2019 (COVID-19) lockdowns28, which will be discussed further below. During other 

years, [OH]trop-M showed variations of less than 0.1×105 molec cm−3. 

The net variations in OH driven by these precursors closely mirror the interannual changes in 

global CH4 atmospheric growth rates (Fig. 1b). Years with negative anomalies in global 

[OH]trop-M, such as 2007, 2014, 2015, 2020, and 2021, coincide with sudden surges in the 

growth rates of CH4 mixing ratios compared to adjacent years. In contrast, periods with positive 

anomalies in global [OH]trop-M are associated with reduced CH4 growth rates, as observed 

during 2007–2009 and 2015–2016. Although the atmospheric CH4 burden is controlled by both 

sources and sinks, the inverse relationship between the annual growth rates of CH4 and net OH 

variations suggests that the OH precursors considered in this study, such as O3, CO, and NOx, 

and H2O(g), play a critical role in governing the CH4 budget, particularly during years with 

abrupt changes. 

Our estimates of [OH]trop-M show interannual variations of ±2–5% between 2005 and 2021, 

which broadly align with previous studies that used methyl-chloroform (MCF) inversions in 

atmospheric models (±3–6%)29,30 and hydrofluorocarbon species (HFCs) inversions based on 

box models (±2%)31 (Extended Data Fig. 1). Despite discrepancies across different inversion 

results, our precursor-based estimates effectively capture key features of OH interannual 

variations identified by the MCF inversions, such as the negative anomalies around 2007 and 

2015 and the subsequent rebounds30. The positive trend in [OH]trop-M from our precursor-based 

estimates is not detected by the atmospheric inversions but is consistent with the satellite-based 

estimate of a positive trend during 2005–2019 (0.21% yr-1 over tropical oceans) using a 

machine learning method22. The positive trends of OH since 2005 follow the positive OH trend 

during 1980–2010 derived from the model ensemble of the Chemistry–Climate Model 

Initiative11. The consistency indicates that the precursors included in our analysis represent the 

major drivers of tropospheric OH variations, even though limited to specific precursor species 

with available and reliable observation datasets. Therefore, our precursor-based estimates 

provide valuable insights into the factors driving changes in the global CH4 chemical sink. 

Impacts on the global CH4 budget 

During 2005–2021, variations in the concentrations of CO, H2O(g), NOx, and O3 contribute to 

a global rise in OH levels (Figs. 2a–d). Among these precursors, on the global scale, CO 

concentration levels have declined, while H2O(g), NOx, and O3 have increased. The steady 

decline in global CO concentrations since 2005 is primarily attributed to improved fossil fuel 

combustion efficiency, which has substantially reduced anthropogenic CO emissions32. This 

decline has offset the rising CO chemical production from CH4 and NMVOC oxidations as 

well as the stabilizing CO emissions from wildfires33. The increase in tropospheric NOx and 

O3 is likely due to the growth in anthropogenic emissions (e.g., NOx, VOCs) over the past two 

decades, particularly in emerging countries34. The rise in H2O(g) levels is caused by global 

warming35. Not all human-caused changes in atmospheric composition led to rising OH. The 

increasing TCO3, which reduces the O1(D) photolysis rates, and rising CH4 burdens both drove 

down OH, although these factors were not sufficient to counterbalance the increasing tendency 

of OH driven by the other precursors (Figs. 2e and f). Overall, human-induced air pollution, 

encompassing both improvements (e.g., CO reduction) and deteriorations (e.g., increased NOx 

and O3), along with accelerated global warming, have increased global OH levels since 2005. 
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The atmospheric lifetimes of NOx, CO, H2O(g), and O3 range from hours to months in the 

troposphere, leading to spatial-temporal variations in their concentrations that affect the 

interannual anomalies of OH. For instance, the OH changes induced by CO exhibit large 

variability because of the variable CO emissions from wildfires (Fig. 2a), which are highly 

sensitive to extreme fire weather33. The vast wildfire CO emissions in 2015, caused by El Niño, 

led to pronounced negative anomalies in OH. Similarly, a notable decline in [OH]trop-M of 0.1–

0.2×105 molec cm−3 yr−1 was observed in 2020 and 2021 (Fig. 1a), primarily due to reduced O3 

levels related to the reduction of NOx emissions during the COVID-19 pandemic (Fig. 2d).  

We further evaluated the impacts of OH precursors on the decadal changes in the global CH4 

budget from 2005–2009 to 2015–2019 (Fig. 2g). Our estimates indicate an increase in CH4 sink 

of 22.8±5.1 Tg yr−1 and 14.7±3.6 Tg yr−1, derived respectively from the OH fields from the 

MOZART and GEOS-Chem mechanisms (Fig. 1a). Rising tropospheric O3 accounted for 

approximately 40% of the increase in the global CH4 sink over these periods, with estimates of 

13.1 (min–max range of 9.7–16.5) Tg yr−1 for MOZART and 8.6 (6.9–10.3) Tg yr−1 for GEOS-

Chem. Increasing H2O(g) was the second most important driver, contributing about 30% to the 

CH4 sink increase, with estimates of 9.7 (9.5–9.8) Tg yr−1 for MOZART and 7.7 (7.4–7.9) Tg 

yr−1 for GEOS-Chem. Decreasing CO resulted in a modest increase in the CH4 chemical sink, 

estimated at 4.3 (2.2–6.4) Tg yr−1 for MOZART and 3.0 (1.5–4.5) Tg yr−1 for GEOS-Chem. 

Despite the differing magnitude estimates based on the two chemical mechanisms, they ranked 

the impacts of the different precursors on the changes in the CH4 chemical sink in the same 

order of importance. The increases in the global CH4 sink due to O3, H2O(g), and CO are 

comparable to, and in some cases exceed, the growth in CH4 emissions from major 

anthropogenic (e.g., agriculture and waste) and natural (e.g., fire and wetland) sources during 

the same period. Our results confirm that the variations in the air pollutants play a crucial role 

in shaping the global CH4 budget, alongside shifts in CH4 emission sources. 

NOx affects tropospheric OH burden and CH4 budget not only through tropospheric O3 

formation but also directly participates in OH production and loss pathways. Compared to the 

indirect effects via O3, the direct impacts of NOx concentrations in the boundary layer are 

weaker and less detectable due to uncertainties. The increase in boundary layer NOx 
concentrations led to an approximate 2.5 Tg yr−1 increase in the CH4 sink from 2005–2009 to 

2015–2019. Free tropospheric NOx is estimated to have caused comparable decadal changes in 

global OH and CH4 sink between 2005–2009 and 2015–2019 as boundary layer NOx, though 

both have broad uncertainty ranges (Extended Data Fig. 2). The overall impact of tropospheric 

NOx is slightly larger than that of tropospheric CO but smaller than H2O(g). However, the results 

for NOx should be interpreted with caution, as the division between boundary layer and free 

tropospheric NOx variations is subject to large uncertainties (Methods). The estimates for 

boundary layer NOx impacts over polluted regions tend to be more robust, such as the rising 

NOx burden over India (Extended Data Fig. 3) and the sharp decline globally during COVID-

19 lockdowns (Extended Data Fig. 4). We thus focus on boundary layer NOx in the main text.  

The increase in TCO3 resulted in an approximate 1.5 Tg yr−1 decrease in the CH4 sink, though 

showing large uncertainty ranges that cross zero (Fig. 2g), Additionally, the increase in CH4 

itself caused a 5.6 Tg yr−1 decadal decrease in the CH4 sink by consuming more OH. This 

decrease is equivalent to about 25% of the increase in the CH4 sink due to elevated atmospheric 

CH4 mixing ratios (estimated with OH levels fixed at the 2005 level) during the same period. 

Spatial variations of OH and CH4 sink 

The decadal changes in [OH]trop-M from the 2005–2009 mean to the 2015–2019 mean driven 

by key precursors are mapped at the grid scale to illustrate the spatial drivers across the globe 

and latitudinal bands, highlighting the resulting impacts on the chemical sink of CH4 (Fig. 3). 
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The map shows the ensemble mean derived from various observational datasets and chemical 

mechanisms, representing the central estimate that reflects our best understanding. 

The net increase of [OH]trop-M is concentrated in the tropical regions (30°S–30°N), reaching 

2.0×105 molec cm−3 across widespread areas (Fig. 3a). This increase is primarily driven by the 

rise in tropospheric O3 and H2O(g) (Figs. 3c and d). The results indicate a north-south 

asymmetry in OH increases, which is mainly attributed to the changes in CO concentration 

levels (Figs. 3b and g) and H2O(g) (Figs. 3d and i). Reduced CO burdens have led to larger OH 

increases in the northern mid-latitude region, where North America, Europe, and China rapidly 

reduced their anthropogenic CO emissions through improved combustion efficiency of 

industrial boilers, residential stoves, and cars33. Due to the short lifetime of CO, emission 

reductions in the Northern Hemisphere can lead to uneven variations in OH levels between the 

two hemispheres. Meanwhile, NOx emissions and pollution have grown in South Asia, the 

Middle East, and North Africa, driving up OH levels in these regions (Fig. 3e). In contrast, 

NOx burden in North America, Western Europe, and East China declined over the 

corresponding period due to pollution control measures, curbing down OH levels. Due to the 

compensating influences from different regions across the Northern Hemisphere, NOx 

concentration changes within the boundary layer made only a small direct contribution to the 

north-south asymmetry in OH increases (Fig. 3j), as well as the indirect influences through O3 

formation. 

The increase in the chemical sink of CH4 also exhibits a north-south asymmetry, corresponding 

to the spatio-temporal variation patterns in OH (Fig. 3k). The CH4 sink due to OH is estimated 

to have increased by 9.0 (3.6–15.6) Tg yr−1 and 4.7 (−0.4–10.2) Tg yr−1 in the northern and 

southern tropics, respectively, from the 2005–2009 mean to the 2015–2019 mean. In the 

northern mid-latitude band (30°N–60°N), the CH4 sink increased by 3.3 (1.7–5.5) Tg yr−1, 

while the increase was moderate (1.4 Tg yr-1) in the southern mid-latitude (60°S–30°S). The 

substantial increase in the CH4 sink over the tropics was driven by the increase in tropospheric 

O3 and H2O(g), accounting for approximately 9 Tg yr−1 and 6 Tg yr−1, respectively (Figs. 3m 

and n), of which 4 Tg yr−1 was offset by the OH decrease due to the rising CH4. The reduction 

in CO across the Northern Hemisphere increased CH4 sink by about 3.5 Tg yr−1 (Fig. 3l). The 

increase in chemical sink of CH4 was also led by the increase in H2O(g) over the Northern 

Hemisphere (5.3 Tg yr−1), about 2.0 Tg yr-1 greater than the Southern Hemisphere. Overall, the 

spatial patterns of the decadal increases in OH and the associated CH4 sink reflect the influence 

of the global spatial-temporal redistribution of air pollutants across latitudinal bands, 

particularly regarding reduced CO and enhanced O3 pollution, as well as the distribution of 

H2O(g) increases due to climate change. 

Air pollutant concentrations are influenced by precursor emissions from both natural sources 

(e.g., wildfires, soil, wetlands, lightning) and anthropogenic sources (e.g., energy, industry, 

transportation). These emissions exhibit interannual variations superimposed on long-term 

trends. Extreme events, such as megadroughts and economic recessions, can cause substantial 

disturbances in atmospheric compositions, offering a unique opportunity to understand the 

impacts of air pollutants on tropospheric OH and CH4 sinks. Next, we focus on four anomalous 

years characterized by sudden changes in wildfire or human emissions to gain insights into 

short-term OH variations, drivers, and their impacts on the global CH4 budget. 

Fire impacts during El Niño years 

The impacts of fire emissions on CH4 sinks were separately analyzed for the periods 2008–

2009 and 2015–2016, which represent contrasting phases of global fire activity. During 2008–

2009, fire CO emissions were anomalously low following the multiyear La Niña event of 

2007/200833. This reduction in fire CO emissions led to a concurrent drop in global CO levels, 
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subsequently increasing the global CH4 sink by 11.4 (8.9–14.2) Tg yr−1 (Fig. 4a). This increase 

in CH4 chemical sink due to decreased CO was evident across all latitude bands (Extended 

Data Fig. 5). Additionally, but smaller, an increase in O3 over the tropics slightly contributed 

to the global CH4 sink by 2.2 (1.1–3.5) Tg yr−1 during this period. The global rise in OH levels 

and the associated CH4 chemical sink during 2008–2009 was accompanied by a temporary 

slowdown in the atmospheric growth rate of CH4 within those years (Fig. 1). This highlights 

the critical role of OH in shaping the interannual variation of the global CH4 budget. 

During 2015–2016, global fire emissions were extremely high due to intensified wildfires in 

the tropics, particularly from peatland burning in Southeast Asia driven by the El Niño event. 

This led to a large increase in CO concentrations over the tropics, resulting in a substantial 

weakening of the global CH4 sink by 16.9 (12.9–21.3) Tg yr−1 compared to the corresponding 

period before El Niño (Figs. 4b and and Extended Data Fig. 5). More than half of these negative 

anomalies were offset by an increase in the CH4 sink driven by elevated H2O(g) levels, around 

10.0 Tg yr−1, over the tropics. Meanwhile, wildfires directly released CH4 emissions amounting 

to 4.4 (1.4–7.5) Tg yr−1 positive anomalies2, which is smaller than the reduction in CH4 sink 

due to increased wildfire CO emissions contemporally. Both of these effects increase the global 

CH4 burden, but the feedback loop involving fire CO emissions, OH levels, and CH4 sink plays 

a more dominant role in regulating the global CH4 budget than direct fire CH4 emissions. 

Human impacts of the pandemic period 

The impacts of anthropogenic emissions on CH4 sinks were also investigated for the years 2020 

and 2021. During these years, the world was affected by COVID-19, and the lockdown 

measures implemented led to a sharp reduction in human activities and emissions36. The 

surface network observed an increase in the atmospheric growth rate of global CH4 in 2020 

and 2021, which are 5.8 ppb yr−1 and 8.3 ppb yr−1 higher than 2019, respectively37 (Fig. 1b). 

Our estimations indicate a steady decline in global OH concentrations of 0.1–0.2×105 molec 

cm−3 yr−1 (1–2% yr-1) from 2019 to 2021 (Fig. 1a). Compared to 2019 levels, the global 

chemical sink of CH4 was estimated to have decreased by 11.0±3.5 Tg yr−1 (based on 

MOZART) or 7.0±2.5 Tg yr−1 (based on GEOS-Chem) in 2020 (Fig. 4c). In 2021, this decrease 

reached 15.6±4.3 Tg yr−1 (MOZART) or 10.6±3.6 Tg yr−1 (GEOS-Chem) compared to 2019 

(Fig. 4d). These findings align with the previous atmospheric chemistry transport model 

simulations and top-down inversion of the HFC species and CH4, which estimated an 

approximately 1.5% yr−1 decrease in OH from 2019 to 202028,38,39. This reduction is reported 

to account for 53±10% of the increase in CH4 growth rate observed by the surface network in 

2020 compared to 201928, and 14–34% based on the inversions of satellite observations38,39. 

The drop in OH and CH4 sink in 2020 and 2021 was primarily attributed to the decline in 

tropospheric O3 levels (Figs. 4c and d). This decline in O3 was caused by reduced 

anthropogenic NOx emissions during the COVID-19 lockdown in 2020 and the incomplete 

recovery of emissions, such as those from air transport, in 202140. These factors substantially 

restricted socioeconomic activities and associated emissions. Overall, the decrease in O3 

accounted for nearly 70% of the reduction in the global CH4 chemical sink during these two 

years, with other precursors contributing to the remaining 30% decline. In 2020, elevated CO 

concentrations in the Southern Hemisphere due to intensive wildfires reduced the CH4 sink, 

nearly matching the impacts of reduced O3 concentrations in that region (Extended Data Fig. 

5). The higher TCO3 levels over the northern tropics also contributed to a decrease in the CH4 

sink (up to 3 Tg yr−1) but were offset by lower TCO3 levels over latitudes north of 30°N. In 

2021, tropospheric O3 levels remained comparable to those in 202041. The enhanced CO 

concentrations north of 30°N due to extreme boreal forest fires42 contributed to a small decrease 
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in CH4 sink but was offset by the decline of CO south of 30°N. The additional decrease in 

H2O(g) and increase in TCO3 together led to a further decline in the CH4 sink in 2021 (Fig. 4d). 

During the COVID-19 period, anthropogenic NOx emissions declined for both surface sources 

and high-altitude aircraft sources, with the associated decline in tropospheric O3 dominating 

the reduction in the global CH4 sink. For OH production and loss directly resulting from 

changes in NOx concentrations, reduced NOx levels within the boundary layer led to a decrease 

in OH in North America and Europe, while causing a slight increase in high-NOx regions such 

as Eastern Asia (Extended Data Fig. 4). The free tropospheric NOx concentrations, influenced 

by emissions from aircraft, lightning, and the transport of NOx reservoirs such as peroxyacetyl 

nitrate (PAN)43, are not well constrained in this study due to a lack of direct observations 

(Extended Data Fig. 6), while the influences on O3 concentrations are evaluated separately.  

Balance air quality and climate concerns 

Reducing CH4 emissions is the most crucial strategy for mitigating its climate impacts and 

addresses the indirect radiative forcing effects caused by CH4 degradation products, which 

contribute to the production of greenhouse gases like O3, stratospheric water vapor, and CO2
1. 

Mitigating CH4 emissions is also recognized as an effective strategy for reducing peak warming 

from climate change due to CH4's much shorter atmospheric lifetime compared to CO2
44. 

However, it is essential to recognize that CH4 concentration levels and their climate effects are 

controlled by both their sources and sinks2, which are highly dependent on chemistry-climate 

feedback. For example, potential increases in natural CH4 emissions, such as from permafrost 

thawing, have been recognized as major climate risks45. On the other hand, large uncertainties 

still exist in the chemical sink of CH4
2.  

We quantified in this paper how trends and variations in air pollution at both global and regional 

scales critically influence OH over decadal timescales, the primary atmospheric oxidant of 

CH4, as shown by the conceptual diagram (Extended Data Fig. 7). Our study infers rising O3 

but decreasing CO due to changes in air pollution, have contributed to increase in OH levels 

and consumed more CH4 in the atmosphere. This has buffered the rapid rise in anthropogenic 

CH4 emissions observed over the past two decades, highlighting the critical influence of both 

natural and anthropogenic pollutant emission sources on the global CH4 budget. 

Learning from the past, one can expect that air quality regulations will critically affect the 

capability of OH to buffer CH4 emissions. Particularly, O3, which adversely impacts human 

health and ecosystems, is a regulated air pollutant worldwide46,47. Despite recent increases in 

atmospheric O3 concentrations, efforts by many countries suggest that O3 pollution could be 

mitigated in the future34,48. Reduced tropospheric O3 implies less OH production and a reduced 

CH4 chemical sink, similar to what occurred during the COVID-19 period in 2020 and 2021. 

This reduction in OH could drive up CH4 concentrations without changes in CH4 emissions.  

In addition to O3, CO emissions from intense wildfires also warrant attention. While CO 

emissions have declined since 2005 due to anthropogenic pollution control measures, global 

wildfire emissions remain high33,49. In some regions, such as boreal forests, wildfires have 

become more frequent and severe recently42, increasingly influencing global CO trends and 

variations. Furthermore, global warming is likely to trigger more droughts, water deficits, and 

fire weather conditions, exacerbating wildfire activity42. The CO emissions from these probable 

wildfires will counteract the beneficial effects of air pollution cuts and pose a further threat to 

global OH levels and the CH4 sink. Climate feedback with potentially positive effects on OH, 

on the other hand, may result from increased water vapor in the atmosphere35 or an increase in 

stratosphere-troposphere transport of ozone50. 
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The examples of O3 and CO discussed above illustrate how air pollution regulations can alter 

the OH and CH4 budgets. It is crucial to develop tools for monitoring and modeling OH levels 

both globally and regionally while continuing to implement effective air quality regulations to 

protect human health and the environment. The integrated observation- and model-driven 

system developed in this study represents an important effort to monitor OH levels. By 

regularly updating all driving factors, this system enables us to track spatial and temporal 

variations in OH levels, supporting the dynamic investigation of its influence on the global CH4 

budget. Addressing both air pollution and climate crisis requires a state-of-the-art, transparent, 

reliable understanding of the OH burden, which can underpin targeted and effective policies. 
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Methods 

General methodology 

In this study, we developed an approach (Fig. S1) to estimate tropospheric OH concentrations 

([OH]) and changes in the CH4 sink from 2005 to 2021, focusing on the main OH precursors: 

tropospheric CO, H2O(g), O3, CH4, NOx, and total column O3 (TCO3). Building on the methods 

of previous studies26 and our prior research51, this approach integrated (Ⅰ) 3D model simulations 

of atmospheric composition and meteorological conditions for 2005; (Ⅱ) chemical box model 

experiments to estimate [OH] responses to changes in each precursor; and (Ⅲ) quantifications 

of the main OH precursor changes during 2005–2021 based on observation-based datasets 

(Tables S1-3). We performed chemical box model experiments for each 3D model grid cell, 

driven by the atmospheric composition and meteorological conditions from 3D model 

simulations and observation-based datasets for the year 2005. These experiments allowed us to 

calculate the sensitivity of OH to varying extents of precursor concentration changes (OH 

sensitivity). We then determined the year-to-year variations in [OH] induced by the main 

precursors from 2005 to 2021 by combining the box model-calculated OH sensitivity with the 

observation-based OH precursor datasets. 

To address uncertainties in OH chemistry, we employed two different chemical mechanisms 

(MOZART-4 and GEOS-Chem) for calculating OH sensitivity separately. For each precursor, 

we also utilized 2–4 observation datasets to quantify their interannual changes and represent 

potential uncertainties, which were derived from satellite retrievals (Table S1) and chemical 

reanalysis (Table S2). The data sources for the OH precursors used in this study are summarized 

in Table S3. The satellite-retrieved vertical column densities (VCDs) of tropospheric O3 and 

NO2 were converted into 3D distributions using vertical profiles simulated by 3D models. The 

influence of tropospheric O3 and NOx on OH was estimated across altitudes by vertical layers. 

In regions dominated by anthropogenic surface sources, boundary layer NO2 variations can be 

inferred with greater confidence from total tropospheric column data52. While free tropospheric 

NOx contributes to the total tropospheric NOx burden and OH variations53,54, accurately 

assessing its impact on OH requires reliable vertical profiles and their temporal evolution—

data that are currently unavailable. The annual scale impacts of free tropospheric NOx are less 

well constrained in this study and tend to be more uncertain than those of the other species 

analyzed. Therefore, for the influence of NOx on [OH] and CH4 loss, we focus on the results 

for boundary layer NOx in the main text and show the magnitudes of free tropospheric NOx 

impacts in the Extend Data Figs. 2 and 6. 

The overall interannual variations of [OH] and CH4 loss were determined by summing the [OH] 

changes induced by individual precursors. We applied the Monte Carlo method to randomly 

sample the changes in tropospheric [OH] and CH4 chemical loss driven by each OH precursor, 
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estimated from different observations. This approach allowed us to derive the mean values and 

the uncertainty range of the overall interannual variations. To examine the additivity of the [OH] 

changes due to different precursors, we used a chemical box model to simulate [OH] under 

three conditions in our previous study51: (Ⅰ) using 3D model outputs ( [𝑂𝐻]𝑚𝑜𝑑𝑒𝑙 ); (Ⅱ) 

simultaneously replacing the major OH precursors with observation-based data ([𝑂𝐻]𝑜𝑏𝑠); and 

(Ⅲ) individually replacing each OH precursor Xk to observation-based data ([𝑂𝐻]𝑜𝑏𝑠_𝑥𝑘). We 

found that the [OH] changes caused by perturbing all major precursors together, as the 

difference between [OH] simulated by  (Ⅰ) and (Ⅱ) ([𝑂𝐻]𝑑𝑖𝑓𝑓_1 = [𝑂𝐻]𝑚𝑜𝑑𝑒𝑙 − [𝑂𝐻]𝑜𝑏𝑠),  are 

consistent with those calculated by summing the differences between (Ⅰ) and each (Ⅲ) 

([OH]𝑑𝑖𝑓𝑓_2 = ∑([𝑂𝐻]𝑚𝑜𝑑𝑒𝑙 − [𝑂𝐻]𝑜𝑏𝑠_𝑥𝑘)) (Fig.S2). Therefore, summing the [OH] changes 

from individual precursors is a valid approach for diagnosing overall [OH] changes on both 

global and 30° latitude band scales. 

The 3D model simulated OH precursors 

The 3D distributions of atmospheric trace gases and meteorological conditions to drive 

chemical box model simulations were from the IGAC/SPARC Chemistry-Climate Model 

Initiative Phase-1 (CCMI-1)55. We used the outputs from REF-C1 experiments, which were 

simulated by the Community Earth System Model (CESM) using the Community Atmosphere 

Model version 4 as an atmosphere component (CESM1 CAM4-chem)56 and the GEOS-5 

Chemistry Climate Model (GEOSCCM)57-59.  

The REF-C1 experiments were driven by observation-based sea surface temperature and state-

of-the-art historical forcing from 1960 to 2010. The anthropogenic emissions of REF-C1 

experiments were derived from the MACCity inventory60. The model simulations also included 

natural emissions from biomass burning, lightning, and biogenic sources55. The tropospheric 

gas-phase chemistry of CESM1 CAM4-chem is mostly based on the MOZART-4 mechanisms. 

The tropospheric chemistry of GEOSCCM is from the chemistry Global Modeling Initiative 

(GMI) combined tropospheric-stratospheric chemical mechanism61,62. For a detailed 

description of CCMI model and experiments information regarding the tropospheric OH 

concentrations and OH precursors simulated by CESM1 CAM4-chem and GEOSCCM can be 

found in previous studies  63,51,55.  

The chemical box model DSMACC experiments 

We calculated the responses in tropospheric [OH] to the aforementioned precursor changes 

using the Dynamically Simple Model of Atmospheric Chemical Complexity (DSMACC)64. 

This chemical box model generates code for a selected chemical mechanism via the Kinetic 

PreProcessor (KPP) and estimates the clear-sky photolysis rates using the tropospheric 

ultraviolet and visible (TUV) radiation model. Unlike the 3D atmospheric chemistry models 

that are usually driven by emission inventories, the DSMACC model is driven by the 

concentrations of chemical species, which are more easily constrained by observation-based 

datasets. Within the DSMACC framework, NO and NO2 are treated as the NOx family and can 

be constrained by NO2 concentrations. 

In this study, we conducted the DSMACC model simulations with MOZART-4 and GEOS-

Chem chemical mechanisms, respectively. The DSMACC simulations with MOZART-4 

chemical mechanisms were driven by the chemical species concentrations and meteorological 

conditions from the outputs of CESM1 CAM4-chem of CCMI REF-C1 experiments, and the 

simulations with GEOS-Chem chemical mechanisms are driven by outputs of GEOSCCM. As 

demonstrated by our prior research51, the DSMACC model was able to reproduce the spatial 

distributions of [OH]trop-M simulated by the corresponding 3D model, validating its ability to 

capture the response of [OH] to meteorological conditions and precursor concentrations. 
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For each chemical mechanism, we conducted the following DSMACC experiments:  

(1) Ref_model experiment: Simulated [OH] ([OH]DSMACC_Ref_model) with all DSMACC inputs 

taken directly from 3D atmospheric chemistry model simulations for each month in 2005. 

(2) Obs_Xk_Ln experiments: Similar to the Ref_model experiment but the concentration of 

one individual OH precursor Xk (X1=CO, X2=H2O(g), X3=O3, X4=CH4, X5= NO2, X6=TCO3) 

was adjusted to Ln% of the mean value observation-based datasets in 2005. Considering the 

nonlinear responses of [OH] to precursor concentrations, most precursors were increased in 20% 

increments from 20% to 200% (L1=20, L2=40,…, L10=200). For TCO3, Ln% was increased 

by 10% step from 80% to 110% (L1=80, L2=90, L3=100, L4=110). For CH4, Ln% was 

increased by 5% step from 95% to 105% (L1=95, L2=100, L3=105). 

To better represent the heterogeneous spatial-temporal distribution of OH, the DSMACC 

model experiments (Ref_model and Obs_Xk_Ln) were conducted for each pixel of the 3D 

model grid in the troposphere (e.g., 144 (longitudes)×96 (latitudes)×13 (pressure levels) for 

CESM1 CAM4-chem grid) for each month using MOZART and GEOS-Chem chemical 

mechanisms.  

[OH] changes relative to 2005 induced by each precursor 

We calculated the [OH] changes between year y and 2005 due to each precursor Xk by 

multiplying the 3D model simulated baseline [OH] concentrations for 2005 ([OH]model) with 

the relative [OH] changes generated from the DSMACC model experiments:  

   
   

 
DSMACC_ Xk _ y DSMACC_ Xk _ 2005

Xk _ y model

DSMACC_ Ref _ model

OH OH
OH OH

OH
δ

 −
 = 
 
 

                                            (1) 

Where [OH]DSMACC_ref_model is the [OH] simulated by Ref_model experiments of the DSMACC 

model; [OH]DSMACC_Xk_2005 and [OH]DSMACC_Xk_y are the [OH] simulated by the DSMACC 

model with concentrations of precursor Xk perturbed to the observation-based values for 2005 

and year y, respectively. We did not directly use the absolute values of the DSMACC model 

simulated [OH] because the [OH] simulated by Ref_model experiments tended to overestimate 

[OH] by ~10–30% compared with corresponding 3D model simulations51. 

For each year (y = 2005, 2006 ,…, 2021) and each observation-based dataset, calculating 

[OH]DSMACC_Xk_y requires numerous DSMACC simulations. To balance the computing cost and 

the nonlinearities in OH chemistry, we ran the Obs_Xk_Ln, which adjusted the concentrations 

of Xk to Ln% of the multi-observation mean values of 2005 (CXk_Ln). For each of the individual 

OH precursors Xk and each year y, we searched for the CXk_Ln (n=N) that was closest to the 

observation-based concentrations (CXk_y). We assume a linear response of [OH] to a small 

perturbation of Xk from CXk_Ln (n=N) to CXk_y, and calculate the [OH]DSMACC_Xk_y by equation 

(2): 

   

   ( ) ( )

DSMACC_ Xk _ y DSMACC_ Ref _ model

Xk _ y Xk _ model

DSMACC_ Xk _ Ln DSMACC_ Ref _ model
Xk _ Ln Xk _ model

OH OH

C C
OH OH n N

C C

 +

 −
−  =  − 

     (2) 

Where CXk_model is Xk concentrations simulated by the 3D model for 2005, [OH]DSMACC_Xk_Ln 

is the [OH] simulated by Obs_Xk_Ln (n=N).  

The [OH]trop-M and chemical loss of CH4  

The changes in global and regional mean tropospheric column-averaged air-mass-weighted 
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OH concentration ([OH]trop-M) caused by precursor Xk in year y, relative to 2005 (𝛿[OH]Xk_y) 

were calculated as:  

  
 

Xk _ yi

trop M

i

OH m
OH

m

δ
δ

−


=



                                                                                               (3) 

Where i is the index of the model grid cell in the troposphere and m is the corresponding air 

mass. 

The changes in chemical loss of CH4 through reaction with OH were calculated as: 

 ( )  
4 4CH OH a CH Xk _ yi t

L K T m OH tδ δ δ+ =                                                                               (4) 

Where 𝛿𝑡 is the monthly integration time step. The 3D CH4 mass (mCH4) distributions in 2005 

are from the CAMS reanalysis. The K(Ta) is the reaction rate of CH4 with OH and was 

calculated as a function of air temperature (Ta)
65: 

( ) a

1775

T12

aK T 2.45 10 e
−

−=                                                                                                                 (5) 

Where the distribution of Ta was taken from the MERRA-2 reanalysis data. 

For each OH precursor, we estimated 𝛿[OH]trop-M and 𝛿 LCH4+OH using two different chemical 

mechanisms and multiple observation-based datasets.  

Box model for diagnosing the influence of CH4 emissions on OH 

In the years such as 2007, 2014, 2015, 2020, and 2021, we observed negative anomalies in 

global [OH]trop-M coinciding with increased CH4 growth rates compared to adjacent years. To 

investigate whether surges in CH4 emissions could drive increases in CH4 mixing ratios and 

subsequent decreases in global [OH], we developed a global box model, which operates on an 

hourly timestep and incorporates the following processes. 

(1) CH4 emissions. CH4 emissions are converted into an incremental increase in the 

tropospheric CH4 mixing ratio. 

(2) CH4 losses. CH4 loss through the reaction with OH is calculated based on the tropospheric 

CH4 mixing ratio and [OH]. Losses due to stratospheric processes (51 Tg yr-1) and reactions 

with Cl (25 Tg yr-1) are prescribed in the box model simulations, following an ensemble 

estimate of the global CH4 budget2. 

(3) OH response to CH4 changes. A 1 ppbv increase in tropospheric CH4 leads to a decrease 

of 0.0018×105 molec cm-3 in global mean [OH], derived from our chemical box model 

experiments (Fig. 2). This is consistent with ensemble 3D atmospheric chemistry model 

simulations, which show that a 960 ppbv increase in CH4 corresponds to a 17.3±2.3% (~1.73 

× 105 molec cm-3) decrease in [OH]12. 

Initial conditions were set with a tropospheric CH4 mixing ratio of 1800 ppbv and [OH] at 106 

molec cm-3. CH4 chemical loss through OH was estimated at 474 Tg yr-1. To balance CH4 loss 

(including OH, Cl, and stratospheric losses), we set initial CH4 source emissions to 550 Tg yr-

1, establishing a steady state for both CH4 and OH. In the fifth year of the simulation, we 

introduced a 10% increase in CH4 annual emissions (55 Tg yr-1)—a magnitude much larger 

than the decadal increase in global anthropogenic emissions from 2005–2009 to 2015–2019 
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(Fig. 2) and greater than typical interannual variations in wetland emissions (within ±10 Tg yr-

1)66. 

As shown in Fig. S3, this unrealistic surge in CH4 emissions caused an increase in the global 

CH4 annual growth rate of 23 ppbv yr-1—larger than historical CH4 annual growth rates in any 

year since 1985 (mostly below 10 ppbv yr-1). However, the corresponding decrease in [OH] 

was only 0.4% yr-1 (0.04 × 105 molec cm-3 yr-1). This is less than half of the observed decreases 

in [OH] (0.1–0.2×105 molec cm-3 yr-1) during years with significant negative anomalies, such 

as 2007, 2014, 2015, 2020, and 2021 (Fig. 1). These results suggest that CH4 emissions are 

unlikely to be a primary driver of [OH] variations through perturbations in CH4 abundance. 

Instead, interannual [OH] variations are predominantly influenced by reactive species such as 

CO, O3, NOx, and H2O(g). 

Impacts of formaldehyde and isoprene on OH variations 

Formaldehyde (CH2O) has a long-term satellite dataset (e.g., OMI) and has been used as a 

proxy for assessing OH variations, particularly in remote regions where CH2O is primarily 

produced from OH oxidation of CH4
21. However, CH2O is not a primary driver of OH changes, 

and its direct impact on global OH burden is limited. It accounts for only about 6% of the global 

OH sink11, serving more as an indicator of the oxidation of NMVOCs by OH rather than 

directly influencing OH chemistry. 

To evaluate CH2O’s impact on global OH, we conducted an additional model experiment using 

global 3D CH2O distributions (2005–2017) derived from a variational atmospheric inversion 

system assimilating OMI v3 CH2O total column data33. Our results suggest that CH2O 

contributes to a minor decrease in global tropospheric [OH] of less than 0.05×105 molec cm-3 

(~0.5%) over the studied period (Fig. S4). Given these marginal effects and the lack of multiple 

reliable observation datasets, we chose not to include CH2O in our analysis, as its omission 

does not significantly affect the analysis of overall trends and drivers of global OH variations. 

The impact of isoprene on [OH] variations is primarily observed in regions with high 

isoprene emissions, such as tropical forests, where atmospheric HCHO is primarily produced 

through the oxidation of isoprene67,68. Recent isoprene observations from the Cross-track 

Infrared Sounder (CrIS) satellite, spanning from February 2012 to December 2020, provide 

valuable data over forest regions of East Amazonia, New Guinea, and the Southeastern 

United States19. We used these CrIS data to assess the influence of isoprene on tropospheric 

[OH] variations in these regions. Our results indicate that isoprene contributes to 1%-3% of 

the interannual variations in regional [OH]trop-M, with impacts comparable to those of CO and 

O3 (Fig. S5). In our previous study, we estimated that isoprene accounts for 6% of the global 

OH sink 11. However, fully quantifying the global impact of isoprene, along with other 

NMVOCs, requires long-term, global-scale observations of individual NMVOC species. Due 

to the absence of such data at the global scale, we focused on regional analysis in this study 

and did not incorporate isoprene into our global framework. 

Data availability 

The atmospheric composition concentrations simulated by GEOSCCM and CESM-

CAM4Chem were downloaded from https://data.ceda.ac.uk/badc. The atmospheric methane 

growth rate data was obtained from https://gml.noaa.gov/ccgg/trends_ch4/. The CAMS 

EAC4 chemical reanalysis and EGG4 were downloaded from 

https://www.ecmwf.int/en/research/climate-reanalysis/cams-reanalysis. The TCR-2 chemical 

reanalysis data was downloaded from https://tes.jpl.nasa.gov/tes/chemical-reanalysis/. The 
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MERRA2 reanalysis data was downloaded from 

https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2. The ERA5 reanalysis data was downloaded 

from https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5. The satellite 

tropospheric O3 column was downloaded from https://acd-

ext.gsfc.nasa.gov/Data_services/cloud_slice/new_data.html. The total O3 column was 

downloaded from https://acd-ext.gsfc.nasa.gov/Data_services/merged/instruments.html. The 

QA4ECV tropospheric NO2 product was downloaded from 

https://www.temis.nl/airpollution/no2.php. The NASA tropospheric NO2 products were 

downloaded from https://disc.gsfc.nasa.gov/datasets/OMNO2d_003/summary. The global 

gridded distribution of the OH changes relative to 2005 due to individual OH precursors and 

the source data for the figures are available at Figshare 

(https://figshare.com/s/6ab4b1e5c20657b93279). 

Code availability 

Code and documentation for the Chemical box model DSMACC are available at 

https://github.com/barronh/DSMACC. 
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Figure 1. Year-to-year variations in tropospheric OH concentrations and CH4 growth 

rates. (a) Net changes in global mean tropospheric OH concentrations ([OH]trop-M) relative to 

2005, driven by variations in tropospheric CO, O3, H2O(g), CH4, boundary layer NOx, and total 

column O3 (TCO3), as estimated using the MOZART (pink line) and GEOS-Chem (purple line) 

chemical mechanisms. The solid line represents the mean change in [OH]trop-M, with the shaded 

areas indicating the uncertainty range based on different observation-based datasets. The inset 

displays the Theil-Sen slope of the mean [OH]trop-M changes, along with the P-value determined 

using the Mann-Kendall test. The whisker chart illustrates decadal changes (2005–2009 vs. 

2015–2019) in the CH4 sink driven by OH variations, showing the mean, standard deviation, 

and range. (b) CH4 growth rates from the NOAA/GML observational network37.  
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Figure 2. Global tropospheric [OH] and CH4 sink changes driven by individual OH 

precursors. (a–f) Changes in global mean tropospheric OH concentrations ([OH]trop-M) relative 

to 2005, driven by individual observation-based precursors. 

(g) Decadal changes (between 2005–2009 and 2015–2019) in the global CH4 sink attributed to 

individual OH precursors,  anthropogenic CH4 emissions from agriculture, waste, and other 

sources as provided by the EDGARv7.069 and CEDSv2021_04_2170 inventories, and bottom-

up estimates of fire and wetland from the last Global Methane budget (between 2005–2009 and 

2013–2017)2. The error bars represent the range of CH4 source/sink estimates across different 

datasets. BL NOx refer to the NOx in boundary layer. 
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Figure 3. Spatial distribution of decadal changes in tropospheric [OH] and CH4 sink. 

(a–e) Spatial patterns of decadal changes in mean tropospheric OH concentrations ([OH]trop-M) 

driven by individual and total contributions from six OH precursors, as estimated by different 

observation-based datasets and two chemical mechanisms (MZ: MOZART, GC: GEOS-

Chem). (f–j) Corresponding latitudinal changes in [OH]trop-M. (k–o) Latitudinal changes in the 

chemical sink of CH4. Error bars represent the range of [OH]trop-M and CH4 sink estimates 

derived from various datasets. 
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Figure 4. Contributions of individual OH precursors to global CH4 sink changes during 

unusual years. (a) The rapid increase in the global CH4 sink following 2007 (mean values of 

2008–2009 minus 2006–2007). (b) Anomaly in the global CH4 sink during the El Niño event 

starting in 2015 (mean values of 2015.5-2016.4 minus 2014.5-2015.4). (c–d) Anomalies in the 

global CH4 sink during the COVID-19 lockdown in 2020 (2020 minus 2019) and 2021 (2021 

minus 2019). Error bars represent the range of CH4 sink estimates from various datasets. The 

whisker chart in the inset shows net anomalies estimated by the MOZART (MZ) and GEOS-

Chem (GC) mechanisms. 

 

Extended data figures  

Extended Data Figure 1. Comparison of the global tropospheric mean [OH] with MCF-

based and HFC-based inversions. Tropospheric [OH] variations calculated using MOZART 

(pink) and GEOS-Chem (purple) chemical mechanisms are compared with MCF-based 

inversions from the 3D model as described by Patra et al.30 and by Naus et al.29 as well as 

with HFC-based inversions from the box model as described by Thompson et al.32. 

Extended Data Figure 2. Contributions of NOx from the free troposphere to interannual 

variation of global [OH]trop-M and decadal changes in and chemical loss of CH4. (a) 

Interannual variations of [OH]trop-M. (b)Decadal changes in chemical loss of CH4. 

Extended Data Figure 3. Contributions of individual OH precursors to decadal changes 

in tropospheric [OH] in South Asia. (a–c) Spatial patterns of decadal changes in mean 

tropospheric OH concentrations ([OH]trop-M) driven by tropospheric O3, H2O(g), and boundary 

layer NOx. (d) Regional mean [OH]trop-M changes over South Asia. 

Extended Data Figure 4. Contributions of boundary layer NOx to anomaly in [OH]trop-M 

during the Covid-lockdown period in 2020. The lockdown period is 2020.3-2020.5 for 

Eastern United States and Western Europe, and 2020.2-2020.3 for Eastern China.   

Extended Data Figure 5. Regional contributions of individual OH precursors (various 

colors) to global CH4 sink changes during unusual years. (a) The rapid increase in the 

global CH4 sink following 2007 (mean values of 2008–2009 minus 2006–2007). (b) Anomaly 

in the global CH4 sink during the El Niño event starting in 2015 (mean values of 2015.5-

2016.4 minus 2014.5-2015.4). (c–d) Anomalies in the global CH4 sink during the COVID-19 

lockdown in 2020 (2020 minus 2019) and 2021 (2021 minus 2019). Error bars represent the 

range of CH4 sink estimates from various datasets.  
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Extended Data Figure 6. Contributions of NOx from the boundary layer, free 

troposphere, and whole troposphere to global [OH]trop-M and CH4 sink changes during 

unusual years. The unusual years include the El Niño event starting in 2015 (mean values of 

2015.5-2016.4 minus 2014.5-2015.4) and the COVID-19 lockdown in 2020 (2020 minus 

2019). (a) The [OH]trop-M. (b) Chemical loss of CH4. 

Extended Data Figure 7.  Conceptual diagram illustrating how air pollution modulates 

global OH radicals and the CH4 chemical sink. Red arrows indicate positive contributions, 

while blue arrows show negative contributions. Grey arrows represent the interactions 

between climate and air quality measures, global warming, and air pollution. 

 


