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Investor Sentiment from Images: A Few-Shot Learning
Investigation

Purpose

This research aims to extract emotional features from New York Times news images
(2018-2023) using few-shot learning approaches. Leveraging machine learning, it offers
a systematic investigation into how image-driven emotions affect investor behavior in
the U.S. equity market and contribute to the prediction of market movements.

Design

This study employs the DeepEMD model to extract emotional features from 181,233
news images, constructing a daily sentiment index based on visual media. By defining
sentiment thresholds, the study develops differentiated strategies for positive and nega-
tive emotional signals. In addition, it integrates four machine learning models—AdaBoost,
Support Vector Machine (SVM), ExtraTrees, and Random Forest (RF)—alongside a
traditional linear regression model to forecast the prices of various U.S. stock market
indices.

Findings This study finds that news image sentiment has a significant impact on fi-
nancial markets. Positive sentiment strategies applied to serious news topics are associ-
ated with higher returns, whereas negative sentiment in entertainment-related content
signals potential opportunities for contrarian investment. Moreover, the influence of
image-based sentiment on the market exhibits a delayed effect of approximately 2-3
days, with particularly strong predictive power for small-cap stocks. Compared to tra-
ditional linear models, machine learning approaches demonstrate superior performance
in capturing the nonlinear dynamics between sentiment and market behavior, offering
novel analytical tools for behavioral finance research and sentiment-driven anomaly-
based investment strategies.

Value: This study integrates visual data analysis into the domain of behavioral fi-
nance, highlighting the distinctive role of image-based sentiment in uncovering market
anomalies and informing investment strategies.

Keywords: Few-shot Learning, Investor Sentiment, Behavioral Finance, Image Classi-
fication, Financial Forecasting
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1 Introduction

The existing literature has limited studies on extracting sentiment from images. Instead, the
research paradigm on investor sentiment is based on textual data. This is mainly due to the
complexity of sentiment extraction from images. Text, as a human-created information car-
rier, inherently contains sentiment tendencies in each word from the outset (Kozyreva et al.,
2020; Quillian, 1967). Through simple methods such as building sentiment dictionaries, we
can reliably obtain the sentiment tendency of a piece of text (Jiang et al., 2019; Kearney
and Liu, 2014). Images, as a highly intuitive form of information presentation, often divert
readers’ attention from text when they appear in view (Invernizzi et al., 2022). Psychology
has shown that different images can induce varying sentiment in people (Marchewka et al.,
2014; Dan-Glauser and Scherer, 2011). When readers encounter a particular image, sentiment
signals are already embedded in the image. These sentiment signals may influence their anal-
ysis and judgment of everyday matters, causing them to deviate from the path of rational
thinking (Pham, 2007; Fenton-O’Creevy et al., 2011). Therefore, studying the impact mech-
anism of sentiment in images is a valuable complement to the news text itself (Obaid and
Pukthuanthong, 2022).

For image data, sentiment stimuli often directly impact viewers visually through factors
such as content, color, and composition presented in the image (Zhao et al., 2021; Bhandari
et al., 2019). These features are relatively abstract and difficult to quantify directly, making
it challenging to identify sentiment polarity from images (Borth et al., 2013). Additionally,
a large amount of image data often lacks manual annotation, which increases the difficulty
of supervised learning (Moen et al., 2019). To address this issue, few-shot learning (FSL)
has become an effective method. As a form of meta learning, FSL aims to classify image
categories using only a limited amount of labeled training data to address the challenge of
data scarcity (Song et al., 2023; Lu et al., 2023). Moreover, due to the data characteristics
of few-shot learning, the algorithm is more efficient, enabling us to obtain model results more

quickly.
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In this study, we select news images from The New York Times (NYT) as the focus of
our research. As a mainstream media outlet with over 150 years of history, NYT covers a
wide range of international and domestic news, including politics, social events, and cultural
phenomena (Van Belle, 2003; Benson, 2009). Daily news coverage encompasses numerous
thematic sections, from which we have selected the most representative and abundant images
from nine major sections (including “Arts”, “Books”, “Business Day”, “New York”, “Opin-
ion”, “Sports”, “Technology”, “U.S.”, and “World”) to explore sentiment features across
different topics. Considering the lack of annotations for image data, we employ the Deep-
EMD model proposed by Zhang et al. (2022) for 5-Shot few-shot learning. This method
utilizes the Earth Mover’s Distance (EMD) as a metric for computing the structural distance
between images and determining their relevance. By fine-tuning the pre-trained model of
DeepEMD, we have performed sentiment analysis on images under each theme and derived
daily sentiment scores for different topics.

When establishing different investment strategies based on changes in sentiment for each
topic, we find that the positive sentiment brought by “Business Day,” “Technology,” and
“World” contributes to relatively robust investment returns. These returns surpass the per-
formance of the Dow Jones Industrial Average (DJI) and the Russell 2000 Index (RUT). The
news on these three topics involves international economic and political events, thus exhibit-
ing a more serious overall tone (Bianchi et al., 2016). Individuals may feel more distant from
serious subjects, which can serve as a buffer reducing the direct impact of sentiment (Zheng
et al., 2020). Therefore, the sentiment reflected in these themes can directly influence market
prices. In contrast, when formulating investment strategies based on the sentiment conveyed
in “Arts” and “Sports”, we find that the negative sentiment brought by these topics signals an
upward trend in the financial markets. News in these themes tends to be more entertainment-
oriented, and entertainment topics are often closer to everyday life (Kross and Ayduk, 2017),
making individuals more susceptible to extreme sentiment and resulting in a reverse effect
of sentiment. The negative sentiment investors derive from them may lead to an erroneous

underestimation of financial market prices, generating irrational investment aversion (Taffler,
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2018). Investing at such times, however, may yield excess returns.

To further validate the characteristics of these thematic emotions, we examine their use in
predicting stock market prices and observe that they exhibit a certain degree of persistence,
potentially leading to temporary pricing errors (Stambaugh and Yuan, 2017). This stickiness
implies that the influence of sentiment not only manifests in singular events but may also
persistently affect market sentiment and investor decisions over a period, resulting in tempo-
rary irrational behaviors in the market (Griffith et al., 2020). To more accurately assess the
impact of this sentiment on the stock market, we opt for machine learning models. Compared
to traditional linear models, machine learning models can better capture nonlinear factors
between variables, hence gaining significant recognition in academia (Dumitrescu et al., 2022;
Khandani et al., 2010). Out-of-sample results demonstrate that these machine learning models
have better generalization capabilities compared to linear models. Furthermore, we conduct
predictions for different lag days and find that in experiments with lag days ranging from 2 to
3 days, some models show greater improvements, further validating the existence of certain
lag effects of this sentiment. This stickiness of sentiment provides a deeper explanation for
fluctuations in stock market prices. Accurately understanding the lagging period of sentiment
helps us better comprehend future market changes.

In robustness tests, we conduct overall statistical analyses of this sentiment. The results
indicate that sentiment in the news is more informative for investments in small-cap compa-
nies, especially during severe economic crises. Given that small-cap companies are in a growth
phase, their asset volatility is considerable, making them susceptible to internal turmoil in-
fluenced by policy changes (Shynkevich, 2012). In our investment strategy based on news
sentiment, we achieve a cumulative return of 11.95% for the RUT, significantly surpassing the
benchmark’s 3.79%. However, in investments related to large-cap stocks, our strategy does
not diverge significantly from the benchmark. Therefore, by leveraging sentiment analysis to
gauge the development status of small-cap companies, we can better mitigate risks.

The main contributions of this study are as follows. First, we develop a framework to

employ a few-shot learning (FSL) technique to extract investor sentiment from news images
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among various news sections, which complements the research paradigm of sentiment analysis
based on textual data. Our results demonstrate the interconnections between different news
sections, showing that sentiment is often triggered by topics in World and Business Day
sections. Second, we examine a simple investment strategy based on image sentiment and
find the heterogeneous performance from various news sections. Lastly, we investigate the
nonlinear relationship between sentiment and the US stock markets. In particular, sentiment
does not immediately impact the financial markets, but with a noticeable delay. In addition,
we find that news sentiment has greater relevance for small-cap firms, compared to large-cap

firms. The main structure of this paper is illustrated in Fig. 1.

[ The New York Times ]

Crawl Data

A4

[ Image Data ]

DeepEMD (Pre-training + fine-tuning)

[ Topic Sentiment ]

Sentiment statistics and reliability testing Examine the mechanism of action on financial markets
Sentiment Analysis Financial Research

I ™\ e ™

Image Analysis Sentiment Investing Strategy
~

- ~ e N
Sentiment Trend Analysis Financial Market Forecasting

( N ( A

Sentiment Description Robustness Test

Fig. 1: The Main Technical Research Approach

The structure of this paper is arranged as follows. In Section 2, we review key literature

that underpins our research. Section 3 presents the dataset employed in the analysis. Section 4
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details the DeepEMD framework alongside the machine learning models utilized for prediction.
Section 5 provides a comprehensive analysis of sentiment characteristics across various news
topics. Section 6 offers empirical validation of the influence of sentiment on financial markets.

Finally, Section 7 summarizes the main findings and closes the discussion.

2 Literature Review

Investor sentiment is no longer a novel topic, as there has been a considerable amount of
financial literature devoted to its study. This is attributed to the continuous advancements
in natural language processing (NLP) technology, which have made the transformation of
textual data into analyzable features much easier (Noh et al., 2015; Phalippou, 2023; Chen
et al., 2022a). Consequently, the majority of existing research on financial sentiment is based
on text mining. At the corporate level, Chen et al. (2023a) constructed an employee sen-
timent index by collecting evaluations of their companies from employees of publicly listed
firms. This index relies on the difference between the proportions of positive and negative
evaluations. Their research found that high levels of employee sentiment predict lower market
returns for the company in the future, highlighting the critical role of employee sentiment
in the stock market. Garcia-Méndez et al. (2023) developed a Targeted Aspect-Based Emo-
tion Analysis (TABEA) system capable of individually identifying the financial sentiment of
different stock market assets within the same tweet. They extracted these sentiments from
tweets and accurately identified financial opportunities and precautionary measures. For the
selection of news text data, Bai et al. (2022) employed the SeaMNF method, which extracted
dynamic sentiment indicators from sparse news headlines. Their text features significantly
enhanced the predictive capability for crude oil prices. Li et al. (2019) utilized the Python
library, Textblob, to obtain daily sentiment scores from online news, providing real-time high-
frequency fundamental data for the crude oil prediction model. Bodilsen and Lunde (2025)
found that incorporating macroeconomic news sentiment into regression models significantly

enhances the accuracy of long-term volatility forecasts. Doroslovacki et al. (2024) proposed



149

151

152

153

154

155

156

158

160

161

162

163

164

165

166

167

169

170

171

172

173

174

175

176

a novel market sentiment analysis model that constructs sentiment indicators based on op-
tions market data, and found that these indicators exhibit significant predictive power for
future spot prices over longer forecast horizons. In the oil market, the study by Cheng et al.
(2024) indicated that the interval climate sentiment index constructed using social media can
significantly improve the accuracy of interval crude oil price forecasts. Furthermore, an in-
terval trading strategy based on this index not only helps manage market volatility but also
contributes to enhancing investment returns.

There is no doubt that the rapid advancement of NLP technology owes much to the
birth of Transformers (Vaswani et al., 2017). This innovation has made a large language
model (LLM) a reality, and Chen et al. (2022b) is a good example. They utilized BERT
and RoBERTa models to extract 27 different sentiment category indicators from The Wall
Street Journal (WSJ) and used them to construct various emotion-based investment portfolio
strategies. This research has opened up new avenues for effectively utilizing text data to
formulate investment strategies. Kriebel and Stitz (2022) also made full use of these models,
extracting information related to credit default from user-generated text. The research results
demonstrate that these textual features significantly improve the predictive performance of
credit default. Similarly, Addmmer et al. (2025) found that news data contains valuable
information that many economic indicators fail to capture, which can be used to improve
tail risk forecasting. In recent years, the emergence of ChatGPT has made the utilization of
textual features more flexible and diversified (Zhao et al., 2023; Kaplan et al., 2020). Chen
et al. (2023b) validated whether ChatGPT could identify useful news content related to the
stock market and macroeconomics. They conducted their research using headlines and alerts
from WSJ, and the results showed that the information extracted by ChatGPT was closely
related to macroeconomic conditions and had significant market prediction capabilities.

However, in the realm of image visualization in finance, the number of relevant litera-
ture has sharply decreased. Currently, only a few articles have explored investor sentiment
in images. Obaid and Pukthuanthong (2022) utilized news images to extract sentiment and

correlated them with returns, forming a photo sentiment index, namely Photo Pessimism
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(PhotoPes). The research findings indicate that the pessimistic sentiment conveyed in news
photos, especially in predicting market returns during periods of elevated panic sentiment, is
particularly effective. Furthermore, compared to sentiment from textual sources during the
same period, the predictive power of image sentiment is superior. Chiah et al. (2022) reuti-
lized the sentiment data from the PhotoPes index and conducted a study on 37 international
stock markets. The research findings demonstrate that PhotoPes can effectively predict sub-
sequent market returns and trading volume, indicating the temporary pricing errors caused
by sentiment. While previous studies have extensively explored PhotoPes, this sentiment
index is based on overall news content, lacking segmentation across different sections and
subjectivity in the manual annotation of the training image set (Obaid and Pukthuanthong,
2022). Therefore, our study aims to provide a more refined and objective analysis of image
sentiment, exploring the specific mechanisms of news photos on the financial markets.

For classification problems with insufficient annotations, few-shot learning (FSL) has al-
ways been a good choice (Yue et al., 2020; Feng and Duarte, 2019). However, in the financial
field, this method is extremely rare. Zhou et al. (2021) proposed a novel semi-supervised FSL
model, MetaRisk, for operational risk classification. Their model generalizes from a small
number of samples and risk type combinations, improving the accuracy of multi-label risk
classification. In the sentiment labeling classification task, Liu et al. (2023) combined LLM
with FSL to predict the sentiment classification of three major sentiment corpus speeches,
achieving an accuracy of over 90%. This study applies FSL to extract investor sentiment
from news photos, possibly being the first article to apply FSL to research in financial stock

markets.

3 Data Description

3.1 The New York Times

We use the API provided by The New York Times (NYT) to obtain daily news data from

January 2018 to December 2023. Additionally, we utilize web scraping techniques in Python
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to retrieve all the photos accompanying the news during this period. Considering the content
differences across various news sections, many sections lack a significant number of images,
making it impossible to form a complete time series. Therefore, we decide to focus on nine
representative sections for analysis, including “Arts”, “Books”, “Business Day”, “New York”,
“Opinion”, “Sports”, “Technology”, “U.S.”, and “World”. These sections encompass a wide
range of information sources, including macroeconomic developments, technological transfor-
mations, socio-cultural trends and expressions of public opinion (Obaid and Pukthuanthong,
2022; Barbaglia et al., 2023), thereby forming a news dataset with high sectoral represen-
tativeness and structural diversity. Table 1 shows the distribution of the number of photos
under each section for different years. We obtain a total of 181,233 news photos, and the
differences in the number of images across different sections in different years are not signif-
icant. Among them, the “U.S.” section has the highest number of photos, reaching 41, 341.
The next largest is the “World” section, with 29,813 images. Both of these sections tend to

cover topical events with higher importance.

Table 1: Distribution of Photos Across Different News Sections

2018 2019 2020 2021 2022 2023  Sum

Arts 4249 4122 3656 3244 3168 3265 21704
Books 1620 1681 1563 1565 1539 1512 9480
Business 3398 3039 3494 3518 3325 2986 19760
Day

New York 2671 2086 2027 2089 1989 2062 12924
Opinion 5788 5203 4572 3426 3279 3193 25461
Sports 3058 2856 2464 3128 2836 1518 15860
Technology 1034 720 978 787 749 622 4890
U.S. 5948 6805 8923 7443 6045 6177 41341
World 5017 4950 4560 5156 5300 4830 29813
Sum 32783 31462 32237 30356 28230 26165 181233

Notes: This table displays the number of photos from different news sections for
each year, with the last column and the last row representing the corresponding
cumulative values.

To explore the temporal changes of these news photos, we aggregate them on a daily

basis. Fig. 2 shows the time series of the number of photos over time for each section.



219

220

221

222

223

224

225

226

227

228

229

230

The gray-shaded area in the graph represents the outbreak period of the global COVID-19
pandemic. We can observe that the number of photos in each section universally experienced
an upward trend during this period, especially in sections like “World”, “U.S.”, and “Business
Day”, where this increase was more pronounced. This indicates that the pandemic became
a focal point of global societal and economic attention (Milani, 2021; Verma and Gustafsson,
2020). In the “Sports” section, we identify two significant increases in the number of photos,
further analysis reveals that these two points coincide with major international sports events.
Additionally, in the overall distribution of photo numbers (the last row in the graph), we
observe some level of cyclicality, particularly with noticeable decreases in photo numbers at
the end and beginning of each year. We speculate that this may be due to seasonal effects
during the holiday period, when news agencies reduce their workload and reporting frequency,

leading to a decrease in the number of photos (Fornari et al., 2002).

10



231

232

233

234

235

J’ "WMWWMWWWWWMWW\ L L i
" bbb Mgt wwmmmwwwmm

0 y L M‘M "'n‘l" hill “‘*l Wl MM\ g ”l"tLMIW o ’f»'v‘o‘«’\h” ulmlh,‘@ 'Ml‘m ol Lﬂ ,M"M bl

u.s

50 \ ‘ ‘
I il | il [y
o ;‘\'\‘l‘r,“\l\\"\\'y“v‘\7“3‘."“1‘,‘,'5\ vy W h Lot g J‘ﬂf W il “' ity “( Ll “\ 1 ‘M (I m. i |l')ryl Il M‘\ it \“M H‘ W 'w\ "‘ ity Aol i X« lw gy \t

World

o il

150

|
100 ‘ ‘(\‘Hv

1l Il

50

2018-01-01 2018-07-01 2019-01-01 2019-07-01 2020-01-01 2020-07-01 2021-01-01 2021-07-01 2022-01-01 2022-07-01 2023-01-01 2023-07-01

Fig. 2: Daily Time Series of Photos Across Different Sections

3.2 Financial Stock Market Index

To explore the impact of our photo sentiment index on the financial market, based on De-
giannakis et al. (2018) and Chang et al. (2015), we select four major stock market indices
representing the United States stock market. These indices include the Dow Jones Indus-

trial Average (DJI), the NASDAQ 100 Index (NDX), the Russell 2000 Index (RUT), and

11
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the Standard & Poor’s 500 Index (SPX). These indices cover stocks of different types and
sizes, providing a comprehensive reflection of the overall situation of the US stock market
(Petajisto, 2011). Table 2 presents the summary statistics of the prices of these four major
indices from January 2018 to December 2023. According to the skewness data, except for the
slightly right-skewed RUT index, the skewness of the other indices is close to zero, indicating
that their distributions are relatively symmetric. This may be related to the types of stocks
selected. The companies covered by the RUT index are typically smaller-cap firms, which
often have higher growth potential, potentially resulting in stronger upward trends but also
accompanying greater risk and price volatility (Chordia et al., 2011). Additionally, all indices

have negative kurtosis values, indicating flatter distributions.

Table 2: Descriptive Statistics of the Stock Indices

Mean Median Std. Dev. Skewness Kurtosis
DJI 29893.3769  30015.5100  4167.1383 —0.0687 —1.3925
NDX  11052.4863 11549.6800  3201.2358 0.0187 —1.4375
RUT 1772.4656 1722.3100 283.0561 0.3470 —0.4827
SPX 3587.9087 3677.9500 691.5457 0.0215 —1.4897

Notes: This table displays descriptive statistics of the four most representative stock
indices in the United States.

4 Measuring Sentiment in lmages

4.1 Few-Shot Learning

In traditional machine learning frameworks, it is often assumed that the training sample size
is large enough to cover variations in various categories and features. However, in reality, most
data is unlabeled, which means that significant effort is required to annotate large amounts
of data by domain experts to support model training (Chen et al., 2013). In such cases,
traditional supervised learning becomes time-consuming and labor-intensive, necessitating

the use of few-shot learning (FSL) methods for modeling. The goal of FSL is to classify or

12
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predict unknown samples using limited data when data availability is insufficient (Wang et al.,
2020). This method effectively addresses the problem of insufficient labeled data in supervised
learning.

FSL is typically divided into three categories: data enhancement methods, meta-learning
methods, and metric learning methods. Data enhancement methods enhance data diversity
by applying various transformations and augmentations to the original data (Liu et al., 2020).
Meta-learning is a learning approach that adapts to new tasks based on prior knowledge and
experience, also known as “learning to learn” (Dong et al., 2025). Metric learning aims to
measure the similarity between data points, focusing on learning a feature space where similar
samples are closer together and dissimilar samples are farther apart (Jiang et al., 2020). This

is also the category of models adopted in this study.

4.2 DeepEMD

Compared to other FSL methods, DeepEMD employs Earth Mover’s Distance (EMD) to
measure the similarity between category features and query embeddings (Zhang et al., 2022).
EMD measures the distance between two sets of weighted objects. It is based on the fun-
damental distance between individual objects and the weight of each element, which was
originally proposed for image retrieval (Rubner et al., 2000). Given the distances between all
units, EMD can find the optimal flow between two distributions, resulting in the minimum
cost. Suppose there is a set of suppliers S = {s;|i = 1,2, ...,n} that need to transport goods to
a set of demanders D = {d;|j = 1,2,...,m}, where s; represents the i-th supplier unit and d;
represents the j-th demander. The cost of transporting each item from supplier ¢ to demander
J is denoted as c;;, and the quantity of units transported is represented by x;;. The objective

of this problem is to find the cheapest flow of goods X = {Zili=1,....,n, j=1,...,m}

13



277

278

279

280

281

282

283

284

285

286

287

288

289

201

292

203

294

n m
mz’nimz’zeg E CijTij

.
” i=1 j=1

subject to x;; >, i=1,...,n, j=1,...m
m
Z.T}Z’j = Si, 1= 1,...,m
j=1

n
Zl‘ij = dj, ] = 1,...,n
=1

Here, s; and d; can also be regarded as weights on each node, used to control the total
matching flow generated at each node. Therefore, the objective of EMD is to seek an optimal
matching X to minimize the total cost, thus effectively allocating resources between suppliers
and demanders. DeepEMD decomposes images into a set of local representations achieved
by assigning appropriate weights to the local embeddings of two images. Therefore, all EMD
computations are based on feature vectors extracted from network layers (Yuan and Huang,

2020), i.e.,

def EM D(weighty,weighta, cost_matriz) (2)

where weight; represents the weight of input feature S relative to input feature D, weighto
represents the weight of input feature D relative to input feature .S, and cost_matriz denotes
the cost of transforming input feature S into input feature D.

Fig. 3 illustrates the overall architecture of DeepEMD. The model consists of two main
components. The first part is a fully convolutional neural network (FCN) used for extracting
image features. Based on the research by Zhang et al. (2022), we have chosen a 12-layer
ResNet (ResNet12) as the backbone model for this part. In this network, we extract feature
vectors from the images and compute EMD to measure the distance between embeddings in
the embedding space. By weighting the dimensions between the query image and all support
set images differently, we can calculate the similarity between each image. The second part

is a fully connected layer, which integrates the results obtained from feature extraction and

14
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q1
q3
q2 qa
Query Image Q
Weights Sharing
Support Image S
N
S4
ResNet-12 51 Ss
S2
S3

Earth Mover’s Distance

Fig. 3: The Main Architecture of DeepEMD

4.3 Fine-tuning

By conducting prior training on large-scale datasets, pre-trained models can learn feature
representations of raw data in advance, enabling parameter sharing and transfer learning.
This approach not only accelerates the performance improvement of models with a large
number of parameters on various tasks but also reduces the need for a large amount of
labeled data. Zhang et al. (2022) provided open-source DeepEMD pre-trained model data in
their research. In this study, we select their DeepEMD-FCN pre-trained model trained on the
tieredImageNet dataset. TieredImageN et is a subset of ImageNet, containing 608 categories

from 34 superclasses, with a total of 779,165 images (Lee et al., 2019). The pre-trained model

15
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achieved an accuracy of 86.03% on the dataset.

To fine-tune the pre-trained model, we use the artphoto dataset provided by Macha-
jdik and Hanbury (2010). This dataset leverages theoretical and empirical concepts from
psychology and art theory to extract sentiment features from 807 images obtained from an
art-sharing website, categorizing them into positive sentiment (amusement, awe, contentment,
excitement) and negative sentiment (anger, disgust, fear, sadness). Specifically, we randomly
select 5 samples from both positive and negative categories as the support set for each training
iteration, with the remaining samples used as the query set, thus constructing a 5-shot FSL

model.

5 Validation of the Measurement of Sentiment in Images

In this section, we validate the extracted sentiment from news images. Through the analysis
of these thematic sentiments, we verify the transference of sentiment among different news

sections.

5.1 Model Evaluation

We additionally utilize the Emotion6 dataset provided by Peng et al. (2015) as our out-
of-sample validation data. The Emotion6 dataset, obtained through a convolutional neural
network (CNN), categorizes images into six basic emotions (anger, disgust, fear, joy, sadness,
and surprise) according to Ekman (1992). Each category comprises 330 images. Table 3
displays the classification results of fine-tuned DeepEMD on out-of-sample data. Given the
higher importance of negative sentiment over positive sentiment (Mikels et al., 2005), we
designate negative sentiment samples as positive in the confusion matrix. To assess the
performance of the classification model, we select four classification metrics according to Kim
et al. (2020) and Jakubik et al. (2023): precision, recall, accuracy, and F1 score:
TP

Precision —
recision = o5 (3)
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RGCCLU = m (4)
TP+ TN
A p—
Y = T p Y TN+ FP+ FN (5)

Precision * Recall
Fl1=2 6
¥ Precision + Recall (6)

where TP represents the count of instances where the model correctly predicts positive samples
as positive, FP represents the count of instances where the model erroneously predicts negative
samples as positive, FN represents the count of instances where the model incorrectly predicts
positive samples as negative, and TN represents the count of instances where the model

accurately predicts negative samples as negative.

Table 3: Out-of-sample Results of the Fine-tuned DeepEMD

Actual
Positive Negative
Lo Positive 841 153
Prediction
Negative 479 507
Precision 84.6076% Recall 63.7121%
Accuracy 68.0808% F1 72.6880%

Notes: This table displays the classification results of the fine-tuned Deep-
EMD on the validation dataset Emotion6. It includes four classification
metrics: precision, recall, accuracy and F1 score.

In out-of-sample testing, our fine-tuned model demonstrates good performance. Specifi-
cally, we achieve a precision of 84.6%, recall of 63.7%, accuracy of 68.1%, and an F1 score of
72.7%. These results indicate that our model exhibits considerable reliability and accuracy in
sentiment extraction. In addition, compared to large-parameter models, DeepEMD has fewer
data dependencies and model parameters, thus significantly reducing both training time and

operational efficiency of the model (Adadi, 2021). Overall, we believe that this fine-tuned
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DeepEMD can serve as an effective tool for extracting sentiment from news images.

5.2 Sentiment Description

Using a fine-tuned DeepEMD model, we successfully conduct sentiment classification on the
news images from The New York Times (NYT). The DeepEMD determines the sentiment
category of the target image by computing the similarity between images. To further explore
the workings of the model, we select several images from each predicted category and conduct
a visual analysis of their similarities. Specifically, the network structure of the model divides
each image into 25 small blocks and calculates their correlations under different sentiment
categories. To present these similarities more intuitively, we add a black filter above the
images. We adjust the transparency of the image blocks according to the degree of similarity,
aiding in observing which image features had a greater impact on the model’s sentiment
classification decisions. Representative image samples corresponding to positive and negative
emotions are provided in Appendix A.

In images with positive sentiment (refer to Fig. A.1), we can observe that the model
focuses on smiling faces. This is consistent with our common knowledge, as smiles are often
considered a primary indicator of positive sentiment (Johnson et al., 2010). In contrast, in
images with negative sentiment (refer to Fig. A.2), the model pays more attention to elements
that may evoke fear, such as flame, weapon, and corpse. Overall, our model demonstrates
high credibility in analyzing image similarity. Therefore, we can rely on it to classify sentiment
content in news images and construct the sentiment indicators we need. We conduct a daily
aggregation of image classification results and calculated daily sentiment scores for different

news topics based on various news sources:

1< ,
ImgSenty; = - Z; Sentimentq ; (7)
1=

where ImgSenty; represents the sentiment score of the t-th topic on the d-th day, and

Sentimenty; represents the category of the i-th image under the t-th topic on the d-th
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day. Table 4 displays the descriptive statistics of the daily image sentiment scores under each
topic. The average sentiment scores of news images under each topic exceed 0.5, indicating
that there are more positive images than negative ones in daily news. Therefore, there is
a relatively positive trend in the news content, bringing positive energy to people (Tetlock,
2007), especially in the “World” and “Technology” topics. All sentiment scores show a left-
skewed distribution. Following standard practice, we apply standardization to these indicators

(Witten and Frank, 2002).

Table 4: Descriptive Statistics of Daily Image Sentiment

TOPIC Mean Median Std. Dev. Skewness Kurtosis Jarque-Bera Augmented Dicky-Fuller
Arts 0.5957  0.6074 0.1959 -0.5433 1.0999  213.5300*** —46.2448**
Books 0.7030 0.7244 0.2496 -0.8560 0.5589  276.1506*** —44.3030***
Business Day 0.7821  0.7973 0.1526 -0.8949 1.7637  569.6464*** —8.8595"**
New York 0.7526  0.7661 0.1915 -0.9782 1.6838 595.4843*** —44.4024***
Opinion 0.6898 0.7005 0.1405 -0.5567 1.0284 20.4909*** —9.5645***
Sports 0.7780  0.7967 0.1760 -1.2111 2.6215  1126.8040*** —7.9962***
Technology 0.7932  0.9433 0.2716 -1.4419 1.4087  748.5096*** —19.2172%**
U.S. 0.7469  0.7530 0.1061 -0.3479 0.6115 77.7858"** —17.6862***
World 0.7976  0.8100 0.1051 -0.4304 0.0452 67.6756"* —10.6322***

Notes: This table displays the descriptive statistics of daily news photo sentiment. ***, **

null hypotheses at the 1% , 5% and 10% significance level, respectively.

and * denote rejections of the

Next, we inspect the news image sentiments under each topic. Fig. 4 illustrates the daily
time series of the sentiment of these topics from 2018 to 2023. To observe the sentiment
changes more clearly, we add a 5-day moving average line to each line chart, marked with
a red dashed line. Sentiment across different topics may fluctuate due to the influence of
relevant events. For instance, at the end of 2023, the emergence of ChatGPT led to a surge
in positivity in the “Technology” topic, reflecting a positive attitude (Taecharungroj, 2023).
Moreover, sentiment can exhibit a certain degree of propagation across different topics. This
indicates that the occurrence of a significant event often triggers sentiment fluctuations in a
particular topic first, followed by a ripple effect spreading to other news sections, resulting
in a universal sentiment impact. We select two highly representative international events

during this period as illustrative cases: the Sino-US trade war in mid-2018 and the COVID-
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32 19 pandemic in early 2020, both of which led to a period of negative trends in news sentiment.

33 The shaded grey areas in the figures indicate the periods when these events began to unfold.
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Fig. 4: Daily Trends of News Image Sentiment Scores

384 At the outset of the Sino-US trade war, media outlets began expressing concerns about
35 its global economic impact (Chen and Wang, 2022), leading to negative sentiment initially
36 surfacing in the “Business Day” topic. Subsequently, these sentiments spread to other topics

37 such as “New York”, “U.S.”, and “World”, which typically cover international political and
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societal news. Surprisingly, this negative sentiment even extended to the “Books” topic, indi-
cating its influence on the overall operations of the news media. During the outbreak of the
COVID-19 pandemic, this pattern became particularly pronounced. As a global infectious
disease event, it initially garnered attention in news reports under the “World” topic, leading
to negative sentiment being first observed on this topic. Subsequently, these sentiments were
swiftly disseminated to almost all other news topics. The pandemic profoundly disrupted
normal operations worldwide (Sgreide et al., 2020), eliciting negative sentiment among peo-
ple regarding the economy (“Business Day”), society (“U.S.” and “New York”), technology
(“Technology”), as well as entertainment (“Arts”, “Books” and “Sports”). Thus, as the pre-
vious study of Baker et al. (2012) has indicated, the impact of sentiment is not confined solely
to specific events but rather exhibits broad contagion. The occurrence of a significant event
can influence the sentiment atmosphere across the entire news media. This provides robust

initial evidence for exploring the mechanism of sentiment influence on financial markets.

6 Application to Investment Strategy

To validate whether news sentiment has profit potential for investors, we conduct financial
market investment simulations based on different topic sentiments in this section. We select
the Dow Jones Industrial Average (DJI), representing large enterprises (Donaldson and Kim,
1993), and the Russell 2000 Index (RUT), representing small enterprises (Cremers et al., 2020),
to comprehensively reflect the characteristics of the stock market. We formulate investment
strategies based on the relationship between the prices of these two indices and different topic
sentiments. Specifically, we use the median sentiment value of each topic as a threshold and
update this threshold on a rolling basis every six months based on historical data (the initial
threshold is calculated using data from January 2018 to June 2018). We adopt two strategies:
positive sentiment-oriented and negative sentiment-oriented. The positive sentiment-oriented
strategy assumes that positive sentiment predicts future stock price increases. Therefore,

when sentiment is above the threshold, we buy before the close of the day and sell before the
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close of the next day; otherwise, we choose to short-sell. Conversely, the negative sentiment-
oriented strategy assumes that stock prices will rise when sentiment is below the threshold,
so it takes the opposite trading actions. To evaluate the effectiveness of these strategies, we
devise a benchmark strategy, which involves buying the index every day and holding it for
one day before selling. Table 5 displays the return results obtained from different sentiment-
oriented strategies under these topics. To evaluate the performance of the investment strategy,

we use return, Sharpe ratio, and maximum drawdown as key evaluation metrics (Han et al.,

2023).
Table 5: The Return Results of Different Investment Strategies
DJI RUT
Return Sharpe Ratio Maximum Drawdown Return Sharpe Ratio Maximum Drawdown
Negative Positive Negative Positive Negative Positive Negative Positive Negative Positive Negative Positive

Arts 47.44%  -46.36% 0.30 -0.59 0.36 0.54 43.67%  -53.44% 0.27 -0.50 0.37 0.63
Books -39.92%  33.93% -0.49 0.21 0.50 0.21 -15.87%  -21.10% -0.09 -0.14 0.50 0.38
Business Day  -62.49% 110.86%  -0.91 0.62 0.68 0.24 -71.57% 137.19%  -0.83 0.61 0.79 0.27
New York -2.93%  -18.52% -0.07 -0.22 0.32 0.50 -3.23%  -32.08% 0.00 -0.24 0.36 0.54
Opinion 15.12%  -31.07% 0.08 -0.37 0.29 0.45 -10.45%  -23.70% -0.05 -0.16 0.52 0.48
Sports 31.70%  -44.97% 0.20 -0.57 0.50 0.60 -2.54%  -36.55% 0.01 -0.29 0.61 0.62
Technology -47.20%  64.09% -0.61 0.39 0.58 0.38 -53.01%  62.81% -0.49 0.35 0.62 0.36
U.S. -40.41%  32.73% -0.50 0.21 0.54 0.28 -18.33%  -16.32% -0.12 -0.10 0.60 0.48
World -57.85%  87.65% -0.80 0.51 0.72 0.38 -54.13%  45.86% -0.51 0.27 0.75 0.56

BaseLine 55.28% 0.35 0.37 23.37% 0.16 0.43

Notes: This table displays the final return results of sentiment-based strategies across different topics under the Dow Jones Industrial Average (DJI) and the Russell 2000
Index (RUT). This table lists the return rate, Sharpe ratio and maximum drawdown under positive and negative sentiment strategies respectively.

In evaluating the returns of the investment strategy, we observe that the sentiment of
different topics exhibits varying emotional orientations. Among them, the “Business Day”,
“Technology” and “World” topics are particularly instrumental in achieving the highest re-
turns. In these topics, positive sentiment often serves as a reliable indicator of upward market
trends. These three themes encompass key political and economic information that signifi-
cantly influences societal development. News related to these topics can directly reflect market
shifts (Calomiris and Mamaysky, 2019). Within these sentiment-driven investment strategies,
the “Business Day” theme demonstrate the highest return, achieving 110.86% in the DJI and
137.19% in the RUT, significantly outperforming their respective benchmark returns (55.28%
in DJI and 23.37% in RUT). This outcome aligns with our understanding, as the ”Business

Day” reports are closely tied to economic factors, making market reactions to sentiment more
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pronounced. Moreover, the positive sentiment-driven strategy associated with this theme also
yielded the highest Sharpe ratio and the lowest maximum drawdown, suggesting the relative
robustness of the investment strategy.

In the sentiment-driven investment strategies oriented toward negative sentiment, almost
no topic manages to outperform the benchmark. However, it is worth noting that in in-
vestments involving the DJI index, strategies based on the “Arts” (47.44% ) and “Sports”
(31.70%) themes both yield positive returns. In the case of investments involving the RUT in-
dex, the strategy based on the “Arts” theme even outperforms the baseline, achieving 43.67%.
This phenomenon can be partially attributed to investor behavioral psychology. News reports
within these themes are often of an entertainment nature, and people typically read them for
relaxation purposes. However, when these reports are coupled with negative sentiment, they
may disrupt people’s expectations of a relaxed atmosphere, leading to a significant psycho-
logical gap. As Lee et al. (2002) pointed out, extreme emotional fluctuations are more likely
to influence investor behavior. Therefore, this negative sentiment often causes investors to
underestimate future market trends, generating aversion and leading to irrational decisions.
As mentioned by Barberis and Thaler (2003), this irrationality has a contrarian effect on
prices. Choosing to invest at such times can yield greater excess returns.

When comparing the returns of different stock indices, we observe that the cumulative
returns of the sentiment strategy for the RUT are generally higher than those for the DJI.
This indicates that news sentiment may have greater relevance in the investment of small-cap
companies, thus highlighting the applicability of sentiment strategies. Small-cap companies,
due to their high volatility, are more susceptible to external events (Levis, 2002). Our news
sentiment reflects the dynamic changes in external information.

Additionally, we conduct a detailed analysis of the daily investment returns for each strat-
egy. Fig. 5 illustrates the cumulative return trends of these sentiment-based strategies. The
upper graph represents the investment performance for the DJI index, while the lower one for
the RUT index. Solid lines indicate strategies based on positive sentiment, while dashed lines

represent those based on negative sentiment. Furthermore, we use thick black lines to denote

23



461

462

463

464

465

466

467

468

the performance of the benchmark. Comparing the two graphs, we observe that the returns
for the RUT index are more volatile than those for the DJI index, which aligns with our pre-
vious findings. Among the performance of the two indices, the “Business Day”, “Technology”
and “World” sentiment based on positive orientation exhibit the best investment returns.
It is noteworthy that the investment discrepancies between these strategies began to widen
gradually from the beginning of 2020. This timeframe coincides with the global outbreak of
the COVID-19 pandemic. This indirectly demonstrates that such news sentiment can help
investors mitigate potential risks or seize investment opportunities by quantifying the impact

of significant international events.
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Fig. 5: The Cumulative Return Trends under Different Investment Strategies
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7 Application to Financial Market Forecasting

7.1 Forecasting Models

We opt for machine learning models as the primary predictive tool to comprehensively un-
derstand the mechanism of impact of these indicators on the financial market. Compared to
traditional econometric methods, machine learning models can more flexibly capture nonlin-
ear relationships, thus predicting market price trends more accurately (Alshater et al., 2022).
Therefore, based on the research of Lu et al. (2022) and Goodell et al. (2023), we select four
typical machine learning models for stock index price prediction: Adaptive Boosting (Ad-
aBoost), Support Vector Regression (SVR), Extremely Randomized Trees (ExtraTrees), and
Random Forest (RF). To accurately assess the generalization ability of these nonlinear models,
we choose Ordinary Least Squares (OLS) as the baseline model to compare the performance
differences between linear and nonlinear models (Bali et al., 2021).

AdaBoost is an ensemble learning method that aims to combine multiple weak learn-
ers, which are models with modest performance, to create a stronger learner with improved
predictive ability (Freund and Schapire, 1997). In AdaBoost regression tasks, each weak
learner adjusts the weights of samples based on prediction errors, giving more attention to
those difficult-to-predict samples in the next round of training. By iteratively training mul-
tiple weak learners and combining them, AdaBoost regression can better adapt to complex
data structures and nonlinear relationships, particularly when there is noise in the dataset or
sample distribution is uneven.

Support Vector Regression (SVR), an adaptation of the Support Vector Machine (SVM)
for regression tasks, is introduced in (Smola and Scholkopf, 2004). Like SVM, SVR seeks a
function that not only fits the training set well but also generalizes effectively to unseen data.
The fundamental principle involves constructing a regression function with the widest possible
margin, ensuring that deviations from actual targets remain within a defined threshold. The
model’s support vectors—training instances lying near the margin—are pivotal in shaping the

regression function and significantly influence its predictive capability.
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Random Forest (RF), introduced by Breiman (2001), is an ensemble-based approach that
aggregates the outputs of numerous decision trees to conduct both classification and regres-
sion. By combining predictions from multiple trees, RF enhances model robustness and gener-
alization. Moreover, the use of random sampling and randomized feature subsets contributes
to minimizing the risk of overfitting.

ExtraTrees is also an ensemble learning algorithm that introduces additional randomness
during the construction of decision trees (Geurts et al., 2006). Therefore, compared to RF,
ExtraTrees is more randomized. It not only randomly selects the splitting features at each
node during tree construction but also randomly selects the splitting thresholds. This ran-
domness increases the diversity of the models and reduces the risk of overfitting. In extreme
cases, ExtraTrees may build completely random trees that are independent of the output
values of the training samples. Due to its simplicity, efficiency, and insensitivity to hyperpa-
rameters, ExtraTrees are widely used in regression problems with high data noise and feature

dimensions.

7.2 Forecasting Results

In the above discussion, we find that relying on sentiment from news images could potentially
generate additional investment returns. To validate these returns in economic terms, we
will utilize this sentiment to predict stock prices. Here, we have introduced two additional
prominent US stock indices to enhance the validity of our predictive conclusions. These
indices are the NASDAQ 100 Index (NDX), representing many high-growth industries in the
US (Péstor and Veronesi, 2006; Chen et al., 2022a), and the Standard & Poor’s 500 Index
(SPX), representing large-cap companies in the US stock market (Baral and Pokharel, 2017).
The price changes of these two indices not only reflect the overall performance of the US stock
market but also influence global financial markets (Buncic and Gisler, 2016). Considering that
sentiment may exhibit some degree of persistence, we have chosen a lag period of four days,
using the sentiment of each topic from the current day and the previous three days to predict

the closing price of the indices for the current day (Batchelor et al., 2007). Table 6 displays

27



524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

the in-sample results of linear fitting for the four stock indices.

Consistent with the results of the investment simulation, the in-sample fitting results show
significant correlations between the sentiment from the “Arts”, “Business Day”, “New York”,
“Opinion”, “U.S.” and “World” topics and stock index prices, validating the predictability of
sentiment for the market. Particularly, sentiment from the “Opinion” exhibits the strongest
negative linear relationship with market prices, with its four lagged values performing well in
the fitting results across all markets. Moreover, the sentiment from the “Business Day”, which
best reflects economic conditions, and the sentiment from the “World”, which best reflects
international situations, also hold considerable predictive value.

Furthermore, consistent with Liu (2015), we observe a lag effect of these sentiment, indi-
cating that the sentiment of the current day does not directly impact the market prices on
the same day but requires some time to influence investor behavior, which is then reflected in
market prices. In the fitting results, sentiment from the “Books” and “Technology” confirms
this assertion. For instance, in the “Books” sentiment, only the sentiment from two days ago
significantly affects the stock index prices, and this effect is manifested in the prices of three
indices (DJI, RUT, and SPX). Among the four lagged sentiments provided by the “U.S.”
theme, only the sentiment of the current day does not exhibit significance, further confirming

the non-immediacy of sentiment.
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Table 6: In-sample Results of the Linear Regression for Stock Indices

DJI NDX RUT SPX
Arts_0 —0.0130** —0.0137 —0.0084 —0.0150**
Arts 1 —0.0139** —0.0156 —0.0095 —-0.0167**
Arts_2 —0.0151*** —0.0189 —0.0109* —0.0186**
Arts_3 —0.0133** —0.0162 —0.0080 —0.0164**
Books_0 0.0077 0.0152 0.0077 0.0106
Books_1 0.0076 0.0138 0.0094 0.0100
Books_2 0.0089* 0.0150 0.0096* 0.0115*
Books_3 0.0072 0.0134 0.0075 0.0095
Business Day 0 0.0111** 0.0227** 0.0094 0.0160**
Business Day_1  0.0104** 0.0222** 0.0086 0.0154**
Business Day 2  0.0125** 0.0255** 0.0124** 0.0178**
Business Day_ 3  0.0105** 0.0210* 0.0116* 0.0148**
New York_0 0.0034 0.0270** 0.0021 0.0097
New York_1 0.0011 0.0176 0.0016 0.0053
New York 2 0.0042 0.0234** 0.0057 0.0088
New York 3 0.0055 0.0265** 0.0063 0.0112
Opinion_0 —0.0199*** —0.0452*** —0.0270*** —0.0276***
Opinion_1 —0.0195"* —-0.0431*** —0.0282*"* —0.0264***
Opinion_2 —-0.0173** —-0.0359*** —0.0253*** —0.0227***
Opinion_3 —0.0154"* —0.0328*** —0.0239*** —0.0203***
Sports_0 0.0021 -0.0027 0.0069 0.0020
Sports_1 0.0002 -0.0050 0.0020 -0.0002
Sports_2 -0.0030 -0.0139 -0.0001 -0.0056
Sports_3 -0.0043 -0.0132 -0.0030 -0.0063
Technology_0 -0.0029 -0.0090 0.0053 -0.0056
Technology _1 -0.0026 -0.0070 0.0037 -0.0045
Technology_2 -0.0005 0.0001 0.0068 -0.0002
Technology_3 0.0023 0.0029 0.0107** —0.0019
U.S..0 0.0047 0.0156 0.0071 0.0080
U.S.1 0.0085* 0.0238** 0.0103* 0.0134**
U.S. 2 0.0051 0.0182* 0.0070 0.0090
U.S..3 0.0086* 0.0260** 0.0101* 0.0140**
World_0 —0.0120"* —0.0199** —0.0094* —0.0157***
World_1 —0.0101** —0.0145 —0.0087*  —0.0128**
World_2 —0.0086** —0.0125 —0.0067 —0.0111*
World_3 —-0.0105**  —0.0160* —0.0074 —0.0134**
const 10.2914**  9.2514*** 7.47727* 8.1587**
Adj. R? 12.00% 11.60% 11.40% 11.60%

Notes: This table displays the in-sample coefficient results for fitting the prices of
four stock indices using sentiment lagged by four days. ***, ** and * denote rejections
of the null hypotheses at the 1% , 5% and 10% significance level, respectively.

542 To delve deeper into the predictive effect of sentiment on stock market prices, we conduct
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out-of-sample prediction tests. Given the presence of numerous non-linear relationships in
financial markets, traditional linear models struggle to capture these relationships effectively.
Therefore, we opt for machine learning models as predictive models, which have been widely
used in current financial literature (e.g. Aziz et al., 2022; Ghoddusi et al., 2019; Christensen
et al., 2023). We select four typical machine learning models: Adaptive Boosting (AdaBoost),
Support Vector Regression (SVR), Extremely Randomized Trees (ExtraTrees), and Random
Forest (RF). Additionally, to further validate the lag effect of sentiment, we utilize the sen-
timent of all topics within a day to predict the stock market prices for the next five days.
Specifically, we use data from 2018 to 2021 as the training set for the models and data from
2022 to 2023 as the out-of-sample testing set. Table 7 presents a detailed comparison of
the out-of-sample results, with OLS chosen as the baseline model to evaluate the non-linear
capabilities of the machine learning models.

In the comparison of out-of-sample results, we use two primary evaluation metrics: Mean

Absolute Error (MAE) and Root Mean Squared Error (RMSE), defined as follows:

1 n
MAE = — Z Ipt — Pt (8)
n t=1
1 « X
RMSE = | —~ > (bt —pr)? (9)
t=1

Where n is the number of observed data points during the testing period, p; denotes the
actual value of price on day ¢, and p; is the price forecast obtained using the forecasting
model. According to Yan et al. (2020) and Chen et al. (2021), these two metrics are widely
used in machine learning prediction problems as they provide a comprehensive assessment of
overall error and large errors, aiding in evaluating model performance.

In the table, we compute the loss ratio of each prediction model relative to the baseline
model and provide the specific values in parentheses. Firstly, regardless of the context, the
machine learning prediction performance surpasses that of the baseline linear model, further

confirming that the relationship between sentiment and financial markets exhibits more non-
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linear characteristics (Ni et al., 2015). Especially, AdaBoost and SVM perform the best,
being the top two nonlinear models in overall performance. Secondly, as the prediction days
increase, the performance of each prediction model declines, and the loss correspondingly in-
creases. However, we find that the upward trend in model loss is not consistent. AdaBoost
model exhibits the most prominent features. The second-day prediction shows the best per-
formance, with an MSE loss of 0.1317 (0.7692 of the baseline) and an RMSE loss of 0.1401
(0.7519 of the baseline). Except for the fifth-day prediction (H=5), the AdaBoost model’s
performance is better at other time points than its out-of-sample performance on the first
day (H=1). This again confirms our hypothesis that sentiment has a lag effect. This view-
point aligns with the conclusion of Edmans et al. (2022) that sentiment influences investor
behavior, leading to temporary pricing errors. This situation is also evident in ExtraTrees
(the third-day prediction is better than the second day) and RF (the fourth-day prediction is

better than the third day).
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Table 7: Comparative Analysis of Model Predictive Performance

OLS AdaBoost SVM ExtraTrees RF

MAE 0.1703 0.1418 0.1319 0.1564 0.1527
et (1.0000) (0.8328) (0.7746) (0.9184) (0.8972)
RMSE 0.1856 0.1513 0.1468 0.1682 0.1663
(1.0000) (0.8151) (0.7909) (0.9062) (0.8958)

MAE 0.1713 0.1317 0.1355 0.1574 0.1574
s (1.0000) (0.7692) (0.7914) (0.9192) (0.9192)
0.1864 0.1401 0.1507 0.1693 0.1698

RMSE

(1.0000) (0.7519) (0.8084) (0.9084) (0.9111)

MAE 0.1714 0.1345 0.1364 0.1571 0.1582
He3 (1.0000) (0.7844) (0.7959) (0.9166) (0.9228)
0.1864 0.1430 0.1518 0.1694 0.1701

RMSE

(1.0000) (0.7670) (0.8145) (0.9089) (0.9126)

MAE 0.1724 0.1336 0.1385 0.1601 0.1579
Hed (1.0000) (0.7751) (0.8035) (0.9287) (0.9158)
Nl .142 Nl 171 1702

RMSE 0.1873 0 5 0.1536 0.1713 0.170
(1.0000) (0.7607) (0.8204) (0.9149) (0.9089)

MAE 0.1729 0.1542 0.1387 0.1623 0.1590
Her (1.0000) (0.8922) (0.8025) (0.9387) (0.9199)
B 1 1 154 1 171
RMSE 0.1879 0.1633 0.1540 0.1733 0.1713
(1.0000) (0.8689) (0.8192) (0.9223) (0.9112)

Notes: This table displays the predictive performance of the forecasting model at different lag
days. The values within parentheses indicate the ratios of these non-linear models compared to
the baseline.

7.3 Robustness Test

Finally, in this section, we conduct a robustness test of sentiment indicators to validate the
precise impact of news image sentiment on the financial markets. To achieve this goal, we

adopt an approach similar to the research methodology of Chiah et al. (2022), which involves
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aggregating sentiment indicators across all topics to calculate a composite indicator reflecting
overall news media sentiment. The formula for calculating this composite indicator is as

follows:

1 & ,
OImgSenty = - Z% Sentimentq; (10)
1=

Where OImgSenty represents the overall news image sentiment for the d-th day, and
Sentiment,g; represents the category of the i-th image on the d-th day. Fig. 6 depicts the
daily trend of overall news image sentiment. We also plot a 5-day moving average line in
red. Similar to the volatility observed in financial market prices, news sentiment exhibits
significant fluctuations. At the beginning of 2020, overall news sentiment remained highly

negative, showing a noticeable decline.

Daily Image Sentiment
3 5-Day Moving Average

2018-01 2018-07 2019-01 2019-07 2020-01 2020-07 2021-01 2021-07 2022-01 2022-07 2023-01 2023-07

Fig. 6: Daily Trends of Overall News Photos Sentiment

Continuing with the approach used in the previous investment simulations, we devise posi-
tive sentiment-oriented and negative sentiment-oriented strategies accordingly. We still target
DJI and RUT as the market indices of interest. Table 8 presents the final performance of our

investment strategies. Positive sentiment aligns with the direction of future market uptrends.
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Under the positive sentiment-oriented strategy, our investments yielded a total return of 4.24%
on the DJI index and 11.95% on the RUT index, both exceeding the benchmarks for these
indices (4.17% and 3.79%). The performance of the RUT index significantly outperformed
that of the DJI index, suggesting that news sentiment might be more suitable for investments
in small-cap companies in growth phases. These smaller companies are more susceptible to
public opinion and policy influences, thus exhibiting greater asset volatility (Michaelas et al.,
1999; Crouzet and Mehrotra, 2020). Therefore, leveraging news sentiment as an investment

guide may offer better operational and investment guidance for these companies and their

investors.
Table 8: The Return Results of Overall Sentiment Investment Strategies
DJI RUT
Negative Positive Negative Positive
Sentiment Strategy -4.30 4.24% -11.36 11.95%
BaseLine 4.17% 3.79%

Notes: This table displays the final return results of sentiment-based strategies under the Dow
Jones Industrial Average (DJI) and the Russell 2000 Index (RUT). The second and fourth
columns represent investment strategies oriented toward negative sentiment, while the third and
fifth columns represent strategies oriented toward positive sentiment.

We opt for the sentiment-oriented strategy with higher returns and depict the investment
performance of these strategies on the stock indices in Fig. 7. We observe significant dis-
crepancies between the benchmark strategy and our sentiment-oriented strategy during the
COVID-19 pandemic. This global crisis led to an overall contraction trend in financial mar-
kets, triggering a decline in stock index prices (Berkman and Malloch, 2023). However, our
strategy successfully mitigated the risk of negative returns based on the performance of news
sentiment, and opted for short selling, which resulted in substantial profit increases. This also
demonstrates that news image sentiment helps predict the impact of major events on financial
markets to some extent, aiding us in risk avoidance. However, in future investment trends,
DJI never further expanded its returns, eventually slightly outperforming the benchmark.

On the other hand, our strategy consistently widened the gap with the benchmark on RUT,
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reaffirming the superior reference value of sentiment in investments in small companies.

—— DIJ Baseline
---- DIJ Sentiment Strategy & *
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1.15 RUT Sentiment Strategy '
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Fig. 7: The Cumulative Return Trend of Overall News Sentiment Strategy

8 Conclusion

This study employs a few-shot learning (FSL) technique to extract investor sentiment from
news images across various prominent sections of The New York Times (NYT). By segmenting
the sentiment of news topics, we expand the application of few-shot learning in the financial
domain and validated the role of different news topics in the variability of investor decision-
making. Firstly, our results demonstrate the intricate interconnections among different news
topics. We have studied specific event time points (such as the Sino-US trade war and the
COVID-19 pandemic) and found that the sentiment triggered by such events often resonates
from news topics in “World” or “Business Day” and has chain effects on almost all other news
topics.

In terms of investment strategies, we validate the effectiveness of sentiment associated with
various topics. Specifically, we find that serious news related to economics and politics often

contains substantial information that can positively reflect financial market dynamics. There-
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fore, the sentiment from such news has a positive guiding effect on economic development. In
contrast, some entertainment-oriented negative news can influence investor decision-making,
leading to incorrect assessments of market prices. The emotional differences brought about
by these different news topics help us gain a deeper understanding of how investor behavior
impacts market fluctuations.

Furthermore, our empirical results validate that these sentiments captured from news
images can predict changes in stock index prices. Financial markets entail numerous linear and
nonlinear relationships. By delving into the nonlinear relationship between sentiment and the
US stock market, we can better understand the mechanisms of market operation. Therefore,
machine learning models with stronger capabilities to capture nonlinear relationships have
immense potential in the financial domain.

Additionally, we observe a lag effect of sentiment. This implies that the news sentiment
does not immediately impact the financial markets. Instead, there is a noticeable delay
period during which it gradually influences investor behavior, ultimately reflecting changes
in market prices, leading to temporary pricing errors. Therefore, paying attention to past
sentiment trends can better help us understand the dynamics of the current financial market.

Finally, news sentiment holds greater relevance for investing in small-cap companies.
Small-cap firms are more susceptible to external events, thus exhibiting higher volatility. Our
investment strategy simulations validate the stronger predictive ability of these sentiments
for small-cap stock markets. Particularly during extreme events, our sentiment indicators
demonstrate stronger predictive capabilities. Our sentiment-based strategies successfully mit-
igated the market downturn risk caused by the COVID-19 pandemic. Hence, leveraging news
sentiment aids investors in better risk management.

In today’s era of advancing technology, media coverage is increasingly expansive. Trans-
forming this reliable information into profit opportunities has always been the relentless pur-
suit of investors and scholars. This study is just a preliminary exploration of this field.
Future research could extend the application of sentiment indicators to more types of markets

to explore their applicability in different domains. Additionally, extracting more valuable
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information from these non-traditional data sources is also an important direction for future
research. Financial technology has already opened new doors for us, and we eagerly await

further developments in the future.
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Fig. A.1: Image Similarity for Positive Sentiment
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Fig. A.2: Image Similarity for Negative Sentiment
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