

Investor sentiment from images: a few-shot learning investigation

Article

Accepted Version

Ren, X., Jiang, W., Sun, X. and Wang, S. ORCID: <https://orcid.org/0000-0003-2113-5521> (2025) Investor sentiment from images: a few-shot learning investigation. *Journal of Accounting Literature*. ISSN 2452-1469 doi: 10.1108/JAL-04-2025-0199 Available at <https://centaur.reading.ac.uk/123394/>

It is advisable to refer to the publisher's version if you intend to cite from the work. See [Guidance on citing](#).

To link to this article DOI: <http://dx.doi.org/10.1108/JAL-04-2025-0199>

Publisher: Emerald

All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the [End User Agreement](#).

www.reading.ac.uk/centaur

Investor Sentiment from Images: A Few-Shot Learning Investigation

1 Purpose

2 This research aims to extract emotional features from New York Times news images
3 (2018–2023) using few-shot learning approaches. Leveraging machine learning, it offers
4 a systematic investigation into how image-driven emotions affect investor behavior in
5 the U.S. equity market and contribute to the prediction of market movements.

6 Design

7 This study employs the DeepEMD model to extract emotional features from 181,233
8 news images, constructing a daily sentiment index based on visual media. By defining
9 sentiment thresholds, the study develops differentiated strategies for positive and nega-
10 tive emotional signals. In addition, it integrates four machine learning models—AdaBoost,
11 Support Vector Machine (SVM), ExtraTrees, and Random Forest (RF)—alongside a
12 traditional linear regression model to forecast the prices of various U.S. stock market
13 indices.

14 **Findings** This study finds that news image sentiment has a significant impact on fi-
15 nancial markets. Positive sentiment strategies applied to serious news topics are asso-
16 ciated with higher returns, whereas negative sentiment in entertainment-related content
17 signals potential opportunities for contrarian investment. Moreover, the influence of
18 image-based sentiment on the market exhibits a delayed effect of approximately 2–3
19 days, with particularly strong predictive power for small-cap stocks. Compared to tra-
20 ditional linear models, machine learning approaches demonstrate superior performance
21 in capturing the nonlinear dynamics between sentiment and market behavior, offering
22 novel analytical tools for behavioral finance research and sentiment-driven anomaly-
23 based investment strategies.

24 **Value:** This study integrates visual data analysis into the domain of behavioral fi-
25 nance, highlighting the distinctive role of image-based sentiment in uncovering market
26 anomalies and informing investment strategies.

27 **Keywords:** Few-shot Learning, Investor Sentiment, Behavioral Finance, Image Classi-
28 fication, Financial Forecasting

29 **1 Introduction**

30 The existing literature has limited studies on extracting sentiment from images. Instead, the
31 research paradigm on investor sentiment is based on textual data. This is mainly due to the
32 complexity of sentiment extraction from images. Text, as a human-created information car-
33 rier, inherently contains sentiment tendencies in each word from the outset (Kozyreva et al.,
34 2020; Quillian, 1967). Through simple methods such as building sentiment dictionaries, we
35 can reliably obtain the sentiment tendency of a piece of text (Jiang et al., 2019; Kearney
36 and Liu, 2014). Images, as a highly intuitive form of information presentation, often divert
37 readers' attention from text when they appear in view (Invernizzi et al., 2022). Psychology
38 has shown that different images can induce varying sentiment in people (Marchewka et al.,
39 2014; Dan-Glauser and Scherer, 2011). When readers encounter a particular image, sentiment
40 signals are already embedded in the image. These sentiment signals may influence their anal-
41 ysis and judgment of everyday matters, causing them to deviate from the path of rational
42 thinking (Pham, 2007; Fenton-O'Creevy et al., 2011). Therefore, studying the impact mech-
43 anism of sentiment in images is a valuable complement to the news text itself (Obaid and
44 Pukthuanthong, 2022).

45 For image data, sentiment stimuli often directly impact viewers visually through factors
46 such as content, color, and composition presented in the image (Zhao et al., 2021; Bhandari
47 et al., 2019). These features are relatively abstract and difficult to quantify directly, making
48 it challenging to identify sentiment polarity from images (Borth et al., 2013). Additionally,
49 a large amount of image data often lacks manual annotation, which increases the difficulty
50 of supervised learning (Moen et al., 2019). To address this issue, few-shot learning (FSL)
51 has become an effective method. As a form of meta learning, FSL aims to classify image
52 categories using only a limited amount of labeled training data to address the challenge of
53 data scarcity (Song et al., 2023; Lu et al., 2023). Moreover, due to the data characteristics
54 of few-shot learning, the algorithm is more efficient, enabling us to obtain model results more
55 quickly.

56 In this study, we select news images from The New York Times (NYT) as the focus of
57 our research. As a mainstream media outlet with over 150 years of history, NYT covers a
58 wide range of international and domestic news, including politics, social events, and cultural
59 phenomena (Van Belle, 2003; Benson, 2009). Daily news coverage encompasses numerous
60 thematic sections, from which we have selected the most representative and abundant images
61 from nine major sections (including “Arts”, “Books”, “Business Day”, “New York”, “Opin-
62 ion”, “Sports”, “Technology”, “U.S.”, and “World”) to explore sentiment features across
63 different topics. Considering the lack of annotations for image data, we employ the Deep-
64 EMD model proposed by Zhang et al. (2022) for 5-Shot few-shot learning. This method
65 utilizes the Earth Mover’s Distance (EMD) as a metric for computing the structural distance
66 between images and determining their relevance. By fine-tuning the pre-trained model of
67 DeepEMD, we have performed sentiment analysis on images under each theme and derived
68 daily sentiment scores for different topics.

69 When establishing different investment strategies based on changes in sentiment for each
70 topic, we find that the positive sentiment brought by “Business Day,” “Technology,” and
71 “World” contributes to relatively robust investment returns. These returns surpass the per-
72 formance of the Dow Jones Industrial Average (DJI) and the Russell 2000 Index (RUT). The
73 news on these three topics involves international economic and political events, thus exhib-
74 iting a more serious overall tone (Bianchi et al., 2016). Individuals may feel more distant from
75 serious subjects, which can serve as a buffer reducing the direct impact of sentiment (Zheng
76 et al., 2020). Therefore, the sentiment reflected in these themes can directly influence market
77 prices. In contrast, when formulating investment strategies based on the sentiment conveyed
78 in “Arts” and “Sports”, we find that the negative sentiment brought by these topics signals an
79 upward trend in the financial markets. News in these themes tends to be more entertainment-
80 oriented, and entertainment topics are often closer to everyday life (Kross and Ayduk, 2017),
81 making individuals more susceptible to extreme sentiment and resulting in a reverse effect
82 of sentiment. The negative sentiment investors derive from them may lead to an erroneous
83 underestimation of financial market prices, generating irrational investment aversion (Taffler,

84 2018). Investing at such times, however, may yield excess returns.

85 To further validate the characteristics of these thematic emotions, we examine their use in
86 predicting stock market prices and observe that they exhibit a certain degree of persistence,
87 potentially leading to temporary pricing errors (Stambaugh and Yuan, 2017). This stickiness
88 implies that the influence of sentiment not only manifests in singular events but may also
89 persistently affect market sentiment and investor decisions over a period, resulting in tempo-
90 rary irrational behaviors in the market (Griffith et al., 2020). To more accurately assess the
91 impact of this sentiment on the stock market, we opt for machine learning models. Compared
92 to traditional linear models, machine learning models can better capture nonlinear factors
93 between variables, hence gaining significant recognition in academia (Dumitrescu et al., 2022;
94 Khandani et al., 2010). Out-of-sample results demonstrate that these machine learning models
95 have better generalization capabilities compared to linear models. Furthermore, we conduct
96 predictions for different lag days and find that in experiments with lag days ranging from 2 to
97 3 days, some models show greater improvements, further validating the existence of certain
98 lag effects of this sentiment. This stickiness of sentiment provides a deeper explanation for
99 fluctuations in stock market prices. Accurately understanding the lagging period of sentiment
100 helps us better comprehend future market changes.

101 In robustness tests, we conduct overall statistical analyses of this sentiment. The results
102 indicate that sentiment in the news is more informative for investments in small-cap compa-
103 nies, especially during severe economic crises. Given that small-cap companies are in a growth
104 phase, their asset volatility is considerable, making them susceptible to internal turmoil in-
105 fluenced by policy changes (Shynkevich, 2012). In our investment strategy based on news
106 sentiment, we achieve a cumulative return of 11.95% for the RUT, significantly surpassing the
107 benchmark's 3.79%. However, in investments related to large-cap stocks, our strategy does
108 not diverge significantly from the benchmark. Therefore, by leveraging sentiment analysis to
109 gauge the development status of small-cap companies, we can better mitigate risks.

110 The main contributions of this study are as follows. First, we develop a framework to
111 employ a few-shot learning (FSL) technique to extract investor sentiment from news images

112 among various news sections, which complements the research paradigm of sentiment analysis
 113 based on textual data. Our results demonstrate the interconnections between different news
 114 sections, showing that sentiment is often triggered by topics in World and Business Day
 115 sections. Second, we examine a simple investment strategy based on image sentiment and
 116 find the heterogeneous performance from various news sections. Lastly, we investigate the
 117 nonlinear relationship between sentiment and the US stock markets. In particular, sentiment
 118 does not immediately impact the financial markets, but with a noticeable delay. In addition,
 119 we find that news sentiment has greater relevance for small-cap firms, compared to large-cap
 120 firms. The main structure of this paper is illustrated in Fig. 1.

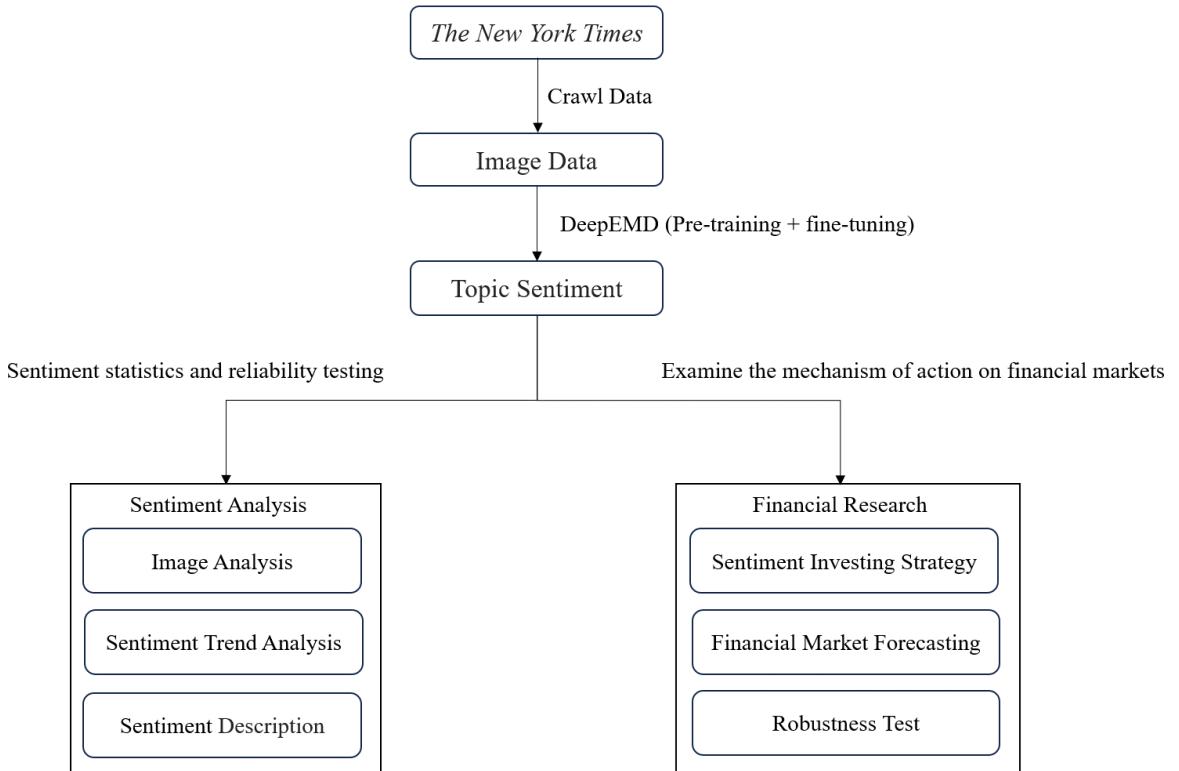


Fig. 1: The Main Technical Research Approach

121 The structure of this paper is arranged as follows. In Section 2, we review key literature
 122 that underpins our research. Section 3 presents the dataset employed in the analysis. Section 4

123 details the DeepEMD framework alongside the machine learning models utilized for prediction.
124 Section 5 provides a comprehensive analysis of sentiment characteristics across various news
125 topics. Section 6 offers empirical validation of the influence of sentiment on financial markets.
126 Finally, Section 7 summarizes the main findings and closes the discussion.

127 2 Literature Review

128 Investor sentiment is no longer a novel topic, as there has been a considerable amount of
129 financial literature devoted to its study. This is attributed to the continuous advancements
130 in natural language processing (NLP) technology, which have made the transformation of
131 textual data into analyzable features much easier (Noh et al., 2015; Phalippou, 2023; Chen
132 et al., 2022a). Consequently, the majority of existing research on financial sentiment is based
133 on text mining. At the corporate level, Chen et al. (2023a) constructed an employee sen-
134 timent index by collecting evaluations of their companies from employees of publicly listed
135 firms. This index relies on the difference between the proportions of positive and negative
136 evaluations. Their research found that high levels of employee sentiment predict lower market
137 returns for the company in the future, highlighting the critical role of employee sentiment
138 in the stock market. García-Méndez et al. (2023) developed a Targeted Aspect-Based Emo-
139 tion Analysis (TABEA) system capable of individually identifying the financial sentiment of
140 different stock market assets within the same tweet. They extracted these sentiments from
141 tweets and accurately identified financial opportunities and precautionary measures. For the
142 selection of news text data, Bai et al. (2022) employed the SeaMNF method, which extracted
143 dynamic sentiment indicators from sparse news headlines. Their text features significantly
144 enhanced the predictive capability for crude oil prices. Li et al. (2019) utilized the Python
145 library, Textblob, to obtain daily sentiment scores from online news, providing real-time high-
146 frequency fundamental data for the crude oil prediction model. Bodilsen and Lunde (2025)
147 found that incorporating macroeconomic news sentiment into regression models significantly
148 enhances the accuracy of long-term volatility forecasts. Doroslovački et al. (2024) proposed

149 a novel market sentiment analysis model that constructs sentiment indicators based on op-
150 tions market data, and found that these indicators exhibit significant predictive power for
151 future spot prices over longer forecast horizons. In the oil market, the study by [Cheng et al.](#)
152 ([2024](#)) indicated that the interval climate sentiment index constructed using social media can
153 significantly improve the accuracy of interval crude oil price forecasts. Furthermore, an in-
154 terval trading strategy based on this index not only helps manage market volatility but also
155 contributes to enhancing investment returns.

156 There is no doubt that the rapid advancement of NLP technology owes much to the
157 birth of Transformers ([Vaswani et al., 2017](#)). This innovation has made a large language
158 model (LLM) a reality, and [Chen et al. \(2022b\)](#) is a good example. They utilized BERT
159 and RoBERTa models to extract 27 different sentiment category indicators from The Wall
160 Street Journal (WSJ) and used them to construct various emotion-based investment portfolio
161 strategies. This research has opened up new avenues for effectively utilizing text data to
162 formulate investment strategies. [Kriebel and Stitz \(2022\)](#) also made full use of these models,
163 extracting information related to credit default from user-generated text. The research results
164 demonstrate that these textual features significantly improve the predictive performance of
165 credit default. Similarly, [Adämmer et al. \(2025\)](#) found that news data contains valuable
166 information that many economic indicators fail to capture, which can be used to improve
167 tail risk forecasting. In recent years, the emergence of ChatGPT has made the utilization of
168 textual features more flexible and diversified ([Zhao et al., 2023; Kaplan et al., 2020](#)). [Chen](#)
169 [et al. \(2023b\)](#) validated whether ChatGPT could identify useful news content related to the
170 stock market and macroeconomics. They conducted their research using headlines and alerts
171 from WSJ, and the results showed that the information extracted by ChatGPT was closely
172 related to macroeconomic conditions and had significant market prediction capabilities.

173 However, in the realm of image visualization in finance, the number of relevant litera-
174 ture has sharply decreased. Currently, only a few articles have explored investor sentiment
175 in images. [Obaid and Pukthuanthong \(2022\)](#) utilized news images to extract sentiment and
176 correlated them with returns, forming a photo sentiment index, namely Photo Pessimism

177 (PhotoPes). The research findings indicate that the pessimistic sentiment conveyed in news
178 photos, especially in predicting market returns during periods of elevated panic sentiment, is
179 particularly effective. Furthermore, compared to sentiment from textual sources during the
180 same period, the predictive power of image sentiment is superior. [Chiah et al. \(2022\)](#) reuti-
181 lized the sentiment data from the PhotoPes index and conducted a study on 37 international
182 stock markets. The research findings demonstrate that PhotoPes can effectively predict sub-
183 sequent market returns and trading volume, indicating the temporary pricing errors caused
184 by sentiment. While previous studies have extensively explored PhotoPes, this sentiment
185 index is based on overall news content, lacking segmentation across different sections and
186 subjectivity in the manual annotation of the training image set ([Obaid and Pukthuanthong,](#)
187 [2022](#)). Therefore, our study aims to provide a more refined and objective analysis of image
188 sentiment, exploring the specific mechanisms of news photos on the financial markets.

189 For classification problems with insufficient annotations, few-shot learning (FSL) has al-
190 ways been a good choice ([Yue et al., 2020](#); [Feng and Duarte, 2019](#)). However, in the financial
191 field, this method is extremely rare. [Zhou et al. \(2021\)](#) proposed a novel semi-supervised FSL
192 model, MetaRisk, for operational risk classification. Their model generalizes from a small
193 number of samples and risk type combinations, improving the accuracy of multi-label risk
194 classification. In the sentiment labeling classification task, [Liu et al. \(2023\)](#) combined LLM
195 with FSL to predict the sentiment classification of three major sentiment corpus speeches,
196 achieving an accuracy of over 90%. This study applies FSL to extract investor sentiment
197 from news photos, possibly being the first article to apply FSL to research in financial stock
198 markets.

199 3 Data Description

200 3.1 The New York Times

201 We use the API provided by The New York Times (NYT) to obtain daily news data from
202 January 2018 to December 2023. Additionally, we utilize web scraping techniques in Python

203 to retrieve all the photos accompanying the news during this period. Considering the content
 204 differences across various news sections, many sections lack a significant number of images,
 205 making it impossible to form a complete time series. Therefore, we decide to focus on nine
 206 representative sections for analysis, including “Arts”, “Books”, “Business Day”, “New York”,
 207 “Opinion”, “Sports”, “Technology”, “U.S.”, and “World”. These sections encompass a wide
 208 range of information sources, including macroeconomic developments, technological transfor-
 209 mations, socio-cultural trends and expressions of public opinion ([Obaid and Pukthuanthong](#),
 210 [2022](#); [Barbaglia et al., 2023](#)), thereby forming a news dataset with high sectoral represen-
 211 tativeness and structural diversity. Table 1 shows the distribution of the number of photos
 212 under each section for different years. We obtain a total of 181,233 news photos, and the
 213 differences in the number of images across different sections in different years are not signif-
 214 icant. Among them, the “U.S.” section has the highest number of photos, reaching 41,341.
 215 The next largest is the “World” section, with 29,813 images. Both of these sections tend to
 216 cover topical events with higher importance.

Table 1: Distribution of Photos Across Different News Sections

	2018	2019	2020	2021	2022	2023	Sum
Arts	4249	4122	3656	3244	3168	3265	21704
Books	1620	1681	1563	1565	1539	1512	9480
Business	3398	3039	3494	3518	3325	2986	19760
Day							
New York	2671	2086	2027	2089	1989	2062	12924
Opinion	5788	5203	4572	3426	3279	3193	25461
Sports	3058	2856	2464	3128	2836	1518	15860
Technology	1034	720	978	787	749	622	4890
U.S.	5948	6805	8923	7443	6045	6177	41341
World	5017	4950	4560	5156	5300	4830	29813
Sum	32783	31462	32237	30356	28230	26165	181233

Notes: This table displays the number of photos from different news sections for each year, with the last column and the last row representing the corresponding cumulative values.

217 To explore the temporal changes of these news photos, we aggregate them on a daily
 218 basis. Fig. 2 shows the time series of the number of photos over time for each section.

219 The gray-shaded area in the graph represents the outbreak period of the global COVID-19
220 pandemic. We can observe that the number of photos in each section universally experienced
221 an upward trend during this period, especially in sections like “World”, “U.S.”, and “Business
222 Day”, where this increase was more pronounced. This indicates that the pandemic became
223 a focal point of global societal and economic attention ([Milani, 2021](#); [Verma and Gustafsson,
224 2020](#)). In the “Sports” section, we identify two significant increases in the number of photos,
225 further analysis reveals that these two points coincide with major international sports events.
226 Additionally, in the overall distribution of photo numbers (the last row in the graph), we
227 observe some level of cyclicity, particularly with noticeable decreases in photo numbers at
228 the end and beginning of each year. We speculate that this may be due to seasonal effects
229 during the holiday period, when news agencies reduce their workload and reporting frequency,
230 leading to a decrease in the number of photos ([Fornari et al., 2002](#)).

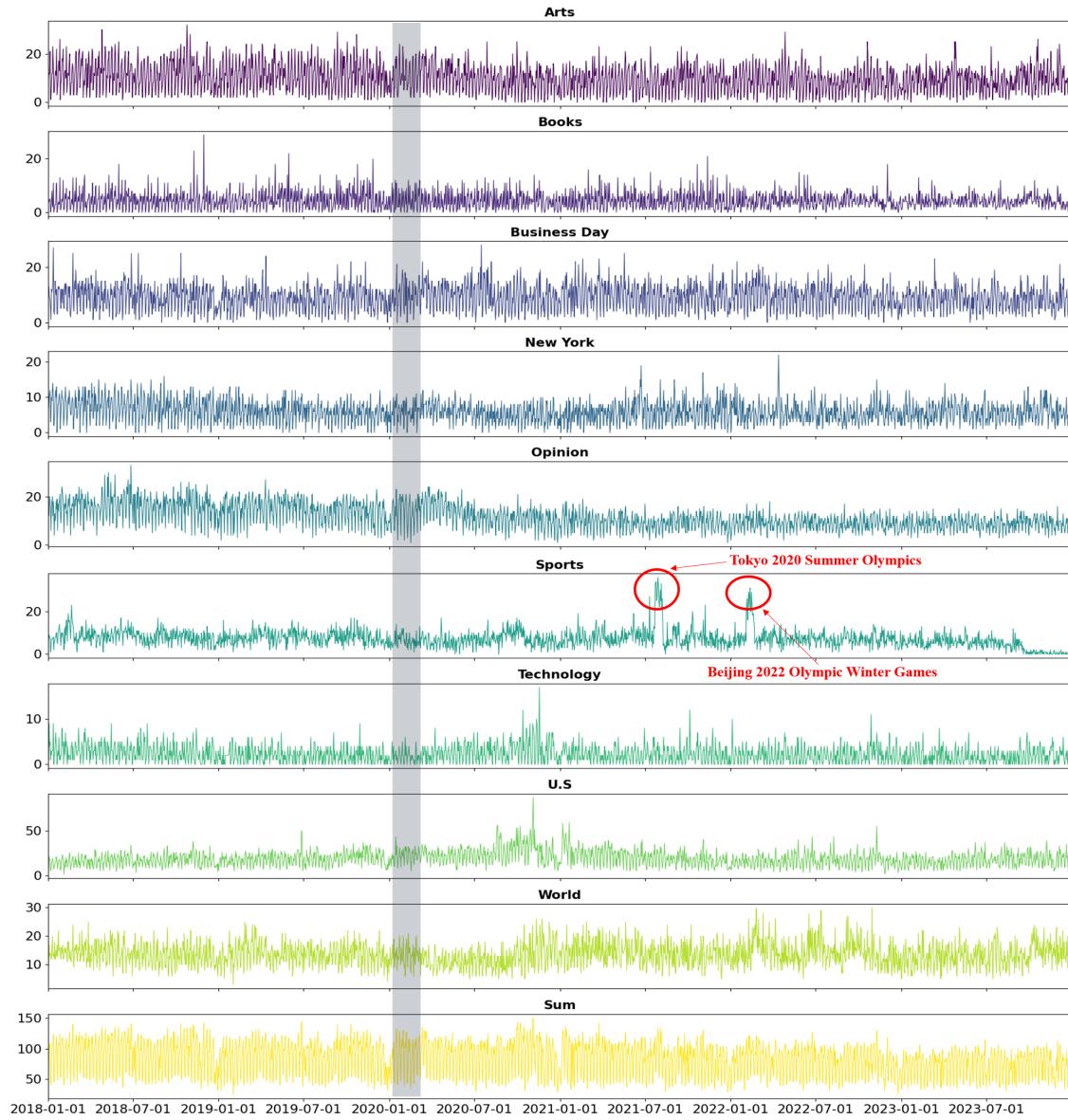


Fig. 2: Daily Time Series of Photos Across Different Sections

231 **3.2 Financial Stock Market Index**

232 To explore the impact of our photo sentiment index on the financial market, based on De-
 233 giannakis et al. (2018) and Chang et al. (2015), we select four major stock market indices
 234 representing the United States stock market. These indices include the Dow Jones Indus-
 235 trial Average (DJI), the NASDAQ 100 Index (NDX), the Russell 2000 Index (RUT), and

236 the Standard & Poor's 500 Index (SPX). These indices cover stocks of different types and
 237 sizes, providing a comprehensive reflection of the overall situation of the US stock market
 238 (Petajisto, 2011). Table 2 presents the summary statistics of the prices of these four major
 239 indices from January 2018 to December 2023. According to the skewness data, except for the
 240 slightly right-skewed RUT index, the skewness of the other indices is close to zero, indicating
 241 that their distributions are relatively symmetric. This may be related to the types of stocks
 242 selected. The companies covered by the RUT index are typically smaller-cap firms, which
 243 often have higher growth potential, potentially resulting in stronger upward trends but also
 244 accompanying greater risk and price volatility (Chordia et al., 2011). Additionally, all indices
 245 have negative kurtosis values, indicating flatter distributions.

Table 2: Descriptive Statistics of the Stock Indices

	Mean	Median	Std. Dev.	Skewness	Kurtosis
DJI	29893.3769	30015.5100	4167.1383	-0.0687	-1.3925
NDX	11052.4863	11549.6800	3201.2358	0.0187	-1.4375
RUT	1772.4656	1722.3100	283.0561	0.3470	-0.4827
SPX	3587.9087	3677.9500	691.5457	0.0215	-1.4897

Notes: This table displays descriptive statistics of the four most representative stock indices in the United States.

246 4 Measuring Sentiment in Images

247 4.1 Few-Shot Learning

248 In traditional machine learning frameworks, it is often assumed that the training sample size
 249 is large enough to cover variations in various categories and features. However, in reality, most
 250 data is unlabeled, which means that significant effort is required to annotate large amounts
 251 of data by domain experts to support model training (Chen et al., 2013). In such cases,
 252 traditional supervised learning becomes time-consuming and labor-intensive, necessitating
 253 the use of few-shot learning (FSL) methods for modeling. The goal of FSL is to classify or

254 predict unknown samples using limited data when data availability is insufficient (Wang et al.,
255 2020). This method effectively addresses the problem of insufficient labeled data in supervised
256 learning.

257 FSL is typically divided into three categories: data enhancement methods, meta-learning
258 methods, and metric learning methods. Data enhancement methods enhance data diversity
259 by applying various transformations and augmentations to the original data (Liu et al., 2020).
260 Meta-learning is a learning approach that adapts to new tasks based on prior knowledge and
261 experience, also known as “learning to learn” (Dong et al., 2025). Metric learning aims to
262 measure the similarity between data points, focusing on learning a feature space where similar
263 samples are closer together and dissimilar samples are farther apart (Jiang et al., 2020). This
264 is also the category of models adopted in this study.

265 4.2 DeepEMD

266 Compared to other FSL methods, DeepEMD employs Earth Mover’s Distance (EMD) to
267 measure the similarity between category features and query embeddings (Zhang et al., 2022).
268 EMD measures the distance between two sets of weighted objects. It is based on the fun-
269 damental distance between individual objects and the weight of each element, which was
270 originally proposed for image retrieval (Rubner et al., 2000). Given the distances between all
271 units, EMD can find the optimal flow between two distributions, resulting in the minimum
272 cost. Suppose there is a set of suppliers $S = \{s_i | i = 1, 2, \dots, n\}$ that need to transport goods to
273 a set of demanders $D = \{d_j | j = 1, 2, \dots, m\}$, where s_i represents the i -th supplier unit and d_j
274 represents the j -th demander. The cost of transporting each item from supplier i to demander
275 j is denoted as c_{ij} , and the quantity of units transported is represented by x_{ij} . The objective
276 of this problem is to find the cheapest flow of goods $\tilde{X} = \{\tilde{x}_{ij} | i = 1, \dots, n, j = 1, \dots, m\}$:

$$\begin{aligned}
& \underset{x_{ij}}{\text{minimize}} \sum_{i=1}^n \sum_{j=1}^m c_{ij} x_{ij} \\
& \text{subject to } x_{ij} \geq, \quad i = 1, \dots, n, \quad j = 1, \dots, m \\
& \quad \sum_{j=1}^m x_{ij} = s_i, \quad i = 1, \dots, m \\
& \quad \sum_{i=1}^n x_{ij} = d_j, \quad j = 1, \dots, n
\end{aligned} \tag{1}$$

277 Here, s_i and d_j can also be regarded as weights on each node, used to control the total
 278 matching flow generated at each node. Therefore, the objective of EMD is to seek an optimal
 279 matching \tilde{X} to minimize the total cost, thus effectively allocating resources between suppliers
 280 and demanders. DeepEMD decomposes images into a set of local representations achieved
 281 by assigning appropriate weights to the local embeddings of two images. Therefore, all EMD
 282 computations are based on feature vectors extracted from network layers (Yuan and Huang,
 283 2020), i.e.,

$$\text{def } EMD(\text{weight}_1, \text{weight}_2, \text{cost_matrix}) \tag{2}$$

284 where weight_1 represents the weight of input feature S relative to input feature D , weight_2
 285 represents the weight of input feature D relative to input feature S , and cost_matrix denotes
 286 the cost of transforming input feature S into input feature D .

287 Fig. 3 illustrates the overall architecture of DeepEMD. The model consists of two main
 288 components. The first part is a fully convolutional neural network (FCN) used for extracting
 289 image features. Based on the research by Zhang et al. (2022), we have chosen a 12-layer
 290 ResNet (ResNet12) as the backbone model for this part. In this network, we extract feature
 291 vectors from the images and compute EMD to measure the distance between embeddings in
 292 the embedding space. By weighting the dimensions between the query image and all support
 293 set images differently, we can calculate the similarity between each image. The second part
 294 is a fully connected layer, which integrates the results obtained from feature extraction and

295 similarity calculation into one-hot encoded labels and outputs them as the final category
 296 labels.

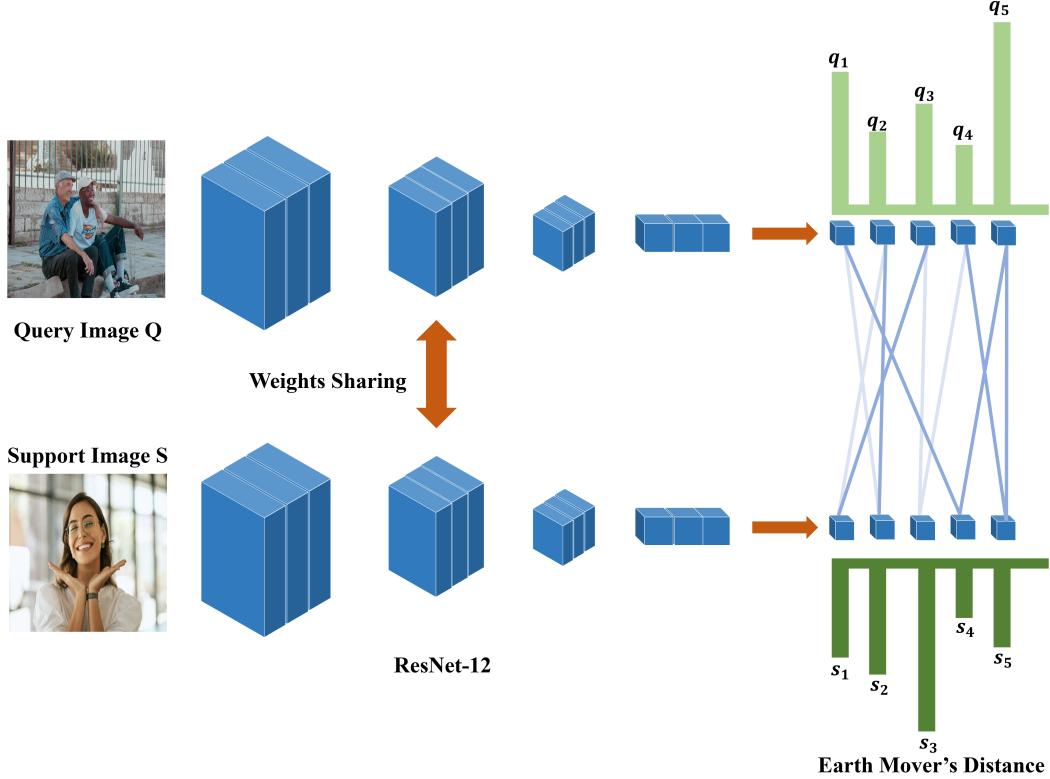


Fig. 3: The Main Architecture of DeepEMD

297 4.3 Fine-tuning

298 By conducting prior training on large-scale datasets, pre-trained models can learn feature
 299 representations of raw data in advance, enabling parameter sharing and transfer learning.
 300 This approach not only accelerates the performance improvement of models with a large
 301 number of parameters on various tasks but also reduces the need for a large amount of
 302 labeled data. [Zhang et al. \(2022\)](#) provided open-source DeepEMD pre-trained model data in
 303 their research. In this study, we select their DeepEMD-FCN pre-trained model trained on the
 304 *tieredImageNet* dataset. *TieredImageNet* is a subset of ImageNet, containing 608 categories
 305 from 34 superclasses, with a total of 779,165 images ([Lee et al., 2019](#)). The pre-trained model

306 achieved an accuracy of 86.03% on the dataset.

307 To fine-tune the pre-trained model, we use the *artphoto* dataset provided by [Macha-](#)
308 [jdik and Hanbury \(2010\)](#). This dataset leverages theoretical and empirical concepts from
309 psychology and art theory to extract sentiment features from 807 images obtained from an
310 art-sharing website, categorizing them into positive sentiment (amusement, awe, contentment,
311 excitement) and negative sentiment (anger, disgust, fear, sadness). Specifically, we randomly
312 select 5 samples from both positive and negative categories as the support set for each training
313 iteration, with the remaining samples used as the query set, thus constructing a 5-shot FSL
314 model.

315 5 Validation of the Measurement of Sentiment in Images

316 In this section, we validate the extracted sentiment from news images. Through the analysis
317 of these thematic sentiments, we verify the transference of sentiment among different news
318 sections.

319 5.1 Model Evaluation

320 We additionally utilize the *Emotion6* dataset provided by [Peng et al. \(2015\)](#) as our out-
321 of-sample validation data. The *Emotion6* dataset, obtained through a convolutional neural
322 network (CNN), categorizes images into six basic emotions (anger, disgust, fear, joy, sadness,
323 and surprise) according to [Ekman \(1992\)](#). Each category comprises 330 images. Table 3
324 displays the classification results of fine-tuned DeepEMD on out-of-sample data. Given the
325 higher importance of negative sentiment over positive sentiment ([Mikels et al., 2005](#)), we
326 designate negative sentiment samples as positive in the confusion matrix. To assess the
327 performance of the classification model, we select four classification metrics according to [Kim](#)
328 [et al. \(2020\)](#) and [Jakubik et al. \(2023\)](#): precision, recall, accuracy, and F1 score:

$$Precision = \frac{TP}{TP + FP} \quad (3)$$

$$Recall = \frac{TP}{TP + FN} \quad (4)$$

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN} \quad (5)$$

$$F1 = 2 * \frac{Precision * Recall}{Precision + Recall} \quad (6)$$

329 where TP represents the count of instances where the model correctly predicts positive samples
 330 as positive, FP represents the count of instances where the model erroneously predicts negative
 331 samples as positive, FN represents the count of instances where the model incorrectly predicts
 332 positive samples as negative, and TN represents the count of instances where the model
 333 accurately predicts negative samples as negative.

Table 3: Out-of-sample Results of the Fine-tuned DeepEMD

		Actual	
		Positive	Negative
Prediction	Positive	841	153
	Negative	479	507
Precision	84.6076%	Recall	63.7121%
Accuracy	68.0808%	F1	72.6880%

Notes: This table displays the classification results of the fine-tuned DeepEMD on the validation dataset *Emotion6*. It includes four classification metrics: precision, recall, accuracy and F1 score.

334 In out-of-sample testing, our fine-tuned model demonstrates good performance. Specifi-
 335 cally, we achieve a precision of 84.6%, recall of 63.7%, accuracy of 68.1%, and an F1 score of
 336 72.7%. These results indicate that our model exhibits considerable reliability and accuracy in
 337 sentiment extraction. In addition, compared to large-parameter models, DeepEMD has fewer
 338 data dependencies and model parameters, thus significantly reducing both training time and
 339 operational efficiency of the model (Adadi, 2021). Overall, we believe that this fine-tuned

340 DeepEMD can serve as an effective tool for extracting sentiment from news images.

341 5.2 Sentiment Description

342 Using a fine-tuned DeepEMD model, we successfully conduct sentiment classification on the
343 news images from The New York Times (NYT). The DeepEMD determines the sentiment
344 category of the target image by computing the similarity between images. To further explore
345 the workings of the model, we select several images from each predicted category and conduct
346 a visual analysis of their similarities. Specifically, the network structure of the model divides
347 each image into 25 small blocks and calculates their correlations under different sentiment
348 categories. To present these similarities more intuitively, we add a black filter above the
349 images. We adjust the transparency of the image blocks according to the degree of similarity,
350 aiding in observing which image features had a greater impact on the model’s sentiment
351 classification decisions. Representative image samples corresponding to positive and negative
352 emotions are provided in Appendix A.

353 In images with positive sentiment (refer to Fig. A.1), we can observe that the model
354 focuses on smiling faces. This is consistent with our common knowledge, as smiles are often
355 considered a primary indicator of positive sentiment (Johnson et al., 2010). In contrast, in
356 images with negative sentiment (refer to Fig. A.2), the model pays more attention to elements
357 that may evoke fear, such as flame, weapon, and corpse. Overall, our model demonstrates
358 high credibility in analyzing image similarity. Therefore, we can rely on it to classify sentiment
359 content in news images and construct the sentiment indicators we need. We conduct a daily
360 aggregation of image classification results and calculated daily sentiment scores for different
361 news topics based on various news sources:

$$ImgSent_{d,t} = \frac{1}{n} \sum_{i=0}^n Sentiment_{d,t,i} \quad (7)$$

362 where $ImgSent_{d,t}$ represents the sentiment score of the t -th topic on the d -th day, and
363 $Sentiment_{d,t,i}$ represents the category of the i -th image under the t -th topic on the d -th

364 day. Table 4 displays the descriptive statistics of the daily image sentiment scores under each
 365 topic. The average sentiment scores of news images under each topic exceed 0.5, indicating
 366 that there are more positive images than negative ones in daily news. Therefore, there is
 367 a relatively positive trend in the news content, bringing positive energy to people (Tetlock,
 368 2007), especially in the “World” and “Technology” topics. All sentiment scores show a left-
 369 skewed distribution. Following standard practice, we apply standardization to these indicators
 370 (Witten and Frank, 2002).

Table 4: Descriptive Statistics of Daily Image Sentiment

TOPIC	Mean	Median	Std. Dev.	Skewness	Kurtosis	Jarque-Bera	Augmented Dicky-Fuller
Arts	0.5957	0.6074	0.1959	-0.5433	1.0999	213.5300***	-46.2448***
Books	0.7030	0.7244	0.2496	-0.8560	0.5589	276.1506***	-44.3030***
Business Day	0.7821	0.7973	0.1526	-0.8949	1.7637	569.6464***	-8.8595***
New York	0.7526	0.7661	0.1915	-0.9782	1.6838	595.4843***	-44.4024***
Opinion	0.6898	0.7005	0.1405	-0.5567	1.0284	20.4909***	-9.5645***
Sports	0.7780	0.7967	0.1760	-1.2111	2.6215	1126.8040***	-7.9962***
Technology	0.7932	0.9433	0.2716	-1.4419	1.4087	748.5096***	-19.2172***
U.S.	0.7469	0.7530	0.1061	-0.3479	0.6115	77.7858***	-17.6862***
World	0.7976	0.8100	0.1051	-0.4304	0.0452	67.6756***	-10.6322***

Notes: This table displays the descriptive statistics of daily news photo sentiment. ***, ** and * denote rejections of the null hypotheses at the 1% , 5% and 10% significance level, respectively.

371 Next, we inspect the news image sentiments under each topic. Fig. 4 illustrates the daily
 372 time series of the sentiment of these topics from 2018 to 2023. To observe the sentiment
 373 changes more clearly, we add a 5-day moving average line to each line chart, marked with
 374 a red dashed line. Sentiment across different topics may fluctuate due to the influence of
 375 relevant events. For instance, at the end of 2023, the emergence of ChatGPT led to a surge
 376 in positivity in the “Technology” topic, reflecting a positive attitude (Taecharungroj, 2023).
 377 Moreover, sentiment can exhibit a certain degree of propagation across different topics. This
 378 indicates that the occurrence of a significant event often triggers sentiment fluctuations in a
 379 particular topic first, followed by a ripple effect spreading to other news sections, resulting
 380 in a universal sentiment impact. We select two highly representative international events
 381 during this period as illustrative cases: the Sino-US trade war in mid-2018 and the COVID-

382 19 pandemic in early 2020, both of which led to a period of negative trends in news sentiment.
 383 The shaded grey areas in the figures indicate the periods when these events began to unfold.

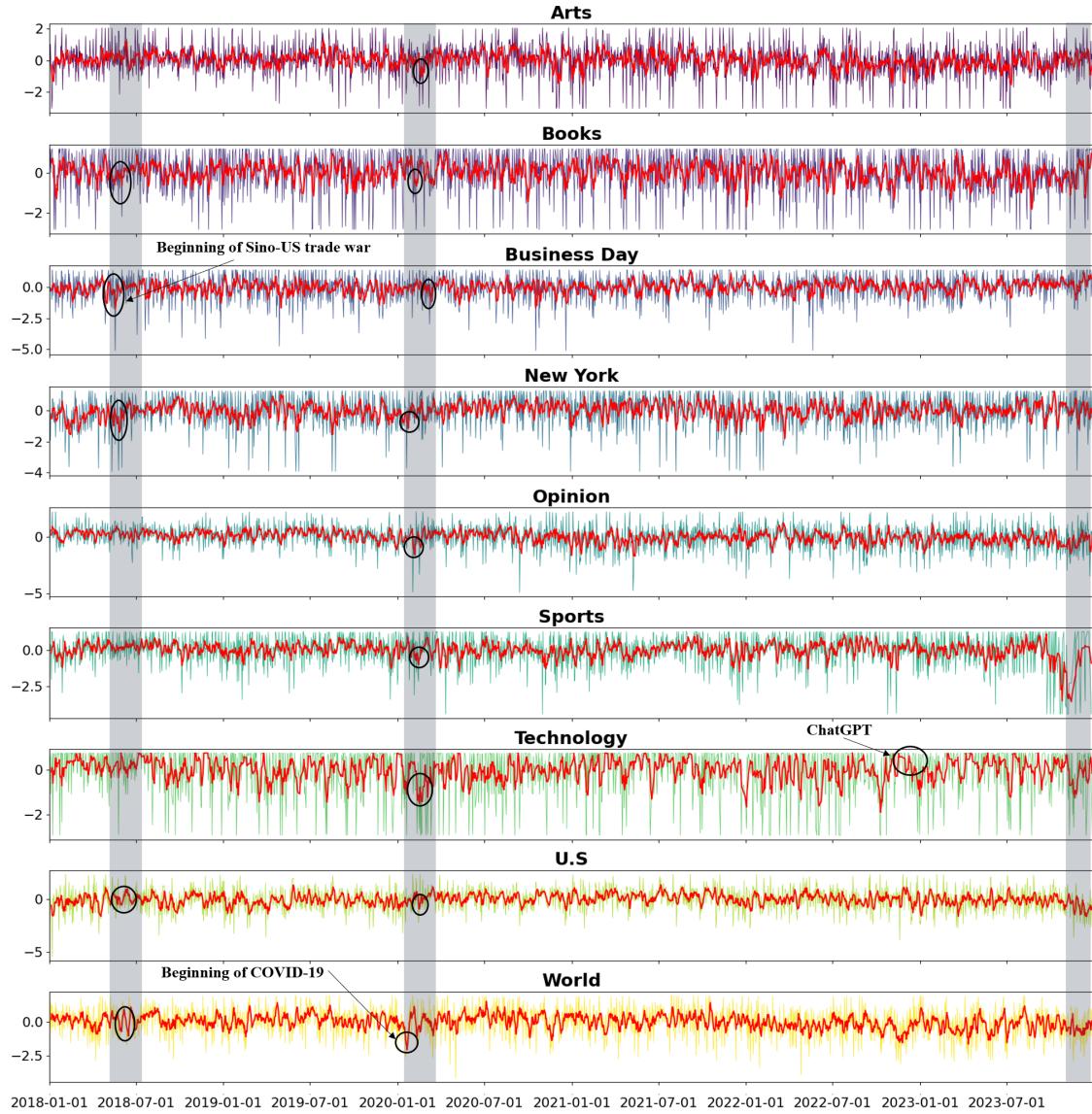


Fig. 4: Daily Trends of News Image Sentiment Scores

384 At the outset of the Sino-US trade war, media outlets began expressing concerns about
 385 its global economic impact (Chen and Wang, 2022), leading to negative sentiment initially
 386 surfacing in the “Business Day” topic. Subsequently, these sentiments spread to other topics
 387 such as “New York”, “U.S.”, and “World”, which typically cover international political and

388 societal news. Surprisingly, this negative sentiment even extended to the “Books” topic, indi-
389 cating its influence on the overall operations of the news media. During the outbreak of the
390 COVID-19 pandemic, this pattern became particularly pronounced. As a global infectious
391 disease event, it initially garnered attention in news reports under the “World” topic, leading
392 to negative sentiment being first observed on this topic. Subsequently, these sentiments were
393 swiftly disseminated to almost all other news topics. The pandemic profoundly disrupted
394 normal operations worldwide (Søreide et al., 2020), eliciting negative sentiment among peo-
395 ple regarding the economy (“Business Day”), society (“U.S.” and “New York”), technology
396 (“Technology”), as well as entertainment (“Arts”, “Books” and “Sports”). Thus, as the pre-
397 vious study of Baker et al. (2012) has indicated, the impact of sentiment is not confined solely
398 to specific events but rather exhibits broad contagion. The occurrence of a significant event
399 can influence the sentiment atmosphere across the entire news media. This provides robust
400 initial evidence for exploring the mechanism of sentiment influence on financial markets.

401 6 Application to Investment Strategy

402 To validate whether news sentiment has profit potential for investors, we conduct financial
403 market investment simulations based on different topic sentiments in this section. We select
404 the Dow Jones Industrial Average (DJI), representing large enterprises (Donaldson and Kim,
405 1993), and the Russell 2000 Index (RUT), representing small enterprises (Cremers et al., 2020),
406 to comprehensively reflect the characteristics of the stock market. We formulate investment
407 strategies based on the relationship between the prices of these two indices and different topic
408 sentiments. Specifically, we use the median sentiment value of each topic as a threshold and
409 update this threshold on a rolling basis every six months based on historical data (the initial
410 threshold is calculated using data from January 2018 to June 2018). We adopt two strategies:
411 positive sentiment-oriented and negative sentiment-oriented. The positive sentiment-oriented
412 strategy assumes that positive sentiment predicts future stock price increases. Therefore,
413 when sentiment is above the threshold, we buy before the close of the day and sell before the

414 close of the next day; otherwise, we choose to short-sell. Conversely, the negative sentiment-
 415 oriented strategy assumes that stock prices will rise when sentiment is below the threshold,
 416 so it takes the opposite trading actions. To evaluate the effectiveness of these strategies, we
 417 devise a benchmark strategy, which involves buying the index every day and holding it for
 418 one day before selling. Table 5 displays the return results obtained from different sentiment-
 419 oriented strategies under these topics. To evaluate the performance of the investment strategy,
 420 we use return, Sharpe ratio, and maximum drawdown as key evaluation metrics (Han et al.,
 421 2023).

Table 5: The Return Results of Different Investment Strategies

	DJI						RUT					
	Return		Sharpe Ratio		Maximum Drawdown		Return		Sharpe Ratio		Maximum Drawdown	
	Negative	Positive	Negative	Positive	Negative	Positive	Negative	Positive	Negative	Positive	Negative	Positive
Arts	47.44%	-46.36%	0.30	-0.59	0.36	0.54	43.67%	-53.44%	0.27	-0.50	0.37	0.63
Books	-39.92%	33.93%	-0.49	0.21	0.50	0.21	-15.87%	-21.10%	-0.09	-0.14	0.50	0.38
Business Day	-62.49%	110.86%	-0.91	0.62	0.68	0.24	-71.57%	137.19%	-0.83	0.61	0.79	0.27
New York	-2.93%	-18.52%	-0.07	-0.22	0.32	0.50	-3.23%	-32.08%	0.00	-0.24	0.36	0.54
Opinion	15.12%	-31.07%	0.08	-0.37	0.29	0.45	-10.45%	-23.70%	-0.05	-0.16	0.52	0.48
Sports	31.70%	-44.97%	0.20	-0.57	0.50	0.60	-2.54%	-36.55%	0.01	-0.29	0.61	0.62
Technology	-47.20%	64.09%	-0.61	0.39	0.58	0.38	-53.01%	62.81%	-0.49	0.35	0.62	0.36
U.S.	-40.41%	32.73%	-0.50	0.21	0.54	0.28	-18.33%	-16.32%	-0.12	-0.10	0.60	0.48
World	-57.85%	87.65%	-0.80	0.51	0.72	0.38	-54.13%	45.86%	-0.51	0.27	0.75	0.56
BaseLine	55.28%		0.35		0.37		23.37%		0.16		0.43	

Notes: This table displays the final return results of sentiment-based strategies across different topics under the Dow Jones Industrial Average (DJI) and the Russell 2000 Index (RUT). This table lists the return rate, Sharpe ratio and maximum drawdown under positive and negative sentiment strategies respectively.

422 In evaluating the returns of the investment strategy, we observe that the sentiment of
 423 different topics exhibits varying emotional orientations. Among them, the “Business Day”,
 424 “Technology” and “World” topics are particularly instrumental in achieving the highest re-
 425 turns. In these topics, positive sentiment often serves as a reliable indicator of upward market
 426 trends. These three themes encompass key political and economic information that signifi-
 427 cantly influences societal development. News related to these topics can directly reflect market
 428 shifts (Calomiris and Mamaysky, 2019). Within these sentiment-driven investment strategies,
 429 the “Business Day” theme demonstrate the highest return, achieving 110.86% in the DJI and
 430 137.19% in the RUT, significantly outperforming their respective benchmark returns (55.28%
 431 in DJI and 23.37% in RUT). This outcome aligns with our understanding, as the ”Business
 432 Day” reports are closely tied to economic factors, making market reactions to sentiment more

433 pronounced. Moreover, the positive sentiment-driven strategy associated with this theme also
434 yielded the highest Sharpe ratio and the lowest maximum drawdown, suggesting the relative
435 robustness of the investment strategy.

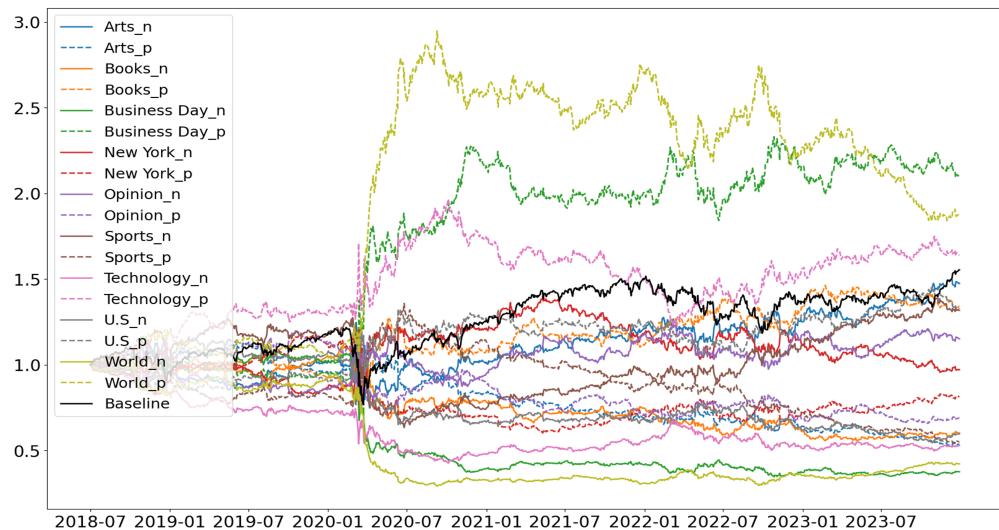
436 In the sentiment-driven investment strategies oriented toward negative sentiment, almost
437 no topic manages to outperform the benchmark. However, it is worth noting that in in-
438 vestments involving the DJI index, strategies based on the “Arts” (47.44%) and “Sports”
439 (31.70%) themes both yield positive returns. In the case of investments involving the RUT in-
440 dex, the strategy based on the “Arts” theme even outperforms the baseline, achieving 43.67%.
441 This phenomenon can be partially attributed to investor behavioral psychology. News reports
442 within these themes are often of an entertainment nature, and people typically read them for
443 relaxation purposes. However, when these reports are coupled with negative sentiment, they
444 may disrupt people’s expectations of a relaxed atmosphere, leading to a significant psycho-
445 logical gap. As [Lee et al. \(2002\)](#) pointed out, extreme emotional fluctuations are more likely
446 to influence investor behavior. Therefore, this negative sentiment often causes investors to
447 underestimate future market trends, generating aversion and leading to irrational decisions.
448 As mentioned by [Barberis and Thaler \(2003\)](#), this irrationality has a contrarian effect on
449 prices. Choosing to invest at such times can yield greater excess returns.

450 When comparing the returns of different stock indices, we observe that the cumulative
451 returns of the sentiment strategy for the RUT are generally higher than those for the DJI.
452 This indicates that news sentiment may have greater relevance in the investment of small-cap
453 companies, thus highlighting the applicability of sentiment strategies. Small-cap companies,
454 due to their high volatility, are more susceptible to external events ([Levis, 2002](#)). Our news
455 sentiment reflects the dynamic changes in external information.

456 Additionally, we conduct a detailed analysis of the daily investment returns for each strat-
457 egy. Fig. 5 illustrates the cumulative return trends of these sentiment-based strategies. The
458 upper graph represents the investment performance for the DJI index, while the lower one for
459 the RUT index. Solid lines indicate strategies based on positive sentiment, while dashed lines
460 represent those based on negative sentiment. Furthermore, we use thick black lines to denote

461 the performance of the benchmark. Comparing the two graphs, we observe that the returns
462 for the RUT index are more volatile than those for the DJI index, which aligns with our pre-
463 vious findings. Among the performance of the two indices, the “Business Day”, “Technology”
464 and “World” sentiment based on positive orientation exhibit the best investment returns.
465 It is noteworthy that the investment discrepancies between these strategies began to widen
466 gradually from the beginning of 2020. This timeframe coincides with the global outbreak of
467 the COVID-19 pandemic. This indirectly demonstrates that such news sentiment can help
468 investors mitigate potential risks or seize investment opportunities by quantifying the impact
469 of significant international events.

DIJ



RUT

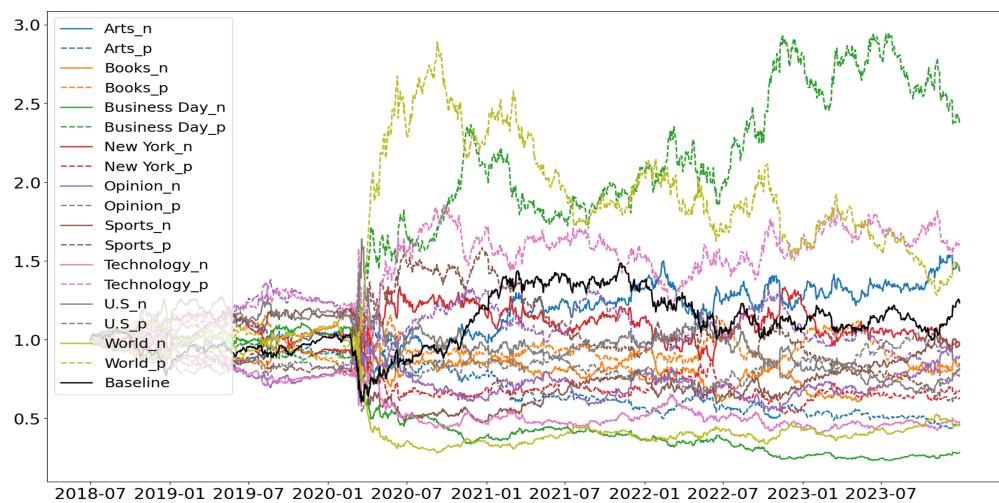


Fig. 5: The Cumulative Return Trends under Different Investment Strategies

470 **7 Application to Financial Market Forecasting**

471 **7.1 Forecasting Models**

472 We opt for machine learning models as the primary predictive tool to comprehensively un-
473 derstand the mechanism of impact of these indicators on the financial market. Compared to
474 traditional econometric methods, machine learning models can more flexibly capture nonlin-
475 ear relationships, thus predicting market price trends more accurately (Alshater et al., 2022).
476 Therefore, based on the research of Lu et al. (2022) and Goodell et al. (2023), we select four
477 typical machine learning models for stock index price prediction: Adaptive Boosting (Ad-
478 aBoost), Support Vector Regression (SVR), Extremely Randomized Trees (ExtraTrees), and
479 Random Forest (RF). To accurately assess the generalization ability of these nonlinear models,
480 we choose Ordinary Least Squares (OLS) as the baseline model to compare the performance
481 differences between linear and nonlinear models (Bali et al., 2021).

482 AdaBoost is an ensemble learning method that aims to combine multiple weak learn-
483 ers, which are models with modest performance, to create a stronger learner with improved
484 predictive ability (Freund and Schapire, 1997). In AdaBoost regression tasks, each weak
485 learner adjusts the weights of samples based on prediction errors, giving more attention to
486 those difficult-to-predict samples in the next round of training. By iteratively training mul-
487 tiple weak learners and combining them, AdaBoost regression can better adapt to complex
488 data structures and nonlinear relationships, particularly when there is noise in the dataset or
489 sample distribution is uneven.

490 Support Vector Regression (SVR), an adaptation of the Support Vector Machine (SVM)
491 for regression tasks, is introduced in (Smola and Schölkopf, 2004). Like SVM, SVR seeks a
492 function that not only fits the training set well but also generalizes effectively to unseen data.
493 The fundamental principle involves constructing a regression function with the widest possible
494 margin, ensuring that deviations from actual targets remain within a defined threshold. The
495 model's support vectors—training instances lying near the margin—are pivotal in shaping the
496 regression function and significantly influence its predictive capability.

497 Random Forest (RF), introduced by [Breiman \(2001\)](#), is an ensemble-based approach that
498 aggregates the outputs of numerous decision trees to conduct both classification and regres-
499 sion. By combining predictions from multiple trees, RF enhances model robustness and gener-
500 alization. Moreover, the use of random sampling and randomized feature subsets contributes
501 to minimizing the risk of overfitting.

502 ExtraTrees is also an ensemble learning algorithm that introduces additional randomness
503 during the construction of decision trees ([Geurts et al., 2006](#)). Therefore, compared to RF,
504 ExtraTrees is more randomized. It not only randomly selects the splitting features at each
505 node during tree construction but also randomly selects the splitting thresholds. This ran-
506 domness increases the diversity of the models and reduces the risk of overfitting. In extreme
507 cases, ExtraTrees may build completely random trees that are independent of the output
508 values of the training samples. Due to its simplicity, efficiency, and insensitivity to hyperpa-
509 rameters, ExtraTrees are widely used in regression problems with high data noise and feature
510 dimensions.

511 7.2 Forecasting Results

512 In the above discussion, we find that relying on sentiment from news images could potentially
513 generate additional investment returns. To validate these returns in economic terms, we
514 will utilize this sentiment to predict stock prices. Here, we have introduced two additional
515 prominent US stock indices to enhance the validity of our predictive conclusions. These
516 indices are the NASDAQ 100 Index (NDX), representing many high-growth industries in the
517 US ([Pástor and Veronesi, 2006](#); [Chen et al., 2022a](#)), and the Standard & Poor's 500 Index
518 (SPX), representing large-cap companies in the US stock market ([Baral and Pokharel, 2017](#)).
519 The price changes of these two indices not only reflect the overall performance of the US stock
520 market but also influence global financial markets ([Buncic and Gisler, 2016](#)). Considering that
521 sentiment may exhibit some degree of persistence, we have chosen a lag period of four days,
522 using the sentiment of each topic from the current day and the previous three days to predict
523 the closing price of the indices for the current day ([Batchelor et al., 2007](#)). Table 6 displays

524 the in-sample results of linear fitting for the four stock indices.

525 Consistent with the results of the investment simulation, the in-sample fitting results show
526 significant correlations between the sentiment from the “Arts”, “Business Day”, “New York”,
527 “Opinion”, “U.S.” and “World” topics and stock index prices, validating the predictability of
528 sentiment for the market. Particularly, sentiment from the “Opinion” exhibits the strongest
529 negative linear relationship with market prices, with its four lagged values performing well in
530 the fitting results across all markets. Moreover, the sentiment from the “Business Day”, which
531 best reflects economic conditions, and the sentiment from the “World”, which best reflects
532 international situations, also hold considerable predictive value.

533 Furthermore, consistent with [Liu \(2015\)](#), we observe a lag effect of these sentiment, indi-
534 cating that the sentiment of the current day does not directly impact the market prices on
535 the same day but requires some time to influence investor behavior, which is then reflected in
536 market prices. In the fitting results, sentiment from the “Books” and “Technology” confirms
537 this assertion. For instance, in the “Books” sentiment, only the sentiment from two days ago
538 significantly affects the stock index prices, and this effect is manifested in the prices of three
539 indices (DJI, RUT, and SPX). Among the four lagged sentiments provided by the “U.S.”
540 theme, only the sentiment of the current day does not exhibit significance, further confirming
541 the non-immediacy of sentiment.

Table 6: In-sample Results of the Linear Regression for Stock Indices

	DJI	NDX	RUT	SPX
Arts_0	-0.0130**	-0.0137	-0.0084	-0.0150**
Arts_1	-0.0139**	-0.0156	-0.0095	-0.0167**
Arts_2	-0.0151***	-0.0189	-0.0109*	-0.0186**
Arts_3	-0.0133**	-0.0162	-0.0080	-0.0164**
Books_0	0.0077	0.0152	0.0077	0.0106
Books_1	0.0076	0.0138	0.0094	0.0100
Books_2	0.0089*	0.0150	0.0096*	0.0115*
Books_3	0.0072	0.0134	0.0075	0.0095
Business Day_0	0.0111**	0.0227**	0.0094	0.0160**
Business Day_1	0.0104**	0.0222**	0.0086	0.0154**
Business Day_2	0.0125**	0.0255**	0.0124**	0.0178**
Business Day_3	0.0105**	0.0210*	0.0116*	0.0148**
New York_0	0.0034	0.0270**	0.0021	0.0097
New York_1	0.0011	0.0176	0.0016	0.0053
New York_2	0.0042	0.0234**	0.0057	0.0088
New York_3	0.0055	0.0265**	0.0063	0.0112
Opinion_0	-0.0199***	-0.0452***	-0.0270***	-0.0276***
Opinion_1	-0.0195***	-0.0431***	-0.0282***	-0.0264***
Opinion_2	-0.0173***	-0.0359***	-0.0253***	-0.0227***
Opinion_3	-0.0154***	-0.0328***	-0.0239***	-0.0203***
Sports_0	0.0021	-0.0027	0.0069	0.0020
Sports_1	0.0002	-0.0050	0.0020	-0.0002
Sports_2	-0.0030	-0.0139	-0.0001	-0.0056
Sports_3	-0.0043	-0.0132	-0.0030	-0.0063
Technology_0	-0.0029	-0.0090	0.0053	-0.0056
Technology_1	-0.0026	-0.0070	0.0037	-0.0045
Technology_2	-0.0005	0.0001	0.0068	-0.0002
Technology_3	0.0023	0.0029	0.0107**	-0.0019
U.S._0	0.0047	0.0156	0.0071	0.0080
U.S._1	0.0085*	0.0238**	0.0103*	0.0134**
U.S._2	0.0051	0.0182*	0.0070	0.0090
U.S._3	0.0086*	0.0260**	0.0101*	0.0140**
World_0	-0.0120***	-0.0199**	-0.0094*	-0.0157***
World_1	-0.0101**	-0.0145	-0.0087*	-0.0128**
World_2	-0.0086**	-0.0125	-0.0067	-0.0111*
World_3	-0.0105**	-0.0160*	-0.0074	-0.0134**
const	10.2914***	9.2514***	7.4772***	8.1587***
<i>Adj. R</i> ²	12.00%	11.60%	11.40%	11.60%

Notes: This table displays the in-sample coefficient results for fitting the prices of four stock indices using sentiment lagged by four days. ***, ** and * denote rejections of the null hypotheses at the 1% , 5% and 10% significance level, respectively.

542 To delve deeper into the predictive effect of sentiment on stock market prices, we conduct

543 out-of-sample prediction tests. Given the presence of numerous non-linear relationships in
 544 financial markets, traditional linear models struggle to capture these relationships effectively.
 545 Therefore, we opt for machine learning models as predictive models, which have been widely
 546 used in current financial literature (e.g. [Aziz et al., 2022](#); [Ghoddusi et al., 2019](#); [Christensen et al., 2023](#)). We select four typical machine learning models: Adaptive Boosting (AdaBoost),
 547 Support Vector Regression (SVR), Extremely Randomized Trees (ExtraTrees), and Random
 548 Forest (RF). Additionally, to further validate the lag effect of sentiment, we utilize the sen-
 549 timent of all topics within a day to predict the stock market prices for the next five days.
 550 Specifically, we use data from 2018 to 2021 as the training set for the models and data from
 551 2022 to 2023 as the out-of-sample testing set. Table 7 presents a detailed comparison of
 552 the out-of-sample results, with OLS chosen as the baseline model to evaluate the non-linear
 553 capabilities of the machine learning models.
 554

555 In the comparison of out-of-sample results, we use two primary evaluation metrics: Mean
 556 Absolute Error (MAE) and Root Mean Squared Error (RMSE), defined as follows:

$$\text{MAE} = \frac{1}{n} \sum_{t=1}^n |p_t - \hat{p}_t| \quad (8)$$

$$\text{RMSE} = \sqrt{\frac{1}{n} \sum_{t=1}^n (p_t - \hat{p}_t)^2} \quad (9)$$

557 Where n is the number of observed data points during the testing period, p_t denotes the
 558 actual value of price on day t , and \hat{p}_t is the price forecast obtained using the forecasting
 559 model. According to [Yan et al. \(2020\)](#) and [Chen et al. \(2021\)](#), these two metrics are widely
 560 used in machine learning prediction problems as they provide a comprehensive assessment of
 561 overall error and large errors, aiding in evaluating model performance.

562 In the table, we compute the loss ratio of each prediction model relative to the baseline
 563 model and provide the specific values in parentheses. Firstly, regardless of the context, the
 564 machine learning prediction performance surpasses that of the baseline linear model, further
 565 confirming that the relationship between sentiment and financial markets exhibits more non-

566 linear characteristics (Ni et al., 2015). Especially, AdaBoost and SVM perform the best,
567 being the top two nonlinear models in overall performance. Secondly, as the prediction days
568 increase, the performance of each prediction model declines, and the loss correspondingly in-
569 creases. However, we find that the upward trend in model loss is not consistent. AdaBoost
570 model exhibits the most prominent features. The second-day prediction shows the best per-
571 formance, with an MSE loss of 0.1317 (0.7692 of the baseline) and an RMSE loss of 0.1401
572 (0.7519 of the baseline). Except for the fifth-day prediction ($H=5$), the AdaBoost model's
573 performance is better at other time points than its out-of-sample performance on the first
574 day ($H=1$). This again confirms our hypothesis that sentiment has a lag effect. This view-
575 point aligns with the conclusion of Edmans et al. (2022) that sentiment influences investor
576 behavior, leading to temporary pricing errors. This situation is also evident in ExtraTrees
577 (the third-day prediction is better than the second day) and RF (the fourth-day prediction is
578 better than the third day).

Table 7: Comparative Analysis of Model Predictive Performance

		OLS	AdaBoost	SVM	ExtraTrees	RF
H=1	MAE	0.1703 (1.0000)	0.1418 (0.8328)	0.1319 (0.7746)	0.1564 (0.9184)	0.1527 (0.8972)
	RMSE	0.1856 (1.0000)	0.1513 (0.8151)	0.1468 (0.7909)	0.1682 (0.9062)	0.1663 (0.8958)
	MAE	0.1713 (1.0000)	0.1317 (0.7692)	0.1355 (0.7914)	0.1574 (0.9192)	0.1574 (0.9192)
	RMSE	0.1864 (1.0000)	0.1401 (0.7519)	0.1507 (0.8084)	0.1693 (0.9084)	0.1698 (0.9111)
H=3	MAE	0.1714 (1.0000)	0.1345 (0.7844)	0.1364 (0.7959)	0.1571 (0.9166)	0.1582 (0.9228)
	RMSE	0.1864 (1.0000)	0.1430 (0.7670)	0.1518 (0.8145)	0.1694 (0.9089)	0.1701 (0.9126)
	MAE	0.1724 (1.0000)	0.1336 (0.7751)	0.1385 (0.8035)	0.1601 (0.9287)	0.1579 (0.9158)
	RMSE	0.1873 (1.0000)	0.1425 (0.7607)	0.1536 (0.8204)	0.1713 (0.9149)	0.1702 (0.9089)
H=5	MAE	0.1729 (1.0000)	0.1542 (0.8922)	0.1387 (0.8025)	0.1623 (0.9387)	0.1590 (0.9199)
	RMSE	0.1879 (1.0000)	0.1633 (0.8689)	0.1540 (0.8192)	0.1733 (0.9223)	0.1713 (0.9112)

Notes: This table displays the predictive performance of the forecasting model at different lag days. The values within parentheses indicate the ratios of these non-linear models compared to the baseline.

579 7.3 Robustness Test

580 Finally, in this section, we conduct a robustness test of sentiment indicators to validate the
 581 precise impact of news image sentiment on the financial markets. To achieve this goal, we
 582 adopt an approach similar to the research methodology of [Chiah et al. \(2022\)](#), which involves

583 aggregating sentiment indicators across all topics to calculate a composite indicator reflecting
 584 overall news media sentiment. The formula for calculating this composite indicator is as
 585 follows:

$$OImgSent_d = \frac{1}{n} \sum_{i=0}^n Sentiment_{d,i} \quad (10)$$

586 Where $OImgSent_d$ represents the overall news image sentiment for the d -th day, and
 587 $Sentiment_{d,i}$ represents the category of the i -th image on the d -th day. Fig. 6 depicts the
 588 daily trend of overall news image sentiment. We also plot a 5-day moving average line in
 589 red. Similar to the volatility observed in financial market prices, news sentiment exhibits
 590 significant fluctuations. At the beginning of 2020, overall news sentiment remained highly
 591 negative, showing a noticeable decline.

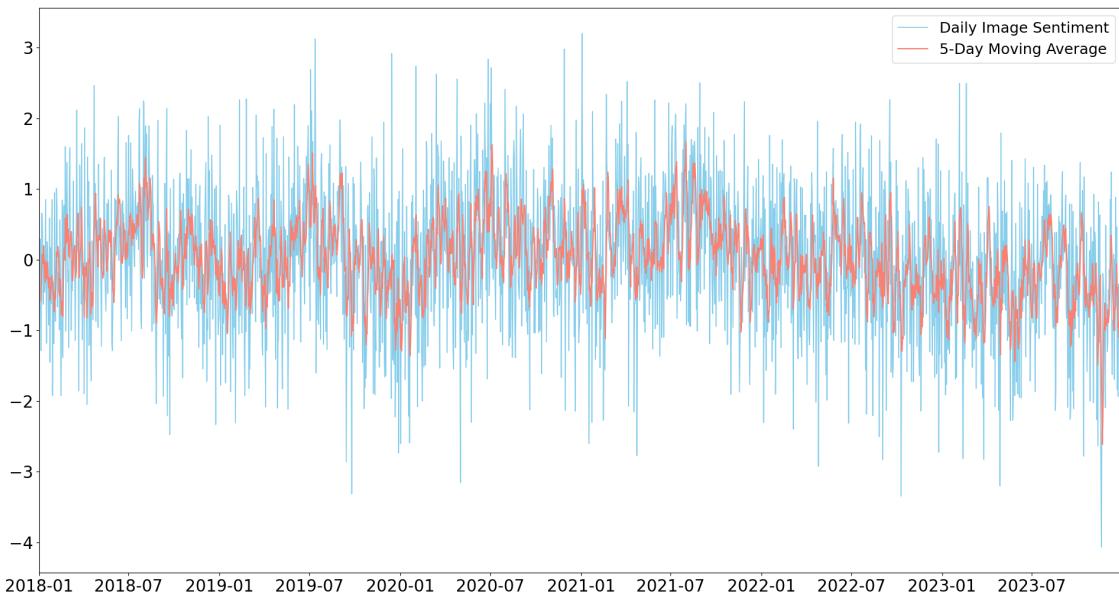


Fig. 6: Daily Trends of Overall News Photos Sentiment

592 Continuing with the approach used in the previous investment simulations, we devise posi-
 593 tive sentiment-oriented and negative sentiment-oriented strategies accordingly. We still target
 594 DJI and RUT as the market indices of interest. Table 8 presents the final performance of our
 595 investment strategies. Positive sentiment aligns with the direction of future market uptrends.

596 Under the positive sentiment-oriented strategy, our investments yielded a total return of 4.24%
 597 on the DJI index and 11.95% on the RUT index, both exceeding the benchmarks for these
 598 indices (4.17% and 3.79%). The performance of the RUT index significantly outperformed
 599 that of the DJI index, suggesting that news sentiment might be more suitable for investments
 600 in small-cap companies in growth phases. These smaller companies are more susceptible to
 601 public opinion and policy influences, thus exhibiting greater asset volatility (Michaelas et al.,
 602 1999; Crouzet and Mehrotra, 2020). Therefore, leveraging news sentiment as an investment
 603 guide may offer better operational and investment guidance for these companies and their
 604 investors.

Table 8: The Return Results of Overall Sentiment Investment Strategies

Sentiment Strategy	DJI		RUT	
	Negative	Positive	Negative	Positive
BaseLine	-4.30	4.24%	-11.36	11.95%
		4.17%		3.79%

Notes: This table displays the final return results of sentiment-based strategies under the Dow Jones Industrial Average (DJI) and the Russell 2000 Index (RUT). The second and fourth columns represent investment strategies oriented toward negative sentiment, while the third and fifth columns represent strategies oriented toward positive sentiment.

605 We opt for the sentiment-oriented strategy with higher returns and depict the investment
 606 performance of these strategies on the stock indices in Fig. 7. We observe significant dis-
 607 crepancies between the benchmark strategy and our sentiment-oriented strategy during the
 608 COVID-19 pandemic. This global crisis led to an overall contraction trend in financial mar-
 609 kets, triggering a decline in stock index prices (Berkman and Malloch, 2023). However, our
 610 strategy successfully mitigated the risk of negative returns based on the performance of news
 611 sentiment, and opted for short selling, which resulted in substantial profit increases. This also
 612 demonstrates that news image sentiment helps predict the impact of major events on financial
 613 markets to some extent, aiding us in risk avoidance. However, in future investment trends,
 614 DJI never further expanded its returns, eventually slightly outperforming the benchmark.
 615 On the other hand, our strategy consistently widened the gap with the benchmark on RUT,

616 reaffirming the superior reference value of sentiment in investments in small companies.

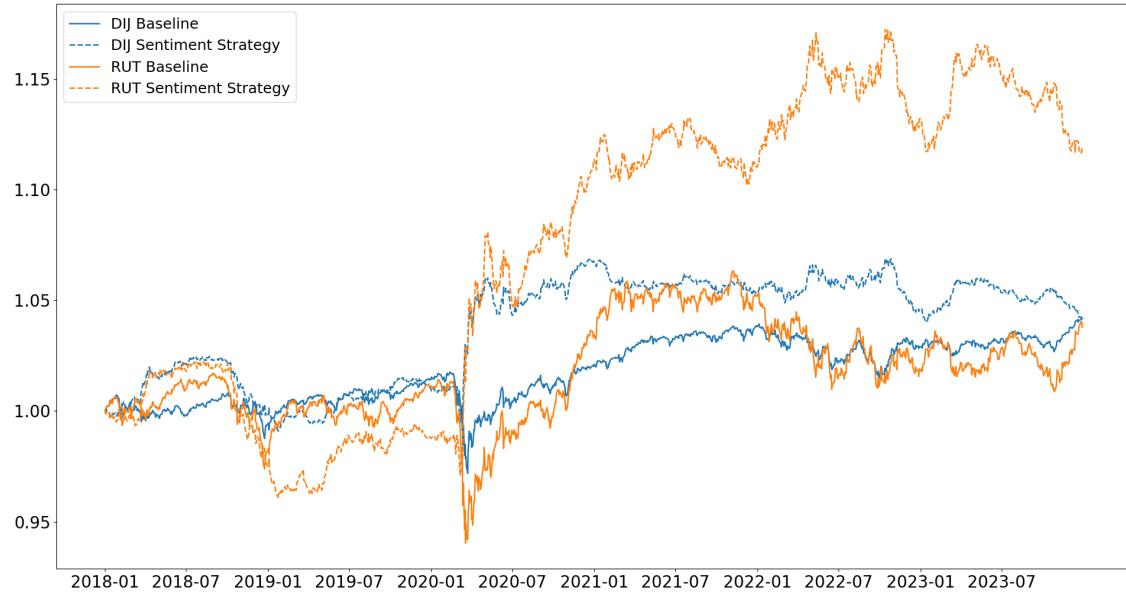


Fig. 7: The Cumulative Return Trend of Overall News Sentiment Strategy

617 8 Conclusion

618 This study employs a few-shot learning (FSL) technique to extract investor sentiment from
619 news images across various prominent sections of The New York Times (NYT). By segmenting
620 the sentiment of news topics, we expand the application of few-shot learning in the financial
621 domain and validated the role of different news topics in the variability of investor decision-
622 making. Firstly, our results demonstrate the intricate interconnections among different news
623 topics. We have studied specific event time points (such as the Sino-US trade war and the
624 COVID-19 pandemic) and found that the sentiment triggered by such events often resonates
625 from news topics in “World” or “Business Day” and has chain effects on almost all other news
626 topics.

627 In terms of investment strategies, we validate the effectiveness of sentiment associated with
628 various topics. Specifically, we find that serious news related to economics and politics often
629 contains substantial information that can positively reflect financial market dynamics. There-

630 fore, the sentiment from such news has a positive guiding effect on economic development. In
631 contrast, some entertainment-oriented negative news can influence investor decision-making,
632 leading to incorrect assessments of market prices. The emotional differences brought about
633 by these different news topics help us gain a deeper understanding of how investor behavior
634 impacts market fluctuations.

635 Furthermore, our empirical results validate that these sentiments captured from news
636 images can predict changes in stock index prices. Financial markets entail numerous linear and
637 nonlinear relationships. By delving into the nonlinear relationship between sentiment and the
638 US stock market, we can better understand the mechanisms of market operation. Therefore,
639 machine learning models with stronger capabilities to capture nonlinear relationships have
640 immense potential in the financial domain.

641 Additionally, we observe a lag effect of sentiment. This implies that the news sentiment
642 does not immediately impact the financial markets. Instead, there is a noticeable delay
643 period during which it gradually influences investor behavior, ultimately reflecting changes
644 in market prices, leading to temporary pricing errors. Therefore, paying attention to past
645 sentiment trends can better help us understand the dynamics of the current financial market.

646 Finally, news sentiment holds greater relevance for investing in small-cap companies.
647 Small-cap firms are more susceptible to external events, thus exhibiting higher volatility. Our
648 investment strategy simulations validate the stronger predictive ability of these sentiments
649 for small-cap stock markets. Particularly during extreme events, our sentiment indicators
650 demonstrate stronger predictive capabilities. Our sentiment-based strategies successfully mit-
651 iated the market downturn risk caused by the COVID-19 pandemic. Hence, leveraging news
652 sentiment aids investors in better risk management.

653 In today's era of advancing technology, media coverage is increasingly expansive. Trans-
654 forming this reliable information into profit opportunities has always been the relentless pur-
655 suit of investors and scholars. This study is just a preliminary exploration of this field.
656 Future research could extend the application of sentiment indicators to more types of markets
657 to explore their applicability in different domains. Additionally, extracting more valuable

658 information from these non-traditional data sources is also an important direction for future
659 research. Financial technology has already opened new doors for us, and we eagerly await
660 further developments in the future.

661 Acknowledgements

662 We acknowledge the financial support from by the National Natural Science Foundation of
663 China (72403258, 72171234), the Natural Science Foundation of Hunan Province (2022JJ40647),
664 Fundamental Research Funds for the Central Universities (2722024EJ011), and the Innovation
665 and Talent Base for Digital Technology and Finance (B21038).

666 References

667 Adadi, A. (2021). A survey on data-efficient algorithms in big data era. *Journal of Big Data*,
668 8(1):24.

669 Adämmer, P., Prüser, J., and Schüssler, R. A. (2025). Forecasting macroeconomic tail risk in
670 real time: Do textual data add value? *International Journal of Forecasting*, 41(1):307–320.

671 Alshater, M. M., Kampouris, I., Marashdeh, H., Atayah, O. F., and Banna, H. (2022). Early
672 warning system to predict energy prices: The role of artificial intelligence and machine
673 learning. *Annals of Operations Research*, 1–37.

674 Aziz, S., Dowling, M., Hammami, H., and Piepenbrink, A. (2022). Machine learning in finance:
675 A topic modeling approach. *European Financial Management*, 28(3):744–770.

676 Bai, Y., Li, X., Yu, H., and Jia, S. (2022). Crude oil price forecasting incorporating news
677 text. *International Journal of Forecasting*, 38(1):367–383.

678 Baker, M., Wurgler, J., and Yuan, Y. (2012). Global, local, and contagious investor sentiment.
679 *Journal of Financial Economics*, 104(2):272–287.

680 Bali, T. G., Goyal, A., Huang, D., Jiang, F., and Wen, Q. (2021). Different strokes: Return
681 predictability across stocks and bonds with machine learning and big data. *Swiss Finance
682 Institute, Research Paper Series*, (20-110).

683 Baral, N. and Pokharel, M. P. (2017). How sustainability is reflected in the s&p 500 companies'
684 strategic documents. *Organization and Environment*, 30(2):122–141.

685 Barbaglia, L., Consoli, S., and Manzan, S. (2023). Forecasting with economic news. *Journal
686 of Business and Economic Statistics*, 41(3):708–719.

687 Barberis, N. and Thaler, R. (2003). A survey of behavioral finance. *Handbook of the Economics
688 of Finance*, 1:1053–1128.

689 Batchelor, R., Alizadeh, A., and Visvikis, I. (2007). Forecasting spot and forward prices in
690 the international freight market. *International Journal of Forecasting*, 23(1):101–114.

691 Benson, R. (2009). What makes news more multiperspectival? A field analysis. *Poetics*,
692 37(5-6):402–418.

693 Berkman, H. and Malloch, H. (2023). Stock valuation during the covid-19 pandemic: An
694 explanation using option-based discount rates. *Journal of Banking and Finance*, 147:106386.

695 Bhandari, U., Chang, K., and Neben, T. (2019). Understanding the impact of perceived visual
696 aesthetics on user evaluations: An emotional perspective. *Information and Management*,
697 56(1):85–93.

698 Bianchi, J., Liu, C., and Mendoza, E. G. (2016). Fundamentals news, global liquidity and
699 macroprudential policy. *Journal of International Economics*, 99:S2–S15.

700 Bodilsen, S. T. and Lunde, A. (2025). Exploiting news analytics for volatility forecasting.
701 *Journal of Applied Econometrics*, 40(1):18–36.

702 Borth, D., Ji, R., Chen, T., Breuel, T., and Chang, S.-F. (2013). Large-scale visual senti-
703 ment ontology and detectors using adjective noun pairs. In *Proceedings of the 21st ACM
704 International Conference on Multimedia*, pages 223–232.

705 Breiman, L. (2001). Random forests. *Machine Learning*, 45:5–32.

706 Buncic, D. and Gisler, K. I. (2016). Global equity market volatility spillovers: A broader role
707 for the united states. *International Journal of Forecasting*, 32(4):1317–1339.

708 Calomiris, C. W. and Mamaysky, H. (2019). How news and its context drive risk and returns
709 around the world. *Journal of Financial Economics*, 133(2):299–336.

710 Chang, Y.-C., Hong, H., and Liskovich, I. (2015). Regression discontinuity and the price
711 effects of stock market indexing. *Review of Financial Studies*, 28(1):212–246.

712 Chen, C. Y.-H., Fengler, M. R., Härdle, W. K., and Liu, Y. (2022a). Media-expressed tone,
713 option characteristics, and stock return predictability. *Journal of Economic Dynamics and
714 Control*, 134:104290.

715 Chen, F. and Wang, G. (2022). A war or merely friction? Examining news reports on the
716 current sino-us trade dispute in the new york times and china daily. *Critical Discourse
717 Studies*, 19(1):1–18.

718 Chen, J., Tang, G., Yao, J., and Zhou, G. (2023a). Employee sentiment and stock returns.
719 *Journal of Economic Dynamics and Control*, 149:104636.

720 Chen, J., Tang, G., Zhou, G., and Zhu, W. (2023b). Chatgpt, stock market predictability
721 and links to the macroeconomy. Available at SSRN 4660148.

722 Chen, W., Zhang, H., Mehlawat, M. K., and Jia, L. (2021). Mean–variance portfolio op-
723 timization using machine learning-based stock price prediction. *Applied Soft Computing*,
724 100:106943.

725 Chen, Y., Carroll, R. J., Hinz, E. R. M., Shah, A., Eyler, A. E., Denny, J. C., and Xu, H.
726 (2013). Applying active learning to high-throughput phenotyping algorithms for electronic
727 health records data. *Journal of the American Medical Informatics Association*, 20(e2):e253–
728 e259.

729 Chen, Y., Kelly, B. T., and Xiu, D. (2022b). Expected returns and large language models.
730 Available at SSRN 4416687.

731 Cheng, Z., Li, M., Sun, Y., Hong, Y., and Wang, S. (2024). Climate change and crude oil
732 prices: An interval forecast model with interval-valued textual data. *Energy Economics*,
733 134:107612.

734 Chiah, M., Hu, X., and Zhong, A. (2022). Photo sentiment and stock returns around the
735 world. *Finance Research Letters*, 46:102417.

736 Chordia, T., Roll, R., and Subrahmanyam, A. (2011). Recent trends in trading activity and
737 market quality. *Journal of Financial Economics*, 101(2):243–263.

738 Christensen, K., Siggaard, M., and Veliyev, B. (2023). A machine learning approach to
739 volatility forecasting. *Journal of Financial Econometrics*, 21(5):1680–1727.

740 Cremers, M., Pareek, A., and Sautner, Z. (2020). Short-term investors, long-term investments,
741 and firm value: Evidence from russell 2000 index inclusions. *Management Science*,
742 66(10):4535–4551.

743 Crouzet, N. and Mehrotra, N. R. (2020). Small and large firms over the business cycle.
744 *American Economic Review*, 110(11):3549–3601.

745 Dan-Glauser, E. S. and Scherer, K. R. (2011). The Geneva affective picture database
746 (GAPED): A new 730-picture database focusing on valence and normative significance.
747 *Behavior Research Methods*, 43:468–477.

748 Degiannakis, S., Filis, G., and Hassani, H. (2018). Forecasting global stock market implied
749 volatility indices. *Journal of Empirical Finance*, 46:111–129.

750 Donaldson, R. G. and Kim, H. Y. (1993). Price barriers in the dow jones industrial average.
751 *Journal of Financial and Quantitative Analysis*, 28(3):313–330.

752 Dong, J., Wang, Y., Xie, X., Lai, J., and Ong, Y.-S. (2025). Generalizable and discriminative
753 representations for adversarially robust few-shot learning. *IEEE Transactions on Neural
754 Networks and Learning Systems*, 36(3):5480–5493.

755 Doroslovački, K., Gradojević, N., and Tarnaud, A. C. (2024). A novel market sentiment
756 analysis model for forecasting stock and cryptocurrency returns. *IEEE Transactions on
757 Systems, Man, and Cybernetics: Systems*.

758 Dumitrescu, E., Hué, S., Hurlin, C., and Tokpavi, S. (2022). Machine learning for credit scor-
759 ing: Improving logistic regression with non-linear decision-tree effects. *European Journal
760 of Operational Research*, 297(3):1178–1192.

761 Edmans, A., Fernandez-Perez, A., Garel, A., and Indriawan, I. (2022). Music sentiment and
762 stock returns around the world. *Journal of Financial Economics*, 145(2):234–254.

763 Ekman, P. (1992). An argument for basic emotions. *Cognition and Emotion*, 6(3-4):169–200.

764 Feng, S. and Duarte, M. F. (2019). Few-shot learning-based human activity recognition.
765 *Expert Systems with Applications*, 138:112782.

766 Fenton-O’Creevy, M., Soane, E., Nicholson, N., and Willman, P. (2011). Thinking, feeling
767 and deciding: The influence of emotions on the decision making and performance of traders.
768 *Journal of Organizational Behavior*, 32(8):1044–1061.

769 Fornari, F., Monticelli, C., Pericoli, M., and Tivegna, M. (2002). The impact of news on the
770 exchange rate of the lira and long-term interest rates. *Economic Modelling*, 19(4):611–639.

771 Freund, Y. and Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning
772 and an application to boosting. *Journal of Computer and System Sciences*, 55(1):119–139.

773 García-Méndez, S., de Arriba-Pérez, F., Barros-Vila, A., and González-Castaño, F. J. (2023).
774 Targeted aspect-based emotion analysis to detect opportunities and precaution in financial
775 twitter messages. *Expert Systems with Applications*, 218:119611.

776 Geurts, P., Ernst, D., and Wehenkel, L. (2006). Extremely randomized trees. *Machine*
777 *Learning*, 63:3–42.

778 Ghoddusi, H., Creamer, G. G., and Rafizadeh, N. (2019). Machine learning in energy eco-
779 nomics and finance: A review. *Energy Economics*, 81:709–727.

780 Goodell, J. W., Jabeur, S. B., Saâdaoui, F., and Nasir, M. A. (2023). Explainable artificial
781 intelligence modeling to forecast bitcoin prices. *International Review of Financial Analysis*,
782 88:102702.

783 Griffith, J., Najand, M., and Shen, J. (2020). Emotions in the stock market. *Journal of*
784 *Behavioral Finance*, 21(1):42–56.

785 Han, C., He, Z., and Toh, A. J. W. (2023). Pairs trading via unsupervised learning. *European*
786 *Journal of Operational Research*, 307(2):929–947.

787 Invernizzi, A. C., Bellucci, M., Acuti, D., and Manetti, G. (2022). Form and substance: Visual
788 content in csr reports and investors' perceptions. *Psychology and Marketing*, 39(5):974–989.

789 Jakubik, J., Nazemi, A., Geyer-Schulz, A., and Fabozzi, F. J. (2023). Incorporating financial
790 news for forecasting bitcoin prices based on long short-term memory networks. *Quantitative*
791 *Finance*, 23(2):335–349.

792 Jiang, F., Lee, J., Martin, X., and Zhou, G. (2019). Manager sentiment and stock returns.
793 *Journal of Financial Economics*, 132(1):126–149.

794 Jiang, W., Huang, K., Geng, J., and Deng, X. (2020). Multi-scale metric learning for few-shot
795 learning. *IEEE Transactions on Circuits and Systems for Video Technology*, 31(3):1091–
796 1102.

797 Johnson, K. J., Waugh, C. E., and Fredrickson, B. L. (2010). Smile to see the forest: Facially
798 expressed positive emotions broaden cognition. *Cognition and Emotion*, 24(2):299–321.

799 Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., Chess, B., Child, R., Gray, S.,
800 Radford, A., Wu, J., and Amodei, D. (2020). Scaling laws for neural language models.
801 *arXiv preprint arXiv:2001.08361*.

802 Kearney, C. and Liu, S. (2014). Textual sentiment in finance: A survey of methods and
803 models. *International Review of Financial Analysis*, 33:171–185.

804 Khandani, A. E., Kim, A. J., and Lo, A. W. (2010). Consumer credit-risk models via machine-
805 learning algorithms. *Journal of Banking and Finance*, 34(11):2767–2787.

806 Kim, A., Yang, Y., Lessmann, S., Ma, T., Sung, M.-C., and Johnson, J. E. (2020). Can deep
807 learning predict risky retail investors? A case study in financial risk behavior forecasting.
808 *European Journal of Operational Research*, 283(1):217–234.

809 Kozyreva, A., Lewandowsky, S., and Hertwig, R. (2020). Citizens versus the internet: Con-
810 fronting digital challenges with cognitive tools. *Psychological Science in the Public Interest*,
811 21(3):103–156.

812 Kriebel, J. and Stitz, L. (2022). Credit default prediction from user-generated text in peer-to-
813 peer lending using deep learning. *European Journal of Operational Research*, 302(1):309–
814 323.

815 Kross, E. and Ayduk, O. (2017). Self-distancing: Theory, research, and current directions. In
816 *Advances in Experimental Social Psychology*, volume 55, pages 81–136.

817 Lee, K., Maji, S., Ravichandran, A., and Soatto, S. (2019). Meta-learning with differentiable
818 convex optimization. In *Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition*, pages 10657–10665.

820 Lee, W. Y., Jiang, C. X., and Indro, D. C. (2002). Stock market volatility, excess returns,
821 and the role of investor sentiment. *Journal of Banking and Finance*, 26(12):2277–2299.

822 Levis, M. (2002). The record on small companies: A review of the evidence. *Journal of Asset
Management*, 2:368–397.

824 Li, X., Shang, W., and Wang, S. (2019). Text-based crude oil price forecasting: A deep
825 learning approach. *International Journal of Forecasting*, 35(4):1548–1560.

826 Liu, S. (2015). Investor sentiment and stock market liquidity. *Journal of Behavioral Finance*,
827 16(1):51–67.

828 Liu, T., Chen, Z., Yang, Y., Wu, Z., and Li, H. (2020). Lane detection in low-light condi-
829 tions using an efficient data enhancement: Light conditions style transfer. In *2020 IEEE*
830 *Intelligent Vehicles Symposium (IV)*, pages 1394–1399.

831 Liu, Z.-T., Wu, B.-H., Han, M.-T., Cao, W.-H., and Wu, M. (2023). Speech emotion recog-
832 nition based on meta-transfer learning with domain adaption. *Applied Soft Computing*,
833 147:110766.

834 Lu, J., Gong, P., Ye, J., Zhang, J., and Zhang, C. (2023). A survey on machine learning from
835 few samples. *Pattern Recognition*, 139:109480.

836 Lu, X., Ma, F., Xu, J., and Zhang, Z. (2022). Oil futures volatility predictability: New
837 evidence based on machine learning models. *International Review of Financial Analysis*,
838 83:102299.

839 Machajdik, J. and Hanbury, A. (2010). Affective image classification using features inspired
840 by psychology and art theory. In *Proceedings of the 18th ACM International Conference*
841 *on Multimedia*, pages 83–92.

842 Marchewka, A., Żurawski, Ł., Jednoróg, K., and Grabowska, A. (2014). The nencki affective
843 picture system (naps): Introduction to a novel, standardized, wide-range, high-quality,
844 realistic picture database. *Behavior Seseearch Methods*, 46:596–610.

845 Michaelas, N., Chittenden, F., and Poutziouris, P. (1999). Financial policy and capital struc-
846 ture choice in uk smes: Empirical evidence from company panel data. *Small Business*
847 *Economics*, 12:113–130.

848 Mikels, J. A., Fredrickson, B. L., Larkin, G. R., Lindberg, C. M., Maglio, S. J., and Reuter-
849 Lorenz, P. A. (2005). Emotional category data on images from the international affective
850 picture system. *Behavior Seseach Methods*, 37:626–630.

851 Milani, F. (2021). Covid-19 outbreak, social response, and early economic effects: A global var
852 analysis of cross-country interdependencies. *Journal of Population Economics*, 34(1):223–
853 252.

854 Moen, E., Bannon, D., Kudo, T., Graf, W., Covert, M., and Van Valen, D. (2019). Deep
855 learning for cellular image analysis. *Nature Methods*, 16(12):1233–1246.

856 Ni, Z.-X., Wang, D.-Z., and Xue, W.-J. (2015). Investor sentiment and its nonlinear effect
857 on stock returns—New evidence from the chinese stock market based on panel quantile
858 regression model. *Economic Modelling*, 50:266–274.

859 Noh, H., Jo, Y., and Lee, S. (2015). Keyword selection and processing strategy for applying
860 text mining to patent analysis. *Expert Systems with Applications*, 42(9):4348–4360.

861 Obaid, K. and Pukthuanthong, K. (2022). A picture is worth a thousand words: Measur-
862 ing investor sentiment by combining machine learning and photos from news. *Journal of*
863 *Financial Economics*, 144(1):273–297.

864 Pástor, L. and Veronesi, P. (2006). Was there a nasdaq bubble in the late 1990s? *Journal of*
865 *Financial Economics*, 81(1):61–100.

866 Peng, K.-C., Chen, T., Sadovnik, A., and Gallagher, A. C. (2015). A mixed bag of emotions:
867 Model, predict, and transfer emotion distributions. In *Proceedings of the IEEE Conference*
868 *on Computer Vision and Pattern Recognition*, pages 860–868.

869 Petajisto, A. (2011). The index premium and its hidden cost for index funds. *Journal of*
870 *Empirical Finance*, 18(2):271–288.

871 Phalippou, L. (2023). Thematic investing with big data: The case of private equity. *Financial*
872 *Analysts Journal*, 79(4):30–40.

873 Pham, M. T. (2007). Emotion and rationality: A critical review and interpretation of empirical
874 evidence. *Review of General Psychology*, 11(2):155–178.

875 Quillian, M. R. (1967). Word concepts: A theory and simulation of some basic semantic
876 capabilities. *Behavioral Science*, 12(5):410–430.

877 Rubner, Y., Tomasi, C., and Guibas, L. J. (2000). The earth mover’s distance as a metric for
878 image retrieval. *International Journal of Computer Vision*, 40:99–121.

879 Shynkevich, A. (2012). Performance of technical analysis in growth and small cap segments
880 of the us equity market. *Journal of Banking and Finance*, 36(1):193–208.

881 Smola, A. J. and Schölkopf, B. (2004). A tutorial on support vector regression. *Statistics and
882 Computing*, 14:199–222.

883 Song, Y., Wang, T., Cai, P., Mondal, S. K., and Sahoo, J. P. (2023). A comprehensive
884 survey of few-shot learning: Evolution, applications, challenges, and opportunities. *ACM
885 Computing Surveys*, 55(13s):1–40.

886 Søreide, K., Hallet, J., Matthews, J. B., Schnitzbauer, A. A., Line, P. D., Lai, P. B., Otero,
887 J., Callegaro, D., Warner, S. G., Baxter, N. N., et al. (2020). Immediate and long-term
888 impact of the covid-19 pandemic on delivery of surgical services. *Journal of British Surgery*,
889 107(10):1250–1261.

890 Stambaugh, R. F. and Yuan, Y. (2017). Mispricing factors. *Review of Financial Studies*,
891 30(4):1270–1315.

892 Taecharungroj, V. (2023). “What can chatgpt do?” Analyzing early reactions to the innova-
893 tive ai chatbot on twitter. *Big Data and Cognitive Computing*, 7(1):35.

894 Taffler, R. (2018). Emotional finance: Investment and the unconscious. *European Journal of
895 Finance*, 24(7-8):630–653.

896 Tetlock, P. C. (2007). Giving content to investor sentiment: The role of media in the stock
897 market. *Journal of Finance*, 62(3):1139–1168.

898 Van Belle, D. A. (2003). Bureaucratic responsiveness to the news media: Comparing the
899 influence of the new york times and network television news coverage on us foreign aid
900 allocations. *Political Communication*, 20(3):263–285.

901 Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., and
902 Polosukhin, I. (2017). Attention is all you need. *Advances in Neural Information Processing
903 Systems*, 30.

904 Verma, S. and Gustafsson, A. (2020). Investigating the emerging covid-19 research trends
905 in the field of business and management: A bibliometric analysis approach. *Journal of
906 Business Research*, 118:253–261.

907 Wang, Y., Yao, Q., Kwok, J. T., and Ni, L. M. (2020). Generalizing from a few examples: A
908 survey on few-shot learning. *ACM Computing Surveys (CSUR)*, 53(3):1–34.

909 Witten, I. H. and Frank, E. (2002). Data mining: Practical machine learning tools and
910 techniques with java implementations. *Acm Sigmod Record*, 31(1):76–77.

911 Yan, B., Aasma, M., et al. (2020). A novel deep learning framework: Prediction and analysis
912 of financial time series using ceemd and lstm. *Expert Systems with Applications*, 159:113609.

913 Yuan, Z. and Huang, W. (2020). Multi-attention deepemd for few-shot learning in remote
914 sensing. In *2020 IEEE 9th Joint International Information Technology and Artificial Intel-
915 ligence Conference (ITAIC)*, volume 9, pages 1097–1102.

916 Yue, Z., Zhang, H., Sun, Q., and Hua, X.-S. (2020). Interventional few-shot learning. *Advances
917 in Neural Information Processing Systems*, 33:2734–2746.

918 Zhang, C., Cai, Y., Lin, G., and Shen, C. (2022). Deepemd: Differentiable earth mover’s
919 distance for few-shot learning. *IEEE Transactions on Pattern Analysis and Machine Intel-
920 ligence*, 45(5):5632–5648.

921 Zhao, S., Yao, X., Yang, J., Jia, G., Ding, G., Chua, T.-S., Schuller, B. W., and Keutzer, K.

922 (2021). Affective image content analysis: Two decades review and new perspectives. *IEEE*
923 *Transactions on Pattern Analysis and Machine Intelligence*, 44(10):6729–6751.

924 Zhao, W. X., Zhou, K., Li, J., Tang, T., Wang, X., Hou, Y., Min, Y., Zhang, B., Zhang, J.,
925 Dong, Z., et al. (2023). A survey of large language models. *arXiv preprint arXiv:2303.18223*.

926 Zheng, L., Miao, M., and Gan, Y. (2020). Perceived control buffers the effects of the covid-
927 19 pandemic on general health and life satisfaction: The mediating role of psychological
928 distance. *Applied Psychology: Health and Well-Being*, 12(4):1095–1114.

929 Zhou, F., Qi, X., Xiao, C., and Wang, J. (2021). Metarisk: Semi-supervised few-shot opera-
930 tional risk classification in banking industry. *Information Sciences*, 552:1–16.

931 A Additional Figures

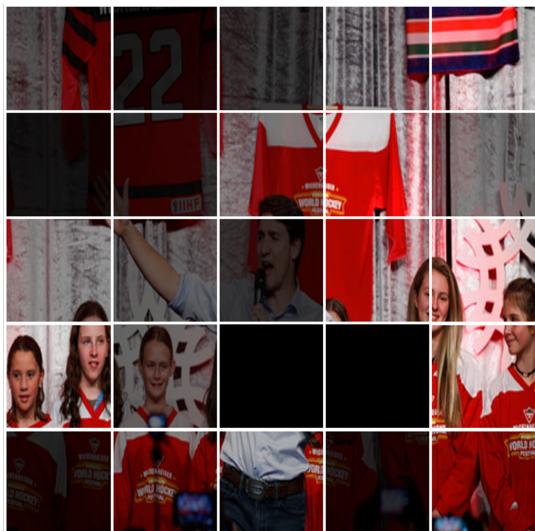
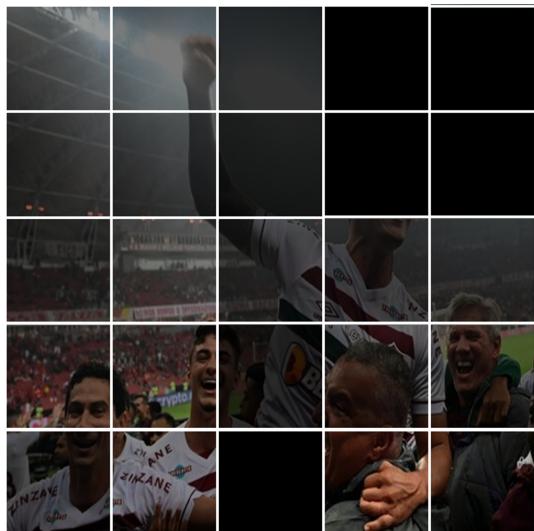
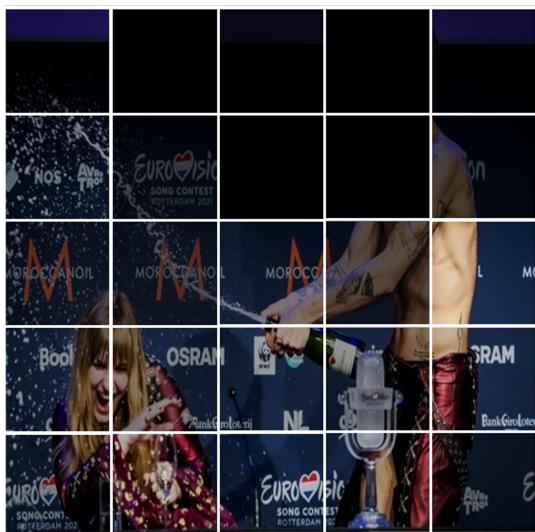
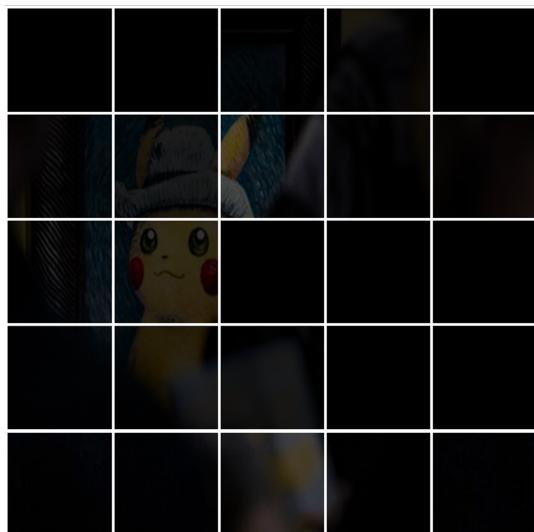


Fig. A.1: Image Similarity for Positive Sentiment

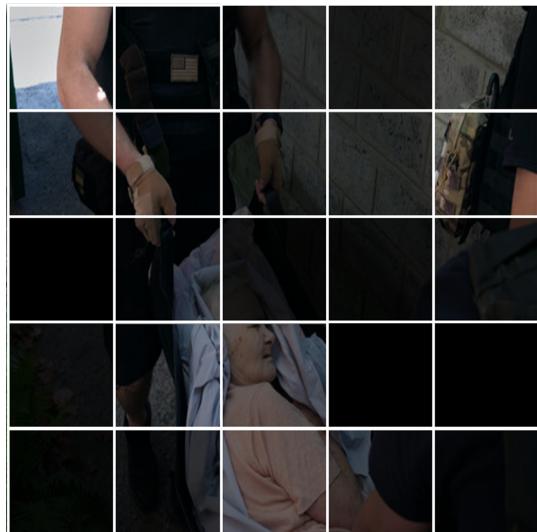
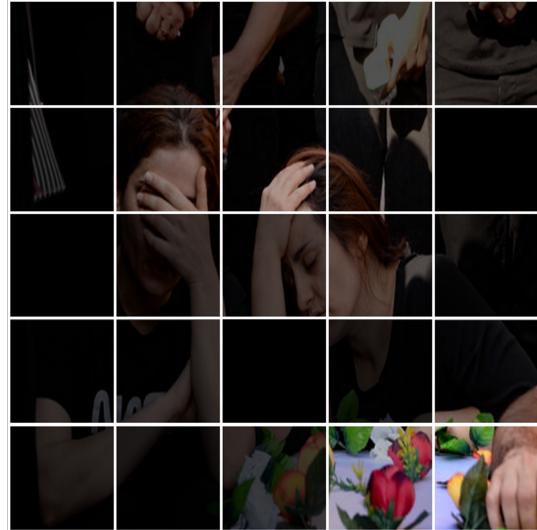


Fig. A.2: Image Similarity for Negative Sentiment