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The summertime Eddy Driven Jet (EDJ) in the
Southern Hemisphere is a critical mediator between re-
gional climate and large-scale phenomena, guiding syn-
optic systems that shape weather patterns. Uncertain-
ties in global climate models (GCMs)—particularly
in projecting changes in remote drivers like tropical
warming, stratospheric polar vortex strengthening,
and asymmetric tropical Pacific warming—hinder
predictions of EDJ trends and associated regional
outcomes. In this study, we develop a novel causal
framework that combines observations, reanalysis
datasets, and storylines estimated from the Coupled
Model Intercomparison Project (CMIP) projections
to attribute past EDJ changes and predict plausible
future trajectories. Our findings indicate that tropical
warming has evolved along the low end of plausible
CMIP trajectories, while the stratospheric polar
vortex shows robust strengthening, both strongly
influencing observed EDJ trends. Our results suggest
that 50% of the observed EDJ latitude shift can be
directly attributed to global warming (GW), and the
remaining 50% to remote drivers whose attribution to
GW remains uncertain. Importantly, GCMs appear
to accurately estimate the observed latitudinal shifts
but underestimate the observed strengthening of the
EDJ, while the proposed storylines are able to capture
the observed trend. By integrating causal inference
with climate storylines, our approach narrows the
divide between attribution and prediction, offering
a physically grounded method to estimate plausible
pathways of future climate change.

he Southern Hemisphere’s (SH) summertime Eddy Driven

Jet (EDJ) is a critical feature of extratropical circulation
that acts as a tropospheric mediator of the influence of remote
drivers on regional climate (1, 2). The strength and latitudinal
position of the SH EDJ in austral summer are among the
circulation features with the most prominent forced response
in both observations and models (3, 4). The zonal mean
shift and strengthening observed in the last four decades has
been attributed to ozone depletion (5-8). However, although
ozone recovery is observable and zonal mean circulation trends
have slowed down (9), the trends continue ((3, 10) and are
presenting considerable zonal asymmetries (11, 12). This is
in broad agreement with predictions from model simulations
(10, 13-15) that anticipate a poleward shift and a strengthening
of the EDJ as a robust response to CO2 emissions (16-19).
All phases of the Coupled Model Intercomparison Project
(1, 10, 20, 21) project further strengthening and latitudinal
shifts of the upper and lower SH westerlies for the remainder
of the century.

Understanding the mechanisms that drive regional climate
change is critical to improve projections and support decision-
making in a rapidly warming world. General circulation
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Significance Statement

Accurate climate predictions are vi-
tal for preparing for future weather
and regional climate changes, en-
abling communities and policymak-
ers to make informed decisions
to effectively address and adapt
to climate change impacts. The
Southern Hemisphere’s summer-
time Eddy Driven Jet (EDJ) signifi-
cantly influences weather patterns,
but current climate models give
conflicting messages concerning its
future behavior due to uncertainties
in remote drivers such as tropical
warming and changes in the strato-
spheric polar vortex. Our study
introduces a new method that com-
bines real-world observations with
climate model projections to better
understand and predict changes in
the EDJ. By identifying how differ-
ent factors influence the EDJ, we
explain and reduce the uncertainty
in model predictions. This improved
understanding provides more reli-
able near-term climate predictions,
proposing a new way forward to
evaluate model ensembles.
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models (GCMs) are indispensable tools for studying large-
scale circulation responses to anthropogenic forcing. However,
differences in the way that GCMs project large-scale circulation
features can lead to significant variations in regional climate
projections (22). The storyline approach provides a framework
to infer plausible climatic changes with predictions that are
conditional on the uncertain response of a few key drivers
known to govern the targeted responses (23, 24). Large-scale
remote drivers of the EDJ include tropical amplification of
global warming, induced by tropical SST warming. This is
associated with the expansion of the Hadley cell and the shift
and strengthening of the extratropical storm tracks, both
of which are linked to the EDJ (18, 25). This circulation
change has in turn been associated with drying trends in the
subtropical SH (1, 26). Another key driver is the stratospheric
polar vortex, which modulates the position and trends of the
SH EDJ and extratropical storm tracks (1, 27, 28), leading to
increases in precipitation across mid-latitudes (1). Moreover,
asymmetric warming trends of tropical Pacific sea surface
temperatures (SST) drive atmospheric teleconnections that
affect multiple regions and the EDJ in the Pacific basin (12, 29).
Model disagreement in SST warming patterns can lead to large
differences among the projected long-term precipitation trends
across the globe (26, 30, 31). Finally, responses of these remote
drivers also depend on the models’ transient climate sensitivity
and climate sensitivity to ozone depletion and recovery (21),
providing an additional source of uncertainty.

Recognizing that uncertainties in the response of these
drivers imply various plausible future climates can aid decision-
makers (24, 32). The description of uncertainty in terms of
a few storylines is a recent advance that calls for an attempt
to constrain such storylines based on the observed trends.
Constraining an ensemble of future storylines of the EDJ
using observations would represent a ‘conditional emergent
constraint’ on the EDJ response. However, constraints need to
be anchored in physical understanding and causal relationships
to be robust (33).

Here we use causal inference (34) to quantify the relation-
ships between a set of well-documented large-scale drivers and
the SH EDJ. We build upon previous work and only consider
drivers for which storylines have already been proposed
(1, 21, 30, 31). We focus on attributing EDJ trends over the
period 1950-2023 and propose a novel approach to evaluate
storylines by combining reanalysis datasets and observational
products with the latest available CMIP projections. Finally,
we assess whether specific ensembles of the proposed storylines
can better explain the observed historical trends, as compared
to the CMIP6 multi-model ensemble mean (MEM). Our ap-
proach provides the basis for a physically grounded dynamical
attribution of recent EDJ changes, as well as constraints
on dynamical storylines of plausible future changes. Given
that model biases, for example in the jet latitude in the
present climate, could influence the jet projected response
(35), an assessment of plausible changes based on observed
causal relationships and projected large-scale drivers offers
a complementary approach to the intercomparison of model
output.

Results

Causal analysis of remote driver influence on the EDJ. The
proposed causal network (CN) in Figure la represents our

Mindlin et al.

causal hypotheses on the relationship between anthropogenic
forcings, global warming, the proposed remote drivers, and
the summer EDJ in the SH. Trends in the jet forced by anthro-
pogenic greenhouse gases and ozone depleting substances are
assumed to be mediated by forced trends in the stratospheric
polar vortex (SPV), SST warming in the Central (CP) and
Eastern tropical Pacific (EP), and tropical warming (TW).
In addition, we consider a remaining direct effect of GW,
which includes mediation from other unspecified mechanisms.
We use detrended ERA5 data to estimate the causal effect
between the remote drivers and the EDJ at each grid point,
which yields a causal map for each link (Fig. 1b, RD —
u850, B;(x) where = represents a grid cell). To test that
these estimates are robust, we quantify the causal effects over
different periods and in three reanalysis products (here we only
show ERAS) as well as piControl simulations (see Methods)
and report comparable results (see Figs. S1-S3 and Text S1
in Supporting Information). The only qualitative difference
is found for GW — u850. The GW index corresponds to the
global average of surface temperature, which in the reanalysis
captures a poleward shift of the westerly winds, while in
piControl simulations the response is an equatorward shift
(See Text S1 and Figs. S1-S5 in Supporting Information
for further discussion). This is understandable because in
piControl simulations the variations in GW are driven by
internal variability rather than by external forcing, whereas
in observations the linear detrending does not eliminate the
forced response (Fig. S5). The residual effect of GW after
linear detrending allows us to estimate the wind response to
forced changes in GW. For the remainder of the article we
will consider the causal link strengths estimated from linearly
detrended ERA5 data (Fig. 1b) as our best estimate of the
wind response to the drivers.

Reconstruction and attribution of observed Eddy Driven Jet
trends. The estimated causal effects can be used to evaluate
the time evolution of the EDJ as a linear combination of the
u850 response to the remote drivers’ evolution S;(x) - RD;(t).
We compute the latitude and strength of the EDJ in the zonal
mean, the Pacific and the Atlantic-Indian basin for the period
1950-2023, resulting in six EDJ metrics. The trends and a
large part of the internal variability are well captured by the
reconstructions based on the causal drivers (black lines in left
part of Figure 2). In particular, we capture the strong shift and
weak strengthening in the Atlantic-Indian basin (-0.6 deg/dec
of latitude shift and 0.3 m/s/dec of strengthening in ERAS) as
opposed to the smaller shift and stronger intensification over
the Pacific basin (-0.33 deg/dec and 0.48 m/s/dec in ERA5),
previously described by (11). The relative contribution of each
driver is shown in the bar plots in Figure 2. The individual
driver contributions are estimated by evaluating the trends
in jet metrics from reconstructions based on one driver at a
time (Fig. 2 and Methods). In the zonal mean, we estimate
that GW has directly contributed to one-half of the observed
latitude shift, and the remaining shift is explained by TW
and SPV strengthening, whose attribution to GW is left open
for now. We further find that the latitude shift is large over
the Atlantic basin (Fig. 2e), while the trend in the Pacific is
smaller and mainly directly controlled by GW (Fig. 2¢). The
EP warming and SPV strengthening have a secondary effect
(Fig. 2i) for this metric. The remote drivers TW and SPV,
together with GW, explain the strengthening in the Pacific
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Fig. 1. (a) Assumed causal model for EDJ. The green sector indicates the part of
the network that we quantify with reanalysis data and show in panel b. The gray
sector indicates the part of the causal network where the links depend on the data
generating process (i.e. in piControl there is no anthropogenic forcing) and for which
we propose storylines. Dashed arrows indicate the influence of internal variability
on the remote drivers, red arrows indicate that trends in the remote drivers can also
be forced by global warming, solid arrows indicate causal effects from the remote
drivers to the EDJ at each grid cell providing a causal map for each link (RD; — u850,
Bi(x) where x represents a grid cell). (b) Causal maps for u850 estimated from
detrended ERAS reanalysis data. Stippling shows where the regression coefficients
are significant above the 95% confidence level based on a Student’s t-test.

basin while TW and EP warming control the strengthening
in the Atlantic basin. Note that the role of ozone depletion is
implicitly included in this attribution, as ozone depletion is
the main driver of observed strengthening trends in the SPV
(7).

To test whether the proposed CN can also reproduce
modeled trends, we apply the same methodology and the
same regression coefficients estimated from ERA5 (Fig. 1b)
to reconstruct simulations of the period 1900-2099 using
concatenated historical and scenario experiments from CMIP6
(Figures S6-S9). The reconstruction is based on the mean
state and remote driver variability of the model, hence, the
mean state bias in each model is preserved and the causal
effect estimates are used to capture the variability around this
mean state in response to changes in the drivers (see Methods,
Text S2 and Figure S10 in SI). We find that there is a very
high correlation between the reconstructed time series based

on the drivers and the raw output of the models (r > 0.8, Fig.

S8). Hence, the five included remote drivers are sufficient to
explain, to a great extent, both the variability and the trends
in both the observed and modeled SH circulation. Thus, it
becomes imperative to attribute the observed remote driver
trends.

Constraining the uncertainty in GW level and SPV response
to ozone depletion. In the previous section, we attributed past
EDJ changes to remote driver changes without distinguishing
between internal variability and the forced component of
remote driver trends. We now use CMIP6 simulations to
evaluate what are the plausible forced responses in the remote
drivers. Each combination of plausible remote driver responses
will be referred to as a dynamical storyline (23). We then use
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Fig. 2. Trends in EDJ metrics based on u850 (see Methods) estimated in three
reanalysis products (colors) and reconstructed based on evolution of its causal drivers
(black). (a) Latitude of the zonal-mean EDJ using data from ERAS5 to estimate TW
and SPV and ERSSTV5 to estimate CP and EP. (b) Same as (a) but for zonal-mean
EDJ strength. (c,d) Contribution of remote drivers to the total trend in zonal mean
latitude and strength metrics. (e-h) Same as (a-d) but for the Pacific basin only. (i-I)
Same as (a-d) but for the Atlantic-Indian basin only. Latitude and strength trends are
shown in deg/decade and m/s/decade respectively.
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observed trends in the remote drivers to discard some of the
storylines and thereby constrain the near-term projections. We
do this in two steps. In the first step we address uncertainty
in the GW level and SPV response to ozone depletion (bold
nodes in Fig. 1a).

Under the same emissions scenario, models exhibit differ-
ences in transient climate sensitivity, leading to differences in
GW rates and remote driver responses (Fig. la). Similarly,
under the same concentrations of ozone-depleting substances,
the SPV responds differently across models. However, we find
that in the models, the SPV sensitivity to EESC (EESC —
SPV) in the observed period (1979-2023) is almost perfectly
correlated with the SPV sensitivity in the full period (1950-
2100; Figure 3a), meaning that the observed sensitivity can
be used to constrain the future. As it happens, the observed
sensitivity is very close to the multi-model ensemble mean
(MEM) value. To isolate the role of remote driver uncertainty
in shaping EDJ changes from uncertainty in transient climate
sensitivity, we assess whether the GW rate in the recent past
exhibits predictive skill for near-term warming rates in the
model ensemble (Figure 3b). We find that the observed rate
of GW can be used to constrain the near-term future, and
that the observed GW rate (1950-2023) was very close to the
MEM value. Thus, we are justified in using the MEM value
for both GW and the (EESC — SPV) sensitivity, as partial
emergent constraints.

To appreciate the effect of these constraints, we evaluate the
remote driver spread that can be captured if high/low GW and
high/low (EESC — SPV) storylines are considered. Doing so
recovers the full range of remote driver responses in the CMIP6
ensemble (Fig. S11-12). Hence, by conditioning on (EESC —
SPV) and GW rate, we can eliminate the uncertainty arising
from model uncertainty in transient climate sensitivity and in
stratospheric response to ozone depletion.

Constraining storylines of remote driver sensitivity to forcing
based on reanalysis and observations. We showed that causal
effects of the remote drivers on the u850 winds can be estimated
from reanalysis and observations, and that the GW rate
and (EESC — SPV) can be constrained by observations
and reanalysis (black solid arrows in Figure 1la). However,
the responses of the drivers to forcing (red arrows in Figure
la) remain uncertain. As a second step to constrain this
uncertainty, we first estimate plausible storylines of remote
driver responses from the concatenated historical+-SSP5-8.5
simulations from the CMIP6 ensemble (Fig. S13, Tab. S2,
Methods). Next, we treat each storyline as an hypothesis for
the observed forced trends and we evaluate if any of them can
explain the observed trends in remote drivers better than the
MEM. The modeled and observed time series of the remote
drivers are shown in Figure 4 together with the plausible
storylines estimated with the historical+SSP5-8.5 simulations
from the CMIP6 ensemble (Fig. S13, Tab. S2). We compare
the probabilities of observing each driver’s trends under the
CMIP6 MEM and under a given extreme storyline. The ratio of
these probabilities, called Bayes Factor (see Methods) (36, 37),
indicates whether a given storyline derived from CMIP6 models
is more likely to explain the observed trends in the large-scale
driver than the MEM. By convention (36), a BF larger than
10 (or smaller than 0.1) indicates strong evidence (38-40)
in favor (or against) the hypothesis that a given storyline
matches the observed trend better than the MEM, whereas
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P(ERAS|high TW/GW)/P(ERAS|MEM)=0.002,
P(ERAS|low TW/GW)/P(ERAS|MEM)=62.375

P(ERSSTvS|high CP/GW)/P(ERSSTVS|MEM)=0.028,
P(ERSSTVS|low CP/GW)/P(ERSSTV5|MEM)=2.562

a — ERAS
—— CMIPG hist+SSP5-8.5 MEM

10.0 CMIP6 Spread

— TW/GW, high storyline

—— TWIGW, low storyline

b —— ERSSTV5
—— CP/GW, high storyline
—— CP/GW, low storyline
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Tropical Warming [K]
5 2

Central Pacific Warming [K]
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B

1960 1980 2000 2020 2040 2060 2080 2100 1960 1980 2000 2020 2040 2060 2080 2100
Year Year

P(ERSSTV5|high EP/GW)/P(ERSSTVS|MEM)=0.158, P(ERAS|high SPV/GW)/P(ERAS|MEM)=0.455,

P(ERSSTv5|low EP/GW)/P(ERSSTVS|MEM)=6.657 P(ERAS|low SPV/GW)/P(ERAS|MEM)=3.648

c — ERSSTVS 204 d

o

—— EP/GW, high storyline
—— EP/GW, low storyline

-

~

°

— ERAS
-10+ —— SPV/GW, high storyline
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154
T T T T T T T T
1960 1980 2000 2020 2040 2060 2080 2100

Stratospheric Polar Vortex [m/s]

1960 1980 2000 2020 2040 2060 2080 2100

Fig. 4. Storylines of remote driver sensitivity to forcing. (a) Tropical Warming (TW)
anomalies with respect to the 1950-1979 climatology in spliced (historical+SSP5-8.5)
CMIP6 simulations (gray shading), multi-model ensemble mean (MEM), high and
low TW storylines (red and blue respectively) and ERAS5 data (green). (b) Same as
(a) but for the Stratospheric Polar Vortex (SPV). (c-e) Same as (b) but for Central
Pacific warming, Eastern Pacific warming estimated from the ERSSTv5 dataset. The
evolution of the remote driver (RD) under a high/low RD storyline is estimated as the
product of the storyline coefficient and AT(t) where AT(t) is the MEM global warming
time series estimated from the CMIP6 ensemble. The distribution for RDs is shown
in Figure S9 in Supporting Information and storyline coefficients are shown in Table
S2. The titles in each panel show Bayes Factor (BF) corresponding to each storyline,
that is, the ratio of the probability of observing the ERA5 or ERSSTV5 data given the
hypothesis that the climate is following a storyline vs. the probability of observing the
same given the hypothesis that the climate is following the MEM. For the estimation
of the Bayes Factors see Methods.

BFs in between can be interpreted as inconclusive. We find
that the observed TW is 62 times more likely to have occurred
if we followed the low TW storyline (blue line in Fig. 4a)
compared to the MEM response. The high/low SPV storylines
are as good as the MEM in explaining the observed response
(BFs between 0.1 and 10). The observed warming in the CP
and EP are slightly more likely to have occurred if we were
following the low CP and EP storylines, but this conclusion
depends on the observational product (Figs. S14 and S15 in
Supporting Information). Thus, while the reanalysis products
show evidence in favor of the low TW storylines, the SPV, CP
and EP storylines remain uncertain and the observed trends
do not provide enough evidence to constrain the ensemble.

From explaining to predicting the Eddy Driven Jet. In this last
section we use the constrained dynamical storylines to explain
and predict EDJ trends. We start by analyzing how models
simulate the EDJ in the recent past and near-term future (15
years ahead). Past EDJ trends are represented in the model
ensemble. However, we find that the ERA5 trends lie on the
edge of the full spread if all simulations are considered and
outside the distribution if model means are evaluated before
assessing latitude and strength trends (Fig. S16). This is
particularly true for the strengthening of the jet. Differences
in the models’ responses can be recovered with the causal
network (Text S2 and Figures S5-9). However, the different
responses can arise not only from the remote driver spread,
but also from biases in the u850 mean state and variability
(Fig. S10), which makes it a challenge to take them at face
value.

To leverage our causal model of the EDJ (Fig. 1), we use
it to estimate the forced EDJ trends under each dynamical
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Fig. 5. (a) Total spread in the model mean EDJ latitude anomalies with respect to the
1950-1979 climatology are estimated from u850 in concatenated (historical+SSP5-
8.5) CMIP6 simulations (gray shading), overlaid are the storylines projected until 2040
(color code) and anomalies with respect to the same period estimated from ERA5
reanalysis data (black). The storylines for which we find more evidence are shown
with solid lines. (b) Same as (a) but for EDJ strength. (c,d) Same as (a,b) but for the
Pacific basin. (e,f) Same as (a,b) but for the Atlantic-Indian basin.

storyline, assuming that the mean state and variability are
fixed to those of ERA5 and the only source of uncertainty
is the remote driver sensitivity to forcing. This acts as a
third constraint on the storyline ensemble. Note that the EDJ
responses evaluated for each storyline do not necessarily span
the spread around the simulated CMIP6 mean. Instead, they
span the uncertainty in the ERA5 EDJ that we can attribute
to the uncertainty in the forced remote driver responses, which
we estimated from CMIP6 and represented with an ensemble
of dynamical storylines in the previous section. Figure 5
shows the zonal mean and basin jet metrics as described by
the CMIP6 ensemble, the ERA5 reanalysis, the attributed
component of ERA5 (as in Fig. 2) and an ensemble of EDJ
storylines estimated as the linear combination of the storylines

of remote driver trends and the causal pathways (see Methods).

We estimate Bayes Factors again to compare the likelihood
of observing the previously attributed ERA5 data under the
hypothesis that we are following a given storyline as opposed
to the hypothesis of being under the MEM (Figure 6).

We find that in particular the strengthening of the EDJ in
all basins is better explained by any of the proposed storylines
compared to the MEM, with larger BFs for almost all storylines
(BF > 100) and particularly higher BFs for the low TW. Only
the latitude shift in the Pacific Basin is better explained by
the MEM compared to all the storylines. In summary, all
but one EDJ metric is better explained by the storylines than

by the MEM (or the storylines are at least equally good).

Moreover, the BFs of the latitude and strength metrics in the
zonal mean and Atlantic basin confirm that low TW storylines
better explain the observed trends.

Figure 7 shows the spatial pattern of observed wind changes
per degree of warming and under the storylines with largest
BFs (low TW and two opposite storylines of SPV, CP and
EP warming). Spatially, these storylines present a strong
latitude shift in the Atlantic-Indian basin and a strengthening
in the Pacific basin, as reported by (11). The correlation
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Fig. 6. (a-c) Logarithm of the Bayes Factor (BF) corresponding to each storyline,
which quantifies to the ratio of the probability of observing the latitude change in ERAS
given the hypothesis that the climate is following a storyline vs. the probability of
observing the ERA5 data given the hypothesis that the climate is following the MEM
response. A log(BF) < 1 is interpreted as evidence in favor of the first hypothesis
(in this case the storyline, white positive area) and log(BF) > -1 is interpreted as
significant evidence in favor of the second hypothesis (in this case the MEM, negative
white area) (36). The gray area is interpreted as no significant evidence in favor of
either hypothesis. For the storyline calculation and the BF calculation, see Methods.
The storylines are visualized in Figure 5. (d-f) Same as (a-c) but for the strength
metic.

between the patterns is shown in Figure S20. Note that
the NCEP reanalysis (Fig. 7b) presents a different spatial
response compared to JRA55 (Fig. 7a) and ERA5 (Fig. 7c)
and the response is more zonally symmetric. The strength
of the MEM pattern of change per degree of warming (Fig.
7f) is much weaker than the storylines that we estimate (Fig.
7d,e). Moreover, the zonal asymmetries are not captured by
the MEM, but they are captured by our proposed storylines.
According to our dynamical storyline prediction, if we continue
to follow the storylines for which we found more evidence in
the previous section (low TW) the latitude and strength of
the EDJ will remain above the values projected by the MEM
while remaining inside the projected plume. We did not find
sufficient evidence to constrain the uncertainty associated with
SPV, CP and EP.

Discussion

Our approach combining causal networks with storylines of
the forced dynamical response has allowed us to explain and
predict observed and simulated changes in the EDJ based on
well-known relationships between key remote drivers and zonal
winds at 850 hPa. It can be understood as complementary
to what is known as the fingerprint method, which addresses
the question “Has the climate change signal, associated with
a particular forcing, emerged?” (41). Storylines represent
distinct, physically plausible pathways through which large-
scale atmospheric circulation may respond to anthropogenic
forcing, acknowledging uncertainties in the precise nature
of this response (19, 23). Instead of seeking the emergence
of a single, predefined forced response - a key limitation of
traditional fingerprinting methods due to model uncertainties
- we expand the question to ask whether any plausible forced
response has emerged and how it can be explained in terms of
a small set of driver responses. The estimation of likelihood
ratios, the Bayes Factors, is used to compare the agreement
of observed remote driver responses with a set of potential
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responses. This approach reframes the detection problem:
rather than validating a specific model response, we assess
whether observed changes align with one or more out of an
ensemble of several plausible forced responses. The BF can
be estimated for each year of data, adding each year a piece
of evidence (Fig. S21). We find that large differences between
the storylines that better explain observed trends deviate from
the CMIP6 MEM around the year 2000, suggesting a time of
emergence of the associated forced response.

The underlying hypothesis behind our causal network (Fig.
11a) is that the influence of the remote drivers on the EDJ
is the same when the variability of the drivers is generated
by internal variability or by anthropogenic forcing. This
is justified by other studies that address the sensitivity of
the EDJ to the same drivers in different time scales and
idealized simulations (12, 18, 28, 31, 42, 43). In addition, a
first approach to this question reveals that the causal pathway
strengths are stationary in the observed period (44) (Fig.
S4). In this respect, we consider the qualitative agreement
of the causal maps estimated from reanalysis and piControl
and the reproduction of the CMIP6 modeled trends in the
concatenated historical+-SSP5-8.5 simulations (Fig. S7) as
sufficient evidence to work under this hypothesis.

The drivers demonstrate a better representation of EDJ
behavior in the South Pacific basin than in the Atlantic-Indian
basin, which highlights the need for future investigations
focusing into the role of the tropical Atlantic and Indian
oceans in driving observed jet strengthening in these regions.
Nevertheless, the causal framework allowed us to attribute
50% of the EDJ latitude shift directly to GW and 50% to the
remote drivers, and most of the strengthening to the remote
drivers (Fig. 2), with the role of GW in the remote driver
changes left open in this conditional attribution. Given that
EDJ uncertainty is associated not only with remote driver
responses to GW but also with transient climate sensitivity
and SPV response to ozone depletion, we showed that part
of the spread in EDJ responses can be constrained by the
observed rate of GW and of the sensitivity of the SPV to ozone
depleting substances (Fig. 3). The Bayes Factor estimates
suggest that the constrained storylines (regardless of the
particular remote driver responses) are more representative
of the emerging observed signal than is the CMIP6 MEM
(Figs. 4 and 5). Moreover, we find that the CMIP6 MEM
appears to underestimate the strengthening trends in the EDJ
(Figs. 6 and 7); the proposed storylines offer an alternative to
estimating projections of the EDJ. According to this analysis,
the observed strengthening EDJ trends do not necessarily
result from internal variability, but a predictable signal forced
by trends in large scale drivers, particularly in the Pacific
basin and the zonal mean. The approach is therefore aligned
with other recent work showing that predictable trends could
be larger than what models show if taken at face value (45).

In contrast to other dynamical storyline studies where
the storylines illustrate the spread in a model ensemble and
under a given warming level (237 ), our approach aims to
use the model simulations to understand the past and near-
term future, within the context of an observations-based
conditional attribution of the EDJ trends. Assumptions
behind the proposed storylines are that (1) EDJ trends are
controlled by the trends in the proposed drivers and their
influence is statistically stationary, (2) projections can be
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a) JRASS trend

b) NCEP trend ) ERAS trend

d) TW-, SPV+
CP+, EP+

Fig. 7. u850 response per degree of warming (ms~! K~! ). (a-c) are estimated
from three reanalysis products as the change between the first and last 20 years of
the total period for which we use ERAS data to reconstruct storylines (1950-1973
vs. 2000-2023) multiplied by and divided by the level of warming in the same period,
estimated in the same way. (d,e) Same as in (a-c) but for the plausible storylines of
climate change related to low TW responses (11), (f) CMIP6 MEM response scaled
per the degree of warming, evaluated in the same way as (a-c) for all each model
individually and then averaged to get the ensemble mean.

constrained to the MEM GW rate and stratospheric response
to ozone depletion/recovery. Future work could be directed to
develop alternative approaches to near-term estimations that
are not conditioned by these assumptions, such as storylines
that systematically explore the possibility of remote driver
responses changing over time. Given the potential impacts
of underestimating the climate response to anthropogenic
forcing at the regional scale (4), we find it imperative to use
physical understanding to explore possible storylines that are
not represented by the latest available CMIP simulations.

Data and code. Code is available via a Github repository. All
the data used for this study is publicly available.

Materials. We used the piControl (last 200 yrs of every
simulation), the historical (1900-2014) and the SSP5-8.5
scenarios (2015-2099) from 33 CMIP6 models(46). We work
with monthly outputs of zonal winds (ua) at 850 hPa and
50 hPa, surface air temperature (tas), upper tropospheric
temperature (ta) at 250 hPa and sea surface temperature
(tos). All model output are interpolated into a common grid of
2.5° using the ESMF area weighted scheme implemented in the
Python Iris package. The downloading and preprocessing of
the data was done using ESMValTool (47). For the estimation
of the remote driver responses, we averaged all the available
ensemble members available for each model (model mean) to
reduce the influence of internal variability. When we refer to
the multi-model ensemble mean we refer to the average of the
model means. The list of models and ensemble members used
can be found in Dataset S1.

To investigate the historical period we used the HadCRUT5
dataset(48) for global surface temperature, three different
sea surface temperature (SST) observational datasets: the
Hadley Centre Sea Ice and SST v.1.1 (HadISSTv1)(49),
the Centennial In Situ Observation-Based Estimates of the
Variability of SST and Marine Meteorological Variables v.2
(COBEv2)(49) and the National Oceanic and Atmospheric Ad-
ministration Extended Reconstructed SST v.5 (ERSSTv.5)(50)
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and three reanalysis: Japanese 55-year Reanalysis (JRA-
55)(51), NCEP/NCAR reanalysis(52) and the extended ERA5
reanalysis(53). We mostly present results from ERAS5, as
this is the reanalysis which provides the longest time series,
but the results are not sensitive to the choice of reanalysis
and we show results for JRA55 and NCEP in the Supporting
Information. The data from the reanalyses were interpolated
into the common 2.5° grid for all the analyzes.

Eddy Driven Jet metrics. The latitude of the Eddy Driven Jet
(EDJ) was calculated as the centroid of the zonal wind at 850
hPa between 30 and 70S(54). We quantified the latitude and
strength of the zonally averaged EDJ and over the Pacific and
Atlantic-Indian basins following (11), who showed that the
observed trends in the Pacific basin have different trends than
the zonal mean due to the influence of the tropical Pacific.
The longitude bands we used were 210-80W for the Pacific
basin and 40W-120E for the Atlantic-Indian basin.

< [ M)
A_/ms 7[1;()\)}2 d\ [1]

Wind strength is the wind strength at the EDJ latitude
averaged over the different basins.

Causal Inference . We first proposed a causal model (Fig. 1la)
of the EDJ based on the revision of published literature as
interpreted by our expert judgment. In this causal model,
internal variability and anthropogenic forcing are exogenous
variables, and the remote drivers and the zonal winds (or
metrics of the EDJ) in the SH are endogenous variables(55).
To quantify causal pathways between the remote driver and
the EDJ we fit a series of multiple linear regression (MLR)
models where the covariates are the remote drivers and the
target variable is either (1) the latitude or strength of the ED.J
(which yields a scalar estimation for each metric, Table S1) or
(2) the zonal wind at all grid cells in the Southern Hemisphere
(which yields a set of causal maps, Table S1).
The MLR model for a (scalar) jet metric is:

EDJjy = B RD{(t) + e1a:(t) 2]

EDJjy =Y B RD{(t) + eotr(t) [3]

Wind strength is the wind strength at the EDJ latitude
averaged over the different basins.

Where EDJ,,..,;.(t) is the metric standardized anomaly ,
RDj(t) are the standardized anomalies of the remote drivers
and €metric(t) are assumed Gaussian errors. The coefficients
BL eiric are estimated with an ordinary multivariate least
squares algorithm implemented in the Python Stats package.
To evaluate the spatial influence of the drivers on the zonal
winds we use the same MLR model, but in this case fitted to
each grid cell:

where u850" are the standardized anomalies of the seasonal
average (December-February, DJF) of zonal winds and =
represents grid cells and the apostrophe indicates that the
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u850(z,t) = > Bi(x)RD(t) + e(w, t) [4]

variable is standardized with respect to the mean and standard
deviation of the whole period (1950-2023 for ERA5, 1950-
2023 for JRA55 and 1958-2023 for NCEP). Estimated causal

A~

maps, 3;(z), are standardized responses of zonal winds to one
standard deviation in the time series of the remote driver and
can be converted to physical units by multiplying them by the
standard deviation of the winds at each grid cell.

In both the metric and spatial MLR, the RD](t) are
standardized anomalies of:

o Tropical Warming (TW), evaluated as the zonal average
of temperature at 200 hPa between 15S and 15N in DJF,

o Stratospheric Polar Vortex (SPV) strength in October-
November, evaluated as the zonal mean of the zonal wind
strength at 50 hPa between 50S and 60S,

o The central Pacific (CP) and eastern Pacific (EP) sea
surface temperature in DJF, evaluated as the sea surface
temperature averaged over the boxes [5N-5S,180-250E]
and [0-108,260-280E] respectively in DJF and

o Global mean surface temperature (GW), the area
weighted global average of surface air temperature in
DJF.

Note that this approach does not exclude the possibility
that causal links exist between the drivers, these are possible
and certainly exist (suggested with thin red lines in Figure 1a),
for example in the case of CP — TW (56). However, since
the purpose of this article is not to describe the full network
involving these drivers, we do not quantify these links. We
rather use the estimated pathways to make estimates of u850
based on observed (Fig. 2) or proposed storylines (Fig. 4-6)
for the remote drivers. The MLR framework ensures that by
including all the drivers in the regression, the correct links are
estimated(34, 55). We do not use the first 10 years of ERA5
data since it is reported that over the SH this early period
is mainly statistical and a cold bias has been revealed in the
stratosphere(57). The last value of the time series is December
(2023) and January-February (2024).

Constrain on the GW rate and SPV senstivity to ozone deplet-
ing subtances. To evaluate the response of the stratospheric
polar vortex (SPV) to external forcing, we perform a multiple
linear regression of SPV anomalies onto global warming
(GW) and equivalent effective stratospheric chlorine (EESC),
following the approach of (21). The regression model is given
by:

ASPV(t) = a AEESC(t) + bAGW(t) + €, [5]

where ASPV(t) is the anomalous SPV index (e.g., zonal-
mean zonal wind at 60°S, 10 hPa), AEESC(t) is the polar
EESC time series based on midlatitude mixing ratios from the
WMO Scientific Assessment of Ozone Depletion (2014) (58),
and AGW (¢) represents the global-mean surface temperature
anomaly time series relative to 1950-1979. All time series
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are anomalies are computed with respect to a 1950-1979
climatology.

The regression coefficients are computed separately for
each CMIP6 model over two periods: (1) the historical-to-
present interval (1979-2023) and (2) the full available time
span (1950-2100). The diagnosed sensitivity of SPV to
EESC forcing (a in Equation 5) is compared between the
historical and future periods across the CMIP6 ensemble. This
comparison is visualized via a scatter plot that contrasts SPV
sensitivity to EESC in 1979-2023 versus 2080-2100 (Figure
3a). The observed estimate from ERAS5 is shown alongside
the model distribution, and the relationship is benchmarked
against a 1:1 line to assess potential shifts in SPV response
under future conditions.

To quantify the rate of global warming (GW) across the
CMIP6 ensemble, we analyze model-specific time series of
global surface temperature anomalies relative to the 1950-1979
mean. For each model, temperature anomalies are fit with a
second-order polynomial T'(t) = at® + bt 4 c over two periods:
1950-2020 and 1950-2040. The instantaneous rate of warming
is then computed as the derivative of the fitted polynomial:

% — 2t +b, 6]
evaluated at the midpoint of each respective period (1985
for 1950-2020, and 1995 for 1950-2040). This provides an
estimate of the warming rate (in °C/year) under historical
and near-future conditions. Observational warming rates are
calculated using a quadratic fit to global DJF temperature
anomalies from HadCRUTS5, and the multi-model ensemble
mean (MEM) rate is similarly computed from the average
model temperature trajectory.

Storylines of remote driver responses. The responses of the
TW, CP and EP are estimated as the climatological change
(1940-1969 vs. 2070-2099) in each of the drivers as defined in
the last section scaled by the global mean surface temperature
difference in the same period. The response of the SPV to
forcing is estimated by regression of the SPV index onto GW
and equivalent effective stratospheric chlorine as in 5.

Bayes Factors. The probability of observing the trends of the
last seven decades under each hypothesis (or storyline, Hi)
can be contrasted to the probability of observing the data if
the correct estimate for the remote driver responses were to
be the MEM (Hy)(39). The ratio of these two probabilities is
the Bayes Factor: BF =P(data|H,) / P(data|Ho).

Each of the hypothesis H; is, by definition, a linear model
of the driver sensitivity to GW:

ARD; (t) = by AGW (t) + € [7]

where by is the storyline coefficient (sl can be high or low,
see Table S2) and AGW (t) is the MEM AGW (¢) evolution.
Except for SPV, for which the storylines are estimated as:

ASPVE (t) = aAEESC(t) + by AGW (t)e 8]

Mindlin et al.

where a is the MEM SPV response to EESC (0.0018
msflppmfl) and b; is the storyline coefficient for the sto-
rylines (H). For the alternative hypothesis (Ho) the RD time
series is estimated as the MEM response. We assume that the
year-to-year variability behaves as Gaussian noise, which we
consider valid given that we checked that the detrended time
series of these variables present no significant autocorrelation
(Figure S22). If the noise is Gaussian, the probabilities
P(data|Ho) and P(data|H1) can also be modeled with the
Gaussian distribution:

1 (ARD.ps — ARDy;)
exp| 557

= o~ [10]

P(ARDps|H, b) = ] 9

where o2 is the variance of the year-to-year variability in the
observed time series of each detrended remote driver anomaly
(38, 40).

Reconstruction of 4850 storylines. To estimate the evolution
of u850;(x,t) under each storyline (sl) we consider the mean
state and variability to be that of ERA5 (u850gra5(x) and
Ou850mras (%)) and estimate the forced trends at each grid
point using the causal maps 8;(x) estimated from ERA5 and
the time series of each remote driver time series corresponding
to each storyline RD3!(t):

u850%,(,t) = u850 5 ras(x) + Z Bi(2)Tuss0 s as (2) RDI (1)

+e(x, t)
[11]

where sl represents the storyline coefficient (high/low). The
time series of each remote driver is estimated as for the Bayes
Factor calculation detailed above, where bg; is the high/low
value of the remote driver sensitivity to global warming (Figure
S9 Supporting Information and Table S1). Given that we
do not evaluate storylines of different GW rates, the MEM
AGW (t) evolution is used to estimate the GW contribution.
The Bayes Factor analysis in Figure 6 is performed in the
same way as for the RDs, but with the EDJ metrics.
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