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† Current address: UK Centre for Ecology & Hydrology, Wallingford OX10 8BB, UK.

Abstract: The concept of thermodynamic efficiency is central to the theoretical understand-

ing of tropical cyclone intensity and intensification, but the issue has remained controversial

owing to the existence of distinct and incompatible definitions. Physically, thermodynamic

efficiency relates to the fraction of the surface enthalpy fluxes and diabatic processes that

contributes to the generation of the potential energy available (APE) for conversions into

kinetic energy, so that the main difficulty is how best to define APE. In this study, we

revisit the available energetics of axisymmetric vortex motions by redefining APE relative

to a non-resting reference state in gradient wind balance instead of a resting state. Our

approach, which accounts for both diabatic and frictional effects, reveals that the choice of

reference state significantly impacts the prediction of APE generation and its conversion to

kinetic energy. By using idealised numerical experiments of axisymmetric tropical cyclone

intensification, we demonstrate that the APE production estimated from a non-resting

reference state is a much more accurate predictor of APE to KE conversion than those based

on other choices of reference states such as initial, mean, and sorted profiles. These find-

ings suggest that incorporating the balanced dynamical structure of tropical cyclones into

APE-based theories could lead to improved potential intensity models, with implications

for forecasting and understanding cyclone behaviour.

Keywords: tropical cyclone intensification; available potential energy; potential intensity

theory

1. Introduction

Tropical cyclones (TCs) derive their energy from air–sea interactions, but there is still

no consensus on the appropriate theoretical framework for defining and quantifying the

energy input associated with surface enthalpy fluxes. According to thermodynamics, only

a fraction of these fluxes—the thermodynamic efficiency—is in principle usable by TCs,

with the rest of the energy going into the environment. Understanding how to define this

thermodynamic efficiency is a key research topic. One popular approach is to regard TCs

as a heat engine, as in potential intensity (PI) theory, and define thermodynamic efficiency

as a Carnot-like efficiency:

Υc =
Tin − Tout

Tout
, (1)

where Tin and Tout are the mean temperatures at which the TC is heated and cooled,

respectively [1,2]. Typically, Tin is related to the sea surface temperature and Tout is the

temperature of the outflow, usually assumed to be close to that of the tropopause.

However, in practice, Carnot efficiency has been found to strongly overestimate the

power input due to surface buoyancy fluxes, leading to gross overestimation of maximum
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winds in PI theory [3]. Various adjustments to the Carnot efficiency framework have

been suggested. For example, Bister and Emanuel [4] showed that including the effect

of dissipative heating in the boundary layer was equivalent to increasing the efficiency

by a factor of Tin/Tout. Modifications have also been proposed to include the effects of

ocean coupling [5,6]. The lost work due to irreversible frictional dissipation associated with

falling rain was studied by Sabuwala et al. [7], who suggested that this effect could reduce

PI by 20% on average. However, regarding TCs as a Carnot heat engine requires identifying

a closed thermodynamic cycle, which is not easily justified. The Carnot viewpoint also

presents challenges for assessing numerical models of TC intensification, whether idealised

axisymmetric or realistic three-dimensional, as advanced methods are required to approxi-

mate heat engine cycles in the numerical model output by representing parcel trajectories

using isentropic streamfunctions [8].

Due to these limitations, there has been interest in recasting thermodynamic theories

of TC intensification using Lorenz [9]’s theory of available potential energy (APE). By defi-

nition, APE represents the part of the potential energy available for reversible conversions

into kinetic energy (KE). APE-based theories of TC energetics are based on budgets taking

the form:
d

dt
APE = GA − C(APE, KE), (2)

d

dt
KE = C(APE, KE)− DK, (3)

where GA is the APE production/destruction by all forms of diabatic processes, C(APE, KE)

is the conversion of APE into KE, and DK is the dissipation of kinetic energy by frictional

processes. Such an approach allows one to provide an alternative approach to Carnot-based

potential intensity (PI) theories by balancing APE production with surface enthalpy fluxes

and surface dissipation at the radius of the maximum winds.

In practice, both GA and APE depend on the choice of background reference state, usu-

ally envisioned to be obtained from the actual state by means of an adiabatic rearrangement

of mass. This is complicated, however, for a moist atmosphere [10,11]. One objective way

to assess the merits and usefulness of a reference state is by comparing the APE generation

rate GA with C(APE, KE). The goal is to try to construct an APE theory so that GA is as

close a predictor of C(APE, KE) as feasible. In this regard, Wong et al. [12] established that

some choices of reference state are clearly better than others. So far, APE-based studies

of TC intensification have been based on notional states of rest. The main aim of this

study is to explore the possibility of using a non-resting state in gradient wind balance

for axisymmetric TC intensification, building upon the previous works by Codoban and

Shepherd [13,14] and Andrews [15].

This paper is organised as follows: Section 2 presents the model formulation and its

analysis in terms of standard energetics. Section 3 presents a new physical justification for

the concept of local available potential energy using a non-resting state in gradient wind

balance and establishes its basic properties. Section 4 discusses the role of diabatic and

frictional effects on the energy budget of an axisymmetric vortex using the newly developed

framework. Section 5 extends the results to the APE-based studies of axisymmetric TC

intensification previously considered by Harris et al. [16]. Section 6 summarises and

discusses the results.

2. Model Formulation and Standard Energetics

2.1. Model Formulation

The evolution of compressible vortex motions is most effectively described by express-

ing the Navier–Stokes equations in cylindrical coordinates (r, φ, z):
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Du

Dt
−
(

f +
v

r

)
v + ν

∂p

∂r
= Du, (4)

Dv

Dt
+
(

f +
v

r

)
u +

ν

r

∂p

∂φ
= Dv, (5)

Dw

Dt
+ ν

∂p

∂z
= −∂Φ

∂z
+ Dw, (6)

Dη

Dt
=

q̇

T
, (7)

∂ρ

∂t
+

1

r

∂(ρru)

∂r
+

1

r

∂(ρv)

∂φ
+

∂(ρw)

∂z
= 0, (8)

Dρ

Dt
+ ρ

(
1

r

∂(ru)

∂r
+

1

r

∂v

∂φ
+

∂w

∂z

)
= 0,

D

Dt
=

∂

∂t
+ u

∂

∂r
+

v

r

∂

∂φ
+ w

∂

∂z
, (9)

where r is the radial distance increasing outward from the centre of the vortex, z is height

increasing upward, φ is the azimuthal angle around the z-axis, f is the Coriolis parameter

(assumed constant), T is in situ temperature, (u, v, w) is the velocity field, p is pressure, ρ

is density, ν = 1/ρ is the specific volume, η is the specific entropy, g is the acceleration of

gravity, and Φ = Φ(z) = gz is the geopotential. The terms Di, i = u, v, w denote dissipative

terms for momentum, while q̇ denotes diabatic heating. The thermodynamic equation of

state is assumed in the form ρ = ρ(η, p) or ν = ν(η, p). For the subsequent developments,

it is beneficial to rewrite Equation (5) for the azimuthal motion in terms of the specific

angular momentum

M = rv +
f

2
r2 (10)

as
DM

Dt
= rDv −

1

ρ

∂p

∂φ
. (11)

As expected, M is materially conserved for purely axisymmetric motions (∂p/∂φ = 0) in

the absence of the dissipative term Dv. From this point forward, only the axisymmetric

case is considered. The following relations expressing various quantities in terms of M will

prove useful:

v =
M

r
− f r

2
, (12)

v2

2
=

M2

2r2
+

f 2r2

8
− f M

2
= µχ +

f 2

16χ
− f

√
µ

2
, (13)

(
f +

v

r

)
v =

M2

r3
− f 2r

4
= −

(
µ − f 2

16χ2

)
∂χ

∂r
, (14)

where we have defined χ = 1/(2r2) and µ = M2, similarly to Andrews [15]. Note that (13)

assumes M > 0 in order to write M =
√

µ. Other quantities of importance in the following

discussions include the vorticity

ξ =

(
1

r

∂w

∂φ
− ∂v

∂z

)
r̂ +

(
∂u

∂z
− ∂w

∂r

)
φ̂ +

1

r

(
∂(rv)

∂r
− ∂u

∂φ

)
ẑ (15)

and potential vorticity

Q =
(ξ + f ẑ) · ∇η

ρ
, (16)
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which is materially conserved in the absence of heating/cooling and friction. It is useful to

remark that, for purely axisymmetric motions, M and Q are linked through the relation

Q =
1

ρr

∂(M, η)

∂(r, z)
. (17)

Potential vorticity is thus proportional to the Jacobian of the coordinate transformation,

allowing one to map the physical space (r, z) to the space (M, η) of the materially con-

served quantities for axisymmetric motions. As discussed later, the stability of axisym-

metric compressible vortex motions depends crucially on Q being single-signed over the

domain considered.

2.2. Linking Momentum Equations to Vortex Static Energy

The main aim of this paper is to generalise the local theory of APE [16–18] to account

for the momentum constraints arising from presence of rotation, leading us to redefine the

concept of APE relative to a non-resting state instead of a resting state. Indeed, rotation

allows for the existence of non-trivial equilibrium states in geostrophic or gradient wind

balance, which ‘lock’ part of the potential energy, thus making it non-available. To under-

stand the fundamental justification for separating the potential energy into available and

non-available components pioneered by Lorenz [9], it is first necessary to understand how

the forces entering the momentum equations relate to energy. To that end, we find it useful

to introduce the vortex static energy (VSE)

V =V(η, µ, χ, p, Φ) =
v2

2
(µ, χ) + h(η, p) + Φ

=µχ +
f 2

16χ
− f

√
µ

2
+ h(η, p) + Φ

(18)

defined as the sum of azimuthal kinetic energy plus regular static energy Σ = h(η, p) + Φ

that formed the basis for [19]’s recent approach, where h(η, p) is the specific enthalpy.

Mathematically, V can be regarded as a function of (η, µ, χ, p, Φ), which define an extended

phase space with five independent degrees of freedom. The partial derivatives of V with

respect to (η, µ, χ, p, Φ) are

∂V
∂χ

= µ − f 2

16χ2
,

∂V
∂p

=
1

ρ
= ν,

∂V
∂Φ

= 1 (19)

∂V
∂η

= T,
∂V
∂µ

= χ − 1

4
√

µ
. (20)

As seen below, the derivatives with respect to (χ, p, Φ) are related to the dynamically active

part of V , whereas the derivatives with respect to the materially conserved variables (η, µ)

are related to the dynamically inert part. The importance of the VSE lies in allowing us to

define the following force:

Fv =
∂V
∂χ

∇χ +
∂V
∂p

∇p +
∂V
∂Φ

∇Φ (21)

The force Fv may be used to rewrite the momentum balance equations as follows:

Du

Dt
+ F

(r)
v = Du, (22)

Dw

Dt
+ F

(z)
v = Dw, (23)
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DM

Dt
+ rF

(φ)
v = rDv (24)

with F
(φ)
v = 0 for purely axisymmetric motions. The important point here is that the

force Fv only involves the partial derivatives of V with respect to (χ, p, Φ), but they are

independent of those with respect to (η, µ). This is important, as this justifies decomposing

V into dynamically active and inactive components Va and Vr as follows:

V = Va(η, µ, χ, p, Φ) + Vr(η, µ). (25)

Here, Vr is dynamically inactive, because being a function of (η, µ) only, it does not

contribute to the force Fv, and is therefore ’invisible’ to the dynamics. The aim of the

generalised local APE theory developed in this paper is to identify an appropriate physical

principle for defining the dynamically inert component Vr. As shown in this paper, Vr is

most naturally associated with the vortex static energy of an equilibrium axisymmetric

adiabatic and inviscid azimuthal solution in gradient wind balance.

2.3. Standard Energetics Viewpoint

Our aim in the following is to establish the conditions under which the sinks and

sources of specific entropy and angular momentum can lead to the intensification of an

incipient cyclonic seed vortex. To that end, we place ourselves in a Northern-Hemisphere-

like situation (v > 0, f > 0). A standard viewpoint in the tropical cyclone literature, e.g.,

Smith et al. [20], is to consider separate evolution equations for the azimuthal kinetic energy

v2/2 and the rest of the flow, as follows:

ρ
D

Dt

(
u2

s

2
+ Φ + h − p

ρ

)
+∇ · (pus) = ρus · Ds + ρq̇ +

(
f +

v

r

)
ρuv, (26)

ρ
D

Dt

v2

2
= −

(
f +

v

r

)
ρuv + ρvDv, (27)

whose sum yields

ρ
D

Dt

(
u2

s

2
+

v2

2
+ Φ + h − p

ρ

)
+∇ · (pv) = ρv · D + ρq̇ (28)

where us = (u, 0, w) represents the velocity vector in the (x, z) plane associated with the

secondary circulation, while Ds = (Du, 0, Dv) relates to the dissipation term affecting

the secondary circulation. Since the dissipation term vDv presumably acts as a brake

on v, Equation (27) demonstrates that because v > 0 by design, the radial velocity must

be negative (u < 0) in order for v to intensify. This is the only way that the energy

conversion term −( f + v/r)uv can be positive and hence act as a source of energy for v.

This condition is well known and observed in numerical simulations of TCs. Physically,

the lower level inward flow is a priori driven both by frictional and diabatic effects [21].

Near the ground, part of the inward flow can be explained in terms of the friction-driven

Ekman transport associated with the cyclonic azimuthal circulation. The inward flow is also

driven by the low-level convergence promoted via mass conservation by the diabatically

induced strong vertical motion associated with cumulus convection taking place within

the eyewall. The secondary cell is global in nature, however, so that its intensity can

also be modulated, at least in principle, by any other processes controlling the outward

flow near the tropopause, for instance. The present framework redefines the concepts

of thermodynamic and mechanical efficiencies, which can help in clarifying the relative

importance of diabatic versus frictional effects in driving or modulating the intensity of the

secondary circulation.
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An alternative and purely Eulerian argument that calls for both u < 0 and w > 0 can

be made from the angular momentum conservation Equation (11), which has essentially

the same information content as (27), written in the following form:

∂M

∂t
= −u

∂M

∂r
− w

∂M

∂z
+ rDv. (29)

If the distribution of M is such that ∂M/∂r > 0 and ∂M/∂z < 0, as is seen to be the case

for the analytical reference vortex case described in Appendix A and illustrated in Figures

1 and 2, see further in the text, Equation (29) makes it clear that both u < 0 and w > 0

will contribute to the local intensification of M and hence of v. The understanding of

axisymmetric TC intensification therefore boils down to understanding how viscous and

diabatic effects cooperate to drive an upward and radially inward secondary circulation at

low levels near the eyewall.

3. Vortex Available Energetics

3.1. Definition of the Non-Resting Reference State

In this paper, we build upon the previous studies by [13–15] to seek a generalisation

of local APE theory. In this generalisation, the non-available energy is associated with

the total energy of an axisymmetric vortex in gradient wind and hydrostatic balance

with background reference profiles for entropy ηm(r, z), pressure pm(r, z), and density

ρm(r, z) = ρ(ηm, pm), hence satisfying

−
(

f +
vm

r

)
+

1

ρm

∂pm

∂r
= 0, (30)

∂pm

∂Φ
= −ρm, (31)

which correspond to the steady and inviscid form of (4) and (6), respectively, for an

axisymmetric purely azimuthal flow independent of azimuthal angle φ. As shown in [15], it

is advantageous to work with χ = 1/(2r2) rather than radius r, as well as with the squared

angular momentum µ = M2 = (rv + f r2/2)2 rather than v. In terms of such variables, the

gradient wind balance (30) becomes

µm − f 2

16χ2
+

1

ρm

∂pm

∂χ
= 0, (32)

while the hydrostatic balance (31) remains unaffected. In the following, all quantities are

therefore regarded as functions of (χ, Φ) rather than (r, z). The corresponding reference

profiles ηm(r, z) and Mm(r, z) for the specific entropy and angular momentum may then

be inferred from the equation of state for density ρm(r, z) = ρ(ηm(r, z), pm(r, z)), and

via the definition of angular momentum Mm(r, z) = rvm(r, z) + f r2/2. For illustrative

purposes, Figure 1 shows a particular example of azimuthal wind speed associated with

the analytical dry atmospheric vortex solution to (30)–(31) used by Smith et al. [22], whose

details can be found in Appendix A. This analytical solution serves as the basis for all

subsequent illustrations.
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Figure 1. Azimuthal wind speed vm of the analytical dry vortex from Smith et al. [22] used as a

reference state to illustrate the momentum-constrained available energy. Contour labels indicate

speed in m · s−1.

3.2. Available Versus Static Vortex Energy

As alluded to previously, the physical origin for the concepts of available potential

energy and available vortex energy can easily be understood by observing that the force (21)

only depends on the partial derivatives of the vortex static energy V with respect to (χ, Φ, p),

but not on those with respect to (η, µ). Indeed, this fact implies that only some fraction of

the total vortex static energy

Va = V(η, µ, χ, p, Φ)− Vr(η, µ) (33)

is available for the vortex dynamics, as Vr(η, µ), being a function of (η, µ), does not enter the

definition of Fv and is hence ‘invisible’ to inviscid and adiabatic motions. We refer to Va and

Vr as the dynamically active and inert components of the vortex static energy, respectively.

In classical APE theory, the non-available or background potential energy is defined

as the potential energy of a notional resting state of minimum potential energy obtainable

from the actual state by means of an adiabatic rearrangement of mass, as per the original

approach of Lorenz [9]. Likewise, it is possible to regard the reference state in gradient wind

and hydrostatic balances defined by (32) or (30) and (31) as a vortex static energy minimum

obtainable from the actual state by means of rearrangement of the mass conserving both η

and µ. To show this, let us assume that (η, µ, χ, p, Φ) represent the values of the parameters

of a given fluid parcel in the actual state and (η, µ, χ⋆, p⋆, Φ⋆) the corresponding values of

the same parcel in the reference state. Therefore, the reference value of vortex static energy

must be given by

Vr = V(η, µ, χ⋆, p⋆, Φ⋆) = µχ⋆ +
f 2

16χ⋆

− f
√

µ

2
+ h(η, p⋆) + Φ⋆, (34)

while the conditions that the rearrangement of mass conserves η and µ require

µ = µm(χ⋆, Φ⋆), η = ηm(χ⋆, Φ⋆). (35)
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Now, assuming that p⋆ = pm(χ⋆, Φ⋆), the mathematical conditions for χ⋆ and Φ⋆ to define

a local minimum of static vortex energy at fixed values of (η, µ) are

∂Vr

∂χ⋆

(χ⋆, Φ⋆) = 0,
∂Vr

∂Φ⋆

(χ⋆, Φ⋆) = 0. (36)

By successively differentiating (34) with respect to χ⋆ and Φ⋆, accounting for the fact that

p⋆ = pm(χ⋆, Φ⋆), it is easily verified that (36) are equivalent to the following conditions:

µ − f 2

16χ2
⋆

+ ν(η, p⋆)
∂pm

∂χ
(χ⋆, Φ⋆) = 0, (37)

ν(η, p⋆)
∂pm

∂Φ
(χ⋆, Φ⋆) = −1, . (38)

Now, since p⋆ = pm(χ⋆, Φ⋆), µ = µm(χ⋆, Φ⋆) and η = ηm(χ⋆, Φ⋆) by definition, it

follows that

ν(η, p⋆) = ν(ηm(χ⋆, Φ⋆), pm(χ⋆, Φ⋆) = νm(χ⋆, Φ⋆) =
1

ρm
(χ⋆, Φ⋆). (39)

and hence that (37) and (38) may be rewritten in the form

µm(χ⋆, Φ⋆)−
f 2

16χ2
⋆

+
1

ρm

∂pm

∂χ
(χ⋆, Φ⋆) = 0, (40)

∂pm

∂Φ
(χ⋆, Φ⋆) = −ρm(χ⋆, Φ⋆), (41)

which are easily recognised as the gradient wind and hydrostatic balance equations (32)

and (31) evaluated at (χ⋆, Φ⋆). The above derivations therefore establish that a background

reference state in gradient wind and hydrostatic balances can be regarded as a vortex static

energy extremum obtainable from the actual state by means of an adiabatic rearrangement

of mass conserving η and µ, thus generalising classical local APE theory when the additional

momentum constraints are also considered. If the reference state satisfies the stability

conditions derived further in the text, the extremum can be shown to represent a minimum.

Standard APE theory is recovered in the special case where pm(χ, Φ) = p0(Φ),

ηm(χ, Φ) = η0(Φ), ρm(χ, Φ) = ρ(η0(Φ), p0(Φ)) = ρ0(Φ) are all functions of Φ only,

whereas µm(χ, Φ) = µ0(χ) is a function of radius only. In that case, one may still define

radial and vertical reference positions χR = 1/(2r2
R) and ΦR as solutions of the simplified

form of Equations (37) and (38), which reduce to

µ − f 2

16χ2
R

= 0 =⇒ f r2
R

2
= M, (42)

dp0

dΦ
= −ρ(η, p0(ΦR)) = −ρ0(ΦR) =⇒ η0(ΦR) = η. (43)

The radius rR is referred to as the potential radius by Emanuel [23].

3.3. Properties of Available Vortex Energy

By subtracting (34) from the total vortex static energy (18), the following expression

for the dynamical component of the vortex static energy is obtained:

Va = µ(χ − χ⋆) +
f 2

16

(
1

χ
− 1

χ⋆

)
+ h(η, p)− h(η, p⋆) + Φ − Φ⋆. (44)
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In this section, we seek to establish some of its main properties. The results of local APE

theory [17] suggest the following decomposition:

Va = Π1 + Ae +
p − pm

ρ
(45)

with Π1 and Ae, respectively, given by

Π1 = h(η, p)− h(η, pm)−
p − pm

ρ
, (46)

Ae = µ(χ − χ⋆) +
f 2

16

(
1

χ
− 1

χ⋆

)
+ h(η, pm)− h(η, p⋆) + Φ − Φ⋆. (47)

The term Π1 may be showed using classical results of local APE theory [17,24] to be positive

definite (meaning Π1 ≥ 0) and to scale as Π1 ≈ (p − pm)2/(2ρ2c2
s ), where cs is the speed

of sound; in the literature, it is sometimes referred to as available acoustic energy (AAE) or

available compressible energy (ACE) [17,24].

The term Ae was previously obtained and discussed by Andrews [15] using a very

different approach. Here, we provide an alternative, much simpler analysis. A major

novelty is to interpret Ae as the work against generalised buoyancy forces, defined in terms

of the vector be below. To that end, we find it useful to rewrite Ae as the following path

integral between the reference position X⋆ = (χ⋆, Φ⋆) to the actual position X = (χ, Φ),

Ae =
∫ X

X⋆

(
∂Ae

∂χ
dχ +

∂Ae

∂Φ
dΦ

)
, (48)

where
∂Ae

∂χ
= µ − f 2

16χ2
+ ν(η, pm)

∂pm

∂χ
= µ − µm + (νh − νm)

∂pm

∂χ
, (49)

∂Ae

∂Φ
= ν(η, pm)

∂pm

∂Φ
+ 1 = (νh − νm)

∂pm

∂Φ
, (50)

where we made use of the gradient wind balance relations (32) and (31). We also have

νh = ν(η, pm), while νm = ν(ηm, pm). This makes it possible to write Ae as

Ae = −
∫ x

x⋆
be · dx′, (51)

be = (µm − µ)∇χ︸ ︷︷ ︸
bM

e

+ (νm − νh)∇pm︸ ︷︷ ︸
bT

e

. (52)

The force be can be seen to the sum of two components, one thermodynamical in nature,

the other mechanical. Physically, the vector bT
e represents the generalised buoyancy force

discussed by Smith et al. [22], while the mechanical force bM
e has been discussed in relation

to centrifugal waves by Markowski and Richardson [25]. This motivates us to decompose

the available energy Ae by splitting the integral into two legs,

Ae =
∫ xµ

x⋆
be · dx′

︸ ︷︷ ︸
Πe

+
∫ x

xµ

be · dx′

︸ ︷︷ ︸
Πk

, (53)
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1. x⋆ → xµ following the surface of constant angular momentum µm(χ′, Φ′) = µ along

which the force bM
e vanishes identically. Along this path, the path integral is given by

Πe =−
∫ xµ

x⋆
bT

e · dx =
∫ xµ

x⋆
(νh − νm)∇pm · dx′

=µ(χµ − χ⋆) +
f 2

16

(
1

χµ
− 1

χ⋆

)
+ h(η, pm)− h(η, p⋆) + Φµ − Φ⋆;

(54)

2. xµ → x following the isobaric surface pm(χ′, Φ′) = pm(χ, Φ) along which the force

bT
e vanishes. Along this path, the path integral is given by

Πk =−
∫ x

xµ

bM
e · dx′ =

∫ x

xµ

(µ − µm)∇χ · dx′

=µ
(
χ − χµ

)
+

f 2

16

(
1

χ
− 1

χµ

)
+ Φ − Φµ.

(55)

By definition, the intermediate point (χµ, Φµ) lies at the intersection of the isobaric surface

p = pm and of the surface of angular momentum µm = µ, and must therefore be a solution

of the following system:

pm(χµ, Φµ) = pm(χ, µ), µm(χµ, Φµ) = µ. (56)

Such a construction and the two different integration paths are illustrated in Figure 2 for

the analytical vortex solution detailed in Appendix A.

50 100 150 200
r (km)

0

4

8

12

16

z (
km

)

(r, z)
(r , z )

(r , z )

Figure 2. Illustration of a particular pathway linking a fluid parcel reference position (r⋆, z⋆) to its

actual position (r, z) via the intermediate point (rµ, zµ) for the analytical vortex state described in

Appendix A. The first leg of the path linking x⋆ to xµ follows a surface of constant angular momentum

(denoted by dotted lines). The second leg linking xµ to x follows an isobaric surface (denoted by

dashed lines). The thick full lines denote isentropic surfaces, which illustrate the warm core character

of such a cyclonic vortex.

The conditions under which Πe and Πk are positive definite are discussed in

Appendix B. They establish that Πe is positive definite provided that ηm increases with

height along surfaces of constant angular momentum. They also establish that Πk is
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positive definite provided that Mm increases with radius along isobaric surfaces. Both

conditions represent the well-known conditions for symmetric stability, e.g., Andrews [15].

As an illustration, Figure 3 shows a particular example of Ae as a function of M and η

perturbations (top panel), as well as a function of µ and p⋆ perturbations (bottom panel),

clearly demonstrating its positive character (see Appendix B for details).

Figure 3. Available energy Ae of a perturbed dry air parcel at r = 40 km, z = 5 km, in terms of M and

η perturbations (top panel) and µ and p⋆ perturbations (bottom panel). The grey lines in the bottom

panel indicate the horizontal and vertical axes along which Πk and Πe change, respectively, and the

grey shading covers points in the space that are not sampled by the chosen perturbations of M and η.
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4. Energetics of Vortex Growth and Decay Due to Diabatic Effects

4.1. Generalised Buoyancy Forces and Available Energy

The results from the previous section allow us to rewrite the static energy in the

following form:

V =h(η, p)− h(η, pm) + Ae + Vr

=Π1 + Ae + Vr +
p − pm

ρ
.

(57)

As a result, the force driving the secondary circulation may be rewritten as

Fv =
∂V
∂χ

∇χ +
∂V
∂p

∇p +
∂V
∂Φ

∇Φ

=ν∇p − νh∇pm + be = (ν − νh)∇p + ν∇p′ + be.

(58)

This allows us to rewrite the momentum balance equations for the secondary circulation as

Dus

Dt
+ ν′∇pm + ν∇p′ + be = Ds, (59)

where ν′ = ν − νh. Regarding the evolution equation for the non-dynamical component of

static energy Vr, it may be verified that

DVr

Dt
=

(
χ⋆ −

f

4
√

µ

)
Dµ

Dt
+ T⋆

Dη

Dt
+ ν(η, p⋆)

∂p⋆
∂t

=(χ⋆ − χR)
Dµ

Dt
+

T⋆ q̇

T
+ ν(η, p⋆)

∂p⋆
∂t

,

(60)

where χR is defined in Equation (42). To obtain (60), simply take the Lagrangian derivative

of (18) by using (19)–(20), and accounting for the fact that, in the reference state,

∂Vr

∂χ
∇χ⋆ +

∂Vr

∂p
∇p⋆ +

∂Vr

∂Φ
∇Φ⋆ = 0 (61)

(which expresses gradient wind and hydrostatic balance) thus implying the simplification

∂Vr

∂χ

Dχ⋆

Dt
+

∂Vr

∂p

Dp⋆
Dt

+
∂Vr

∂Φ

DΦ⋆

Dt
=

∂Vr

∂p

∂p⋆
∂t

. (62)

As a result, the total energy Equation (28) may be rewritten as

ρ
D

Dt

(
u2

s

2
+ Π1 + Ae −

pm

ρ

)
+∇ · (pv)

=ρv · D +

(
T − T⋆

T

)
ρq̇ − ρν⋆

∂p⋆
∂t

+ ρ(χR − χ⋆)
Dµ

Dt
.

(63)

This may also be written in the form

ρ
D

Dt

(
u2

s

2
+ Π1 + Πk + Πe

)
+∇ · ((p − pm)v)

=ρv · D +

(
T − T⋆

T

)
ρq̇ +

∂pm

∂t
− ρν⋆

∂p⋆
∂t

+ ρ(χR − χ⋆)
Dµ

Dt

(64)

using the fact that ρD/Dt(pm/ρ) = ∂pm/∂t +∇ · (pmv). For a stable reference vortex state,

these equations show that the total energy u2
s /2 + Π1 + Πk + Πe is globally conserved for

purely adiabatic and inviscid axisymmetric disturbances. In that case, be acts a restoring



Atmosphere 2025, 16, 700 13 of 26

force giving rise to a complex combination of internal and inertial/centrifugal waves,

as discussed by Emanuel [26]. As long as the stability conditions are met, any transfer

between the eddy and mean energies is forbidden, so that there cannot be any net growth

or decay of the azimuthal circulation unless non-axisymmetric or diabatic/viscous effects

are also considered. As an example application of our framework, we show in the following

how to use it to shed light on the issue of how diabatic/viscous effects may lead to the

intensification of a cyclonic vortex, a central issue in the study of tropical cyclones. The

discussion of non-axisymmetric effects, which is significantly more involved, is left to a

future study.

4.2. Generalised Buoyancy/Inertial Force Viewpoint

We now regard the azimuthal circulation as the sum of balanced and unbalanced

parts v = v⋆ + v′′ (Lagrangian viewpoint) or v = vm + v′ (Eulerian viewpoint). In this

view, the observed intensification of v may a priori be due to the intensification of either

vm or v′ (equivalently v⋆ or v′′) or both, depending on how vm is defined. Because there is

some freedom in the specification of vm in the present framework (for instance, it could be

imposed to be time independent), we first discuss the case where the intensification of v

may be primarily attributed to that of v′ (restricting ourselves to the Eulerian viewpoint in

the following). Evidence that such a case is relevant for the understanding of actual TC

intensification is provided by the study of Bui et al. [27], which suggests that the degree

of unbalance of TCs is likely significant, especially in the boundary layer. Now, because

v′ = v − vm = (M − Mm)/r = (µ − µm)/(r(M + Mm)), any increase in v′ must result

from the creation of a positive anomaly µ′ = µ − µm > 0 and hence from an increase in the

mechanical energy reservoir Πk, the only one that increases when |µ − µm| increases.

Prior to discussing energetics, it is useful to first discuss the forces at work in the

system, as this is what is most helpful to establish causal relationships. To that end, let us

consider the form of the momentum equation for the secondary circulation us that makes

apparent the role of the generalised inertial/buoyancy force be, viz.,

Dus

Dt
= be −

1

ρ
∇p′ − ν′∇pm + Ds, (65)

where from (52), the radial and vertical components of be may be written explicitly

as follows:

b
(r)
e = −(νh − νm)

∂pm

∂r
+

(µ − µm)

r3
= −ρm(νh − νm)

(
f +

vm

r

)
vm +

(µ − µm)

r3
, (66)

b
(z)
e = −(νh − νm)

∂pm

∂z
= ρmg(νh − νm). (67)

One of the expected advantages of introducing a non-resting reference state is to min-

imise the role of ∇p′ in (65) and hence to maximise the ability of be to predict the actual

acceleration Dus/Dt. Assuming this to be the case, and recalling that (µ − µm)/r3 > 0,

Equation (66) shows that a necessary condition for the radial component of be to point

towards the centre of the cyclone is that the fluid parcels are positively buoyant,

νh − νm > 0, (68)

in which case, (67) shows that b
(z)
e will also point upward, as is expected physically. By

definition, νh = ν(η, pm(r, z)) and νm = ν(ηm(r, z), pm(r, z)) so that

νh − νm ≈ Γ(η(r, z, t)− ηm(r, z)) (69)
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is proportional to the local entropy anomaly η′ = η − ηm (we have neglected the time

variation of the reference variables, but these can be retained if desired). Since Γ > 0 in

general, the creation of a positive specific volume anomaly requires a sustained diabatic

source of entropy to increase η. As discussed by Smith et al. [22], whether (68) is satisfied

depends critically on the choice of reference state used to define buoyancy. For instance,

Brown [28] found such a condition to be met for buoyancy defined relative to a relatively

elaborate reference vortex state, even including some degree of asymmetry. However,

Zhang et al. [29] found the parcels to be negatively buoyant for buoyancy defined relative

to a rest state, the desired upward acceleration then being entirely provided by the pressure

gradient term ∇p′.

Even if (68) holds, it is not sufficient to ensure that b
(r)
e is negative. Indeed, because

(µ − µm)/r3 > 0, (66) imposes a further constraint on the magnitude of positive buoyancy

anomalies, namely

νh − νm >

[
ρm

(
f +

vm

r

)
vm

]−1 µ − µm

r3
. (70)

If specific volume anomalies νh − νm are bounded, as must be the case in reality, (70) appears

to impose an upper limit on the maximum angular momentum anomalies µ− µm and hence

on the maximum intensity that the vortex can reach. This limit is a priori different from

the maximum potential intensity (MPI) predicted by Emanuel [1] (see Emanuel [30] for a

recent review on this topic and wider TC research), which is reached when the production

of available energy by surface enthalpy fluxes balances the dissipation by surface friction

in the region of maximum winds. Whether such a condition could account for why the

intensity of many observed TCs remains significantly below their theoretical maximum

intensity [31] is left for future study.

4.3. Energy Cycle

The generalised buoyancy/inertial force be and other forces that drive the secondary

circulation do work and cause energy transfers between the different existing energy

reservoirs, for which sources and sinks must exist in order for the system to achieve a

steady state. In the following, we discuss the energy cycle associated with an intensifying

cyclonic vortex whose intensification is dominated by the intensification of v′. To that end,

we find that the simplest and most economical description of the local energy cycle is one

based on separate evolution equations for the following: the sum of the kinetic energy of

the secondary circulation plus the AAE, u2
s /2 + Π1; the eddy slantwise APE Πe; and the

eddy mechanical energy Πk. This leads to the following set of equations:

ρ
D

Dt

(
u2

s

2
+ Π1

)
+∇ · (p′us) = ρ(bT

e · us + bM
e · us) + ρGs, (71)

Gs =

(
T − Th

T

)
q̇ + ν′

(
∂pm

∂t
+ us · ∇pm

)
, (72)

DΠe

Dt
= −bT

e · us +

(
Th − T⋆

T

)
q̇ + (χµ − χ⋆)

Dµ

Dt
+ νh

∂pm

∂t
− ν⋆

∂p⋆
∂t

, (73)

DΠk

Dt
= −bM

e · us +
(
χ − χµ

)Dµ

Dt
. (74)

For an intensifying vortex resulting from an increase in v′, we established in the previous

section that νh − νm > 0 and µ − µm > 0. The implications for the work against the

generalised inertial and buoyancy forces bT
e and bM

e by the secondary circulation are

−bM
e · us = (µ − µm)∇χ · us = −u(µ − µm)

r3
> 0, (75)
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−bT
e · us = (νh − νm)∇pm · us = (νh − νm)

[
u

∂pm

∂r
− ρmgw

]
< 0. (76)

The sign of such energy conversions suggests that the flow of energy follows the paths

Πe → u2
s

2
+ Π1 → Πk, (77)

as illustrated in Figure 4. If we neglect the terms related to the time dependence, the

following term needs to be positive

(
Th − T⋆

T

)
q̇ + (χµ − χ⋆)

Dµ

Dt
> 0. (78)

If Dµ/Dt < 0 acts as a retarding effect, Figure 2 shows that (r⋆ − rµ) > 0 and hence

that (χµ − χ⋆) > 0, suggesting that the sink of angular momentum is of the wrong sign.

Therefore, for (78) to act as a source term, the diabatic term must be positive and larger

than the term proportional to the angular momentum sink term, viz.,

(
Th − T⋆

T

)
q̇ >

∣∣∣∣(χµ − χ⋆)
Dµ

Dt

∣∣∣∣ > 0. (79)

By definition, Th = T(η, pm) and T⋆ = T(η, p⋆), so again from Figure 2, pm − p⋆ > 0 and

therefore Th − T⋆ > 0. Now, if we regard pm = p̂m(ηm, µm) as a function of the reference

entropy and squared angular momentum, we have

(Th − T⋆)

T
≈ 1

T

∂T

∂p
(pm − p⋆) ≈ − 1

T

∂T

∂p

{
∂ p̂m

∂ηm
(η − ηm) +

∂ p̂m

∂µm
(µ − µm) + · · ·

}
. (80)

Since, in general, pressure varies little with µm, it follows that the term is dominated by

the entropy anomaly, which needs to be positive as ∂ p̂m/∂ηm < 0. For the intensification

of v′ to proceed, a finite amplitude entropy anomaly η′ needs to be produced in order

to make the thermodynamic efficiency (Th − T⋆)/T large enough to satisfy the threshold

relation (79), consistent with physical intuition.u𝑠22 +𝛱1− 𝜈ℎ − 𝜈𝑚𝜌𝑚 ∇𝑝𝑚 ⋅ u𝑠𝛱𝑒 𝛱𝑘𝐺𝑠
𝑢 𝜇𝑚 − 𝜇𝑟3

− 𝜒 − 𝜒𝜇 𝐷𝜇𝐷𝑡𝑇ℎ − 𝑇⋆𝑇  𝑞 + 𝜒𝜇 − 𝜒⋆ 𝐷𝜇𝐷𝑡
Figure 4. Hypothesised energy pathways associated with the intensification of a cyclonic vortex

forced by sources of diabatic heating q̇ and angular momentum Dµ/Dt.

5. Application to Energetics of TC Intensification

5.1. Motivation and Background

One important motivation for the APE-based study of TCs is the quest for a more

accurate thermodynamic foundation of Emanuel’s potential intensity (PI) theory. In its
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most basic form, PI theory is based on balancing the production of energy with dissipation.

Specifically, PI theory regards TCs as heat engines whose source of energy can be expressed

as a Carnot-type efficiency times the surface enthalpy fluxes, and the dissipation is achieved

at the radius of the maximum wind. However, because Carnot theory only provides an

upper bound for the energy input of heat engines, PI theory usually greatly overestimates

the maximum intensity of TCs. Developments in energetics over the past decade or so,

e.g., Tailleux [32], have suggested that APE theory represents a potentially greatly superior

approach to the study of heat engines than Carnot theory.

In APE-based studies of TC intensification, the volume-integrated APE and KE budgets

may be written as stated in the introduction as

d

dt
APE = GA − C(APE, KE), (81)

d

dt
KE = C(APE, KE)− DK, (82)

where GA is the net APE production by all possible diabatic terms, including the surface

enthalpy fluxes; C(APE, KE) is the reversible conversion between APE and KE; and DK is

the dissipation of kinetic energy. As is well known, the choice of reference state affects the

prediction for both the generation term GA and the storage term d(APE)/dt. The question

is whether it is possible to find a reference state such that the associated APE prediction is

an accurate predictor of the conversion of APE into KE, in which case

C(APE, KE) ≈ GA. (83)

In Wong et al. [12], the authors examined the net generation term for two different con-

structions of the reference state, one obtained from a top-down sorting of the actual state,

the other obtained from a bottom-up sorting. Ways of sorting the atmosphere have been

discussed by Harris and Tailleux [11] and Stansifer et al. [10]. Assuming that there is no

source of KE other than the APE to KE conversion, one may therefore obtain an alternative

to potential intensity theory in the case where a quasi-steady state is reached by balancing

the APE production by the dissipation,

GA ≈ DK. (84)

5.2. Numerical Experiment

In local APE theory as developed by Tailleux [17], there is in fact greater freedom in the

choice of reference state. Alternative choices are to use the initial sounding, an artificially

modified colder sounding, or an isobarically averaged sounding, in addition to the bottom-

up and top-down sorted states. Here, we performed an objective test of the suitability of a

variety of reference states for understanding tropical cyclone intensification, by assessing

the balance between GA and C(APE, KE) for each reference state in an axisymmetric

numerical simulation of a TC.

We used a non-hydrostatic axisymmetric model of Rotunno and Emanuel [33], with

modifications to the microphysics by Craig [34,35]. This model simulates the intensification

of an existing cyclonic vortex over a slab ocean. The full model setup was identical to the

one detailed in Harris et al. [16], in which a method for computing a complete local APE

budget was developed, based on using the model’s initialisation sounding as a reference

state. This reference state, henceforth referred to as the initial reference state, represents

the atmospheric environment outside of the TC. We also tested the top-down and bottom-up

reference states based on sorting procedures, as used by Wong et al. [12]. In addition,

we introduced the mean reference state, which uses time-varying radial averages of the
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potential temperature θ and the water vapour mixing ratio rv (weighted by the volume

represented by each grid point), and the pressure that is in hydrostatic balance with these.

Using this reference state rather than the initial state accounts for general heating and

moistening across the domain, which alters the environment in which the TC is situated.

We additionally tested a cold reference state, computed by taking the initial sounding

and subtracting 5 K from θ. The rv profile was then determined such that the relative

humidity profile was the same as in the initial state. Finally, the pressure was adjusted to

hydrostatic balance. Computing APE relative to a much colder environment than the one

inhabited by the model TC eliminated discontinuities in APE density of the kind found

by Harris et al. [16].

Finally, in addition to these non-radially-varying reference states, we tested the vortex

reference state, defined by a vortex in thermal wind balance. At each time t, the azimuthal

wind speed of the reference vortex was set as the azimuthal wind field from the model,

v0(r, z, t) = v(r, z, t). The thermodynamic fields that held this vortex in hydrostatic and

gradient wind balance were then found using the method of Nolan and Montgomery [36]:

iterating between integrating inwards to gradient wind balance and adjusting vertically to

hydrostatic balance, the thermodynamic fields converged to a reference state determined

by v0, θv0 and Π0. A decomposition into θ0 and rv0 was required in order to continue using

the model’s approximation for buoyancy; it was assumed that rv0 = rv and then θ0 was

calculated from this. This decomposition is non-unique, but the overall results of the APE

calculations were found to be insensitive to choosing a different reference mixing ratio, for

example using the initialisation sounding value of rv as rv0 .

For the non-radially-varying reference states, the components of the APE budget were

calculated according to the method of Harris et al. [16], lifting air parcels vertically to their

level of neutral buoyancy (LNB). Using the vortex reference state necessitates accounting for

both the radial and vertical motion of each parcel until it reaches its LNB. This was achieved

by introducing the angular momentum M as an additional conserved variable, as was

performed by Andrews [15] and Codoban and Shepherd [14] when using an axisymmetric

vortex as a reference state.

The APE density of a moist air parcel with respect to the vortex reference state was

therefore computed by lifting it reversibly and adiabatically along a surface of constant

angular momentum until it reached an LNB. Unlike the method used with the profiles that

vary in the vertical only, this approach uses information about the trajectory the parcel is

expected to follow in the TC. The full numerical discretisation used to lift parcels along

surfaces of constant angular momentum to their LNB, along with the model equations for

GA and C(APE, KE) is included in Appendix C.

Our metric for the suitability of a reference state was that the diabatic production of

APE (relative to this reference state) should be directly linked to the generation of kinetic

energy (which is independent of reference state), and thus to the intensification of the TC.

Only the positive parts of the APE production and the kinetic energy production rates

were compared, rather than their net production rates. This was done at the parcel level:

we integrated the APE production rate over all air parcels in the model for which the

APE production was positive. Different diabatic processes may have competing effects on

the APE production within the parcel, but its overall APE production must be positive.

Similarly, the kinetic energy production rate is integrated over those parcels for which the

kinetic energy production is positive. For brevity, these integrals will be referred to as

simply the rates of “APE production” and “kinetic energy production”, but it should be

understood that they only include the positive contributions to the production. The positive

production rates were studied because there is a direct causal link between the (positive)

APE production and (positive) kinetic energy production, which does not hold for the
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dissipation rates. The consideration of only the positive APE production is somewhat

analogous to the consideration of only the positive heat input when defining the Carnot

efficiency of a heat engine, rather than the net heat input.

Figure 5 compares the rate of kinetic energy production, which is independent of

reference state, to the rate of APE production computed using each of the reference states,

over the intensification of the TC in the axisymmetric model. The poorest estimation of the

kinetic energy production was given by the APE production relative to the cold reference

state. This is because when the potential temperature of the reference state is decreased, it

no longer resembles the environment that the cyclone actually inhabits, and so the APE

production loses physical meaning for the intensification. Measured relative to the cold

reference state, almost all parcels below the tropopause will be buoyant; however, this

large-scale positive “buoyancy” is not associated with upward vertical motion of all parcels,

and so the notional reference heights are mostly not achieved, so most of the APE produced

by diabatic processes does not contribute to the generation of kinetic energy.

0 50 100 150 200 250
time (h)
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1

2

3

4

(W
)

×1015

KE production
APE production:
initial
mean
cold
vortex
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Figure 5. Comparison between the positive part of the kinetic energy production rate in the axisym-

metric numerical model (thick black line) and the positive production rates of APE with respect to

each reference state described in Section 5 (coloured lines).

The sorting-based reference states (top-down and bottom-up) performed worse than

the initial or mean reference states. These results indicate that the sorting procedures are

releasing too much APE, even in the case of bottom-up sorting, which was specifically

intended to limit the APE release to realistic levels [12]. The sorted states were also far more

computationally expensive to obtain (taking longer than the model run itself). Therefore,

it is preferable to use an environmental reference state to study local APE rather than the

sorting methods of Wong et al. [12], although it is possible that other sorting methods could

be designed that would perform better.

The mean profile reference state yielded a much closer match than the initial sounding

to the kinetic energy production towards the end of the model run. Allowing the reference

state to vary with time accounted for general heating and moistening in the domain, which

altered the environment experienced by the cyclone. Therefore, using the mean state

appears to be preferable to using the initial state.

However, the best predictor of the kinetic energy production for this model run was

the vortex reference state, by a substantial margin. Using a reference state that is as close

as possible to the actual model state minimised the stored available elastic energy and

APE density, and therefore yielded the most direct correspondence between the production



Atmosphere 2025, 16, 700 19 of 26

of APE and the production of kinetic energy. If a direct link between APE production

and kinetic energy production is to be drawn, these results show that accounting for the

balanced dynamical structure of the TC is essential. The kinetic energy generation can be

entirely explained in this case by the unbalanced part of the flow. A reference state based

on a vortex in gradient wind balance allows the production of APE by diabatic processes to

be directly linked to the generation of kinetic energy in the TC.

6. Summary and Conclusions

In this paper, we extended the Tailleux [17] local theory of APE to account for momentum

constraints for axisymmetric vortex motions in a dry compressible atmosphere. The theory

significantly simplifies and extends previous work by Codoban and Shepherd [13,14], Andrews

[15] in a number of ways. Notably, we showed that the available potential energy density can

be related to to the work against centrifugal and generalised buoyancy forces.

Although the work was derived for a dry atmosphere, we showed that the theory

can be used for APE-based studies of moist TC intensification, as recently developed by

Harris et al. [16]. The present results show that APE generation based on a non-resting

state is a much more accurate predictor of the APE to KE conversion, suggesting that it is

therefore a much more accurate quantifier of the potential energy actually available to the

tropical cyclone. Such a result has important potential implications for the development

of improved potential intensity theories of tropical cyclones, which will be developed in

subsequent studies.
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Appendix A. Analytical Expression for Vortex Motions

Many of the illustrations of this paper are based on a dry idealised tropical cyclone

axisymmetric vortex taken from Smith et al. [22], defined by its pressure perturbation

p(s, z) = (pc(0)− p∞(0))

[
1 − exp

(−x

s

)]
exp

(−z

z⋆

)
cos

(
π

2

z

z0

)
. (A1)

Here, pc(0) is the central pressure at the surface and p∞(0) is the surface pressure at large

radial distance (i.e., in the far-field environment in which the tropical cyclone is situated),

and s = r/rm. The constant rm determines the approximate radius of maximum wind,

https://github.com/bethanharris/vortex-available-energy
https://github.com/bethanharris/vortex-available-energy
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while the constant x sets the radial length scale over which the pressure field declines. The

constant z⋆ similarly sets the vertical length scale of pressure decrease. Finally, the constant

z0 determines the height at which the pressure reaches zero. The constant values are chosen

identically to those in [22]: p∞(0)− pc(0) = 50 hPa, rm = 40 km, x = 1.048, z⋆ = 8 km,

z0 = 16 km. Again following [22], the environmental temperature sounding assumes a

linear decrease in temperature upwards from a surface temperature of 303 K with a lapse

rate of 2.12 × 10−5 m−1.

This approach is designed to create an analytical pressure field that represents the

major features of a tropical cyclone pressure field, i.e., decreasing outwards and with a

maximum radial pressure gradient just outside the core. This yields a balanced azimuthal

wind field typical of the sort found in a tropical cyclone, as further discussed by [22,37].

Appendix B. Signs of Πe and Πk and Stability Conditions

In this section, we discuss the necessary conditions for Πe and Πk to be positive

definite, as these determine the symmetric stability conditions. We start with Πe. To that

end, note that ∇pm · dx′ = dp′ and hence that Πe may be rewritten in pressure coordinates

as follows:

Πe =
∫ pm

p⋆

[
ν(η, p′)− νm(χ

′, Φ′)
]

dp′ (A2)

in which χ′ = χ0(p′) and Φ′ = Φ0(p′) are parameterisations of the integral path along a

surface of constant angular momentum defined as solutions of the system:

µm(χ0(p′), Φ0(p′)) = µ, p′ = pm(χ0(p′), Φ0(p′)). (A3)

Note that by inverting these relations, it is possible to regard χ′ and Φ′ as functions of µ

and p′, thus allowing Πe to be rewritten in the form

Πe =
∫ pm

p⋆

[
ν(η, p′)− ν̃m(µ, p′)

]
dp′ =

∫ pm

p⋆

[
ν(η, p′)− ν(η̃m(µ, p′), p′)

]
dp′, (A4)

where we also use the fact that νh = ν(η, p′), that pm(x⋆) = p⋆, that pm = pm(x), and that

νm(χ′, Φ′) = ν̃m(µ, p′) = ν(η̃m(µ, p′), p′) along the surface of constant angular momentum

µm = µ. Physically, Equation (A4) can be recognised as being similar to the conventional

APE density (compare with Equation (2.18) of Tailleux [17]), for a definition of buoyancy

defined relative to the horizontally varying reference specific volume ν̃m(µ, p) evaluated

along a constant angular momentum surface. As a result, Πe represents a ‘slantwise’ APE

density, by analogy with the concept of slantwise convective available potential energy

(SCAPE) used in discussions of conditional symmetric instability [38–40]. To establish the

positive definite character of Πe, note that (A4) may be rewritten as

Πe =
∫ pm

p⋆

∫ η

η̃m(µ,p′)

∂ν

∂η
(η′, p′)dη′dp′ =

∂ν

∂η
(ηi, pi)

∫ pm

p⋆

∫ η̃m(µ,p⋆)

η̃m(µ,p′)
dη′dp′

=
∂ν

∂η
(ηi, pi)

∫ pm

p⋆

∫ p⋆

p′

∂η̃m

∂p
(µ, p′′)dp′′dp′, (A5)

where we have used the mean value theorem to take the adiabatic lapse rate ∂ν/∂η =

Γ = αT/(ρcp) out of the integral (α is the isobaric thermal expansion and cp is the isobaric

specific heat capacity), where (ηi, pi) represent some intermediate values of entropy and

pressure, and use the fact that η = η̃m(µ, p⋆) by definition. If the adiabatic lapse rate Γ is
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positive, as is normally the case, Equation (A5) shows that a sufficient condition for Πe to

be positive definite is
∂η̃m

∂p
(µ, p′′) < 0, (A6)

regardless of p′′; this shows that the specific entropy should increase with height (decrease

with pressure) along surfaces of constant angular momentum, as expected. The special

case where
∂ηm

∂z
(r, z) > 0,

∂η̃m

∂p
(µ, p′′) > 0, (A7)

would correspond to the so-called conditional symmetric instability (CSI), whereby the

entropy profile is stable to upright vertical displacements but not to slantwise displace-

ments. For small amplitude perturbations, a Taylor series expansion shows that (A5)

approximates to

Πe ≈ −Γi
∂η̃m

∂p
(µ, p⋆)

(pm − p⋆)2

2
(A8)

where Γi is shorthand for ∂ν/∂p(ηi, pi). Note that this expression is essentially the same

as the classical small-amplitude expression N2δz2/2 for the conventional APE density in

terms of an appropriate squared buoyancy frequency, where δz is the vertical displacement

from the reference height. Note that in Equation (A5), we could equally have regarded

pressure as a function of entropy to obtain a small amplitude approximation proportional

to the squared entropy anomaly (η̃m(µ, p)− η̃m(µ, p⋆))2/2 instead if desired.

We now turn to Πk. Observing that ∇χ · dx′ = dχ′ suggests rewriting the latter in χ

coordinates as

Πk =
∫ χ

χµ

(µ − µm(χ
′, Φp(χ

′))dχ′ (A9)

where this time the path χ′, Φp(χ′) parameterises an isobaric line path, hence defined

so that

pm(χ
′, Φp(χ

′)) = pm(χ, Φ) (A10)

By inverting this relation, it is hence possible to rewrite µ(χ′, Φp(χ′) = µ̃m(pm, χ′) as a

function of pm = pm(χ, Φ) and χ′, and therefore in the following form:

Πk =
∫ χ

χµ

(µ − µ̃m(pm, χ′))dχ′ = −
∫ χ

χµ

∫ χ′

χµ

∂µ̃m

∂χ
(χ′′, pm)dχ′′dχ′ (A11)

using the fact that µ = µ̃m(pm, χµ). This therefore shows that Πk is positive definite

provided that
∂µ̂m

∂χ
< 0 =⇒ ∂M̃m

∂r
(pm, r) > 0 (A12)

which is equivalent to stating that the isobaric radial gradient of Mm should be positive,

corresponding to the usual centrifugal stability. For small amplitude perturbations, one

may write

Πk ≈ −∂µ̂m

∂χ
(χµ, pm)

(χ − χµ)2

2
. (A13)

Combining the results shows that for small amplitude perturbations, it is possible to

write Ae as the following quadratic function:

Ae ≈ N2
e
(p − pm)2

2
− ∂µ̃m

∂χ

(χ − χµ)2

2
. (A14)

Other representations in terms of other variables exist, which have been discussed

in [13–15]. For instance, Ae can also be regarded as a function of (M − Mm) and (η − ηm),
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as well as a function of (p − pm) and (µ − µm) for instance. Discussing these representa-

tions is beyond the scope of this paper. However, these representations are easily computed

numerically, as illustrated in Figure 3. Based on this figure, the representation based on

(M − Mm) and (η − ηm) looks somewhat superior, as seemingly achieving a near orthogo-

nal finite-amplitude decomposition of available energy.

Appendix C. Numerical Methods for Computing Local APE with Vortex
Reference State in Axisymmetric Model

Using a radially varying reference state necessitates a slightly different approach to

computing APE density compared to that in standard APE theory based on the use of

a notional resting state. When using a reference state varying only in the vertical, it is

acceptable to simply lift parcels vertically to their LNB, since a parcel’s radial location is

irrelevant to the calculations once θei and rt are known, as explained in Harris et al. [16].

With the introduction of the non-resting state, the path along which a parcel is lifted to its

LNB must be more carefully defined.

For the vortex reference state described in Section 5, parcels are moved reversibly and

adiabatically along surfaces of constant angular momentum between their actual position

and reference position. The three relevant model-conserved variables are the equivalent

potential temperature θei, total mixing ratio rt, and angular momentum M:

θei ≈ θ +
Ls

cpΠ
rv +

L f

cpΠ

(
rl + rp

)
, (A15)

rt = rv + rl + rp + ri, (A16)

M = rv +
f r2

2
. (A17)

These three variables are approximately conserved by all modelled processes other than

radiative cooling, the fallout of precipitation (both liquid and ice), surface fluxes, and

subgrid turbulence and frictional dissipation. The model variables involved are fully

described by Harris et al. [16]: θ is potential temperature, Π is Exner pressure, rv is water

vapour mixing ratio, rl the mixing ratio of cloud liquid water, rp the mixing ratio of liquid

precipitation, and ri the ice mixing ratio. Ls = 2.834 × 106 J kg−1 is the latent heat of

sublimation, L f = 0.334 × 106 J kg−1 is the latent heat of fusion, and cp = 1004.5 J kg−1 K−1

is the specific heat capacity at a constant pressure of dry air.

When using the vertical buoyancy force,

b(θei, rt, z) = g
α(θei, rt, Π0(z))− α0(z)

α0(z)
(A18)

the APE density was defined in Harris et al. [16] as

ea =
∫ zr

z
b
(
θei, rt, z′

)
dz′. (A19)

for a reference height zr. In terms of the two-dimensional coordinate x⃗ = (r, z), we similarly

define the generalised buoyancy force similarly as

b⃗(θei, rt, M0, x⃗, t) = g⃗
α(θei, rt, Π0(x⃗, t))− α0(x⃗, t)

α0(x⃗, t)
, (A20)

where the subscript 0 denotes a value in the reference state and g⃗ is the effective gravity

g⃗ = (C0, g), (A21)
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which accounts for the radial force C0 = −
(

f v0 +
v2

0
2

)
experienced by the parcel in the

reference vortex. C0 is the sum of the centrifugal and Coriolis forces. Henceforth, whenever

buoyancy is referred to in the context of the balanced vortex, this refers to the generalised

buoyancy (A20). Note that since here the reference vortex has been defined by v0 = v, the

effective gravity g⃗ is identical to the one defined by Smith et al. [22].

The APE density using the generalised buoyancy force is, analogously to Equation (A19)

for the vertical case,

ea =
∫ x⃗r

x⃗
b⃗
(
θei, rt, M0, x⃗′, t

)
· dx⃗′. (A22)

This equation defines APE density as the work done by the generalised buoyancy force

when a parcel is lifted reversibly and adiabatically along a surface of constant angular

momentum, from its actual position x⃗ = (r, z) to its reference position x⃗r = (rr, zr).

The reference position is similarly defined as an LNB to the reference height of Harris

et al. [16], but now with respect to the generalised buoyancy:

b⃗(θei, rt, M0, x⃗r, t) = 0. (A23)

Both components of the generalised buoyancy must be zero, which is satisfied if and only if

α(θei, rt, Π0(x⃗r, t)) = α0(x⃗r, t). (A24)

The conservation of angular momentum provides the second constraint necessary to

calculate the reference position, namely that

M0(x⃗r, t) = M0(x⃗, t). (A25)

The reference position is defined as the first point satisfying Equation (A24) that is encoun-

tered when a parcel moves reversibly and adiabatically along a surface of constant angular

momentum in the direction of its in situ generalised buoyancy.

Computing the APE density (A22) in the axisymmetric model first requires the

construction of the angular momentum surface, along which the generalised buoyancy

will be integrated. For a parcel with specific angular momentum Mp, the difference

∆M(r, z, t) = M0(r, z, t)− Mp is computed at all v-points. For each vertical v-level (de-

noted by its index k), linear interpolation is then used to find the radius rMk
(r, z, t) at which

∆M = 0. If multiple such roots exist, the one closest to the parcel’s actual radius r is

selected. The profile rMk
is linearly interpolated in the vertical to include w-levels, and

computed at z = 0 by assuming that v0|sfc = 0.8 v0| ∆z
2

.

The discretisation of the parcel’s angular momentum surface at time t therefore com-

prises the points

PM =

{
x⃗Mk

=
(
rMk

, zk

)
: k =

1

2
, 1,

3

2
, 2, . . . ,

ztop

∆z
+

1

2

}
, (A26)

where an integer value k denotes the kth vertical v-level and a half-integer value indicates

a w-level. At each point x⃗Mk
∈ PM, the values of θ0, C0, rv0 and Π0 are computed, using

linear vertical and radial interpolation where necessary. This produces reference profiles

along the parcel’s angular momentum surface.

The computation of the reference position and the APE density requires the values of

both the radial and vertical components of the generalised buoyancy, br and bz, along the

angular momentum surface. The parcel is lifted reversibly and adiabatically to Π0

(
x⃗Mk

, t
)

for each x⃗Mk
, and θ, rv, rl , rp and ri are calculated using the same lifting procedure as in Har-
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ris et al. [16]. For brevity, the notation θ̂(x⃗, t) = θ(θei, rt, Π0(x⃗, t)) is used in the following.

The components of buoyancy are computed using the model’s buoyancy approximation:

brk
= −C0

(
x⃗Mk

, t
)
{

θ̂
(
x⃗Mk

, t
)
− θ0

(
x⃗Mk

, t
)

θ0

(
x⃗Mk

, t
) + 0.61

[
r̂v

(
x⃗Mk

, t
)
− rv0

(
x⃗Mk

, t
)]

−r̂l

(
x⃗Mk

, t
)
− r̂p

(
x⃗Mk

, t
)
− r̂i

(
x⃗Mk

, t
)
}

, (A27)

bzk
= g

{
θ̂
(

x⃗Mk
, t
)
− θ0

(
x⃗Mk

, t
)

θ0

(
x⃗Mk

, t
) + 0.61

[
r̂v

(
x⃗Mk

, t
)
− rv0

(
x⃗Mk

, t
)]

−r̂l

(
x⃗Mk

, t
)
− r̂p

(
x⃗Mk

, t
)
− r̂i

(
x⃗Mk

, t
)
}

. (A28)

Once the profile of bz has been computed, the reference height zr is found using the

same method as in Harris et al. [16] (since b⃗ = 0 if and only if bz = 0), and rr = rM(zr) is

obtained by linearly interpolating between rMk
points.

The parcel’s APE density is then computed by taking a discretised line integral along

the path of conserved angular momentum. For illustrative purposes, it is assumed that

zr > z. If the parcel resides at vertical level j (z = zj), and n is the integer such that

zn < zr < zn+1, then

ea =
n

∑
k=j

[
bz

k+ 1
2

∆z +br
k+ 1

2

(
rMk+1

− rMk

)]

+ bz
n+ 1

2

(zr − zn) + br
n+ 1

2

(rr − rMn). (A29)

For each line segment from
(
rMk

, zk

)
to
(
rMk+1

, zk+1

)
, the generalised buoyancy is evaluated

at the midpoint of the line segment,

(
br

k+ 1
2

, bz
k+ 1

2

)
. This value of the generalised buoyancy

is assumed to be constant along the whole line segment and is then integrated over the line

segment. An equivalent method is applied in the case zr < z.

As was done for the resting reference states, the method of integration is reused to

define the discretised APE production coefficients as

Gθei
=

∂ea

∂θei
=

n

∑
k=j

[
∂bz

∂θei

∣∣∣∣
k+ 1

2

∆z +
∂br

∂θei

∣∣∣∣
k+ 1

2

(
rMk+1

− rMk

)
]

+
∂bz

∂θei

∣∣∣∣
n+ 1

2

(zr − zn) +
∂br

∂θei

∣∣∣∣
n+ 1

2

(rr − rMn), (A30)

Grt =
∂ea

∂rt
=

n

∑
k=j

[
∂bz

∂rt

∣∣∣∣
k+ 1

2

∆z +
∂br

∂rt

∣∣∣∣
k+ 1

2

(
rMk+1

− rMk

)
]

+
∂bz

∂rt

∣∣∣∣
n+ 1

2

(zr − zn) +
∂br

∂rt

∣∣∣∣
n+ 1

2

(rr − rMn). (A31)

The partial derivatives of bz are identical to the derivatives of the vertical buoyancy

given in Harris et al. [16], while the partial derivatives of br are easily found by observing that

∂br

∂θei
(x⃗, t) = −C0(x⃗, t)

g

∂bz

∂θei
(x⃗, t), (A32)
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and similarly with respect to rt.

The APE production rate shown in Figure 5 is then computed by integrating

GA = ρ

(
Gθei

Dθei

Dt
+ Grt

Drt

Dt

)
(A33)

over all parcels with a positive value of GA. Here, ρ is the density in the model’s initialisa-

tion sounding.

The rate of conversion between APE and kinetic energy is

C(APE, KE) = ρ

[
b⃗ · v⃗ − cpθv0 v⃗ · ∇(Π − Π0)−

(
f v0 +

v2
0

r

)
u

]
. (A34)

For a resting reference state (i.e., any reference state tested here, other than the vortex

reference state), v0 and b⃗v⃗ reduces to its vertical component bw, as in Harris et al. [16].
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