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Key Points:

e The sporadic E layers observed by
COSMIC-2 and neutral wind by ICON/
Michelson Interferometer for Global
High-resolution Thermospheric Imag-
ing exhibit consistency in the Northern
Hemisphere, explained by ion drift
induced by wind shear

e A deep-learning model with neutral
wind-driven for Es layer prediction has
been developed based on wind shear
theory and artificial intelligence
techniques

e Incorporating wind shear mechanism
prior knowledge significantly
improved model performance,
increasing the accuracy from 71.6%
to 87.9%
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Abstract In the mesosphere-lower thermosphere region, atmospheric plasma components exhibit short-
term enhancements, forming sporadic E (Es) layers that impact communication systems. The prevailing theory
posits that neutral wind shear is the primary driver of mid-latitude Es layer. Here, we present neutral wind field
data from the ICON/Michelson Interferometer for Global High-resolution Thermospheric Imaging mission
during 2019-2022, revealing a clear relationship between wind shear and Es layer formation in the Northern
Hemisphere. Notably, the vertical ion divergence/convergence significantly impact mid-latitude Es production.
Inspired by deep learning techniques, we developed a deep learning model based on wind shear and neutral wind
data, reconstructing the small-scale morphology of Es layers. Vertical ion convergence information derived
from the wind shear physical equations was found to be a key factor in enhancing model performance. Our
results demonstrate that incorporating physical data from vertical ion drift improves the predictive capabilities
of ionospheric irregularities artificial intelligence models, increasing the accuracy from 71.6% to 87.9%.

Plain Language Summary In the region between Earth's mesosphere and lower thermosphere, thin
layers of dense plasma, known as sporadic E (Es), can form suddenly and interfere with radio communications.
These layers are influenced by wind patterns at their respective altitudes, but limited data has made it
challenging to fully understand their formation and improve predictions. In this study, we used new satellite
observations to investigate how high altitude winds contribute to Es layer formation. Inspired by the growing
role of artificial intelligence (Al) in scientific breakthroughs, as recognized by the 2024 Nobel Prize in Physics,
we developed an Al model that integrates wind patterns and physics-based equations to predict Es occurrences.
Our results show that including information on ion movement, particularly how ions converge under wind shear
effects, significantly enhances model accuracy. This approach offers new insights into how Es layers form and
improves forecasting methods, helping to mitigate their impact on communication systems.

1. Introduction

Sporadic E (Es) layers are transient and dense ionospheric plasma layers typically observed at altitudes ranging
between 90 and 120 km in the mesosphere-lower thermosphere (MLT) region (Vincent, 2015). Composed mainly
of metallic ions such as Fe* and Mg* originating from meteoric ablation (Plane, 2003), these layers form thin
sheets that can significantly impact radio wave propagation, particularly high-frequency (HF) and very high-
frequency radio signals, often used in aircraft navigation and remote sensing applications (Haldoupis, 2011;
Mathews, 1998). Characterizing Es layers, however, remains challenging due to their spatial and temporal
variability, as they exhibit horizontal extents from 10 to 1,000 km and vertical thicknesses from 0.5 to 5 km
(Whitehead, 1989; Yu et al., 2019). Observational techniques have advanced from early ground-based ionosondes
and radars to in situ measurements and satellite-based radio occultation (RO), providing a broader perspective on
Es layer distribution and behavior across different latitudes and seasonal variations (Gardner et al., 1993; Miller &
Smith, 1978; Wickert et al., 2009; Yue et al., 2015; Zhao et al., 2024). However, despite extensive research,
capturing the global distribution and understanding the complex dynamics of Es layers remains a pressing
challenge in ionospheric forecasting.
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The widely accepted theory for Es layer formation is the neutral wind shear mechanism, which posits that vertical
shears in horizontal neutral winds drive the convergence of metallic ions, thereby forming thin, dense plasma
layers at specific altitudes (Axford, 1963; Aylett et al., 2024; Haldoupis, 2011; Yamazaki et al., 2022; Yu, Xue,
et al., 2021). Unlike other ionospheric layers, formed by the photo-ionization of N, and O,, in which the major
molecular ions NO* and O have lifetimes on the order of seconds, the Es layer is composed of long-lived (up to
10 d) metallic ions (Plane et al., 2015) and is remarkably thin, typically 1-3 km thick (Layzer, 1972). This
convergence of metallic ions, primarily through vertical gradients in the eastward wind, is theorized to lead to the
formation of Es layers, particularly at mid-latitudes where such wind shears are common (Whitehead, 1961, 1970;
Wu et al., 2019; Yu, Xue, et al., 2021). Under this theory, vertical ion velocities are influenced by the Lorentz
force, with the zonal component of the neutral wind playing a dominant role in driving vertical ion convergence in
the E region (Qiu et al., 2019).

Despite the foundational framework provided by wind shear theory, empirical evidence linking Es layer for-
mation directly to neutral wind shear remains limited and, in some cases, inconsistent (Bishop et al., 2005;
Kunduri et al., 2023; Larsen et al., 1998; Liu et al., 2018; Yamazaki et al., 2022). This presents a challenge for Es
modeling, but artificial intelligence (AI) techniques offer a potential solution to address this issue. In recent years,
deep learning techniques have gained remarkable recognition for their transformative impact across various
scientific fields, highlighted by the 2024 Nobel Prize in Physics for advancements in Al (Gibney & Cas-
telvecchi, 2024; Hopfield, 1982). These techniques have shown significant promise for atmospheric and iono-
spheric modeling, offering novel methods to interpret complex, high-level data. Examples include deep learning
for the prediction of global Es patterns (Tian et al., 2022) or TEC distribution (Wang et al., 2023), ensemble
learning using multi-source data fusing to improve ionospheric irregularity predictions (Tian et al., 2023) and
estimating weak Es layers impact under different solar conditions using neutral networks (Tian et al., 2024), to
name a few. However, these modeling approaches offer climatological models of the Es layer without considering
the mechanisms influencing its formation (Yu et al., 2024). The primary challenge lies in the lack of observational
data in the MLT region. Predicting the high-precision distribution of Es remains a challenging and unsolved
problem.

In this study, we investigate the evolution of mid-latitude Es layers in the Northern Hemisphere by integrating
COSMIC-2 and ICON/MIGHTI observations with Al-driven modeling. By incorporating neutral wind shear
dynamics into deep learning models, we assess their role in reconstructing Es morphology and improving pre-
dictive accuracy. Comparisons between observational data and model results reveal how neutral wind shear
influence the evolution and predictability of mid-latitude Es layers, providing a more reliable framework for space
weather prediction.

Section 2 describes the data sets and modeling approaches used in this study. Section 3 presents a comparative
analysis of Es layer structures derived from observations and model predictions. Section 4 summarizes the key
findings and implications of this work.

2. Data and Methods

The Formosa Satellite-7/Constellation Observing System for Meteorology, Ionosphere, and Climate-2 (FOR-
MOSAT-7/COSMIC-2) (Schreiner et al., 2020), a launched equatorial constellation of six satellites carrying
advanced RO receivers, exhibits high signal-to-noise ratio (SNR) and the ability to provide high vertical reso-
lution profiles of bending angles and refractivity, which contain information on the upper atmosphere and
ionosphere (Anthes & Schreiner, 2019). By May 2021 the COSMIC-2 satellites have deployed into six evenly
spaced circular orbital planes of 24° inclination at an altitude of about 550 km. Each satellite carries two space
weather instruments, the Ion Velocity Meter and the Radio Frequency Beacon, which will contribute to the
forecasting of space weather events, monitoring and prediction of scintillation (e.g., sporadic E layers). For this
study, SNR data were used to calculate the maximum S4 scintillation index (S4max), which is indicative of
ionospheric scintillation caused by Es layers. Following established methodologies (Tian et al., 2024), the valid
S4 profiles from 80 to 130 km between 2019 and 2022 were calculated and the anomalous disturbance profiles
unrelated to Es events were excluded.

The Michelson Interferometer for Global High-resolution Thermospheric Imaging (MIGHTI) instrument was
built for launch and operation on the NASA Ionospheric Connection Explorer (ICON) mission (Englert
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et al., 2017, 2023). MIGHTI measures horizontal wind velocities via Doppler shifts in airglow emissions at
557.7 nm, covering altitudes from 90 to 300 km with a vertical resolution of ~3 km, during day and night. The
version 5 of the cardinal wind profiles, which cover the latitude range between 12°S and 42°N, from the green-line
emission from 2019 to 2022 were used. Only ICON/MIGHTI data with a “wind quality factor” of one, as
described by Englert et al. (2023), were used in this study. This criterion ensures the use of the highest quality data
and excludes measurements affected by radiation near the South Atlantic Anomaly, which can contaminate the
MIGHTI detectors.

The valid S4max data at 80-130 km from COSMIC-2 covers the period from 2019 to 2024, with a total of
11,245,839 profiles. The valid Es events were identified by ensuring altitude coverage between 80 and 130 km
with gaps less than 3 km, and extracting the maximum S4 index within this range as the representative scintillation
intensity, that is, Es intensity (Yu et al., 2019). The ICON/MIGHTI neutral data spans from December 2019 to
November 2022. For each valid Es event, data with the same spatiotemporal conditions (conjunction) were
extracted, using a spatial grid criterion of less than 2.5° in both latitude and longitude and a temporal separation of
less than 20 min. This selection criterion is aligned with previous studies (Yamazaki et al., 2022), ensuring a
balance between maintaining high data quality and providing sufficient sample to meet the training requirements
of deep learning models. Conjunctions are treated to be independent as long as the Es profiles are different. For
multiple neutral wind field measurements corresponding to a single Es event, the average values were used for
statistical reliability. Each valid Es conjunction event in the data set is a single profile. The analysis period,
spanning from December 2019 to November 2022, covers a latitude range from 15°S to 45°N, resulting in a total
of 36,089 conjunction events.

The ion drift velocity for each conjunction event can be calculated using wind shear theory. The wind shear
mechanism, a foundational theory for Es layer formation, describes how vertical gradients in horizontal neutral
winds lead to ion  convergence. The  steady-state = ion  momentum  equation s
0 = e(Vion X B + E) — Mv;_neutrat (Vion — Vneutral) » Where M is the ion mass, B = By(sin D cos I, cos D
cos I, —sin I) is the magnetic field, I and D are the dip angle and declination angle of the magnetic field. We set
Vion = (Uion» Vion» Wion) and Vyeuwat = (U, V, W) for the ion drift velocity and neutral wind. The vertical ion drift
velocity (w;,,) was calculated using the following equation (Yu, Xue, et al., 2021):

rcos D cos I — sin D sin I cos 1

Wion = 1+ 72
rsin D cos I + cos D sin I cos IV
1+
02
r2 + sin/ . — Vion—neutral
1+r2 7 W,

where v;,,,_eurar 1S the ion-neutral collision frequency, w.; = eBy/M is the ion gyrofrequency. The v;,,_neurar 15
calculated from the empirical atmospheric model, NRLMSIS 2.0 (Emmert et al., 2021), which provides the
neutral atmospheric densities (N,, O, and O) by inputting parameters (time, altitude, latitude, longitude, F10.7
index, and Ap index) to determine ion-neutral collision frequency. The calculated vertical wind velocity is used to
derive the vertical ion convergence term by computing its minus gradient, i.e., IN/dz ~ — 0W;,n/02|2 = 20,
where z; is the given altitude.

In our earlier work, we introduced Sporadic E Layer Forecast using Artificial Neural Networks (i.e., SELF-ANN),
a deep learning framework, which is grounded in the principles of residual network architecture (Tian
et al., 2023). The neutral wind-driven model in this study is based on SELF-ANN architecture, open source on
tianph (2023). Algorithmically, a deep neural network learns the relationship between the manifolds representing
the input data and labels (Islam et al., 2023). The model architecture is based on a residual neural network
(ResNet) framework, featuring skip connections to ensure efficient gradient flow and robust learning of
spatiotemporal dependencies. The trained model predicts the ionospheric scintillation index using two sets of
input features: spatiotemporal parameters "7, which include local time, latitude, longitude, altitude, and day of
year, and neutral wind-derived features """, specifically the vertical ion convergence computed from the wind
shear equation. The vertical ion convergence is calculated using horizontal wind profiles from ICON/MIGHTI
observations, magnetic inclination, and declination from the International Geomagnetic Reference Field model,
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and neutral atmospheric density from the NRLMSIS empirical model. The model architecture follows the SELF-
ANN framework, consisting of stacked residual blocks incorporating convolutional layers (Convl X 1 and
Conv3 X 3), batch normalization, and ReLU activations, enabling the network to effectively learn nonlinear
mappings between physical inputs and ionospheric irregularities. See Tian et al. (2023) for more information
about the input parameters. The model outputs scintillation values D”"?, which are evaluated using various
metrics, including mean absolute error (MAE), root mean square error (RMSE), and Spearman correlation.

3. Results

Figure 1 presents the relationship between COSMIC-2 observations of the Es layer intensity and the horizontal
shear of the ICON/MIGHTI neutral wind data at 15°S—45°N at 80—-130 km during December 2019-November
2022. Figures 1a and 1b show the global distribution of zonal wind shear (i.e., vertical shear of the zonal wind)
and vertical ion divergence (i.e., vertical gradient in the vertical ion drift velocity) at 105 km, respectively.
Figure lc presents the distribution of mid-latitude Es layers from COSMIC-2, as indicated by the S4max
index. In the upper three panels, the vertical ion divergence and vertical shear of the zonal wind exhibit similar
patterns, which is attributed to the dominance of the zonal wind component in the wind shear equation, that is,
Wion ~ (rcos D cosI — sin D sin I cos I)(l + r2) U. The vertical shear of the zonal wind ranges from
+10 m/s/km, and the calculated global ion vertical divergence is within £0.15 m/s/km. Near the magnetic
equator, the vertical ion divergence induced by wind shear is maximal, that is, the vertical ion convergence is
minimal. The intensity of Es in the summer hemisphere is higher than in the winter hemisphere, with the
enhanced occurrence in the summer attributed to the seasonal dependence of metallic ion density and vertical
wind shear. Moreover, the Es intensity is found to be negatively correlated with the vertical ion divergence.
Next, we compared all the data from the COSMIC-2 and ICON/MIGHTI wind field conjunction observations,
which include 36,089 conjunction events. The time range of these events spans from December 2019 to
November 2022. Figures 1d—1f display the correlations between different wind-driven parameters at 105 km
(vertical shear of the zonal wind, vertical shear of the meridional wind, and vertical ion divergence) and the Es
intensity derived from COSMIC-2/ICON conjunction observations. The Es intensity are computed for every
0.3 m/s/km (blue dots) and 1 m/s/km (red dots) in the vertical shear of horizontal wind in Figures 1d and le.
For the vertical ion divergence, the Es intensity are computed for every 0.01 m/s/km (blue dots) and 0.05 m/s/
km (red dots) in Figure 1f. Specifically, a strong negative correlation (R = —0.97) between vertical shear of the
zonal wind and Es intensity, while Figure 1e shows a weak positive correlation (R = 0.14) between meridional
wind shear and Es, which is attributed to the dominance of the zonal wind component in the wind shear
equation. These results confirm the findings of previous work by Yamazaki et al. (2022). In contrast, Figure 1f
reveals a moderate negative correlation (R = —0.79) between vertical ion divergence and Es intensity. Es
layers in these results conform well to expectations from the wind shear theory. Furthermore, we computed the
zonal ion divergence and the meridional ion divergence, which are not included in the figure. Their corre-
lations with Es intensity are —0.59 and 0.11, respectively, contributing less than the vertical ion divergence.

Figure 1g illustrates two distinct regions: the top section shows the spatial distribution of Es layers, with weak and
strong Es regions marked, and the lower section highlights plasma vertical convergence as derived from ICON/
MIGHTI neutral wind, showing areas of divergence and convergence linked to Es layer formation. According to
the wind shear theory, since 7> 1 below ~115 km, U is more efficiently causing vertical plasma drift than V in
the lower E region. Therefore, the term, (r sin D cos I + cos D sin I cos I)(l + r2) V, becomes small there, so
that mainly the zonal wind U is responsible for the vertical ion drift. The dominance of zonal wind shear in mid-
latitude Es formation arises from the Lorentz force's effect on vertical ion drift, as indicated by the r cos D cos I
term in wind shear equation. Under typical conditions (30°N, 30°E, 25 June 2020), zonal and meridional wind
weights are approximately 0.032 and 0.003, respectively, implying that zonal winds contribute over 91% to ion
convergence. This explains the stronger observed correlation between zonal wind shear and Es intensity. lon
accumulation, and thus the formation of Es, is expected at altitudes where the vertical gradient of the ion drift is
negative, which coincides with the region of maximum negative vertical shear of the zonal wind, dU/dz. This
illustration highlights the complex relationship between the vertical ion divergence and Es layer formation,
providing insights into how ion convergence/divergence contribute to mid-latitude Es intensity variations.

As shown in Figure 1, the wind shear theory underscores the critical role of vertical ion convergence in Es
formation. Consequently, we have incorporated this as a physical prior into the AI model. Two models were
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Figure 1. The wind shear mechanism of mid-latitude Es is validated using COSMIC-2 and ICON/Michelson Interferometer for Global High-resolution Thermospheric
Imaging observations. Panels (a, b) show the zonal wind shear (i.e., vertical shear of the zonal wind) and vertical ion divergence (i.e., vertical gradient in the vertical ion
drift velocity) at 105 km, respectively, with data from June to August, using neutral wind data with a quality factor of 1 and a grid resolution of 2.5 X 5°, excluding
diurnal tidal effects. Panel (c) illustrates the mid-latitude Es layer distribution from 80 to 130 km observed by COSMIC-2 during June—August. Panels (d—f) show the
distribution of zonal wind shear (i.e., vertical shear of the zonal wind), meridional wind shear (i.e., vertical shear of the meridional wind), and vertical ion divergence from
the conjunction data at 15°S—45°N at 80-130 km during December 2019-November 2022, along with their relationship to Es intensity. The Es intensity (left y-axis) are
computed for every 0.3 m/s/km (blue dots) and 1 m/s/km (red dots) in the vertical shear of horizontal wind (x-axis). Panel (g) demonstrates the correlation between vertical
ion divergence and Es formation.

developed: a basic model, which predicts Es intensity solely based on spatiotemporal information without
incorporating effective vertical ion convergence, and a neutral wind-driven model, which integrates vertical ion
convergence derived from wind shear theory. The basic model serves as a reference for evaluating the added the
physical information. The model accuracy was calculated by setting the occurrence threshold of 0.2 on the Es
intensity. Figure 2 compares Es intensity from three sources: COSMIC-2/ICON conjunction observations, a basic
model, and a neutral wind-driven model. The global distribution of the S4max index in the figure is similar to that
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Figure 2. Comparison of observational data, the basic model, and the neutral wind-driven model results. Panel (a) shows the
global distribution of Es from the conjunction observational data set. Panels (b, c¢) present the outputs from the basic model
and the neutral wind-driven model, respectively. The magnetic equator was computed using the International Geomagnetic
Reference Field. Panel (d) illustrates the mid-latitude Es variation from June 2020 to June 2021, with a statistical range from
20°N to 40°N. Different colored shading highlights the areas of model comparison. Compared to the basic model, the neutral
wind-driven model incorporates effective vertical ion convergence.
in previous studies (Tian et al., 2023; Yu et al., 2019). The Es intensity is predominantly concentrated in the
20°N—40°N latitude range, where vertical ion convergence is significant.
Figure 2a shows the Es intensity observed between December 2019 and November 2022 at altitudes of 80—
130 km, derived from COSMIC-2 and ICON conjunction data. Figure 2b presents the predictions from the basic
model, and Figure 2c illustrates the predictions from the neutral wind-driven model for the same altitude range. A
2.5 X 5 degree sliding window was employed to calculate the average Es distribution. The basic model suc-
cessfully reproduces the large-scale structure observed. In the mid-latitude region around 25°N, the basic model
TIAN ET AL. 6of 11
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fails to resolve small-scale fine structures, whereas the neutral wind-driven model produces results that are more
consistent with observations. In Figure 2d, Es intensity data are averaged over 10-day intervals, focusing on the
mid-latitude region between 20°N and 40°N. Notably, Es intensity peaks during June 2020 and June 2021,
corresponding to the summer months in the Northern Hemisphere, but the values are weaker than in previous
studies (Tian et al., 2023), likely due to reduced solar activity during this period. This seasonal increase is
attributed to the enhanced vertical ion convergence observed in the mid-latitudes of the Northern Hemisphere, as
illustrated in Figure 1. The intensity of Es increases in the red and blue shading areas, while it decreases in the
yellow area, as indicated by the observations. The results of the neutral wind-driven model in these areas are more
consistent with the observations. While the basic model successfully replicates the large-scale structure observed,
it lacks the capability to capture small-scale details. In contrast, the neutral wind-driven model demonstrates a
closer alignment with the observed spatial distribution, reflecting its improved ability to resolve small-scale
features.

A more comprehensive evaluation of the neutral wind-driven model is presented in Figure 3. Figure 3a depicts the
residual density distributions for both the basic and neutral wind-driven models. The basic model exhibits a
broader Es intensity residual distribution spanning +0.2, whereas the neutral wind-driven model is concentrated
near zero, a trend further confirmed by the box plots. Next, we conduct a quantitative evaluation in both temporal
and spatial domains. The seasonal distribution of Es layers and interhemispheric ion transport have demonstrated
Es variability in response to solar radiation (Tian et al., 2023; Yu, Scott, et al., 2021). Figure 3b shows model
results across four seasons. The left subpanel shows absolute error distributions, all below 0.1, while the right
subpanel provides seasonal box plots with values concentrated within +0.05. While both models effectively
capture the climatological Es distribution, the neutral wind-driven model yields more precise outputs.

Figure 3c shows the spatial residual distribution for different latitude-longitude grid. The mid-latitude region
(20°N—40°N) is divided into equally spaced 25 grid points, with Es intensity computed within each grid to
characterize the geographic distribution. Overall, the neutral wind-driven model exhibits smaller deviations
compared to the basic model, despite localized random discrepancies, indicating improved spatial accuracy across
the mid-latitudes. Figure 3d presents the density distributions of Es intensity predicted by both models against
observations. The square and triangular markers represent the basic and neutral wind-driven models, respectively,
with marker points sampled from observational data. A linear fit to the basic model yields a slope of 0.31,
indicating a negative bias, whereas the neutral wind-driven model achieves a slope of 0.8, much closer to the ideal
value of 1, demonstrating improved agreement with observations.

Figure 3e evaluates the overall model performance. A random model, constructed via Gaussian kernel density
estimation, serves as a reference by approximating the observed Es density distribution. The upper subpanel
presents box plots of residuals and MAE across different altitudes (85, 95, 105, 115 km, and the broader 80—
130 km range). The results obtained at different altitudes are consistent, with no significant differences observed.
The lower subpanel shows the correlation coefficients for both models. Basic model has an MAE of ~0.08
between observation and model outputs, which decreases to ~0.05 when incorporating vertical ion convergence.
The neutral wind-driven model effectively reconstructed the small-scale morphology of mid-latitude Es layers,
yielding a MAE of 0.03 and RMSE of 0.08. Box plots show a narrower residual range, shifting from £0.1 to near
zero. The accuracy rate increased from 71.6% to 87.9%, and the spearman correlation coefficient also improves
from 0.43 to 0.81. This analysis quantifies model performance across time, space, and altitude, highlighting the
superior accuracy of the neutral wind-driven model and the critical role of vertical ion convergence in deep
learning-based mid-latitude Es modeling.

Figure 4 illustrates the integration of wind shear theory into a deep learning framework for Es layer prediction.
The top panel depicts the influence of wind shear in the MLT region. Vertical shear of the zonal wind, driven by
opposing eastward and westward winds, induces ion convergence under the geomagnetic field, forming localized
ion dense regions. While meridional winds can, in theory, drive ion motion along magnetic field lines, their
influence on the wind shear mechanism is negligible. This is largely due to the suppression of vertical ion drift by
polarization electric fields, which inhibits effective ion convergence and limits their role in Es layer formation.
The middle panel presents the wind shear equation, formulated under the assumptions of steady-state conditions
and rapid ion response times. Using this equation, vertical ion convergence are derived from ICON/MIGHTI
wind field observations, geomagnetic field data from IGRF-13, and neutral atmospheric density from the
NRLMSIS 2.0 empirical model. The approximate formula for ion-neutral collision frequency is
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Figure 3. Validation of the basic Es model and neutral wind-driven Es model using COSMIC-2 observations. Panel

(a) illustrates the residual distributions of the two models compared to observations. Panel (b) shows the deviation
distributions for four seasons (spring, summer, autumn, and winter), with absolute error distributions on the left and box plots

of residuals on the right. Panel (c) depicts the residual distributions across 50 geographic grids, covering the mid-latitude
region between 20°N and 40°N. Panel (d) presents the density distributions and linear fit curves for the outputs of the two
models compared to observational data. Panel (e) quantifies the performance of different models. The upper panel includes box
plots of residuals and mean absolute error values across different altitudes, while the lower panel shows Spearman correlation
coefficients. Data points in panels (a, d) are resampled from the data set. The random model in panel (e) uses a Gaussian kernel
density estimation function, fitted to the density distribution of the observational data.

Vioneneurat = 2.6 X 107N,/ \/—nZ, where N, is neutral atmospheric number density and m, denotes the mean
neutral molecular mass (N,, O,, and O) in atomic mass units (Xue et al., 2013). As illustrated in Figure 1, vertical
ion convergence plays a critical role in mid-latitude Es formation. The bottom panel shows the SELF-ANN based
neutral wind-driven model framework. The model integrates neutral wind data with the Multi-Layer Perceptron
architecture, which processes projected features using convolutional layers (Convl X 1, Conv3 X 3) and
normalizations. By integrating ICON/MIGHTI neutral wind data and extracting key spatial features, the model
learns the coupling between ion convergence patterns and Es formation, enabling accurate reconstruction of
small-scale Es structures aligned with the dominant wind shear mechanism at mid-latitudes.
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Figure 4. Schematic of the neutral wind-driven model. The top panel illustrates the wind shear mechanism for mid-latitude Es
formation, with zonal and meridional wind dynamics in the geomagnetic field shown on the left and right, respectively. The
middle panel presents the calculated vertical ion convergence distribution and formula involved. The bottom panel depicts
the Sporadic E Layer Forecast using Artificial Neural Networks based model framework. Collision frequency (ion-neutral
collision and ion gyrofrequency) is computed using magnetic field data from IGRF-13 and neutral atmospheric density from
the NRLMSIS 2.0 empirical model.

4. Conclusions

The relationship between Al models for ionospheric irregularity prediction and wind shear mechanisms has not
been thoroughly explored. This study proposes and validates an Al model driven by neutral wind shear for
modeling and predicting the evolution of mid-latitude Es layers. By calculating the three-dimensional ion drift
velocity based on wind shear theory, the results show that vertical ion divergence/convergence significantly
impact mid-latitude Es intensity in the Northern Hemisphere, exceeding the influence of zonal and meridional ion
convergence. Next, building on our previous Al models for Es prediction (Tian et al., 2023), we integrated vertical
ion convergence data into the model and developed a neutral wind-driven Es model. The model effectively
reconstructed the small-scale morphology of mid-latitude Es layers. Compared to the basic Es model without
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effective vertical ion convergence information, the neutral wind-driven Es model significantly improved pre-
dictive accuracy, with the spearman correlation coefficient rising from 0.43 to 0.81 and the accuracy improving
from 71.6% to 87.9%. Our results demonstrate that incorporating physical information from vertical ion drift
markedly improves the predictive capabilities of ionospheric irregularities Al models. This work not only un-
derscores the potential of deep learning-based techniques in ionospheric research but also advances the devel-
opment of physics mechanism-driven methods in space weather modeling.

Data Availability Statement

The COSMIC-2 radio occultation data (podTc2 of level 1b, absolute total electron content profiles) are available
from CDAAC: COSMIC Data Analysis and Archive Center: https://www.cosmic.ucar.edu/what-we-do/cosmic-
2/data/. The ICON/MIGHTI Level 2.2 product Cardinal Vector Winds (Vector Wind Green Version 5) is
accessible from the ICON website https://icon.ssl.berkeley.edu/Data. The source code of NRLMSIS 2.0 model
can be downloaded from the website https://ccme.gsfc.nasa.gov/models. The source code of SELF-ANN deep
learning model is accessible in the github website: https://github.com/RuleNHao/SELF-ANN.
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